
Journal of Scientific Computing (2021) 89:46
https://doi.org/10.1007/s10915-021-01654-1

A Relaxed Interior Point Method for Low-Rank Semidefinite
Programming Problems with Applications to Matrix
Completion

Stefania Bellavia1 · Jacek Gondzio2 ·Margherita Porcelli3

Received: 14 April 2020 / Revised: 24 March 2021 / Accepted: 17 August 2021
© The Author(s) 2021

Abstract
A new relaxed variant of interior point method for low-rank semidefinite programming prob-
lems is proposed in this paper. The method is a step outside of the usual interior point
framework. In anticipation to converging to a low-rank primal solution, a special nearly
low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) struc-
ture, the first order optimality conditions have to be relaxed and are therefore approximated
by solving an auxiliary least-squares problem. The relaxed interior point framework opens
numerous possibilities how primal and dual approximated Newton directions can be com-
puted. In particular, it admits the application of both the first- and the second-order methods
in this context. The convergence of the method is established. A prototype implementation
is discussed and encouraging preliminary computational results are reported for solving the
SDP-reformulation of matrix-completion problems.

Keywords Semidefinite programming · Interior point algorithms · Low rank · Matrix
completion problems

The work of the first (S.Bellavia) and the third (M. Porcelli) authors was supported by Gruppo Nazionale per
il Calcolo Scientifico (GNCS-INdAM) of Italy. The work of the second author (J.Gondzio) was supported by
EPSRC Research Grant EP/N019652/1.
S.Bellavia and M. Porcelli are members of the INdAM Research Group GNCS.

B Jacek Gondzio
j.gondzio@ed.ac.uk

Stefania Bellavia
stefania.bellavia@unifi.it

Margherita Porcelli
margherita.porcelli@unibo.it

1 Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, viale Morgagni 40,
50134 Firenze, Italy

2 School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s
Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

3 Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01654-1&domain=pdf
http://orcid.org/0000-0002-3691-7836
http://orcid.org/0000-0002-6270-4666
http://orcid.org/0000-0003-0183-1204

 46 Page 2 of 36 Journal of Scientific Computing (2021) 89:46

Mathematics Subject Classification 90C22 · 90C51 · 65F10 · 65F50

1 Introduction

We are concerned with an application of an interior point method (IPM) for solving large,
sparse and specially structured positive semidefinite programming problems (SDPs).

Let SRn×n denote the set of real symmetric matrices of order n and let U • V denote
the inner product between two matrices, defined by trace(UT V). Consider the standard
semidefinite programming (SDP) problem in its primal form

min C • X
s.t. Ai • X = bi i = 1, . . . ,m

X � 0,
(1.1)

where Ai ,C ∈ SRn×n and b ∈ R
m are given and X ∈ SRn×n is unknown and assume

that matrices Ai , i = 1, 2, . . . ,m are linearly independent, that is
∑m

i=1 di Ai = 0 implies
di = 0, i = 1, . . . ,m. The dual form of the SDP problem associated with (1.1) is:

max bT y

s.t.
m∑

i=1
yi Ai + S = C

S � 0,

(1.2)

where y ∈ R
m and S ∈ SRn×n .

The number of applications which involve semidefinite programming problems as a mod-
elling tool is already impressive [40,44] and is still growing. Applications include problems
arising in engineering, finance, optimal control, power flow, various SDP relaxations of com-
binatorial optimization problems, matrix completion or other applications originating from
modern computational statistics and machine learning. Although the progress in the solution
algorithms for SDP over the last two decades was certainly impressive (see the books on
the subject [2,15]), the efficient solution of general semidefinite programming problems still
remains a computational challenge.

Among various algorithms for solving (linear) SDPs, interior point methods stand out as
reliable algorithmswhich enjoy enviable convergence properties and usually provide accurate
solutions within reasonable time. However, when sizes of SDP instances grow, traditional
IPMs which require computing exact Newton search directions hit their limits. Indeed, the
effort required by the linear algebra in (standard) IPMs may grow as fast as O(n6).

Although there exists a number of alternative approaches to interior point methods, such
as for example [8,9,30], which can solve certain SDPs very efficiently, they usually come
with noticeably weaker convergence guarantees. Therefore there is a need to develop faster
IPM-based techniques which could preserve some of the excellent theoretical properties of
these methods, but compromise on the other features in quest for practical computational
efficiency. Customized IPM methods have been proposed for special classes of problems.
They take advantage of sparsity and structure of the problems, see e.g. [4,5,21,31,36,41] and
the references in [1].

In this paper we focus on problems in which the primal variable X is expected to be low-
rank at optimality. Such situations are common in relaxations of combinatorial optimization
problems [5], for example in maximum cut problems [22], as well as in matrix completion
problems [11], general trust region problems and quadratically constrained quadratic prob-

123

Journal of Scientific Computing (2021) 89:46 Page 3 of 36 46

lems in complex variables [34]. We exploit the structure of the sought solution and relax the
rigid structure of IPMs for SDP. In particular we propose to weaken the usual connection
between the primal and dual problem formulation and exploit any special features of the
primal variable X . However, the extra flexibility added to the interior point method comes at
a price: the worst-case polynomial complexity has to be sacrificed in this case.

Rankplays an important role in semidefinite programming. For example, every polynomial
optimization problem has a natural SDP relaxation, and this relaxation is exact when it
possesses a rank-1 solution [34]. On the other hand, for any general problem of the form
(1.1), there exists an equivalent formulationwhere an additional bound r on the rank of X may
be imposed as long as r is not too small [9]. More specifically, under suitable assumptions,
there exists an optimal solution X∗ of (1.1) with rank r satisfying r(r+1)/2 ≤ m. There have
been successful attempts to identify low rank submatrices in the SDP matrices and eliminate
them with the aim to reduce the rank and hence the difficulty of solving an SDP. A technique
called facial reduction [26] has been analysed and demonstrated to work well in practice.
Interestingly, when positive semidefinite programs are solved using interior-point algorithms,
then because of the nature of logarithmic barrier function promoting the presence of nonzero
eigenvalues, the primal variable X typically converges to a maximum-rank solution [24,34].
However, in this paper we aim at achieving the opposite. We want to design an interior point
method which drives the generated sequence of iterates to converge to a low-rank solution.
We assume that constraint matrices are sparse and we search for a solution X of rank r of
the form X = UUT with U ∈ R

n×r .
Special low-rank structure of X maybe imposed directly in problem (1.1), but this excludes

the use of an interior point algorithm (which requires all iterates X to be strictly positive
definite). Burer andMonteiro [8,9] and their followers [6,7] have used such an approach with
great success. Namely, they have substitutedUUT for X in (1.1) and therefore have replaced
it with the following nonlinear programming problem

min C • (UUT)

s.t. Ai • (UUT) = bi i = 1, . . . ,m,
(1.3)

with U ∈ R
n×r . Although such transformation removes the difficult positive definiteness

constraint (it is implicit as X = UUT), the difficulty is shifted elsewhere as both the objective
and constraints in (1.3) are no longer linear, but instead quadratic and in general non-convex.
In comparison with a standard IPM the method proposed in [8,9] and applied to solve large-
scale problems enjoys substantially reduced memory requirements and very good efficiency
and accuracy. However, due to nonconvexity of (1.3), local methods may not always recover
the global optimum. In [6,7] authors showed that, despite the non-convexity, first- and second-
order necessary optimality conditions are also sufficient, provided that rank r is large enough
and constraints satisfy some regularity conditions. That is, when applied to several classes of
SDPs, the low-rank Burer–Monteiro formulation is very unlikely to converge to any spurious
local optima.

In this paper we propose a different approach. We would like to preserve as many of the
advantageous properties of interior point methods as possible and expect to achieve it by
(i) working with the original problem (1.1) and (ii) exploiting the low-rank structure of X .
Knowing that at optimality X is low-rank we impose a special form of the primal variable
throughout the interior point algorithm

X = μIn +UUT ,

with U ∈ R
n×r , for a given r > 0 and μ denoting the barrier term. Hence X is full rank

(as required by IPM), but approaches the low-rank matrix as μ goes to zero. Imposing such

123

 46 Page 4 of 36 Journal of Scientific Computing (2021) 89:46

special structure of X offers an advantage to an interior point algorithm: it can work with
an object of size nr rather than a full rank X of size n2. We have additionally considered an
adaptive choice of r assuming that this rank may not be known a priori. Indeed, the method
can start with r equal to 1 or 2 and gradually increase r to the necessaryminimum rank (target
rank). Remarkably, the method can also handle problems with nearly-low-rank solution, as
the primal variable is not assumed to be low-rank along the iterations, but it is gradually
pushed to a low-rank matrix. Finally, the presence of the perturbation term μI allows to deal
with possibly noisy right-hand side b as well. We also further relax the rigid IPM structure.
Starting from a dual feasible approximation, we dispose of dual slack variable S and avoid
computations which would involve large Kronecker product matrices of dimension n2 × n2

(and that in the worst case might require up to O(n6) arithmetic operations). We investigate
the use of both first- and second-order methods for the step computation and devise matrix-
free implementations of the linear algebra phase arising in the second-order method. Such
implementations are well-suited to the solution of SDP relaxations of matrix completion
problems [13].

The paper is organised as follows. After a brief summary of notation used in the paper
provided at the end of this section, in Sect. 2 we present the general framework and deliver
some theoretical insights into the proposed method. In Sect. 3 we explain the mechanism
which allows to adaptively reveal the rank of the minimum rank solution matrix X . The
proposed approach offers significant flexibility in the way howNewton-like search directions
are computed. They originate from a solution of a least squares problem. We see it in detail
in Sect. 4. Next, in Sect. 5 we discuss the properties of low-rank SDPs arising in matrix
completion problems and in Sect. 6 we present preliminary computational results obtained
with a prototypeMatlab implementation of the new algorithm. We also provide a comparison
of its efficiency againstOptSpace [28,29]when bothmethods are applied to various instances
of matrix completion problems. Finally, in Sect. 7 we give our conclusions. “Appendix A”
contains some notes on the Kronecker product of two matrices and on matrix calculus.

Notation The norm of the matrix associated with the inner product between two matrices
U • V = trace(UT V) is the Frobenius norm, written ‖U‖F := (U • U)1/2, while ‖U‖2
denotes the L2-operator norm of a matrix. Norms of vectors will always be Euclidean. The
symbol Ip denotes the identity matrix of dimension p × p.

Let A be the linear operator A : SRn → R
m defined by

A(X) = (Ai • X)mi=1 ∈ R
m,

with Ai ∈ SRn×n , then its transposition AT

AT v =
m∑

i=1

vi Ai .

Moreover, let AT denote the matrix representation of AT with respect to the standard bases
of Rn , that is

AT := [vec(A1), vec(A2), . . . , vec(Am)] ∈ R
n2×m, (1.4)

and

A(X) = A vec(X) and AT v = mat(AT v),

where mat is the “inverse” operator to vec (i.e., mat(vec(Ai)) = Ai ∈ SRn×n) and the vec
operator is such that vec(A) is the vector of columns of A stacked one under the other.

123

Journal of Scientific Computing (2021) 89:46 Page 5 of 36 46

2 Relaxed Interior Point Method for Low-Rank SDP

Interior point methods for semidefinite programming problems work with the perturbed first-
order optimality conditions for problems (1.1)–(1.2) given by:

Fμ(X , y, S) =
⎛

⎝
AT y + S − C
A(X) − b
XS − μIn

⎞

⎠ = 0, μ > 0, S � 0 X � 0. (2.1)

A general IPM involves a triple (X , y, S), performs steps in Newton direction for (2.1), and
keeps its subsequent iterates in a neighbourhood of the central path [2,15]. The convergence
is forced by gradually reducing the barrier term μ. However, having in mind the idea of
converging to a low-rank solution, we find such a structure rather restrictive and wish to relax
it. This is achieved by removing explicit S from the optimality conditions and imposing a
special structure of X .

Substituting S = C − AT y from the first equation into the third one, we get
(A(X) − b
X(C − AT y) − μIn

)

= 0, μ > 0, C − AT y � 0, X � 0. (2.2)

Next, following the expectation that at optimality X has rank r , we impose on X the following
special structure

X = μIn +UUT , (2.3)

with U ∈ R
n×r , for a given r > 0. We do not have any guarantee that there exists a solution

of (2.2) with such a structure, but we can consider the least-square problem:

min
U ,y

φμ(U , y) := 1

2
‖Fr

μ(U , y)‖2, (2.4)

where Fr
μ(U , y) : Rn×r × R

m → R
n2+m is given by

Fr
μ(U , y) =

(A(μIn +UUT) − b
vec((μIn +UUT)(C − AT y) − μIn)

)

, μ > 0. (2.5)

The nonlinear function Fr
μ(U , y) has been obtained substituting X = μIn + UUT in (2.2)

after vectorization of the second block. The associated system Fr
μ(U , y) = 0 is overdeter-

mined with (m+n2) equations and (nr +m) unknowns (U , y). In the following, for the sake
of simplicity, we identify Rn×r × R

m with R
nr+m .

It is worth mentioning at this point that the use of least-squares type solutions to an
overdetermined systems arising in interior point methods for SDP was considered in [16,32].
Its primary objective was to avoid symmetrization when computing search directions and
the least-squares approach was applied to a standard, complete set of perturbed optimality
conditions (2.1).

We propose to apply to problem (2.4) a similar framework to that of interior pointmethods,
namely: Fix μ, iterate on a tuple (U , y), and make steps towards a solution to (2.4). This
opens numerous possibilities. One could for example compute the search directions for both
variables at the same time, or alternate between the steps in U and in y.

Bearing in mind that (2.1) are the optimality conditions for (1.1) and assuming that a rank
r optimal solution of (1.1) exists, we will derive an upper bound on the optimal residual of

123

 46 Page 6 of 36 Journal of Scientific Computing (2021) 89:46

the least-squares problem (2.4). Assume that a solution (X∗, y∗, S∗) of the KKT conditions
exists such that X∗ = U∗(U∗)T , U∗ ∈ R

n×r , that is

A(U∗(U∗)T) = b
S∗ = C − AT y∗ � 0
U∗(U∗)T S∗ = 0.

(2.6)

Then evaluating (2.5) at (U∗, y∗) and using (2.6) we get

Fr
μ(U∗, y∗) =

(A(μIn) + A(U∗(U∗)T) − b
vec((μIn +U∗(U∗)T)(C − AT y∗) − μIn)

)

=
(

μA(In)
μ vec(S∗ − In)

)

.

Consequently, we obtain the following upper bound for the residual of the least-squares
problem (2.4):

φμ(U∗, y∗) = 1

2
‖A(U∗(U∗)T + μIn) − b‖2 + 1

2
‖(U∗(U∗)T + μIn)(C − AT y∗) − μIn‖2F

= ω∗μ2, (2.7)

where

ω∗ = 1

2
‖A(In)‖22 + 1

2
‖S∗ − In‖2F . (2.8)

Assuming to have an estimate ofω∗ we are now ready to sketch in Algorithm 1 the general
framework of a new relaxed interior point method.

To start the procedure we need an initial guess (U0, y0) such that U0 is full column rank
and S0 = C −AT y0 is positive definite, and an initial barrier parameterμ0 > 0. At a generic
iteration k, given the current barrier parameter μk > 0, we compute an approximate solution
(Uk, ȳk) of (2.4) such that φμk (Uk, ȳk) is below μ2

kω
∗. Then, the dual variable yk and the

dual slack variable Sk are updated as follows:

yk = yk−1 + αk(ȳk − yk−1)

Sk = C − AT yk = Sk−1 − αkAT (ȳk − yk−1)

with αk ∈ (0, 1] such that Sk remains positive definite. We draw the reader’s attention to the
fact that although the dual variable S does not explicitly appear in optimality conditions (2.2)
or (2.5), we do maintain it as the algorithm progresses and make sure that (Sk, yk) remains
dual feasible. Finally, to complete the major step of the algorithm, the barrier parameter is
reduced and a new iteration is performed.

Note that so far we have assumed that there exists a solution to (1.1) of rank r . In case such
a solution does not exist the optimal residual of the least-squares problem is not guaranteed
to decrease as fast as μ2

k . This apparently adverse case can be exploited to design an adaptive
procedure that increases/decreases r without requiring the knowledge of the solution’s rank.
This approach will be described in Sect. 3.

In the remaining part of this section we state some of the properties of the Algorithm
which are essential to make it work in practice.

First we note that dual constraint is always satisfied by construction and the backtracking
process at Line 3 is well-defined. This is proved in Lemma 4 of [4] which is repeated below
for sake of reader’s convenience.

Lemma 2.1 Let�S be computed in Step 3 of Algorithm 1 at iteration k and Sk−1 be computed
at the previous iteration k − 1. Then, there exists αk ∈ (0, 1] such that Sk = Sk−1 + αk�S
is positive definite.

123

Journal of Scientific Computing (2021) 89:46 Page 7 of 36 46

Algorithm 1General framework of the Relaxed Interior Point algorithm for solving low-rank
SDP
input: Initial (U0, y0)withU0 ∈ R

n×r and S0 = C−AT y0 positive definite,μ0 > 0, γ ≥ √
ω∗, σ ∈ (0, 1).

1: for k = 1, 2, . . . do
2: Find (Uk , ȳk) such that

‖A(UkU
T
k + μk I) − b‖2 + ‖(UkU

T
k + μk I)(C − AT ȳk) − μk In‖2F ≤ γ 2μ2

k

by approximately solving

min
(U ,y)

φμk (U , y). (2.9)

3: If C − AT ȳk is positive definite set αk = 1 otherwise, set �y = ȳk − yk−1, �S = −AT �y and
backtrack along �S to ensure Sk = Sk−1 + αk�S positive definite.

4: Set yk = yk−1 + αk�y (and Xk = (UkU
T
k + μk I)).

5: Set μk = σμk−1
6: end for

Proof Assume thatC−AT ȳk is not positive definite, otherwiseαk = 1. Noting that Sk−1
 0
by construction, it follows that �S is indefinite and Sk−1 + αk�S
 0 whenever αk is
sufficiently small. In particular, since Sk−1 + αk�S = S1/2k−1(In + αk S

−1/2
k−1 �SS−1/2

k−1)S1/2k−1,
the desired result holds with

αk <
−1

λmin(S
−1/2
k−1 �SS−1/2

k−1)
.

��
Note that if backtracking is needed (i.e. αk < 1) to maintain the positive definiteness of

the dual variable, then after updating Sk in Step 5 the centrality measure ‖Xk Sk −μk In‖may
increase and it is not guaranteed to remain below γμk . Indeed, by setting Sk = S̄k − (1 −
αk)�S with S̄k = C − AT ȳk , we have:

‖Xk Sk − μk In‖2F ≤ γ 2μ2
k + (1 − αk)

2‖Xk�S‖2F − 2(1 − αk)(Xk S̄k − μk In) • (Xk�S),

(2.10)

that is the centrality measure may actually increase along the iterations whenever αk does
not approach one as μk goes to zero. In the following we analyse the convergence properties
of Algorithm 1 when this adverse situation does not occur, namely under the following
assumption:

Assumption 1 Assume that there exists k̄ > 0 such that αk = 1 for k ≥ k̄.

To the best of authors knowledge, it does not seem possible to demonstrate that eventually
αk is equal to one. This is because we impose a special form of X in (2.3) and make only a
weak requirement regarding the proximity of the iterate to the central path:

‖(UkU
T
k + μk I)(C − AT ȳk) − μk In‖F ≤ γμk (2.11)

with γ possibly greater than one.

Proposition 2.2 Let Assumption 1 hold. Assume that a solution of rank r of problem (1.1)
exists and that the sequence {Uk, yk} admits a limit point (U †, y†). Then,

123

 46 Page 8 of 36 Journal of Scientific Computing (2021) 89:46

• X† = U †(U †)T is primal feasible,
• X†S† = 0 with S† = C − AT y†,
• S† is positive semidefinite.

Proof Assume for the sake of simplicity that the whole sequence is converging to (U †, y†).
Taking into account that limk→∞ μk = 0, it follows limk→∞ Uk(Uk)

T +μk I = (U †)(U †)T .
Then X† = (U †)(U †)T has at most rank r and it is feasible as

lim
k→∞ ‖A(UkU

T
k + μk I) − b‖ ≤ lim

k→∞ γμk = 0.

Moreover, from (2.10) and Assumption 1 it follows

lim
k→∞ ‖(UkU

T
k + μk I)(C − AT yk) − μk In‖F = 0,

which implies X†S† = 0 and by construction ensures that S† is positive semidefinite being
a limit point of a sequence of positive definite matrices. ��

From the previous proposition it follows that (X†, y†, S†) solves (2.1). Moreover, X† has
rank r , unless U † is not full column rank. This situation can happen only in the case (1.1)
admits a solution of rank smaller than r . In what follows for sake of simplicity we assume
that the limit point U † is full column rank.

Remark It is worth observing that due to the imposed structure of matrices (2.3) all iterates
Xk are full rank, but asymptotically they approach rank r matrix. Moreover, the minimum
distance of Xk to a rank r matrix is given by μk , i.e.,

min
rank(Y)=r

‖Xk − Y‖2 = μk, (2.12)

and the primal infeasibility is bounded by γμk . This allows us to use the proposed method-
ology also when the sought solution is close to a rank r matrix (“nearly low-rank”) and/or
some entries in vector b are corrupted with a small amount of noise.

3 Rank Updating/Downdating

The analysis carried out in the previous section requires the knowledge of γ ≥ √
ω∗ and of

the rank r of the sought solution. As the scalar γ is generally not known, at a generic iteration
k the optimization method used to compute an approximate minimizer of (2.4) is stopped
when a chosen first-order criticality measure ψμ goes below the threshold η2μk where η2 is
a strictly positive constant. This way, the accuracy in the solution of (2.4) increases as μk

decreases. For ψμ, we have chosen ψμ(U , y) = ‖∇φμ(U , y)‖2.
Regarding the choice of the rank r , there are situations where the rank of the sought

solution is not known. Below we describe a modification of Algorithm 1 where, starting
from a small rank r , the procedure adaptively increases/decreases it. This modification is
based on the observation that if a solution of rank r exists the iterative procedure used in Step
2, should provide a sequence {Uk} such that the primal infeasibility also decreases with μk .
Then, at each iteration the ratio

ρk = ‖A(UkUT
k + μk I) − b‖2

‖A(Uk−1UT
k−1 + μk−1 I) − b‖2

, (3.1)

123

Journal of Scientific Computing (2021) 89:46 Page 9 of 36 46

is checked. If this ratio is larger than η1, where η1 is a given constant in (σ, 1) and σ is
the constant used to reduce μk , then the rank r is increased by some fixed δr > 0 as the
procedure has not been able to provide the expected decrease in the primal infeasibility. After
an update of rank, the parameter μk is not changed and δr extra columns are appended to
the current Uk . As a safeguard, also a downdating strategy can be implemented. In fact, if
after an increase of rank, we still have ρk > η1 then we come back to the previous rank and
inhibit rank updates in all subsequent iterations.

This is detailed in Algorithm 2 where we borrowed the Matlab notation. Variable
update_r is an indicator specifying if at the previous iteration the rank was increased
(update_r = up), decreased (update_r = down) or left unchanged (update_r =
unch).

Algorithm 2 Relaxed Interior Point Algorithm for Low Rank SDP (IPLR)

input: The initial rank r , the rank increment/decrement δr , initial (y0,U0) with U0 ∈ R
n×r and y0 ∈ R

m

such that S0 = C − AT y0 is positive definite, μ0 > 0, σ ∈ (0, 1), η1 ∈ (σ, 1), η2 > 0, ε > 0.
1: update_r = unch.
2: for k = 1, 2, . . . do
3: Find an approximate minimizer (Uk , ȳk) of φμk (U , y) such that

‖∇φμk (Uk , ȳk)‖ ≤ η2 μk

4: If C − AT yk is positive definite set αk = 1 otherwise, set �y = ȳk − yk−1, �S = −AT �y and
backtrack along �S to ensure Sk = Sk−1 + αk�S positive definite.

5: Set yk = yk−1 + αk�y.
6: if μk < ε then
7: return Xk = UkU

T
k + μk I .

8: else
9: Compute ρk given in (3.1).
10: if ρk > η1 then
11: if update_r = unch then
12: Set r = r + δr and update_r = up
13: Set Uk = [Uk , er−δr+1, . . . , er], where ei is the i-th vector of the canonical

basis for i = r − δr + 1, . . . , r
14: else if update_r = up then
15: Set r = r − δr and update_r = down
16: Set Uk = Uk−1[1 : r] and yk = yk−1
17: end if
18: else
19: Set update_r = unch
20: end if
21: if update_r = unch then
22: Set μk+1 = σμk
23: end if
24: end if
25: end for

The initial rank r should be chosen as the rank of the solution (if known) or as a small
value (say 2 or 3) if it is unknown. The dimension of the initial variable U0 is then defined
accordingly. Since, for given ε and σ , the number of iterations to satisfy μk < ε at Line 6
is predefined, the number of rank updates is predefined as well. Therefore, if an estimate of
the solution rank is known, one should use it in order to define a suitable initial r .

123

 46 Page 10 of 36 Journal of Scientific Computing (2021) 89:46

4 Solving the Nonlinear Least-Squares Problem

In this section we investigate the numerical solution of the nonlinear least-squares problem
(2.4).

Following the derivation rules recalled in “Appendix A”, we compute the Jacobian matrix
Jμk ∈ R

(n2+m)×(nr+m) of Fr
μk

which takes the following form:

Jμk (U , y) =
(

AQ 0
((C − AT y) ⊗ In)Q −(In ⊗ (μk In +UUT))AT

)

,

where

Q = (U ⊗ In) + (In ⊗U)�nr ∈ R
n2×nr , (4.1)

and �nr ∈ R
nr×nr is the unique permutation matrix such that vec(BT) = �nrvec(B) for

any B ∈ R
n×r , see “Appendix A”.

In order to apply an iterative method for approximately solving (2.4) we need to perform
the action of J Tμk

on a vector to compute the gradient of φμk . The action of Jμk on a vector
is also required in case one wants to apply a Gauss–Newton approach (see Sect. 4.3). In the
next section we will discuss how these computations are carried out.

4.1 Matrix–Vector Products with Blocks of J�k

First, let us denote the Jacobian matrix blocks as follows:

J11 = AQ = A((U ⊗ In) + (In ⊗U)�nr) ∈ R
m×nr (4.2)

J21 = ((C − AT y) ⊗ In)Q = (S ⊗ In)Q ∈ R
n2×nr (4.3)

J22 = −(In ⊗ (μk In +UUT))AT = −(In ⊗ X)AT ∈ R
n2×m . (4.4)

Below we will show that despite Jμk blocks contain matrices of dimension n2 × n2, matrix-
vector products can be carried out without involving such matrices and the sparsity of the
constraint matrices can be exploited. We will make use of the properties of the Kronecker
product (A.1)–(A.3) and assume that if v ∈ R

nr and z̃ ∈ R
n2 then mat(v) ∈ R

n×r and
mat(z̃) ∈ R

n×n .

• Let v ∈ R
nr and w ∈ R

m and let us consider the action of J11 and J T11 on v and w,
respectively:

J11v = A(mat(v)UT +Umat(v)T) = (Ai • V)mi=1 (4.5)

where

V = mat(v)UT +Umat(v)T ∈ R
n×n, (4.6)

and

J T11w = QT ATw = ((UT ⊗ In) + �T
nr (In ⊗UT))ATw

= ((UT ⊗ In) + �T
nr (In ⊗UT))vec(ATw)

= vec((ATw)U + (ATw)TU)

= 2vec((ATw)U) = 2vec

(
m∑

i=1

wi AiU

)

. (4.7)

123

Journal of Scientific Computing (2021) 89:46 Page 11 of 36 46

• Let v ∈ R
nr and z̃ ∈ R

n2 and let us consider the action of J T21 J21 and J T21 on v and z̃,
respectively:

J T21 J21v = QT (S2 ⊗ In)Qv

= vec((mat(v)UT +Umat(v)T)S2U

+S2(mat(v)UT +Umat(v)T)TU) (4.8)

and

J T21 z̃ = QT vec(mat(z̃)S) = vec(mat(z̃)SU + Smat(z̃)TU). (4.9)

• Let w ∈ R
m and z̃ ∈ R

n2 and let us consider the action of J22 and J T22 on w and z̃,
respectively:

J22w = −(I ⊗ X)ATw = −vec(XATw) = −vec(X
m∑

i=1

wi Ai) (4.10)

and

J T22 z̃ = −A(I ⊗ X)z = −Avec(Xmat(z̃)) = −A(Xmat(z̃)) = −
(
Ai • Z̃

)m

i=1
, (4.11)

with

Z̃ = (μIn +UUT)mat(z̃). (4.12)

4.2 Computational Effort Per Iteration

The previous analysis shows that we can perform all products involving Jacobian’s blocks
handling only n×n matrices. Moreover, if matrices Ai are indeed very sparse, their structure
can be exploited in the matrix-products in (4.7) and (4.10). (Sparsity has been exploited of
course in various implementations of IPM for SDP, see e.g. [20].) Additionally, only few
elements of matrices V in (4.6) and Z̃ in (4.12) need to be involved when products (4.5)
and (4.11) are computed, respectively. More precisely, denoting with nnz(A) the number of
nonzero entries of A, we need to compute nnz(A) entries of V and Z̃ defined in (4.6) and
(4.12), respectively. Noting that mat(v) ∈ R

n×r and UT ∈ R
r×n , the computation of the

needed entries of V amounts to (O(nnz(A)r) flops. Regarding Z̃ , the computation of the
intermediate matrix Ŵ = UTmat(z̃) ∈ R

r×n costs O(n2r) flops and nnz(A) entries ofUŴ
requires O(nnz(A)r) flops.

In Table 1 we provide the estimate flop counts for computing various matrix-vector prod-
ucts with the blocks of Jacobian matrix. We consider the products that are relevant in the
computation of the gradient of φμk and in handling the linear-algebra phase of the second
order method which we will introduce in the next section. From the table, it is evident that
the computation of the gradient of φμk requires O(max{nnz(A), n2}r + m) flops.

Belowweprovide an estimate of a computational effort required by the proposed algorithm
under mild assumptions:

123

 46 Page 12 of 36 Journal of Scientific Computing (2021) 89:46

Table 1 Jacobian’s block times a
vector: number of flops

Operation Cost

J11v O(nnz(A)(r + 1))

J T11w O(nnz(A)r)

J T21 J21v O(n2r)

J T21 z̃ O(n2r)

J22w O(n(nnz(A)))

J T22 z̃ O(n2 + nnz(A))r

1. nnz(A) = O(n2),
2. at Step 3 ofAlgorithm2 a line-search first-ordermethod is used to compute an approximate

minimizer (Uk, ȳk) of φμk (U , y) such that

‖∇φμk (Uk, ȳk)‖ ≤ η2 μk .

Taking into account that a line-search first-order method requires in the worst-case O(μ−2
k)

iterations to achieve ‖∇φ(Uk, yk)‖ ≤ μk [23], the computational effort of iteration k of
Algorithm 2 is O(μ−2

k (n2r + m)) in the worst-case. Therefore, when n is large, in the
early/intermediate stage of the iterative process, this effort is significantly smaller than O(n6)
required by a general purpose interior-point solver [2,15] or O(n4) needed by the specialized
approach for nuclear norm minimization [36]. We stress that this is a worst-case analysis and
in practice we expect to perform less than O(μ−2

k) iterations of the first-order method. In
case the number of iterations is of the order of O(n) the computational effort per iteration of
Algorithm 2 drops to O(n3r + nm).

Apart from all operations listed above the backtracking along �S needs to ensure that
Sk is positive definite (Algorithm 1, Step 4) and this is verified by computing the Cholesky
factorization of the matrix Sk−1 + αk�S, for each trial steplength αk . If the dual matrix is
sparse, i.e. when matrices Ai , i = 1, . . . ,m and C share the sparsity patterns [43], a sparse
Cholesky factor is expected. Note that the structure of dual matrix does not change during
the iterations, hence reordering of S0 can be carried out once at the very start of Algorithm
2 and then may be reused to compute the Cholesky factorization of Sk−1 + αk�S at each
iteration.

4.3 Nonlinear Gauss–Seidel Approach

The crucial step of our interior point framework is the computation of an approximate solution
of the nonlinear least-squares problem (2.4). To accomplish the goal, a first-order approach as
well as a Gauss–Newton method can be used. However, in this latter case the linear algebra
phase becomes an issue, due to the large dimension of the Jacobian. Here, we propose a
Nonlinear Gauss–Seidel method. We also focus on the linear algebra phase and present a
matrix-free implementation well suited for structured constraint matrices as those arising in
the SDP reformulation of matrix completion problems [13]. The adopted Nonlinear Gauss–
Seidel method to compute (Uk, ȳk) at Step 3 of Algorithm 2 is detailed in Algorithm 3.

The computational bottleneck of the procedure given in Algorithm 3 is the solution of the
linear systems (4.13) and (4.14). Due to their large dimensions we use a CG-like approach.
The coefficient matrix in (4.13) takes the form:

J T11 J11+ J T21 J21=QT
k A

T AQk+QT
k (S2k ⊗ In)Qk =QT

k (AT A+(S2k ⊗ In))Qk ∈ R
nr×nr ,

123

Journal of Scientific Computing (2021) 89:46 Page 13 of 36 46

Algorithm 3 Nonlinear Gauss–Seidel algorithm
input: yk−1, Uk−1, μk , η2 from Algorithm 2 and �max .
1: Set y0 = yk−1 and U0 = Uk−1
2: for � = 1, 2, . . . , �max do
3: Set

r = b − A(μk In +U�(U�)T)

R = μk In − (μk In +U�(U�)T)(C − AT y�)

4: Compute a Gauss–Newton step �U for

min
U

φμk (U , y�),

that is, solve the linear system

[J T11 J11 + J T21 J21]vec(�U) = [J T11 J T21][r; vec(R)] (4.13)

and update U�+1 = U� + �U and R = μk In − (μk In +U�+1(U�+1)T)(C − AT y�)

5: Compute a Gauss–Newton step �y for

min
y

φμk (U
�+1, y)

that is, solve the linear system

J T22 J22�y = J T22vec(R) (4.14)

and update y�+1 = y� + �y.
6: if ‖∇φμk (U

�+1, y�+1)‖ ≤ η2μk then
7: return Uk = U�+1 and ȳk = y�+1 to Algorithm 2.
8: end if
9: end for

and it is positive semidefinite as Qk may be rank deficient. We can apply CG to (4.13) which
is known to converge to the minimum norm solution if starting from the null approximation
[25]. Letting v̄ ∈ R

nr be the unitary eigenvector associated to the maximum eigenvalue of
QT

k (AT A + (S2k ⊗ In))Qk and w̄ = Qk v̄ we have:

λmax (Q
T
k (AT A + (S2k ⊗ In))Qk) = w̄T (AT A + (S2k ⊗ In)))w̄

≤ λmax (A
T A + (S2k ⊗ In)))‖w̄‖2

≤ ((σmax (A))2 + (λmax (Sk))
2)(σmax (Qk))

2.

Moreover, using 4.1 we derive the following bound

σmax (Qk) = σmax ((Uk ⊗ In) + (In ⊗Uk)�nr)

≤ σmax (U ⊗ In) + σmax ((In ⊗U)�nr)

≤ 2σmax (U),

as σmax (U⊗ In) = σmax (U) and σmax ((U⊗ In))�nr) ≤ σmax (U). Since both the maximum
eigenvalue of Sk and the maximum singular value of Uk are expected to stay bounded from
above, we conclude that the maximum eigenvalue of J T11 J11 + J T21 J21 remains bounded. The
smallest nonzero eigenvalue may go to zero at the same speed as μ2

k . However, in case of
SDP reformulation of matrix completion problems, the term AT A acts as a regularization

123

 46 Page 14 of 36 Journal of Scientific Computing (2021) 89:46

term and the smallest nonzero eigenvalue of J T11 J11 + J T21 J21 remains bounded away from
μk also in the later iterations of the interior point algorithm. We will report on this later on,
in the numerical results section (see Fig. 1).

Let us now consider system (4.14). The coefficient matrix takes the form

J T22 J22 = A(In ⊗ X2
k)A

T ∈ R
m×m, (4.15)

and it is positive definite. We repeat the reasoning applied earlier to J T11 J11 + J T21 J21 and
conclude that

λmax (J
T
22 J22) ≤ (λmax (Xk))

2(σmax (A))2.

Analogously we have

λmin(J
T
22 J22) ≥ (λmin(Xk))

2(σmin(A))2.

Taking into account that r eigenvalues of Xk do not depend on μk while the remaining are
equal to μk , we conclude that the condition number of J T22 J22 increases as O(1/μ2

k). In the
next subsection we will show how this matrix can be preconditioned.

4.4 Preconditioning JT22J22

In this subsection we assume that matrix AAT is sparse and easy to invert. At this regard we
underline that in SDP reformulation of matrix-completion problems matrices Ai have a very
special structure that yields AAT = 1

2 Im .
Note that substituting Xk = μk In +UkUT

k in (4.15) we get

A(In ⊗ X2
k)A

T = A(μ2
k In2 + 2μk In ⊗UkU

T
k + In ⊗ (UkU

T
k)2)AT (4.16)

= μ2
k AA

T + 2μk A(In ⊗UkU
T
k)AT + A(In ⊗ (UkU

T
k)2)AT (4.17)

= μ2
k AA

T + 2μk A(In ⊗UkU
T
k)AT

+A(In ⊗ (UkU
T
k))(In ⊗ (UkU

T
k))AT . (4.18)

Let us consider a preconditioner Pk of the form

Pk = μk AA
T + Zk Z

T
k , (4.19)

with

Zk = A(In ⊗ (UkU
T
k)) ∈ R

m×n2 . (4.20)

This choice is motivated by the fact that we discard the term In ⊗ UkUT
k from the term

2μk A(In ⊗UkUT
k)AT in the expression of J T22 J22. In fact, we use the approximation

μ2
k AA

T + 2μk A(In ⊗UkU
T
k)AT ≈ μk AA

T .

Asimilar idea is used in [46]. An alternative choice involvesmatrix Zk of a smaller dimension

Zk = A(In ⊗Uk) ∈ R
m×nr . (4.21)

This corresponds to introducing a further approximation

A(In ⊗ (UkU
T
k))(In ⊗ (UkU

T
k))AT ≈ A(In ⊗ (UkU

T
k))AT .

We will analyze spectral properties of the matrix J T22 J22 preconditioned with Pk defined in
(4.19) with Zk given in (4.20).

123

Journal of Scientific Computing (2021) 89:46 Page 15 of 36 46

Theorem 4.1 Let Pk be given in (4.19) with Zk given in (4.20) and σmin(A) and σmax (A)

denote the minimum and maximum singular values of A, respectively. The eigenvalues of the
preconditioned matrix P−1/2

k (A(I ⊗ X2
k)A

T)P−1/2
k belong to the interval (1 + ξ1, 1 + ξ2)

where ξ1 and ξ2 have the following forms:

ξ1 = μk(μk − 1)(σmin(A))2

(σmax(A))2(μk + (λmax(UkUT
k))2)

and

ξ2 = (σmax (A))2(μk + λmax(UkUT
k))

(σmin(A))2
.

Proof Note that

A(I ⊗ X2
k)A

T = μk(μk − 1)AAT + 2μk A(In ⊗UkU
T
k)AT + Pk .

Then,

P−1/2
k (A(I ⊗ X2

k)A
T)P−1/2

k = I + μk P
−1/2
k ((μk − 1)AAT + 2A(In ⊗UkU

T
k)AT)P−1/2

k .

Let us denote with λM and λm the largest and the smallest eigenvalues of matrix P−1/2
k ((μk −

1)AAT + 2A(In ⊗UkUT
k)AT)P−1/2

k , respectively. From (4.19) we deduce

λmin(Pk) ≥ μk(σmin(A))2

and

λmax(A(In ⊗UkU
T
k)AT) ≤ (σmax (A))2λmax(UkU

T
k).

Then, using the Weyl inequality we obtain

λM ≤ (σmax (A))2(μk + λmax(UkUT
k))

μk(σmin(A))2
.

Moreover,

λmin(P
−1/2
k AAT P−1/2

k) = 1

λmax(P
1/2
k (AAT)−1P1/2

k)
≥ (σmin(A))2

‖Pk‖2 .

Then, noting that ‖Pk‖2 ≤ (σmax(A))2(μk + (λmax(UkUT
k))2), we have

λm ≥ (μk − 1)(σmin(A))2

(σmax(A))2(μk + (λmax(UkUT
k))2)

.

Consequently, the eigenvalues of the preconditioned matrix P−1/2
k (A(I ⊗ X2)AT)P−1/2

k
belong to the interval (1 + ξ1, 1 + ξ2), and the theorem follows. ��

Note that from the result above, as μk approaches zero, the minimum eigenvalue of the
preconditioned matrix goes to one and the maximum remains bounded.

The application of Pk to a vector d , needed at each CG iteration, can be performed through
the solution of the (m + nq) × (m + nq) sparse augmented system:

[
μk AAT Zk

ZT
k −Inr

] [
u
v

]

=
[
d
0

]

, (4.22)

123

 46 Page 16 of 36 Journal of Scientific Computing (2021) 89:46

where if Zk is given by (4.20) q = n, while q = r in case (4.21). In order to recover the
vector u = P−1

k d , we can solve the linear system

(Inr + ZT
k (μk AA

T)−1Zk)v = ZT
k (μk AA

T)−1d, (4.23)

and compute u as follows

u = (μk AA
T)−1(d − Zkv).

This process involves the inversion of AAT which can be done once at the beginning of the
iterative process, and the solution of a linear system with matrix

Ek = I + ZT
k (μk AA

T)−1Zk .

Note that Ek has dimension n2 × n2 in case of choice (4.20) and dimension nr × nr in case
of choice (4.21). Then, its inversion is impractical in case (4.20). On the other hand, using
(4.21) we can approximately solve (4.23) using a CG-like solver.

At this regard, observe that the entries of Ek decrease when far away from the main
diagonal and Ek can be preconditioned by its block-diagonal part, that is by

Mk = Inr + B(ZT
k (μk AA

T)−1Zk), (4.24)

where B is the operator that extracts from a matrix nr × nr its block diagonal part with n
diagonal blocks of size r × r .

5 SDP Reformulation of Matrix Completion Problems

We consider the problem of recovering a low-rank data matrix B ∈ R
n̂×n̂ from a sampling of

its entries [13], that is the so called matrix completion problem. The problem can be stated
as

min rank(X̄)

s.t. X̄� = B�,
(5.1)

where � is the set of locations corresponding to the observed entries of B and the equality
is meant element-wise, that is Xs,t = Bs,t , for all (s, t) ∈ �. Let m be the cardinality of �

and r be the rank of B.
A popular convex relaxation of the problem [13] consists in finding the minimum nuclear

norm of X̄ that satisfies the linear constraints in (5.1), that is, solving the following heuristic
optimization

min ‖X̄‖∗
s.t. X̄� = B�,

(5.2)

where the nuclear norm ‖ · ‖∗ of X̄ is defined as the sum of its singular values.
Candès and Recht proved in [13] that if � is sampled uniformly at random among all

subset of cardinality m then with large probability, the unique solution to (5.2) is exactly B,
provided that the number of samples obeys m ≥ Cn̂5/4r log n̂, for some positive numerical
constant C . In other words, problem (5.2) is “formally equivalent” to problem (5.1). Let

X =
[
W1 X̄
X̄ T W2

]

, (5.3)

123

Journal of Scientific Computing (2021) 89:46 Page 17 of 36 46

where X̄ ∈ R
n̂×n̂ is the matrix to be recovered and W1,W2 ∈ SRn̂×n̂ . Then problem (5.2)

can be stated as an SDP of the form (1.1) as follows

min 1
2 I • X

s.t.

[
0 �st

�T
st 0

]

• X = B(s,t), (s, t) ∈ �

X � 0,

(5.4)

where for each (s, t) ∈ � the matrix�st ∈ R
n̂×n̂ is defined element-wise for k, l = 1, . . . , n̂

as

(�st)kl =
{
1/2 if (k, l) = (s, t)
0 otherwise,

see [39]. We observe that primal variable X takes the form (5.3) with n = 2n̂, the symmetric
matrix C in the objective of (1.1) is a scaled identity matrix of dimension n × n. The vector
b ∈ R

m is defined by the known elements of B and, for i = 1, . . . ,m, each constraint matrix
Ai , corresponds to the known elements of B stored in bi . Matrices Ai have a very special
structure that yields nice properties in the packed matrix A. Since every constraint matrix has
merely two nonzero entries the resulting matrix A has 2m nonzero elements and its density
is equal to 2n−2. Moreover, AAT = 1

2 Im and ‖A(In)‖2 = 0.
We now discuss the relationship between a rank r solution X̄ of problem (5.2) and a rank

r solution X of problem (5.4).

Proposition 5.1 If X of the form

[
W1 X̄
X̄ T W2

]

with X̄ ∈ R
n̂×n̂ and W1,W2 ∈ SRn̂×n̂ has

rank r, then X̄ has rank r. Vice-versa, if X̄ has rank r with X̄ ∈ R
n̂×n̂ , then there exist

W1,W2 ∈ SRn̂×n̂ such that

[
W1 X̄
X̄ T W2

]

has rank r.

Proof Let X = Q�QT with Q ∈ R
2n̂×r and� = R

r×r be the singular value decomposition

(SVD) of X . Let Q be partitioned by Q =
[
Q1

Q2

]

with Q1, Q2 ∈ R
n̂×r . Then

X =
[
Q1

Q2

]

�
[
QT

1 QT
2

] =
[
Q1�QT

1 Q1�QT
2

Q2�QT
1 Q2�QT

2

]

,

that is X̄ = Q1�QT
2 has rank r .

To prove the second part of the proposition, let X̄ = Q�V T with Q, V ∈ R
n̂×r and

� = R
r×r be the SVD factorization of X̄ . We get the proposition by definingW1 = Q�QT

and W2 = V�V T and obtaining X =
[
Q
V

]

�
[
QT V T

]
. ��

Corollary 5.2 Let X be structured as

[
W1 X̄
X̄ T W2

]

with X̄ ∈ R
n̂×n̂ and W1,W2 ∈ SRn̂×n̂ .

Assume that X has the form

X = UUT + μI ,

with U ∈ R
n×r full column rank and μ ∈ R, then X̄ has rank r.

123

 46 Page 18 of 36 Journal of Scientific Computing (2021) 89:46

Proposition 5.3 If X is a rank r solution of (5.4), then X̄ is a rank r solution of (5.2). Vice-
versa, if X̄ is a rank r solution of (5.2), then (5.4) admits a rank r solution.

Proof The first statement follows from the equivalence between problems (5.4) and (5.2)
[19, Lemma 1].

Let X̄ be a rank r optimal solution of (5.2), t∗ = ‖X̄‖∗ and Q�V T , with Q, V ∈ R
n̂×r

and � ∈ R
r×r , be the SVD decomposition of X̄ . Let us define X =

[
W1 X̄
X̄ T W2

]

with W1 =
Q�QT and W2 = V�V T . Then X solves (5.4). In fact, X is positive semidefinite and
1
2 I • X = 1

2 (Trace(W1) + Trace(W2)) = ‖X̄‖∗ = t∗. This implies that t∗ is the optimal
value of (5.4). In fact, if we had Y such that

[
0 �st

�T
st 0

]

• Y = B(s,t), (s, t) ∈ � Y � 0

and 1
2 I • Y ≤ t�, then by [19, Lemma 1] there would exist Ȳ such that ‖Ȳ‖∗ < t∗, that is

‖Ȳ‖∗ < ‖X̄‖∗ = t∗. This is a contradiction as we assumed that t∗ is the optimal value of
(5.2). ��

Remark. Assuming that a rank r solution to (5.2) exists, the above analysis justifies the
application of our algorithm to search for a rank r solution of the SDP reformulation (5.4)
of (5.2). We also observe that at each iteration our algorithm computes an approximation Xk

of the form Xk = UkUT
k + μk In with Uk ∈ R

n×r and μk > 0. Then, if at each iteration Uk

is full column rank, by Corollary 5.2, it follows that we generate a sequence {X̄k} such that
X̄k has exactly rank r at each iteration k and it approaches a solution of (5.2).

Finally, let us observe that m < n̂2 = n2/4 and nnz(A) = 2m < n2/2. Then, by the
analysis carried out in Sect. 4.1 each evaluation of the gradient of φμk amounts to O(n2r)
flops and assuming to use a first-order method at each iteration to compute (Uk, ȳk), in the
worst-case each iteration of our method requires O(μ−2

k n2r) flops.

6 Numerical Experiments onMatrix Completion Problems

We consider an application to matrix completion problems by solving (5.4) with our relaxed
Interior Point algorithm for Low-Rank SDPs (IPLR), described in Algorithm 2. IPLR has
been implemented using Matlab (R2018b) and all experiments have been carried out on Intel
Core i5 CPU 1.3 GHz with 8 GB RAM. Parameters in Algorithm 2 have been chosen as
follows:

μ0 = 1, σ = 0.5, η1 = 0.9, η2 = √
n,

while the starting dual feasible approximation has been chosen as y0 = 0, S0 = 1
2 In and U0

is defined by the first r columns of the identity matrix In .
We considered two implementations of IPLR which differ with the strategy used to find

a minimizer of φμk (U , y) (Line 3 of Algorithm 2).
Let IPLR- GS denote the implementation of IPLR where the Gauss–Seidel strategy

described in Algorithm 3 is used to find a minimizer of φμk (U , y). We impose a maximum
number of 5 �-iterations and use the (possibly) preconditioned conjugate gradient method to
solve the linear systems (4.13) and (4.14). We set a maximum of 100 CG iterations and the
tolerance 10−6 on the relative residual of the linear systems. System (4.13) is solved with
unpreconditioned CG. Regarding (4.14), for the sake of comparison, we report in the next

123

Journal of Scientific Computing (2021) 89:46 Page 19 of 36 46

section statistics using unpreconditioned CG and CG employing the preconditioner defined
by (4.19) and (4.21). In this latter case the action of the preconditioner has been implemented
through the augmented system (4.22), following the procedure outlined at the end of Sect. 5.
The linear system (4.23) has been solved by preconditioned CG, with preconditioner (4.24)
allowing a maximum of 100 CG iterations and using a tolerance 10−8. In fact, the linear
system (4.14) along the IPLR iterations becomes ill-conditioned and the application of the
preconditioner needs to be performed with high accuracy. We will refer to the resulting
method as IPLR- GS_P.

As an alternative implementation to IPLR- GS, we considered the use of a first-order
approach to perform theminimization at Line 3 ofAlgorithm2.We implemented theBarzilai-
Borwein method [3,38] with a non-monotone line-search following [17, Algorithm 1] and
using parameter values as suggested therein. The Barzilai-Borwein method iterates until
‖∇φμk (Uk, yk)‖ ≤ min(10−3, μk) or a maximum of 300 iterations is reached. We refer to
the resulting implementation as IPLR- BB.

The recent literature for the solution of matrix completion problems is very rich and there
exist many algorithms finely tailored for such problems, see e.g. [11,14,28,33,35,37,42,45]
just to name a few. Among these, we chose the OptSpace algorithm proposed in [28,29]
as a reference algorithm in the forthcoming tests. In fact, OptSpace compares favourably
[29] with the state-of-art solvers such as SVT [11], ADMiRA [33] and FPCA [37] and its
Matlab implementation is publicly available online.1 OptSpace is a first-order algorithm.
Assuming the known solution rank r , it first generates a good starting guess by computing the
truncated SVD (of rank r) of a suitable sparsification of the available data B� and then uses a
gradient-type procedure in order tominimize the error ‖B−Q�V T ‖F where Q, �, V are the
SVD factors of the current solution approximation. Since Q and V are orthonormal matrices,
the minimization in these variables is performed over the Cartesian product of Grassmann
manifolds, whileminimization in� is computed exactly inRr×r . In [29],OptSpace has been
equipped with two strategies to accommodate the unknown solution rank: the first strategy
aims at finding a split in the eigenvalue distribution of the sparsified (“trimmed”) matrix and
on accurate approximation of its singular values and the corresponding singular vectors; the
second strategy starts from the singular vectors associated with the largest singular value and
incrementally searches for the next singular vectors. The latter strategy yields the so called
Incremental OptSpace variant, proposed to handle ill-conditioned problems whenever an
accurate approximation of the singular vector corresponding to the smallest singular value
is not possible and the former strategy fails.

Matlab implementations ofOptSpace and Incremental OptSpacehave been employed
in the next sections.Weused default parameters except for themaximumnumber of iterations.
The default value is 50 and, as reported in the next sections, it was occasionally increased to
improve accuracy in the computed solution.

We perform two sets of experiments: the first aims at validating the proposed algorithms
and is carried out on randomly generated problems; the second is an application of the new
algorithms to real data sets.

6.1 Tests on RandomMatrices

As it is a common practice for a preliminary assessment of new methods, in this section
we report on the performance of our proposed IPLR algorithm on matrices which have
been randomly generated. We have generated random matrices both with noise and without

1 OptSpace: http://swoh.web.engr.illinois.edu/software/optspace/code.html.

123

http://swoh.web.engr.illinois.edu/software/optspace/code.html

 46 Page 20 of 36 Journal of Scientific Computing (2021) 89:46

noise, random nearly low-rankmatrices and randommildly ill-conditionedmatrices with and
without noise. For the last class of matrices, which we expect to mimic reasonably well the
practical problems, we also report the solution statistics obtained with OptSpace.

We have generated n̂ × n̂ matrices of rank r by sampling two n̂ × r factors BL and BR

independently, each having independently and identically distributed Gaussian entries, and
setting B = BL BR . The set of observed entries � is sampled uniformly at random among
all sets of cardinality m. The matrix B is declared recovered if the (2,1) block X̄ extracted
from the solution X of (5.4), satisfies

‖X̄ − B‖F/‖B‖F < 10−3, (6.1)

see [13].
Given r , we chose m by setting m = cr(2n̂ − r), n̂ = 600, 700, 800, 900, 1000. We used

c = 0.01n̂ + 4. These corresponding values of m are much lower than the theoretical bound
provided by [13] and recalled in Sect. 5, but in our experiments they were sufficient to recover
the sought matrix by IPLR.

In our experiments, the accuracy level in the matrix recovery in (6.1) is always achieved
by setting ε = 10−4 in Algorithm 2.

In the forthcoming tables we report: dimensions n and m of the resulting SDPs and target
rank r of the matrix to be recovered; being X and S the computed solution, the final primal
infeasibility ‖A(X) − b‖, the complementarity gap ‖XS − μI‖F , the error in the solution
of the matrix completion problem E = ‖X̄ − B‖F/‖B‖F , the overall cpu time in seconds.

In Tables 2 and 3 we report statistics of IPLR- GS and IPLR- BB, respectively. We choose
as a starting rank r the rank of the matrix B to be recovered. In the last column of Table
2 we report both the overall cpu time of IPLR- GS without preconditioner (cpu) and with
preconditioner (cpu_P) in the solution of (4.14). The lowest computational time for each
problem is indicated in bold.

As a first comment, we verified that Assumption 1 in Sect. 2 holds in our experiments. In
fact, the method manages to preserve positive definiteness of the dual variable and αk < 1 is
taken only in the early stage of the iterative process.

Secondly, we observe that both IPLR- GS and IPLR- BB provide an approximation to the
solution of the sought rank; in some runs the updating procedure increases the rank, but at the
subsequent iteration the downdating strategy is activated and the procedure comes back to the
starting rank r . Moreover, IPLR- GS is overall less expensive than IPLR- BB in terms of cpu
time, in particular as n and m increase. In fact, the cost of the linear algebra in the IPLR- GS
framework is contained as one/two inner Gauss–Seidel iterations are performed at each outer
IPLR- GS iteration except for the very few initial ones where up to five inner Gauss–Seidel
iterations are needed. To give more details of the computational cost of both methods, in
Table 4 we report some statistics of IPLR- GS and IPLR- BB for n̂ = 900, r = 3 and 8.
More precisely we report the average number of inner Gauss–Seidel iterations (avr_GS) and
the average number of unpreconditioned CG iterations in the solution of (4.13) (avr_CG_1)
and (4.14) (avr_CG_2) for IPLR- GS and the average number of BB iterations for IPLR- BB
(avr_BB). We notice that the solution of SDP problems becomes more demanding as the
rank increases, but both the number of BB iterations and the number of CG iterations are
reasonable.

To provide an insight into the linear algebra phase, in Fig. 1 we plot the minimum nonzero
eigenvalue and the maximum eigenvalue of the coefficient matrix of (4.13), i.e. QT

k (AT A +
(S2k ⊗ In))Qk .We remark that thematrix depends both on the outer iteration k and on the inner
Gauss–Seidel iteration � and we dropped the index � to simplify the notation. Eigenvalues
are plotted against the inner/outer iterations, for n̂ = 100, r = 4 and IPLR- GS continues

123

Journal of Scientific Computing (2021) 89:46 Page 21 of 36 46

Table 2 IPLR- GS on random matrices

rank/n/m IPLR- GS

‖A(X) − b‖ ‖XS − μI‖F λmin(S) E cpu/cpu_P

3/1200/35910 4E−04 1E−03 4E−08 2E−06 229/110

4/1200/47840 2E−04 1E−03 4E−08 9E−07 173/99

5/1200/59750 4E−05 1E−03 4E−08 1E−07 156/104

6/1200/71640 2E−06 1E−03 4E−08 5E−09 219/201

7/1200/83510 5E−07 1E−03 4E−08 9E−10 164/199

8/1200/95360 5E−08 1E−03 4E−08 8E−11 152/228

3/1400/46101 3E−04 1E−03 4E−08 1E−06 362/148

4/1400/61424 1E−04 1E−03 4E−08 8E−07 352/175

5/1400/76725 5E−05 1E−03 4E−08 1E−07 205/151

6/1400/92004 7E−06 1E−03 4E−08 1E−08 223/199

7/1400/107261 2E−07 1E−03 3E−08 4E−10 214/239

8/1400/122496 2E−08 1E−03 3E−08 3E−11 234/329

3/1600/57492 3E−04 1E−03 3E−08 1E−06 330/168

4/1600/76608 1E−04 1E−03 3E−08 4E−07 387/174

5/1600/95700 4E−05 1E−03 3E−08 9E−08 433/235

6/1600/114768 1E−06 1E−03 3E−08 2E−09 316/226

7/1600/133812 2E−07 1E−03 3E−08 2E−10 393/331

8/1600/152832 4E−08 1E−03 3E−08 5E−11 334/370

3/1800/64692 4E−04 1E−03 3E−08 2E−06 566/259

4/1800/86208 3E−04 1E−03 3E−08 7E−07 506/231

5/1800/107700 4E−05 1E−03 3E−08 1E−07 465/270

6/1800/129168 1E−05 1E−03 3E−08 6E−08 586/364

7/1800/150612 8E−07 1E−03 3E−08 3E−9 606/462

8/1800/172032 4E−07 1E−03 3E−08 1E−9 831/795

3/2000/83874 3E−04 1E−03 2E−08 1E−06 599/400

4/2000/111776 3E−04 1E−03 2E−08 7E−07 544/365

5/2000/139650 1E−05 1E−03 2E−08 3E−08 783/512

6/2000/167496 2E−06 1E−03 2E−08 3E−09 601/485

7/2000/195314 2E−07 1E−03 2E−08 2E−10 657/594

8/2000/223104 2E−08 1E−03 2E−08 4E−11 627/669

until μk < 10−7. In this run only one inner iteration is performed at each outer iteration
except for the first outer iteration. We also plot in the left picture of Fig. 2 the number of
CG iterations versus inner/outer iterations. The figures show that the condition number of
Qk and the overall behaviour of CG do not depend on μk . Moreover, Table 4 shows that
unpreconditioned CG is able to reduce the relative residual below 10−6 in a low number
of iterations even in the solution of larger problems and higher rank. These considerations
motivate our choice of solving (4.13) without employing any preconditioner.

We now discuss the effectiveness of the preconditioner Pk given in (4.19), with Zk given
in (4.21), in the solution of (4.14). Considering n̂ = 100, r = 4, in Fig. 3 we plot the
eigenvalue distribution (in percentage) of A(I ⊗ X2

k)A
T and P−1

k (A(I ⊗ X2
k)A

T) at the

123

 46 Page 22 of 36 Journal of Scientific Computing (2021) 89:46

Table 3 IPLR- BB on random matrices

rank/n/m IPLR- BB

‖A(X) − b‖ ‖XS − μI‖F λmin(S) E cpu

3/1200/35910 4E−06 1E−03 4E−08 2E−08 223

4/1200/47840 1E−05 1E−03 4E−08 3E−08 186

5/1200/59750 6E−06 1E−03 4E−08 2E−08 235

6/1200/71640 8E−06 1E−03 4E−08 1E−08 242

7/1200/83510 4E−06 1E−03 4E−08 9E−09 237

8/1200/95360 6E−06 1E−03 4E−08 1E−08 223

3/1400/46101 8E−06 1E−03 4E−08 3E−08 402

4/1400/61424 2E−06 1E−03 4E−08 8E−08 402

5/1400/76725 6E−06 1E−03 4E−08 1E−08 332

6/1400/92004 4E−06 1E−03 3E−08 9E−09 403

7/1400/107261 2E−06 1E−03 3E−08 4E−09 361

8/1400/122496 2E−06 1E−03 3E−08 6E−09 386

3/1600/57492 2E−04 1E−03 3E−08 6E−09 557

4/1600/76608 4E−06 1E−03 3E−08 8E−09 620

5/1600/95700 2E−06 1E−03 3E−08 5E−08 506

6/1600/114768 2E−06 1E−03 3E−08 3E−09 477

7/1600/133812 4E−06 1E−03 3E−08 5E−09 571

8/1600/152832 4E−07 1E−03 3E−08 5E−10 600

3/1800/64692 9E−06 1E−03 3E−08 6E−08 573

4/1800/86208 8E−06 1E−03 3E−08 4E−08 906

5/1800/107700 4E−06 1E−03 3E−08 1E−08 784

6/1800/129168 2E−06 1E−03 3E−08 6E−09 686

7/1800/150612 3E−06 1E−03 3E−08 1E−8 625

8/1800/172032 4E−07 1E−03 3E−08 1E−8 862

3/2000/83874 7E−06 1E−03 3E−08 3E−08 900

4/2000/111776 4E−07 1E−03 3E−08 9E−10 1000

5/2000/139650 4E−06 1E−03 3E−08 1E−08 921

6/2000/167496 7E−06 1E−03 2E−08 1E−08 900

7/2000/195314 3E−07 1E−03 2E−08 3E−10 1000

8/2000/223104 4E−08 1E−03 2E−08 3E−09 931

Table 4 Statistics of IPLR- GS and IPLR- BB on random matrix n̂ = 900, r = 3 and 8

rank/n/m IPLR- GS IPLR- BB

avr_GS avr_CG_1 avr_CG_2 avr_BB

3/1800/64692 2.1 15.3 24.2 68

8/1800/172032 2.0 19.5 42.2 88

123

Journal of Scientific Computing (2021) 89:46 Page 23 of 36 46

5 10 15 20 2510−8

10−2

104

Outer/Inner iterations

µ

λmin(QT (ATA + (S2 ⊗ In))Q)
λmax(QT (ATA + (S2 ⊗ In))Q)

Fig. 1 The minimum nonzero eigenvalue and the maximum eigenvalue of the coefficient matrix of (4.13) and
μk (semilog scale) versus Outer/Inner IPLR- GS iterations. Data: n̂ = 100, r = 4

5 10 15 20 25
0

20

40

60

80

100

0

20

40

60

80

100

Outer/Inner iterations

CG iterations for solving (4.13)

Unpreconditioned

5 10 15 20 25

Outer/Inner iterations

CG iterations for solving (4.14)

Unpreconditioned
Preconditioned

Fig. 2 CG iterations for solving systems (4.13) with IPLR- GS (left) and CG iterations for solving systems
(4.14) with IPLR- GS and IPLR- GS_P (right). Data: n̂ = 100, r = 4

first inner iteration of outer IPLR- GS iteration corresponding to μk ≈ 1.9e−3. We again
drop the index �. We can observe that the condition number of the preconditioned matrix is
about 1.3e5, and it is significantly smaller than the condition number of the original matrix
(about 3.3e10). The preconditioner succeeded both in pushing the smallest eigenvalue away
from zero and in reducing the largest eigenvalue. However, CG converges in a reasonable
number of iterations even in the unpreconditioned case, despite the large condition number.
In particular, we can observe in the right picture of Fig. 2 that preconditioned CG takes less
than five iterations in the last stages of IPLR- GS and that the most effort is made in the initial
stage of the IPLR- GSmethod; in this phase the preconditioner is really effective in reducing
the number of CG iterations. These considerations remain true even for larger values of n̂
and r as it is shown in Table 4.

Focusing on the computational cost of the preconditioner’s application, we can observe
from the cpu times reported in Table 2, that for r = 3, 4, 5 the employment of the precondi-
tioner produces a great benefit, with savings that vary from 20% to 50%. Then, the overhead
associated to the construction and application of the preconditioner ismore than compensated

123

 46 Page 24 of 36 Journal of Scientific Computing (2021) 89:46

−6
– −5

−5
– 2 2 –

3
3 –

4

0

20

40

60

80

log10(λ(A(I ⊗ X2
k)A

T))

P
er
ce
nt
ag
e

−3
– −2

.5

−2
.5
– 2

2 –
2.5

0

20

40

60

80

log10(λ(P
−1
k (A(I ⊗ X2

k)A
T)))

P
er
ce
nt
ag
e

Fig. 3 Eigenvalue distribution of A(I⊗X2
k)AT (left) and P−1

k (A(I⊗X2
k)A

T) (right) at the first inner iteration
of outer IPLR- GS iteration corresponding to μk ≈ 1.9e − 3 (semilog scale). Data: n̂ = 100, r = 4

1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000
0

0.5

1

1.5

2

n

ra
ti
o
cp

u
P
/c
pu

rank 3
rank 4
rank 5
rank 6
rank 7
rank 8

Fig. 4 The ratio cpu_P/cpu as a funcion of dimension n and of the rank (data extracted from Table 2)

by the gains in the number of CG iterations. The cost of application of the preconditioner
increases with r as the dimension of the diagonal blocks of Mk in (4.24) increases with r .
Then, for small value of n̂ and r = 6, 7, 8 unpreconditioned CG is preferable, while for
larger value of n̂ the preconditioner is effective in reducing the overall computational time
for r ≤ 7. This behaviour is summarized in Fig. 4 where we plot the ratio cpu_P/cpu with
respect to dimension n and rank (from 3 to 8).

In the approach proposed in this paper the primal feasibility is gradually reached, hence
it is also possible to handle data B� corrupted by noise. To test how the method behaves
in such situations we set B̂(s,t) = B(s,t) + ηRD(s,t) for any (s, t) ∈ �, where RD(s,t) is a
random scalar drawn from the standard normal distribution, generated by theMatlab function
randn; η > 0 is the level of noise. Then, we solved problem (5.4) using the corrupted data
B̂(s,t) to form the vector b. Note that, in this case ‖A(B)− b‖2 ≈ η

√
m. In order to take into

account the presence of noise we set ε = max(10−4, 10−1η) in Algorithm 2.
Results of these runs are collected in Table 5 where we considered η = 10−1 and started

with the target rank r . In Table 5 we also report

RMSE = ‖X̄ − B‖F/n̂,

123

Journal of Scientific Computing (2021) 89:46 Page 25 of 36 46

Table 5 IPLR- GS_P on noisy matrices (noise level η = 10−1)

rank/n/m IPLR- GS_P
‖A(X) − b‖ ‖XS − μI‖F λmin(S) ‖X̄ − B‖F/n̂ cpu

4/1200/47840 2E01 1E−01 6E−06 3E−02 67

6/1200/71640 2E01 1E−01 6E−06 3E−02 128

8/1200/95360 3E01 1E−01 5E−06 3E−02 182

4/1600/76608 3E01 2E−01 4E−06 3E−02 178

6/1600/114768 3E01 2E−01 4E−06 3E−02 224

8/1600/152832 4E01 2E−01 4E−06 3E−02 358

4/2000/111776 3E01 2E−01 4E−06 3E−02 259

6/2000/167496 4E01 2E−01 4E−06 3E−02 373

8/2000/223104 4E01 2E−01 4E−06 3E−02 543

that is the root-mean squared error per entry. Note that the root-mean error per entry in data
B� is of the order of the noise level 10−1, as well as ‖A(B) − b‖2/√m. Then, we claim to
recover the matrix with acceptable accuracy, corresponding to an average error smaller than
the level of noise.

Mildly Ill-Conditioned Problems

In this subsection we compare the performance of IPLR_GS_P, OptSpace and Incremen-
tal OptSpace on mildly ill-conditioned problems with exact and noisy observations. We
first consider exact observation and vary the condition number of the matrix that has to be
recovered κ . We fixed n̂ = 600 and r = 6 and, following [29], generated random matri-
ces with a prescribed condition number κ and rank r as follows. Given a random matrix
B generated as in the previous subsection, let Q�V T be its SVD decomposition and Q̃
and Ṽ be the matrices formed by the first r columns of Q and V , respectively. Then, we
formed the matrix B̂ that has to be recovered as B̂ = Q̃�̃Ṽ T , where �̃ is a r × r diagonal
matrix with diagonal entries equally spaced between n̂ and n̂/κ . In Fig. 5 we plot the RMSE
value against the condition number for all the three solvers considered, using the 13% of the
observations. We can observe, as noticed in [29], thatOptSpace does not manage to recover
mildly ill-conditioned matrices while Incremental OptSpace improves significantly over
OptSpace. According to [29], the convergence difficulties of OptSpace on these tests have
to be ascribed to the singular value decomposition of the trimmed matrix needed in Step 3 of
OptSpace. In fact, the singular vector corresponding to the smallest singular value cannot
be approximated with enough accuracy. On the other hand, our approach is more accurate
than Incremental OptSpace and its behaviour only slightly deteriorates as κ increases.

Now, let us focus on the case of noisy observations. We first fixed κ = 200 and varied the
noise level. In Fig. 6 we plot the RMSE value against the noise level for all the three solvers
considered, using the 20% of observations. Also in this case IPLR- GS_P is able to recover
the matrix B̂ with acceptable accuracy, corresponding to an average error smaller than the
level of noise, and outperforms both OptSpace variants when the noise level is below 0.8.
In fact, OptSpace managed to recover B̂ only with a corresponding RMSE of the order of
10−1 for any tested noise level, consistent only with the larger noise level tested.

123

 46 Page 26 of 36 Journal of Scientific Computing (2021) 89:46

10 20 30 40 50 60 70 80 90 100
10−7

10−4

10−1

κ

R
M
SE

IPLR-GS P
OptSpace
Incremental OptSpace

Fig. 5 IPLR- GS_P, OptSpace and Incremental OptSpace on mildly ill-conditioned matrices (semilog
scale n̂ = 600, r = 6, n = 1200, m = 47840)

0 0.2 0.4 0.6 0.8 1

10−1

100

η

R
M
SE

IPLR-GS P
OptSpace
Incremental OptSpace

Fig. 6 IPLR- GS_P, OptSpace and Incremental OptSpace on noisy and mildly ill-conditioned matrices
(semilog scale, κ = 200, n̂ = 600, r = 6, n = 1200, m = 71, 640)

In order to get a better insight into the behaviour of the method on mildly ill-conditioned
andnoisyproblems,wefixedκ = 100, noise levelη = 0.3andvaried the percentageof known
entries from 8.3% to 50%, namelywe setm = 30, 000, 45, 000, 60, 000, 120, 000, 180, 000.
In Fig. 7 the value of RMSE is plotted against the percentage of known entries. The oracle
error value RMSEor = η

√
(n1r − r2)/m, given in [12] is plotted, too.We observe that in our

experiments IPLR- GS_P recovers the sought matrix with RMSE values always smaller than
1.3RMSEor , despite the condition number of the matrix. This is not the case for OptSpace
and Incremental OptSpace; OptSpace can reach a comparable accuracy only if the
percentage of known entries exceeds 30%. As expected, for all methods the error decreases
as the number of subsampled entries increases.

In summary, for mildly ill-conditioned random matrices our approach is more reliable
than OptSpace and Incremental OptSpace as the latter algorithms might struggle with
computing the singular vectors of the sparsified data matrix accurately, and they cannot
deliver precision comparable to that of IPLR. For the sake of completeness, we remark that
we have tested OptSpace also on the well-conditioned random matrices reported in Tables
2, 4 and 3, 5. On these problems IPLR andOptSpace provide comparable solutions, but as a
solver specially designed for matrix-completion problemsOptSpace is generally faster than
IPLR.

123

Journal of Scientific Computing (2021) 89:46 Page 27 of 36 46

0 10 20 30 40 50 60 70

0.2

0.4

percentage of observations

R
M
SE

IPLR-GS P
OptSpace
Incremental OptSpace
ORACLE

Fig. 7 IPLR- GS_P, OptSpace and Incremental OptSpace on noisy and mildly ill-conditioned matrices,
varying the percentage of observations (κ = 100, n̂ = 600, r = 6, n = 1200, η = 0.3)

Rank Updating

We now test the effectiveness of the rank updating/downdating strategy described in
Algorithm 2. To this purpose, we run IPLR- GS_P starting from r = 1, with rank incre-
ment/decrement δr = 1 and report the results in Table 6 for n̂ = 600, 800, 1000. In all runs,
the target rank has been correctly identified by the updating strategy and the matrix B is
well-recovered. Runs in italic have been obtained allowing 10 inner Gauss–Seidel iterations.
In fact, 5 inner Gauss–Seidel iterations were not enough to sufficiently reduce the residual
in (2.4) and the procedure did not terminate with the correct rank. Comparing the values of
the cpu time in Tables 2 and 6 we observe that the use of rank updating strategy increases
the overall time; on the other hand, it allows to adaptively modify the rank in case a solution
of (5.4) with the currently attempted rank does not exist.

The typical updating behaviour is illustrated in Fig. 8 where we started with rank 1 and
reached the target rank 5. In the first eight iterations a solution of the current rank does
not exist and therefore the procedure does not manage to reduce the primal infeasibility as
expected. Then, the rank is increased. At iteration 9 the correct rank has been detected and
the primal infeasibility drops down. Interestingly, the method attempted rank 6 at iteration
13, but quickly corrected itself and returned to rank 5 which was the right one.
The proposed approach handles well the situation where the matrix which has to be rebuilt
is nearly low-rank. We recall that by Corollary 5.2 we generate a low-rank approximation
X̄k , while the primal variable Xk is nearly low-rank and gradually approaches a low-rank
solution. Then, at termination, we approximate the nearly low-rank matrix that has to be
recovered with the low-rank solution approximation.

Letting σ1 ≥ σ2 ≥ · · · ≥ σn̂ be the singular values of B, we perturbed each singular value
of B by a random scalar ξ = 10−3η, where η is drawn from the standard normal distribution,
and using the SVD decomposition of B we obtain a nearly low-rank matrix B̂. We applied
IPLR- GS_P to (5.4) with the aim to recover the nearly low-rank matrix B̂ with tolerance
in the stopping criterion set to ε = 10−4. Results reported in Table 7 are obtained starting
from r = 1 in the rank updating strategy. In the table we also report the rank r̄ of the rebuilt
matrix X̄ . The run corresponding to rank 8, in italic in the table, has been performed allowing
a maximum of 10 inner Gauss–Seidel iterations. We observe that the method always rebuilt
the matrix with accuracy consistent with the stopping tolerance. The primal infeasibility is
larger than the stopping tolerance, as data b are obtained sampling a matrix which is not
low-rank and therefore the method does not manage to push primal infeasibility below 10−3.

123

 46 Page 28 of 36 Journal of Scientific Computing (2021) 89:46

Table 6 IPLR- GS_P on random matrices starting with r = 1

rank/n/m IPLR- GS_P

‖A(X) − b‖ ‖XS − μI‖F λmin(S) E cpu

3/1200/35910 4E−04 1E−03 4E−08 3E−06 161

4/1200/47840 4E−04 1E−03 5E−08 3E−06 206

5/1200/59750 5E−05 1E−03 5E−08 3E−07 315

6/1200/71640 9E−06 1E−03 4E−08 5E−08 390

7/1200/83510 8E−06 1E−03 4E−08 4E−08 494

8/1200/95360 4E−07 1E−03 4E−08 2E−09 746

3/1600/57492 4E−04 1E−03 3E−08 3E−06 411

4/1600/76608 3E−04 1E−03 4E−08 1E−06 488

5/1600/95700 7E−05 1E−03 3E−08 3E−07 641

6/1600/114768 2E−05 1E−03 3E−08 8E−08 841

7/1600/133812 4E−07 1E−03 3E−08 1E−09 996

8/1600/152832 1E−07 1E−03 3E−08 4E−10 1238

3/2000/83874 3E−04 1E−03 3E−08 2E−06 566

4/2000/111776 3E−04 1E−03 3E−08 1E−06 791

5/2000/139650 3E−05 1E−03 3E−08 1E−07 894

6/2000/167496 9E−06 1E−03 3E−08 1E−08 1293

7/2000/195314 3E−07 1E−03 3E−08 1E−7 1809

8/2000/223104 1E−07 1E−03 3E−08 3E−10 2149

2 4 6 8 10 12 14 16 18 20 22 24 26

1
2
3
4
5
6

Outer iterations

rank

2 4 6 8 10 12 14 16 18 20 22 24 26

10−5

100

Outer iterations

primal infeasibility

Fig. 8 Typical behaviour of the rank update strategy described in Algorithm 2. Data: n̂ = 50, target rank
r = 5, starting rank r = 1

Finally we note that in some runs (rank equal to 4,5,6) the returned matrix X̄ has a rank r̄
larger than that of the original matrix B. However, in this situation we can observe that X̄
is nearly-low rank as σi = O(10−3), i = r + 1, . . . , r̄ while σi � 10−3, i = 1, . . . , r .
Therefore the matrices are well rebuilt for each considered rank r and the presence of small
singular values does not affect the updating/downdating procedure.

123

Journal of Scientific Computing (2021) 89:46 Page 29 of 36 46

Table 7 IPLR- GS_P starting from r = 1 on nearly low-rank matrices (ξ = 10−3)

rank/n/m IPLR- GS_P

‖A(X) − b‖ ‖XS − μI‖F λmin(S) ‖X̄ − B̂‖F/‖B̂‖F r̂ cpu

3/1200/35910 4E−03 1E−03 4E−08 2E−05 3 218

4/1200/47840 5E−03 1E−03 4E−08 2E−05 5 506

5/1200/59750 5E−03 2E−03 1E−07 2E−05 7 937

6/1200/71640 6E−03 1E−03 4E−08 2E−05 7 797

7/1200/83510 6E−03 1E−03 4E−08 2E−05 7 642

8/1200/95360 7E−03 1E−03 4E−08 2E−05 8 1173

6.2 Tests on Real Data Sets

In this section we discuss matrix completion problems arising in diverse applications as the
matrix to be recovered represents city-to-city distances, a grayscale image, game parameters
in a basketball tournament and total number of COVID-19 infections.

Low-Rank Approximation of Partially KnownMatrices

We now consider an application of matrix completion where one wants to find a low-rank
approximation of a matrix that is only partially known.

As the first test example, we consider a 312 × 312 matrix taken from the “City Distance
Dataset” [10] and used in [11], that represents the city-to-city distances between 312 cities
in the US and Canada computed from latitude/longitude data.

We sampled the 30% of the matrix G of geodesic distances and computed a low-rank
approximation X̄ by IPLR- GS_P inhibiting rank updating/downdating and using ε = 10−4.
We compared the obtained solution with the approximation X̄os computed byOptSpace and
the best rank-r approximation X̄r , computed by truncated SVD (TSVD), that requires the
knowledge of the full matrix G. We considered some small values of the rank (r = 3, 4, 5)
and in Table 8 reported the errors Ei p = ‖G − X̄‖F/‖G‖F , Eos = ‖G − X̄os‖F/‖G‖F
and Er = ‖G − X̄r‖F/‖G‖F . We remark that the matrix G is not nearly-low-rank, and our
method correctly detects that there does not exist a feasible rank r matrix as it is not able to
decrease the primal infeasibility below 1e0. On the other hand the error Ei p in the provided
approximation, obtained using only the 23% of the entries, is the same as that of the best
rank-r approximation X̄r . Note that computing the 5-rank approximation is more demanding.
In fact the method requires on average: 3.4 Gauss–Seidel iterations, 37 unpreconditioned
CG iterations for computing �U and 18 preconditioned CG iterations for computing �y.
In contrast, the 3-rank approximation requires on average: 3.8 Gauss–Seidel iterations, 18
unpreconditioned CG iterations for computing �U and 10 preconditioned CG iterations for
computing �y. As a final comment, we observe that IPLR- GS fails when r = 5 since
unpreconditioned CG struggles with the solution of (4.14). The computed direction �y is
not accurate enough and the method fails to maintain S positive definite within the maximum
number of allowed backtracks. Applying the preconditioner cures the problem because more
accurate directions become available. Values of the error Eop obtained with OptSpace are
larger than Er . However it is possible to attain comparable values for r = 3 and r = 5 under

123

 46 Page 30 of 36 Journal of Scientific Computing (2021) 89:46

Table 8 TSVD, OptSpace and IPLR- GS_P for low rank approximation of the City Distance matrix

Rank TSVD OptSpace IPLR- GS_P

Er Eop Ei p ‖A(X) − b‖ ‖XS − μI‖F λmin(S) cpu

3 1.15E−01 1.97E−01 1.23E−01 4E00 8E−04 4E−07 48

4 7.06E−02 1.99E−01 7.85E−02 3E00 8E−04 4E−07 70

5 5.45E−02 1.30E−01 6.01E−02 2E00 8E−04 4E−07 243

(a) True image (b) 50% random missing pixels (c) 7% nonrandom missing pixels

Fig. 9 The Lake test true image and the inpainted versions

the condition that the default maximum number of iterations of OptSpace is increased 10
times. In these cases, OptSpace is twice and seven time faster, respectively.

As the second test example, we consider the problem of computing a low rank approx-
imation of an image that is only partially known because some pixels are missing and we
analyzed the cases when the missing pixels are distributed both randomly and not randomly
(inpainting). To this purpose, we examined the Lake 512 × 512 original grayscale image2

shown in Fig. 9c and generated the inpainted versions with the 50% of randommissing pixels
(Fig. 9b) and with the predetermined missing pixels (Fig. 9c).

We performed tests fixing the rank to values ranging from 10 to 150 and therefore used
IPLR- BB which is computationally less sensitive than IPLR- GS to the magnitude of the
rank.

In Fig. 10 we plot the quality of the reconstruction in terms of relative error E and PSNR
(Peak-Signal-to-Noise-Ratio) against the rank, for IPLR- BB, OptSpace and truncated SVD.
We observe that when the rank is lower than 40, IPLR- BB and TSVD give comparable
results, but when the rank increases the quality obtained with IPLR- BB does not improve.
As expected, by adding error information available only from the knowledge of the full
matrix, the truncated SVD continues to improve the accuracy as the rank increases. The
reconstructions produced withOptSpace display noticeably worse values of the two relative
errors (that is, larger E and smaller PSNR, respectively) despite the rank increase.

Figure 11 shows that IPLR- BB is able to recover the inpainted image in Fig. 9c and
that visually the quality of the reconstruction benefits from a larger rank. Images restored by
OptSpace are not reported since the relative PSNR values are approximately 10 points lower
than those obtained with IPLR- BB. The quality of the reconstruction of images Fig. 9b and
c obtained with OptSpace cannot be improved even if the maximum number of iterations is
increased tenfold.

2 The Lake image can be downloaded from http://www.imageprocessingplace.com.

123

http://www.imageprocessingplace.com

Journal of Scientific Computing (2021) 89:46 Page 31 of 36 46

20 40 60 80 100

5 · 10−2

0.1

0.15

0.2

Rank

E

TSVD
IPLR-BB
OptSpace

20 40 60 80 100

70

75

80

Rank

PSNR

TSVD
IPLR-BB
OptSpace

Fig. 10 Rank versus error and PSNR of the Lake image recovered with truncated SVD (TSVD), IPLR- BB
and OptSpace (50% random missing pixels in Fig. 9b)

(a) IPLR-BB: r = 80
PSNR = 76.15, E= 1.16E-01

(b) IPLR-BB: r = 100
PSNR = 76.64, E= 7.53E-01

(c) IPLR-BB: r = 150
PSNR = 78.44, E= 6.12E-02

Fig. 11 Images recovered by IPLR- BB for different rank values and corresponding PSNR and error (non-
random missing pixels in Fig. 9c)

Application to Sports Game Results Predictions

Matrix completion is used in sport predictive models to forecast match statistics [27]. We
consider the dataset concerning the NCAA Men’s Division I Basketball Championship, in
which each year 364 teams participate.3 The championship is organized in 32 groups, called
Conferences, whose winning teams face each other in a final single elimination tournament,
called March Madness. Knowing match statistics of games played in the regular Champi-
onship, the aim is to forecast the potential statistics of the missing matches played in the
March Madness phase. In our tests, we have selected one match statistic of the 2015 Cham-
pionship, namely the fields goals attempted (FGA) and have built a matrix where teams are
placed on rows and columns and nonzero i j-values correspond to the FGA made by team i
and against team j . In this season, only 3771 matches were held and therefore we obtained
a rather sparse 364 × 364 matrix of FGA statistics; in fact, only the 5.7% of entries of the
matrix that has to be predicted is known. To validate the quality of our predictions we used
the statistics of the 134 matches actually played by the teams in March Madness. We verified
that in order to obtain reasonable predictions of the missing statistics the rank of the recov-

3 The March Machine Learning Mania dataset is available in the website https://www.kaggle.com/c/march-
machine-learning-mania-2016/data.

123

https://www.kaggle.com/c/march-machine-learning-mania-2016/data
https://www.kaggle.com/c/march-machine-learning-mania-2016/data

 46 Page 32 of 36 Journal of Scientific Computing (2021) 89:46

5 10 15 20 25 30
March Madness

0

5

10

15

20

25

30

35

40
F

ga
March Madness Fga
Predicted Fga

35 40 45 50 55 60
March Madness

0

10

20

30

40

50

60

70

F
ga

March Madness Fga
Predicted Fga

65 70 75 80 85 90
March Madness

0

10

20

30

40

50

60

70

F
ga

March Madness Fga
Predicted Fga

95 100 105 110 115 120 125 130
March Madness

0

10

20

30

40

50

60

70

80

F
ga

March Madness Fga
Predicted Fga

Fig. 12 Predicted and March Madness FGA statistics. Top-Left: matches 1 to 31, Top-Right matches 32 to
62, Bottom-Left matches 63 to 93, Bottom-Right matches 94 to 134

ered matrix has to be sufficiently large. Therefore we use IPLR- BB setting the starting rank
r = 20, rank increment δr = 10 and ε = 10−3. The algorithm terminated recovering matrix
X̄ of rank 30. In Fig. 12 we report the bar plot of the exact and predicted values for each
MarchMadness match. The matches have been numbered from 1 to 134. We note that except
for 12 mispredicted statistics, the number of fields goals attempted is predicted reasonably
well. In fact, we notice that the relative error between the true and the predicted statistic is
smaller than 20% in the 90% of predictions.

On this data set, OptSpace gave similar results to those in Fig. 12 returning a matrix of
rank 2.

Application to COVID-19 Infections Missing Data Recovery

We now describe a matrix completion problem where data are the number of COVID-19
infections in provincial capitals of regions in the North of Italy. Each row and column of the
matrix corresponds to a city and to a day, respectively, so that the i j-value corresponds to the
total number of infected people in the city i on the day j . We used data made available by the
Italian Protezione Civile4 regarding the period between March 11th and April 4th 2020, that
is, after restrictive measures have been imposed by the Italian Government until the date of

4 The dataset is available at https://github.com/pcm-dpc/COVID-19/tree/master/dati-province.

123

https://github.com/pcm-dpc/COVID-19/tree/master/dati-province

Journal of Scientific Computing (2021) 89:46 Page 33 of 36 46

Total number of COVID-19 infections

0 10 20 30 40 50
0

5000

10000

true data
IPLR-GS_P: predicted data

0 10 20 30 40 50
0

10

20

30

40

IPLR-GS_P: Percentage error

Total number of COVID-19 infections

0 10 20 30 40 50
0

5000

10000

true data
OptSpace: predicted data

0 10 20 30 40 50
0

10

20

30

40

OptSpace: Percentage error

Fig. 13 Predicted and actual number of COVID-19 infections (top) and corresponding percentage error ,
obtained with IPLR- GS_P (2 top plots) and OptSpace (2 bottom plots)

paper submission.We assume that a small percentage (5%) of data is not available to simulate
the real case because occasionally certain laboratories do not communicate data to the central
board. In such a case our aim is to recover this missing data and provide an estimate of the
complete set of data to be used to make analysis and forecasts of the COVID-19 spread.
Overall, we build a 47 × 24 dense matrix and attempt to recover 56 missing entries in it.
We use IPLR- GS_P with starting rank r = 2, rank increment δr = 1 and ε = 10−4 and we
have obtained a matrix X̄ of rank 2. The same rank is obtained using OptSpace but only if
the maximum number of its iterations is increased threefold. In Fig. 13 both the predicted
and actual data (top) and the percentage error (bottom) are plotted using the two solvers. We
observe that IPLR- GS_P yields an error below 10% except for 8 cases and in the worst case
it reaches 22%. The error obtained with OptSpace exceeds 10% in 15 cases and in one case
reaches 37%.

The good results obtained with IPLR- GS_P for this small example are encouraging for
applying the matrix completion approach to larger scale data sets.

123

 46 Page 34 of 36 Journal of Scientific Computing (2021) 89:46

7 Conclusions

We have presented a new framework for an interior point method for low-rank semidefinite
programming. The method relaxes the rigid IPM structure and replaces the general matrix
X with the special form (2.3) which by construction enforces a convergence to a low rank
solution as μ goes to zero. Therefore effectively instead of requiring a general n × n object,
the proposed method works with an n × r matrix U , which delivers significant storage and
cpu time savings. It also handles well problems with noisy data and allows to adaptively
correct the (unknown) rank. We performed extensive numerical tests on SDP reformulation
of matrix completion problems using both the first- and the second-order methods to compute
search directions. The convergence of the method has been analysed under the assumption
that eventually the steplength αk is equal to one (Assumption 1). However, this seemingly
strong assumption does hold in all our numerical tests except for the sports game results
predictions where the number of known entries of the matrix is extremely low.

Our numerical experience shows the efficiency of the proposed method and its ability to
handle large scale matrix completion problems and medium scale problems arising in real-
life applications. A comparison withOptSpace reveals that the proposed method is versatile
and it delivers more accurate solutions when applied to ill-conditioned or to some classes
of real-life applications. It is generally slower than methods specially designed for matrix
completion as OptSpace, but our method has potentially a wider applicability.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Notes on Kronecker Product andMatrix Calculus

Let us also recall several useful formulae which involve Kronecker products. For each of
them, we assume that matrix dimensions are consistent with the multiplications involved.

Let A, B,C, D be matrices of suitable dimensions. Then

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) (A.1)

vec(AXB) = (BT ⊗ A)vec(X) (A.2)

vec(AXT B) = (BT ⊗ A)vec(XT) = (BT ⊗ A)�vec(X), (A.3)

where � is a permutation matrix which transforms vec(X) to vec(XT). Moreover, assume
that A and B are square matrices of size n andm respectively. Let λ1, . . . , λn be the eigenval-
ues of A andμ1, . . . , μm be those of B (listed according tomultiplicity). Then the eigenvalues
of A ⊗ B are

λiμ j , i = 1, . . . , n, j = 1, . . . ,m.

Finally, following [18], we recall some rules for derivatives of matrices that can be easily
derived applying the standard derivation rules for vector functions (chain rule, composite
functions) and identifying d G(X)/d (X) by using the vectorization d vecG(X)/d vec(X),

123

http://creativecommons.org/licenses/by/4.0/

Journal of Scientific Computing (2021) 89:46 Page 35 of 36 46

where G(X) is a matrix function. In particular we have that given the matrices A ∈ R
n×m ,

B ∈ R
p×q and X defined accordingly, it holds

d AAT

d A
= (A ⊗ In) + (In ⊗ A),

d AXB

d X
= (BT ⊗ A).

References

1. Andersen, M., Dahl, J., Liu, Z., Vandenberghe, L.: Interior-Point Methods for Large-scale Cone Program-
ming, pp. 55–83. MIT Press (2011)

2. Anjos, M., Lasserre, J.: Handbook of Semidefinite, Conic and Polynomial Optimization: Theory, Algo-
rithms, Software andApplications, International Series inOperational Research andManagement Science
(2012)

3. Barzilai, J., Borwein, J.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
4. Bellavia, S., Gondzio, J., Porcelli, M.: An inexact dual logarithmic barrier method for solving sparse

semidefinite programs. Math. Program. 178, 109–143 (2019)
5. Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial

optimization. SIAM J. Optim. 10, 443–461 (2000)
6. Boumal, N., Voroninski, V., Bandeira, A.: The non-convex Burer–Monteiro approach works on smooth

semidefinite programs. Adv. Neural Inf. Process. Syst. 29, 2757–2765 (2016)
7. Boumal, N., Voroninski, V., Bandeira, A.S.: Deterministic guarantees for Burer–Monteiro factorizations

of smooth semidefinite programs (2018). arXiv preprint arXiv:1804.02008
8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via

low-rank factorization. Math. Program. 95, 329–357 (2003)
9. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite programming.

Math. Program. 103, 427–444 (2005)
10. Burkardt, J.: Cities—City Distance Datasets. http://people.sc.fsu.edu/~burkardt/datasets/cities/cities.

html
11. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM

J. Optim. 20, 1956–1982 (2010)
12. Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98, 925–936 (2010)
13. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9,

717–772 (2009)
14. Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer. Anal.

32, 227–245 (2012)
15. DeKlerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and SelectedApplications,

vol. 65. Springer, Berlin (2006)
16. de Klerk, E., Peng, J., Roos, C., Terlaky, T.: A scaled Gauss–Newton primal-dual search direction for

semidefinite optimization. SIAM J. Optim. 11, 870–888 (2001)
17. di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the Steplength Selection in Gradient Methods

for Unconstrained Optimization, Applied Mathematics and Computation, vol. 318, pp. 176 – 195. Recent
Trends in Numerical Computations: Theory and Algorithms (2018)

18. Fackler, P.L.: Notes on Matrix Calculus. Privately Published (2005)
19. Fazel, M., Hindi, H., Boyd, S.P., A rankminimization heuristic with application to minimum order system

approximation. In: American Control Conference: Proceedings of the 2001, vol. 6, pp. 4734–4739 (2001)
20. Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal-dual interior-point methods for

semidefinite programming. Math. Program. 79, 235–253 (1997)
21. Gillberg, J., Hansson, A.: Polynomial complexity for a Nesterov–Todd potential reduction method with

inexact search directions. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 3,
pp. 3824–3829. IEEE (2003)

22. Goemans,M.X.,Williamson,D.P.: Improved approximation algorithms formaximumcut and satisfiability
problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

23. Grapiglia, G.N., Sachs, E.W.: On the worst-case evaluation complexity of non-monotone line search
algorithms. Comput. Optim. Appl. 68, 555–577 (2017)

24. Güler, O., Ye, Y.: Convergence behavior of interior-point algorithms. Math. Program. 60, 215–228 (1993)

123

http://arxiv.org/abs/1804.02008
http://people.sc.fsu.edu/~burkardt/datasets/cities/cities.html
http://people.sc.fsu.edu/~burkardt/datasets/cities/cities.html

 46 Page 36 of 36 Journal of Scientific Computing (2021) 89:46

25. Hestenes, M.R.: Pseudoinversus and conjugate gradients. Commun. ACM 18, 40–43 (1975)
26. Huang, S., Wolkowicz, H.: Low-rank matrix completion using nuclear norm minimization and facial

reduction. J. Glob. Optim. 72, 5–26 (2018)
27. Ji, H., O’Saben, E., Boudion, A., Li, Y.: March madness prediction: a matrix completion approach. In:

Proceedings of Modeling, Simulation, and Visualization Student Capstone Conference, pp. 41–48 (2015)
28. Keshavan, R.-H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theory

56, 2980–2998 (2010)
29. Keshavan, R.-H., Oh, S.: Optspace: a gradient descent algorithm on the Grassmann manifold for matrix

completion (2009). arXiv preprint arXiv:0910.5260
30. Kocvara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified barrier method

using iterative solvers. Math. Program. 109, 413–444 (2007)
31. Koh, K., Kim, S.-J., Boyd, S.: An interior-point method for large-scale �1-regularized logistic regression.

J. Mach. Learn. Res. 8, 1514–1555 (2007)
32. Kruk, S., Muramatsu, M., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: The Gauss–Newton direction in

semidefinite programming. Optim. Methods Softw. 15, 1–28 (2001)
33. Lee, K., Bresler, Y.: Admira: atomic decomposition for minimum rank approximation. IEEE Trans. Inf.

Theory 56, 4402–4416 (2010)
34. Lemon, A., So, A.M.-C., Ye, Y., et al.: Low-rank semidefinite programming: theory and applications,

foundations and trends®. Optimization 2, 1–156 (2016)
35. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted

low-rank matrices (2010). arXiv preprint arXiv:1009.5055
36. Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with application to

system identification. SIAM J. Matrix Anal. Appl. 31, 1235–1256 (2009)
37. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization.

Math. Program. 128, 321–353 (2011)
38. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization

problem. SIAM J. Optim. 7, 26–33 (1997)
39. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)
40. Todd, M.J.: Semidefinite optimization. Acta Numer. 2001(10), 515–560 (2001)
41. Toh,K.-C.,Kojima,M.: Solving some large scale semidefinite programsvia the conjugate residualmethod.

SIAM J. Optim. 12, 669–691 (2002)
42. Toh, K.-C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least

squares problems. Pac. J. Optim. 6, 15 (2010)
43. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends Optim.

1, 241–433 (2015)
44. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)
45. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with

nonnegative factors. Front. Math. China 7, 365–384 (2012)
46. Zhang, R. Y. , Lavaei, J.: Modified interior-point method for large-and-sparse low-rank semidefinite

programs. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5640–5647.
IEEE (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/0910.5260
http://arxiv.org/abs/1009.5055

	A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion
	Abstract
	1 Introduction
	2 Relaxed Interior Point Method for Low-Rank SDP
	3 Rank Updating/Downdating
	4 Solving the Nonlinear Least-Squares Problem
	4.1 Matrix–Vector Products with Blocks of Jµk
	4.2 Computational Effort Per Iteration
	4.3 Nonlinear Gauss–Seidel Approach
	4.4 Preconditioning J22TJ22

	5 SDP Reformulation of Matrix Completion Problems
	6 Numerical Experiments on Matrix Completion Problems
	6.1 Tests on Random Matrices
	Mildly Ill-Conditioned Problems
	Rank Updating
	6.2 Tests on Real Data Sets
	Low-Rank Approximation of Partially Known Matrices
	Application to Sports Game Results Predictions
	Application to COVID-19 Infections Missing Data Recovery

	7 Conclusions
	Appendix A. Notes on Kronecker Product and Matrix Calculus
	References

