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Abstract 

The role of adiponectin has been particularly deepened in diabetic muscles while the study of 

adiponectin in hereditary myopathies has been marginal investigated. Here, we report the study 

about adiponectin effects in Col6a1−/− (collagen VI–null) mice. Col6a1−/− mice show myophatic 

phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal 

model for the study of this hereditary disease. Our findings demonstrate that Col6a1−/− mice have 

decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion 

of the hormone. Moreover, Col6a1−/− myoblasts show decreased glucose up-take and mitochondria 

with depolarized membrane potential and impaired functionality, as supported by decreased oxygen 

consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1−/− 

myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances 

glucose up-take in Col6a1−/− myoblasts, modifies mitochondrial membrane potential and restores 

oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma 

adiponectin level in Col6a1−/− mice is induced by fasting, a condition that has been previously 

shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate 

that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in 

Col6a1−/− myoblasts. 
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Introduction 

Congenital muscular dystrophies represent a large and heterogeneous group of inherited 

muscle disorders with a severe and progressive clinical course. In particular, mutations in any of the 

genes encoding for the three main chains (α1, α2, α3) composing collagen VI (COL6), an 

extracellular matrix protein remarkably abundant in the endomysium of skeletal muscles, cause 

multiple muscle diseases, including Bethlem myopathy (BM) and Ullrich congenital muscular 

dystrophy (UCMD) [1]. COL6 null (Col6a1–/–) mice display a myopathic phenotype resembling 

that of BM patients, and showed to be an excellent animal model for this pathology [2]. Muscles 

lacking COL6 are characterized by the presence of dilated sarcoplasmic reticulum and 

dysfunctional mitochondria, leading to muscle wasting [3]. These muscles exhibit accumulation of 

abnormal organelles due to an autophagy impairment. Amelioration of the dystrophic phenotype 

can be obtained through the reactivation of the autophagic flux, by either nutritional approaches or 

by pharmacological and genetic tools, leading to the removal of dysfunctional organelles [3, 4].  

The action of adiponectin in skeletal muscle plays key roles ranging from metabolic to 

differentiating ones. Regarding the metabolic function, adiponectin affects glucose up-take, 

glycogen synthesis, glycolysis activation and triglyceride degradation [5-7]. In addition, adiponectin 

promotes myogenesis both in satellite cells [8] and myoblasts [9] and the differentiating role in 

myoblasts is  linked to activation of autophagy [10]. In muscle cells, the binding of adiponectin to 

its specific AdipoR1 muscle receptor leads to the activation of a signalling cascade in which APMK 

plays a central role [7]. Adiponectin circulating in the plasma is mainly secreted from the adipose 

tissue, however, autocrine adiponectin production occurs in several tissues, including skeletal 

muscle which is one of the main site of local secretion [11]. Plasma adiponectin level is greatly 

affected by obesity. Obese individuals show significantly decreased adiponectin level in the blood, 

thus predisposing them to the onset of the metabolic syndrome [12]. Although the role of 
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adiponectin in healthy skeletal muscle is well documented, its effects on dystrophic muscles are still 

unclear. 

Here, we report that Col6a1–/– mice display decreased circulating adiponectin level and that 

Col6a1–/– myoblasts-enriched cultures (hereafter referred to as “myoblasts”) have impaired 

autocrine adiponectin secretion. In addition, Col6a1–/– myoblasts display decreased glucose up-take, 

higher glutamine dependence and decreased glucose consumption. Interestingly, exogenous 

addition of adiponectin improves Col6a1–/– metabolic behaviour, bringing it closer to that of wild-

type (WT) myoblasts. Indeed, adiponectin stimulation of Col6a1–/– myoblasts increases glucose up-

take and oxygen consumption and induces glutamine dependence close to that of WT myoblasts. In 

addition, we show that fasting, previously demonstrated to ameliorate the dystrophic phenotype of 

Col6a1–/– mice, induces an up-regulation of plasma adiponectin level in Col6a1–/– mice. Overall, 

these findings show that the modulation of adiponectin levels both in vitro and in vivo could 

improve the metabolic defects due to the absence of COL6. 
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Materials and methods 

 

Materials. Unless differently specified, all reagents were obtained from Sigma-Aldrich, Inc.; PVDF 

membrane was from Millipore; anti-adiponectin, anti-AdipoR1, anti-GAPDH, anti-GLUT4 

antibodies and test ELISA for murine adiponectin assay were from Abcam; Alexa 488 fluorescent 

secondary antibodies were from Pierce. Adiponectin was from Alexis. JC-1 probe was from 

Molecular Probe; K-LATE kit for lactate assay was from Megazyme; [3H] 2-deoxy-glucose was 

from Perkin Elmer; ECL detection reagents was from GE Healthcare. 

Mice. Diaphragm and tibialis anterior were isolated from 8 week-old male Col6a1−/− (collagen VI–

null) mice and compared age-matched male Col6a1+/+ (WT) mice. We housed mice in individual 

cages in an environmentally controlled room (23 °C, 12-h light-dark cycle) and provided food and 

water ad libitum. For fasted mice, we removed chow in the morning and maintained mice for 24 

hours with no food but free access to water. Mouse procedures were approved by the Ethics 

Committee of the University of Padua and authorized by the Italian Ministry of Health according to 

D. Lgs. 26/2014 implementing Directive 2010/63 / EU.  

Cell Culture. Myoblast-enriched cultures (hereafter referred to as “myoblasts”) were isolated from 

8-week-old of WT and Col6a1–/– muscles (diaphragm and tibialis anterior) by enzymatic and 

mechanical dissociation, following the protocol from Rando and Blau [13]. Isolated cells were 

transferred to gelatin-coated dishes and then cultured in DMEM supplemented with 10% FBS in 5% 

CO2 humidified atmosphere and used until passage 2 as maximum.  

Immunoblot analysis. Muscle protein extracts were prepared as previously described [14] and 

immunoblot analysis was performed as previously reported [10].  
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Immunofluorescence. Myoblasts were grown on glass coverslips and for confocal analysis, sub-

confluent myoblasts were treated as previously reported [10]. 

Adiponectin assay. Plasma and local adiponectin were assayed by ELISA test following 

manufacturer’s instruction. Plasma from WT and Col6a1–/– mice was diluted 1:400 and adiponectin 

value obtained by ELISA test was normalized on plasma total protein content. Autocrine production 

of adiponectin was assayed in culture medium of WT and Col6a1–/– myoblasts. In particular, WT 

and Col6a1–/– myoblasts were cultured for a day in serum-free medium before collecting the 

medium. Total protein content of myoblasts was used for normalization of the value obtained by 

Elisa test. 

Glucose up-take.  Glucose up-take was performed using [3H] 2-deoxy-glucose (0.5 mCi/mL, final 

concentration) diluted in a buffered solution (140 mmol/L NaCl, 20 mmol/L Hepes/Na, 2.5 mmol/L 

MgSO4, 1 mmol/L CaCl2, and 5 mmol/L KCl, pH7.4) for 15 minutes at 37 °C. Cells were 

subsequently washed with cold PBS and lysed with 0.1 mol/L NaOH. Incorporated radioactive 

glucose was assayed by scintillation counter and the obtained value was then normalized on total 

protein content. 

Lactate assay. Lactate amount was assayed in cell medium using K-LATE kit according to 

manufacturer’s instructions. Lactate amount was then normalized on protein content of the same 

sample. 

MTT assay. 0.5 mg/ml of 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2 H tetrazolium bromide 

(MTT) was added to the cells. After 1 h at 37 °C, cells were extensively washed with PBS and then 

1 ml of DMSO was added to the culture. The absorption was measured at 570 nm. 

Measurement of oxygen consumption. Myoblasts were trypsinized, washed with PBS and 

suspended in complete DMEM medium at the concentration of 106 cells/ml. One ml of cell 
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suspension was transferred to an airtight chamber maintained at 37 °C. Oxygen consumption was 

measured using a Clark-type O2 electrode (Oxygraph Hansatech). Oxygen content was monitored 

for at least 10 min. The rate of decrease in oxygen content, related to protein amount was taken as 

index of the respiratory ability. 

Statistical analysis. Data are presented as mean ± S.D. from at least three independent experiments. 

Statistical analysis of the data was performed by Student's t-test or by one-way ANOVA using 

Graph Pad Prism 4.0. p-values 0.05 were considered statistically significant. 
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Results 

1. Analysis of circulating and local adiponectin content in Col6a1–/– mice. We planned to 

study adiponectin in Col6a1–/– mice, a good animal model for UCMD and BM [2]. For this aim, we 

chose the muscles diaphragm and tibialis anterior. Diaphragm is characterized by red fibres, a great 

amount of mitochondria and oxidative metabolism. Conversely, tibialis anterior has fermentative 

metabolism and is composed of white fibres containing few mitochondria. We checked adiponectin 

and AdipoR1 levels in the two muscles isolated from male WT and Col6a1–/– mice. No difference 

in the expression level of both adiponectin and AdipoR1 has been observed in diaphragm and 

tibialis anterior from Col6a1–/– mice in comparison to WT (Fig. 1A). As well, our analysis of 

adiponectin expression in myoblasts isolated from WT and Col6a1–/–, diaphragm and tibialis 

anterior showed that adiponectin expression is quite similar in Col6a1–/– and WT myoblasts (Fig. 

1B).  

Hence, we analyzed both circulating adiponectin in plasma of WT and Col6a1–/– mice and 

autocrine adiponectin secretion in WT and Col6a1–/– myoblast culture medium. Our findings 

showed decreased circulating adiponectin (of about 30%) in Col6a1–/– plasma in comparison to WT 

(Fig. 2A). Remarkably, the analysis of autocrine production of adiponectin from diaphragm-isolated 

myoblasts led to the same result. Indeed, Col6a1–/– cells showed a 30% reduction of adiponectin 

secretion when compared to WT myoblasts (Fig. 2B). Body weight of WT and Col6a1-/– mice 

showed no appreciable differences as shown in Fig. 2C. 

To test whether the decrease of plasma adiponectin is associated to gender, we assayed 

circulating adiponectin in WT and Col6a1–/– females. The results showed that circulating 

adiponectin is decreased in Col6a1–/– females in comparison to WT females (Suppl. Fig. 1A), as 

already observed in male Col6a1–/– mice (Fig. 2A). In addition, intracellular levels of adiponectin in 
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diaphragm and tibialis anterior of Col6a1–/– females are similar to WT females (Suppl. Fig. 1B), as 

observed in male Col6a1–/– mice (Fig. 1A). 

Collectively, these results show that Col6a1/– mice have decreased circulating adiponectin 

and that autocrine production of adiponectin by Col6a1–/– myoblasts is defective, thus suggesting a 

decreased extracellular adiponectin availability for skeletal muscles in diseased mice.  

2. Role of adiponectin in glucose metabolism of Col6a1–/– myoblasts. Proteomic analysis in 

Col6a1–/– muscles suggested an impairment of glycolysis [15]. To verify whether decreased 

glycolysis could be due to an impairment of glucose entry, we analyzed glucose up-take in 

myoblasts isolated from WT and Col6a1–/– diaphragm and tibialis anterior. This analysis showed 

that Col6a1–/– myoblasts have decreased glucose assumption in comparison to WT cells isolated 

from both muscles (Fig. 3A and 3B). Globular adiponectin (gAd) exerts in skeletal muscle several 

physiological actions, ranging from metabolic to differentiating functions [10, 11]. In particular, 

gAd has high affinity for the binding with AdipoR1 and greatly affects glucose up-take in skeletal 

muscle [16]. Hence, we planned to stimulate WT and Col6a1–/– myoblasts with gAd.  Stimulation 

with gAd enhanced glucose up-take in Col6a1–/– myoblasts (Fig. 3A and 3B) with higher increase 

in Col6a1–/– myoblasts isolated from tibialis anterior (Fig. 3B). We tested whether the impairment 

of glucose up-take in Col6a1–/– myoblasts was due to a lower expression of GLUT4, the primary 

glucose transporter in skeletal muscle. As shown in Fig. 4, the expression level of GLUT4 was 

similar in WT and Col6a1–/– myoblasts.  However, confocal analysis suggests that gAd stimulation 

could alter intracellular distribution of GLUT4 in Col6a1–/– myoblasts (Suppl. fig. 1). 

The impaired glucose up-take observed in myoblasts from diaphragm and tibialis anterior of 

Col6a1–/–, suggested that Col6a1–/– myoblasts could import the amino acid glutamine that could be 

driven towards Krebs cycle. To test this possibility, we performed glucose up-take in the absence of 

glutamine, thus forcing Col6a1–/– myoblasts to use glucose. Glutamine depletion induced Col6a1–/– 
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myoblasts to introduce glucose instead of glutamine (Fig. 5A and 5B), thus enhancing the glucose 

up-take. Our observation suggested that Col6a1–/– myoblasts preferentially use glutamine instead of 

glucose for their metabolism. Indeed, in the presence of both glucose and glutamine Col6a1–/– 

myoblasts showed enhanced metabolic activity in comparison to WT cells. Conversely, when 

glutamine is removed, Col6a1–/– myoblasts showed decreased metabolic activity, becoming similar 

to that of WT cells (Fig. 5C). In order to deeper characterize the energetic metabolism of Col6a1–/– 

myoblasts, we also measured the production of lactate. This analysis evidenced that Col6a1–/– 

myoblasts from diaphragm and tibialis anterior secreted quite similar amount of lactate in 

comparison to healthy cells (Fig. 6A and 6B). Interestingly, lactate production was greatly increased 

in Col6a1–/– myoblasts after gAd stimulation in both muscles examined (Fig. 6A and 6B).  

Overall, these findings suggest that Col6a1–/– myoblasts introduce less glucose in 

comparison to WT cells, preferring glutamine for their viability. In the presence of both glucose and 

glutamine, gAd stimulation enhances glucose up-take and increases lactate production in Col6a1–/– 

myoblasts in both muscles. On the other hand, glutamine withdrawal forced myoblasts to increase 

glucose up-take and gAd stimulation raises glucose intake. 

3. Adiponectin stimulation restores mitochondrial membrane potential and increases oxygen 

consumption in Col6a1–/– myoblasts. Col6a1–/– muscles exhibit altered mitochondria characterized 

by high membrane depolarization that is greatly attenuated after prolonged fasting [3]. To detect the 

presence of altered mitochondria also in Col6a1–/– myoblasts, we used the mitochondrial probe JC-

1. Fig. 7A shows that Col6a1–/– myoblasts contained mitochondria with depolarized membranes 

(evidenced by green fluorescence) in comparison to WT cells (showing red fluorescent, typical of 

normal mitochondrial membrane potential). gAd induces mitochondria biogenesis through the 

regulation of PGC-1α and genetic removal of AdipoR1 in muscle resulted in decreased expression 

and deacetylation of PGC-1α and reduced mitochondrial enzymes [17]. To test whether adiponectin 
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could ameliorate mitochondrial membrane depolarization, Col6a1–/– myoblasts have been 

stimulated with gAd. This treatment led to the shift from green to red fluorescence in Col6a1–/– 

mitochondria, which appeared similar to WT cells (Fig. 7A). This finding demonstrates that gAd 

ameliorates altered mitochondrial features in Col6a1–/– myoblasts, thus restoring normal membrane 

potential.  

To detect whether the depolarization observed in Col6a1–/– mitochondria is associated with 

altered functionality, we analyzed oxygen consumption. We observed that Col6a1–/– myoblasts 

consume lesser amount of oxygen (about 30%) in comparison to WT cells (Fig.7B). Interestingly, 

[18] gAd stimulation restored oxygen consumption similar to that of WT cells (Fig. 7B).  

Overall, these findings show that gAd induces beneficial effects on mitochondria in Col6a1–

/– myoblasts, thus ameliorating membrane potential and the defective oxygen consumption. The 

benefits following gAd treatment are not due to enhanced expression of mitochondrial complexes, 

since no differences in the expression of these proteins were observed between WT and Col6a1–/– 

myoblasts (data not shown). 

4. Fasting in Col6a1–/– mice increases circulating adiponectin. Fasting in Col6a1–/– mice 

improves the dystrophic phenotype [3]. Moreover, fasting raises both serum and cerebrospinal fluid 

levels of adiponectin [18]. This led us to hypothesise that fasting in Col6a1–/– mice could enhance 

both circulating and local muscular production of adiponectin. To test this hypothesis, we detected 

the expression level of adiponectin in muscles of fasting Col6a1–/– mice. Results showed that only 

tibialis anterior of fasted Col6a1–/– mice exhibit higher amount of adiponectin in comparison to WT 

fasted mice (Fig. 8A). Conversely, adiponectin level remains quite similar in the diaphragm of 

fasted Col6a1–/– and WT mice (Fig. 8A). Interestingly, fasting affects the amount of circulating 

adiponectin in plasma. Indeed, while normally fed Col6a1-/– mice showed decreased circulating 
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adiponectin (Fig. 2A), fasting increased the amount of circulating hormone that become similar to 

WT mice (Fig. 8B).  

These findings demonstrate that fasting promotes adiponectin expression and secretion, thus 

suggesting that adiponectin could be involved in the improvement of dystrophic phenotype 

observed in Col6a1–/– mice following fasting.  
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Discussion 

The metabolic and differentiating roles of adiponectin in skeletal muscle have been well-

established and deeply studied [7]. However, the involvement of adiponectin in inherited muscle 

diseases is just at the beginning. It has been reported that DMD patients show a significant 

reduction of High Molecular Weight complexes of adiponectin [19], but the consequence of this 

decrease has not been investigated yet. Here, we report the study on adiponectin in Col6a1–/– mice, 

having a targeted inactivation of the α1 chain of collagen VI (COL6), and show a myopathic 

phenotype resembling that of BM patients [2]. Whether the local and endocrine adiponectin levels 

are changed and whether the exogenous addition of adiponectin undergoes beneficial effects for the 

diseased phenotype has not considered yet in this pathology. This is an important point to be 

addressed, since adiponectin could be considered a new tool for the improvement of the diseased 

muscles. An interesting finding is that Col6a1–/– mice have decreased amount of circulating 

adiponectin in comparison to healthy mice. In addition to endocrine adiponectin production, several 

tissues, including skeletal muscle, have autocrine adiponectin production [9, 11]. We found that 

muscles and myoblasts from Col6a1–/– have intracellular adiponectin content similar to healthy 

mice, thus showing that myopathy does not affect adiponectin transcription and translation. 

However, secretion of adiponectin is greatly decreased in Col6a1–/– myoblasts in comparison to 

WT, thus demonstrating that myopathy affects both endocrine and skeletal muscle autocrine 

adiponectin secretion in Col6a1–/– mice. Particularly, we found that both males and females of 

Col6a1–/– mice show reduced circulating adiponectin in comparison to WT, thus suggesting that the 

decrease of plasma adiponectin is not related to gender but rather to the pathological condition. The 

mechanisms driving adiponectin secretion are well elucidated [20-22]. However, some factors may 

compromise the secretion of this adipokine. Among these, oxidative stress has been reported to 

inhibit adiponectin secretion by adipose tissue [23, 24]. Several studies recognised the key role of 

oxidative stress and abnormal production of reactive oxygen species in the pathophysiology of 
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muscular dystrophies [25-27]. In particular, the presence of oxidative stress, due to an accumulation 

of reactive oxygen species by monoamine oxidase activity, has been reported in muscles of Col6a1–

/– mice [28]. Hence, oxidative stress observed in Col6a1–/– muscles may be the cause leading to the 

impairment of adiponectin secretion. In addition, Col6a1–/– mice show dilated sarcoplasmic 

reticulum in muscle cells that may affect the translation of those proteins destined to secretion as 

adiponectin [3]. For what adipose tissue is concerned, Col6a1–/– mice show increased adipocyte cell 

size due to a more flexibility of the adipocyte matrix, thus allowing the increase of adipocytes size 

in the absence of associated necrosis and inflammation. This leads to metabolic dysfunction and 

fibrosis formation in Col6a1–/– adipose tissue in a diabetic state [29].  

Hence, our results show that Col6a1–/– mice have impaired both circulating and local (at 

least at skeletal muscle level) adiponectin production, thus generating a situation in which the 

hormone is not sufficiently available for target tissues as skeletal muscle.  

Decreased amount of adiponectin could be involved in the altered metabolic behaviour 

observed in myoblasts of Col6a1–/– mice in comparison to those from healthy animals. We found 

that myoblasts from diaphragm and tibialis anterior of Col6a1–/– mice show impaired glucose up-

take. Furthermore, our results highlight another altered behaviour of Col6a1–/– myoblasts. 

Particularly myoblasts isolated from diaphragm of Col6a1–/– mice show greater glutamine-

dependence which appears indispensable for myoblast metabolism. When cells take less glucose, 

glutamine can be used for cell metabolism instead of glucose. In skeletal muscle, glutamine can 

meet different fates since it can be used as nitrogen donor in the synthesis of amino acids and 

nucleosides, converted to α-ketoglutarate or citrate, thus supporting the tricarboxylic acid cycle, 

[30, 31]. Proteomic analysis performed on Col6a1–/– muscles suggested that diaphragm of Col6a1–/– 

mice is characterized by blunted glycolysis and impaired tricarboxylic acid cycle [15]. In 

agreement, we observe decreased glucose uptake, likely responsible for the decreased glycolysis 

observed by De Palma et al. [15]. In skeletal muscle, adiponectin has essential and pleiotropic roles, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 

 

ranging from metabolic to differentiating function [8-11, 32]. Concerning the metabolic role, 

adiponectin promotes glucose up-take via GLUT4 translocation [16] and regulates fatty acid 

metabolism, increasing fatty acid uptake and oxidation, and suppressing fatty acid synthesis through 

the activation of AMPK, p38 MAPK and PPARα signalling [5, 6, 33]. We found that treatment of 

Col6a1–/– myoblasts with exogenous adiponectin induces several beneficial effects at the metabolic 

level. Adiponectin enhances glucose up-take, promotes lactate production and decreases glutamine 

dependence, approaching that of WT cells. In addition, adiponectin enhances glucose up-take in 

Col6a1–/– myoblasts after glutamine withdrawal. Hence, exogenous addition of adiponectin could 

restore the proper metabolic signalling in Col6a1–/– myoblasts.  

As already reported in intact fibres [3], Col6a1–/– myoblasts contain depolarized and less 

functional mitochondria with decreased capacity to consume oxygen.  In this scenario, addition of 

exogenous adiponectin can play a key role in restoring proper metabolism in Col6a1–/– muscles. 

Indeed, we found that adiponectin promotes beneficial effects also at the mitochondrial level in 

Col6a1–/– myoblasts. The role of adiponectin in mitochondria of muscle cells has been clearly 

defined. By AdipoR1, adiponectin promotes the activation of Ca2+/calmodulin-dependent protein 

kinase β (CaMKKβ), AMPK and SIRT1 signalling pathways, increased the expression and 

decreased acetylation of peroxisome proliferator-activated receptor c coactivator-1α (PGC-1α), thus 

leading to increased mitochondria in myotubes [17]. Although the mechanism needs further 

investigations, adiponectin treatment improves mitochondrial potential and increased oxygen 

consumption in Col6a1–/– mitochondria similar to that of WT cells.  

Skeletal muscles of Col6a1–/– mice have impaired autophagy that leads to dysfunctional 

mitochondria and spontaneous apoptosis [3]. The myophatic phenotype is greatly ameliorated by 

forcing activation of autophagy by different approaches. In particular, fasting in Col6a1-/– mice 

restores normal autophagy associated with a general amelioration of the dystrophic features [3]. 

Adiponectin is involved in autophagy activation in skeletal muscle since adiponectin-activated 
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autophagy is essential for the myogenic role of the hormone thus preventing the formation of the 

myophatic phenotype [10]. Since a correlation between fasting and adiponectin has been previously 

reported [34], we hypothesized that fasting could increase circulating adiponectin. Interestingly, we 

found that fasted Col6a1–/– mice show circulating adiponectin levels similar to that of healthy 

animals. This observation could suggest a role of adiponectin in the induction of the beneficial 

effects observed in fasted Col6a1–/– mice. In fasting condition, only tibialis anterior of Col6a1–/– 

mice shows increased adiponectin production in comparison to tibialis anterior of WT mice, while 

no difference has been observed in diaphragm of Col6a1–/– and WT mice. Since the two muscles 

have distinct metabolism (i.e. tibialis anterior has fermentative metabolism while diaphragm is an 

oxidative muscle), the higher adiponectin content in tibialis anterior in fasted Col6a1–/– mice could 

help the muscle to sustain fermentation and the right production of ATP. Thus, a greater amount of 

adiponectin in the tibialis anterior of Col6a1–/– mice could help to overcome the observed metabolic 

defects. 

Overall, our results show several abnormalities regarding adiponectin in Col6a1–/– mice. 

Among these, the decrease of local and circulating levels of adiponectin plays a key role since this 

decrease could be involved in the metabolic alterations observed in Col6a1–/– mice. These 

metabolic defects are compensated by the treatment with exogenous adiponectin that leads Col6a1–

/– myoblast behaviour similar to that of WT cells. Interestingly, myopathy does not influence the 

expression level of the muscle-specific receptor for adiponectin, AdipoR1, which remains 

unchanged in all examined muscle, thus making possible the treatment of the diseased muscles with 

exogenous adiponectin.  
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Figure legends 

 

Fig. 1. Expression level of adiponectin in muscles and myoblasts from WT and Col6a1–/– mice. 

A) Anti-adiponectin and anti-AdipoR1 immunoblots in diaphragm and tibialis anterior of muscles 

from WT and Col6a1–/– mice. B) Analysis of adiponectin expression in myoblasts isolated from 

diaphragm and tibialis anterior of WT and Col6a1–/– mice. GAPDH immunoblots demonstrate that 

the same amount of total proteins was loaded in each lane. Bar graphs show the expression level of 

adiponectin and AdipoR1 in each muscle reported as arbitrary units (a.u.). *p0.01. acrp30: 

adiponectin. n=5 mice/group. 

Fig. 2. Analysis of plasma and autocrine adiponectin level. A) Plasma adiponectin level in WT 

and Col6a1–/– mice and B) Autocrine secretion of adiponectin from myoblasts isolated from 

diaphragm of WT and Col6a1–/– mice, obtained using ELISA test. The values are reported as a 

percentage of decrease of Col6a1–/– in comparison to WT. n=5 mice/group. C) Body weight of WT 

and Col6a1–/– mice. *p0.01. acrp30: adiponectin. 

Fig. 3. Glucose up-take in myoblasts from WT and Col6a1–/– mice. Glucose up-take was 

analyzed in myoblasts isolated from diaphragm (A) and tibialis anterior (B) of WT and Col6a1–/– 

mice. Sub-confluent myoblasts were treated with low glucose medium (5mM final) overnight. 

Where indicated, adiponectin (1 µg/ml) was added to the cells for 30 minutes before the addition of 

[3H] 2-deoxy-glucose. Radioactive counts were normalized with total protein content and reported 

as arbitrary units (a.u.). *p 0.001. gAd: globular adiponectin. 
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Fig. 4. Analysis of the glucose transporter GLUT4 in myoblasts from WT and Col6a1–/– mice. 

Myoblasts isolated from diaphragm of WT and Col6a1–/– mice were used to analysed GLUT4 

expression level by immunoblot. GLUT4 level has been normalized using anti-GAPDH 

immunoblot and reported in the bar graph as arbitrary unit (a.u.).  

Fig. 5. Glucose up-take and MTT assay in WT and Col6a1–/– myoblasts after glutamine 

withdrawal. Myoblasts, isolated from diaphragm (panel A) and tibialis anterior (panel B) of WT 

and Col6a1–/– mice, were cultured in complete medium without glutamine (gln) for 24 hours. Cells 

were then stimulated with gAd (1µg/ml) for 30 minutes before the addition of [3H] 2-deoxy-

glucose. Radioactive counts were normalized with total protein content and reported as arbitrary 

units (a.u.).  C) MTT assay in myoblasts isolated form diaphragm of WT and Col6a1–/– mice. Cells 

were cultured in complete medium with or without gln (2 mM final) for 48 hours before performing 

MTT assay. *p0.01; **p0.001. gAd: globular adiponectin.  

Fig. 6. Lactate production in WT and Col6a1–/– myoblasts. Myoblasts isolated from diaphragm 

(A) and tibialis anterior (B) were serum deprived overnight in high glucose medium (25mM final) 

with or without gAd (1µg/ml). The values of lactate were normalized on protein content and 

reported as arbitrary unit (a.u.). *p 0.01. gAd: globular adiponectin.  

Fig. 7. Role of adiponectin in mitochondria of Col6a1–/– myoblasts. Myoblasts were isolated 

from diaphragm of WT and Col6a1–/– mice and mitochondrial membrane potential were assayed 

using JC-1 probe as shown in A). Cells were seeded on coverslips, serum-depleted overnight and 

then gAd (1 μg/ml) was added for 24 h. JC-1 probe (5 μM) was added to the cells for 15 min at 37 

°C and then immediately observed using confocal microscope. Images are representative of four 

independent experiments. B) Oxygen consumption assay was performed as reported in Material and 

Methods. The values were reported as percent increase or decrease considering WT myoblasts as 

100%.*p0.01; gAd: globular adiponectin.  
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Fig. 8. Analysis of plasma and expression levels of adiponectin in fasted WT and Col6a1–/– 

mice. WT and Col6a1–/– mice were fasted for 24 hours. A) Acrp30 and AdipoR1 expression levels 

in diaphragm and tibialis anterior muscles. The values are reported in the bar graph as arbitrary 

units (a.u.) obtained by the ratio between adiponectin or AdipoR1 and GAPDH. B) Analysis of 

adiponectin in plasma of WT and Col6a1–/– mice performed by ELISA test. The values obtained by 

ELISA test were normalized on plasmatic protein content.  *p0.01; acrp30: adiponectin. n=5 

mice/group. 

Supplementary figure 1. Analysis of adiponectin in females of Col6a1–/– mice. A) Plasma 

adiponectin level obtained using ELISA test and reported as percentage of decrease of Col6a1–/– in 

comparison to WT. n=5 mice/group. *p0.01; acrp30: adiponectin. B) Intracellular level of 

adiponectin in diaphragm and tibialis anterior by immunoblot. GAPDH immunoblot has been used 

for normalization. Bar graphs show the expression level of adiponectin reported as arbitrary unit 

(a.u.).  

Supplementary figure 2. Confocal images of myoblasts isolated from diaphragm of WT and 

Col6a1–/– mice incubated with (right panel), or without (left panel) gAd (1 µg/ml) for 30 minutes. 

The intracellular location of GLUT4 is shown as green signal obtained using a specific primary 

anti-GLUT4 antibody (ThermoFisher Scientific) and a secondary antibody conjugated to Alexa-

488. Nuclei have been labelled with DAPI. The images are representative of three independent 

experiments. gAd: globular adiponectin.  
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