


Overview

One of the main goals in the study of physical systems, is the understanding of their
phases and their low-energy universal features. The different phases are characterized by
properties such as a mass gap in the spectrum or a non-vanishing local order parameter.
Their description is provided by quantum field theory thanks to spontaneous symmetry
breaking and the renormalization group. In particular, the Landau-Ginzburg approach
consists in identifying the global symmetries of the system, the local order parameter
and the effective action. When the order parameter vanishes the symmetry is preserved,
otherwise the symmetry is spontaneously broken. This approach is extremely useful in a
large number of cases, from magnetic systems through superfluidity to particle physics.

In the eighties, new condensed matter systems were discovered whose properties are not
explained by a local order parameter: the so called Topological Phases of Matter. These
are many body states giving rise to fascinating macroscopic quantum phenomena. For
example, the collective behaviour depends on the topology of space. This fact led to the
introduction of a new kind of order, called topological order.

The best known example of a topological phase is the quantum Hall effect (QHE). A
two-dimensional system of electrons subjected to a strong orthogonal magnetic field, and
placed at very low temperatures, shows constant plateaus in the transverse conductivity
σH , called Hall conductivity. This quantity takes very precise values in units of e2/h that
are independent of details of the sample and can be integer or fractional, corresponding to
the integer and fractional QHE respectively. The electrons form a droplet of incompressible
fluid with a gap for bulk excitations. In the integer case, the exact quantization of the Hall
conductivity is formulated in terms of a topological invariant derived from the electron
band theory. In the fractional case, the ground state is non-trivial, because it displays a
finite degeneracy for topological non-trivial spaces, while the excitations possess fractional
exchange statistics and fractional charge.

Furthermore, the quantum Hall states exhibit massless chiral excitations at the edge of
the system. The existence of boundary dynamical degrees of freedom is a general aspect
of topological states.

Recently many other topological phases of matter have been discovered; these are also
gapped in the bulk and possess boundary excitations. A classification of topological phases
in ten universality classes has been achieved for free electron (band) systems in any space
dimensions. This follows from the analysis of general free-fermion quadratic Hamiltonians
and their symmetry under time reversal and charge conjugation. Each class is characterized
by a topological invariant integer number.

The present challenge is to understand topological states made by interacting electrons.
In this case, the low-energy effective theory approach is again useful, but it involves new
kinds of field theories. These are the topological gauge theories that do not have any
local dynamics but reproduce the global properties of ground states. The gauge fields are
physically interpreted as hydrodynamic degrees of freedom. In presence of boundaries,
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massless bosonsic degrees of freedom arise at the edge and their dynamics is described by
conformal invariant field theories (CFT). The relation between CFT and topological bulk
is called bulk-boundary correspondence.

The aim of this thesis is to characterize topological phases of matter by looking at
the properties of their boundary conformal theories. In many cases, this approach allows
to discuss universal features of the bulk that are robust and independent of microscopic
details.

Furthermore, the theoretical methods are facing the problem of bosonization, namely
that of finding correspondences between two seemingly different approaches:

• that of fermionic theories and band structures leading to the ten-fold classification
of non-interacting topological phases;

• that of bosonic theories, derived from the topological gauge theories.

In this thesis, we develop this analysis for two different topological phases: the quantum
Hall state in (2 + 1) dimensions and the time-reversal invariant topological insulators in
(3 + 1) dimensions.

In Chapter 1, we begin this thesis by reviewing the effective field theory description of
the QHE. This involves the Chern-Simons theory, a topological gauge theory that accounts
for the responses of the system, such as the Hall conductivity, and the fractional charge
and statistics of anyonic excitations. In presence of a boundary, the Chern-Simons theory
is not gauge invariant and needs additional massless degrees of freedom located at the
boundary. These are described by a conformal field theory (CFT) in (1+1) dimensions,
whose relation with the bulk theory is well established.

We review the edge theory of quantum Hall states, the compactified chiral boson. This
theory describes the bosonization of free and interacting fermions in (1 + 1) dimensions.
Moreover, this chiral theory is affected by anomalies, i.e. classical symmetries broken by
quantum effects. Actually, the Hall current is orthogonal to the edge and corresponds to
the non-conservation of the boundary charge, i.e. the integral of the (1 + 1)-dimensional
chiral anomaly. Being an universal quantity related to a topological invariant, the anomaly
allows us to recover the exactness of the Hall current also in the interacting case.

One of the goals of this thesis is to understand the universality of other responses for
quantum Hall states. These have been extensively investigated in the recent literature by
adding the coupling to the background metric in the Chern-Simons theory, leading to the
so called Wen-Zee action.

In this thesis we analyze the response involving the electron’s ‘intrinsic orbital spin’ s
that parameterizes the Hall viscosity of bulk incompressible fluids. Recently it was shown
that in geometries with boundary, the Wen-Zee action does not correspond to any anomaly
in the edge theory. This fact raises dubts on the universality of s and the Hall viscosity
and it motivates a deeper analysis of the role of this parameter in the conformal theory at
the edge.

In Chapter 2, we first build the theory of edge excitations for general integer Hall
effect, by taking a straightforward limit of the microscopic states near the edge. Next we
discuss the edge spectrum and show that the orbital spin causes a shift in the dispersion
relation of excitations: this can be included in the Hamiltonian of the conformal theory, by
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a redefinition of the chemical potential. For particular boundary conditions, we find non-
vanishing ground-state values of the edge charge and conformal spin that are parameterized
by the orbital spin, and are in agreement with the results of the bulk Wen-Zee action. We
explain that these Casimir-like effects at the edge are indeed universal.

We also show how to generalize these results to fractional Hall states by using the
symmetry of incompressible Hall fluids. Namely, we describe the edge excitations as de-
formations of the density by area preserving diffeomorphisms of the plane, the so-called
W∞ symmetry. Finally, we briefly discuss the possibility of measuring the values of the
orbital spin by a tunneling experiment in the Coulomb blockade regime and by quadrupole
deformations of the incompressible Hall fluid.

In Chapter 3, we investigate the time-reversal invariant topological insulators in (3+1)

dimensions. In free fermion systems, they are classified by a Z2 topological index. They
have a bulk energy gap and surface states, consisting of one free massless Dirac fermions
in (2 + 1) dimensions. In the literature, systems like these are called symmetry protected
topological phases, due to the central role played by symmetry. In particular, time-reversal
symmetry forbids a mass for a Dirac fermions in (2+1) dimensions, while pairs of fermions
can become massive and disappear from the low-energy theory. The Z2 index is again
related to an anomaly of the surface fermion, the so called parity anomaly in (2 + 1)

dimensions.
Recently, interacting three-dimensional topological insulators were also introduced and

theoretically analyzed, showing that they possess fractional charge and vortex excitations.
The final part of this thesis is dedicated to the effective field theory description of in-
teracting topological insulators provided by the BF topological gauge theory. This is a
time-reversal invariant theory depending on two hydrodynamic fields, describing particles
and vortex excitations.

In presence of a boundary, an additional surface action should be introduced to com-
pensate for the gauge non-invariance of the BF bulk theory, in analogy to what happens
in the quantum Hall effect. We thus study the corresponding bosonic surface theory and
the dynamics it can support, respecting time-reversal invariance.

First we discuss a quadratic non-conformal theory already known in literature. We
review the canonical quantization and the calculation of the partition function. We find
that this theory is not satisfactory because it does not reproduce the dynamics of free
fermions described earlier for non-interacting topological insulators.

In our original work described in Chapter 4, we propose a non-trivial conformal dynam-
ics for the bosonic surface degrees of freedom. This amounts to a non-local, scale invariant
version of the Abelian gauge theory in (2 + 1) dimensions, also called loop model. This
theory has appeared in a number of recent research topics such as the duality transfor-
mations in (2 + 1) dimensions. Dualities map different descriptions of the same system in
terms of particles or vortices as well as bosonic versus fermionic degrees of freedom. The
loop model provides a neat example of a calculable self-dual massless theory. Moreover,
this model is equal to electrodynamics in mixed dimensions (QED4,3), in the limit of large
number of fermion fields NF →∞.

The loop model gives a conformal field theory in (2+1) dimensions possessing a critical
line parameterized by the coupling constant g. Its solitonic excitations correspond to order-
disorder fields with fermionic or anyonic statistical phases depending on the value of g.
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These features remind of the compactified boson theory in (1 + 1) dimensions and makes
the loop model a good candidate for bosonization of free and interacting fermions in (2+1)

dimensions.
We thus quantize the loop model and obtain the spectrum of excitations at the surface

of three-dimensional topological insulators. In order to solve the issue of non-locality, we
reformulate the model as a higher dimensional local theory with excitations in (2 + 1) and
in (3 + 1) dimensions. We consider two different boundary spatial geometries, the torus T2

and the sphere S2, and we evaluate the partition function of the theory by considering both
the solitonic and oscillating spectra. In the sphere case, the geometry is conformally flat
and the Hamiltonian maps into the dilatation operator. Therefore, the solitonic energies
determine the spectrum of conformal dimensions of the fields in the theory. Our expression
of the partition function in this geometry explicitly confirms the conformal invariance and
self-duality of the loop model. We also find that the spectrum of conformal fields reproduces
the expected fractional statistics of bulk excitations.

Finally, in Chapter 5, we conclude the thesis by presenting some interesting open
problems.

Summarizing, the Chapters 2 and 4 contain the original part of this thesis.
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Chapter 1

Conformal Field Theories of the
Quantum Hall Effect

In this chapter we will give an introduction to the quantum Hall effect (QHE). In particular,
after showing the main features of this phenomenon, we will focus on the effective field
theory description. The QHE is a system of electrons in a planar geometry which is
characterized by a gapped insulating bulk and conducting massless degrees of freedom
living at the boundary.

In the first two sections, we will see that the incompressible fluid effective picture due
to Laughlin, and the effective topological Chern-Simons gauge theory, describe the bulk
physics of the system. These approaches explain the quantization of the Hall conductivity
and the existence of excitations with fractional charge and fractional statistics.

Then we will analyze the dynamics of the boundary modes by using conformal field
theory methods. We will show that these excitations have two field theory descriptions,
one fermionic and one bosonic that is inherited by the Chern-Simons theory. These are
equivalent owing to the bosonization map in (1 + 1) dimensions. Furthermore, we will
see that a quantum anomaly arises in the edge theory, but this violation of symmetry is
cancelled by the bulk response leading to the mechanism called anonaly inflow.

In the final part of this chapter, we will present other transport properties of the
quantum Hall state, in particular focusing on the mechanical strain response which is
parameterized by the so-called Hall viscosity. The corresponding effect in the edge theory
has been clarified in our work [1] and will be presented in Chapter 2.

1.1 Integer and fractional QHE

The best known example of a topological phase of matter is given by the quantum Hall
effect. A two-dimensional electron system is realized in a layered semiconductor, e.g. Gal-
lium Arsenide, and subjected to an orthogonal magnetic field B. At very low temperatures
(T ∼ 10 mK) and high magnetic field (B ∼ 10 Tesla), the transverse (Hall) conductivity,
as function of the magnetic field, shows constant plateaus at the values:

σH = ν
e2

h
ν = 1, 2, . . . ,

1

3
,
2

5
, . . . , (1.1)
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where h is the Plank constant and the value of ν, called filling fraction, turns out to be an
integer or rational number. At the same time the longitudinal conductance vanishes and
the system is insulating in the bulk (see Fig. 1.1). At the beginning, only integer values
were observed in the experiments, but later fractions were measured, among which the
so called Laughlin sequence, ν = 1/p with p odd are prominent. For both integer and
fractional QHE cases, experimental results display a remarkable high precision of order
∆ν ∼ 10−9 in the quantized values, independently of the sample details. As will be more
clear in the following, this universality is due to the invariance of σH under continuous
deformations of the system and the dynamics; we say that this quantity is topological.

Figure 1.1: Longitudinal (R) and Hall (RH) resistances as function of the applied magnetic field
[5]. At the plateaus, the longitudinal and transverse conductivities, respectively σL and σH , obey
to σL = R = 0 and σH = 1/RH .

The main physical picture for the physics of the quantum Hall effect, due to Laughlin,
is that the electrons form an incompressible quantum fluid, characterized by a constant
density in the bulk and an energy gap that forbids density waves.

1.1.1 Integer Hall state: Landau levels

The Laughlin picture is easily understood in the integer case where the non-interacting
electrons are organized in Landau levels. The gap between two consecutive levels is pro-
portional to the cyclotron frequency ωc = eB/Mc, that is very large and higher than
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thermal energies kBT (M the mass of the electron). Upon neglecting the Zeeman term for
polarized electrons, the single particle Hamiltonian reads

H =
1

2M

(
p− e

c
A
)2
. (1.2)

One can choose the symmetric gauge for the electromagnetic potential A = B/2(−y, x, 0) .
The Hamiltonian and the canonical angular momentum J can be easily rewritten in terms
of two pairs of creation and annihilation operators (a, a†) and (b, b†), in the following way:

H = ~ωc
(
a†a+

1

2

)
, J = ~

(
b†b− a†a

)
, (1.3)

satisfying the relations [a, a†] = [b, b†] = ~, while all the other commutators vanish. The
single particle states are labelled by |n,m〉 where n = 0, 1, . . . is the Landau level. Such
states are degenerate with respect to the angular momentum m = −n,−n + 1, . . . as
consequence of translation invariance of classical cyclotron orbits. The wave function
ψn,m(x, y) describes an electron in the n-th Landau level with angular momentum m and
that is localized on the classical cyclotron orbit of radius rn,m = `B

√
n+m:

ψn,m (z, z) =
1

`B
√
π

√
n!

(n+m)!

(
z

`B

)m
Lmn
(
|z|2/`2B

)
e−|z|

2/2`2B , (1.4)

where z = x + iy and Lmn are generalized Laguerre polynomials. The magnetic length
`B =

√
2~c/eB is the quantum unit of length: the cyclotron orbit encloses an integer

number of quantum units of magnetic flux Φ0 = Bπ`2B = 2π. In the following, we set units
and constants M = ~ = c = e = `B = 1, which imply ωc = B = 2.

If the system lives on a disk of radius R, the angular momentum has an upper bound
L corresponding to the largest orbit rn,L = R. Thus, the degeneracy of each level is equal
to the number of quantum fluxes passing through the disk: Nd = BA/Φ0 where A is the
area of the disk. In order to realize an integer number n of filled Landau levels, the system
should contain N electrons with N = nNd. In this case, when the Fermi energy is placed
between two subsequent Landau level the electrons cannot jump in the higher level due
to the high energy gap wc ∼ B and the system has vanishing longitudinal conductivity.
Finally, by substituting the electron density ρ = N/A in the classical Hall conductivity,
i.e. σH = ρec/B, we get the relation (1.1) for the quantum Hall conductivity with ν = n.
Thus, a system of non-interacting electrons realizes the integer quantum Hall effect ν = n

when the electrons fill an integer number n of Landau levels. The wave function Ψ is the
Slater determinant of the single particle states (1.4). In particular, for ν = 1, it takes the
form of the Vandermonde determinant:

Ψ (z1, z2, . . . , zN ) =

N∏
i<j=1

(zi − zj) e−
∑N
i=1 |zi|2/2 (1.5)

where zi is the position1 of the i-th electron in the lowest Landau level.
The second quantized Hamiltonian has the following form:

Ĥ =
1

2

∫
d2x

(
DiΨ̂

)† (
DiΨ̂

)
+

∫
d2x Ψ̂†VC (x) Ψ̂, (1.6)

1The coordinate zi are dimensionless and expressed in unit of magnetic length `B .
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Figure 1.2: Density profile in a disk geometry of radius R =
√
L.

with Di = ∂i + iAi is the covariant derivative and VC(x) is a confining potential. In the
lowest Landau level, the field operator Ψ̂ can be written as a linear combination of single
particle wave functions (1.4),

Ψ (x, t) =
∞∑
n=0

∞∑
m=0

ĉmψ0,m (x) e−iωc(n+1/2)t. (1.7)

The fermionic Fock space operators ĉm satisfy the anticommutator relations

{ĉm, ĉl} = δm,l, (1.8)

while all the other anticommutators vanish. The ground state |Ω〉 corresponding to filled
lowest Landau level on the disk contains all the single particle states with angular momen-
tum 0 ≤ m ≤ L = N − 1,

|Ω〉 = ĉ†0ĉ
†
1 . . . ĉ

†
L |0〉 , (1.9)

where |0〉 is the vacuum of the Fock space. The expectation value of the single particle
density ρ̂ = Ψ̂†Ψ̂ is easily found to be

〈Ω| ρ̂ (r) |Ω〉 =

L∑
m=0

|ψ0,m (x) |2 =
1

π
e−r

2
L∑

m=0

r2m

m!
. (1.10)

This density has a constant profile in the bulk that rapidly drops to zero at the edge
r ∼

√
L = R, see Fig. 1.2. The free electronic system is translational invariant and

forms a fluid state. This is incompressible because transitions to higher Landau levels are
suppressed for B large, as said. Finally the low lying excitations are described by the
current that is different from zero only in the vicinity of the edge and longitudinal. This
is the first hint about non-trivial dynamics at the edge of quantum Hall states.

1.1.2 Fractional Hall states: Laughlin wave-function

For fractional fillings, the free electron system is highly degenerate. This degeneracy is
broken only by the interactions between particles, since the kinetic energy H in (1.2)

4



is simply a constant. Indeed, the incompressibility is due to the Coulomb interaction
between electrons and the gap is a non-perturbative effect. This fact is confirmed by
numerical simulations, but a microscopic description is still missing. Laughlin proposed
a trial ground state wave function which describes very well the phenomenology of the
sequence ν = 1/p, with p = 1, 3, 5, . . .:

Ψ (z1, z2, . . . , zN ) =
N∏

i<j=1

(zi − zj)p e−
∑N
i=1 z

2
i /2. (1.11)

Note, that p being odd, the antisimmetry under the exchange of two electronic coordinates
zi is satisfied. This wave function accurately approximates the numerical ground state for
a large class of repulsive interactions. Haldane proposed a short-range potential for which
the wave function (1.11) is the exact ground state.

Furthermore, the Laughlin probability distribution |Ψ|2 can be interpreted as the clas-
sical Boltzmann distribution exp (−βV ) of a two-dimensional Coulomb gas at temperature
β = 1/p, with potential

V ({zi}) = −p2
Ne∑
i<j

ln |zi − zj |2 + p

Ne∑
i=1

|zi|2. (1.12)

This describes a system of particles of charge p in a uniform background with density
ρB = −1/π. It is known that this plasma tends to form a neutral configuration with the
background, realizing a uniform distribution. Therefore, the electrons form the fractional
Hall state with constant density ρ = 1/pπ.

Numerical and analytical analysis show that the charges in the plasma are dynamically
screened (Debye screening) on length scales O (`B). More precisely, this screening happens
as long as the artificial temperature β = 1/p is high enough that the plasma lies in the fluid
phase and Debye screening can occur, namely when p < O (100). The screening provides
an energy gap for excitations of the fluid which appear as ‘holes’ of dimension O (`B) in
the profile of the uniform density; the removed charge is fractional, ∆Q ∼ ρπ`2B = 1/p.
Furthermore, under an exchange of two identical excitations, the wave function acquires a
phase ∆θ = π/p, which is different from bosonic, ∆θ = 0, or fermionic, ∆θ = π, statistics.
These gapped excitations are called anyons and they have fractional charge and fractional
quantum statistics [6, 7]. Indeed, fractional spin values are admitted in three space-time
dimensions where, in general, unitary irreducible representations of spin group are labeled
by a real number. The presence of these Aharonov-Bohm phases is related to global,
topological properties hidden in the ground state that will be discussed in the following.

The fractional quantum Hall states are topological fluids made by strongly interacting
electrons, that are different from standard crystals and liquids: they represent new states
of matter that cannot be described by the Landau-Ginzburg effective theory and a local
order parameter [8, 9, 10]. We shall see that one is led to introduce effective gauge field
theories, that account for topological properties. For these reasons, these new states of
matter were called topologically ordered by Wen [9].

The competing phase: the Wigner crystal

The Laughlin theory describes a liquid phase of electrons characterized by a kind of global
order. There is a competing solid phase in which the electrons form a two-dimensional
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triangular lattice, known as Wigner crystal. Before the discovery of the Quantum Hall
effect, it was thought that this would be the preferred phase of electrons in high magnetic
fields. Actually, the Wigner crystal does take place when electronic densities are low, for
filling fractions ν < 1/7.

Jain hierarchical states

Besides Laughlin’s values ν = 1/p, the most stable plateaus are observed at filling fractions
ν = m/(2qm ± 1), with m and q two positive integers. An attempt to find a systematic
physical picture for all observed filling fractions is due to Jain and is called the composite
fermion theory. The idea is that the fractional quantum Hall state ν ∈ Q, is essentially an
integer quantum Hall state of composite particles, ν∗ ∈ N. Such particles, called composite
fermions, are made by attaching to each electron an even number 2q vortices carrying each
a quantum unit of magnetic flux Φ0. This composite states retain the fermionic character
and leave a residual magnetic field B∗ = B − 2qΦ0ρ which realizes ‘effective’ Landau
levels. Upon filling an integer number ν∗ = m of such levels, the filling fraction becomes
ν = ν∗/ (2qν∗ + 1), known as Jain sequence, that reproduces the observed values.

However, the mechanism of flux-attachment is not explained by a microscopic theory,
thus the Jain theory is another effective approach. Both Laughlin and Jain pictures can
be easily obtained in the effective field theory framework, as we briefly present in the next
sections.

1.2 Chern-Simons theory and Hall conductivity

We have seen that quantum Hall systems form states of incompressible quantum fluids that
are characterized by universal and robust quantities; in such states, we expect that the
physical properties can be deduced from general considerations of symmetries and conser-
vation laws, that are independent of the detailed microscopic theory. It is then natural to
formulate the problem in terms of the effective field theory for low-energy excitations. We
shall show that this is given by the Chern-Simons (CS) gauge theory in (2 + 1) dimension,
a topological theory that cannot describe local dynamics but only global effects.

First of all we have to identify the effective degrees of freedom. The Hall electrons can
be described by a conserved matter current jµ, which, in (2 + 1) dimensions, is dual to a
gauge field aµ,

jµ =
1

2π
εµνρ∂νaρ, (1.13)

where εµνρ is the completely antisymmetric tensor. Note that the continuity equation
∂µj

µ = 0 is satisfied. The U(1) gauge field aµ is said to be a hydrodynamic field, and
its effective action should have the same global symmetries of the system. In (2 + 1)

dimensions, the Chern-Simons action,

SCS [a] = − k

4π

∫
d3x εµνρaµ∂νaρ. (1.14)

is a U(1) gauge theory which violates time-reversal and parity symmetries2, just like in a
quantum Hall state due to the presence of the external magnetic field. This action does not

2Note that in d = 2+1 dimensions the parity trasnformation is given by x0 → x0; x1 → −x1; x2 → x2.
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describe any local dynamics since it is independent of the metric tensor gµν and thus the
Hamiltonian vanishes. Note that the usual Maxwell term would introduce dynamics but
it contains two derivatives and is irrelevant in the low-energy limit. The coupling constant
k in the Chern-Simons action takes integer values as will be explained later.

The electromagnetic response is described by adding to the Chern-Simons term a min-
imal coupling with the external electromagnetic field jµAµ. The effective action becomes:

Seff [a;A] = − k

4π

∫
M
d3x εµνρaµ∂νaρ +

1

2π

∫
M
d3xAµε

µνρ∂νaρ (1.15)

Since aµ appears quadratically in the effective action, it can be integrated out using the
equations of motion. We obtain the induced action

Sind[A] =
1

4πk

∫
d3x εµνρAµ∂νAρ. (1.16)

By taking functional derivatives respect to Aµ, we get the induced current,

Jµ =
δSind[A]

δAµ
=

1

2πk
εµνρ∂νAρ, (1.17)

from which one can easily read the quantized Hall conductivity (1.1):

σH =
1

2πk
ν = 1/k, (1.18)

corresponding to the Laughlin sequence.
The Chern-Simons theory also describes the existence of fractional charges in the sys-

tem. The quasi-holes are the low-energy excitations of the incompressible fluid, whose
world-lines can be represented by a set of currents Jµ, that couple to the hydrodynamic
field aµ. Including these sources, the effective action becomes:

Seff [a;A,J ] = − k

4π

∫
d3x εµνρaµ∂νaρ +

1

2π

∫
d3x εµνρAµ∂νaρ +

∫
d3xJ µaµ. (1.19)

Integrating out the a-field, the induced action becomes

Sind[A,J ] =

∫
d3x

(
1

4πk
εµνρAµ∂νAρ −

1

k
AµJ µ −

1

4k

∫
d3yJµ(x)εµνρ

(x− y)ν
| x− y |3

Jρ(y)

)
.

(1.20)
We can easily read the minimal fractional charge of quasi-holes Q = −1/k. Furthermore,
the last term in (1.20) gives the winding number of quasi-holes and thus the fractional
statistics. However, we can more easily show this effect from Hamiltonian formalism. In
order to do that, we have to come back to the effective action (1.19) and consider Aµ = 0.
Taking a static source of quasi-holes J µ(x) = nδ(2)(x)δµ0, the equation of motion for aµ,

ε0ij∂iaj = 2π
n

k
δ(2)(x) (1.21)

shows that each excitation is equipped by n/k units of flux with respect to the field aµ.
Then the adiabatic process of carrying a quasi-hole around another one implies a non trivial
Aharanov-Bohm phase:

θ = 2π
n1n2

k
, (1.22)
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where n1 and n2 are the charges respect to the aµ field of the two excitations. For two
identical particles n1 = n2 = k, with electromagnetic charge Q = −1, the exchange
correspond to the statistical phase ∆θ = πk. If k is odd, such excitations are fermionic
and can be identified with two electrons. Therefore, the integer k should take odd values. In
conclusion, the Chern-Simons effective theory correctly describes Laughlin states with ν =

1/k = 1, 1/3, 1/5, . . . and quasiparticles with fractional charge Qn = −n/k and fractional
statistics ∆θn = πn2/k.

1.2.1 Quantization of Chern-Simons theory on compact manifolds

Usually, at long distances, gapped systems become trivial, but topological phases are char-
acterized by non-trivial gapped ground states with global effects, that are described by the
Chern-Simons theory.

In order to see them, we consider the quantization of the topological theory on compact
spatial manifolds, for instance on a torus T2. The quantum states are supposed to make
up an Hilbert space which provides a representation of the algebra of quantum operators.
In a gauge theory, the local gauge-invariant observables are polynomials in f = da and its
derivatives 3. The equations of motion of the Chern-Simons theory (1.14)

S = − k

4π

∫
T2×R

ada, (1.23)

imply f = 0, thus there are no local gauge invariant classical observables. However, there
are gauge invariant non local operators, the Wilson loops. In the case of the torus geometry,
we have two non-trivial cycles γi with i = 1, 2, along which we construct operators

W (i)[a] = exp

(
i

∮
γi

a

)
. (1.24)

A simple way to derive the algebra of Wilson loops is the following. In the a0 = 0 gauge,
the Chern-Simons action becomes

S =
k

4π

∫
T2×R

d3xεijai∂0aj , i, j = 1, 2 . (1.25)

Upon defining the holonomies

ā1(x0) =

∮
γ1

dx1 a1(x0, x1), ā2(x0) =

∮
γ2

dx2 a2(x0, x2), (1.26)

the Chern-Simons action can be rewritten as

S =
k

4π

∫
dx0 ā1 ˙̄a2. (1.27)

This is a problem of quantum mechanics with just the symplectic form in the action. The
canonical commutation relations are given by

[ā1, ā2] = i
2π

k
, (1.28)

3We are using the notation of differential forms, a = aµdx
µ and d is the external derivative.

8



and by using the Baker-Campbell formula, we get the algebra for Wilson loops:

W (1)W (2) = W (2)W (1) exp

(
−2πi

k

)
. (1.29)

Indeed, the algebra (1.29) describes the Aharonov-Bohm phases previously seen for anyons
in (1.22) [7].

Now consider the expectation value of the Wilson operator for the loop γ1γ2γ
−1
1 γ−1

2

that can be shrunk to a point. On one side this should leave the ground state invariant,
on the other side it amounts to the phase exp (−i2π/k). The solution is that the ground
state is actually degenerate and the Wilson loop acts on this multiplet by a (necessarily
finite) representation. Its minimal dimension is k, with k integer.

In conclusion, the ground state of the CS theory is k-fold degenerate on the torus
geometry. The degeneracy extends to the kg for a genus g Riemann surface. This argument
also shows that the CS coupling constant k is integer.

One may think that a rational value of k would also realize a finite dimensional repre-
sentation of the Wilson loop vevs. However, the Chern-Simons action is gauge invariant
for integer k values only, due to the following argument. Suppose that the time direction
is also periodic, i.e. the theory is defined on the compact space-time manifold S1×T2, and
evaluate the action for a spatial field configuration of a monopole of unit flux inside T2,∫

T2

f = 2π. (1.30)

Next, we consider a non-trivial time-dependent gauge transformation δa0 = ∂0Λ, δai = 0,
with

Λ = 2πnτ/β n ∈ Z, (1.31)

with τ the time coordinate with period β. This corresponds to non-trivial windings in the
time direction that keep eiΛ periodic, The change in the action is non-vanishing:

δSCS = − k

2π
(Λ(β)− Λ(0))

∫
T2

f = −kn2π. (1.32)

This does not affect the phase eiSCS in the path integral for integer values of k.

1.2.2 Multi-component theory

The effective theory just introduced in (1.15) is not able to describe other observed values
of the filling fractions, most notably the Jain series ν = m/ (2qm+ 1). It is necessary to
consider a generalization involving m fluids, each branch being associated to an ‘effective’
Landau level of composite fermions. We considerm hydrodynamic fields, a(i), i = 1, . . . ,m,
that are coupled by a general symmetric matrix K(ij). The effective action is:

Seff =
1

4π

∫
d3xK(ij)ε

µνρa(i)µ∂νa(j)ρ +
1

2π

∫
d3x t(i)ε

µνρAµ∂νa(i)ρ, (1.33)

where Aµ is the external electromagnetic field and t(i) is the electric charge of a(i)µ. In
presence of a quasiparticle source of charges l(i) for a(i)µ, we read from the induced action
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Figure 1.3: The confining potential modifies the Landau levels at the edge. The edge excitations
(green line) are massless and chiral.

the filling fraction, the charge and statistics of the quasiparticle in terms of the parameters
(K, t):

ν =
∑
i,j

t(i)K
−1
(ij)t(j), Q =

∑
i,j

t(i)K
−1
(ij)l(j) and

∆θ

π
=
∑
i,j

l(i)K
−1
(ij)l(j). (1.34)

The analysis of fractional charges and statistics provided by these formulas implies that t(i)
and K(ij) are integer-valued and that K−1

(ij) is the Gram matrix for the lattice of fractional
statistics vectors l(i).

The Jain series are obtained by assuming m branches, or effective Landau levels as
in the composite fermion picture. We also take the most symmetric form of K(ij), under
exchanges of the fluids among themselves. This implies the expression

Kij = δij + 2qCij , with Cij = 1 ∀i, j = 1, . . . ,m, (1.35)

with electric charges normalized by t(i) = 1 ∀ i. Upon evaluating the expressions (1.34) for
this Kij one indeed obtains the filling fractions of the Jain series ν = m/(2qm + 1). The
integer parameter 2q is again fixed by requiring the presence of electron excitations in the
system with unit charge and fermionic statistics.

Although Jain theory has not been completely proven, analytic and numerical results
confirm its predictions. The extensive phenomenology based on the composite fermion
correspondence [11] between integer and hierarchical states let us argue that the structure
of several branches is correct. The fractional charges of excitations (1.34) have also been
confirmed experimentally [12, 13, 14],.

1.3 Edge States

In a finite geometry, like a disk or an annulus, the confining potential VC(|x|) modifies
the structure of Landau levels such that energy eigenvalues are not longer degenerate in
angular momentum m, (see Fig. 1.3). Since the bulk is incompressible, a Fermi surface is
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created at the boundary. We consider the QH system in the geometry of a spatial disk
of radius R, whose boundary forms the space-time cylinder ∂M = S1 × R. The particle-
hole excitations around such Fermi surface are massless and possess an approximate linear
spectrum Em′ ∼ vm′/R with m′ the rescaled boundary angular momentum m = L + m′,
with L = R2, as in Fig. 1.3. These excitations are chiral [15], i.e. propagate on the edge
in one direction only, with velocity v. Furthermore, due to the bulk incompressibility, a
quasi-hole excitation implies the transport of charge at the boundary, namely the formation
of a charged edge excitation. Then the study of the boundary physics allows us to analyze
both neutral particle-hole and charged excitations.

The edge dynamics is provided by the conformal field theory (CFT) of Weyl fermions.
The low-energy approximation for excitations near the boundary can be carried out ex-
plicitly for the quantities of the second-quantized theory of electron in lowest Landau level
[16]. The field operator Ψ̂ reduces at the edge z = Reiθ to the Weyl fermion field in the
CFT, as follows

Ψ̂
(
Reiθ, t

)
∼ N ei(L+µ)θF̂R (θ, t) , (1.36)

where N is a normalization constant and µ the chemical potential as explained later. In
the thermodynamic limit R → ∞ the dependence on the radial coordinate in N can be
neglected, the momentum is rescaledm→ L+m,m ≤

√
L, and the energy can be linearized

as previously said. It is then useful to redefine a fermionic Fock operator, b̂m = ĉm+L. The
field operator reads

F̂R (θ, t) =
∞∑

m=−∞

b̂m√
2πR

exp [i (m− µ) (θ − vt/R)] , (1.37)

and the second quantized hamiltonian

ĤR =
v

2

∫ 2πR

0
dx F̂ †R (−i∂θ) F̂R + h.c. , (1.38)

define the non interacting (1 + 1)-d CFT of a Weyl fermion on the cylinder S1 × R with
coordinates (x = Rθ, t). Upon applying a Wick rotation to euclidean time τ = it and
mapping the cylinder to the plane via the conformal map η = ew/R with w = (vτ − iRθ),
one can easily construct the following conformal generator Ln and current modes ρn [16],

Ln ≡
R

iv

∮
dηHR (η) ηn =

∞∑
k=−∞

(
k − n

2
− µ

)
: b†k−nbk : , (1.39)

ρn ≡
R

i

∮
dη ρR (η) ηn−1 =

∞∑
k=−∞

: b†k−nbk :, (1.40)

where we removed the hats on operators and HR and ρR are the edge Hamiltonian den-
sity and particle density, respectively. The normal ordering : () : subtracts the infinite
contribution of the filled Dirac sea given by the incompressible ground state in (1.9). Let
us conventionally fill the sea up to the k = 0 state [16], i.e. define the conformal theory
ground-state by the conditions:

bk|Ω, µ〉 = 0, k > 0,

b†k|Ω, µ〉 = 0, k ≤ 0. (1.41)
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Thus, the normal ordering is defined by putting bk to the right of b†k for k > 0 and viceversa
for k ≤ 0.

The modes ρn and Ln satisfy the following algebra

[ρn, ρm] = nδn+m,0 ,

[Ln, ρm] = −mρn+m,0 , (1.42)

[Ln, Lm] = (n−m)Ln+m,0 +
1

12
c(n3 − n)δn+m,0 , c = 1 .

The first relation is the U(1) Kac-Moody algebra (current algebra) for the generators
ρn; the third expression is the Virasoro algebra for the generators Ln of local conformal
transformations. As is well known in the CFT literature [17, 18], the c−number term in
the right-hand side of the last equation, comes from the conformal anomaly and defines
the central charge c, that takes the value c = 1 for Weyl fermions. Finally, we can easily
see from the first two relations in (1.42) that the oscillators ρ−n with n > 0 create neutral
edge excitations with momentum n/R.

As shown in Ref.[16], the chemical potential µ in the expression (1.39) plays a double
role. First, it determines the boundary conditions of the Weyl fermion (1.37) on the edge,
i.e. Ψ(θ = 2π) = exp(i2πµ)Ψ(0), distinguishing the Neveu-Schwarz sector (µ = 1/2 + Z)
from the Ramond sector (µ = Z). Next, it parameterizes the ground-state expectation
values, as follows:

Ln |Ω, µ〉 = ρn |Ω, µ〉 = 0, n > 0, (1.43)

L0 |Ω, µ〉 =
1

2

(
1

2
− µ

)2

|Ω, µ〉 , (1.44)

ρ0 |Ω, µ〉 =

(
1

2
− µ

)
|Ω, µ〉 . (1.45)

These values of charge and Virasoro dimension amount to finite renormalization constants
that should be added to the definitions of L0 and ρ0 in (1.39, 1.40). The two values are
related among themselves by the current algebra (1.42), and can actually be computed
by checking the commutation relations on the expectation values 〈Ω, µ|LnL−n |Ω, µ〉 and
〈Ω, µ|Lnρ−n |Ω, µ〉 [17].

Let us remark that the derivation of the edge CFT presented in this section requires
some modifications in the case of higher filled Landau levels: these are described in our
original work [1] presented in the next Chapter.

1.3.1 Anomaly Inflow

In the previous sections the Hall conductivity was obtained as a bulk transport coefficient
by using the Chern-Simons action. In the edge theory, the Hall current follows from another
crucial property: the existence of a chiral anomaly [19]. In the fermionic theory discussed
in the previous section, the coupling to an electromagnetic field leads, via the Heisenberg
equation of motion to the following result:

(∂t + v∂x) ρR =
1

2π
Ex, (1.46)
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where Ex is the electric field along the edge coordinate x = Rθ. This implies that the
classical conservation law of the charge Q =

∫
dx ρR is violated. Charge non-conservation

however is not possible in the whole system, that is made of non-relativistic electrons. The
solution to this puzzle is that the bulk transverse current, the Hall current, cancels the
edge anomaly by transporting charges from a boundary to the other, as in Fig. 1.4. The
mechanism by which an anomaly is cancelled by a classical effect in a higher-dimensional
theory is called anomaly inflow [20].

We can integrate the anomaly equation (1.46) in time to obtain the adiabatic charge
accumulation at the edge:

Q (t =∞)−Q (t = −∞) =
1

2π

∫
d2xEx =

1

2π

∫
∂M
F = n, (1.47)

where F is the (1+1)-dimensional two-form field strength. The equation (1.47) relates the
accumulated charge to the first Chern class, 1/2π

∫
F = n, that is an integer topological

number. Namely it is independent of continuous deformations of the geometry of the
sample and of the background fields. In (1 + 1)-dimensional relativistic theory, the result
(1.47) is called the index theorem of the Dirac operator [21]. It is an exact result. The
edge chiral anomaly therefore reproduces the robustness and the quantization of the Hall
conductivity given by the ratio between the transported charge and the number of fluxes
injected.

Let us note that, as previously said, the universality of the quantum Hall conductivity
was originally obtained by the Kubo formula of the linear response theory in [22]. Thouless
et al. showed that the Hall conductivity is related to the Berry phase. This is defined
on the toroidal space of the first Brilluoin zone, and it does not depend on short range
interactions, namely it is a topological invariant. However, in this Thesis, we use a quantum
field theory approach to explain this robustness. The main motivation will be more clear
when we extend the argument for fractional fillings where the Thouless argument based
on free band theory, is not applicable.

Furthermore, the connection between the edge anomaly and the bulk Hall conductivity
is the first ingredient needed to build a bulk-boundary correspondence for the electromag-
netic response in the quantum Hall states. We are going to analyze such a correspondence
in more details in the next section.

The anomaly inflow mechanism is actually equivalent to the Laughlin’s flux insertion
argument [23] used to explain the charge transport from the inner to the outer edge in
the annulus geometry, as shown in Fig. 1.4. The adiabatic insertion of a quantum unit of
magnetic flux Φ0 = 2π in the system induces a Faraday electric field dΦ/dt going around
the annulus, which in turn generates a radial Hall current I = σHdΦ/dt. When Φ = Φ0,
the vector potential can be elimated by a gauge transformation, so the Hamiltonian has
returned to its original form at Φ = 0. Although the spectrum does not change, states
drift one into the next, leading to the so called spectral flow and the quantization of the
transferred charge.

In the Laughlin fractional Hall state ν = 1/k we expect to transport a particle of
charge −1/k from an edge to the other. This means that the resulting Hall conductivity
is σH = 1/2πk, as experimentally observed. In the next section, this result will be easily
found in the effective field theory approach thanks to the exact bi-dimensional bosonization.
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Figure 1.4: Laughlin’s flux argument: the insertion of a quantum of flux Φ0 inside the annulus
moves a charge ∆Q from the inner to the outer edge.

1.4 Bulk-boundary correspondence

In the fractional case, the bulk theory is interacting, thus the edge Weyl fermions also
acquire an interaction. In (1+1) dimensions this problem can be solved by the bosonization
tecnique, by which interacting fermions can be exactly mapped to a solvable yet non-trivial
theory of bosons. The existence of the bosonic description can be explained by using the
Chern-Simons effective field theory, and the connection between bulk and boundary [9, 24],
as follows.

We consider the QH system in the geometry of a spatial disk of radius R as in the
previous section. In such a geometry, the CS action (1.15) is no more gauge invariant: the
gauge transformation a→ a+ dΛ gives the following term

SCS [a]→ SCS [a]− k

4π

∫
∂M

dtdxΛ (∂tax − ∂xat) , (1.48)

where x = Rθ is the coordinate along the boundary of the disk. If we want to preserve
the gauge invariance, we need to restrict the gauge transformation Λ such that it vanishes
at the boundary, Λ (r = R) = 0. However, this choice is not physically acceptable because
we saw that there are propagating edge excitations which carry charge. We should then
introduce an action for the edge dynamics whose gauge transformation cancels the term
(1.48) [9, 19]. One method to obtain the edge theory is the following.

In the a0 = 0 gauge, the CS equations of motion gives ai = ∂iϕ. The action becomes
a boundary symplectic term:

Sedge = − k

4π

∫
∂M

d2x ∂xϕ∂tϕ. (1.49)

This action has vanishing Hamiltonian, being the reduction of a topological theory. The
simplest Hamiltonian we can add is quadratic and of the form H = + k

4πv∂xϕ∂xϕ. We
obtain the following action in (1 + 1)-dimensions

Sedge = − k

4π

∫
C
d2x ∂xϕ (∂tϕ− v∂xϕ) , (1.50)
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which is the chiral boson theory, first discussed by Floreanini-Jackiw [25]. The equation of
motion,

(∂t + ∂x) ∂xϕ = 0, (1.51)

shows that the field is indeed chiral (we fix the velocity v = 1). The gauge invariance of
the complete system, δSCS + δSedge = 0 is finally restored by transforming ϕ→ ϕ+ Λ and
fixing the boundary gauge condition a0 = 0.

We can summarize the argument by saying that gauge degrees of freedom become
dynamical at the edge. This is the bulk-boundary correspondence: the universal physics
of the bulk, including the electromagnetic response, is coded in the edge theory.

1.4.1 Conformal theory of compactified chiral boson

There is one important property of the scalar field ϕ that we haven’t mentioned yet: it’s
periodic. Actually the U(1) gauge field is compact,

g ∈ U (1) , g = e−iϕ , aµ → aµ + ig−1∂µg , (1.52)

thus, the field ϕ is a periodic variable with period 2π. Let us first consider the more general
periodicity

ϕ(θ, t) ≡ ϕ(θ, t) + 2πnr, n ∈ Z. (1.53)

The field ϕ(θ) maps the edge circle into another circle with radius r, and is called com-
pactified boson. Upon rescaling the time coordinate t → Rt, the equation of motion for
the edge action becomes,

(∂t + ∂θ) ∂θϕ = 0. (1.54)

The field expansion

ϕ(θ, t) = ϕ0 − α0 (θ − t) + i
∑
k 6=0

αk
k
exp (ik (θ − t)) , (1.55)

solves the equations of motion (1.54), with α∗k = α−k and ϕ0 ≡ ϕ0 + 2πr to satisfy
(1.53). Note that the field expansion contains both solitonic modes (ϕ0, α0) and oscillating
terms. Imposing canonical commutation relations on the field and its momentum Π(θ, t) =

δL/δφ̇ = −p/4π∂θϕ, [25, 16] 4

[
ϕ(θ, t),Π(θ′, t)

]
=
i

2
δ(θ − θ′), (1.56)

we infer the following commutation relations of the modes,

[ϕ0, α0] =
i

k
, [αn, αm] =

n

k
δn+m,0. (1.57)

Upon quantization, the coefficients ϕ0, α0 and αn become operators acting on a bosonic
Fock space, whose ground state |Ω〉 is defined as

αn |Ω〉 = 0, n > 0. (1.58)

In the previous section, we saw that the Weyl fermion corresponds to a conformal
theory with central charge c = 1. Now we will show that also the chiral boson possesses

4The factor of 1/2 is explained in [16]
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c = 1 and then, furthermore, it is able to describe the edge states at both integer and
fractional values of ν. First of all, we define Virasoro operators as:

L0 ≡
k

2
α2

0 + k

∞∑
l=1

α−lαl ,

Ln ≡
k

2

∞∑
l=−∞

αn−lαl.

(1.59)

By using the commutation relations (1.57) paying attention to the necessary normal or-
dering, one obtains the current algebra [16]:

[αn, αm] =
n

k
δn+m,0, (1.60)

[Ln, αm] = −mαn+m, (1.61)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, c = 1. (1.62)

The states of the conformal theory are described by representations of this algebra: the
free fermionic theory (1.42) will be later obtained in the special case k = 1.

Since ϕ0 is periodic 2πr, and ϕ0 and kα0 are canonically conjugate, we should require

kα0 =
m

r
, m ∈ Z. (1.63)

Altogether, we obtain two periodicities

ϕ(2π, t) = ϕ (0, t) + 2πr
(
n+

m

kr2

)
, n,m ∈ Z, (1.64)

whose commensurability requires kr2 to take rational values, kr2 = p/q, with p and q

coprime integers [16].
A further physical condition comes from the requirement that Sedge[ϕ] should reproduce

the bulk fractional charged excitations. The edge charge is the integral of the edge current
j0 = − 1

2π∂θϕ that is obtained by the bulk expression using (1.13) as follows,

Q =

∫
D2

d2x j0 = − 1

2π

∫
S1

dθ aθ = − 1

2π
(ϕ (2π)− ϕ (0)) = α0. (1.65)

The spectrum (1.63) reproduces the Laughlin quasiparticles charges for r = 1, as expected
from (1.52). Fractional charge excitations Q = m/k in the bulk correspond to edge states
|α0 = m/k〉, such that

α0 |α0 = m/k〉 =
m

k
|α0 = m/k〉 , m ∈ Z. (1.66)

This is another aspect of the bulk-boundary correspondence: an anyonic bulk charge cor-
responds to a solitonic mode α0 in the chiral edge theory. The corresponding conformal
dimensions are given by eigenvalues of L0,

L0 |α0 =
m

k
〉 = hm |α0 =

m

k
〉 , hm =

m2

2k
. (1.67)

Note that more general quantizations with r 6= 1 would not be consistent with the deriva-
tion (1.48-1.50) from Chern-Simons theory.
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In the conformal field theory, the eigenstate of α0 is called highest weight state, i.e. the
ground state in a solitonic sector, that satisfies αn |α0〉 = 0, for n > 0. On the other hand,
the oscillators α−n with n > 0 create neutral excitations leading to the complete tower of
conformal descendant states with conformal dimensions hn = m2/k + n.

Furthermore, the state |α0〉 is created by the so-called vertex operator,

Vm (z) =: exp
(
i
m

k
ϕ (z)

)
: z = exp(vτ + iθ), (1.68)

which satisfy the following commutation relations

[L0, Vm(z)] =

(
z
∂

∂z
+
m2

2k

)
Vm(z), (1.69)

[α0, Vm(z)] =
m

k
Vm(z). (1.70)

This algebra shows that the vertex operators Vm(z), m > 0, describe the insertion at point
z on the boundary of a charged excitation with fractional charge Qm = m/k and conformal
dimension hm = m2/2k. Moreover, the operator product expansion (OPE) of two vertex
operators is [17, 18, 26]

lim
z1→z2

Vm1(z1)Vm2(z2) ' (z1 − z2)m1m2/kVm1+m2(z2). (1.71)

One can easily see that this phase gives the right value of the fractional statistics θ/π that
is identified with the conformal dimensions 2hm [16].

These results are in agreement with those obtained from the bulk effective action, i.e.
Eq.(1.22). Therefore the number of bulk anyonic charges, namely the degeneracy of the
quantum ground state on the torus, coincides with the number of solitonic sectors in the
edge theory. Because k is odd, the spectrum always allows the excitation Vk with the
quantum numbers Q = 1 and θn = 2πk, that is the electron. In the following, we shall also
prove that the Hall current of the bosonic theory is σH = 1/2πk. Therefore this theory
describes the long-range universal properties at the boundary of the Laughlin series.

We now compute the euclidean grand-canonical partition function of edge excitations:
the space circle and the euclidean time period β realize the geometry of a torus (see
Fig. 1.5). Owing to the knowledge of the spectrum of edge excitations, (1.66) and (1.67),
the trace on the Hilbert space can be decomposed into orthogonal solitonic sectors H(λ),
corresponding to the basic anyons plus any number of electrons [27]. There are k sectors,
for λ = 1, . . . , k, which contains representations with charges Qn = λ/k + n of the Û(1)

current algebra of the c = 1 CFT. The partition function for each sector takes the following
form [27]:

Kλ(τ, ζ; k) = TrH(λ) [exp (i2πτL0 + i2πζQ)]

=
F (Imτ, Imζ)

η(τ)

∑
n∈Z

exp

(
i2π

(
τ

(nk + λ)2

2k
+ ζ

nk + λ

k

))
, (1.72)

where η(τ) is the Dedekind function

η(τ) = q1/24
∞∏
n=1

(1− qn) , with q = exp(2πiτ), (1.73)
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¯

R

Figure 1.5: In the space annulus geometry, each edge is given by a torus once we compact-
ified the imaginary time with period β. We consider the outer edge geometry given by a
torus of periods (2πR, β).

and F (Imτ, Imζ) is a pre-factor explained in [27]. The function Kλ is parameterized by
the two complex numbers,

τ =
iβ

2πR
+ l/R, ζ =

β

2π
(iVo + µ), (1.74)

that are the modular parameter τ and the ‘coordinate’ ζ. Imτ > 0 is related to the
euclidean time period β, while Re τ is the parameter conjugate to momentum P corre-
sponding to a spatial twist added in the temporal boundary conditions; ζ contains Vo
and µ, respectively the electric and chemical potentials. These functions Kλ have the
periodicity Kλ+k = Kλ, corresponding to the k anyon sectors [27].

Let us mention that the same bosonic CFT theory can also be applied to describe bulk
wave functions in two spatial dimensions [10]. Indeed, the Laughlin wave function (1.11)
is basically the same expression as the N−point correlator of vertex operators Vp(z) for
electrons (1.68), now located at the points z = x+ iy of the plane [28]. The description of
quasi-hole and quasiparticle wave functions requires some modifications of the conformal
fields that are described in the works [29, 30]. This different use of CFT techniques will
not be developed in this thesis.

1.4.2 The free fermion theory: bosonization in (1 + 1) dimensions

Let us now recall the equivalence between the compactified boson with k = 1 and the
Weyl fermion. This is the bosonization in (1 + 1) dimensions, an exact map between two
theories, that gives to two descriptions of the same Hilbert space of states [31]. The two
theories have the same conformal charge c = 1 and satisfy the same chiral algebra (1.42).
The bosonic vertex operators represent the fermion fields ψ and ψ† as follows:

ψ (θ, t) = V−1 =: exp (−iϕ (θ, t)) : , ψ† (θ, t) = V1 =: exp (iϕ (θ, t)) : . (1.75)
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Indeed, these fields satisfy the usual anti-commutation relations [31]:{
ψ(θ, t), ψ(θ′, t)

}
=
{
ψ†(θ, t), ψ†(θ′, t)

}
= 0, (1.76){

ψ(θ, t), ψ†(θ′, t)
}

= 2πδ(θ − θ′). (1.77)

The fermionic charge density ρ =: ψ†ψ : can be accordingly expressed in terms of the
bosonic field as

ρ = − 1

2πR
∂θϕ, (1.78)

which implies the mapping ρn = αn among the modes of the fields. In particular, the
total charge ρ0 is represented in the bosonic theory by α0, in agreement with the previous
results (1.66).

Thanks to this identification, one can couple the chiral boson to the electromagnetic
field by adding the following term to the Floreanini-Jackiw action (1.50),

Sint =
1

2π

∫
∂M

d2x (At∂xϕ−Ax∂tϕ) . (1.79)

In such way the equations of motion become:

(∂t + ∂x)

(
− 1

2π
∂xϕ

)
=

1

2πk
Ex, (1.80)

which generalizes to k > 1 the chiral anomaly equation (1.46). This proves that the Hall
conductivity is σH = 1/2πk.

In conclusion, the chiral boson theory displays the chiral anomaly and generalizes the
anomaly inflow mechanism to fractional fillings. It is rather remarkable that the robustness
of the quantization of the Hall current and the universality of fractional charge and statistics
can be proven in free and interacting systems by using the effective field theory approach
and exact bosonization.

1.5 Other transport properties: geometric responses

The Hall states possess other interesting responses beyond the transport of electromagnetic
charge as, for instance, heat transport or the response of the incompressible fluid under
mechanical strain. Such phenomena can be effectively described through the coupling of
the low energy degrees of freedom to a spatial background metric. Gravitational field in
condensed matter systems can be understood either as a way to represent deformational
strains in the material, or as a technical tool allowing to compute correlation functions of
the stress tensor describing matter (heat) current.

In elasticty theory [32], deformations of a continuum system are parametrized by the
displacement field ui(x) = x′i(x)−xi, expressing the dislocation of each point of the sample.
So we have a new line element

dl2 = dxidxj
(
δij + ∂(iu j) + ∂iuk∂juk

)
. (1.81)

By neglecting the quadratic term, the deformation has the same form of a diffeomorphism of
the flat metric gij = δij . Therefore the response under mechanical strain can be described
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by introducing a spatial external metric coupled to the physical degrees of freedom, in
our case the hydrodynamic field aµ. Naturally, we observe physical effects that are not
invariant under diffeomorphisms because we are not dealing with general relativity.

The geometric response [33] of quantum Hall states has been extensively investigated in
the recent literature [34, 35]. The low-energy effective action has been extended by coupling
to a background metric, leading to the Wen-Zee terms [36, 37, 38]. Other methods have also
been developed, such as explicit wave-function constructions [39, 40, 41], hydrodynamic
theory [42, 43], the W∞ symmetry [44], and bi-metric theories [45, 46].

1.5.1 Fröhlich-Wen-Zee action

The coupling of the Chern-Simons action to a gravitational background has been introduced
by Fröhlich and collaborators [47] and by Wen and Zee [36]. In order to find its form, we
exploit the canonical coupling between a spinor and gravity. In the relativistic (2 + 1)-
dimensional Dirac equation, this is given by the term

∆L = ωabµ ψ̄γ
µ 1

4
[γa, γb]ψ, a, b = 0, 1, 2, (1.82)

where ωabµ is the spin connection that can be expressed in terms of the vielbein eaµ
5. In

the non-relativistic limit we consider just a spatial metric gij = gij (x, t). This reduces the
local Lorentz symmetry to the rotation in the plane O(2) with abelian connection ωµ =

ε012ω
12
µ . Therefore the interaction (1.82) takes the form of another Abelian background,

i.e. ωµψ̄γµψ. This suggests to add the gravity background to the effective theory (1.15)
as follows:

jµAµ → jµ (Aµ + sωµ) , (1.83)

where the coupling constant s is interpreted as the ‘intrinsic orbital spin’ of the energy
excitations.

In full generality, we will consider the multicomponent case (1.33), using the notation
of forms, i.e. a = aµdx

µ, and summing over them fluid components. We write the effective
action with the geometric coupling as follows

S[a,A, ω] = − 1

4π

∫
K(i)(j)a(i)da(j) +

1

2π

∫
a(i)

(
t(i)dA+ s(i)dω

)
, (1.84)

where s(i) is the orbital spin value for the ith component. The integration over a(i) fields
yields the induced action [37],

Sind[A, g] =
ν

4π

∫ (
AdA + 2s ωdA + s2 ωdω

)
+

c

96π

∫
Tr

(
ΓdΓ +

2

3
Γ3

)
, (1.85)

with the following expressions for the parameters [9]:

ν = t(i)K
−1
(i)(j)t(j), νs = s(i)K

−1
(i)(j)t(j), νs2 = s(i)K

−1
(i)(j)s(j), c = n, (1.86)

5The relation actually involve the vielbein eaµ and its inverse Eµ
a . Upon imposing null torsion and a

metric compatible connection, we find

ωabµ = frac12
(
Eν[a∂[µe

b]

ν] − Eν[aEb]σecµ∂νe
c
σ

)
,
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corresponding to the filling fraction ν, the average orbital spin s, the average square s2

and the central charge c, respectively. The conventional naming for these quantities refers
to the case of integer filling, where K(i)(j) is the identity matrix.

In the expression of the induced action (1.85), the first term is the Chern-Simons theory
(1.16) responsible for the Hall conductance, and the following terms are called respectively,
the Wen-Zee term

SWZ [A, g] =
νs̄

2π

∫
ωdA, (1.87)

and the gravitational Wen-Zee term

SgWZ =
νs̄2

4π

∫
ωdω. (1.88)

The last term in (1.85) is called gravitational Chern-Simons action and involves the full
(2 + 1)-dimensional Christoffel connection Γµν = Γµνλdx

λ. This contribution arises from the
measure of integration for the a(i) path-integral, and it expresses the gravitational anomaly
as we will see in the following.

The correctness of the action (1.85) has been verified by integrating the microscopic
theory of electrons in Landau levels, for integer filling [48]. In this case, the s(i) values are

s(i) =
2i+ 1

2
, i = 0, . . . , n− 1. (1.89)

The correcteness of this result can be verified by computing the total angular momentum
M(i) of each level filled with N electrons, using the formula:

M(i) =
N2

2
−Ns(i). (1.90)

for each level.
In an actual system, the effective action (1.85) is accompanied by other non-geometrical

terms that are local and gauge invariant and depend on details of the microscopic Hamil-
tonian [49, 48]. These non-universal parts will not be considered here, while the issue of
universality of the Wen-Zee terms will be discussed later.

1.5.2 Hall viscosity

Let us consider small strain deformations around the flat metric. For small fluctuations,
we can write δgij = 2δeij to express the zweibeins eij = δiae

a
j in terms of the metric. The

spin connection components are then found to be:

ω0 = −1

8
εikδgijδġjk, ωj =

1

2
εki∂iδgkj . (1.91)

Moreover, to linear order the spatial zweibein is proportional to the affine connection,
ωi = 1

2ε
jkΓj,ik = 1

2Γi. Upon expanding the scalar curvature in gij ,

R =
2∂iωjε

ij

√
g

=
(
∂i∂j − δij∂2

)
δgij , (1.92)

we rewrite the Wen-Zee action to the quadratic order in the fluctuations of both metric
and electromagnetic background. It reads

SWZ '
νs̄

4π

∫
d3x

(
A0R+ εijȦiΓj −

B

4
εijδgikδġjk

)
. (1.93)
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Figure 1.6: Illustration of the Hall viscosity: a counter-clockwise stirring of the fluid in the
bulk of the droplet causes an orthogonal force (red arrows).

From this expression, we can compute the induced stress tensor to leading order for constant
magnetic field B = B0, obtaining the result [44]:

Tij = 2
δSWZ

δgij
' −ηH

2
(εimġjm + εjmġmi) , (1.94)

with
ηH =

νs̄B0

4π
. (1.95)

The parameter ηH is called Hall viscosity: it parameterizes the response of the fluid
to stirring, say at constant velocity. It corresponds to an orthogonal force (see Fig. 1.5.2)
that is not dissipative [33, 50]. Avron, Seiler and Zograf were the first to discuss the Hall
viscosity from the adiabatic response [33], followed by other authors [35, 51, 52, 39, 41]; in
particular, the relation between the Hall viscosity and s̄ (1.95) has been shown to hold for
general Hall fluids [34]. Since s̄ is a coupling constant of an action of Chern-Simons type,
it is independent of local dynamics. Moreover it is associated to a topological quantity in
compact geometries. On the other hand, it is not related to an anomaly of the edge theory,
and its physical meaning at the edge has so far remained unclear. In the next chapter,
we are going to present our work that clarifies this issue and explain to which extent the
intrinsic spin is a universal quantity.

1.5.3 Thermal current and gravitational anomaly

The Wen-Zee action in Section 1.5 contains the gravitational Chern-Simons term,

SgCS =
c

96π

∫
M

Tr
(

ΓdΓ +
2

3
Γ3

)
. (1.96)

In analogy with the Abelian Chern-Simons theory discussed in Section 1.2, the action is
invariant under local coordinate transformations, i.e. diffeomorphisms, when it is defined
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on compact manifolds M. For geometries with a boundary, it is not invariant by a total
derivative. As in the Abelian case, this term is compensated by the non-invariance of the
edge theory under diffeomorphisms [53, 54, 55, 56], that is the gravitational anomaly [57].

In conformal field theory, this anomaly is parameterized by central charge c of the
Virasoro algebra (1.62) [17]. More precisely, when the edge theory involves both chiral and
antichiral modes, the effect is proportional to the difference of central charges (c− c̄), i.e.
it is chiral. Such cases occur for some Jain states.

The lack of diffeomorphism invariance corresponds to the non-conservation of the stress
tensor, that takes the form

∇µTµν = −(c− c̄)
24

∇νR. (1.97)

in (1+1) dimensions, whereR is the scalar curvature. This equation can be shown to imply
a non-vanishing ground state value of the momentum density on the edge, i.e. a matter
current [54]wh. Its space average gives the thermal current, JT ∝ T 2, that is proportional
to the temperature squared. Such ground state value, in general, is not measurable by
itself since its like a Casimir effect in the edge theory. However, in the physical geometry
of the annulus, we can measure the difference of currents on the two edges, that is non
vanishing in presence of a temperature gradient

∆JT = κH∆T, κH =
π

6
(c− c̄) . (1.98)

The coefficient κH is the thermal Hall conductivity, that is proportional to the gravita-
tional anomaly and thus universal. We thus have another example of universal transport
properties determined by anomalies. Note that the current is longitudinal to the edge and
orthogonal to the tempertaure gradient.

In conclusion, the bulk-boundary correspondence is again realized: a classical non-
conservation in the bulk action is compensated by a quantum effect in the edge theory, in
agreement with the anomaly inflow mechanism. Note, however, that the correspondence
does not imply a bulk current in this case, because the heat current flow on the edge only
[56, 54].
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Chapter 2

Bulk-Boundary Correspondence in
Quantum Hall Effect

In this chapter, we analyze the geometric response involving the electron orbital spin s and
describe its role in the edge theory [1]. In particular, we explain the universal features that
can be associated to this quantity, thus providing a further instance of the bulk-boundary
correspondence. In the first section, we build the theory of edge excitations for n filled
Landau levels, by taking a straightforward limit of the microscopic states near the edge.
This analysis was not done in the past beyond the lowest level ν = 1, and is relevant for our
problem, because the orbital spin takes different values in different levels (1.89). Next we
discuss the edge spectrum and its dependence on s, describing some physical consequences
of this fact in several settings.

In the second part, we show how to generalize these results to fractional fillings ν < 1

by using another approach that employs the symmetry of Laughlin incompressible fluids
under quantum area-preserving diffeomorphisms (W∞ symmetry).

Then, we briefly discuss the possibility of measuring s by a tunneling experiment in the
Coulomb blockade regime [25] and by quadrupole deformation of the confining potential.

In the last section, we present some recent progress in studying the W∞ algebra for
incompressible fluids.

2.1 Geometric response at the edge

As in any topological phase of matter, the responses have a dual manifestation in the bulk
and at the edge of the system, and their interplay is called the bulk-boundary correspon-
dence [9]. We have already seen how this correspondence works in the electromagnetic
response: the bulk Hall current compensates the chiral anomaly at the edge [16]. Since the
anomaly is an exact and universal feature of the conformal field theory of edge excitations
[17, 18], and is related to topological invariant quantities, we can infer that the bulk Hall
conductivity σH is also universal and exact [9].

Let us now to discuss the boundary terms needed to correct the Wen-Zee terms,

SWZ [A, g] =
ν

4π

∫
M

2sωdA, SgWZ [A, g] =
ν

4π

∫
M

s2ωdω . (2.1)
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In the recent work [58], the authors showed that in geometries with a boundary, the
Wen-Zee actions are modified by the addition of two edge terms that restore the invariance
under SO(2) local frame rotations. These terms involve the one-form of the extrinsic
curvature of the boundary [58], K = Kαdx

α1:

SWZ,b =
νs

2π

∫
∂M

AK, SgWZ,b =
νs2

4π

∫
∂M

ωK, (2.2)

while the spin connection ω and the electromagnetic field A are restricted on the boundary
∂M. The expressions (2.2) are local in (1 + 1) dimensions. In quantum field theory, local
terms of the action are not universal in the sense that they depend on the detailed dynam-
ics and can be modified, according to different (possible) definitions of the renormalized
quantities. Furthermore, the local terms (2.2) can also be considered for an interface be-
tween two regions in the bulk where s and s2 take different values [58]. At this point the
gap does not vanish and there are no edge excitations. This result should be contrasted
with the non-invariance of the CS action under U(1) gauge symmetry. In that case, the
compensation by the anomaly of massless edge states cannot be written as a local expres-
sion in (1 + 1) dimensions and in agreement with the fact that anomalies correspond to
universal quantities. In conclusion, the results (2.2) for the Wen-Zee action raise dubts
on the universality of the intrinsic orbital spin s, that, on the other side, parameterizes
physical effects in the bulk such as the Hall viscosity.

In our work [1], we have investigated the meaning of s in the edge physics, by an in-dept
analysis of the conformal field theory and found an answer to these questions. Anticipating
the result, we showed that s parameterized a Casimir effect in the edge energy spectrum,
namely a non zero ground state energy. As a consequence, its absolute value is not physical,
but differences of values, si − sj , that occur in the case of multiple edge modes, have an
unambiguous universal meaning.

Let us first summarize the observable quantities that can be derived by the Wen-Zee
action including the boundary terms. Its complete expression is given by [58]

Sind[A, g] = SCS + SWZ + SWZ,b + SgWZ + SgWZ,b + SgCS + SCFT . (2.3)

Currents and response coefficients are found by taking variations of this action. Let us
mention two results that are useful for the following analysis:

• The relation between the total number of particles and the number of flux quanta is
modified. In presence of a boundary, the total number of particles is given by the
space integral over a spatial slice Σ of the density, √gJ0 = δSind/δA0, and reads:

N =
ν

2π

∫
Σ

√
gdA +

νs

4π

∫
Σ

√
gR +

νs

2π

∫
∂Σ
K +QCFT

= νNφ + νsχ+QCFT . (2.4)

In this expression, there appear the scalar curvature, Rij = 2∂iωj/
√
g, the number

Nφ of magnetic fluxes through the surface and the Euler characteristic χ. Note that
1The extrinsic curvature is defined as Kα = niDαt

i, where ti and ni are the tangent and vector and
the orthogonal vector w.r.t the boundary, respectively. The covariant derivative Dα is the covariant bulk
derivative Dµ ’pull-backed‘ on ∂M
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the bulk and boundary terms SWZ and SWZ,b in the action combine themselves to
give the correct expression of the Gauss-Bonnet theorem for surfaces with a boundary,
including the geodesic curvature K, that reads χ = 2− 2h+ b, where h and b are the
number of handles and boundaries, respectively.

• The spin density can be obtained by the variation of the action with respect to
the spin connection at fixed metric, √gs0 = δSind/δω0|g. We are interested in the
boundary contribution that originates from the term SgWZ,b (2.2) for the geometry
of the flat disk (χ = 1). It reads:

Sb =

∫
S1

s0 =
νs2

4π

∫ 2πR

0
dxK =

νs2

2
. (2.5)

Summarizing, in the geometry of the disk, the Wen-Zee action supplemented by the
boundary terms (2.2) predicts non-vanishing ground-state values for the spin Sb (2.5) and
the charge Qb,

Qb = νs+QCFT , (2.6)

at the boundary [58]. In section 2.3, we shall recover and extend these results by studying
the edge conformal theory and explain to which extent these quantities are universal.

2.2 Multicomponent edge theory

In this section, we construct the conformal theory of edge excitations by taking an explicit
limit of the microscopic states for n filled Landau levels. This result will set the stage for the
analysis in our work [1]. Although the limit to the edge was already considered in section
1.3, for the one-component case [16], there are some subtleties in the multicomponent case.
We recall from the previous chapter, that the magnetic length `B =

√
2~c/eB, c, e, ~ and

the electron mass M are set to one, and that the Hamiltonian and angular momentum
take the form (1.3) in terms of two pairs of mutually commuting creation-annihilation
operators,

a =
z

2
+ ∂, a† =

z

2
− ∂,

[
a, a†

]
= 1,

b =
z

2
+ ∂, b† =

z

2
− ∂,

[
b, b†

]
= 1, (2.7)

involving the complex coordinate of the plane, z = r exp(iθ). The single particle wave
functions ψn,m(z, z) in (1.4) are characterized by the values of the level index n = 0, 1, . . .

and angular momentum m = −n,−n+ 1, . . . .

2.2.1 Edge limit of wave functions

We consider the Hall state made by filling up to N electrons per level, thus forming a
droplet of fluid of radius R ∼

√
N . A confining radial potential breaks the degeneracy

of Landau levels near the boundary and creates a Fermi surface around that point. The
specific form of the potential will be discussed later and is not relevant momentarily.

According to the edge limit described for the lowest level in section 1.3, the edge theory
is defined by particle-hole excitations around the Fermi surface in a finite range of energy,
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i.e. of angular momentum m, in the limit R → ∞. The states in the i-th Landau level,
i = 0, 1, . . . , filled with N electrons have momenta −i ≤ m < N − i. The edge theory is
defined in the range [16]:

L−
√
L < m < L+

√
L, L ≡ R2 →∞, (2.8)

where L ∼ N is the value of momentum near the Fermi surface and the range of m is
chosen to fit a linear spectrum of edge energies, εm ∼ v(m− L)/R.

As is well known, the wave functions |ψn,m(r)| are localized around the semiclassical
orbits with r2 ∼ m. Thus, we can also expand the edge states for r ∼ R and consider the
combined limit for the angular momentum (2.8) and the radial coordinate,

r = R+ x, x = O(1), R→∞. (2.9)

Let us take this limit of the functions of the first level n = 0: we redefine the momentum
w.r.t. the Fermi surface m = L+m′ and use the Stirling approximation. We obtain:

ψ0,L+m′ (r, θ) ' N ei(L+m′)θ
√

2πR
e
−
(
x−m

′
2R

)2 (
1 +O

(
1
R ,

m′

R2

))
,

|m′| ≤ R, R2 = L→∞, (2.10)

where the normalization constant is N = (2/π)1/4. These wave functions are plotted in
Fig.2.1(a).

In the expression (2.10), the first factor corresponds to the wave function ψm′(θ) =

eim
′θ/
√

2πR for the (1 + 1)-dimensional Weyl fermion of the edge theory, while the radial
part is peaked at r ∼ R with spread O(`B = 1) for R → ∞. In the earlier discussion,
we eliminated the radial dependence by fixing r = R, i.e. x = 0; the remaining term
exp(−(m′/2R)2) becomes irrelevant for R→∞.

It turns out that neglecting the radius is not appropriate for higher Landau levels. In
order to understand the problem, let us consider the form of the second Landau level wave
functions:

ψ1,m =
zm√

π (m+ 1)!

(
r2 −m− 1

)
e−r

2/2. (2.11)

Upon taking the limit to the edge, we find:

ψ1,L+m′−1 ' N
ei(L+m′−1)θ

√
2πR

2

(
x− m′

2R

)
e
−
(
x−m

′
2R

)2
. (2.12)

The radial function now shows an oscillation of size x = O(1) near the edge, as shown in
Fig.2.1(b).

The oscillating behaviour is also present in the higher levels, for the simple reason that
the wave functions should be orthogonal among themselves at fixed angular momentum,
i.e. in r space. Owing to the Gaussian factor, it is rather easy to guess that the radial
functions should map into the harmonic oscillator basis involving the Hermite polynomials
Hn. This is indeed the case: in Eq.(2.12), the polynomial is identified as (x−m′/(2R)) ∼
H1(x−m′/(2R)). The inspection of the next few cases leads to the following result:

ψn,L+m (R+ x, θ) 'Mei(m+L)θ

√
2πR

Hn

[√
2

(
x− m+ n

2R

)]
e−(x−m+n

2R )
2

, (2.13)
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Figure 2.1: (a): radial dependence of ψ0,L+m′ , for L = R2 = 400 and m′ = {−20, 0, 20}
(blue), and its leading approximation (2.10) (red), for m′ = 0. (b): radial dependence of
ψ1,L−1+m′ (blue) and its approximation (2.12) (red), for L = R2 = 400 and m′ = 0.
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whereM is another normalization factor.
The shift of the radial coordinate by m/2R in (2.13) is also easily explained. In the

limit R → ∞, the disk geometry can be approximated by the half plane, defined by
x < 0 in (x, y) coordinates. In this geometry, the Landau levels in the linear gauge
(Ax, Ay) = (0, Bx) = (0, 2x) have the form:

ψ̃n,ky (x, y) ∼ eikyyHn

[√
2

(
x− ky

2

)]
e
−
(
x− ky

2

)2
. (2.14)

Owing to the periodicity of the edge of the disk, the half plane is wrapped in the y direction
to form a cylinder, such that the corresponding momentum is quantized by ky = m/R.
We thus recover the expression (2.13) up to an overall phase for the different gauge choice.

Note, however, that the functions (2.14) for the cylinder match those of the disk (2.13)
with a level-dependent shift of momentum m/R→ (m+ n) /R that will be crucial in our
discussion [1]. This difference is due to the extrinsic curvature of the boundary of the disc,
that vanishes for the half-plane. This is a first sign of the presence of the orbital spin
sn ∝ n in the edge theory.

In conclusion, the wave functions of edge states are Gaussians localized in a spatial re-
gion O(`B = 1) around r = R and a momentum range O(

√
L) around L = R2. The spatial

separation ∆x = 1/2R between neighbour states is in agreement with the degeneracy/flux
relation, since Nφ → Nφ+1 amounts to R2 → (R+ 1/2R)2 ∼ R2 +1. The states of higher
Landau levels display an oscillating radial dependence that is required by orthogonality.
A glimpse of this fact had already appeared in analysis of density shapes of Ref.[59].

2.2.2 Multicomponent conformal theory

We now construct the conformal theory of Weyl fermions that describes the edge excitations
for ν = n. The strategy is to consider bilinears of Fermi fields that are observable quantities,
in particular the modes of the density ρ̂k that are the building blocks of the Abelian
conformal theory [17, 18].

Let us start from the second-quantized field operator for n Landau levels,

Ψ̂ (z, z̄) =
∞∑
m=0

ψ0,mĉ
(0)
m +

∞∑
m=−1

ψ1,mĉ
(1)
m + . . .+

∞∑
m=−n+1

ψn−1,mĉ
(n−1)
m , (2.15)

where ĉ(i)
m are fermionic destruction operator for the i-th level. We consider the density,

ρ̂ (z, z̄) = Ψ̂†Ψ̂: we analyze the Fourier modes at the edge and integrate over the radial
coordinate obtaining

ρ̂k ≡
∫ ∞

0
dr r

∫ 2π

0
dθ ρ̂ (r, θ) e−ikθ. (2.16)

This expression evaluated in the edge limit of the previous section, namely R → ∞ with
r = R + x, x = O(1), R2 = L, m = L + m′, |m′| <

√
L. First we substitute the field

expansion (2.15):

ρ̂k =

∫ ∞
−R

(R+ x) dx

∫ 2π

0
dθ
∑
m,n

(
ψ0,L+m (x, θ) b̂(0)

m + ψ1,L+m (x, θ) b̂(1)
m + . . .

)
×(

ψ∗0,L+n (x, θ) b̂(0)†
n + ψ∗1,L+n (x, θ) b̂(1)†

n + . . .
)
e−ikθ,

(2.17)
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having redefined b̂(i)m ≡ ĉ
(i)
L+m. We then take the edge limit on wave functions and use the

orthogonality of Hermite polynomials; to leading order O(1) in the 1/R expansion, we find:

ρ̂k =
∑
m∈Z

(
b̂
(0)†
m−k b̂

(0)
m + b̂

(1)†
m−k b̂

(1)
m + b̂

(2)†
m−k b̂

(2)
m + . . .

)
+O

(
1

R
,
k

R

)
= ρ̂

CFT (0)
k + ρ̂

CFT (1)
k + ρ̂

CFT (2)
k + . . .+O

(
1

R
,
k

R

)
.

(2.18)

In this calculation we neglected the shifts in the coordinate, x − ∆m/R ∼ x, of order
O(1/R).

The result (2.18) shows that the edge Fourier modes of the two-dimensional charge
decompose into n independent contributions ρ̂CFT (i)

k , i = 0, . . . , n − 1, that act on the
Fock spaces of the respective Landau levels. Their expressions match the fermionic rep-
resentation of the multicomponent Abelian conformal theory with c = n. This result also
agrees with the multicomponent effective theory approach shown in section 1.2, where
the edge fields ϕ(i) realize the bosonic representation of the same conformal theory, i.e.
ρ̂CFT (i)(θ) = ∂θϕ

(i)(θ)/2π [9].
In conclusion, the n edge densities are obtained by radial integration of the bulk density

in the limit R → ∞. More precisely, the edge states are found by averaging the radial
dependence of microscopic states near the edge in a shell R − ∆ < r < R + ∆, with
∆ = O(1), i.e. of the size of the ultraviolet cutoff `B. Similar result were obtained in the
work [60].

Other observables of the conformal theory are similarly obtained by radial integration
of bulk quantities. For example, the edge correlator is defined by:

〈ψ(θ)ψ†(θ′)〉CFT '
∫
dr r 〈Ω|Ψ(r, θ)Ψ†(r, θ′) |Ω〉 . (2.19)

This expression also decomposes in independent contributions for each branch of edge
excitations. Finally note that no non-locality is introduced by this approach, that is simply
a low-energy expansion.

Next, we observe that the contribution of one level can be singled out from the total
current (2.16) by integrating in r with a suitable weight function fj (r), and using the
orthogonality of Hermite polynomials. For example, let us suppose that we would like
to remove the contribution of the lowest level ρ̂(0)

0 from the sum (2.18). We can use the
weight,

f(0) (x) = 1− 4x2, (2.20)

and compute ρ̂′k =
∫
d2xf(0)ρ̂(r, θ)e−ikθ. We find that the lowest level does not contribute

to leading order O(1), because:∫ ∞
−∞

drr f(0) ψ0,L+m ψ
∗
0,L+m+k = O

(
1

R

)
. (2.21)

We now recall some basic facts of the free chiral fermionic theory discussed in section
1.3 on the geometry of the spacetime cylinder. The Virasoro and current modes are written
in terms of fermionic Fock space operators as in (1.39) and (1.40), by normal ordering with
respect to the vacuum |Ω, µ〉 in (1.41).
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The Hamiltonian of the conformal theory on the cylinder is expressed in terms of the
Virasoro generator L̂0,

Ĥ =
v

R

(
L̂0 −

c

24

)
, c = 1, (2.22)

and it includes the Casimir energy proportional to c. Furthermore, the conformal dimension
h, eigenvalue of L̂0, determines the fractional statistics θ/π = 2h of the excitation through
the two point functions.

As shown in section 1.3, the chemical potential µ parameterizes ground-state expecta-
tion values for energy, (1.44), and charge (1.45). Let us remember that these two quantities
are related among themselves by the current algebra (1.42). Conformal invariance of the
ground-state requires that such values vanish and thus the chemical potential is dynam-
ically tuned to µ = 1/2, corresponding to standard antiperiodic boundary conditions for
fermions. Other values of µ are possible, but they have specific physical meaning: for ex-
ample, µ = 0 for periodic fermions corresponds to another (Ramond) sectors of the theory,
that is related to the (Neveu-Schwarz) antiperiodic sector by adding half magnetic flux
to the system [61]. In the following, the values µ = 1/2 + Z will also be considered for
realizing features of the dynamics of edge states.

2.3 Orbital spin in the edge theory

In section 2.1, we saw that the Wen-Zee effective theory (2.3) predicts non-vanishing ground
state values for charge and spin at the edge of the disc, proportional to the average orbital
spin s and average square s2, Eqs.(2.5), (2.6), respectively. In this section, we are going to
discuss how these are realized in the microscopic description of the edge for integer fillings.
These values of charge and spin follow from a kind of Casimir effect in the relativistic
conformal theory.

2.3.1 Qualitative boundary conditions

We already discussed that, in compactified spatial geometries, the linear relation between
Landau level degeneracy and flux is corrected by a finite amount, the so-called shift, pro-
portional to the orbital spin sn, as shown by Eq. (2.4). For integer Hall effect on the
sphere, the degeneracy is given by ND = Nφ + 2sn = Nφ + 2n + 1, where n = 0, 1, . . . is
the level.

In the case of the disk, half of this correction can indeed be realized when the levels are
filled up to a common value L of angular momentum, leading to ND = L+n (see Fig.2.2).
This truncation of the spectrum, dubbed L − max, can ideally be obtained by cutting
the sphere in two disks. The question we want to address in the following is whether this
boundary condition can be realized in a physical boundary with dynamic edge excitations.

Let us start with some qualitative arguments that lead to two possible pictures. The
analysis of wave functions with momenta m near L, m = L+m′, Eq. (2.13), has showed
that they are Gaussian peaked at positions x = (m′+n)/2R, with r = R+x, R2 = L. This
implies that for a common value of momenta, e.g. m′ = 0, the states of higher levels are
slightly displaced outward by ∆x = n/R. Therefore, in presence of boundary conditions
due to a confining potential or a maximum spatial extension, dubbed R−max, such states
acquire higher energies. Then, we may expect that the filling of levels up to a common
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R -max L-max

Figure 2.2: L−max versus R−max qualitative boundary conditions.

Fermi energy could imply m ≤ L − n, leading to equal filling ND = L for each level (see
Fig.2.2). In this case, the shift predicted by the effective action of section 2.1 would not
be observed.

In conclusion, a ‘geometric’ boundary condition of the kind L−max would realize the
prediction of Eq. (2.4), while a ‘dynamic’ condition of the kind R −max would give no
effect. In the following, we describe the detailed realization of these two cases.

2.3.2 Edge spectrum and map to conformal field theory

As anticipated in the previous chapter, the edge conformal Weyl fermion possesses a linear
spectrum of the form [16]:

ε(k) =
v

R
(m′ − µ) ≡ v

(
k − kF −

µ

R

)
, |m′| < O(

√
L), L = R2, (2.23)

where k = m′/R is the edge momentum, v and kF are the Fermi velocity and momentum,
µ is the chemical potential and m′ the angular momentum with respect to the value L
near the boundary. Indeed, by inserting this spectrum in the second-quantized fermion
Hamiltonian, one reproduces the expected form Ĥ = vL̂0/R + const. (2.22) with the
Virasoro generator given by (1.39).

We now discuss the confining potentials that can lead to a linear spectrum. We consider
‘macroscopic’ potentials of the form V (r) ∼ rk/Rk−1, with k = 1, 2, . . . , that are smooth
functions of the coordinate r and have a linear term in the expansion near the edge r =

R+x, x = O(1) for R→∞. Upon subtracting infinite terms, the expansion near the edge
takes the form:

V (x,R) = a1x+ a2
x2

R
+ a3

x3

R2
+ · · · , (2.24)

where the coefficients ai are dimensionless numbers (the common dimensional scale 1/`2B
is implicit). We could consider other forms of the potential polynomial in x, but they
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would introduce dimensional constants that break scale invariance: such terms correspond
to non-relativistic corrections to the conformal theory that are disregarded here.

The determination of the energy spectrum of the Landau levels with potential (2.24)
can be done analytically in the limit R→∞ and the result is the following (see Appendix
A). The terms O(xk/Rk−1) with k = 3, 4, . . . in (2.24) yield subleading corrections with
respect to O(1/R). So one is left with a one-parameter family of potentials corresponding
to the linear and quadratic terms whose corresponding spectrum is:

εn,m′ = 2n+ 1 +
v

R

(
m′ + n(2 + b)

)
+ const., |m′| < O(R), (2.25)

where n = 0, 1, . . . is the Landau level index, (2n+ 1) is the bulk energy and the constants
are a1 = 2v and a2 = v(1 + b). In particular, b = 0 corresponds to the simpler quadratic
potential V = vr2/R.

The result (2.25) shows that in higher Landau levels the spectrum at fixed momentum
m′ is shifted upward by an amount O(n/R) as anticipated by the qualitative argument at
the beginning of this chapter. This is the effect of the orbital spin at the edge or, more
precisely, of the differences sn − sn−1 = n between levels, because a constant term can be
added at will.

In conclusion, the microscopic Hamiltonian of the ν = n Hall effect with boundary
potential takes the form:

Ĥ = Ĥ0 +
v

R

∫
dz2Ψ̂† V (x,R) Ψ̂ + const.

=
n∑
i=0

∑
mi∈Z

[
2i+

v

R
(mi + si(2 + b)− α)

]
b̂(i)†mi b̂

(i)
mi + const. .

(2.26)

In this equation, Ĥ0 is the bulk Hamiltonian (1.2), the momenta mi are measured w.r.t.
L = R2 and the constant term α is put explicitly. The correction to the linear edge
dispersion relations (2.26) due to the shifts si is rather relevant for the following discussion.

We now identify the edge Hamiltonian (2.26) with the conformal theory form (1.39),
i.e. compare the following two expressions level by level,

Ĥ(i) =
v

R

∑
mi∈Z

[
2i+

v

R

(
mi +

(2i+ 1)(2 + b)

2

)]
b̂(i)†mi b̂

(i)
mi , (2.27)

v

R
L̂

(i)
0 =

v

R

∑
ki∈Z

(ki − µi) : b̂
(i)†
ki
b̂
(i)
ki

: , i = 0, 1, . . . . (2.28)

Note that the conformal Hamiltonian does not include the bulk energy, that is assumed
to be constant for edge physics. The conformal description is robust to deformations that
set independent Fermi velocities for each level, v → vi, being non-universal parameters; in
the following, we keep a single velocity without loss of generality.

This matching of the two Hamiltonians (2.27),(2.28) involves two aspects:

• The 2si = 2i+1 shift in the dispersion relation can be accounted for by assuming level-
dependent values for the chemical potential µi in the conformal theory description of
the i-th level. This setting leads to physically observable effects of the orbital spin.
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• The conformal mode index ki in (2.28) can also be shifted w.r.t. the edge momentum
mi, in order to match the actual filling of the i-th Landau level with the conformal
vacuum (1.41), conventionally filled up to level ki = 0.

Let us first identify the conformal theory for the lowest Landau level, i = 02. For
N = L+ 1 electrons, the ground-state is filled up to level m = L, thus the conformal mode
and edge momentum precisely match, k0 = m0. The conformal invariant value µ = 1/2

for the chemical potential is fixed by adjusting the constant α of the confining potential
(2.26), as follows:

µ0 =
1

2
, α =

3

2
, (k0 = m0) . (2.29)

Next, we identify the conformal theories for the higher levels. As anticipated in Section
2.3.1, there are actually two possible cases, depending on the physical setting.

Smooth boundary

Let us consider the filling of the first two Landau levels up to a common Fermi energy, in
presence of the boundary potential (2.24) (see Fig.2.3). The comparison of energies (2.25),
ε0,m0 = ε1,m1 , gives:

m0 =
2R

v
+m1 + 2. (2.30)

Being m0 = 0 for the lowest-level ground-state, this equation shows that the second edge
branch is located around momenta m1 ∼ −2R/v. Therefore, the corresponding conformal
theory should be defined with respect to shifted momenta, as follows:

k1 = m1 + 2R/v + 2, µ1 =
1

2
. (2.31)

Recalling that R =
√
L is large, this can be adjusted by O(1) corrections such that the

difference k1−m1 is an integer and independent of s1, in particular. The chemical potential
µ1 is again fixed by requiring vanishing ground-state charge and conformal spin.

This is the realization of the R−max boundary condition described at the beginning
of this section: the effect of the shift is cancelled because the conformal field theories of the
two edge branches are defined independently one of the other. Note that the corresponding
wave functions are at distance ∆m ∼ 2R, see Fig. 2.3, i.e. ∆x = ∆m/2R ∼ 1 and thus
have exponentially small overlaps. There are no particle exchanges between the two edges
in agreement with the independent conservation of the relative charges.

In conclusion, for isolated droplets with smooth confining potentials the edge excitations
of different levels are orthogonal and the system realizes the R−max qualitative boundary
setting, leading to no orbital spin effects. Furthermore, for systems connected to a reservoir,
the edge branches are let to interact, but their chemical potentials level off and there is no
effect either.

2For simplicity, we consider momentarly the simpler quadratic confining potential, i.e. we set the
parameter b = 0.
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Figure 2.3: Filling of two Landau level according to the spectrum (2.25).

Sharp boundary

We now discuss the realization of the L−max sharp boundary condition introduced at the
beginning of this section. Let us assume that the bulk energy of Landau levels in (2.25) is
absent [1]. The dispersion relations εn,m (2.25) show that the different branches of edges
occur in the same O(1/R) range of energies and for close momenta mi values, such that
the corresponding wave functions do overlap. The n branches are now parts of the same
c = n conformal theory and it is necessary to define a unique ground-state with a common
definition of edge momentum. This is given by:

ki = mi = m0, i = 1, 2, . . . , (2.32)

such that all levels are filled up to mi = 0. This is the L − max boundary condition
discussed earlier, (Fig. (2.4(b))).

Note that the matching of microscopic and conformal Hamiltonians (2.27), (2.28) is
achieved in this case by allowing a different chemical potential for each level:

µi =
1

2
− 2i, i = 1, . . . , n− 1. (2.33)

These values of µi imply that the higher Landau levels possess non-vanishing ground-state
values of charge and conformal spin (dimension), as described in section 1.3, Eqs. (1.44,
1.45):

ρ̂
(i)
0 |Ω, µi〉 = 2i |Ω, µi〉 , (2.34)

L̂
(i)
0 |Ω, µi〉 = 2i2 |Ω, µi〉 . (2.35)

These states are actually charged excitations with respect of the standard vacuum with
µ = 1/2.
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Figure 2.4: Fock space near the Fermi surface of the ν = 3 droplet in two different setups:
(a) all levels with same chemical potential, µi = 1/2, corresponding to vanishing ground-
state energy; (b) all levels filled up to the same momentum mi = 0.

The total ground-state charge and conformal spin for ν = n are given by the sum of
the contributions of all the levels:

Qb =

n−1∑
i=0

2i = n(n− 1),

Sb =
n−1∑
i=0

2i2 =
n(n− 1)(2n− 1)

3
.

(2.36)

These also imply the ground-state energy:

Eb =
v

R

(
Sb −

c

24

)
, c = n. (2.37)

We thus have shown that the orbital spin is associated to a ground state energy in the
edge theory, as anticipated.

Let us add some remarks:

• The ground-state values (2.34), (2.35) acquire factors (1+b/2) and (1+b/2)2, respec-
tively, for general the confining potential (2.24) with b 6= 0. However, the allowed
values of the chemical potential are µi = 1/2 + Z, corresponding to antiperiodic
boundary conditions for fermions; other real values of µi would cause unphysical
non-analyticities in electron correlators. In other words, the charge accumulated in
the ground-state Qb should be an integer. This implies that b should only take inte-
ger values, that are compatible with conformal invariance at the edge. A mechanism
for self-tuning of b is the quadrupole deformation of the droplet discussed later.

• The ground-state values (2.34), (2.35) agree with the effective field theory results
(2.6), (2.5) for the special case b = −1.
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In conclusion, we have found that the edge effects parameterized by the orbital spin,
predicted by the Wen-Zee action (2.1), can indeed been found in the microscopic description
in the case of sharp boundary, where a unique conformal theory encompasses all edges
branches. In this case, only the difference (si− sj) have physical meaning. One may argue
that sharp boundaries are rather non-generic in the case of the integer Hall effect, where
separate non-interacting branches are possibles. Indeed, in this case, we can fix the edge
momentum independently and fill each level at the same energy. However, it turns out
that a unique conformal theory (sharp boundary) is necessary for interacting electrons, i.e.
in case of fractional Hall effect, that will be discussed in the next section.

2.4 Area preserving diffeomorphisms and fractional fillings

In this section, the edge theory with integer fillings is rederived by using the symmetry
of incompressible Hall fluids under area-preserving diffeomorphisms of the plane, the W∞
symmetry [62] [63, 64] [65]. This reformulation allows us to extend our analysis to fractional
fillings and in particular to hierarchical states, which also possess several branches of edge
modes and corresponding si values.

2.4.1 Edge excitations as W∞ transformations

We consider the filled lowest Landau level as a starting point of our discussion. A droplet
of two-dimensional incompressible fluid is characterized at the classical level by a constant
density ρ. For a circular geometry, the fluid has the shape of a disk and fluctuations
amount only to shape deformations. Indeed, given the number of electrons N = ρA fixed,
the area A is constant. Therefore, the allowed fluctuations correspond to droplets of same
area and different shapes. These configurations of the fluid can be generated by coordinate
transformations of the plane that keep the density constant in the bulk, namely by area-
preserving diffeomorphisms [62][63, 64][65].

At the classical level, these reparameterizations are expressed in terms of a scalar
generating function w(z, z̄) and Poisson brackets. Their action on the coordinate and the
density ρ is given by the following expressions:

δωz = {z, w} = εzz̄∂zz∂z̄w + (z ↔ z̄), δwρ = {ρ, w}, (2.38)

where εzz̄ = −εz̄z = −2i. The Poisson brackets remind of the canonical transformations
in a two-dimensional phase space.

In the geometry of the disk, the ground-state density is constant in the bulk and goes
to zero at the boundary: the deformation by Poisson brackets (2.38) involves the derivative
of the density that is non-vanishing at the boundary, as expected.

A basis of generators can be obtained by expanding the function w(z, z̄) in power series,

Ln,m = zn+1z̄m+1, w(z, z̄) =
∑

n,m≥−1

cnmz
n+1z̄m+1. (2.39)

The Ln,m generators obey the so called w∞ algebra of area-preserving diffeomorphisms,

{Ln,m,Lk,l} = ((m+ 1) (k + 1)− (n+ 1) (l + 1))Ln+k,m+l. (2.40)
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At the quantum level, the quantities in (2.38) become one-body operators expressed in
terms of bilinears of lowest Landau level field operators Ψ̂(zz̄)3:

ρ̂ = Ψ̂†Ψ̂, ŵ =

∫
d2zΨ̂†(z, z̄)w(z, z̄)Ψ̂(z, z̄). (2.41)

The classical generators Ln,m become quantum operators L̂n,m. Upon using the commu-
tation relations of field operators, one can find the quantum algebra of the generators

[
L̂n,m, L̂k,l

]
=

Min(m,k)∑
s=1

`2sB (m+ 1)! (k + 1)!

(m− s+ 1)! (k − s+ 1)!s!
L̂n+k−s+1,m+l−s+1

− (m↔ l, n↔ k) .

(2.42)

This is called the W∞ algebra of quantum area-preserving transformations. The terms on
the right hand side form an expansion in powers of `2B = 2}/B: the first term corresponds
to the quantization of the classical algebra (2.40), while the others are higher quantum
corrections O(}s).

The W∞ symmetry acts as a dynamical symmetry among the excited state in the
Hilbert space. Furthermore, it has been investigated in several works that studied its
implementation in the conformal theory. In particular, the W∞ generators are connected
to Fourier modes of the higher spin conserved currents in the edge conformal theory. In
particular, the quantum operators L̂n,m are related to higher spin operators of the edge
conformal field theory as follows:

V̂
(i+2)
−n = −L̂n+i,i, (2.43)

where the index i+ 2 represents the spin of the conformal operators and n the conformal
mode. For instance, V̂ (2)

n are the Virasoro operator L̂n. In particular, the commutation[
L̂0,0, L̂n,m

]
= (n−m)L̂n,m reproduces the commutation between L̂0 and higher spins [17].

In the last section, we will show how to construct such operators via the Laplace transform
of the density in the edge limit.

Coming back to the quantum algebra, Poisson brackets (2.38) are replaced by commu-
tators, δρ̂ = i [ρ̂, ŵ]. The ground-state expectation value gives the transformation of the
density function, that takes the following form [65] [44]:

δρ (z, z̄) = 〈Ω| [ρ̂(z, z̄), ŵ] |Ω〉 = i
∞∑
n=1

(2})n

Bnn!
(∂nz̄ ρ∂

n
zw − ∂nz ρ∂nz̄w) = {ρ, w}M , (2.44)

where ρ and w are the expectation values in the ground state of the quantum operators
ρ̂ and ŵ. This formula defines the Moyal brackets {ρ, w}M , that are non-local due to the
non-commutativity of coordinates in the lowest Landau level. There appears an expansion
in ~/B, whose first term reproduces the classical transformation law (2.38).

Equation (2.44) expresses the W∞ transformations of the density at the quantum
level. Another formulation of this symmetry involves the Girvin-MacDonald-Platzman
sin-algebra [66], that corresponds to the commutator of two densities in Fourier space:
similar to Eq.(2.44), this algebra is given by the Moyal brackets of the classical densities.

3We reintroduced the hat to indicate the second quantized operators.
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In the following, we discuss the form of the leading O(1/B) term in the Moyal brackets,
while the higher orders O(1/Bk) will be briefly discussed in Appendix B. The density ρ(0)

of the filled lowest level in the disk geometry is a function of the radius only, ρ(0) = ρ(0) (r).
Thus, the leading W∞ deformation of the ground-state can be written as follows:

δρ(0)(r, θ) =
2i

B
∂̄ρ(0) ∂w + h.c. =

1

rB

(
∂rρ

(0)(r)
)
∂θw(r, θ). (2.45)

We now define the Fourier modes of the edge density by integrating in space the bulk
density, following the same steps of the analysis in section 1.3,

δρ
(0)
k =

∫
dθ e−ikθ

∫
drr δρ(0). (2.46)

It is also convenient to expand the generating function in Fourier modes, leading to (B = 2

hereafter):

δρ
(0)
k =

ik

2

∫
dr
(
∂rρ

(0)(r)
)
wk(r), w (r, θ) =

1

2π

∑
n∈Z

wn (r) einθ. (2.47)

The remaining integral over the radial dependence is non-vanishing in a shell r = R±O(1).
In order to compute the integral, we can use the exact expression for the derivative of the
density of filled Landau levels derived in Ref.[59]. For the i-th level filled with N electrons,
it reads:

d

dr2
ρ(i)(r) = −i! e

−r2r2N−2i−2

(N − 1)!
LN−i−1
i (r2) LN−ii (r2). (2.48)

The expression for the lowest level is evaluated in the limit defined in section 2.3, giving
the result,

∂rρ
(0)(R+ x) ' −2e−2x2 , R→∞, x = O(1). (2.49)

It is again useful to use Hermite polynomials H2n(2x) for analyzing the radial dependence
of edge excitations. We obtain:

δρ
(0)
k = −ik w0k, w(r, θ) =

1

2π

∑
n∈Z

∞∑
i=0

wik H2i(
√

2x) einθ. (2.50)

This classical amplitude of fluctuations should be compared with the simplest excitation
of the c = 1 conformal theory, that is given by the current-algebra mode applied to the
ground state, |ex〉 ∼ ρ̂CFT−m |Ω〉. Therefore, the conformal theory analog of the W∞ density
fluctuation (2.50) reads,

δρCFTk,m = i 〈Ω|
[
ρ̂CFTk , ρ̂CFT−m

]
|Ω〉 = iδkmk. (2.51)

The equivalence of the results (2.50) and (2.51) directly shows the relation between the
bulk W∞ symmetry and the edge conformal symmetry.

The W∞ deformations in higher filled levels are described in similar fashion. The
transformations act horizontally within each level [62], that can be analyzed independently;
this matches the fact already discussed that the corresponding branches of edge excitations
are orthogonal. The fluctuations of the second level are given by:

δρ(1) = i 〈Ω(1)|
[
ρ̂(1), ŵ(1)

]
|Ω(1)〉 , (2.52)
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where ρ̂(1) = Ψ̂(1)†Ψ̂(1) is the corresponding density operator, and the generator is expressed
as:

ŵ(1) =

∫
d2z Ψ̂(1)†w (z, z̄) Ψ̂(1), (2.53)

in terms of the field operator Ψ̂(1) restricted to the second level. We now remark that
expressions like (2.52, 2.53) can be mapped into lowest level formulas by using the relations
among wave functions (1.4), such as ψ1,m = a†ψ0,m+1, where a† appear in (2.7). This
corresponds to a differential relation between the quantities in the two levels, leading to:

ρ(1) =
(
1 + ∂∂̄

)
ρ(0), w(1) =

(
1 + ∂∂̄

)
w. (2.54)

It follows that the classical amplitude of fluctuations δρ(1)
k is analogous to (2.50) with a

different radial moment of w(r, θ). In the same way as the conformal field theory (operator)
description of section 2.2, the edge excitations of higher levels are associated to higher radial
moments of the bulk density evaluated in the region r = R+ x, with x = O(1).

The combination of the previous results finally yield the edge excitations for integer
filling fraction obtained from theW∞ transformations of incompressible ground-states. For
example, in the ν = 2 case, we find using (2.50):

δρ
(ν=2)
k = δρ

(0)
k + δρ

(1)
k = −ik (a0w0k + a1w1k + a2w2k) , (2.55)

where (a0, a1, a2) are numerical coefficients that parameterize the radial dependence at the
edge.

In conclusion, in this section we have shown that theW∞ transformations of the ground-
state for integer fillings ν = n generate edge excitations that match the conformal field
theory description of section 2.2: in particular, the n independent branches of excitations
are associated to different radial moments of the density in a finite shell at the boundary,
r −R = O(1).

2.4.2 Edge excitations and orbital spin for fractional fillings

The W∞ description of edge excitations is particularly useful because it holds for any
incompressible fluid ground-state, including the fractional fillings of the Jain hierarchy
[67, 68]. The Moyal brackets (2.44) correctly give the low-energy excitations that can be
divided in several branches by studying the radial moments of the density. In summary,
this approach provides the general kinematics of edge excitations: it extends directly to the
fractional Hall effect and provides a unique derivation of the edge conformal field theory.

The difference between the integer and fractional filling lies in the energetics of exci-
tations, i.e. in the form of the edge Hamiltonian. In the integer case, a direct microscopic
derivation was possible as shown in Section 2.3.2. For fractional states, the edge dynamics
is due to the many-body interactions and cannot be derived analytically. The standard
approach, based on the effective action of section 1.2 and bosonization of the edge fermions
predicts that the Hamiltonian takes the Luttinger current-current form [17],

Ĥ =
∑
i

v(i)

R

(
L̂

(i)
0 −

1

24

)
, L̂

(i)
0 =

∑
k∈Z

: ρ̂
(i)
−kρ̂

(i)
k : . (2.56)
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This conformal theory still possesses integer central charge and the spectra of charges and
conformal spins are given by the weight lattice with Gram matrix K−1

(i)(j) in Eq.(1.33-1.35)
as follows:

Qb = `TK−1t, Sb =
1

2
`TK−1`, ` = (`1, . . . , `n), λi ∈ Z, (2.57)

where t = (1, 1, . . . , 1) is the so-called charge vector and `i characterize the excitations.
Regarding the role of the orbital spins si, we cannot prove that the analysis of previous

section extends to Jain states, having no direct derivation of their effect on the energy
spectrum. Nonetheless, based on some reasonable assumptions, we present a self-consistent
argument for the existence of ground-state values of charge and spin in the edge theory in
agreement with the effective theory of section 2.1.

Since the hierarchical states are interacting, their conformal theory should be built
around a unique ground-state, requiring the L −max boundary conditions of Fig.2.4(b).
As discussed before, the resulting ground-state is actually an excited state from the con-
formal theory point of view, corresponding to a number of electrons added to the standard
conformal vacuum |Ω〉CFT , obeying:

ρ̂0 |Ω〉CFT = L̂0 |Ω〉CFT = 0. (2.58)

Such ground-state |Ω, k, hk〉 with charge Qb = k ∈ Z and conformal spin Sb = hk has the
form:

|Ω, k, hk〉 = lim
τk→−∞,τ1>τ2>···>τk

: Ve(ηk) · · ·Ve(η1) : |Ω〉CFT
= lim

η→0
Vke(η) |Ω〉CFT . (2.59)

In this expression, ηj = exp((τj + iRθj)/R), where τj + iRθj are the coordinates of the
edge spacetime cylinder and Ve(η) is the vertex operator for the electron field on the edge;
the normal-ordering (: :) should be evaluated by fusing k electrons in the conformal theory,
leading to the Qb = k field Vke.

Let us assume that the edge ground-state (2.59) is realized and run the consistency
check. We first determine the orbital spins si for the hierarchical states. In the multi-
component Wen-Zee action (1.86), the parameters ν, νs and νs2 are given by the general
expressions (1.86):

ν = tTK−1t, νs = tTK−1s, νs2 = sTK−1s, (2.60)

upon inserting the s = (s0, s1, . . . , sn−1) vector and the matrix K = I + 2qC, where C is
the n× n matrix with all entries equal to one. One finds:

ν =
n

n2q + 1
, νs =

1

n2q + 1

∑
i

si =
n

n2q + 1

q + n

2
, (2.61)

with n = 1, 2, . . . and q = 0, 1, 2, . . . . Note that we considered here only the positive Jain
sequence; however we can follow similar steps for negative Jain sequence ν = n/n2q − 1.
In the second equation, we also wrote the value s = (q + n)/2 obtained from the angular
momentum of the Jain wave functions [11] and Eq.(1.90). The relation (2.61) identifies the
following values:

si =

(
q + 1

2
,
q + 3

2
, . . . ,

q + 2n− 1

2

)
. (2.62)
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Namely, they take half-integer values and their differences are integer, as expected.
The comparison of these bulk data with the edge conformal theory involves two steps:

i) The ground-state charge Qb and spin Sb should correspond to electron excitations of the
edge theory; ii) They should be parameterized by integers `i that are equal to the orbital
spin values (2.62) up to a constant, `i = si + ∆.

Let us verify that these two conditions can be met. The electron excitations have the
spectrum:

Qb = ΛT t, Sb =
1

2
ΛTKΛ, Λ = (Λ1, . . . ,Λn), Λi ∈ Z, (2.63)

corresponding to the integer-charge subset of the general excitation spectrum (2.57), i.e.
` = KΛ.

Note the similarity between the expressions (2.57) for (fractional) charged excitations
and those involving the si (2.60) that we want to reproduce. Since the orbital spin values
differ by integers, si+1−si = 1, we seek for solutions `i with the same property `i+1−`i = 1.
Upon inspection, we find that they do exist and are given by:

`i = Λi + 2q
∑
j

Λj , Λi = (0, 1, 2, . . . , n− 1), (2.64)

correctly obeying li = si + ∆. Actually, these electron excitations are possible due to the
particular form of the matrix K of Jain states.

The ground-state values of charge and spin are finally given by:

Qb =
∑
i

Λi =
n(n− 1)

2
, ν =

n

n2q + 1
,

Sb =
n(n− 1)(2n− 1)

12
+ q

(
n(n− 1)

2
)

)2

. (2.65)

Note that the value of the integer charge is the same as in the ν = n case (2.36) (for
parameter b = −1).

In conclusion, we have found the expressions of the orbital spins si of Jain states (2.62)
and shown that their values shifted by a common constant correctly parameterize ground-
state charge and conformal spin in the edge theory. We can thus argue that the differences
si − sj are universal quantities of the fractional Hall effect in the multicomponent case.

2.5 Signatures of the orbital spin at the edge

2.5.1 Coulomb blockade

In the experiment of Coulomb blockade, an electron tunnels into an isolated droplet at zero
bias. As discussed in Ref. [69, 70], the energy of charged edge states can be continuously
deformed by changing the capacity of the droplet, i.e. by squeezing its area. The energy of
the k-electron excitation over the ground-state, as given by the eigenvalue of the Virasoro
operator L̂0, is modified by the charging energy as follows:

Ek =
v

R

(k − σ)2

2
, ν = 1, (2.66)
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Figure 2.5: Peaks of tunneling electrons obtained by varying the number of flux quanta σ
(area) of an isolated droplet with ν = 3 (see Eq.(2.68)).

where σ is the change of flux quanta due to the squeezing of the area. When σ = 1/2,
the energies of the ground and one-electron states become degenerate, E0 = E1, and an
electron can tunnel inside the droplet at zero bias, causing a peak in the conductance, i.e.
∆Q = 1. Successive peaks are found when σ passes the values 1/2 + j, for j = 1, 2, . . . .

In the case of the isolated droplet with sharp boundary discussed in section 2.3, the
electrons of the i-th level possess higher activation energies for larger i values, owing to
the different chemical potentials. The previous equation is modified into:

E
(i)
k =

v

R

[
(k − σ)2

2
+ 2i(k − σ)

]
=

v

2R

[
(k − σ + 2i)2 − 4i2

]
, i = 0, . . . , n− 1.

(2.67)
This equation shows that for the i-th level, the first degeneracy point E(i)

0 = E
(i)
1 occurs

at the value σ = 1/2 + 2i, while the following ones repeat at the same distance ∆σ = 1.
Namely, the different branches of edge states enter into play at different σ values, owing
to the different activation energies.

In conclusion, a possible signature of the orbital spin could be seen at the beginning of
the deformation, i.e. for small σ values. The sequence of electron tunnelings would be, for
ν = 3, for example,

∆Q = 1, 1, 2, 2, 3, 3, 3, 3, . . . , for σ +
1

2
= 1, 2, 3, . . . (ν = 3), (2.68)

leading to a triangular comb plot for ∆Q(σ) (see Fig.2.5).

2.5.2 Quadrupole deformation

Another test of the orbital spin at the edge is made by deforming the shape of the droplet.
This is suggested by the effective action, because the boundary terms (2.2) couple s and
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s2 to the extrinsic curvature K, that measures shape deformations.
We considered a quadrupole deformation of the confining potential [71],

H → H + Vε = H +
ε

R

(
z2 + z̄2

)
, (2.69)

where ε � 1. We analyze this effect to first perturbative order in ε. Let us go back
to the discussion of the confining potential before the limit to the edge, in Appendix
A. The unperturbed states |i,m〉 have energy E

(i)
m = (v/R)(m + 2i + 1), where i and

m are level index and momentum. In the case of ν = n, this unperturbed spectrum
is n-times degenerate for given value of k = m + 2i. The expectation value of Vε in
this degenerate subspace form a (n × n) matrix whose eigenvalues give the the leading
perturbative correction to the energy. The matrix is:

(Vε)ik,jk =
ε

R
〈i,m| 2b†a+ 2ba† |j, l〉 |m+2i=l+2j=k

=
2ε

R

(√
(i+ 1)(k − i) δi,j−1 +

√
i(k − i+ 1) δi,j+1

)
,

i, j = 0, . . . , n− 1. (2.70)

The eigenvalues of this matrix are e.g. (±2ε
√
k/R) for two Landau levels and (0,±2ε

√
3k − 2/R)

for ν = 3, et cetera.
Following the discussion of section 2.3, we should evaluate this correction in the edge

limit, given by R → ∞ with r = R + x and k = m + 2i = R2 + m′ + 2i. We can
thus approximate k − i with R2 in the matrix elements (2.70), simplifying the eigenvalue
problem. We then find the following modification of the edge spectrum (2.25) (for b = 0):

v 〈j, L+m′| 2x+ ε cos 2θ |j, L+m′〉 =
v

R

(
m′ + 2j + 1 + 2εαj

)
. (2.71)

In this equation, j = 0, . . . , n − 1 is the index of the Landau levels (now mixed among
themselves by the perturbation) and αj are O(1) constants, whose first few values are:

n 2 3 4 . . .

αj ±1 0,±
√

3 ±
√

3±
√

6 . . .
. (2.72)

In conclusion, the quadrupole perturbation amounts to rigid O(1/R) translations of the
branches of the edge spectrum among themselves. Upon tuning ε, one can exactly com-
pensate the translation due to the shift, e.g. by setting 2j + 2εαj = 0 for a given value of
j in (2.71). This result is consistent with the mentioned coupling of the orbital spin to the
extrinsic curvature.

One physical application of the quadrupole perturbation of the Hall droplet could be
the following. In the Coulomb blockade setting, a small non-integer shift among the levels
could be useful to split the degeneracy of the peaks. For example, let us consider the value
of σ at which two pairs of levels become degenerate, belonging to two branches of edge
states, causing a ∆Q = 2 peak (see Fig.2.5). In presence of the quadrupole deformation,
this double peak splits in two ∆Q = 1 peaks, occurring at slightly different values of σ.
The same pattern repeats itself at distance ∆σ = 1. This fact could help interpreting the
experimental results.
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In summary, in our work [1], we explicitly found the structure of edge excitations in the
multicomponent case, and showed that the various branches are associated with edge radial
moments of microscopic states. For integer fillings, we did a straightforward analysis of
the large-system limit R → ∞, while in fractional case we studied the W∞ deformations
of incompressible fluid states.

Using these results, we were able to identify Casimir-like ground-state values of charge
and conformal spin in the edge theory that depend on the orbital spin, in agreement
with the effective field theory approach. This Casimir effect, or chemical potential shift,
is irrelevant for a single branch of edge excitations, or for several but independent edge
branches (integer Hall effect).

On the contrary, in the case of several interacting branches, in the fractional case,
these ground-state values of charge and spin are observable in isolated systems, and are
parameterized by the integers si − sj , i, j = 0, 1, . . . , n − 1. This effect is a consistent
deformation of the CFT for the Jain states.

2.6 Higher spin operators

In this last section, we present some recent progresses about the construction of the com-
plete W∞ dynamical symmetry. In particular, we analyze the relation between bulk radial
moments of the density and higher spin operators of the edge conformal field theory (2.43).
We define a clear way to obtain the complete W∞ algebra (2.42) by taking the edge limit.

The basic idea is to generalize the definition (2.16) by introducing the Laplace transform
of density

ρ̂k(λ) =

∫ ∞
0

dr re−λr
2

∫ 2π

0
dθ e−ikθρ̂ (r, θ) . (2.73)

Upon substituting the fermionic density operator in the first Landau level

ρ̂(r, θ) =
∞∑

j,j′=0

z̄jzj
′

π
√
j!j′!

e−zz̄ ĉ†j ĉj′ (2.74)

and taking the edge limit R→∞ discussed in section 2.2, we obtain

ρ̂k(λ) =
1

(1 + λ)R
2+1+µ0

∞∑
m=0

1

(1 + λ)m+k/2−µ0
b̂†mb̂m+k, (2.75)

where we have rescaled the momentum j = R2 + m. Once we remove the bulk factor
(1 +λ)R

2+1+µ0 and expand in λ ∼ 0 the operator in (2.75), one can easily read higher spin
conformal operators. For instance, the linear term in λ is given by

λ
∞∑
m=0

(m+ k/2− µ0) b̂†mb̂m+k, (2.76)

which is previously the Virasoro operator L̂k in (1.39).
Therefore, the Laplace transform of the density operator gives us all the conformal

spin fields in the theory. In particular, once defining the normal ordering w.r.t. the ground

45



state (2.59), operators ρ̂k(λ) satisfy the following closed algebra

[ρ̂k (λ) , ρ̂n (µ)] =
(
x−n/2yk/2 − xn/2y−k/2

)
ρ̂k+n (λµ) +

k∑
l=1

(xy)l−
k+1
2 δk+n,0,

with x =
1

1 + λ
and y =

1

1 + µ
.

(2.77)

This algebra can be mapped to the completeW∞ algebra discussed in previous sections and
thus, operators ρ̂k(λ) are able to describe all the possible excitations arising in quantum
incompressible fluids. In particular, it is possible to obtain the radial dependence of neutral
and charged edge excitations by computing expectation values of ρ̂k(λ) and inverse Laplace
transforming. The analysis extends to fractional filling due to the bosonization of all
variables.

Furthermore, we have obtained the bosonic representation of the Haldane two-body
interactions in terms of ρ̂k(λ). This fact is important because it gives us the tools to
analyze the bulk dynamics of Laughlin state. One of the issues is to obtain analytically
spectrum at finite bulk momentum [66] and to check its universality [72].

Our anaysis shows that the algebra (2.77) can be generalized beyond the edge limit
to energies and momenta that are finite for R → ∞. In this limit, the Laplace variable
λ can be replaced by the bulk momentum orthogonal to the edge. Therefore, our setting
allows to address the bulk dynamics just mentioned. Our results show a rich spectrum of
mixed bulk-edge excitations: we obtain the so called ‘edge reconstruction’, the tendency
of the Hall droplet to detach an annulus at distance O(`B). Let us remark that this effect
is obtained in a different limit of edge momenta and energies to the one defined in Section
2.3. In our analysis such limit corresponds to excitations which extend a bit in the bulk,
beyond the conformal modes discussed previously. We also obtain the analytic spectrum
corresponding to bulk oscillations in the droplet, that are exact in our limit.
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Chapter 3

Effective Field Theories of
(3 + 1)-dimensional Topological
Insulators

In the previous chapters, we described the quantum Hall states, the best known topolog-
ical phases of matter. They are characterized by massless edge excitations, ground state
degeneracy and anyonic phases that are accounted for by topological gauge theories. In
the last ten years, it became clear that there are other kinds of topological phases, in many
condensed matter systems and in absence of magnetic fields. Our goal is to extend the
effective field theory description to such states.

In this chapter, we will analyze the topological insulators in three spatial dimensions.
These are symmetry protected topological phases (SPT phases) occuring in systems that
are invariant under time-reversal (TR) symmetry. This protects the massless fermionic
surface states in the sense that they cannot be gapped and trivial without breaking this
symmetry explicitly. We divide this chapter in two parts.

In the first part, we will discuss the field theory description of time-reversal invariant
topological phases following from the fermionic non-interacting representation of the bulk
degrees of freedom. Using a dimensional reduction argument, we will show how massless
degrees of freedom arise at the surface, and we will explain the anomaly cancellation
occurring between bulk and boundary.

In the second part, we will present the bosonic effective field theory that can describe
topological insulators in the interacting case, generalizing the Chern-Simons theory ap-
proach to (3 + 1) dimensions. In analogy with the quantum Hall effect, we expect that
the bulk is described by a topological gauge theory while the boundary excitations are
massless bosons. Therefore, field theory methods are facing the problem of bosonization
in (2 + 1) dimensions, the map between fermionic and bosonic relativistic excitations. In
this chapter, we will analyze a non-conformal massless boundary theory, while the study
of a conformal dynamics will be discussed in the next chapter, based on our work [2].
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Figure 3.1: Periodic Table of non-interacting topological insulators and superconductors.
The ten symmetry classes are labeled in the first column according to the notation by
Atland and Zirnbauer [73]. The following columns specify the T symmetry, C symmetry
and S symmetry, respectively, where (±1) and (0) denote the presence and absence of the
symmetry, respectively, with (±) specifying the values of T 2 and C2 equal to ±1. The
topological invariant numbers characterizing the phase are listed according to the spatial
dimensions d of the system, 0 ≤ d ≤ 7.
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3.1 Ten-Fold way classification

Non-interacting fermions in condensed matter are characterized by quadratic lattice Hamil-
tonians, whose spectrum forms band systems [10]. It turns out that the classification of
topological phases depends on very general properties of these Hamiltonians and is analo-
gous to the study of random matrices developed earlier by Atland and Zirnbauer [73]. It
was found [74, 75, 76, 77] by Kitaev and Ludwig, Schnyder and Ryu, that there are corre-
sponding ten classes of topological phase depending on the realization of the symmetries of
time reversal T , charge conjugation C and ‘chiral symmetry’ S = T C. The result is shown
in Fig.3.1. Each class depends on the presence (±1) or absence (0) of T with T 2 = ±1,
and/or C with C2 = ±1, while S = T C, can be present (1) or absent (0). The symbols in
the table “Z”, “Z2”, “2Z” and “0” represent whether or not the phase exists for a given
symmetry class in a given dimension. For example, “2Z” means the topological phase is
characterized by a topological invariant even integer, and “0” means the gapped phase is
trivial. Remarkable features of this classification are the periodicty in the space-dimension
d for d→ d+ 8 and the ordering of phases as d changes.

In Fig.3.1, the quantum Hall state belongs to the class A in two spatial dimensions
and is characterized by integer Z, namely the first Chern class [22, 78]. TR invariant
topological insulators belong to the class AII and are classified by a Z2 number in two
and three spatial dimensions [79, 80].

Let us stress that the classification in Fig. (3.1) was obtained by the analysis of
quadratic fermionic Hamiltonians. In the interacting case, the characterization of topo-
logical phases is an open problem, where the effective field theory approach can be useful
[9, 10, 81, 82].

3.2 Effective field theory of free fermionic topological insula-
tors

In this section, we will discuss non-interacting topological insulators in (3 + 1) dimensions.
About fifteen years ago, three groups independently found that these phases are possible in
three spatial dimensions and are classified by a Z2 index [80, 83, 84]. This Z2 classification
is connected to the parity of the number of massless Dirac fermion located at the surface.
Actually, the theory of free massless fermions in (2+1) dimensions is time-reversal invariant,
but a mass term breaks the symmetry explicitly [85]. On the other hand, an even number
of fermions can interact by a TR invariant mass and disappear from the low-energy theory.
In the first case, the system realize the topological phase characterized by having a gap in
the bulk and gapless surface states. In the second case, instead we have a trivial insulating
phase in the bulk without surface states at low energy.

The robustness of the Z2 index can be understood by the presence of an anomaly
in the field theory of fermions at the boundary which is the so-called parity anomaly in
(2 + 1) dimensions. Massless surface fermions interacting with the electromagnetic field
generate a Chern-Simons effective action that is odd under TR and parity transformations
[86, 87, 88]. This leads to an inconsistency: the quantum theory of a massless fermion
cannot be coupled to the external field by preserving TR symmetry. However, as in the
quantum Hall case, the (2 + 1)-dimensional theory is connected to the higher dimensional
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Figure 3.2: Dirac cone between the valence and conduction bands in Bi2Se3 found by using
ARPES technology [91].

theory of the bulk that cancels the anomaly [89, 90, 61].
The experimental proof of the existence of massless surface states was obtained in

[92, 91] by using the spin-ARPES (Angle-Resolved Photoemission Spectroscopy) method to
reveal the Dirac cone between valence and conduction bands, see Fig. (3.2). In particular,
the crystal Bi2Se3 was analyzed since it has a large band gap of ∼ 0.3eV (3600 K), and
can exhibit the topological behavior at room temperature, greatly increasing the potential
for applications [93].

3.2.1 Jackiw-Rebbi dimensional reduction

The effective field theory of surface excitations can be obtained by Jackiw-Rebbi dimen-
sional reduction [94] of the massive bulk theory.

We consider a 3D topological insulators with surface located at z = 0 separating the
bulk of the material z < 0 from the empty space z > 0. We can model the non-interacting
bulk dynamics by a (3+1)-dimensional fermion whose massM(z) varies in direction z. We
take the kink profile with limz→−∞M(z) = M0 and limz→∞M(z) = −M0, see Fig. 3.3.
The Dirac Hamiltonian takes the form:

H = −iγ0γ1∂x − iγ0γ2∂y − iγ0γ3∂z + γ0M(z) ≡ H0 +Hz. (3.1)

To show how the method works, we consider the following representation of the Dirac γ
matrices in (3 + 1) dimensions:

γ0 =

(
0 σ3

σ3 0

)
, γ1 = i

(
0 σ1

σ1 0

)
, γ2 = i

(
0 σ2

σ2 0

)
, γ3 = i

(
1 0

0 −1

)
, (3.2)

where the σ’s are the Pauli matrices.
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z

M(z)

Figure 3.3: (blue line): Mass profile M = M(z); (red line): amplitude probability of the
zero modes of the Hamiltonian Hz.

The surface fermion corresponds to low energy solutions localized near z = 0. These
are the zero-energy eigenstates of Hz, obeying the equation(

i∂z + γ3M(z)
)
ψ = 0. (3.3)

We look for a solution of the type

ψ(x, y, z) = f±(z)u±(x, y). (3.4)

Consider the spinor function u± obeying γ3u± = ±iu±; then, Eq. (3.3) becomes

(∂z ±M(z)) f±(z) = 0. (3.5)

The normalizable solution to Eq.(3.3) and (3.5) corresponds to the (−) negative eigenvalue
of γ3, i.e.

ψ(x, y, z) = exp
(
−
∫ z

0
dz′ M(z′)

)
u−(x, y). (3.6)

This zero mode is indeed localized to the surface, as shown by the red curve in Fig. 3.3,
thus realizing the dimensional reduction.

The surface dynamics is governed by the hamiltonian H0 acting on spinors of the form
u− = (0, χ−), with the lowest component χ− a bicomponent spinor. Projecting H0 in the
subspace of χ− through the operator

P− =
1 + iγ3

2
=

(
0 0

0 1

)
, (3.7)

we find the massless Dirac Hamiltonian in (2 + 1) dimensions.

(kyσ1 − kxσ2)χ− = Eχ−. (3.8)

This is the Hamiltonian of a massless Dirac particle in (2 + 1) dimensions, as expected. Of
course, this results holds for low energies E �M0.

In a physical setup, the system will have two boundaries along the z axis, at z = 0

and z = −z0, with the second surface described by the inverted mass profile M(z) →
−M(z + z0). Performing the same steps as before, the normalizable zero mode is now
given by the positive eigenvector in (3.6), i.e. u+ = (χ+, 0). It turns out that the bispinor
χ+ obeys the same Dirac equation (3.8).
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Figure 3.4: One loop vacuum polarization diagram

3.2.2 Parity anomaly and bulk θ-term

Now let us consider this surface massless fermion interacting with an external gauge po-
tential Aµ and evaluate the induced action [86, 87]. In Minkowski signature, the Dirac
Lagrangian of a two component spinor field ψ in (2 + 1) dimensions L = ψ̄

(
i/∂ + e /A

)
ψ is

classically parity and TR invariant.
By performing the analytical continuation to the Euclidean time

x0 → ix0, A0 → −iA0, γk → −iγk, k = 1, 2, (3.9)

and integrating out the fermion degrees of freedom, the induced action is given by the
fermionic determinant

e−Sind[A] =

∫
DψDψ exp

(
−
∫
d3xψ

(
/∂ − ie /A

)
ψ

)
=

det
(
/∂ − ie /A

)
det
(
/∂
) . (3.10)

For small fluctuations of the electromagnetic field, the induced action can be approximated
by the two point Feynman diagram, i.e. the vacuum polarization in Fig. 3.4 [87]:

Sind[A] = −e
2

2

∫
d3k

(2π)3
Aµ(k)Πµν(k)Aν(−k). (3.11)

The vacuum polarization can be regularized by a Pauli-Villars subtraction:

Π(2)REG
µν (k,Λ) = Π(2)

µν (k2)−Π(2)
µν (k2, |Λ| → ∞), (3.12)

where Λ is the mass of the Pauli-Villars regulator. The result for the induced action in
Euclidean signature is given by [86, 87]:

Sind[A] = SCS [A] + SNL[A] +O(A3) , (3.13)

SCS [A] =
ie2

4π

(
1

2
sign(Λ)

)∫
d3x εµνρAµ∂νAρ , (3.14)

SNL[A] =
e2

64

∫
d3xFµν

1√
�
Fµν . (3.15)

Let us note the ambiguity in the sign of the induced Chern-Simons term in (3.14) depending
on the sign of the mass Λ of Pauli-Villars regulator. We can fix this sign by considering the
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case of a massive fermion with mass m. In this case the regularized vacuum polarization
is given by [61]:

Π(2)REG
µν (k,m) =

1

4π
kαε

αµν

(
m

|m|
arctan(x)

x
− Λ

|Λ|

)
−
(
k2δµν − kµkν

) 1

8π|k|

(
1

x
− 1− x2

x2
arctan(x)

)
, x =

|k|
2|m|

. (3.16)

For very large mass |m| >> |k|, once fixing

sign(Λ) = sign(m), (3.17)

the one loop induced action (3.11) reduces to the following subleading local term of order
O(1/|m|),

S
(2)
ind[A] =

e2

48|m|

∫
d3xFµνFµν . (3.18)

This result is expected since a massive fermion disappears in the low energy limit. Within
this choice of Λ, for m → 0, the one loop induced action is given by the Chern-Simons
term (3.14) with sign(Λ) =sign(m), and by the non-local term (3.15).

Let us analyze these two quadratic terms appearing in (3.13).
The first term is imaginary and amounts to the topological Chern-Simons action break-

ing both parity and TR symmetry. This term gives rise to the parity anomaly in (2 + 1)

dimensions.
The second term is real and non-local in the external potential: it contains the square

root of D’Alambertian operator � = −∂µ∂µ that is well defined in the Euclidean signature.
Our first problem is to solve the apparent contradiction between TR invariance in the

bulk and the presence of the anomalous term at the boundary.
In [95], Hughes and Zhang suggested the presence of a bulk induced action, the so-called

Abelian θ-term:

Sθ[A] = i
θe2

32π2

∫
d4x εµνλρFµνFλρ. (3.19)

This Lagrangian is actually a total derivative and, for θ = π generates boundary Chern-
Simons term

Sθ[A] =
e2

8π

∫
∂M

d3x εµνρAµ∂νAρ, θ = π. (3.20)

that can cancel the contribution of the surface (3.14). The bulk term restores the TR
symmetry at the quantum level [61].

A few remarks are in order:

• In the case of Nf surface fermions, for Nf > 1, pairs of fermions can interact by
a TR invariant mass term and disappear from the low-energy theory. The relevant
cases are the trivial insulator θ = 0 and the topological insulator θ = π, leading to
the expected Z2 index of the classification in Fig. 3.1.

• The anomaly cancellation between the 3D bulk and the 2D boundary is analogous to
the anomaly inflow mechanism of the QHE of Section 1.3. However, the anomaly can-
cellation is not associated to a current in the bulk, because the θ-term is a topological
quantity, δSθ/δAµ = 0.
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• The cancellation by the bulk θ-term requires the matching with the sign of Chern-
Simons coupling (3.14). The following argument can be made to show, that this sign
does match. In the slab geometry with boundary planes located at z = ±z0; the
anomalous CS actions are cancelled by the θ-term if they have opposite signs on the
two planes. Let us consider the bulk fermion theory with an explicit TR breaking
mass, ∆H = −iγ0γ

5m̃. By repeating the Jackiw-Rebbi argument of the previous
section, one can find that the dimensional reduced surface fermions possess opposite
massess on the surface. Upon applying the reasoning presented before, we should
fix the CS signs (3.14) in the limit m̃ → 0, according to (3.17) with m = m̃, see
Ref. [61]. This condition leads to two CS terms of opposite signs and hence their
cancellation with the bulk contribution.

• On compact manifold, the bulk θ-term (3.19) should be TR invariant by itself. This
quantity is actually proportional to the second Chern class C2, that takes integer
values, by Sθ = θ C2. Thus, θ and θ + 2π are equivalent in the path integral and
T and P transformations change θ → −θ. It follows that θ = 0 and θ = ±π lead
to TR invariant effective actions on compact manifolds, with θ = ±π indicating the
non-trivial topological phase [90].

The θ-term causes interesting measurable effects. For instance, if TR symmetry is
broken at the surface, the fermionic excitations become massive and disappear in the low
energy limit. However, the surface term (3.20) remains and describes a quantum Hall effect
with conductivity ν = 1/2 [96]. Another consequence of the θ-term is the magneto-electric
effect [95]: a contribution to the polarization (resp. the magnetization) that is proportional
to the magnetic field (resp. electric field).

In conclusion, the effective field theory of the surface states of non-interacting topolog-
ical insulators is made up by a bi-dimensional massless Dirac fermion. Such theory, once
coupled to the electromagnetic field, generates an anomalous term that is cancelled by the
bulk action. The effective induced action at the quadratic order in A is therefore given by
the non-local term SNL in (3.15).

3.3 Fractional topological insulator

In Section 1.2 we introduced gauge degrees of freedom for describing interacting electrons
and the Chern-Simons theory (1.14). This effective theory accounts for universal long range
features of the fractional quantum Hall effect, providing a complementary view to wave
function approaches [9, 10]. Moreover, the associated scalar theory in (1 + 1) dimensions
of Section 1.4 gave us an exact description of edge dynamics [16]. In this section we will
generalize the effective field theory approach to topological insulators [81] by reviewing the
bulk BF theory proposed by Cho and Moore [97].

3.3.1 BF theory in (3 + 1) dimensions

In a (3 + 1) dimensional manifoldM, the low energy degrees of freedom can be modelled
by conserved currents for quasiparticles Jµ and vortices Jµν ,

Jµ =
1

2π
εµνρσ∂νbρσ, Jµν =

1

2π
εµνρσ∂ρaσ. (3.21)
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These expressions define two hydrodynamic gauge fields, the two-form b = 1/2 bµν dx
µ∧dxν

and the one-form a = aµdx
µ. Let us introduce the following action [97]

SBF [a, b, A] =

∫
M

k

2π
b da+

1

2π
b dA+

1

8π
da dA− aµJ µ −

1

2
bµνJ µν , (3.22)

where A = Aµdx
µ is the electromagnetic background, J µ and J µν are, respectively, the

particles and vortex sources. The first term in (3.22) is called BF theory.
Differently from the Chern-Simons theory, this action is TR invariant, as required, the

transformation rules for fields being the following:

(a0, a)→ (a0,−a), (A0,A)→ (A0,−A), (b0i, bij)→ (−b0i, bij) . (3.23)

The BF action is topological theory without local dynamics and it describes the gapped
bulk at low energy.

Let us turn off the sources for now, J µ = J µν = 0. Upon integrating the hydrodynamic
fields aµ and bµν , we obtain the induced action

Sind[A] =
1

32πk2

∫
M
d4x εµνρσFµνFρσ. (3.24)

which is exactly the fermionic non-interacting bulk term (3.19) for k = 1 and θ = π.
Different values of k can characterize interacting fermions, as in the case of the fractional
QHE [98, 99, 100]. Finally note that this θ-term is consistent with Dirac quantization
condition provided that the minimal electric charge of the system is [101]:

e0 =
1

k
. (3.25)

This fractional value also occurs in the Aharonov-Bohm phases between bulk excitations,
as we discuss in the following.

In absence of the background field A, the equations of motion are the following:

J µ = − k

4π
εµνρσ∂νbρσ , (3.26)

J µν = − k

2π
εµνρσ∂ρaσ . (3.27)

Introducing static sources of particles and vortex by the currents Jµν and Jµ, respectively,
the equations of motion (3.26,3.27) imply the phase exp (i2πn1n2/k) for the monodromy
of a particle of charge n1 around a vortex of charge n2. This is the (3 + 1) dimensional
extension of anyonic excitations described by the BF theory.

The coupling constant k is found to be integer for gauge invariance of the action, by
extending arguments of CS theory discussed in Section 1.2. Moreover k is odd to comply
with the existence of fermions [61].

3.3.2 Gauge invariance and surface theory

Now let us analyze the problem of the surface action corresponding to the BF theory.
Under the following gauge transformations

a→ a+ dλ, b→ b+ dξ, (3.28)
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where λ and ξ are, respectively, a scalar function and a one-form the BF action is not
invariant on a manifoldM with boundary,

SBF → SBF +
k

2π

∫
∂M

d3x εµνρξµ∂νaρ (Aµ = 0) . (3.29)

The symmetry can be recovered by introducing degrees of freedom living at the boundary
∂M that compensates this gauge non-invariance [61]. The following surface term

Ssurf [ζ, a, A] = − k

2π

∫
∂M

d3xεµνρζµ∂νaρ , (3.30)

defines the boundary gauge field ζµ. For the gauge transformation ζµ → ζµ + ξµ we find
that the action SBF + Ssurf is invariant.

Now we consider the surface theory in the static gauge ζ0 = a0 = 0,

Ssurf [ζ, a] =
k

2π

∫
∂M

d3x εijζi∂taj . (3.31)

The equation of motion of the field a in the bulk imposes the constraint ε0ij∂jak = 0

that can be solved by ai = ∂iϕ, corresponding to a pure gauge configuration. The action
becomes

Ssurf [ζ, ϕ] =
k

2π

∫
∂M

d3x εij∂iζj∂tϕ . (3.32)

In analogy with the quantum Hall state, the surface theory is made up by the symplectic
form only, i.e. the Hamiltonian vanishes. The canonical variables are the longitudinal part
of a and the transverse one of ζ

ϕ, Π =
k

2π
εij∂iζj = − k

2π
∇2χ. (3.33)

In conclusion, there are two scalar degrees of freedom located at the surface that are
canonically conjugate.

In the work [61], the authors proposed to introduce a quadratic Hamiltonian for such
fields,

H =
1

2m
Π2 − m

2
(∂iϕ)2. (3.34)

The corresponding action Ssurf =
∫

(Πϕ̇−H) can be written in Lagrangian form as:

Ssurf =
m

2

∫
d3x ∂µϕ∂

µϕ , (3.35)

by exploiting the Hamilton equations,

Π = mϕ̇, Π̇ = m∇2ϕ. (3.36)

However, there is a problem: the dimensions of these fields, [ϕ] = 0 and [Π] = 2, are not
the standard ones expected for a scalar boson in (2 + 1) dimensions, which are [ϕ] = 1/2

and [Π] = 3/2. Therefore, the quadratic Hamiltonian (3.34) involves an external mass
parameter m. The presence of an external length scale means that this surface theory
cannot be conformal invariant.
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The coupling of the surface theory with the electromagnetic field is inherited by the
bulk (3.22):

∂µϕ→ ∂µϕ+Aµ/k . (3.37)

Upon performing such substitution in (3.35) and integrating out the scalar field ϕ, we get
the following induced action

Sind[A] =
m

4k2

∫
d3xFµν

1

�
Fµν . (3.38)

We remark that this action, for k = 1, differ qualitatively from the fermionic induced
action SNL in (3.15) in the low-energy limit.

Summarizing, the topological bulk theory based on the BF action (3.22) reproduces the
non-interacting topological insulator for k = 1 and is able to describe fractionally charged
excitations for k > 1.

Furthermore, it introduces bosonic degrees of freedom at the surface, the conjugate
gauge fields aµ and ζµ. Their dynamics, i.e. Hamiltonian, should be introduced on the
basis of additional physical inputs/requirements. The quadratic dynamics just discussed
cannot be used to describe bosonization of a free fermions, because the effective actions
do not match for k = 1. A different dynamics will be introduced that is better suited to
bosonize relativistic massless fermions. This original part of our thesis will be presented
in Chapter 4.

In the rest of this chapter, we discuss other aspects of the present bosonic theory, that
will be useful for comparing with the results of Chapter 4.

3.4 Quantization of the bosonic theory on a torus

3.4.1 Topological order of the BF theory and bulk-boundary correspon-
dence

The quantization of the bulk BF theory (3.22) on the spatial three-torus M = T3 × R,
leads to the topological order of k3 ‘anyon’ sectors, for odd integer values of the coupling
k. The proof of this results is analogous to the evaluation of Wilson loops in Section 1.2.1
[10, 102]. One considers the holonomies of the gauge fields aµ and bµν defined by

πij =

∫
Σij

b, i 6= j, qi =

∫
γi

a, i, j, k = 1, 2, 3 , (3.39)

where γi and Σij are the non-trivial cycles and two-tori inside T3. This decomposition can
be done in three different ways, corresponding to three pairs of conjugated variables. The
canonical quantization of BF theory implies the commutators

[qi, πij ] = i
2π

k
εijk. (3.40)

We can then construct three pairs of Wilson operators

Wk = eiāk , W̃ij = eib̄ij , i, j, k = 1, 2, 3 , i 6= j 6= k . (3.41)

57



@V

x1

x2

N2

V

@V

�2

(a) (b)

N0

V

Figure 3.5: The thick two-torus V = T2×I is represented as a filled cylinder with identified faces.
(a): The bulk quasiparticle with charge N0 creates a flux of the b field across the boundary surface
∂V . (b): In blue the bulk vortex of charge N2 along the non-trivial cycle x1, in red the closed line
Γ2 encircling on the surface the vortex excitation, in grey the branch cut surface from the vortex
excitation to the boundary surface ∂V .

Each pair obeys the algebra (1.29), in analogy with the Chern-Simons case. Being k the
dimension of the representation of each pair, the topological order, i.e. degeneracy of the
ground state of BF theory, is k3 on the torus T3.

In Chapter 1, we showed that the topological properties of bulk Chern-Simons theory
are reproduced by the solitonic modes of boundary fields, as part of the bulk-boundary
correspondence. In the three-dimensional case there are two types of bulk excitations:
quasiparticles and vortices. We consider the spatial geometry of the solid torus V = T2×I,
where I is a finite interval, whose boundary is T2. In Fig. 3.5 the solid torus is represented
as a cylinder with the bases identified. If we put a static quasiparticle J 0 = N0δ

(3) (x− x0)

at the point x = x0, upon integrating the equation of motion (3.27) we get the following
configuration for ζµ ∫

∂V
d2x εij∂iζj =

2πN0

k
. (3.42)

The charge of the quasiparticle corresponds to a flux for ζ through the torus T2. On
the other hand, a static vortex line along one of the two non-trivial cycles, say Γi J 0i =

Niδ
(2) (x− x0), gives a circuitation condition for ∂µϕ along the other non-trivial cycle Γj ,∫

Γj

dxj∂jϕ =
2πNi

k
i 6= j = 1, 2 . (3.43)

Therefore, the quantization of the boundary bosonic theory should contain the solitonic
excitations (3.42) and (3.43).

3.4.2 Partition function of surface bosonic excitations

In this section, we briefly review the calculation of the partition function of the non-
conformal scalar theory (3.35) on the space-time three torus T3 made by the spatial ge-
ometry previously considered and periodic time for temperature [61] [103, 104]. First of
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all, we represent the three-torus T3 as R3 quotiented by the lattice defined by primitive
vectors ωµ, µ = 0, 1, 2 with components (ωµ)ν , ν = 0, 1, 2. The definition of the partition
function is

Z = Tr
[
e−βH−iω01P1−iω02P2

]
, (3.44)

where P1 and P2 are the components of momentum along the directions ω1 and ω2, and β
is the period of the compactified time.

Let us summarize the main steps of the canonical quantization of the theory with
Hamiltonian (3.34). First of all, we have to solve the equations of motion involving the
scalar field ϕ and its conjugated momentum Π = (k/2π) εij∂iζj , satisfying the boundary
conditions (3.42) and (3.43) inherited from the bulk. The solutions are

ϕ(x, t) =ϕ0 + 2π
∑
l

Λlkl · x

+
1√

mV (2)

∑
n6=0

(
ane
−iEnt+2πikn·x + h.c.

)
,

(3.45)

ζi =
εij
V 2

(ω2jγ1 − ω1jγ2 + πΛ0xi)

+

√
64π4m

k2V (2)

∑
n

εijknl√
(2En)3

(
ane
−iEnt+2πikn·x + h.c.

)
.

(3.46)

The quantities shown in these expressions are:

• V (2) is the spatial torus area, given by V (2) = |ω1 × ω2|

• Λµ = Nµ/k, with µ = 0, 1, 2 .

• kµ with µ = 0, 1, 2 are the primitive vectors of the dual lattice, defined by ωµ×kν =

2πIµν where I is the lattice identity matrix.

• The energies of excitations En and their momenta kn are specified by two integer
numbers n = (n1, n2) as follows:

En =
2π

V (2)
|n1ω2 − n2ω1| , (3.47)

kn = (kn1, kn2) =
1

V (2)
(n1ω22 − n2ω12, n2ω11 − n1ω21) . (3.48)

• Note the solitonic modes ϕ0, and γ1, γ2.

Next we have to impose the canonical quantization conditions [ϕ(x, t),Π(y, t)] = iδ(2)(x−
y), that imply the following algebra for the field modes, both solitonic and oscillator:

[an, a
†
m] = δnm, [ϕ0,Λ0] =

i

k
, [γ1,Λ2] = − i

k
, [γ2,Λ1] =

i

k
. (3.49)
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Thanks to the algebra of the solitonic modes and to the fact that Λµ ∈ Z/k, one can show
that the field ϕ and ζi are compactified in analogy with the chiral boson theory discussed
in Section 1.4.

Upon substituting the Hamiltonian and the momentum components evaluated on the
solutions (3.45), the partition function is factorized in a solitonic and a oscillator contribu-
tions, Z = ZsolZosc. For simplicity we consider the orthogonal torus geometry correspond-
ing to ω0 = (β, 0, 0), ω1 = (0, 2πR1, 0), ω2 = (0, 0, 2πR2). The solitonic part is given by
[61]:

Zsol =
∑
Nµ∈Z3

exp

{
−β
[

N2
0

8π2R1R2m
+ 2π2m

k2

(
N2

1

R2

R1
+N2

2

R1

R2

)]}
. (3.50)

The discussion of this result is postponed to the next chapter.
Let us observe that the trace on the solitonic modes corresponding to the sum on

Λµ = Nµ/k, can be decomposed as follows:

Λµ = Mµ +
mµ

k
, Mµ ∈ Z, mµ = 0, 1, · · · , k − 1, µ = 0, 1, 2 . (3.51)

The partition function is thus expressed in terms of a sum on the triplets (m0,m1,m2):

Zsol =
k−1∑

m0,m1,m2=0

Z
(m0,m1,m2)
sol . (3.52)

This expression shows explicitly the presence of k3 sectors in the surface theory, as expected
from the topological order (cf. Section 3.3).
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Chapter 4

(2 + 1)-dimensional Conformal Field
Theory of Surface Excitations

In the previous chapter, we introduced a bosonic theory with a quadratic dynamics at the
surface of topological insulators and showed that it cannot describe the bosonization of
free fermions. In this chapter, we will consider a non-local dynamics, studied in our work
[2], that is better appropriated to bosonize relativistic massless fermions. Indeed, this
theory, known as loop model or non-local Abelian gauge theory, reproduces the fermionic
action (3.15) in the electromagnetic background. It also describes massless excitations with
fractional statistics, that exist at the surface of interacting topological insulators.

In literature, the loop model has appeared in a number of interesting recent research
topics. First of all, it provides a neat example of a massless theory that is covariant under
duality transformations in (2 + 1) dimensions. In particular, the loop model is mapped
to itself under particle-vortex duality. It also corresponds to the self-dual electrodynamics
in mixed dimensions QED4,3 [105, 106, 107], in the limit of large number Nf of fermion
fields.

Furthermore, the phase diagram of this bosonic theory possesses a critical line [108].
These features remind of the compactified boson conformal theory in (1 + 1) dimensions
[17], corresponding to the massless phase of the XY statistical spin model [10]. The loop
model similarly provides a non-trivial solvable conformal field theory in (2+1) dimensions.

In the first section, we will introduce the loop model as the non-local surface dynamics
of topological insulators suited to reproduce the induced action of free fermions.

Then, in sections 4.3 and 4.4 we will summarize the interesting features of the loop
model. First, we will obtain its phase diagram using energy-entropy Peierls estimates.
Then we will show that the loop model enjoys exact self-duality and matches the limit
Nf →∞ of the QED4,3.

In the last section, we will present our quantization procedure. Inspired by the relation
with QED4,3, we reformulate the loop model as a local theory in one extra dimension. This
is electrodynamics in (3 + 1) dimensions with the photons interacting with a BF action
defined on a two-dimensional space slice. In this formulation, we can obtain the solitonic
spectrum by the usual analysis of non-trivial solutions of the equations of motion. Finally
we present the main result of our work [2], the evaluation of the partition function for two
different geometries and the analysis of the spectrum of excitations.
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We consider the local extension of the model on the toroidal geometry T3×I, where I is
the interval in the extra dimension: an infrared cut-off is needed, that is actually a crucial
aspect for the definition of the quantum theory. We obtain the partition function for two
choices of the cut-off: a fixed scale 1/M and the finite size R of the torus. In the first case,
the loop model reduces on-shell to the local theory analyzed in the previous chapter [61],
providing a check. However, the mass M breaks scale invariance explicitly. The second
choice of size-dependent cut-off instead leads to a conformal invariant quantum theory.

Next, we determine the solitonic spectrum and the partition function for the geometry
S2×S1. This is related to flat space by a conformal transformation, where the Hamiltonian
maps into the dilatation operator. Therefore, the solitonic energies determine the spectrum
of conformal dimensions of the fields. This calculation give access to the spectrum of
interacting fields that confirms the conformal invariance of the theory.

In the last section, we analyze our results and briefly describe the (2 + 1)-dimensional
order-disorder fields of the loop model. In Appendix C, we give some details on the Peierls
argument and in Appendix D we report details of the calculations for the partition function.

4.1 Non-local surface theory

In the previous chapter, we have seen that the topological BF gauge theory involves the
following surface action in Euclidean signature, 1

Ssurf [ζ, a] =
i

2π

∫
∂M

(kζda+ ζdA) , (4.1)

where we also restore the coupling with electromagnetic background A corresponding to
the shift a→ a+A/k. Let us now consider the following interaction for the hydrodynamic
field:

Sint[a] =
g0

4π

∫
d3x d3y aµ(x)

1√
−∂2

(x, y)(−δµν∂2 + ∂µ∂ν)aν(y) , (4.2)

where g0 is an dimensionless constant. For writing convenience, we introduce the following
notation: ∂ ≡

√
−∂2. The surface action is thus given by:

Ssurf [a, ζ] =
i

2π

∫
(kζda+ ζdA) +

g0

4π

∫
d3x d3y aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
aν . (4.3)

The integration of the field ζ implies the constraint a = A/k and leads to the induced
action,

Sind[A] =
g0

4πk2

∫
d3xd3y Aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
Aν . (4.4)

Note that this action reproduces the expected fermionic induced action (3.15) for k = 1 and
g0 = e2π/8. This is a first indication that this dynamics is appropriate for bosonization.

Furthermore, remembering the expression of the Euclidean propagator in (2 + 1) di-
mensions, we have:

1

−∂2
(x, y) =

1

4π

1√
|x− y|

,
1√
−∂2

(x, y) =
1

2π2

1

|x− y|2
. (4.5)

1The Euclidean formulation is better suited for the later evaluation of the partition function.
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We can rewrite the expression (4.4) in the form

Sind[A] =
g0

16kπ3

∫
d3x d3y Fµν(x)

1

|x− y|2
Fµν(y) . (4.6)

This action define the non-local QED in (2 + 1) dimensions.
Let us return to the action (4.3) and now turn off the electromagnetic background A.

The equation of motion for a is

i
k

2π
εµνρ∂νζρ =

g0

2π

√
−∂2aµ . (4.7)

If aµ were a pure gauge configuration, i.e. aµ = ∂µϕ, this relation would become the duality
between the vector field ζµ and the ‘dual photon’ ϕ, i.e. the eletric-magnetic duality in
(2 + 1) dimensions [100, 109].

Furthermore, by integrating out the a field in (4.3), using the equations of motion (4.7),
we obtain the action

Ssurf [ζ,A] =
k2

4πg0

∫
ζµ

(
−δµν∂2 + ∂µ∂ν

∂

)
ζν +

i

2π

∫
ζdA . (4.8)

This corresponds to the non-local Abelian theory also called ‘loop model’ [110], that we
will discuss in the next section.

Note that differently from the quadratic Hamiltonian (3.34), this non-local interaction
does not involve dimensional parameters, as we expect for the bosonized version of the
massless fermion. In conclusion, the physics of topological insulators provides a strong
motivation for analyzing the theory (4.8), as it represents a viable theory for boson-fermion
correspondence. The issue of bosonization will become more clear in the following sections.

4.2 Loop model

This model is defined by the following action [110, 111]:

Sloop[bµ] =
g

16π3

∫
d3x d3y fµν(x)

1

(x− y)2
fµν(y) + i

h

4π

∫
d3x εµνρbµ∂νbρ, (4.9)

where g and h are dimensionless couplings. In this expression, fµν = ∂µbν − ∂νbµ and the
gauge field is assumed to be compact, bµ ∼ bµ + 2πrnµ, with r the compactification radius
and nµ ∈ Z. The theory is quadratic but non-trivial owing to its solitonic spectrum of
electric and magnetic excitations. Note that for h = 0, the loop model (4.9) is the same
as the surface theory, in the form (4.8), by using the expression of the kernel (4.5) and
identifying the couplings by

g =
k2

g0
h = 0. (4.10)

The action (4.9) can be written in terms of degrees of freedom that are conserved
currents:

jµ =
1

2π
εµνρ∂νbρ. (4.11)

Once formulated on a Euclidean lattice, it defines a statistical model where currents de-
scribe random loops that interact by the potential

∫
jµ(1/x2)jµ, giving rise to an interesting

phase diagram. In this formulation, the theory is called ‘loop model’. In the following we
shall consider this theory in the case h = 0, to preserve time-reversal invariance.
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4.2.1 Phase diagram

In this section, we determine the phase diagram of the model by using Peierls arguments
[112]. These amounts to estimating the probability P for creating a ‘disorder’ excitation
above the ‘ordered’ ground state:

P ∝ exp(−β∆F ) = exp(−β∆E + ∆S). (4.12)

If the energy cost ∆E of the excitation exceeds the entropy ∆S (logarithm of the multiplic-
ity) in the thermodynamic limit, then the excitation is suppressed and the ordered phase
is stable; otherwise the entropy wins and excitations proliferate, leading to a disordered
(massive) phase.

A well-known examples is given by the estimate of free energy for one vortex in the
massless phase of theXY spin model in two dimensions [112]. In this case, both energy and
entropy grow logarithmically with the system size L, leading to β∆F ∼ (β − βc) log(L/a)

(a is the lattice size, the UV cut-off). One finds that the massless phase is stable for
β > βc, i.e. P → 0 for L → ∞, while the disordered phase takes place for β < βc.
The massless phase corresponds to the critical line of the compactified boson conformal
theory with central charge c = 1. Thanks to exact bosonization in (1 + 1) dimensions, the
bosonic theory describes both free and interacting massless fermions at different points of
the critical line.

The loop model presents a similar behavior in one dimension higher, with a massless
phase corresponding to the critical line g > gc. In order to prove this fact, let us consider
the action (4.9), with h = 0, but adding a local Yang-Mills term:

S[aµ] =
g

16π3

∫
d3x d3y fµν(x)

1

(x− y)2
fµν(y) +

t

M

∫
d3x fµνfµν . (4.13)

In this expression, g and t are dimensionless couplings andM is a mass scale. Note that in
absence of matter fields, the Yang-Mills term is actually irrelevant in the renormalization-
group sense.

Compact gauge fields, say on a lattice, possesses isolated monopole configurations, that
obey the quantization condition:∫

S2

f = 2π
M0

q0
, M0 ∈ Z, (4.14)

where f is the gauge field two-form and q0 is the minimal charge in the theory, trade-off
for the compactification radius.

The evaluation of the loop model action (4.13) for one monopole configuration of min-
imal magnetic charge (M0 = 1) is carried out in Appendix C, leading to the following free
energy:

β∆F =
1

2q2
0

(
g

π
log

(
L

a

)
+

t

Ma

)
− 3 log

(
L

a

)
. (4.15)

We see that the non-local term yields a logarithmic energy, while the local Yang-Mills
action gives a constant. The entropy is also logarithmic, counting the number of lattice
cubes which can host monopoles. Therefore, in ordinary Yang-Mills theory (g = 0), the
entropy always dominates and monopoles proliferate: the system is disordered for any
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coupling and the ground state is gapped. We recover here Polyakov’s result that compact
Abelian Yang-Mills theory in (2 + 1) dimensions is massive and confines charges [113].

The non-local term provides a completely different dynamics, allowing for a stable
massless phase without monopoles for g > gc ∼ 6πq2

0, which corresponds to the critical
line of the loop model. The analogy with theXY model in one lower dimension is apparent.

In the massless phase g > gc, we can consider other excitations corresponding to closed
loops of flux lines. Let us now estimate whether large loops of length R are allowed or
suppressed as a function of the couplings g and t. The number of possible configurations
is given by the number of closed paths of length R one can draw on the lattice. In the
thermodynamic limit, this quantity amounts to 5(R/a) for a cubic lattice, leading to the
entropy

∆S = kB
R

a
ln(5) . (4.16)

The energy contribution is obtained by considering a line of flux φ directed along the
z-axes. The configuration of the field f12 = Φ δ(x)δ(y), for 0 < z < R determines a linear
energy contribution in the size of the loop R,

β∆E =

(
gΦ2

16π3
+

t

Ma

)
R

a
. (4.17)

In conlusion, in the ‘ordered’ phase g > gc, the free energy of a loop of length R turns out
to be:

β∆F =

(
gΦ2

16π3
+

t

Ma

)
R

a
− kB ln(5)

(
R

a

)
, (g > gc) . (4.18)

We see that both the local and nonlocal terms contribute to the energy of closed loops
and that energy and entropy can balance. The condition β∆F = 0 defines the critical
line tc(g) = a− bg, with a, b positive constants, in the plane (g, t): this line separates the
(massive) phase t < tc(g), in which large loops proliferate, from the phase t > tc(g) in
which loops are tiny. Another interesting line is given by the condition of vanishing energy
(Euclidean action) g + ct = 0, with c positive constant, below which the theory is not
defined.

The loop model with action (4.13) has been simulated on a lattice in Ref.[108]: Fig.4.1
shows the numerical results for the phase diagram in the (g, t) plane, that are in qualitative
agreement with the Peierls estimate (4.18). We remark that the simulation enforces the
closed loop condition and cannot see the g < gc phase of free monopoles. We also note
that the coupling t is irrelevant and thus disappears in the IR limit: therefore, in the low-
energy effective action there remains the non-local term and the phase diagram reduces to
the critical line parameterized by g > gc.

4.3 Loop model and dualities

A duality of field theories is the possibility to represent the same physical system with
two or more theories with different degrees of freedom, for instance fermions or bosons.
The best known example is the Kramers-Wannier duality of the bidimensional Ising model
[10]. This corresponds to a change of variables in the partition function which maps the
system with temperature 1/β into the same system with temperature ∝ β. This provides
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Figure 4.1: Phase diagram of the loop model found by numerical simulation [108]. The
two phases with proliferating and small closed loops are separated by the critical line tc(g)

drawn in red. Let us note the presence of the ill-defined region where the Euclidean action
is negative.

a relation between low-temperature and high-temperature phases and maps order into
disorder variables.

In this thesis we have already discuss an example of duality: in Chapter 1 we saw that
bosonic massive particles can acquire fermion statistic once coupled to a Chern-Simons
field. Recently it was supposed that this correspondence hold in the low-energy limit even
for relativistic massless particles. For instance, the Abelian Higgs model at the critical point
is believed to be dual to a massless Dirac fermion [114, 115]. Many other dualities were
found which form the so called ‘duality web’ in (2 + 1) dimensions [116, 117, 118, 119].
In order to verify these dualities, one would need to solve the interacting theories: in
practice, we can consider computable limits like for instance large number of fields N . In
this context, the loop model is relevant: it turns out that the dualities transformations
are exact in this theory and are represented by SL(2,Z) maps of the complex coupling
constant τ = h+ ig, as we now describe.

4.3.1 Bosonic particle-vortex duality

The bosonic particle-vortex duality is schematically written as follows [120, 117]:

LB[φ] + j(φ)
µ Aµ ∼ L̃B[ϕ] + j(ϕ)

µ aµ +
i

2π
adA . (4.19)

In this expression, on the l.h.s. the charge density j
(φ)
0 of the φ field couples to the

electric potential A0: on the r.h.s., the a0 equation of motion imply j(ϕ)
0 ∝ εij∂iAj , mean-

ing that the dual bosonic field ϕ is magnetically charged. This fact explains the name
particle-vortex, or electric-magnetic transformation. In equation (4.19), all fields but the
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background Aµ are supposed to be integrated over. Let us observe that the Lagrangians
LB and L̃B, in general, contain self-interactions parameterized by some couplings. These
are mapped from one side of (4.19) to the other by the duality map.

The partition functions of the two theories (4.19) in the external background, Z[A] and
Z̃[A], are related by the following map:

Z[A] =

∫
Daµ Z̃[a] exp

(
i

2π

∫
adA

)
. (4.20)

Let us verify this relation for the loop model. Consider the action (4.9), including the term
h 6= 0 for generality, and couple it to the background A as in (4.8). It can be rewritten as

S[b, A] =
1

4π

∫
d3xd3y bµ (x)Dµν (g, h) (x, y) bν (y) +

i

2π

∫
bdA (4.21)

in terms of the kernel

Dµν (g, h) = g
1

∂

(
−δµν∂2 + ∂µ∂ν

)
+ ihεµνρ∂ρ. (4.22)

Next, use the action (4.21) to express Z̃[a] in (4.20). Integrating over the a and b fields,
we obtain the induced action

Z[A] = exp

(
− 1

4π

∫
AµDµν(g, h)Aν

)
. (4.23)

Let us now check that Z̃[A] takes the same form as Z[A], thus proving the duality map.
We integrate the b field in (4.21) by using the algebraic identity∫

d3x d3y jµD
−1(g, h)µνjν =

∫
d3x d3y aµDµν(ĝ, ĥ)aν , (4.24)

ĝ =
g

g2 + h2
, ĥ =

−h
g2 + h2

, jµ = εµνρ∂νaρ , (4.25)

i.e. τ̂ = ĥ+ iĝ = −1/τ , τ = h+ ig . (4.26)

It follows that Z̃[A] takes the same form (4.23) with coupling constants:

τ̃ = −1

τ
. (4.27)

Note that this map of the complex coupling constant τ defines the S generator of the
SL(2,Z) group.

Therefore, the loop model is explicitly self-dual [110, 111]. The physical meaning of this
result will be more clear in the following, where we shall see that this theory corresponds
to electrodynamics in the limit of large number Nf →∞ of matter fields.

A nice aspect of the duality transformation (4.20) is that it amounts to a Legendre
transformation. Let us rewrite it,

S̃[J ] = S[A]−
∫
J µAµ, J =

1

2π
∗(da). (4.28)

This can be seen as a change of variable from the background A to the ‘effective field’
J , where the new ‘effective potential’ S̃[J ] ≡ S̃[a] is equal to the dual action. As is
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well known, the second derivatives of Legendre transformed potentials S and S̃ w.r.t. the

respective variables are the inverse of each other, δ2S/δA1δA2 ∼
(
δ2S̃/δJ1δJ2

)−1
. The

first variation w.r.t. to the background defines the induced current, while the second
derivative is related to the conductivity. As a consequence, duality implies a reciprocal
relation between the conductivity tensors, σij(τ) and σ̃kn(τ̃), i, j, k, n = 1, 2, in the two
theories, [106]:

εij σjk(τ) εkn σ̃nm(τ̃) =
1

4π2
δim . (4.29)

4.3.2 Fermionic particle-vortex duality

The electric-magnetic duality for fermionic theories is conjectured to be [120, 117]:

LF [ψ] + j(ψ)
µ Aµ ∼ L̃F [χ] + j(χ)

µ aµ +
i

4π
adA , (4.30)

with the fermion field ψ and χ are dual. The map is the same as for bosonic fields (4.19)
up to a normalization of the statistical field a.

As will be clear in the following, the loop model describes both (the large N limit of)
bosonic and fermionic theories; thus, we can apply the map (4.30) to the effective action
(4.23) again and obtain the relation (4.27) between the couplings up to a factor of four.
Upon defining the ‘fermionic’ version of the loop model with shifted coupling τF = 2τ , we
can write the fermionic duality (4.30) as:

τ̃F = − 1

τF
, τF = 2τ ≡ 2τB. (4.31)

4.3.3 Boson-fermion duality

Let us now consider the boson-fermion transformation:

LB[ϕ] + JBµaµ +
i

4π
ada+

i

2π
adA ∼ LF [ψ] + JFµAµ −

i

8π
AdA . (4.32)

On the bosonic side, first a Chern-Simons term ada is added that changes the statistics
of particles; then the particle-vortex transformation (4.19) is applied. On the right side,
note that the parity anomaly of the fermion is subtracted, as expected by the fact that the
boson theory in (2 + 1) dimensions does not suffer of this anomaly. The transformations
on the bosonic left-hand side can be carried out in the loop model, where they correspond
to the following maps:

T : τB → τB + 1, S : τB + 1 → − 1

τB + 1
. (4.33)

On the fermionic side, the subtraction of the anomaly term corresponds to T−1 : τF →
τF − 1, taking into account the different normalization of the fermionic model (4.31) just
discussed. The combined map is therefore:

− 1

τB + 1
=
τF − 1

2
−→ τF =

τB − 1

τB + 1
. (4.34)

Therefore, the loop model explicitly realizes the boson-fermion duality.
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In the literature, the dualities of Abelian theories in (2 + 1) dimensions have been re-
lated to those of Yang-Mills theory in (3 + 1) dimensions [121] [116, 118, 109]. This fact
can be explained within the bulk-boundary correspondence discussed in previous chapter:
the topological bulk action (3.22) possesses the theta-term θ/8π2

∫
dada, that under pe-

riodicity, θ → θ + 2π, produces a Chern-Simons action at the boundary corresponding to
the T transformation τB → τB + 1 discussed above. Moreover the S transformations in
(3 + 1) and (2 + 1) dimensions can be shown to correspond to each other.

Let us remark that the boson-fermion map (4.34) can be written group theoretically
as follows:

τF = TΛST (τB) , (4.35)

where appears another transformation Λ : τB → τF = 2τB that does not belong to the
SL(2,Z) group. In matrix notation, it is diagonal, Λ = diag(2, 1), with determinant 2.
However, this transformation cannot be iterated, i.e. Λn does not make sense for n ∈ Z,
beside n = 0,±1. Thus, it is not an ordinary group element and does not enlarge the
duality group.

In conclusion, dualities including both bosonic and fermionic theories belong to the
group SL(2,Z), keeping in mind the coupling normalization just discussed. In the follow-
ing, we do not discuss these issues any further because we are mostly concerned in the
analysis of the bosonic loop model with vanishing Chern-Simons term (h = 0), for which
the inversion g → 1/g suffices.

4.4 Electrodynamics in the large-N limit and loop model

The loop model is an unusual field theory because it does not contain a standard kinetic
term. In this section, we will discuss the theories of (2+1)-dimensional particles interacting
with (2+1)-dimensional photons, i.e. electrodynamics (QED3), or with (3+1)-dimensional
photons, corresponding to a mixed-dimensional modification called QED4,3 [106] [107]. We
will show that they both reduce to the loop model in the limit of large number of matter
fields.

4.4.1 Loop model and QED3

The action of QED3 with NF massless fermionic fields is,

SQED3 [ψ,A] =

∫
d3x

NF∑
n=1

ψ̄n(i/∂ − /A)ψn +
1

4e2

∫
d3xFµνFµν . (4.36)

Integration of the fermions produces the determinant of the Dirac operator raised to theNF

power. A simplification occurs in the large NF -limit: by keeping the coupling λ = e2NF

finite, the expansion of the determinant in powers of Aµ is dominated by the quadratic
term and the higher orders are subdominant by powers of N−1/2

F . Thus, the large-NF limit
gives us

Z =

∫
DA exp

{
tr
(
−λ

2

1

i/∂
/A

1

i/∂
/A

)
− 1

4

∫
d3xFµνFµν

}
, (NF →∞) . (4.37)
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The first term is exactly the action in electromagnetic field induced by the dynamics of
the free fermion (3.13). The effective action for large Nf is therefore given by

SQED3 [A] =
1

2

∫
Aµ

(
1

16

1

∂
+

1

λ

)(
−δµν∂2 + ∂µ∂ν

)
Aν + i

η

8πλ

∫
AdA, (4.38)

where we have rescaled the field Aµ → Aµ/
√
λ. The parity anomaly term has a ± sign

ambiguity for each fermion component, that can be resolved, as we have previously seen,
by considering the limit m→ 0± of massive fields [86]. Without knowing this information
or other physical input on the theory, we can only say that the parameter η in (4.38) is an
integer taking one value in the interval −NF ≤ η ≤ NF .

Since the action is quadratic in electromagnetic field, we can directly read the propa-
gator of the theory that assumes the form:

Gµν(k) = (δµνk
2 − kµkν)

16λ

λk + 16k2
, (4.39)

where, for simplicity, we set the anomalous term to zero.
In the IR (k � λ) and UV (k � λ) regimes, the propagator becomes:

Gµν(k) = −(δµνk
2 − kµkν)


λ

k2
k � λ ,

16

k
k � λ .

(4.40)

Therefore the Maxwell term is irrelevant in the IR for any value of λ leading to the action:

SQED3 [A] ∼ 1

32

∫
d3x d3y Aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
Aν . (4.41)

We conclude that the large-NF /low-energy effective theory for QED3 is described by the
loop model for values of the couplings (g, h) = (π/4, η/λ) (using the fermion normalization
(4.31)).

4.4.2 Loop model and QED4,3

We now study the electrodynamics in (3 + 1) dimensions, in which photons live in the
whole space-timeM4, while fermions are confined in the hyperplaneM3. The Euclidean
action is [105, 106],

SQED4,3 [ψ, A] =

∫
M3

d3x

NF∑
n=1

ψ̄(i/∂ − /A)ψ +
1

4e2

∫
M4

d4xFµνFµν . (4.42)

This theory is very interesting because it maps into itself under the fermionic particle-
vortex duality (4.30) [106]. Let us review this result for NF = 1.

We denote the coordinates as Xµ = (xα, x3), and identify the hyperplane by x3 = 0.
The integration of the Aµ field in (4.42) leads to the term

S[j] ∼
∫
jα(x)

(
1

−∂2
(4)

(x, y)

)∣∣∣∣∣
x3=y3=0

jα(y), α = 0, 1, 2 , (4.43)
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where three-dimensional currents interact with the four-dimensional propagator restricted
to the hyperplane. The Green function of the four-dimensional Laplacian ∂2

(4) on the
hyperplane can be written as:

1

−∂2
(4)

(X,Y )

∣∣∣∣∣
x3=y3=0

=

∫
d3p

(2π)3
eip·(x−y)

∫ ∞
−∞

dp3

2π

1

p2 + p2
3

=
1

2

1

∂
(x, y) , (4.44)

i.e. it corresponds to the kernel of the loop model. Therefore, we obtain the following
three-dimensional action with long-range current-current interaction:

SQED4,3 [ψ] =

∫
M3

ψ̄i/∂ψ +
e2

4
j(ψ)
α

1

∂
j(ψ)
α , (4.45)

with j(ψ)
α = ψ̄γαψ.

The dual theory with coupling constant ẽ is obtained by applying the particle-vortex
transformation (4.30) to (4.42):

S̃QED4,3 [χ, a,A] =

∫
M3

d3x

[
χ̄(i/∂ − /a)χ− i

4π
εµνρaµ∂νAρ

]
+

1

4ẽ2

∫
M4

d4xFµνFµν , (4.46)

where aµ is the statistical field. Integration over the Aµ field following the same steps as
before leads to the three-dimensional action:

S̃QED4,3 [χ, a] =

∫
M3

χ̄(i/∂ − /a)χ+
ẽ2

64π2
aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
aν . (4.47)

Finally, integrating out a with the help of the loop-model identity (4.26) gives,

S̃QED4,3 [χ] =

∫
M3

χ̄i/∂χ+
16π2

ẽ2
j(χ)
µ

1

∂
j(χ)
µ , (4.48)

where j(χ)
µ = χ̄γµχ .

The comparison of the actions (4.45) and (4.48) establishes the self-duality of QED4,3

with coupling constant relation:

ẽ =
8π

e
. (4.49)

The duality implies a inverse relation between the conductivities of the two theories, as
discussed before [106]. Analogue results are obtained in the case of electrodynamics of
scalar particles [107]; there is a difference of a factor of two in the relation (4.49), i.e.
π → π/2, stemming from the duality transformations (4.19) and (4.30).

Let us now discuss the large NF -limit of QED4,3. It is convenient to start from the dual
action (4.47): the integration over the fermions yields as in the QED3 the NF power of
the determinant. Its quadratic approximation holds for NF →∞, leading to the following
action

SQED4,3 [a] =

(
1

32
+

ẽ2

64π2NF

)∫
d3x, d3y aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
aν , (4.50)
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where we have rescaled aµ as aµ → aµ/
√
NF . The duality relation (4.49) imply that

ẽ2/NF = 32π2/λ and thus the action becomes2:

SQED4,3 [a] =

(
1

32
+

1

λ

)∫
aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
aν . (4.51)

We conclude that QED4,3 in the large NF -limit is equivalent to the fermionic loop
model (4.9) with coupling constant:

g = π

(
1

4
+

8

λ

)
. (4.52)

This result is very important because it establishes that the loop model is the limit of a
viable theory of interacting electrons. One can think that the higher-dimensional photons
on the surface of three-dimensional topological insulators could be physical and not merely
a technical advantage. However, Hansson suggested us that if the photon was physical,
the velocity of the conformal surface modes would equal the speed of light and that is not
true as we are going to show in the next sections.

We conclude this section by adding some remarks:

• Eq. (4.52) shows that the dimensionless coupling constant λ > 0 of QED4,3 remap
the critical line g > 1 of the loop model. Note that QED3 is found at the point
λ =∞ on this line.

• It is believed that QED4,3 possesses a critical line also for finite NF [122], that then
spans e2 < 8π owing to the self-duality (4.49). Note, however, that the finite-NF

self-duality does not survive the large NF limit and is replaced by the loop model
duality at NF =∞.

• Finally, the analysis of scalar QED4,3 in the large NB limit reproduces again the
loop model up to numerical factors in the coupling constant relation (4.52). Indeed,
the quadratic expansion of the bosonic determinant has the same expression of the
fermionic theory, but without the anomalous Chern-Simons term.

4.5 Quantization of the loop model on T3

We analyze the surface excitations of topological insulators with loop-model dynamics, as
discussed in Section 4.1, for a toroidal geometry. We recall the expression of the action
(4.3):

Ssurf [a, ζ, A = 0] =
ik

2π

∫
ζda+

g0

4π

∫
aµ

(
−δµν∂2 + ∂µ∂ν

∂

)
aν , (4.53)

where the A background has been switched off. This is the loop model without the anoma-
lous Chern-Simons term, that, in TR topological insulators, is cancelled by the bulk. We
consider a solid spatial torus T2 × I as the bulk of the system. The Euclidean surface
theory is thus defined on the manifold M3 = T2 × S1

β = T3, with β being the period of
the imaginary time. The non-trivial part of the surface dynamics is given by the solitonic
excitations as in the case of the local bosonic theory analyzed in Section 3.4.1.

2We disregard the parity anomaly term
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In addition, the compactness of the a field allows for magnetic solitons. The corre-
sponding condition reads:∫

T2

εij∂iaj =
2π

q0
M0, M0 ∈ Z , (4.54)

where q0 is the minimal charge for the a field.
The usual method of quantization is based on expanding the fields in solitonic and

oscillator parts and evaluate the partition function in terms of classical action and fluctua-
tions around it. This analysis is not possible for the non-local theory (4.53) that does not
have a Hamiltonian formulation and is not well defined on-shell.

This problem can be solved by a trick: we reformulate the loop model as a local theory
in (3+1) dimensions, as we now explain. We get inspired by the mixed-dimension QED4,3:
as seen in the previous section, integration of the (3 + 1)-dimensional photons yields the
non-local loop model interaction on the (2 + 1)-dimensional surface.

We introduce an extra dimension and define the following action:

S4[â, ζ] =
1

4e2

∫
M4

d4x (∂µâν − ∂ν âµ)2 + i
k

2π

∫
M3

adζ . (4.55)

The geometry M3 is the torus T3 with the following euclidean period vectors ωi with
i = 0, 1, 2,

ω1 = (0, 2πR1, 0) , ω2 = (0, 0, 2πR1) , ω0 = (2πT = β, 0, 0) , (4.56)

where R1 and R2 are the radii of the two non-trivial cycles Γ1 and Γ2 of the spatial
torus. The four dimensional extensionM4 is obtained by adding a straight direction with
coordinate x3 ∈ R, such that the three torus is located at x3 = 0. This geometry is
represented in Fig.4.2.

In the expression (4.55), the field âµ is the four-dimensional extension of aµ and e is a
dimensionaless coupling to be determined later. The three-dimensional part of the action
(4.55) can be written as the source term,

i

∫
M4

Jµâµ , Jα = δ(M3)
k

2π
εαβγ∂βζγ , J3 = 0, (4.57)

where δ(M3) = δ(x3) is the delta function on the hyperplane.
The (3 + 1)-dimensional action (4.55) corresponds to ordinary electrodynamics that is

well defined on-shell. We can compute its partition function by decomposing the fields â
and ζ into solitonic and oscillator parts:

Z =
∑

sol config

e−S4[âsol,ζsol]

∫
DâoscDζosce−S4[âosc,ζosc] , (4.58)

where âsol and ζsol are classical solutions of the (3 + 1)-dimensional equations of motion
obeying the (2 + 1)-dimensional boundary conditions (3.42-3.43) and (4.54).

The integration of oscillator modes of the field â in S4[âosc, ζosc], following usual steps,
leads to the (2 + 1)-dimensional action for (the wave modes of) ζµ:

S[ζ] =
k2e2

16π2

∫
ζµ

(
−δµν∂2 + ∂µ∂ν

∂

)
ζµ . (4.59)
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Figure 4.2: Three-dimensional extension of the spatial torus T2. The torus is drawn in
blue, while the surfaces Σ(+) and Σ(−) are in red.

This expression matches the loop model action (4.8), leading to the coupling identification:

e2 =
4π

g0
. (4.60)

In conclusion, the loop model (4.8) has been transformed into the local theory in (3+1)

dimensions (4.55). This allows for a proper definition and calculation of solitonic modes.

4.5.1 Evaluation of solitonic modes

The (3 + 1)-dimensional Minkowskian action for static solitonic configuration S4[âsol, ζsol]

corresponds to the Hamiltonian,

S4[âsol, ζsol] = −β H, H =
1

2e2

∫
d3x

(
B2 + E2

)
, (4.61)

involving the electric and magnetic fields E and B of âµ. The integration is done on the
spatial part ofM4 (cf. Fig.4.2), but requires the definition of a finite interval for the extra
coordinate x3

x3 ∈ [−1/(2M), 1/(2M)] (4.62)

where 1/M is the infrared cut-off to be discussed later.
Let us now solve the âµ(x) equations of motion with source term (4.57). The magnetic

flux configuration for ζµ on T2 (3.42) determines a constant current J0 on the x3 = 0 plane,
which is coupled to â0 by the Poisson equation:

∇2â0 = −e2J0 , J0 = δ(x3)
N0

V (2)
, V (2) = 4π2R1R2 . (4.63)

The solution â0 = â0(x3) is easily found and it determines the electric field component
along x3:

E3 = − d

dx3
â0 =

e2N0

2V (2)
sign(x3) . (4.64)
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The contribution of the electric field to the Hamiltonian (4.61) is obtained by integrating
over three-space, with the result:

Hel =
e2N2

0

32π2R1R2M
. (4.65)

Note the presence of the infrared cut-off.
Next we consider the configurations of electric flux for a on the x3 = 0 plane (3.43),

given by the line integral on Γ1. This can be extended to a close circuit on the edge of the
surface Σ(+) (cf. Fig.4.2); two sides of this contour cancel each other and the contribution
Γ′1 at large x3 vanishes by assumption. Thus, the a line integral can be rewritten as the
flux of the magnetic field B2 through Σ(+), leading to:

B2 =
2M

k

N1

R1
sign(x3) . (4.66)

In this expression, the sign function appears for the possible exchange of Σ(+) with Σ(−).
In analogous fashion, the other flux condition (3.43) on Γ2 determines a magnetic field
along x1:

B1 =
2M

k

N2

R2
sign(x3) . (4.67)

Finally, the magnetic flux configuration for a (4.54) on the x3 = 0 plane is reproduced
by the following x3-independent field component:

B3 =
M0

q02πR1R2
. (4.68)

The total magnetic contribution to the energy is then found to be:

Hmag =
M2

0

4πe2q2
0MR1R2

+
8π2M

e2k2

(
N2

1

R2

R1
+N2

2

R1

R2

)
. (4.69)

Before writing the solitonic partition function, let us stress that in these results, we
chosse the solitonic solutions âµ(x) to be symmetric under x3 → −x3. Indeed we also set
a symmetric infrared cut-off (4.62) for simplicity. Asymmetric solutions might be relevant
in other physical settings, but we did not consider them.

From the evaluation of the classical solutions we thus obtain the following expression
of the solitonic part of the partition function of the loop model on T3:

Zsol =
∑

Nµ,M0∈Z
exp

{
−β
[

2πg0M

k2

(
N2

1

R2

R1
+N2

2

R1

R2

)
+

1

R1R2M

(
N2

0

8πg0
+

M2
0 g0

16π2q2
0

)]}
,

(4.70)
where we substituted the coupling g0 using (4.60). Let us complete the calculation of the
partition function before discussing this result.

4.5.2 Oscillator modes

The partition function of the oscillator modes can be obtained from the nonlocal (2 +

1)-dimensional Lagrangian (4.59) by computing the determinant of the positive definite
Euclidean Laplacian. Choosing the Lorentz gauge, the spectral decomposition reads:

S =
k2

4πg0

∑
nα∈Z3 6=(0,0,0)

ζµ(n)

√
(kn)2ζµ(n) , (4.71)
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where kµn are the discretized momenta on T3. The field ζ possesses two physical polariza-
tions, instead of one for local Yang-Mills theory. Thus, the oscillator part of the partition
function is given by the determinant,

Zosc =
[
det′

(√
−∂2

)]−1
=
[
det′

(
−∂2

)]−1/2
, (4.72)

where the prime indicate the elimination of the zero modes. As a matter of fact, this
oscillator partition function is equal to that of the local bosonic massless theory in (3.50),
discussed in previous Chapter. Let us remark that Zosc is independent of the coupling
constant.

In conclusion, the partition function of the loop model on T3 is given by Z = ZsolZosc,
where the expressions of Zsol and Zosc are given in (4.70) and (3.50), respectively.

4.5.3 Interpolating theory and the choice of infrared cut-off

The torus partition function found in the previous section possesses striking similarities
with the corresponding quantity in the local scalar theory of surface excitations discussed
in Section 3.4. The oscillator part takes the same form; regarding the solitonic sum, let us
compare the expression (4.70) with the analogous one of the scalar theory (3.50), reported
in Section 3.4.2. We see that the terms parameterized by N0, N1, N2 remarkably match in
the two formulas, upon identifying the respective mass parameters by m = Mg0/π. On the
other hand, the M0 term for aµ magnetic solitons is absent in the scalar theory, because
the latter corresponds to the longitudinal part of the gauge field, aµ = ∂µϕ (c.f. Section
3.3.2).

This remarkable equivalence can be explained as follows: the two theories are different,
but can be matched on-shell. For example, the off-shell induced actions Sind[A] (3.38) and
(4.4) are unequal, and this fact originally motivated the study of the non-local theory.

In order to understand these results, we reformulate the loop model by introducing the
infrared cut-off as an explicit photon mass M̃ . The modification of the action (4.53) reads:

S
M̃

= i
k

2π

∫
ζda+

g0

4π

∫
aµ

(
δµν(−∂2 + M̃2) + ∂µ∂ν√

−∂2 + M̃2

)
aµ . (4.73)

In the Lorentz gauge, this becomes:

S
M̃

[a, ζ] =
ik

2π

∫
ζda+

g0

4π

∫
d3x d3y aµ

√
−∂2 + M̃2 aµ . (4.74)

Upon integrating on a, this action describes conserved currents with cut-offed long-range
interaction:

∫
Jµ(1/∂)Jµ →

∫
Jµ(1/

√
−∂2 + M̃2)Jµ. Therefore, S

M̃
can be considered as

an equivalent formulation of the loop model, where the cut-off is explicit and not added
a-posteriori in the classical field solutions.

Let us now analyze the theory on-shell: the equations of motion for a,

− i k
2π
εµνρ∂νζρ =

g0

2π

√
−∂2 + M̃2aµ →


g0

2π
∂aµ , UV ,

g0

2π
M̃aµ , IR ,

(4.75)
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interpolate between those of the non-local and local theories, Eqs. (3.36) and (4.7). The
equation of motion for ζµ imposes aµ = ∂µϕ: substituting in Sm, we find the reduced
action,

S
M̃

=
M̃g0

4π

∫
d3x ∂µϕ∂µϕ , (on-shell) . (4.76)

Therefore, the massive non-local action (4.73) is equal to the local action (3.35) on-shell
(up to a numerical factor). This implies that the two theories have same solitonic spectra
and partition functions. On the other hand, the spectrum of S

M̃
is also equal to that of

the loop model in Section 3.1, because they correspond to different choices of cut-off in the
same theory. These facts explain the matching of Zsol for the local and nonlocal theories,
Eqs. (3.50) and (4.70) (for M0 = 0).

Two conclusions can be drawn from this analysis:

• This on-shell correspondence provides a check for the calculation of soliton config-
urations in Section 4.5 through the (3 + 1)-dimensional extension of the the loop
model.

• The IR regularization of the loop model with a fixed mass parameter M violates
scale invariance at the quantum level, in disagreement with the fermionic dynamics.
Therefore, another choice of cut-off is needed.

Let us consider the cut-off given by the spatial dimension of the system, namely replace
M → 1/

√
R1R2 in the expressions (4.70).

Within this choice, the solitonic partition function Zsol (4.70) of the loop model be-
comes:

Zsol =
∑

N0,N1,N2,M0∈Z
exp

{
− β 1√

R1R2

[
2πg0

k2

(
N2

1

R2

R1
+N2

2

R1

R2

)
+

N2
0

8πg0
+

M2
0 g0

16π2q2
0

]}
.

(4.77)

This expression is manifestly scale invariant and also invariant under R1 ⇔ R2.
Let us remark that the choices of ‘geometric cut-off’ in (4.77) and ‘fixed cut-off’ in

(4.70) and (4.73) actually amount to two different definitions of the non-local theory at
the quantum level. In the following we adopt the second choice realizing a scale invariant
theory. Further justifications will arise in the study of the partition function on the S2×R
geometry.

4.6 Quantization on the cylinder S2 × R

In this section, we present another result of our work [2], the evaluation of the partition
function for the manifold S2×R. The choice of this geometry is motivated by the following.
As is well-known, the cylinder S2 × R can be mapped to flat space by the conformal
transformation r = R exp(u/R), where r is the radius of R3 and u is Euclidean time on
the cylinder. Time evolution on the cylinder corresponds to dilatations in R3, thus the
energy spectrum gives access to conformal dimensions of the fields in the theory [17, 18]
[123, 124]. The partition function is schematically:

Z =
∑
∆

exp

(
−β v∆

R

)
, (4.78)
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where ∆ are the conformal dimensions and v is the velocity of massless modes. In topo-
logical insulators, these modes live on the surface and their velocity v corresponds to the
Fermi velocity of the system, in analogy with the quantum Hall state in 2 + 1 dimensions.

The computation of the partition function will follow the same steps as in the previous
section using the four-dimensional formulation. We consider the manifold M4 = S3 × R
and embed the three-dimensional spaceM3 = S2 × R by identifying S2 with the equator
of S3.

The four-dimensional Minkowskian action (4.55) onM4 = S3 × R takes the form:

S4[â, ζ] = − 1

4e2

∫
M4

dx
√
−ggµαgνβ f̂µν f̂αβ +

k

2π

∫
M3

adζ , (4.79)

where gµν is the metric tensor on S3 × R.
This action is conformal invariant at the classical level: four-dimensional transforma-

tions may induce a nontrivial metric on M3, but this is ineffective on the Chern-Simons
action.

4.6.1 Solitonic modes on S2

The four-dimensional manifold S3 × R is described by the metric ds2 = dt2 − R2dΩ2
3,

in terms of S3 polar coordinates, dΩ2
3 = sin2 ψ(dθ2 + sin2 θdϕ2), with ψ, θ ∈ [0, π] and

ϕ ∈ [0, 2π]. The S2 sphere at the equator is identified by ψ = π/2.
On the geometry of the sphere, there exist global magnetic fluxes for the a and ζ fields.

These obey, as in (3.42) and (4.54),∫
S2

da =
2π

q0
M0 , M0 ∈ Z, (4.80)

∫
S2

dζ =
2π

k
N0 , N0 ∈ Z. (4.81)

The electric fluxes for the a field are instead absent because cycles on S2 are topologically
trivial.

Following the same steps as in the previous section, we solve the equations of motion
for the action (4.79), with source term localized onM3. This can be rewritten:

k

2π

∫
M4

δ(M3) adζ, δ(M3) =
δ(ψ − π/2)

R sin2(ψ)
. (4.82)

Note that the form of the delta function is covariant under translations along the ψ coor-
dinate, i.e. displacements of S2 from the equator of S3.

The ζ magnetic flux (4.81) amounts to a ‘charge density’ located at ψ = π/2 coupled
to â0 by the Poisson equation,

∇µ∇µâ0 = − e
2N0

4πR2

δ(ψ − π/2)

R sin2(ψ)
. (4.83)

In this equation, it is natural to assume that â0 depends only on ψ, and thus the covariant
Laplacian reduces to an ordinary differential equation. The solution is easily found to be:

â0(α) =
e2N0

8πR
|tan(α)| , α = ψ − π

2
. (4.84)
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The other solitonic solution (4.80) is a magnetic flux for the a field that is orthogonal
to S2 and can be chosen to be a constant for all ψ values, i.e. all embeddings S2 ⊂ S3:

Bψ(ψ) = f̂θϕ(ψ) =
M0

2q0

1

R2 sin2(ψ)
. (4.85)

We now compute the energies associated to the two solitonic solutions (4.84), (4.85).
The Hamiltonian is given by

H =
1

2e2

∫
S3

d3x
√
g

[
f̂i0f̂j0g

ij +
1

2
f̂ij f̂lkg

ilgjk
]
, (4.86)

where we recognize the electric and magnetic parts. The electric contribution is obtained
by inserting the solution (4.84) for f̂ψ0 = ∂ψâ0:

Hel =
1

2e2

∫
S3

d3x
√
g gψψ (∂ψâ0)2 =

N0e
2

32πR

∫ π/2

−π/2
dα

1

cos2(α)
. (4.87)

This integral is divergent at the two poles of S3, α = ±π/2: an infrared cut-off is again
needed. Let us first introduce a fixed scale, by setting a maximal ‘length’ |R tan(α)| <
1/(2M): we obtain the result,

Hel =
N2

0

8g0R

(
1

MR

)
, (4.88)

in terms of the loop model coupling g0 given by (4.60).
The magnetic energy is similarly computed from the solution (4.85):

Hmag =
1

2e2

∫
S3

d3x
√
g
(
f̂θϕg

θϕ
)2

=
M2

0 g0

8q2
0R

∫ π/2−δ

−π/2+δ
dα

1

cos2(α)
. (4.89)

This is the same divergent integral of the electric contribution: once regularized, it yields:

Hmag =
M2

0 g0

8q2
0R

(
1

MR

)
. (4.90)

Let us stress again that both the field solutions and the infrared cut-off are symmetric
under the sign change of the extra coordinate, namely α→ −α.

The values of the classical energies (4.87), (4.90) determine the solitonic part of the
partition function on the geometry S1 × S2:

Zsol =
∑

N0,M0∈Z
exp

{
− β
R

(
1

8MR

)[
N2

0

g0
+
g0M

2
0

q2
0

]}
. (4.91)

We note again that the fixed cut-off M is incompatible with scale invariance. In analogy
with the torus case, we replace this scale with the system dimension, M = 1/(8λR) with
λ a numerical constant. We thus obtain:

Zsol =
∑

N0,M0∈Z
exp

{
−βλ
R

[
N2

0

g0
+ g0

M2
0

q2
0

]}
. (4.92)

The form of Zsol is now in agreement with conformal invariance, Eq. (4.78): the free
parameter λ enters in the definition of units of length and time and so in the non-universal
Fermi velocity. The expression (4.92) is an important result of our work: we shall analyze
it after completing the derivation of partition function.
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4.6.2 Oscillator spectrum

The oscillator part Zosc is obtained from the Euclidean (2 + 1)-dimensional action (4.59),
by evaluating the determinant of the nonlocal kernel. The action can be rewritten in the
form (for ∂µζµ = 0):

S[ζ] =
k2

2πg0

∫
R3

ζµ(x1)
δµν

(x1 − x2)4
ζν(x2) . (4.93)

Under the conformal map r = R exp(u/R) from R3 to M3 = R × S2, with respective
coordinates xµ = (r, θ, ϕ) and x̃α = (u, θ, ϕ), the action is covariant,

S[ζ] =
k2

2πg0

∫
M3

d3x̃1d
3x̃2

√
g(x̃1)g(x̃2) ξ̃α(x̃1)

(
e2(u1+u2)/R

(x1 − x2)4

)
gαβ ξ̃β(x̃2), (4.94)

where the transformations are [123, 124], bµdxµ = b̃αdx̃
α, gαβ = δαβe(u1+u2)/R, and the

expression in parenthesis is the correlator of scalar conformal fields with dimension ∆ = 2

on the cylinder.
The first step in the calculation of the determinant is that of finding the eigenvalues:

these are obtained by the spectral decomposition of the 1/x4 correlator in the covariant
basis of the cylinder, i.e. Fourier modes exp(iωu) and spherical harmonics Y m

` (θ, ϕ). Next,
the determinant is obtained by zeta-function regularization of the product of eigenvalues
[123, 124]. This rather long calculation is done in Appendix D: here we report the main
steps.

The spectral decomposition reads:

e2(u1+u2)/R

(x1 − x2)4
=

8

R4

∞∑
`=0

m=∑̀
m=−`

∫ ∞
∞

dω eiω(u1−u2) Y m
` (θ1, ϕ1)λω,` Y

m∗
` (θ2, ϕ2), (4.95)

where the eigenvalues are,

λω,` =

∞∑
k=0

2k + `+ 2

(ωR)2 + (2k + `+ 2)2

Γ(k + 3/2)Γ(k + `+ 2)

Γ(k + `+ 3/2)Γ(k + 1)
. (4.96)

The sum in this expression is ultraviolet divergent because 1/x4 is not a proper distribution.
Rather surprisingly, it can be evaluated, with result:

λω,` =

( ∞∑
k=0

1

2

)
+
`+ 1

4
− π

4

∣∣∣∣Γ ((`+ 2 + iωR)/2)

Γ ((`+ 1 + iωR)/2)

∣∣∣∣2 . (4.97)

The first two terms in this expression, respectively divergent and finite, correspond to
functions with support for x1 = x2 only, that are subtracted for defining the renormalized
1/x4 kernel.

Next, the product of eigenvalues can be simplified by using an infinite-product repre-
sentation of the Gamma function; dropping inessential factors, one finds:

∏
n∈Z, `≥0

λn,` ∝
∏

n∈Z, `≥0

λ̂n,` , λ̂n,` =

(
2πnR

β

)2

+ Λ`, (4.98)
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where λn,` = λω,` for discretized momentum ω = 2πn/β on S1 and Λ` refer to angular
momentum. The eigenvalues λ̂n,` have now the standard form of Laplace-type operators
on the geometry S1 × S2.

The regularization of the determinant is obtained by introducing the zeta-function:

ζS1×S2(s) =
∞∑

`=`min

∑
n∈Z

δ(`)

(λ̂n,`)s
, (4.99)

where δ(`) is the multiplicity of eigenvalues. The analytic continuation from large positive
values of Re(s) to s ∼ 0 leads to the following expression of the partition function [123, 124],

Zosc = exp

{
1

2

d

ds
ζS1×S2(s)

∣∣∣∣
s=0

}
= e−βC/R

∞∏
`=`min

[
1− exp

(
−β
√

Λ`
R

)]−δ(`)
, (4.100)

where the Casimir energy C/2R is obtained by evaluating the further zeta-function,

C = ζS2 (−1/2) , ζS2(s) =
∞∑

`=`min

δ(`)

Λs`
. (4.101)

The resulting partition function for the loop model takes the form (4.100) with param-
eters (C,

√
Λl, δ(`), `min) given in the first line of Table 4.1. The results of other quadratic

theories are also reported in this Table for the following discussion.

4.7 Conformal invariance and spectrum of the loop model

In this section, we discuss some interesting information on the spectrum that can be drawn
from the expression of Z = ZsolZosc on S1 × S2, Eqs. (4.92) and (4.100).

4.7.1 Particle-vortex duality

The solitonic spectrum in Zsol given by (4.92) involves ‘electric’ and ‘magnetic’ quantum
numbers N0 and M0, respectively. In the fermionic case, corresponding to k = 1 and
minimal charge q0 = 1, the spectrum is manifestly invariant for g0 → 1/g0. This self-
duality is expected, because the conformal fields characterize many observables of the
theory and should occur in self-dual pairs.

On the other hand, the solitonic spectrum on the torus T3, given by (4.70) is not self-
dual, even for vanishing electric fluxes N1 = N2 = 0. Actually, the (2 + 1)-dimensional
duality is not a symmetry of the partition function, but a Legendre transformation, as
explained in Section 4.3.1.

4.7.2 Conformal invariance

The conformal invariance of the loop model is rather natural in the (3 + 1)-dimensional
formulation (4.55), but is not obvious in the nonlocal form in (2+1) dimensions (4.53). The
quantization procedure has actually shown that scale invariance of the solitonic spectrum
is only realized by using a proper IR cut-off. The oscillator part Zosc (4.100) provides
further evidences of conformal invariance at the quantum level, as follows:
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Theory dimension C
√

Λ` δ(`) `min

loop model (2 + 1) 0 ` 2` 1

conformal scalar (2 + 1) 0 `+ 1
2 2`+ 1 0

vector (2 + 1) 6= 0
√
`(`+ 1) 2`+ 1 1

conformal scalar (3 + 1) 1
120 ` `2 1

vector (3 + 1) 3
20 ` 2(`2 − 1) 2

Table 4.1: Parameters entering in the partition function (4.100) of some quadratic theories
[123, 124]: Casimir energy C; energy level

√
Λ`; eigenvalue degeneracy δ(`); minimal value

`min
.

• In a conformal theory, the Casimir energy on S2×R is related to the trace anomaly,
that vanishes in (2 + 1) dimensions [123, 124]. The result C = 0 (cf. Table 4.1)
matches this expectation.

• In a conformal theory, the descendant (derivative) fields have integer-spaced dimen-
sions. These fields appear in the partition function in the oscillator part (4.100) that
indeed shows integer spectrum

√
Λ` ∈ Z (cf. first line of Table 4.1). This property is

also apparent in the conformal scalar, the second line of Table 4.1. On the contrary,
the spectrum of non-conformal Yang-Mills theory (2 + 1) dimensions (cf. third line)
does not have this property: actually, energies do not correspond to scale dimensions,
because the theory is not covariant under the conformal map between the sphere and
the plane.

4.7.3 Comparison with other theories

The loop model corresponds to the large N limit of mixed-dimension QED4,3: it has a
quadratic action but is not a free theory. The inclusion of solitonic modes makes it an
interesting conformal theory, possessing fields with non-trivial dimensions and correlators.
Let us compare it with other conformal theories in Table 4.1.

Besides the integer spaced spectrum already discussed the multiplicities δ(`) are linear
in `, a characteristic of (2 + 1) dimensions, while that of (3 + 1)-dimensional theories are
quadratic due to angular momentum on S3.

Going back to the (3 + 1)-dimensional action (4.55) and integrating over the ζ field,
one find that the loop model can be seen as a constrained Yang-Mills theory, enjoying a
subspace of its Hilbert space. The comparison between the first and last lines of Table 4.1
shows this fact. In conclusion, the loop model is a conformal theory with mixed-dimension
properties.

4.7.4 Anyon excitations

Let us analyze the results of Section 4 for k > 1, that are relevant for the dynamics at the
surface of interacting topological insulators (cf. Section 2.3). In this case, the partition
function (4.91) should describe excitations with fractional charge and statistics in (2 + 1)
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dimensions. The subject is well understood for non-relativistic dynamics, as e.g. in the
fractional quantum Hall effect. The loop model provides a description in the relativistic
scale-invariant domain.

The form of the surface action (4.3) in Section 2.3.4,

Ssurf [a, ζ, A] =
i

2π

∫
(kζda+ ζdA) + Sloop[a] (4.102)

tells us that:

• The ζ field is dual to the background A with minimal charge e0 = 1/k, Eq. (3.25);
thus, magnetic excitations of ζ possess minimal charge ẽ0 = 2π/k in agreement with
the quantization condition (3.42).

• The a field is dual to ζ, i.e. it is electric, and possesses minimal charge q0 = 1, as
confirmed by the constraint A ∼ ka implemented by ζ. Therefore, its monopoles
have minimal charge 2π in Eq.(4.54), i.e. q0 = 1 ∀k.

• The map between the actions (4.9) and (4.8), i.e. by integrating the a field in
(4.3), is a generalization of the particle-vortex duality transformation for theories
with fractional charges (cf. Section 4.3.1). In this transformation, the loop-model
coupling is mapped into:

g̃0 ≡ g =
k2

g0
. (4.103)

These results lead us to consider the solitonic spectrum (4.92) at the electric-magnetic
self-dual point g0 = k:

Esol =
v

R
∆N0,M0 , ∆N0,M0 =

1

2

[
N2

0

k
+ kM2

0

]
, (g0 = k). (4.104)

Upon writing N0 = kn + m, with m = 0, 1, . . . , k − 1 and n ∈ Z, this spectrum contains
states with fractional dimensions ∆ = m2/(2k)+Z. Thus, there are k independent anyonic
sectors in agreement with the value k of the topological order on the S2 × S1 geometry
(this can be computed from the bulk BF theory, as done for the torus geometry in Section
4.5).

Furthermore, the behaviour of conformal correlators on the surface of topological insu-
lators should match the known Aharonov-Bohm phases between excitations predicted by
the BF theory (3.22),

θ =
2πn1n2

k
, n1, n2 ∈ Z (4.105)

Let us explain this point in some detail.
As discussed in Ref.[125], order-disorder fields in (2 + 1) dimensions require: i) Abelian

gauge fields and ii) a symplectic structure. Given the equal-time commutation relations,[
ai(x, t), π

j(y, t)
]

= iδji δ
(2)(x− y), i, j = 1, 2, (4.106)

between the gauge field a and its conjugate momentum π, the order and disorder operators
take the form, respectively,

σ(x, t) = exp

(
−iα

∫ x

−∞
dξiai(ξ, t)

)
,

µ(x, t) = exp

(
iβ

∫ x

−∞
dξiεijπ

j(ξ, t)

)
, (4.107)
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where the line integrals go to −∞ along a given common direction, e.g. the negative
real axis. Using the identity εij∂i∂jArg(x − y) = πδ(2)(x − y), one finds the following
(equal-time) monodromy:

µ
(
ei2πz, t

)
σ(0, t) = ei2αβ µ(z, t)σ(0, t), z = x1 + ix2 . (4.108)

In our setting, the term
∫
k ζda of the action (4.102) gives the symplectic structure with

canonical momentum πi = k/(2π)εijζj . The exponentials of line integrals (4.107) of the
a and ζ fields realize the expected monodromies (4.105) at the surface of the topological
insulators, by suitably choosing the α, β parameters.

The dynamics introduced by Sloop in (4.102) yields two-point functions of conformal
fields, 〈φ(x)φ(0)〉 = (x2)∆. Evaluated at equal time, xµ = (0, x1, x2), the power-law
behavior |z|2∆ should match the monodromy phase (4.105) for reconstructing the analytic
dependence z2∆ of conformal invariance in the two-dimensional plane. The values of ∆ in
the spectrum (4.104) do verify this requirement.

In conclusion, the loop model with coupling constant at the self-dual point g0 = k

describes surface excitations with the correct anyonic phases for reproducing the bulk
monodromies (4.105). Therefore, the bosonic surface action (4.3) is specified by the single
parameter k that span integer points of the critical line of the loop model. Let us remark
again the similarity with the quantization of chiral boson in one less dimension. The
theory has a critical line, but only discrete points parameterized by odd k value fit the
bulk-boundary correspondence.
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Chapter 5

Conclusions and Perspectives

In this thesis we have analyzed the boundary theories of quantum Hall states and time-
reversal invariant topological insulators. In the first case, we have discussed the geometric
responses at the edge of the incompressible Hall fluid. In the second case, we quantized
the conformal invariant surface theory for interacting topological insulators.

The first part of this thesis contains our analysis of quantum Hall states where we
clarified the bulk-boundary correspondence involving the intrinsic orbital spin s of elec-
trons. Studying the spectrum of multiple branches of CFT at the edge, we were able to
identify Casimir-like ground-state values of charge and conformal spin in the edge theory
that depend on the orbital spin. This is in agreement with the bulk effective field theory
[58] and can be interpreted as due to the extrinsic curvature of the edge. We also discussed
the measure of these edge effects by a Coulomb blockade experiment.

Further results in the bulk-boundary correspondence in the quantum Hall effect were
briefly discussed in the last section of Chapter 2. We developed an in-depth analysis of the
fluctuations of quantum incompressible fluids, by using their dynamicalW∞ symmetry [3].
The construction of generators of these transformations and the bosonization of the two-
body interaction led us to go beyond the conformal field theory setting. We can describe
excitations that extend from the edge to the bulk interior. This approach provides an
interesting scheme for understanding universal bulk physics in the Hall effect beyond the
extreme low-energy limit of the topological theory.

In the second part of this thesis, we considered the (3 + 1)-dimensional topological
insulators and the associated topological BF gauge theory. We analyzed the surface effec-
tive field theory and introduced non-local dynamics via the loop model. The formulation
of this model as a local theory in (3 + 1) dimensions allowed us to calculate partition
functions in two geometries. We showed that this model can be defined to be a conformal
invariant theory in (2 + 1) dimensions that bears some similarities with the compactified
boson in (1 + 1) dimensions [17]. Its coupling constant spans a critical line along which
the spectrum displays fermionic and anyonic excitations, thus providing the bosonization
of free and interacting fermions.

Let us mention possible extensions of this line of research:

• The loop model can be generalized by including 1/NF corrections stemming from
the relation with the mixed-dimensional electrodynamics QED4,3. In this respect,
it provides a viable platform for quantitative analysis of duality maps and other
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interesting aspects of (2 + 1)-dimensional physics.

• The analysis of order-disorder fields in the loop model can be extended beyond the
simple observations of Section 4.7.4. The calculation of correlation functions may
reveal the bosonization of fermionic fields in massless theories.

We conclude this thesis by stressing that effective field theory approach has many
interesting direction to explore in the study of topological states: in particular, the role of
the boundary conformal field theories. The effective theories for other topological phases
appearing in the ten-fold classification are largely unknown. In some cases, this approach
may explain the modification in the classification due to the interactions between electrons.
It is also believed that the topological index should be related to other kinds of anomalies.

Recently, new phases have been introduced that possess stable edge states even if they
are massless in the bulk. These are called gapless topological phases. In these cases,
the conformal field theory at the boundary is protected by a symmetry in analogy to the
symmetry protected topological phases and again allows to understand properties of the
bulk.
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Appendix A

Confining potentials

The simplest model is obtained by adding a quadratic confining potential V = v|z|2/R to
the Landau level Hamiltonian in (1.3), as follows:

H(2) = H + V = 2a†a+ 1 +
v

R

(
a†a+ b†b+ 1 + a†b† + ab

)
, (A.1)

where z and z̄ are expressed in terms of the a and b oscillators (2.7). The exact spectrum
of H (A.1) can be obtained by a Bogoliubov transformation in the two-dimensional space
of the oscillator pair (a, b), leading to the new pair (A,B) defined by:{

A = cosh (φb) a+ sinh (φb) b
†,

B = cosh (φb) b+ sinh (φb) a
†,

(A.2)

(A.3)

with tanh(2φb) = v
v+R . The result is:

H(2) =

(
1 +

√
1 +

2v

R

)
A†A+

(√
1 +

2v

R
− 1

)
B†B + const. . (A.4)

After the transformation, the angular momentum is J = B†B − A†A, with eigenvalue m,
and the A†A eigenvalue n gives the dressed Landau levels energies.

We now obtain the energy spectrum of the edge excitations by evaluating the spectrum
of (A.4) in the limit to the edge defined in section three, namely |z| = r = R+ x, R→∞
with m = L+m′, L = R2, |m′| <

√
L. The result is:

ε
(2)
n,m′ = 2n+ vR+ v

m′ + 2n+ 1

R
+O

(
m′2

R2

)
+ const., (A.5)

where the divergent term must be subtracted from the potential, V → V −vR = 2x+x2/R,
to obtain a finite linear term.

The spectrum with other potentials V ∼ rk/Rk−1 is necessary to disentangle the con-
tribution of the linear and quadratic terms in the spectrum ε

(2)
n,m and to evaluate the higher

terms x3/R2, etc. . . . The Bogoliubov transformation does not apply to generic potentials,
and we use another method that works in the relevant limit R → ∞. Note that the an-
gular momentum J = b†b− a†a is a good quantum number for any potential and it takes
very large values in this limit; this means that the expectation values of b†b is of order
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R2. Remembering the case of Bose-Einstein condensation, we can treat the b operator as
a classical variable, and write:

b ∼ b† ∼
√
b†b =

√
R2 +m′ + a†a ' R

(
1 +

m′ + a†a

2R2

)
∼ R+O

(
1

R

)
. (A.6)

We use this approximation in the original Hamiltonian (A.1) and find the expression:

H(2) = 2
(

1 +
v

R

)
a†a+ v

m′

R
+ v

(
a† + a

)
+ const.. (A.7)

This result can be checked with the R → ∞ limit of the Bogoliubov transformation
(A.2, A.3). Note that the rotation angle φb is small:

A ' a+
v

2R
b†,

B ' b+
v

2R
a†.

(A.8)

(A.9)

Substituting these expressions and the approximation (A.6) into the exact result (A.4), we
reobtain the expression (A.7). Furthermore, the result (A.7) also agrees with the R→∞
limit of the exact matrix elements of the quadratic potential,

〈i, R2 +m′|V (2) |j, R2 +m′〉 '

v

[(
R+

m′ + 2i+ 1

R

)
δi,j +

√
j + 1δi,j+1 +

√
jδi,j−1

]
, (A.10)

that can be evaluated using the wave functions (1.4) and the help of Mathematica.
We now diagonalize the approximate H(2) (A.7) directly. We note that a shift of the

operator a by a constant, setting

A = a+
v

2

(
1− v

R

)
, (A.11)

reproduces the R → ∞ limit of the Bogoliubov transformation (A.4). In conclusion,
the spectrum (A.5) has been recovered by using directly the approximation (A.6) in the
Hamiltonian H(2).

We extend the previous analysis to the cases of linear and quartic confining potentials,
V (1) = v1r and V (4) = v4r

4/R3. In the linear case, the Hamiltonian is:

H(1) = 2a†a+ 1 +
v1

R

(
a†a+ b†b+ 1 + a†b† + ab

)1/2
. (A.12)

We apply the large R limit and the approximation (A.6), subtract the infinite term and
find:

H(1) = 2a†a+
v1

2

(
a† + a

)
+
v1

8R

(
6a†a+ 4m′

)
− v1

8R

(
a†2 + a2

)
+ const.. (A.13)

The calculation of the matrix elements of V (1) in the edge limit agrees with the previous
result:

〈i, R2 +m′|V (1) |j, R2 +m′〉 '

v1

[(
6i+ 4m′

8R
+R

)
δi,j +

v1

2

(√
i− 1δi−1,j +

√
iδi,j−1

)
+
v1

8R

(√
(j + 2)(j + 1)δi,j+2 +

√
j(j − 1)δi,j−2

)]
. (A.14)
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The equation (A.13) involves an additional term
(
a†2 + a2

)
w.r.t the quadratic case (A.7)

corresponding to non-vanishing matrix elements on the third diagonal. After the shift by
constant of the operator a, the HamiltonianH(1) ∼ A†A+λ

(
A†2 +A2

)
can be diagonalized

by a change of the oscillator frequency which turns out to be O(1/R2). The diagonal form
of the Hamiltonian H(1) is finally,

H(1) '
(

2 +
3v1

4R

)
A†A+ v1

m′

2R
+ const., (A.15)

with spectrum:

ε
(1)
n,m′ = 2n+ v1

(
m′

2R
+

3n

4R

)
+ const.. (A.16)

In the case of quartic potential, the approximated Hamiltonian can be written as fol-
lows:

H(4) = 2a†a+ 1 +
v4

R

(
6a†a+ 2m′

)
+ 2v4

(
a† + a

)
+
v4

R

(
a†2 + a2

)
+ const., (A.17)

in agreement with the matrix elements,

〈i, R2 +m′|V (4) |j, R2 +m′〉 '

v4

[
1

R

(
6i+ 2m′ + const.

)
δi,j + 2

√
j + 1δi,j+1 + 2

√
jδi,j−1

+
1

R

(√
(j + 1) (j + 2)δi,j+2 +

√
j (j − 1)δi,j−2

)]
. (A.18)

We can diagonalized (A.17) by introducing once again a constant shift in operator a and
the frequency redefinition, leading to the spectrum:

ε
(4)
n,m′ = 2n+ v4

(
2m′

R
+

6n

R

)
+ const.. (A.19)

Now let us discuss the generic confining potential (2.24) for r = R+ x→∞:

V (x;R) = a1x+
a2

R
x2 +

a3

R2
x3 + . . . . (A.20)

We are interested in the relativistic conformal spectrum at the edge (2.23), which is of
order O(1/R). We compare the spectrum of V (2), V (1) and V (4) computed in this limit
and obtain the following consistent result for the spectrum:

εn,m′ = a1

(
m′

2R
+

3n

4R

)
+ a2

n

2R
+ const.. (A.21)

This comparison shows that the higher terms x3/R2 that appear for example in V (4), do
not contribute to leading order O(1/R). This fact can also be checked by evaluating the
corresponding matrix elements in the edge limit (2.13).

In conclusion, the relativistic conformal spectrum takes values from the linear and
quadratic terms in (A.20).
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Appendix B

Higher-order terms in the Moyal
brackets

The second-order term O(1/B2) of the Moyal brackets (2.44) for the variation of the first
Landau level density takes the form:

δρ̃(0) =
2i

B2

(
∂̄2ρ(0)

)
∂2w + h.c. . (B.1)

Remembering that ρ = ρ(0) (r), we rewrite it as follows:

δρ̃(0) =
2i

B2

[(
∂

∂r2

)2

ρ(0)

] (
z2∂2 − z̄2∂̄2

)
w. (B.2)

The action of the operator,
D2 = z2∂2 − z̄2∂̄2, (B.3)

on a generic polynomial w ∼ znz̄m is given by:

D2z
nz̄m = (n−m) (n+m− 1) znz̄m. (B.4)

The second-order correction (B.2) to the edge current modes (2.46) can be easily computed
by integrating the density in space and by taking the edge limit (2.49); we find:

δρ̃
(0)
k =

1

R

∫
dx xe−2x2 iD2w(x, θ), (B = 2). (B.5)

This expression is different from the leading contribution δρ
(0)
k in Eq.(2.50) for two

reasons. The first is the order O(1/R) that is subleading w.r.t. the O(1) behaviour entering
the conformal current algebra (1.42). The second aspect is that the dependence on the
Fourier modes (B.5) given by the operator D2 does not appear in the conformal operators
ρk and Lκ discussed earlier (cf. (1.39), (1.40)). Actually, this spectrum is associated to a
higher-spin conserved current of the conformal theory, the dimension-three current V̂ 2(η),
whose expression in the fermionic conformal theory is [67]

V̂ 2
0 =

1

R2

∑
r

(
r − 1

2

)2

: d̂†rd̂r : , (B.6)
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(note the quadratic weight in the sum w.r.t. the linear one of L̂0 (1.39)). Actually, the
action of V̂ 2

0 on a particle-hole excitation, d̂†nd̂m |Ω〉 is readily found to reproduce the
eigenvalue of D2 in (B.4). The operator V̂ 2

0 naturally appears as a subleading 1/R2 term
in the Hamiltonian (2.22) of the conformal theory on the cylinder and corresponds to a
non-relativistic correction to the edge dynamics [67]. In summary, the second order term
in the Moyal brackets represents a non-relativistic corrections to the conformal theory of
edge excitations.

We remark that such a correction is expected to express another physical effect of the
orbital spin s. The work [44] presented an analysis of the 1/B correction to the effective
theory of section 2: it involves a spin-two hydrodynamic field in the bulk bk = bµkdx

µ,
where k is a space index, and a generalized action with coupling constant proportional to
s. In analogy with the discussion in section 2, this action requires a boundary term that
involves the edge theory: the corresponding contribution to Ĥ is expected to be given by
(B.6).

In conclusion, the O(1/B2) term in the Moyal brackets describes a non-relativistic
corrections to the conformal theory that is parameterized by the orbital spin. The complete
analysis of this effect is left to future developments of this work. Let us mention the related
approach [126] discussing the non-relativistic correction to the Hall conductivity due to the
orbital spin.

A final remark concerns the relation between the 1/B series in the bulk and the 1/R

expansion at the edge defined in section 3. To leading order in 1/B, a finite limit is found
for bulk quantities in the rescaled coordinate u, with r = Ru ∼

√
Nu. For example, the

limit of the ground-state density of Laughlin states is given by the step function,

ρ(
√
Nu) =

νB

2π
Θ(1− u). (B.7)

In this limit, the magnetic length is sent to zero, owing to `2 = 2/B, and the edge region
shrinks to a point. On the contrary, in the edge limit R → ∞ the relevant features take
place in the shell x = r−R = O(`), where the wavefunctions have support and the Hermite
polynomial expansion takes place. This region should be kept finite. Therefore, the 1/B

approximation is not accurate enough for the analysis of edge excitations because it is too
singular in that region.

In conclusion, we identified the first subleading term that is expressed by the spin-
three conserved current [67] and parameterized by the orbital spin. Being observable in
the conformal theory, such correction could give physical sense to s also for single-branch
excitations. The bulk-boundary correspondence for subleading corrections will involve the
study of the effective theory introduced in Ref.[44] within the multipole expansion of bulk
excitations.
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Appendix C

Peierls argument

We evaluate the Euclidean action of the loop model (4.13) on the configuration of a
monopole with minimal magnetic charge 2π/q0:

Fµν =
1

2q0
εµνρ

xρ
|x|3

. (C.1)

The integral of the nonlocal term in (4.13) reads:

S =
g

32π3q2
0

∫
d3x1

|x1|3
d3x2

|x2|3
(x1 · x2)

|x1 − x2|2

=
g

4πq2
0

∫ ∞
0

dα

∫ ∞
0

dr1

∫ ∞
0

dr2

∫ 1

−1
dy y e−α(r21+r22−2r1r2y) , (C.2)

where we have used polar coordinates, exponentiated the denominator and introduced the
variable y = cos(θ1 − θ2). Upon rescaling the radii, si = ri

√
α, i = 1, 2, the integral

factorizes into a logarithmic divergent part and a finite part, namely the integrals over α
and over the others variables.

We observe that being α conjugated to r2, we can regularize the divergent contribution
as follows: ∫ +∞

0

dα

α
→

∫ 1/a2

1/L2

dα

α
= 2 ln

(
L

a

)
, (C.3)

where α and L are the lattice constant and the system size respectively. On the other hand
the finite part can be evaluated in polar coordinates s1 = s cos(η), s2 = s sin(η), leading
to the result (4.15).
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Appendix D

Loop-model determinant on S2 × R

In this appendix we give some details concerning the calculation of the oscillator spectrum
and determinant of the loop model reported in Section 4.2. The first step is the spectral
decomposition of the 1/x4 kernel in the action (4.93).

D.0.1 Kernel decomposition

As a warming up, we determine the spectral form of the propagator of scalar fields,

〈φ(x1)φ(x2)〉R3 =
1

|x1 − x2|
. (D.1)

The conformal map from flat space xµ = (r, θ, ϕ) to the cylinder x̃α = (u, θ, ϕ) is obtained
by transforming the fields, φ̃ = eu/2Rφ, leading to:

〈φ̃(x̃1)φ̃(x̃2)〉R×S2 =
e(u1+u2)/2R

|x1 − x2|
. (D.2)

This expression can be expanded in terms of Legendre polynomials P` and spherical
harmonics Y m

` , by using [127, 128]:

1

|x1 − x2|
=

∞∑
`=0

r`1
r`+1

2

P` (x̂1 · x̂2) , xi = rix̂i, i = 1, 2, r1 < r2,

P` (x̂1 · x̂2) =
4π

2`+ 1

∑̀
m=−`

Y m ∗
` (θ1, ϕ1)Y m

` (θ2, ϕ2) . (D.3)

Introducing the Fourier modes eiωu, we obtain the spectral decomposition:

〈φ̃(x1)φ̃(x2)〉R×S2 = 4π

∫ ∞
−∞

dω

∞∑
`=0

∑̀
m=−`

eiω(u1−u2) Y m ∗
` (θ1, ϕ1) λω,` Y

m
` (θ2, ϕ2) ,

λω,` =
1

(Rω)2 + (`+ 1/2)2 .

(D.4)

This spectrum confirms that the propagator is the inverse of the conformal Laplacian in
(2 + 1) dimensions, as reported in Table 1 for the conformal scalar theory.

Let us now apply the same procedure to the 1/x4 kernel. We use the identity,

1

|x|4
=

1

2|x|

∫ ∞
0

dp p2 e−p|x|, (D.5)
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and the formula:

e−p|x1−x2|

|x1 − x2|
=

∞∑
`=0

(2`+ 1)
√
r1r2

I`+ 1
2

(pr1)K`+ 1
2

(pr2)P` (x̂1 · x̂2) , r1 < r2, (D.6)

where Im and Km are modified Bessel functions of the first and second kind, respectively.
The integration over p of the Bessel functions leads to the Hypergeometric function 2F1;
the kernel with appropriated Weyl factors is then written:

e2(u1+u2)/R

|x1 − x2|4
=

√
π

R4

∞∑
`=0

e−|u|(`+2)/R Γ (`+ 2)

Γ
(
`+ 1

2

) 2F1

(
3

2
, `+ 2, `+

3

2
; e−2|u|

)
P` (x̂2 · x̂2) ,

(D.7)
where u = u1 − u2. Finally, the series expansion of the Hypergeometric function allows
one to compute the Fourier modes, leading to the spectral decomposition (4.95) with
eigenvalues (4.96):

λω,` =
∞∑
k=0

2k + `+ 2

(ωR)2 + (2k + `+ 2)2

Γ(k + 3/2)Γ(k + `+ 2)

Γ(k + `+ 3/2)Γ(k + 1)
. (D.8)

D.0.2 Field decomposition

The spin-one field on the cylinder ζ̃ is expanded in the basis of vector spherical harmonics
YJLSM
µ , with S = 1, that can be written in terms of scalar harmonics Y m

L and constant
vectors χmµ by using the addition of angular momenta [128]:

ζ̃µ (x̃) =

∫
dω

2π
eiωu

∞∑
J=1

J+1∑
L=J−1

J∑
M=−J

ζ̃J,L,M (ω) YJL1M
µ (θ, ϕ) ,

YJL1M
µ (θ, ϕ) =

L∑
m=−L

1∑
m′=−1

CL,1
(
J,M,m,m′

)
Y m
L (θ, ϕ)χm

′
µ ,

(D.9)

where CL,1 (J,M,m,m′) are the Clebsh-Gordan coefficients with M = m+m′.
Upon substituting the previous expansions in the Euclidean action (4.93) and making

use of orthonormality, we obtain:

S[ζ] ∝
∫
dω

2π

∞∑
L=0

L+1∑
J=L−1

J∑
M=−J

∣∣∣ζ̃J,L,M (ω)
∣∣∣2 λω,L , (D.10)

where ζ̃−1,L,M (ω) = 0. The eigenvalues λω,L (D.8) of the scalar kernel (D.7) only depends
on the orbital momentum and reduce the summations in (D.10) to a single one over L =

0, 1, . . . , with multiplicities δ(L). The gauge condition ∂µζµ = 0 imposes ζ̃L,L,M (ω) = 0,
and one finds,

δ(L) = 2 (2L+ 1) . (D.11)

D.0.3 Resummation and regularization

The sum over k in the eigenvalues λω,` (D.8) is regularized by subtracting the asymptotic
k →∞ limit of the summand, equal to 1/2:

I (`) =
∞∑
k=0

[
(`+ 2 + 2k)

a2 + (`+ 2 + 2k)2

Γ (`+ 2 + k) Γ (k + 3/2)

Γ (`+ 3/2 + k) Γ (k + 1)
− 1

2

]
, (D.12)
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where a = ωR. The series (D.12) can be summed by using the Sommerfeld-Watson method
and the result is expressed in terms of two finite products for even and odd ` values,
respectively:

I (`) =
`+ 1

4
−



πa

8

(`−1)/2∏
i=0

(2i+ 1)2 + a2

(2i)2 + a2
tanh

(aπ
2

)
, ` = 1, 3, . . . ,

π(1 + a2)

8a

`/2∏
i=0

(2i)2 + a2

(2i− 1)2 + a2
coth

(aπ
2

)
, ` = 0, 2, . . . .

(D.13)

Both products are rewritten as a ratio of complex gamma functions squared, leading to
the regularized eigenvalues,

λregω,` = I (`)− `+ 1

4
= −π

4

∣∣∣∣Γ ((`+ 2 + iωR)/2)

Γ ((`+ 1 + iωR)/2)

∣∣∣∣2 , (D.14)

reported in (4.97). For compact time β, the Fourier modes are discretized, ωR = n/τ ,
with τ = β/(2πR), n ∈ Z.

Next, the infinite-product representation of the gamma function [129],

Γ (a+ ib)

Γ (a)
= e−iγb

(
1 + i

b

a

)−1 ∞∏
k=1

eib/k
(

1 + i
b

a+ k

)−1

, a, b ∈ R, (D.15)

is used to rewrite the product of eigenvalues occurring in the determinant. Dropping
inessential τ -independent factors, we obtain the expression:

∑
n,`

δ(`) log
(
λregn,`

)
=

∑
n∈Z

∞∑
`,k=0

δ(`) log

[
n2 + τ2(`+ 2k + 1)2

n2 + τ2(`+ 2k + 2)2

]

=
∑
n∈Z

∞∑
L=0

2L log
(
n2 + τ2L2

)
. (D.16)

The sums in this expression simplify because the indices ` and k come in the combination
L = ` + 2k. The resulting sum over n,L, with multiplicity δ(L) = 2L, can now be
analytically continued by using the zeta-function method, as described in the main text.
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