
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA

IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN MATEMATICA

CICLO XXXIII

Sede amministrativa Università degli Studi di Firenze
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Introduction

An infinite group is called just infinite if each of its non-trivial normal sub-
group has finite index or, equivalently, if it has only finite proper images.
Beyond the just infinite property, we can require a further condition, namely
that each finite-index subgroup of the group is just infinite; a group which
satisfies this additional condition is called hereditarily just infinite.

The class of just infinite groups was first introduced by Wilson in [20],
where the author analyzes basic properties of such groups, especially with
regard to their normal and subnormal structure. From that time, several
authors focused on this class of groups, and some well-known groups were
found to be just infinite, such as projective linear groups over the ring of the
integers, or the Nottingham group, which is, by the way, also a pro-p group.
Later, Wilson himself brought the attention in particular on just infinite
profinite groups, extending the previous work he developed about abstract
just infinite groups and giving in [22] a simultaneous treatment of both the
abstract and the profinite case.

The importance of just infinite groups is due to many factors. Amongst
them, one of the most relevant is the similarity between the role of just
infinite groups in the context of profinite group theory and the role played
by simple groups in finite group theory. For instance, since each finitely
generated pro-p group admits a just infinite quotient, every question about
pro-p groups can be analyzed, in the first place, as a question about just
infinite groups. Despite this crucial role, only few properties of this class of
groups are known.

Our aim is to make this thesis, as much as possible, self-contained. For
this reason, the first preliminar chapter is entirely dedicated to the resum-
ing of some general facts and definitions which will be useful in the subse-
quent chapters, as well as to fix notations and conventions that are assumed
troughout the entire work.

In the second chapter we will analyze several constructions of just infinite
profinite groups which are not pro-p groups. This work is motivated by the
fact that for a long time only pro-p just infinite groups were known, leaving
unsolved the problem of the existence of just infinite profinite groups which
are not pro-p. Only recently some examples of such groups were shown
and recognized. The first contribution along these lines is given by Wil-
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son in [23], where the author looks for a hereditarily just infinite group in
which all countably based profinite groups can be embedded; furthermore,
Reid proves in [14] that an early example exhibited, for other purposes, by
Lucchini in [10], is actually a hereditarily just infinite group that contains ev-
ery countably based profinite groups, thus foreshadowing Wilson’s research.
Anyhow, the main goal of these works was slightly different than that of our
treatment, which has as its objective a more comprehensive exhibition of ex-
amples of just infinite profinite groups which are not pro-p groups. Thus, we
will first construct a just infinite profinite group which is not pro-p, which is
finitely generated and with an infinite prime spectrum. Later, we will look
for a group that is not finitely generated, making appropriate changes to
the previous construction. Lastly, we will show an example of a just infinite
profinite group which is not a pro-p group and which has a finite prime
spectrum.

The third chapter is devoted to the analysis of different just infinite
profinite structures. In [15] Reid provides a characterization of just infinite
profinite groups in terms of the finite groups occurring in the related inverse
system, thus a natural question is if similar results are true for other just
infinite profinite algebraic structures. In this regard, in this chapter we will
focus on just infinite profinite Lie rings. We remark that also in this case the
profinite limit arises as the limit of an inverse system of finite objects, in or-
der to preserve the important properties that characterize profinite groups,
above all the compactness of the inverse limit.
In the first sections of this chapter we will prove some technical results that
are necessary to work towards the subsequent results. Despite of certain sim-
ilarities, some differences arise with respect to the case of profinite groups,
since some properties seem to be no longer verified: for instance, the inter-
section of the maximal closed ideals of an ideal of a Lie ring could be not an
ideal itself. Therefore a complete characterization, similar to Reid’s theorem,
for just infinite profinite Lie rings can not be provided. We will be able to
prove only some partial statements, in particular giving some sufficient con-
ditions to make sure that a profinite Lie ring which is not virtually abelian is
just infinite. The stronger assumption of hereditarily just infiniteness allows
us to prove the converse relations, making a complete characterization not
possible in full generality. Due to these obstacles we will look at a partic-
ular subclass of Lie rings, showing a whole characterization for just infinite
profinite Lie rings in this family and which are not virtually abelian. Thus,
we will show two instances of Lie algebras actually belonging to the class we
have defined. The first one is given by Lie FC-algebras, namely Lie algebras
in which each element has a centralizer of finite codimension; the choice of
this class of Lie algebras is justified by the fact that it can be defined in par-
allel with the important class of FC-groups, that are groups in which each
element has a centralizer of finite index. Later, we will prove that also for
just infinite profinite residually solvable Lie algebras a full characterization
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in the Reid’s fashion is possible.
Lastly, in the fourth and final chapter we will display some results con-

cerning profinite Noetherian groups, that are groups in which every ascend-
ing chain of closed subgroups stabilizes in finitely many steps. The basic
motivation for focusing the attention on this class of groups is given by the
study of p-adic analytic groups, that are defined as pro-p groups which are
Lie groups over the field of p-adic numbers or, equivalently, as pro-p groups
with finite profinite rank. This second definition gives the chance to formu-
late several different characterizations of p-adic analytic groups, for example
in terms of virtual properties (that is, properties which are satisfied by a
finite-index subgroup), in terms of the sections of the group or in terms of
subgroup growth. The work of Lubotzky and Mann [8] brings out a question
about this class of groups, asking whether a Noetherian pro-p group should
be analytic; on the other hand, we can easily convince that a pro-p group
with finite rank is Noetherian, then a positive answer to the question posed
by Lubotzky and Mann would provide a further characterization of p-adic
analytic groups. Despite the Noetherianity constitutes a strong condition,
very little is known about the class of profinite Noetherian groups. Thus,
in this chapter we will make some comments on the structure of this kind
of groups, pointing out some consequences of results which have been es-
tablished more generally, when they are applied to this class of groups. In
particular, we will show that such a group is a finite extension of a direct
product of a finite number of copies of a hereditarily just infinite group,
as a corollary of the important result proved by Grigorchuk which goes by
the name of Wilson’s dichotomy. Furthermore, we will prove that a profinite
Noetherian group has finite prime spectrum and that a just infinite profinite
Noetherian group is virtually pro-p for some prime p.

All the results and all the notions which are already known from previous
works are accompanied by the related reference. Every statement for which
no reference is given is intended as original or, at least, we are not aware
of already known proofs by other authors. Furthermore, for the sake of
completeness, we provide a complete proof for some results that might be
already known but for which we did not find any mention.





Chapter 1

Basic notions

In this preliminary chapter we make a brief review of some basic concepts
and results that will be useful throughout the thesis.

1.1 Group actions
In this section we assume the finiteness of the groups we are dealing with.
Here, we quickly revise some definitions and results about finite group ac-
tions that will be useful in the following. For a further discussion see for
example [6] or [17].

Given a group G and a set X, a right action of G on X is a function ρ
defined on X × G with values in X such that for all g1, g2 ∈ G and for all
x ∈ X the following conditions hold:

1. ρ ((x, g1g2)) = ρ (ρ(x, g1), g2);

2. ρ(x, 1) = x.
The image of a pair (x, g) under ρ is commonly denoted by x · g.
A group action on a set X can be identified with a permutation representa-
tion of G on X, namely a homomorphism G→ Sym(X).
A group action is faithful if x · g = x if and only if g = 1; it is transitive if
for each pair of distinct elements x and y in X there exists g ∈ G such that
x · g = y.

If the set X on which G acts possesses also a group structure, we also
require, beyond the properties defining an action on a set, the following
additional condition for all x1, x2 in X and for all g ∈ G:

3. ρ ((x1x2), g) = ρ(x1, g)ρ(x2, g).
For all S ⊆ G and Y ⊆ X we can define some typical subgroups, such as
NS(Y ) = {g ∈ S | Y · g = Y }, CS(Y ) = {g ∈ S | y · g = y ∀y ∈ Y }

CY (g) = {y ∈ Y | y · g = y}, CY (S) =
⋂
g∈S

CY (g)
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In particular CX(G) is the subgroup of fixed points of X under the action
of G, while CG(X) is the kernel of the action of G on X.
Moreover, also the notation for the commutators can be extended when we
deal with actions on groups:

[x, g] = x−1(x · g), [Y, S] = 〈[y, g] | y ∈ Y, g ∈ S〉

The action of a group G on a group X is coprime if and only if their
orders are coprime. Note that, by Feit-Thompson theorem, which ensures
that every odd-order group is solvable, the assumption of coprime orders
automatically implies that at least one among the two groups G and X is
solvable.

If we have an action of a group G on an abelian group V , we say that V
is a G-module. Such a module is irreducible or simple if it does not admit
proper non-trivial G-invariant subgroups, also called G-submodules. The
action is completely reducible or semisimple if and only if each G-invariant
subgroup V admits a G-invariant complement in V . Furthemore, an action
of G on V is called indecomposable if V can not be decomposed as a direct
sum of non-trivial proper G-invariant subgroups. Clearly the property of
being irreducible is stronger than the one of being indecomposable, while in
general an abelian group on which G acts could have a proper non-trivial G-
invariant subgroup which does not admit G-invariant complements, namely
such a group could be indecomposable but not irreducible.
Theorem 1.1.1 (Maschke’s Theorem). Let G be a group acting on an ele-
mentary abelian p-group V and suppose that this action is coprime. Then,
the action of G on V is completely reducible.
Another very basic result is the Schur’s Lemma. We remind the reader
that, if V and W are two G-modules, a homomorphism of abelian groups
ϕ : V // W is a G-homomorphism if ϕ(v · g) = ϕ(v) · g, that is, if the
G-action and ϕ commute.
Lemma 1.1.2 (Schur’s Lemma). Let V and W be two simple G-modules.
Then every G-homomorphism between V and W is invertible or zero. In
particular, the endomorphism ring of a simple module is a division ring.
The following theorem says that there is no difference between finite division
rings and finite fields.
Theorem 1.1.3 (Wedderburn’s Theorem). Every finite division ring is a
field.

1.2 Profinite groups
In this section we quickly recall the main concepts about profinite groups.
Proofs for the statements here listed can be found in several books, such as
[16] or [21].
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Inverse limits

A directed set is a partially ordered set (I,�) such that for all j, k ∈ I there
exists i ∈ I such that j, k � i.
An inverse system of topological spaces indexed by a directed set I consists
of a pair of families of topological spaces (Xi)i∈I and of continuous maps

(ϕij : Xj → Xi)i,j∈I
i�j

such that

• ϕii = idXi for all i ∈ I;

• ϕijϕjk = ϕik for all i � j � k in I.

If a different topology is not specified, we usually regard the spaces Xi as en-
dowed with the discrete topology. Moreover, an inverse system is surjective
if all the maps ϕij are surjective.

Consider now an inverse system of topological spaces as outlined above.
An inverse limit for such an inverse system is given by:

• a topological space X;

• a family of continuous maps ϕi : X //Xi indexed by a directed set I
such that ϕijϕj = ϕi for all i � j;

such that the following universal property is satisfied: for each topological
space Y and for each family of continuous maps (ψi : Y //Xi)i∈I such that
ϕijψj = ψi for all i � j, there exists a unique continuous map ψ : Y → X
satisfying ϕiψ = ψi for all i ∈ I. Such an inverse limit is denoted by
X = lim←−i∈I Xi.

Given an inverse system of topological spaces, its inverse limit exists
and it is unique (up to isomorphism). It is sometimes useful to work with
the explicit construction of the inverse limit as a subspace of the Cartesian
product of the spaces Xi:

X = {(ai)i∈I ∈ Cari∈IXi | ϕij(aj) = ai ∀i, j ∈ I, i � j}

where, for all i ∈ I, the map ϕi is the restriction to the space X of the
projection map πi onto the i-th component of the Cartesian product.

The following proposition resumes some well-known topological facts
about inverse limits.

Proposition 1.2.1. Let (Xi, ϕij)i,j∈I be an inverse system indexed by a
directed set I, let X = lim←−i∈I Xi be its inverse limit. Then

1. if each Xi is Hausdorff, so too is X;
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2. if each Xi is totally disconnected, so too is X;

3. if each Xi is compact and Hausdorff, so too is X;

4. if each Xi is a non-empty compact Hausdorff space, then X is non-
empty.

The next result focuses on inverse system of non-empty compact Hausdorff
topological spaces.

Proposition 1.2.2. Let (Xi, ϕij)i,j∈I be an inverse system of non-empty
Hausdorff spaces indexed by a directed set I, let X be its inverse limit. Then

1. ϕi(X) = ⋂
j�i ϕij(Xj) for all i ∈ I;

2. the family of sets {ϕ−1
i (U) | U ⊆o Xi, i ∈ I} is a basis for the topology

on X;

3. if Y ⊆ X satisfies ϕi(Y ) = Xi for all i ∈ I, then Y is dense in X.

If in addition each Xi is compact, then

4. a map α : Y //X is continuous if and only if for each i ∈ I the map
ϕiα is continuous.

The last result that we recall about inverse limits of topological spaces is
the following.

Proposition 1.2.3. A compact Hausdorff totally disconnected topological
space is the inverse limit of its discrete quotient spaces.

Profinite groups

A profinite group is the inverse limit of an inverse system of finite groups.
More generally, given a class C of finite groups (closed with respect to taking
homomorphic images), a group is pro-C if it is the inverse limit of an inverse
system of C-groups. So we can talk about pro-p groups, prosolvable groups,
pronilpotent groups and so on.
When we deal with the subgroup structure of profinite groups, we always
refer to closed subgroups, since we have to ascertain that the subgroups
themselves are profinite groups and not only abstract subgroups. In this
preliminary chapter we always specify that the subgroups are closed, but in
the following, although it is not explicitely indicated, we mean any subgroup
of a profinite group as a closed subgroup.

Theorem 1.2.4. Let G be a topological group. The following conditions are
equivalent:

1. G is profinite;
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2. G is isomorphic as a topological group to a closed subgroup of a Carte-
sian product of finite groups;

3. G is compact and the set of open normal subgroups forms a residual
system, that is ⋂

NCoG

N = 1

4. G is compact and totally disconnected.

Given a profinite group G, we can define its order as follows. First, we
define the index of a closed subgroup H of G as the least common multiple
of the indices of the open subgroups of G containing H. Then, we define the
order of G as the index of the trivial subgroup in G. Thus, we can consider
the prime spectrum of a profinite group G, whose elements are the prime
numbers which divide the index of some open normal subgroup.
Also a profinite version for the Lagrange’s theorem holds, and moreover there
is a Sylow theory for profinite groups. A p-Sylow subgroup of a profinite
group G is a closed subgroup P such that its order is a (possibly infinite)
power of p and its index in G is coprime to p. Thus, p-Sylow subgroups are
maximal pro-p subgroups, extending in the more natural way the role that
p-Sylow subgroups play in the theory of finite groups.

Proposition 1.2.5. Let G be a profinite group, let p be a prime. Then, the
following conditions hold:

1. G has p-Sylow subgroups.

2. Every pro-p subgroup is contained in a p-Sylow.

3. Any two p-Sylows of G are conjugate.

The following result generalizes to the class of profinite groups the Frattini
argument.

Proposition 1.2.6 (Frattini argument, profinite case). Let G be a profinite
group, let p be a prime in the prime spectrum of G. Let H be a closed normal
subgroup of G and let P be a p-Sylow of H.
Then, the normalizer of P in G is a closed subgroup of G and moreover
G = HNG(P ).

As in the finite case, when we deal with a set of primes π, we can refer
to pro-π groups. A profinite group is a pro-π group if every prime divisor
of its order is a prime occurring in the set π. Equivalently, a pro-π group is
the inverse limit of an inverse system of finite π-groups.
A π-Hall subgroup of a profinite group G is a closed subgroup H such that
its order is divisible only by primes in π, while its index is divisible only by
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primes that are not in π. Clearly a π-Hall subgroup is a maximal pro-π sub-
group, while the converse does not hold, similarly to the finite case. Thus,
if π = {p} is a singleton, a π-Hall subgroup is a p-Sylow subgroup; dually, if
{p}′ denotes the complement, in the set of all primes, of the singleton {p},
a {p}′-Hall subgroup is called a p-complement.

Let now G be a prosolvable group. A Sylow basis {Sp | p prime} for a
group G is a collection of p-Sylow subgroups, one for each prime number p,
such that its members are permutable, namely SpSq = SqSp for each pair of
primes p and q. If we look at finite groups, each finite solvable group admits
a Sylow basis, and moreover any two such bases are conjugate, as proved by
Hall. The following theorem generalizes to prosolvable groups this property.

Proposition 1.2.7. Let G be a prosolvable group. For each prime number
p, let Sp′ be a p′-Hall subgroup of G. Then

1. For each prime q,
Sq =

⋂
p 6=q

Sp′

is a q-Sylow subgroup of G and moreover the topological closure of the
product

∏
q Sq coincides with the entire G.

2. The collection of closed subgroups {Sq} defined above is a Sylow basis
of G.

3. Any two Sylow bases {Sq} and {Rq} of G are conjugate.

The following result is the profinite version of a theorem proved by Hall for
finite solvable groups.

Proposition 1.2.8. A profinite group is prosolvable if and only if it has
p-complements for all primes p.

The following statement generalizes to π-Hall subgroups the analogue result
which holds for p-Sylow subgroups.

Proposition 1.2.9. Let G be a prosolvable group, let π be a set of prime
numbers. Then the following conditions hold.

1. G has π-Hall subgroups.

2. Every pro-π subgroup is contained in a π-Hall subgroup.

3. Any two π-Hall subgroups are conjugate.
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We now focalise on finitely generated profinite groups. We say that a subset
X of a group G generates G if the abstract subgroup 〈X〉 is dense in G.
Clearly, a profinite group is finitely generated if there exists a finite subset
such that the closure of the abstract subgroup generated by it coincides with
the entire group G.

Proposition 1.2.10. Let G be a finitely generated profinite group. Then
the identity element has a fundamental system of neighbourhoods consisting
of a countable chain of open characteristic subgroups.

1.3 Lie rings

A Lie ring is an abelian group (L,+) endowed with a bilinear product,
denoted by [·, ·], satisfying the following properties:

• [x, x] = 0 for all x ∈ L;

• the Jacobi identity: [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for all x, y, z ∈ L

The first property is equivalent to anticommutativity, say [x, y] = −[y, x] for
all x, y ∈ L.
A Lie subring is an abelian subgroup (K,+) 6 (L,+) closed under Lie
bracket. An ideal I of a Lie ring L is a Lie subring such that [a, x] ∈ I for
all a ∈ I and x ∈ L.
A Lie ring is abelian if the Lie product is trivial, namely [x, y] = 0 for all x,
y ∈ L.
The concept of Lie ring is a generalization of Lie algebra, since every Lie
algebra over a generic ring is an example of Lie ring. Morever, any associa-
tive ring R can be made into a Lie ring by defining a bracket operator as
[x, y] := xy − yx for all x, y ∈ R.





Chapter 2

Just infinite profinite groups

For a long time the only known examples of just infinite profinite groups
were pro-p groups, leaving unsolved the problem of the existence of just infi-
nite profinite groups which are not pro-p. In recent years the first examples
of just infinite profinite groups which are not pro-p were investigated. The
first contribution along these lines is given by Wilson in [23], where the au-
thor looks for a hereditarily just infinite group in which all countably based
profinite groups can be embedded; furthermore, Reid proves in [14] that an
early example exhibited by Lucchini for other purposes in [10] is actually a
group of the same type. Anyhow, the aim of the authors who investigated
such examples was slightly different than the analysis of just infinite profi-
nite groups which are not pro-p groups by themselves, that is the main goal
of this chapter.
Here, in fact, we would like to make a more exhaustive discussion of this
kind of groups, by proposing various examples with different properties. To
do this, we will use a result proved by Reid in [15], that characterizes just
infinite profinite groups through the finite groups occurring in the associated
inverse system.
First we will analyze the simplest case, which gives rise to a finitely gen-
erated group with infinite prime spectrum. The finiteness of the minimal
number of generators is a consequence of the construction, since the finite
groups occurring in the inverse system associated to the profinite group
turn out to have a stable number of generators. Then, in order to find an
infinitely generated just infinite profinite group, we will suitably modify the
first construction.
Later, in the subsequent example, we will work under different hypothesis,
with the aim of building a just infinite profinite group with finite prime
spectrum.
Unless otherwise specified, when we deal with subgroups we always mean
closed subgroups.

13



14 Just infinite profinite groups

2.1 Just infinite groups
An infinite group G is called just infinite if every of its non-trivial normal
subgroup has finite index. Equivalently, a just infinite group is a group
which has only finite proper images since, certainly, the kernel of a group
homomorphism is a normal subgroup of the group. An important subclass
of the family of just infinite groups is given by the hereditarily just infinite
groups, that are groups in which every open subgroup is just infinite.
Clearly every simple group is just infinite. The easiest non-trivial examples
of just infinite groups are given by the group of integers Z and the infinite di-
hedral group D∞. A more interesting early example was given by Mennicke
in [12], where the author shows that, for n > 3, the projective special linear
group PSL(n,Z) is a just infinite group. Many other arithmetic groups, such
as the symplectic group Sp2n(Z) for n > 2, are just infinite groups; further-
more, this property is also satisfied if we replace Z by the ring of integers of
an algebraic number field.
Also the Nottingham group over Fp is a just infinite group; recall that
the Nottingham group over the finite field Fp is the group of formal se-
ries t + t2 Fp[[t]]; by the way, it is a pro-p group which, besides, contains a
copy of each finitely generated pro-p group, and this fact makes it a pro-p
group with infinite (profinite) rank1.
McLain gives in [11] an example of an infinite, locally finite and locally solv-
able just infinite group, where the only non-trivial normal subgroups are the
terms of its derived series. Lastly, in [4], is discussed an infinite just infinite
group all of whose proper quotients are p-groups.

From now on we will work with just infinite profinite groups; for these
groups we obviously require that all non-trivial closed normal subgroups
have finite index in the entire group or, equivalently, that every non-trivial
closed normal subgroup is open.

In his work published in 2011, Reid focuses both on just infinite and on
hereditarily just infinite profinite groups, giving characterizations of such
groups throughout properties regarding the finite groups occurring in the
associated inverse system. Here we state the theorem about the just infinite
case, that is the result on which we rely to construct our examples.
Theorem 2.1.1 (Reid, [15]). Let G be a just infinite profinite group. Let
(Cn)n∈N be a sequence of classes of finite groups such that G has infinitely
many chief factors in each Cn.
Then G is the limit of an inverse system of finite groups (Gn)n∈N and sur-
jective group morphisms (ρn : Gn+1 → Gn)n∈N where each Gn has a normal
subgroup An such that, letting Pn = ρn(An+1), the following properties are
satisfied for all n ∈ N+:

1. An > Pn > 1;
1The rank of a profinite group G is defined as rk(G) = sup{d(H) | H 6c G}
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2. there exists a unique maximal Gn-invariant subgroup in An;

3. each normal subgroup of Gn either contains Pn or is contained in An;

4. Pn is a minimal normal subgroup of Gn;

5. Pn ∈ Cn.

Conversely, every surjective inverse system satisfying, for some choice of
An and for all but finitely many n, the first three conditions above, has a
just infinite inverse limit.

In particular we will use the second part of the statement, looking for a
suitable sequence of finite groups having a subgroup structure with the listed
properties.

2.2 Just infinite profinite groups with infinite prime
spectrum

In this section we propose two examples of just infinite profinite groups
which are not pro-p groups and which have infinite prime spectrum. The
first example gives rise to a finitely generated group, while in the second
case we look for a non-finitely generated group.
In both cases, the main step of the construction appears in a preliminary
lemma that allows us to build a new finite solvable monolithic group, with
some specified properties, starting from a solvable monolithic transitive per-
mutation group. The iteration of the construction exhibited in the proof
of this lemma will lead us to the desired example of just infinite profinite
group.
The two constructions are based on the product action of the permutational
wreath product, that we briefly recall here; for further details, see for ex-
ample section 2.1 in [1]. Let H be a permutation group on a set with n
elements, namely H 6 Sn, let G be a group acting by permutations on a
set X. The permutational wreath product G oH = Gn oH acts on Xn as
follows: for every (x1, . . . , xn) ∈ Xn, (g1, . . . , gn) ∈ Gn and σ ∈ H we have

(x1, . . . , xn) · ((g1, . . . , gn), σ) =
(
xσ−1(1) · gσ−1(1), . . . , xσ−1(n) · gσ−1(n)

)
where, recall, the actions are meant as right actions.

First of all, we prove a technical lemma that will be useful in what
follows. We remind the reader that a monolithic group is a group which
admits a unique minimal non-trivial normal subgroup, called the monolith
of the group.
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Lemma 2.2.1. Let G be a group acting on an irreducibile faithful module
U . Then U oG is a monolithic group with monolith U .

Proof. Let N be a minimal normal subgroup in U o G; we will prove that
N = U . If N does not contain U , then N ∩ U is properly contained in U
and, by irreducibility of U , we have that N ∩ U is trivial. Now,

[N,U ] 6 N ∩ U = 1

therefore N is contained in the centralizer of U in U o G, which equals U
itself by the faithfulness of the action of G on U ; but, as N ∩ U = 1, this
leads to N = 1, which is a contradiction.
Thus, N must contain U , and so N = U by minimality.

Finitely generated case

As we have previously explained, the first example shows a finitely generated
just infinite profinite group with infinite prime spectrum.
The following lemma constitutes the general step on which the construction
of the just infinite profinite group we are looking for is based.

Lemma 2.2.2. Let p and q be two distinct prime numbers such that q|p−1,
let G be a finite solvable monolithic group whose order is coprime to p and
q. Let moreover A and P be two non-trivial normal subgroups satisfying the
following properties:

1. there exists a unique maximal G-invariant subgroup of A;

2. P < A;

3. each normal subgroup of G is either contained in A or it contains P .

Then there exists a finite solvable monolithic group G̃ which has two non-
trivial normal subgroups Ã and P̃ satisfying the same properties (1)-(3);
furthermore there exists a surjective morphism from G̃ onto G which maps
Ã onto P .
Lastly, the minimal number of generators of G̃ equals that of G.

Proof. By Cayley’s theorem, we can pick a natural number m such that G
embeds in Sm as a transitive permutation subgroup. Thus, G acts faithfully
on Cmq by permuting coordinates: if σ ∈ G and (a1, . . . , am) ∈ Cmq , we have

(a1, . . . , am) · σ =
(
aσ−1(1), . . . , aσ−1(m)

)
This action is completely reducible by Maschke’s theorem, under our as-
sumptions on |G| and q. So, by monolithicity of G, we can find an irreducible
faithful G-submodule U 6G C

m
q : if not, the kernel of the action of G on each
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irreducible component would contain the monolith, so also the kernel of the
entire representation would contain it, contradicting the faithfulness of the
G-action on the entire Cmq .
Furthermore, since by hypothesis q|p − 1, the cyclic group Cq embeds in
Aut(Cp), so Cq acts faithfully on Cp; besides, there is also a natural faithful
action of G on Cmp , by permuting coordinates, in the same way as described
before.
Throughout these two actions we build the product action of the permuta-
tional wreath product Cq oG = Cmq oG on Cmp , as explained previously: for
all (b1, . . . , bm) ∈ Cmp , (a1, . . . , am) ∈ Cmq and σ ∈ G we have

(b1, . . . , bm) · ((a1, . . . , am) , σ) =
(
bσ−1(1) · aσ−1(1), . . . , bσ−1(m) · aσ−1(m)

)
Consider now the subgroup U oG 6 Cq oG, which acts in a completely

reducible way and faithfully on Cmp . UG is monolithic by Lemma 2.2.1, so
there exists a UG-submodule W 6UG C

m
p which is irreducible and faithful,

by the argument already used for the submodule U .
We are now ready to build the desired group. Consider the semidirect

product G̃ := W o (U oG) and its normal subgroup Ã := WUP .
The group G̃ is monolithic with monolith W , once again thanks to Lemma
2.2.1. This unique minimal normal subgroup is exactly the subgroup P̃ we
were looking for.
We claim now that the unique maximal G̃-invariant subgroup which is prop-
erly contained in Ã is WU . For, if there exists another M C G̃ which is a
maximal G̃-invariant subgroup of Ã, then M ∩WU is a proper subgroup of
Ã which is normal in G̃; thus, M ∩WU must contain W , according to the
fact that G̃ is monolithic. Since WU/W ∼= U is irreducible, we can have
only two distinct cases: either M ∩WU = WU , which implies M = WU by
maximality; or M ∩WU = W , which implies M ∩U = 1 or M ∩U = W by
the Dedekind modular law (remembering that W 6 M); this second case
actually can not hold, as U ∩W = 1, hence we certainly have M ∩ U = 1.
Thus, as WU is normal in G̃, we have [M,U ] 6 M ∩ UW = W , hence
MW/W centralizes WU/W and, as G acts faithfully on U , we deduce that
MW 6WU , and thus M 6WU .
Lastly, also the third requirement is satisfied, since the surjective map
π : G̃ //G has kernel UW and so maps Ã onto P .

It remains to prove the statement about the minimal number of genera-
tors of the new group G̃. In [9] the authors proved, using the classification
of finite simple groups, that for every non-cyclic finite monolithic group H,
the number of generators of H is the maximum among 2 and d(H/N), where
N is the unique minimal normal subgroup of H. In our case we see that, as
G is non-cyclic,

d
(
G̃
)

= max
{

2, d
(
G̃�W

)}
= d

(
G̃�W

)
= d(UG)
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and, in turn, d(UG) = d(G), as also UG is a monolithic group with monolith
U .

Iterating the construction provided by the previous lemma we are able to
prove the following theorem.

Theorem 2.2.3. There exists a finitely generated just infinite profinite
group which is not a pro-p group.

Proof. Let X be a solvable monolithic group which is a transitive permuta-
tion group on a set with m1 elements. Consider two prime numbers p1 and
q1 such that q1|p1 − 1 and (p1, |X|) = (q1, |X|) = 1, as in the hypothesis of
Lemma 2.2.2.
As we have seen in Lemma 2.2.2, we have a permutational action of X on
Cm1
q1 , so we can find a faithful irreducible X-submodule U1 6X Cm1

q1 . Fur-
thermore, there is also an action of the wreath product Cq1 oX = Cm1

q1 oX on
Cm1
p1 , with respect to which we can find a faithful irreducible U1X-submodule

W1 6U1X Cm1
p1 . We then define the semidirect product G1 := W1o(U1 oX)

and we consider its subgroup A1 := W1U1.
The group G1 is monolithic, with monolith W1, by Lemma 2.2.1, so any
normal subgroup N of G1 must contain W1. Moreover, if N is also properly
contained in A1, we have W1 6 N < W1U1 which implies N = W1 by irre-
ducibility of (U1W1)/W1. So N = W1 is the unique maximal G1-invariant
subgroup of A1.

Once the first step is done, we can use straightly Lemma 2.2.2. Note
that we can consider two sequences of (different) prime numbers (pk)k∈N+

and (qk)k∈N+ such that for every positive natural numbers i and j we have
pi 6= qj , GCD (pi+1, |X|) = GCD (qi+1, |X|) = 1 and qi|pi − 1. For, suppose
that we have already built the first n finite groups G1, . . . , Gn and that we
have already chosen p1, . . . , pn, q1, . . . , qn with the desired properties. Then,
pick qn+1 different from all the pi and the qj and such that it is coprime to
|X| for all i 6 n. By Dirichlet’s theorem on arithmetic progressions2, we can
find a prime number pn+1 which is congruent to 1 modulo qn+1 and which
is coprime to |Gn|.
Applying now Lemma 2.2.2 we can build the group Gn+1 which has two sub-
groups An+1 and Pn+1 satisfying the desired properties and with a suitable
surjective morphism πn onto Gn.
So, the inverse system of groups (Gi, πi)i∈N gives rise to a profinite group
G = lim←−i∈NGi that, by Reid’s theorem, comes out to be just infinite. Clearly,
by construction such a group is not a pro-p group.

Now we look at the minimal numbers of generators of the groups occur-
ring in the inverse system associated to the profinite group we have built.

2Dirichlet’s theorem on arithmetic progressions claims that, for every two positive
coprime integers a and b, there are infinitely many n ∈ N+ such that a + nb is a prime
number.
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Thanks to the last claim stated in Lemma 2.2.2, in this construction the
minimal number of generators of the components of the inverse system does
not increase, thus

d

(
lim←−
i∈N

Gi

)
= d (Gi) ∀i ∈ N

and the profinite group comes out to be finitely generated.

In what follows, we will try to modify the last example, in order to
obtain an inverse system in which the minimal number of generators of each
term increases, and that, therefore, will give rise to a non-finitely generated
profinite group.

Infinitely generated case

The goal of this section is the construction of a new inverse system of finite
groups, giving rise to a non-finitely generated just infinite profinite group.
To do this, we need that the number of generators of the terms in the inverse
system increases in a finite number of steps.
As in the previous case, we first prove a lemma that will be the cornerstone
for our main result.

Lemma 2.2.4. Let p and q be two distinct prime numbers such that q|p−1,
let G be a finite solvable group whose order is coprime to p and q and such
that its abelianization has order not coprime to q. Let moreover A and P be
two non-trivial normal subgroups satisfying the following properties:

1. there exists a unique maximal normal subgroup of G contained in A;

2. P < A;

3. each normal subgroup of G is either contained in A or it contains P .

Then there exists a finite monolithic solvable group G̃ which has two non-
trivial normal subgroups Ã and P̃ satisfying the same properties (1)-(3) and
such that d(G̃) > d(G); moreover there exists a surjective morphism from G̃
onto G which maps Ã onto P .

Proof. Let G be as in the hypothesis. Consider the group W o (U oG) as
built in the proof of Lemma 2.2.2: U is an irreducible faithful G-submodule
of Cmq , and W is an irreducible faithful UG-submodule of Cmp .
The ring of the UG-invariant endomorphisms of W is a division ring by
Schur’s lemma and so, by finiteness, it is a field, by Wedderburn’s theorem;
moreover, the finite field Fp is contained in EndUG(W ).
Pick x ∈ EndUG(W ) such that its order is not coprime to the order of UG;
such an element exists: for instance, we can pick x as an element of order q
in the multiplicative group of the field Fp.
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Of course W is still irreducible for the action of UG × 〈x〉, since it was
already irreducible as a UG-module; furthermore, W is also still faithful for
the action of UG× 〈x〉, since the new element x can not act as an element
of UG, by its choice in the multiplicative group of the field Fp.
So we can consider the new semidirect product G1 = W o (UG × 〈x〉).
Defining the subgroups P̃ = W and Ã = WUP , we can prove similarly to
the previous case that they satisfy the required properties (1)-(3).
First of all, G1 is monolithic, with monolith W , by Lemma 2.2.1.
Then, we have to prove thatWU is the unique maximal subgroup of Ã that is
G1-invariant. For, let M be another non-trivial normal subgroup which is a
maximal subgroup of Ã; thenM∩WU must containW and, by irreducibility
of WU/W , we conclude that M = WU or M ∩WU = W , which implies
M ∩U = 1. Thus, as WU is normal in G̃, we have [M,U ] 6M ∩UW = W ,
hence MW/W centralizes WU/W and, as G acts faithfully on U , we have
MW 6WU , and thus M 6WU .

Now, we look at the minimal number of generators for G1. First of all,
given a group product NH, where N is normal, through the usual commu-
tator relations we can easily convince that its derived subgroup is

N ′H ′[N,H]

Thus, in our case we have

G′1 = W ′ (UG× 〈x〉)′ [W,UG× 〈x〉] =
= (UG)′ [W,UG× 〈x〉] =
= U ′G′[U,G] [W,UG× 〈x〉] =
= G′[U,G] [W,UG× 〈x〉] =
= G′UW

since U ′ = W ′ = 〈x〉′ = 1 (being abelian), [UG, 〈x〉] = 1 as both UG and
〈x〉 are factors of a direct product, and since the actions on U and W are
irreducible.
Then, we note that the minimal number of generators of the abelianization
ofG1 is strictly greater than d(Gab), due to the choice of the element x. Now,
if also d(G1) > d(G) holds, then we have found a group with the desired
property and we redefine G̃ = G1. Otherwise, we can repeat the argument,
finding a sequence of groups (Gn)n∈N+ such that the properties (1)-(3) are
satisfied and such that, for each n, the minimal number of generators of the
abelianization of Gn+1 is strictly greater than the corresponding number
for Gn and d(Gn+1) > d(Gn); since obviously d(Gn) is not smaller than
d
(
Gab
n

)
, there surely exists k ∈ N+ such that d(Gn+k) > d(Gn); choosing k

minimal with this property, we can define G̃ = Gn+k.

Iterating the construction provided by the previous lemma, we are able to
state the main theorem of this section, which proves the existence of a just
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infinite profinite group that is not a pro-p group and that is not finitely
generated.

Theorem 2.2.5. There exists a just infinite profinite group which is not a
pro-p group and which is not finitely generated.

Proof. The first step is completely analogous to the construction made in
the previous case: given a transitive solvable monolithic permutation group
X 6 Sm1 and given two prime numbers p1 and q1 such that q1|p1 − 1 and
(p1, |X|) = (q1, |X|) = 1, first we pick an irreducible faithful X-submodule
U1 6X Cm1

q1 and then an irreducible faithful U1X-submoduleW1 6U1X Cm1
p1 ;

therefore we define G1 = W1 o (U1 oX).
Applying Lemma 2.2.4 to G1 we can build a group G2 that satisfies the
conditions of the Reid’s theorem and such that d(G2) > d(G1).
Suppose now that we have already built a group Gi, for some i > 1, such
that d(Gi) > d(G1) + i and, of course, which satisfies the hypothesis of
Lemma 2.2.4. Now, using the same lemma, we can construct a new group
Gi+1 which has one more generator than Gi and also satisfying the condi-
tions given by Reid.
Applying Reid’s theorem to the sequence of groups which we have found,
we conclude that the profinite group G = lim←−i∈NGi is just infinite. Further-
more, since d(G) > d(Gi) for every i ∈ N+ and as the sequence {d(Gi)}i∈N
is unbounded, the just infinite group G is not finitely-generated.

2.3 Just infinite profinite groups with finite prime
spectrum

The previous examples were made through two sequences of suitable prime
numbers, chosen in order to deal with coprime actions only, allowing us to
make use of Maschke’s theorem.
In what follows, we will work with finitely many primes; certainly we will
have a price to pay, due to the lack of coprimality of the actions we work
with.
As usual, the main step for the construction is enclosed in a lemma, which,
with respect to the prime spectrum of G, is stated “dually” to the previous
ones: in fact, here the primes p and q are prime divisors of the order of the
finite group G.
First of all, we prove an auxiliary lemma that will be useful in the following.

Lemma 2.3.1. Let q be a prime number, let G be a finite monolithic group,
whose monolith is not a q-group.
Then, G admits a faitfhul simple module which is a q-group.

Proof. Consider the regular representation V of G over the ring of integers
modulo q. The action of G on V may be not coprime, since we did not
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assume that the order of G must be coprime to q, so such an action could
be not completely reducible. Therefore, we consider a composition series for
V (with respect to the G-module structure), say

1 = V0 C V1 C . . . C Vn = V

If the monolith acts trivially on each factor of this composition series, then
the monolith would have a unipotent action, and it would be a q-group,
contradicting the hypothesis. Hence, there is a simple G-module which is a
q-group on which G acts faithfully.

We are now ready for the main lemma. The idea is similar to the previous
examples. In this case, the construction of the iterated wreath product is
based on the previous lemma, which is applied to a monolithic group whose
monolith is alternatively not a q-group or not a p-group.

Lemma 2.3.2. Let q be a prime number, let G be a finite solvable monolithic
group whose monolith is not a q-group. Let moreover A and P be two non-
trivial normal subgroups satisfying the following properties:

1. there exists a unique maximal G-invariant subgroup of A;

2. P < A;

3. each normal subgroup of G is either contained in A or it contains P .

Then there exists a finite solvable monolithic group G̃ which has two non-
trivial normal subgroups Ã and P̃ satisfying the same properties (1)-(3) and
whose monolith is not a q-group; furthermore there exists a surjective map
from G̃ onto G which maps Ã onto P .
In addition, the prime spectrum of G̃ equals that of G.

Proof. Let m be a natural number such that G embeds in Sm as a transitive
permutation subgroup.
By Lemma 2.3.1, there exist a simple module, say S, which is a q-group and
on which the action of G is faithful.

Now, note that also S o G is a monolithic group, with monolith S, by
Lemma 2.2.1. As before, the action of SG on Cmp could be not coprime, but,
again by Lemma 2.3.1, as the monolith S is not a p-group, we can find an
irreducible module, say T , which is a p-group and on which the SG-action
is faithful.
We then consider the semidirect product G̃ := T o (S oG) and its normal
subgroup Ã := TSP . The checking of the required properties goes ahead
similarly to what we have done in Lemma 2.2.2.
First of all, G̃ is certainly monolithic, with monolith T , by Lemma 2.2.1.
Rename the unique minimal normal subgroup as P̃ := T .
Moreover, we have to prove that TS is the unique maximal G̃-invariant
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subgroup of Ã: if M is another G̃-invariant subgroup of Ã, then M ∩ TS
is normal in G and it must contain T , by monolithicity. As TS/T ∼= S is
irreducible, we can have either M ∩ TS = TS or M ∩ TS = T . In the first
case we have M = TS by maximality; while in the second case we have
either M ∩ S = 1 or M ∩ S = T by the Dedekind modular law; this second
case actually can not hold, as T ∩ S = 1.
Thus, as TS is normal in G̃, we have [M,S] 6 M ∩ TS = T , hence MT/T
centralizes TS/T and we have MT 6 TS, hence M 6 TS.
Lastly, the projection morphism π : G̃→ G has kernel TS and maps Ã onto
P , as required.

We are now able to prove the existence of the group we are looking for.

Theorem 2.3.3. There exists a just infinite profinite group that is not a
pro-p group and which has finite prime spectrum.

Proof. Let p and q be two distinct prime numbers, let X be a monolithic
group such that p and q are in the prime spectrum of X and such that its
monolith is not a q-group. Let moreover m be a natural number such that
X embeds in Sm as a transitive permutation group.
The group X acts faithfully on Cmq and, even if the action is not coprime,
by Lemma 2.3.1 we can find an irreducible faithful submodule U1 6X Cmq .
Now, the group U1 oX is monolithic, by Lemma 2.2.1, with monolith U1,
which is a q-group. Thus, again by Lemma 2.3.1, we can find an irreducible
faithful submodule W1 6U1X Cmp .
We then define the group G1 := W1 o (U1 oX) and consider its subgroup
A1 := W1U1. Once again thanks to Lemma 2.2.1, the groupG1 is monolithic,
with monolith W1. We then put P1 := W1.
Once the first step is done, we can make the inductive step via Lemma 2.3.2.
Suppose that we have already built a group Gi which has two subgroups Ai
and Pi and embed it transitively in Smi for a suitable mi ∈ N+. The prime
numbers p and q are both divisors of the order of Gi, and moreover Gi is a
monolithic group whose monolith is not a q-group. Applying Lemma 2.3.2
to Gi we can find a new group Gi+1 with two subgroups Ai+1 and Pi+1
satisfying the desired properties.

So, by Reid’s theorem, the inverse limit G = lim←−i∈N+ Gi is a just infinite
profinite group whose prime spectrum is finite and contains {p, q}.





Chapter 3

Profinite structures

The aforementioned theorem proved by Reid in [15] characterizes just infi-
nite profinite groups in terms of the finite groups occurring in the associated
inverse system. This result is the endpoint of a discussion about just infinite
profinite groups, during which other results about this kind of groups are
established. It is quite natural to wonder if analogous results hold for other
algebraic structures, as long as a suitable definition of the just infinite prop-
erty for these structures is provided. Thus, in this chapter we will discuss
this topic, in particular looking at Lie rings.
Unfortunately, we will not be able to prove a complete characterization for
just infinite profinite Lie rings, since it seems that some properties which
hold in the case of groups are no longer true for profinite Lie rings. In par-
ticular, the intersection of all the maximal ideals of an ideal of a Lie ring
could be not, in general, an ideal itself (although we are not able to provide
an explicit counterexample). By contrary, in the case of groups, the inter-
section of all the maximal normal subgroups of a normal subgroup is normal
itself. Thus, in general, we will only be able to provide partial results.
The lack of a satisfactory comprehensive result for Lie rings brought us to
examine more specific structures, whose properties could help us to achieve
more interesting conclusions. For this reason, we will focus on an abstract
subclass of profinite Lie rings, for which we are able to provide a full char-
acterization.
Therefore, we will show that two specific kinds of Lie algebras belong to the
class we have defined. The first family of such Lie algebras is given by profi-
nite Lie FC-algebras, that are Lie algebras whose elements have centralizers
of finite codimension. The definition of this class of Lie algebras is made in
complete analogy to the concept of FC-groups, which, in fact, are infinite
groups whose elements have finite-index centralizers. This condition is one
of the possible finiteness conditions on an infinite group, so such groups are
being studied by several authors. Thus, the analysis of an analogue class of
Lie algebras could lead to some interesting results.

25
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Subsequently, we will establish that also residually solvable profinite Lie
algebras belong to the class we have defined.

3.1 Profinite Lie rings

In this section we make a brief overview on profinite Lie rings. Many of
the statements here presented are similar to the corresponding results for
profinite groups.
A profinite Lie ring R is the inverse limit of a surjective inverse system
(indexed over a directed set (Ω,�)) consisting of a pair of families of discrete
finite Lie rings (Ri)i∈Ω and of continuous maps

(ϕi,j : Rj //Ri)i,j∈Ω
i�j

We remark that also in this case the profinite limit arises as the limit of an
inverse system of finite objects, in order to preserve some important prop-
erties that characterize profinite groups, above all the compactness of the
inverse limit.
As usual, we endow such an inverse limit with the subspace topology inher-
ited by the product topology on Cari∈IRi.
As a topological space, a profinite Lie ring is compact, Hausdorff and totally
disconnected, since it is the inverse limit of an inverse system of Hausdorff
totally disconnected finite topological spaces (see Proposition 1.2.1).

Lemma 3.1.1. Let R = lim←−i∈ΩRi be an inverse limit of an inverse system
of compact Hausdorff topological Lie rings, let I be an open ideal of R. Then,
R/I is isomorphic to a quotient of some Ri.

Proof. For every i ∈ Ω let ϕi : R → Ri be the projection map from R onto
the i-th component of the inverse system. Remind that the family of sets{

ϕ−1
i (U) | i ∈ Ω, U ⊆o Ri

}
is a basis for the topology on R, by Proposition 1.2.2. Thus, since I is an
open ideal, there exists j ∈ Ω and an open neighbourhood V of 0 in Rj such
that the open set ϕ−1

j (V ) is contained in I; thus, ker(ϕj) 6 I. Therefore

R�I ∼=
(R/kerϕj)�(I/kerϕj)

∼= Rj�(I/kerϕj)

as desired.

Lemma 3.1.2. Let R be a profinite Lie ring, let I be a closed ideal. Then
I is open if and only if its index in R is finite.
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Proof. The open covering R = ⋃
i∈I (xi + I) admits, by compactness, a finite

subcovering, then the index of I is finite.
Conversely, if the index of a closed ideal is finite, then its complementary is
a finite union of closed subsets, then I is open.

Let I be a family of open ideals of a topological ring R such that for any
pair of ideals I1 and I2 in I also I1 ∩ I2 ∈ I. Make it a partially ordered set
definining the following order

I1 � I2 ⇐⇒ I2 6 I1

I is a directed set with respect to this order, since I1, I2 � I1 ∩ I2 for all I1
and I2 in I.
The family of finite quotient rings with quotient maps{

R�I, πI,J : R�J //R�I | I, J ∈ I, I � J
}

(3.1)

is an inverse system.

Lemma 3.1.3. Let R be a compact topological Lie ring. Let R̂ be the inverse
limit of the inverse system (3.1), with maps ϕI : R̂ //R/I for all I ∈ I.
If
⋂
I∈I I = 0, then R and R̂ are isomorphic as topological Lie rings.

Proof. Consider the map

ψ : R // R̂ 6 Car
I∈I

R�I

defined by a 7→ (a+ I)I∈I . It is a continuous homomorphism of rings with
kernel given by ⋂I∈I I, that is trivial by hypothesis.
Since ϕI(ψ(R)) = R/I for all I ∈ I, by Proposition 1.2.2 (3) the image of
R under ψ is dense in R̂ and, by compactness, we have the thesis.

Theorem 3.1.4. Let R be a topological Lie ring. The following conditions
are equivalent:

1. R is a profinite ring.

2. R is compact and the intersection of all open ideals of R is trivial.

3. R is compact and totally disconnected.

Proof. [(2) ⇒ (1)] By Lemma 3.1.3 we immediately have that R is isomor-
phic as topological Lie ring to the inverse limit R̂ = lim←−I∈I R/I, where I is
the family of all open ideals, thus R is profinite.
[(1) ⇒ (3)] By hypothesis R is the inverse limit of an inverse system of
discrete finite Lie rings, which are obviously compact, totally disconnected
and Hausdorff, hence R is compact and totally disconnected by Proposition
1.2.1.
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[(3) ⇒ (2)] Let y ∈ R be a non-zero element. Then, there exists an open
subset U of R containing y such that 0 /∈ U . Since every open set of R
is a union of cosets of open ideals, there exists an open ideal I such that
y + I ⊆ U , hence 0 /∈ y + I and y /∈ I. Thus, the intersection of all open
ideals must be trivial.

Lemma 3.1.5. Let R be a profinite Lie ring, let K be an open ideal of R.
Let (Si)i∈Ω be a descending chain of closed subrings such that each one is
not contained in K. Let S be the intersection of these subrings. Then also
S is not contained in K.

Proof. Consider the closed subset Ci = Si ∩ Kc (where Kc is the comple-
mentary of K as a subset in R, namely Kc = RrK). Since the intersection
of finitely many Ci is not empty (as the chain (Ci)i∈Ω is descending), then
also the intersection of all the Ci is not empty, by the finite intersection
property.

3.2 Subcartesian products
This section is an interlude in which we prove a technical result, that we
will need in the sequel, about subcartesian products.
Remind that a set X is a subcartesian product of a family of sets (Xi)i∈I
if X ⊆ Cari∈IXi and if, for each i ∈ I, the projection map on the i-th
component πi : X → Xi is surjective. This condition does not ensure on its
own that X is itself a Cartesian product (and this is not even true for direct
products, think, for instance, about diagonal maps), but we can investigate
additional conditions to make this true. We state the following lemma in the
case of finite Lie rings, but similar results can be proved for other algebraic
structures by referring to their simple objects.

Lemma 3.2.1. Let S be a closed subcartesian product of pairwise non-
isomorphic finite simple Lie rings Cari∈ISi. Then S coincides with the
entire Cartesian product.

Proof. For each finite subset J = {j1, . . . , jn} contained in I we denote by
πJ : S → ∏n

h=1 Sjh the map defined by

s 7→ (πj1(s), . . . , πjn(s))

First, we prove the surjectivity of each πJ . The composition map

πjk ◦ πJ : S //

n∏
h=1

Sjh
// Sjk

is surjective for each k = 1, . . . , n, by definition of subcartesian product, so
for all k there exists a composition factor of πJ(S) isomorphic to Sjk ; in
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other words, each Sjk occurs, up to isomorphism, among the composition
factors of πJ(S). Hence, all the simple Lie rings Sj1 , . . . , Sjn must occur in
the composition series of πJ(S), since they are pairwise non-isomorphic by
hypothesis. Therefore, as the cardinality of πJ(S) equals to the product of
the cardinalities of its composition factors, we have

|πJ(S)| >
n∏
h=1
|Sjh |

But πJ(S) is also the image of S in ∏n
h=1 Sjh , thus also the opposite in-

equality holds, so πJ(S) = ∏n
h=1 Sjh and each map πJ , with J finite, is

surjective.
We now focus on the general case. Suppose that there exists (si)i∈I

belonging to the Cartesian product but not to S. As S is closed, (si)i∈I
has an open neighbourhood disjoint from S, say, by definition of product
topology,

π−1
j1

(U1) ∩ · · · ∩ π−1
j1

(Ur) ∩ S = ∅

for some positive natural number r and some j1, . . . , jr ∈ I, where sjh ∈ Uh
for every h = 1, . . . , r. So, the element (sj1 , . . . , sjr ) belongs to ∏r

h=1 Sjh
but it is not in π{j1,...,jr}(S); this contradicts the surjectivity of the maps πJ
with J finite. Hence (si)i∈I ∈ S and S = Cari∈ISi.

A more general property holds, as we prove in the following lemma.

Lemma 3.2.2. Let S be a closed subcartesian product of finite simple non-
abelian Lie rings Cari∈ISi. Then S is itself a Cartesian product.

Proof. If the simple rings are pairwise non-isomorphic, we can apply Lemma
3.2.1.
Otherwise, we partition the set I through the following equivalence relation:
two indices i and j are equivalent if and only if kerπi = kerπj . Consider
the quotient set of indices I/ ∼ corresponding to this equivalence relation
and let T be a transversal set for this relation, namely a set consisting of
one class representative t ∈ I for each class in I/ ∼. Then, we denote by

πT : S // Car
t∈T

St

the map defined as s 7→ (πt(s))t∈T .
Such a function is clearly injective: for, if x ∈ kerπT , then x ∈ kerπt for
every t ∈ T , thus x ∈ kerπi for every i ∈ I by definition of our equivalence
relation; hence x = 0 since S 6 Cari∈ISi.

We now look at surjectivity. We first assume that the transversal set is
finite. For all s ∈ S consider the support of πT (s):

supp (πT (s)) = {t ∈ T | st 6= 0}
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where st denotes the t-th component of πT (s). Clearly the support is non-
empty for every s ∈ S, since otherwise the map πT would be not injective.
By finiteness of T we can pick x ∈ S such that πT (x) has minimal support;
namely, such that there are no elements with fewer non-trivial components
in the projection on Cart∈TSt; we want to prove that the support of such x
is a singleton.
Suppose by contradiction that there exist two distinct indices t and u in T
such that both xt and xu are non-trivial. Since St is simple non-abelian,
there exists a ∈ St such that a does not commute with πt(x), namely such
that [a, πt(x)] 6= 0. Certainly, by surjectivity of πt, there exists y ∈ S such
that πt(y) = a; furthermore, such a y can be chosen in kerπu, since, by
maximality of the kernels, S = kerπu + kerπt. Thus, πt ([x, y]) 6= 0 while
πu ([x, y]) = 0, as πu(y) = 0.
Moreover, if v does not belong to the support of πT (x), then v does not
either belong to the support of πT ([x, y]), since πv(x) = 0.
Therefore, we can conclude that the support of [x, y] is strictly contained in
the support of x, contradicting the minimality of x. Thus, the support of a
minimal element x is a singleton.
Now, we prove that πT is surjective by induction on |T |. If T is a singleton,
the thesis holds by injectivity of πT .
If |T | > 1 we proceed as follows: for all t ∈ T we say that an element x ∈ S is
t-minimal if it has minimal support and if its unique non-trivial component
is the t-th component. If for all t ∈ T there exists a t-minimal element,
then each St is contained in the image of S under πT , hence πT is surjective.
Otherwise, we consider the proper subset T ′ ⊆ T whose elements are the
indices t ∈ T such that there is not a t-minimal element. We then consider
the map

πT ′ : S // Car
t∈T ′

St

Such a map is not injective, since πT ′(y) = 0 for every y which is t-minimal
for some t ∈ T rT ′, thus we quotient S by ker(πT ′) in order to have injectiv-
ity. We can prove as above that, if the support of an element in S/ ker (πT ′)
is minimal, then it is a singleton. If for all t ∈ T ′ the simple Lie ring St is
contained in the image of S/ ker (πT ′), then the map

S/ ker (πT ′) // Car
t∈T ′

St

is surjective, hence also the map πT ′ is surjective. Otherwise, we repeat the
same argument, through a new proper subset T ′′ ⊆ T ′ ⊆ T . Since |T | is
finite, this argument must ends in a finite number of steps, showing that each
St is contained in the image of S. Hence, we have proved the surjectivity of
the map πT if T is finite.
We have now to prove the surjectivity of πT in the case T is not finite, and
we proceed similarly to Lemma 3.2.1. Suppose by contradiction that there
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exists (st)t∈T belonging to the Cartesian product Cart∈TSt but not to S. As
S is closed, we can find an open neighbourhood of (st)t∈T disjoint from S,
say

π−1
t1 (U1) ∩ · · · ∩ π−1

tr (Ur) ∩ S = ∅

for some r ∈ N+, where each Ui is an open subset of Sti . Thus, the el-
ement (st1 , . . . , str ) belongs to St1 × · · · × Str while it does not belong to
π{t1,...,tr}(S). Note that the support of π{t1,...,tr}(s) is not empty, since, oth-
erwise, s ∈ kerπtj for each j = 1, . . . , r, hence π−1

t1 (U1) ∩ · · · ∩ π−1
tr (Ur) ∩ S

would contains 0 and would be not empty. Therefore, we can repeat the
argument used in the case with T finite to prove that π{t1,...,tr} is surjec-
tive, contradicting the fact that (st1 , . . . , str ) is not in π{t1,...,tr}(s). Hence,
S = Cart∈TSt.

Lemma 3.2.3. Let R be an abstract Lie ring, let S be an open ideal. Suppose
that S decomposes as a Cartesian product of finite simple non-abelian Lie
rings, say S = Carλ∈ΛTλ. Then, each Tλ is an ideal in R.

Proof. Let x ∈ R and α ∈ Λ. Consider the subset [Tα, x] + Tα in S. We
claim that it is an ideal of S. Clearly, it is an additive subgroup.
If b ∈ S we have

[[Tα, x] + Tα, b] = [[Tα, x], b] + [Tα, b]

where the second summand is contained in Tα since it is an ideal of S; on
the other hand, for the first summand we have, by Jacobi identity,

[[Tα, x], b] ⊆ [[b, Tα], x] + [[x, b], Tα] ⊆ [Tα, x] + Tα

Thus, for all b ∈ S we have

[[Tα, x] + Tα, b] ⊆ [Tα, x] + Tα

as desired.
Let now C := CS(Tα) be the centralizer of Tα in S; because of the decom-
position of S, C certainly contains Carλ 6=αTλ; besides, if C = S we would
have Tα abelian, contradicting the hypothesis; thus, C = Carλ 6=αTλ.
Now, if y ∈ C, we have for every a ∈ Tα and x ∈ R

[[a, x], y] = −[[x, y], a]− [[y, a], x] ∈ Tα

hence [[Tα, x], C] 6 Tα, from which [[Tα, x], C, C] = 0 follows by definition
of C.
Now, if [Tα, x] 
 Tα, then there exists λ 6= α such that [Tα, x]∩Tλ 6= 0, so we
can pick z ∈ Tλ which is not centralized by CS(Tα) since CS (CS(Tα)) = Tα.
Thus, the condition [[Tα, x], C, C] = 0 implies [Tα, x] 6 Tα (these conditions
are indeed equivalent), and our claim is proved.
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3.3 Narrow ideals

Now we introduce the notion of narrow ideal of a Lie ring. Such ideals will
be useful in the following sections.
Definition 3.3.1. Let R be a Lie ring, let A and B be two ideals of R such
that B is properly contained in A. The factor ring A/B is called a chief
factor of the Lie ring R if A/B is a simple ring.
Definition 3.3.2. Two chief factors I/J and A/B are associated if and only
if I +B = A+ J and J +B < I +A.
Definition 3.3.3. Let R be a Lie ring, let K be a non-trivial ideal of R. Let
IR(K) be the family of proper subrings of finite index of K which are ideals
in R. We denote by MR(K) the intersection of the maximal elements in
IR(K).
The ideal K of R is narrow if MR(K) is the unique maximal element in
IR(K).
A narrow ideal K of R is associated to a chief factor I/J if K/MR(K) is
associated to I/J .

Lemma 3.3.4. Let I and J be closed ideals of a profinite Lie ring R. Then
I +MR(J) > J if and only if I > J .

Proof. Suppose that I + MR(J) > J and assume, by contradiction, that
I � J . Then I ∩ J is an ideal in R which is strictly contained in J , thus
there exists a maximal element K in IR(J) such that I ∩ J 6 K (possibly
I ∩ J = K). Now, since MR(J) < J , we have

(I +MR(J)) ∩ J = I ∩ J +MR(J) 6 K +MR(J) 6 K < J

where the first relation holds by Dedekind’s law. Therefore, I+MR(J) < J ,
contradicting the hypothesis.
The converse is clear.

In the following lemma we prove the existence of narrow ideals associated
to chief factors and we characterize them.

Lemma 3.3.5. Let I/J be a chief factor of a profinite Lie ring R. Then,
there exists a narrow ideal K of R associated to such a chief factor.
The narrow ideals associated to I/J are exactly the narrow ideals of R con-
tained in I but not in J ; moreover, in this case MR(K) = K ∩ J .
In particular, every non-trivial ideal of R contains a narrow ideal of R.

Proof. First, we prove that there exists a narrow ideal of R associated to a
chief factor I/J . Let

KR(I) = {H Cc R | H 6 I}
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and let
DR(I, J) = KR(I) \ KR(J)

be the set of closed ideals of R which are contained in I but not in J .
Let (Di)i∈I be a descending chain in DR(I, J); since, by Lemma 3.1.5, the
intersection ⋂

i∈I Di is not contained in J , we have ⋂i∈I Di ∈ DR(I, J),
hence DR(I, J) admits, by Zorn’s lemma, a minimal element, say K. Now,
let H Cc R properly contained in K; by minimality of K, we have H 6 J ,
hence K ∩ J is the unique maximal element in IR(K). This proves that K
is a narrow ideal of R.

Now we prove the characterization of narrow ideals associated to I/J .
Let K such an ideal; then, by definition, we have

I +MR(K) = K + J (3.2)

By this equation it follows that I + MR(K) > K, hence, by Lemma 3.3.4,
we have I > K. Moreover, again by relation (3.2), we deduce K 
 J , since
otherwise J > I.
Conversely, let K be a narrow ideal of R that is contained in I but not in
J . Certainly, K + J = I since I/J is a chief factor and K + J > J . Hence,
since

K�K ∩ J ∼= K + J�J = I�J

we deduce thatK/(K∩J) is a chief factor, which impliesK∩J = MR(K). It
remains to prove that K/(K ∩J) and I/J are associated: for, as K ∩J 6 I,
we have certainly K + J = I +K ∩ J ; moreover K ∩ J + J < K + I, hence
the thesis.

3.4 Just infinite profinite Lie rings

A profinite Lie ring is just infinite if each non-trivial closed ideal is open or,
equivalently, if it has finite index.

In this section we analyze some properties of just infinite profinite Lie
rings which are not virtually abelian, similarly to what Reid has done for just
infinite profinite groups. For some results we need to look at the subclass
of profinite hereditarily just infinite Lie rings, that are profinite Lie rings in
which every open Lie subring is just infinite.

First we state a technical lemma. Given a profinite Lie ring R, its Ja-
cobson radical J(R) is the intersection of all of its maximal closed (indeed,
open) ideals.

Lemma 3.4.1. Let R be a profinite Lie ring, let I be a closed ideal of R
and let S be a closed subring of R containing I.
Then, the Jacobson radical of S contains the Jacobson radical of I.
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Proof. If each maximal ideal of S contains I, then certainly the Jacobson
radical of S contains that of I. Otherwise, if we consider a closed maximal
ideal M of S such that M does not contain I, we have

S�M = I +M�M ∼= I�I ∩M
so I/(I ∩ M) is simple, hence I ∩ M is maximal in I. This proves the
statement.

Lemma 3.4.2. Let R be a just infinite profinite Lie ring that is not virtually
abelian, let S be an open subring. Then, the Jacobson radical J(S) of S is
not trivial.

Proof. Each open subring S contains an open ideal I, therefore, by Lemma
3.4.1, the Jacobson radical of S contains that of I; hence, it is sufficient to
prove the statement for an open ideal.
For our purpose, we partition the set of open maximal ideals of S as follows:
let A be the set of open maximal ideals of S such that the corresponding
quotient is simple abelian and let B be the set of open maximal ideals of S
such that the corresponding quotient is simple non-abelian. We also denote
by A, respectively B, the intersection of the elements in A, respectively in
B.
Suppose by contradiction that the Jacobson radical is trivial. Then, at least
one among A and B must have infinite index in S.
If A = 0, then S decomposes as a Cartesian product of simple abelian Lie
rings and so R is a finite extension of an abelian Lie ring, case that we have
excluded by hypothesis.
If B = 0, then S embeds in a Cartesian product of simple non-abelian fac-
tors, and so it is a subcartesian product since πM (S) = S/M for every open
maximal ideal M C S. Hence, by Lemma 3.2.2, the subring S itself is a
Cartesian product of finite simple non-abelian Lie rings. By Lemma 3.2.3
each component of this Cartesian product is a finite ideal of R, hence each
such component is trivial by just infiniteness of R, and so S = 0.
If both A and B are not trivial, then necessarily B has infinite index; in
fact A contains [S, S], that is the smallest ideal of S that makes the quo-
tient abelian and that, in addition, is an ideal in R because of the Jacobi
identity. Thus, A must have finite index in S and S ∼= S/ (A ∩B) embeds
in S/A × S/B, that, in turn, embeds in a Cartesian product of simple fac-
tors among which only finitely many are abelian. Note that [S, S], that is
in turn an open subring of R, decomposes as a Cartesian product of finite
simple non-abelian Lie rings, since certainly the abelian terms are killed by
the Lie bracket; hence, applying Lemma 3.2.3 to [S, S], each finite simple
non-abelian term is a finite ideal of R, so every such term is trivial. There-
fore, S embeds in S/A which is finite. Thus, also this case can not hold.
In conclusion, assuming the triviality of the Jacobson radical we deduce a
contradiction, and our statement is proved.
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Lemma 3.4.3. Let R be a just infinite profinite Lie ring. Then the Jacobson
radical of each open ideal I has finite index in I if and only if the Jacobson
radical of each open Lie subring S has finite index in S.

Proof. We have only to prove that if the condition holds for open ideals,
then it also holds for open subrings, as the converse implication trivially
holds.
Thus, let S be an open subring of R; of course S contains an open ideal I
of R. By Lemma 3.4.1, we have J(I) 6 J(S). Therefore

|S : J(S)| 6 |S : J(I)| = |S : I||I : J(I)|

Thus we deduce the finiteness of |S : J(S)| by the finiteness of both |S : I|
and |I : J(I)|.

We recall now the König’s Lemma, which will be useful in the subsequent
result. We remind the reader that a directed graph is an ordered pair (V,E)
where V is a set of vertices and E is a set of ordered pairs of vertices.
Moreover, a simple path is a sequence of distinct vertices with the property
that each vertex in the sequence is adjacent to the vertex next to it. A graph
is locally finite if each vertex is adjacent to finitely many vertices.

Lemma 3.4.4 (König’s lemma). Let Γ be a directed locally finite infinite
graph. Then Γ contains an infinite simple path.

For the statement of the following technical lemma, we have to assume that
the Jacobson radical of every open subring S of a just infinite profinite Lie
ring L has finite index in S. This condition seems essential, since there is
no evidence that it holds in general, and it forces us to restrict the class of
profinite Lie rings we are dealing with.

Lemma 3.4.5. Let R be a just infinite profinite Lie ring in which the Ja-
cobson radical of every open subring S has finite index in S. Let I be an
infinite set of open ideals and suppose that the following property holds: for
every ideal I1 ∈ I, if I2 > I1 then also I2 ∈ I.
Then, there exists a strictly descending sequence (Ii)i∈N+ of open ideals of
R such that Ii ∈ I for every i.

Proof. We build a directed graph Γ whose vertices are elements of I and
whose edges are couple of ideals (I1, I2) such that I2 < I1 and such that
there is not any ideal properly contained between them. If (I, I1) ∈ E(Γ),
then I1 contains the Jacobson radical of I. By assumption there are finitely
many such ideals I1, so Γ is a locally finite directed graph and by König’s
lemma it contains an infinite path; thus, there is an infinite descending chain
of open ideals in R.
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To formulate the following statements we have to deal with Lie rings which
satisfy the condition on the Jacobson radical of open subrings stated in the
hypothesis of Lemma 3.4.5. Certainly, hereditarily just infinite profinite Lie
rings satisfy this condition, hence we look at this subclass of just infinite
profinite Lie rings.

Lemma 3.4.6. Let R be a hereditarily just infinite profinite Lie ring that is
not virtually abelian, let S be an open subring. Then, the Jacobson radical
of S has finite index in S.

Proof. By Lemma 3.4.2, the Jacobson radical can not be trivial. More-
over, as the ring is hereditarily just infinite, also S is just infinite, thus the
Jacobson radical must have finite index in S, hence also in R.

Let R be a profinite Lie ring, let S be a closed subring of R. We denote by
IS the set of open ideals of R which are not contained in S. Then we define
the obliquity subring of S as

ObR(S) = S ∩
⋂
IS

We can now state the following results, that relate the just infiniteness of
a profinite Lie ring which is not virtually abelian with the finiteness of the
index of the obliquity subrings of the open subrings.

Theorem 3.4.7. Let R be a profinite Lie ring that is not virtually abelian.
If it is hereditarily just infinite, then for every open subring S the set of
ideals IS is finite.
If IS is finite for every open subring S, then R is just infinite.

Proof. Assume that R is hereditarily just infinite and suppose that the set
IS is infinite. By Lemma 3.4.6 the Jacobson radical of each open ideal of
R has finite index, hence we can apply Lemma 3.4.5 to IS , which obviously
satisfies the condition of the lemma. This ensures the existence of an infi-
nite descending chain in IS . Now, by Lemma 3.1.5 the intersection of the
elements in this family would be a non-trivial ideal having infinite index in
R, contradicting the hypothesis.
For the second statement, let I be a closed nontrivial ideal of R: we have to
prove that the quotient R/I is finite. Since the intersection of all the open
subrings is trivial, there exists an open subring T such that I * T . Now, by
definition of the profinite topology, the ideal I is the intersection of all the
open ideals of R containing it; moreover, this intersection is extended only
over the open ideals containing I and not contained in T : otherwise, in fact,
I would be contained in T . Hence,

ObR(T ) = T ∩
⋂
IT = T ∩

⋂
JCoR
J*T

J ⊆ T ∩
⋂

I6JCoR
J*T

J = T ∩ I ( I
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Now, ObR(T ) has finite index, since, by hypothesis, it is the intersection of
an open subring and finitely many finite-index ideals, then also I has finite
index, therefore the thesis holds.

Corollary 3.4.8. Let R be a profinite Lie ring which is not virtually abelian.
If R is hereditarily just infinite then the index of ObR(T ) is finite for every
open subring T .
If the index of ObR(T ) is finite for every open subring T , then R is just
infinite.

Proof. If R is a hereditarily just infinite Lie ring, then ObR(T ) is an inter-
section of finitely many ideals of finite index, by Theorem 3.4.7, so it also
has finite index.
On the other hand, if R is not just infinite, then, again by Theorem 3.4.7,
there exists a subring T such that the set IT is infinite, and so ObR(T ) has
infinite index, contradicting the hypothesis.

Corollary 3.4.9. Let R be a hereditarily just infinite profinite Lie ring
which is not virtually abelian, let S be an open subring.
Then I 6 S for all but finitely many chief factors I/J in R.

Proof. By Theorem 3.4.7 the family of open ideals that are not contained
in S is finite, hence the thesis holds.

Now we state another result analogue to what Reid has done for just
infinite profinite groups, describing the just-infiniteness of a profinite Lie
ring which is not virtually abelian in terms of the finite Lie rings occurring
in the associated inverse system.

Theorem 3.4.10. Let R be a hereditarily just infinite profinite Lie ring
which is not virtually abelian, let (An)n∈N be a sequence of classes of finite
Lie rings such that R has infinitely many chief factors in An for all n ∈ N.
Then R is the limit of an inverse system of finite Lie rings (Rn)n∈N and sur-
jective ring morphisms (ρn : Rn+1 //Rn)n∈N where each Rn has a subring
An such that, letting Bn = ρn(An+1), we have

1. An > Bn > 1;

2. An is a narrow subring in Rn

3. every ideal contains Bn or it is contained in An;

4. Bn is a minimal ideal for Rn;

5. Bn ∈ An.

On the other hand, every surjective inverse system satisfying conditions (1)-
(3) (for some choice of An) for all but finitely many n has a just infinite
limit.
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Proof. First we prove that a hereditarily just infinite profinite Lie ring as
in the hypothesis satisfies properties (1)-(5). We will obtain a descending
chain (Kn)n∈N of narrow subrings of R and we will build the required inverse
system through this sequence.
The first term of the sequence is K0 = R. Afterwards, for the definition of
the general term, suppose we have built Kn. Consider then S := ObR(Kn),
which has finite index in R. Thence, pick a chief factor I/J such that I 6 S
and I/J ∈ An: such a chief factor exists, since by hypothesis each class
An contains infinitely many chief factors and since, by Corollary 3.4.9, S
contains all but finitely many chief factors. We then pick Kn+1 to be a
narrow ideal associated to I/J , whose existence is justified by Lemma 3.3.5.
Such an ideal is contained in S by Lemma 3.3.4.
After we have constructed the sequence of narrow subrings, if we define

Rn = R/MR(Kn+1), An = Kn/MR(Kn+1), Bn = Kn+1/MR(Kn+1)

all the conditions are satisfied.
Now we prove that every surjective inverse system satisfying properties (1)-
(3) for some choice of An has a just infinite limit. Let I be a closed nontrivial
ideal of R. For n sufficiently large, if πn : R // R/In is the surjective map
associated to the inverse limit, we have that πn(I) is not contained in An,
so it must contain Bn by condition (3). Since MR(An+1) contains ker ρn, by
condition (1), we have that πn+1(I) contains An+1 and in particular πn+1(I)
contains ker ρn.
Since this applies for all n sufficiently large, we have that N contains kerπn
for some n, hence it has finite index.

3.5 A condition for a full characterization

In the previous section we have seen that, for a general profinite Lie ring,
we are not able to provide a complete characterization of just infinite profi-
nite Lie rings in terms of the associated inverse system, since we need the
additional hypothesis of hereditarily just-infiniteness to formulate the state-
ments, in order to make sure that the Jacobson radical of an open subring
has finite index in the subring, as required in the statement of Lemma 3.4.5.
In this section we define an abstract class of Lie rings satisfying the desired
condition on the Jacobson radical of its subrings; for just infinite profinite
Lie rings belonging to this family we are able to give a full characterization.
Later, we will show that two families of Lie algebras, the Lie FC-algebras
and the residually solvable Lie algebras, actually belong to this class.

Let X be the class of Lie rings R such that, for every open subring S of
R, the Jacobson radical of S has finite index in S. For this class of Lie rings
we can provide more precise statements for Theorems 3.4.7 and 3.4.10.
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Theorem 3.5.1. Let R be a profinite Lie ring in X which is not virtually
abelian. The following conditions are equivalent:

1. R is just infinite;

2. for every open subring S the set of ideals

IS = {I Co R | I 
 S}

is finite;

3. there exists a family F of open subrings in R with trivial intersection
such that IS is finite for every S ∈ F .

Proof. [(1)⇒ (2)] Suppose that the set IS is infinite. Then, by Lemma 3.4.5
we could find an infinite descending chain in IS . Now, by Lemma 3.1.5 the
intersection of the elements in this family would be a non-trivial closed ideal
having infinite index in R, contradicting the hypothesis.
[(2)⇒ (3)] This implication is clear.
[(3) ⇒ (1)] This implication holds for every profinite Lie ring which is not
virtually abelian, see proof of Theorem 3.4.7.

Corollary 3.5.2. Let R be a profinite Lie ring in X which is not virtually
abelian. R is just infinite if and only if the index of ObR(T ) is finite for
every open subring T .

Proof. If R is a just infinite Lie ring, then ObR(T ) is an intersection of
finitely many ideals of finite index, so it also has finite index.
Conversely, if R is not just infinite, then, by Theorem 3.5.1, there exists
a subring T such that the set IT is infinite, and so ObR(T ) has infinite
index.

Corollary 3.5.3. Let R be a just infinite profinite Lie ring in X which is
not virtually abelian, let S be an open subring. Then I 6 S for all but
finitely many chief factors I/J in R.

Proof. By Theorem 3.5.1 the family of open ideals that are not contained
in S is finite, hence the thesis holds.

We are now ready for the main result, which characterizes just infinite profi-
nite Lie rings in X which are not virtually abelian in terms of the finite Lie
rings occuring in the related inverse system.

Theorem 3.5.4. Let R be a just infinite profinite Lie ring in X which is
not virtually abelian, let (An)n∈N be a sequence of classes of finite Lie rings
such that R has infinitely many chief factors in An for all n ∈ N.
Then R is the limit of an inverse system of finite Lie rings (Rn)n∈N and sur-
jective ring morphisms (ρn : Rn+1 //Rn)n∈N where each Rn has a subring
An such that, letting Bn = ρn(An+1), we have
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1. An > Bn > 1;

2. An is a narrow subring in Rn;

3. every ideal contains Bn or it is contained in An;

4. Bn is a minimal ideal for Rn;

5. Bn ∈ An.

Conversely, every surjective inverse system satisfying conditions (1)-(3) (for
some choice of An) for all but finitely many n has a just infinite limit.

Proof. The proof is completely similar to the general case. To prove that
a just infinite profinite Lie ring as in the hypothesis is the inverse limit of
an inverse system of finite Lie rings with the listed properties, we build
the inverse system starting from a descending chain of narrow subrings and
applying Corollary 3.5.3 in place of Corollary 3.4.9.
On the other hand, the proof of the converse implication is valid for a general
profinite Lie ring which is not virtually abelian.

In the following, we show two examples of Lie algebras satisfying the condi-
tion on the Jacobson radical of open subrings.

Lie FC-algebras

Here we consider just infinite profinite Lie algebras which are FC-algebras.
An FC-algebra is an infinite-dimensional algebra in which the centralizer of
each element has finite codimension. Clearly also the centralizer of each
finite subset has finite codimension, since it is the intersection of finitely
many finite-codimensional subalgebras. Moreover, for every vector subspace
V and for every finite set F , also [V, F ] is finite.

We prove that Lie FC-algebras are actually algebras for which the Ja-
cobson radical of every open subalgebra has finite codimension in the sub-
algebra. This fact allows us to apply the previous result of this section to
Lie FC-algebras, providing a full characterization of just infinite profinite
Lie FC-algebras in terms of the associated inverse system. Furthermore, we
emphasize that the limitation to Lie algebras which are not virtually abelian
is not really restrictive in this case, since a profinite just infinite virtually
abelian Lie FC-algebra is finite; hence for such Lie FC-algebras the result is
trivial.

Thus, we look at Jacobson radical of open subalgebras in just infinite
profinite Lie FC-algebras. Let L be a profinite Lie FC-algebra, let S be an
open subalgebra of L. Then we can find a finite vector subspace V of L such
that L = S + V (where the sum is intended as sum of vector spaces).
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As usual, we assume the following notation for iterated Lie brackets:

[J(S),n V ] :=
{
J(S), n = 0
[[J(S),n−1 V ] , V ] , n > 0

We also set In := ∑n
k=0[J(S),n V ].

Lemma 3.5.5. If S is an ideal in L, then In is an ideal of S for all n ∈ N.

Proof. First we prove, by induction on n > 0, that [[J(S),n V ], S] ⊆ In.
If n = 1, using Jacobi identity

[[J(S), V ], S] ⊆ [[S, J(S)], V ] + [[V, S], J(S)] ⊆ [J(S), V ] + J(S)

where the second inclusion holds since J(S) C S and [V, S] ⊆ S as S is an
ideal in L.
For n > 1, using again Jacobi identity and the inductive hypothesis,

[[J(S),n+1 V ], S] = [[[J(S),n V ], V ], S] ⊆
⊆ [[S, [J(S),n V ]], V ] + [[V, S], [J(S),n V ]] ⊆
⊆ [In, V ] + [S, [J(S),n V ]] =

=
n+1∑
k=1

[J(S),n V ] + [S, [J(S),n V ]] ⊆

⊆ In+1 + In = In+1

Now we prove the statement of the lemma, by induction on n > 0.
If n = 0 the conclusion is immediate. If n > 0

[In+1, S] = [In + [J(S),n+1 V ], S] ⊆ In + In+1 = In+1

where the second inclusion holds by inductive hypothesis and by the fact
[[J(S),n V ], S] ⊆ In, previously proved.

Lemma 3.5.6. Let L be a just infinite Lie FC-algebra that is not virtually
abelian, let S be an ideal of L with finite codimension. Then J(S) is either
trivial or it has finite codimension in L.

Proof. If there are infinitely many maximal abelian ideals, then their in-
tersection is trivial, and even more so J(S) is trivial. Thus, suppose that
there are finitely many maximal abelian ideals and let J be the intersection
of all the non-abelian maximal ideals. If such intersection is trivial, also
the Jacobson radical is; on the other hand, if such intersection has finite
codimension in L, then also the Jacobson radical has finite codimension in
L. Hence, we will prove the statement for the ideal J .
Remembering the decomposition as vector spaces L = S + V , it is sufficient
to prove that [J, x] 6 J for every x ∈ V , since we have to prove that J is
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an ideal in L and we already know that it is an ideal in S. Furthermore,
since the Lie algebra is FC, we have that [J, V ] is finite; more than that, for
each n ∈ N+, also [J,n V ] = [J, V, . . . , V ] is finite. So, if we prove that In has
finite codimension, we deduce that also J has finite codimension.
First, we note that the increasing sequence (In)n∈N+ stabilizes in finitely
many steps, since each summand is contained in [L, V ], which is finite, as L
is an FC-algebra and V finite. Hence there exists m ∈ N+ such that In = Im
for all n > m.
Now, suppose by contradiction that Im, that is an ideal of S by Lemma
3.5.5, has infinite codimension in L. Thus, in the quotient

S�Im
∼= Cari∈ITi

there occur infinitely many factors among the finite simple factors of the
decomposition of S/J .
Let moreover T̃i be an ideal of S such that its quotient by Im is the ideal Ti.
Now, for each x ∈ V , we claim that T̃i +

[
T̃i, x

]
is an ideal in S: in fact, we

have[
T̃i +

[
T̃i, x

]
, S
]
⊆
[
T̃i, S

]
+
[[
S, T̃i

]
, x
]

+
[
[x, S] , T̃i

]
⊆ T̃i +

[
T̃i, x

]
since T̃i is an ideal of S and S is an ideal of L. Hence, the image of
T̃i +

[
T̃i, x

]
in the quotient S/Im is an ideal, that is, besides, non-trivial,

since T̃i ⊆ T̃i +
[
T̃i, x

]
.

Let now Ci be the centralizer of Ti in S/Im; we obviously have Ci = Carj 6=iTj .
Then, define as

C̃i =
{
y ∈ S |

[
T̃i, y

]
6 Im

}
the inverse image of Ci in S.
Now, we claim that the image in S/Im of

[
T̃i +

[
T̃i, x

]
, C̃i, C̃i

]
is trivial. In

fact [
T̃i +

[
T̃i, x

]
, C̃i

]
⊆
[
T̃i, C̃i

]
+
[[
C̃i, T̃i

]
, x
]

+
[[
x, C̃i

]
, T̃i
]
⊆

⊆ Im + [Im, x] + T̃i ⊆
⊆ Im + [Im, V ] + T̃i =
= Im + T̃i

where the second inclusion holds since
[
T̃i, C̃i

]
⊆ Im by the characterization

of C̃i and since
[
x, C̃i

]
6 S, as C̃i 6 S C L; the last equality holds since

Im + [Im, V ] ⊆ Im + Im+1 = Im by the choice of m. Therefore[
T̃i +

[
T̃i, x

]
, C̃i, C̃i

]
⊆
[
Im + T̃i, C̃i

]
⊆

⊆ Im + Im = Im
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so we have
πS/Im

([
T̃i +

[
T̃i, x

]
, C̃i, C̃i

])
= 0

as desired.
It follows that T̃i +

[
T̃i, x

]
= T̃i and

[
T̃i, x

]
⊆ T̃i for all x ∈ V , hence T̃i is

an ideal in L.
Besides, T̃i has infinite codimension in L, since Ti has infinite codimension
in S/Im. This leads to a contradiction, as the algebra is just infinite. So Im
has finite codimension in S. Hence, since ∑n

k=1[J,k V ] is finite, we have that
also J has finite codimension in S.

Lemma 3.5.7. Let L be a just infinite profinite Lie FC-algebra that is not
virtually abelian, let S be an open subalgebra. The Jacobson radical J(S) of
S has finite codimension in S.

Proof. By Lemma 3.4.3 it is sufficient to prove the statement for S an ideal.
Since by Lemma 3.4.2, the Jacobson radical of S is not trivial, then its
codimension in S is finite by Lemma 3.5.6.

Then, thanks to Lemma 3.5.7, we can apply to Lie FC-algebras Theorems
3.5.1 and 3.5.4, providing two characterizations of just infinite profinite Lie
FC-algebras which are not virtually abelian; on the other hand, as already
mentioned, the virtually abelian case is not relevant, since a profinite just
infinite virtually abelian Lie FC-algebra is finite.

Residually solvable profinite Lie algebras

Another family of Lie algebras which satisfy the required condition on the
Jacobson radical is the class of residually solvable Lie algebras. A Lie algebra
L is residually solvable if the family of ideals such that the corresponding
quotient is solvable has trivial intersection. In other words, L is residually
solvable if the derived series has trivial intersection, that is if

L(ω) =
⋂

n∈N+

L(n)

is trivial.
The following lemma is what we need to make sure that for a just infinite
profinite residually solvable Lie algebra which is not virtually abelian a full
characterization in the Reid’s fashion is possible.

Lemma 3.5.8. Let L be a just infinite profinite residually solvable Lie al-
gebra which is not virtually abelian, let S be an open subalgebra. Then, the
Jacobson radical J(S) has finite codimension in S.

Proof. By Lemma 3.4.3 we can assume without loss of generality that S is
an ideal.
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The derived ideal [S, S] is an ideal in L, by Jacobi identity. Moreover, since
L is residually solvable, S is residually solvable too, hence the ideal [S, S]
is properly contained in S; otherwise, the derived series of S would not
have trivial intersection. Furthermore, since the Lie algebra is not virtually
abelian, the abelian quotient S/[S, S] must be finite, or, equivalently, [S, S]
must have finite codimension in S.

Thus, also in the case of residually solvable Lie algebras we can apply the
two characterization theorems 3.5.1 and 3.5.4.



Chapter 4

Profinite Noetherian groups

Since the concept of p-adic analytic pro-p group was introduced by Lazard
[7] in 1960s, several important characterizations have been given. The most
important result in this sense is the equivalence between p-adic analytic
groups and pro-p groups of finite rank, see for instance [5]. This first result
leads to other remarkable characterizations of p-adic analytic groups, for
example in terms of virtual properties (that is, properties which are satisfied
by a finite-index subgroup), in terms of the sections of the group (see [19])
and in terms of subgroup growth, which was proved to be polynomial, giving
also a quantitative result (see [18]).
During the development of the theory of p-adic analytic pro-p groups, also
several questions have been posed; one of these, asked by Lubotzky and
Mann in [8], is about Noetherian pro-p groups. It is easy to prove that
each pro-p group of finite rank is Noetherian, so they asked if also the
converse should be true. A positive answer to this question would provide a
further characterization of p-adic analytic groups. Despite the Noetherianity
constitutes a strong condition, very little is known about the class of profinite
Noetherian groups. Here, we will make some comments on the structure of
profinite Noetherian groups, pointing out some consequences of results which
have been established more in general, when they are applied to this class
of groups.
In particular, we will show that a profinite Noetherian just infinite group
is a finite extension of a direct product of a finite number of copies of a
hereditarily just infinite group, as a corollary of an important result proved
by Grigorchuk which goes by the name of Wilson’s dichotomy.
Furthermore, we will prove that a profinite Noetherian group has finite prime
spectrum and that a just infinite profinite Noetherian group is virtually pro-
p for some prime p.

45
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4.1 Non-Noetherianity of branch groups
A profinite Noetherian group is a profinite group in which every ascending
chain of closed subgroups stabilizes in finitely many steps. For instance, the
group of p-adic integers Zp, namely

Zp = lim←−
n∈N+

Z�pn Z

is a pro-p Noetherian group.
In order to analyze the behaviour of profinite Noetherian just infinite

groups, a first step is represented by a direct consequence of a result proved
by Grigorchuk in [2] which goes by the name of Wilson’s dichotomy. Here
we present this statement as a specialization to just infinite profinite groups
of a result which holds more in general for abstract just infinite groups.
Recall that a profinite group G is hereditarily just infinite if every its open
subgroup is just infinite.

Theorem 4.1.1 (Wilson’s dichotomy, [2]). Just infinite profinite groups
are either branch groups or finite extensions of a direct product of a finite
number of copies of a hereditarily just infinite group.

In this section we will prove that branch groups do not satisfy the Noetherian
property. To do this we will show an increasing sequence of closed subgroups
which does not stabilize. So, by Wilson’s dichotomy, we will have that a
just infinite profinite Noetherian group must be a finite extension of a direct
product L× · · · × L, where L is a hereditarily just infinite group.
Definition 4.1.2. A group G is a branch group if there exist two decreas-
ing sequences of subgroups (Hi)i∈N and (Ki)i∈N and a strictly increasing
sequence of integers (ni)i∈N such that H0 = K0 = G, n0 = 1 and, for all
i ∈ N, the following conditions hold:

1. ⋂j∈NHj is trivial;

2. Hi C G and |G : Hi| is finite;

3. Hi is a direct product of ni copies of Ki; that is,

Hi = K
(1)
i × · · · ×K

(ni)
i

where K(j)
i
∼= Ki for all 1 6 j 6 ni;

4. ni is a proper divisor of ni+1 and, given mi+1 := ni+1
ni

> 2, each
direct factor K(j)

i of Hi contains mi+1 among the factors of Hi+1;
more precisely, K(j)

i contains all the factors K(h)
i+1 such that

(j − 1)mi+1 + 1 6 h 6 jmi+1
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5. conjugations by the elements in G transitively permute the factors in
the product decomposition of Hi.

The sequence of such pairs (Hi,Ki)i∈N is called a branch structure on G.

Theorem 4.1.3. A branch group does not satisfy the Noetherian property
on subgroups; that is, not all ascending sequences of subgroups stabilize in
finitely many steps.

Proof. We construct explicitly a sequence of subgroups that does not stabi-
lize. First, we define the following (strictly increasing) sequence of natural
numbers: {

a1 = 1
ai+1 = mi+1 · ai + 1, i > 1

where the numbers mi are defined as Definition 4.1.2.
Now consider the sequences (Hi)i∈N and (Ki)i∈N as in the definition of
branch group, and define the following sequence of subgroupsL1 = K

(a1)
1

Li+1 = K
(a1)
1 ×K(a2)

2 × · · · ×K(ai+1)
i+1

which is constructed by picking one direct factor for each level of the branch
structure. Note that for every i > 2 and for every 1 < j 6 i the subgroup
K

(aj+1)
j+1 is not a factor of the decomposition of K(aj)

j . In fact, the direct
factors of the latter one are

K
((aj−1)mi+1+1)
j+1 , . . . ,K

(ajmi+1)
j+1

while
aj+1 = mi+1aj + 1

So, explicitely, the j-th factor of Li is the first direct factor that does not
appear as a direct factor of the previous subgroups.
Moreover, the last element in each level of the branch structure is K(ni)

i and
we can easily prove by induction that ai < ni. The base case is trivial, as
a1 = 1 6 n1 − 1; for the general case we have

ai = miai−1 + 1 6 mi(ni−1 − 1) + 1 = ni −mi + 1 < ni

This proves that at each level we can choose a new factor in the previous
fashion. The chain of subgroups (Li)i∈N+ is strictly increasing and it does
not stabilize.

As a corollary of the last theorem and the Wilson’s dichotomy, we can deduce
the following result.

Corollary 4.1.4. Let G be a Noetherian just infinite profinite group. Then
it is a finite extension of a direct product of a finite number of copies of a
hereditarily just infinite group.
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4.2 Profinite groups with self-normalizing Sylow
pro-p subgroups

In this section we prove a prosolvability condition for profinite groups, de-
ducing it by the corresponding result for finite groups, which is stated in a
theorem due to Guralnick, Malle and Navarro.

Theorem 4.2.1 (Guralnick, Malle, Navarro, [3]). Let G be a finite group, let
p > 3 be a prime number1. If there exists a p-Sylow P such that P = NG(P ),
then G is solvable.

The proof of the following corollary relies on a compactness argument which
is often used: if (Xi, ϕi,j)i,j∈Ω

i6j
is an inverse system of non-empty compact

Hausdorff spaces, then its inverse limit X = lim←−i∈I Xi is non-empty.

Corollary 4.2.2. Let G be a profinite group, let p > 3 be a prime number, let
P be a pro-p Sylow subgroup such that P = NG(P ). Then G is prosolvable.

Proof. Let (Gi, ϕi,j)i,j∈Ω
i6j

be an inverse system of finite groups and surjective

morphisms whose inverse limit is the group G. Since a π-Hall subgroup in a
profinite group is the inverse limit of a sequence of π-Hall subgroups in each
Gi = ϕi(G), by surjectivity of ϕi, we have that Pi := ϕi(P ) is a p-Sylow in
Gi for all i. We want to prove that, for all i ∈ I, each Pi is self-normalizing,
in order to apply Theorem 4.2.1.
Consider the set

Ai = {xi ∈ Gi | xi ∈ NGi(Pi), xi /∈ Pi}

and suppose that it is not empty. We can easily convince that ϕi,j(xj) ∈ Ai
for all xj ∈ Aj and for all indices i and j such that i 6 j: in fact, if
xj ∈ NGj (Pj) and xj /∈ Pj , then certainly ϕi,j(xj) ∈ NGi(Pi) and, due to
the order, ϕi,j(xj) /∈ Pi.
Thus, the inverse system with discrete finite sets (Ai)i∈I and maps

(ϕi,j : Aj //Ai)i,j∈I
i6j

has non-empty inverse limit A := lim←−Ai, by Proposition 1.2.1 (4).
Then, pick an element x = (xi)i∈I ∈ A: it belongs to NG(P ) while it can
not belong to P , due to the order, contradicting the hypothesis of self-
normalization of P . Therefore, each Ai must be empty; in other words, for
all i, we have Pi = NGi(Pi), and, applying Theorem 4.2.1, we deduce that
each Gi is solvable. This proves that G is prosolvable.

1The case p = 3 requires further investigation and the exclusion of a specific case.
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4.3 Prime spectrum of a profinite Noetherian
group

In this section we will prove some results about the prime spectrum of the
profinite Noetherian groups. First, we will see that the prime spectrum
of a profinite prosolvable Noetherian group is finite. Subsequently, we will
strengthen this result, proving the finiteness of the prime spectrum of a
general profinite Noetherian group.
In view of the following result, we remind the reader that, fixed a prime
p, a p′-group is a group whose order is coprime to p. Thus, a pro-p′ group
is a profinite group which is the inverse limit of an inverse system of finite
p′-groups.

Proposition 4.3.1. Let G be a profinite group. If each Sylow subgroup is
finite, then G is virtually pro-p′ for all p in the prime spectrum of G. In
particular, G is virtually prosolvable.

Proof. Let H be a finite closed subgroup of G. Since the set of all open
normal subgroups forms a residual system, namely it has trivial intersection,
there certainly exists an open normal subgroup N of G such that H ∩N is
trivial.
This applies in particular to every p-Sylows, that are finite by hypothesis;
then, for all p prime, we are able to find an open normal subgroup Np that
intersects trivially each p-Sylow: in fact, if a normal subgroup intersects
trivially a p-Sylow then it must intersect trivially all the p-Sylows since they
are pairwise conjugate. Thus, Np is an open p′-subgroup and G is virtually
pro-p′ for all p in the prime spectrum of G.
In particular, if we look at 2-Sylows, we can find an open normal subgroup
N2 that is the inverse limit of finite odd-order groups, that are solvable by
Feit-Thompson theorem; therefore, N2 is prosolvable. Thus, G is virtually
prosolvable, since N has finite index in G.

Let now G be a prosolvable group. The proof of the following result, that
will be strengthened in the sequel, relies on the fact that each prosolvable
group G admits a Sylow basis, as reminded in Proposition 1.2.7.

Proposition 4.3.2. The prime spectrum of a profinite prosolvable Noethe-
rian group G is finite.

Proof. By Proposition 1.2.7, a prosolvable group G admits a Sylow basis
{Sp | p prime}. So, in G there is an ascending chain of subgroups

Sp1 6c Sp1Sp2 6c Sp1Sp2Sp3 6c . . .

where each term of the chain is actually a closed subgroup of G; in fact each
Sylow subgroup is a compact subgroup, hence a finite product of Sylow
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subgroups is compact, thus closed.
Now, as the group G is Noetherian by hypothesis, this ascending chain
must stabilize in finitely many steps. Since, by Proposition 1.2.7 (1), the
topological closure of the product of all the terms in the Sylow basis must
coincide with G, we deduce that there are only finitely many primes in the
prime spectrum of G.

The following lemma make us able to find an ascending chain of closed
subgroups in a finitely generated profinite group.

Lemma 4.3.3. Let K be a closed subgroup of a finitely generated profinite
group G. Then there exists a family of closed subgroups (Ki)i∈N such that
the sequence of their normalizers is an ascending chain.

Proof. By Proposition 1.2.10, in each finitely generated profinite group the
identity admits a fundamental system of neighbourhoods consisting of a
countable descending chain of open characteristic subgroups, say (Hi)i∈N+ .
Then we have

[Hi+1 ∩K,NG (Hi ∩K)] 6 [Hi ∩K,NG (Hi ∩K)] 6 Hi ∩K

for all i ∈ N+, where the first relation holds since Hi+1 6 Hi and the second
one holds since we are commuting a subgroup with its normalizer. Similarly

[Hi+1 ∩K,NG (Hi ∩K)] 6 [Hi+1, NG (Hi ∩K)] 6 Hi+1

where the second containment holds since each Hi is a characteristic sub-
group. Thus,

[Hi+1 ∩K,NG (Hi ∩K)] 6 Hi+1 ∩K

that is, Hi+1 ∩K is normalized by NG (Hi ∩K). Therefore, the normalizer
of Hi+1 ∩ K contains the normalizer of Hi ∩ K. So, the family of closed
subgroups (Hi ∩K)i∈N is the one we were looking for.

By the way, note that in the previous proof the set of subgroups (Hi ∩K)i∈N
is a family with trivial intersection, while the family of normalizers, being
ascending, intersects in NG(K).

Now we prove that, if a profinite Noetherian group admits an infinite
p-Sylow subgroup, then it is virtually pro-p. To do this, we will use the
profinite version of the Frattini argument, stated in Proposition 1.2.6.

Lemma 4.3.4. Let G be a profinite Noetherian group. Suppose that, for
some p prime, there exists an infinite p-Sylow subgroup P . Then, G admits
a normal p-subgroup which has finite index in P .

Proof. Let p be a prime number in the prime spectrum of G such that
P ∈ Sylp(G) is infinite.
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The group G is Noetherian, so it is finitely generated. Then, the identity
element admits a fundamental system of neighbourhoods consisting of a
countable chain of open characteristic subgroups (Hi)i∈N+ .
Now, the intersection P ∩Hi is not trivial, since Hi has finite index in G and
P is infinite, so P ∩ Hi is a p-Sylow of the subgroup Hi. By the profinite
Frattini argument we have G = NG(Hi ∩ P )Hi. We can prove, by Lemma
4.3.3, that the sequence (NG(Hi ∩ P ))i∈N+ is ascending.
Now, because of Noetherianity, this sequence of subgroups must stabilize,
so there exists a greatest term of the sequence, say N . Then, there is a
natural number n0 ∈ N+ such that G = HjN for all j > n0. Furthermore,
for all j ∈ N+, the subgroup NG(Hj ∩ P ) is the normalizer of a closed
subgroup, so it is closed, then it is the intersection of all the open subgroups
containing it; in particular, such normalizer equals the intersection of all the
open subgroups of the form NHi, as i varies in N+, since by construction
(Hi)i∈N+ is a fundamental system of neighbourhoods of the identity. In
particular for all j > n0 we have

NG(P ∩Hj) = N =
⋂
i∈N+

NHi >
⋂
i∈N+

NG(P ∩Hi)Hi =
⋂
i∈N+

G = G

since N > NG(P ∩Hi) for every i ∈ N+.
So, for every j > n0, the p-subgroup P ∩Hj is normal in G.

We are now ready for the following theorem, which strengthen the statement
of Proposition 4.3.2, claiming that every profinite Noetherian group has
finite prime spectrum.

Theorem 4.3.5. The prime spectrum of a profinite Noetherian group is
finite.

Proof. If all the Sylow subgroups are finite, then by Proposition 4.3.1 the
group is virtually prosolvable, and so its prime spectrum is finite, since it
has a finite-index subgroup with finite prime spectrum by Proposition 4.3.2.
Then, suppose that there exists at least a p-Sylow subgroup that is not
finite and suppose, by way of contradiction, that the prime spectrum of
G is infinite. By Lemma 4.3.4 we can find a normal p-subgroup P C G
which has finite index in the infinite p-Sylow subgroup whose existence we
have assumed. Now, if the quotient G/P was finite, then necessarily the
prime spectrum would be finite, contradicting our hypothesis. Then, G/P
must be infinite. As the prime spectrum of G is not finite, certainly there
exists q 6= p such that q divides the order of this quotient. If in this quo-
tient there are only finite Sylow subgroups, then, again by Proposition 4.3.1,
G/P is virtually prosolvable, so it has finite prime spectrum and also G has
finite prime spectrum, contradicting the hypothesis. Then also in the quo-
tient G/P there is an infinite q-Sylow subgroup and, applying again Lemma
4.3.4, G/P has a normal q-subgroup which has finite index in the infinite
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q-Sylow subgroup, say Q/P C G/P . So we have P C QP C G.
As, by assumption, the prime spectrum is infinite, we can repeat this argu-
ment indefinitely, building an infinite ascending chain of closed subgroups,
contradicting the Noetherianity. So the prime spectrum must be finite.

Theorem 4.3.6. An infinite profinite Noetherian group is virtually pronilpo-
tent.

Proof. By Theorem 4.3.5 the prime spectrum of such a group is finite and
so for at least one prime number p there exists an infinite p-Sylow subgroup;
otherwise in fact the group would be finite. Say {p1, . . . , pk} the set of
primes with this property. By Lemma 4.3.4 the profinite Noetherian group
G admits a normal pi-subgroup which has finite index in the infinite pi-
Sylow for each i = 1, . . . , k. By construction, for the primes p other than
p1, . . . , pk, the related p-Sylow subgroups are finite, hence, the subgroup
generated by all these p-Sylows is finite. Thus, G is a finite extension of
a direct product of a finite number of normal pi-Sylow subgroups, so G is
virtually pronilpotent.

Throughout the following result, we can deduce a corollary of the previous
theorem.

Proposition 4.3.7 (Proposition 11, [13]). Let G be a just infinite profinite
group. The following are equivalent:

1. G is virtually pronilpotent;

2. G is virtually pro-p for some prime p;

3. G has finitely many maximal open subgroups.

Corollary 4.3.8. A just infinite profinite Noetherian group is virtually pro-
p for some prime p.
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