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Highlights

• Multi-objective Augmented Lagrangian method for smooth problems with
convex constraints.

• Handling sets of points and generation of Pareto front approximation.

• Global convergence of sequences of points to Pareto-stationarity.

• Outperforming state-of-the-art methods (MOSQP, NSGA-II, DMS).
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Abstract

In this manuscript, we consider smooth multi-objective optimization problems
with convex constraints. We propose an extension of a multi-objective aug-
mented Lagrangian Method from recent literature. The new algorithm is specif-
ically designed to handle sets of points and produce good approximations of the
whole Pareto front, as opposed to the original one which converges to a sin-
gle solution. We prove properties of global convergence to Pareto stationarity
for the sequences of points generated by our procedure. We then compare the
performance of the proposed method with those of the main state-of-the-art
algorithms available for the considered class of problems. The results of our
experiments show the effectiveness and general superiority w.r.t. competitors of
our proposed approach.

Keywords: Multi-objective optimization, Augmented Lagrangian method,
Pareto front approximation, Pareto stationarity, Global convergence
2020 MSC: 90C29, 90C30

1. Introduction

Multi-objective optimization is a mathematical tool which proved to be par-
ticularly suited to model and tackle real-world problems where many contrasting
goals have to be reached. Successful applications of multi-objective optimiza-
tion can be found, for example, in statistics (Carrizosa and Frenk, 1998), design
(Fu and Diwekar, 2004; Jüschke et al., 1997; Shan and Wang, 2005), engineering
(Sun et al., 2016; Kasperska et al., 2004; Liuzzi et al., 2003; Pellegrini et al.,
2014; Campana et al., 2018), environmental analysis (Fliege, 2001; Leschine
et al., 1992), management science (Gravel et al., 1992; White, 1998) or space
exploration (Tavana, 2004; Palermo et al., 2003).

Popular classes of algorithms to solve multi-objective problems are those of
scalarization methods (Eichfelder, 2009; Pascoletti and Serafini, 1984; Fliege,
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2004; Steuer and Choo, 1983; Gass and Saaty, 1955; Geoffrion, 1968; Zadeh,
1963; Drummond et al., 2008) and of heuristic methods based on genetic and
evolutionary strategies (Laumanns et al., 2002; Mostaghim et al., 2007; Deb
et al., 2002; Konak et al., 2006). However, both these families of approaches
come with shortcomings. Indeed, scalarization techniques require a detailed
analysis of the problem structure in order to identify the weights defining a
suitable scalarized objective. Moreover, an unfortunate choice of the weights
may lead to unbounded scalar problems, even under strong regularity assump-
tions (Fliege et al., 2009, sec. 7). On the other hand, convergence properties
cannot be stated for heuristic algorithms.

In order to overcome these limitations, descent methods extending classical
scalar optimization techniques have been proposed to address constrained and
unconstrained multi-objective problems (see, e.g., Fliege and Svaiter, 2000;
Fliege et al., 2009; Drummond and Iusem, 2004). In this work we will bring
particular attention to one of such algorithms, the extension of scalar augmented
Lagrangian method (Birgin and Martinez, 2014) to the multi-objective case
proposed by Cocchi and Lapucci (2020).

This group of algorithms typically produces, similarly to the scalar case, a
sequence of points that is asymptotically driven to optimality. However, in the
context of multi-objective applications, it is in practice crucial to generate a set
of solutions constituting an approximation of the Pareto set, so that the user
can choose, a posteriori, the solution providing the most appropriate trade-off
among many.

Some recent works actually focused on strategies allowing to handle se-
quences of sets of points, instead of sequences of points, within multi-objective
descent methods. This idea was first explored for derivative-free methods (Custódio
et al., 2011; Liuzzi et al., 2016) and then considered for derivative based meth-
ods, both in the constrained (Fliege and Vaz, 2016) and the unconstrained
(Cocchi et al., 2020) case.

The contribution of this paper consists of the definition of an extended ver-
sion of the augmented Lagrangian algorithm for multi-objective optimization
(ALAMO) proposed by Cocchi and Lapucci (2020), which deals with sets of points
and effectively produces an approximation of the Pareto front for constrained
vector-valued problems. The key elements that characterize the proposed algo-
rithm are

i) the management of a set of points at each iteration, as proposed by
Custódio et al. (2011), which are all mutually nondominated w.r.t. the
current augmented Lagrangian;

ii) the use of an Armijo-type line search, which possibly considers descent
w.r.t. only a subset of objectives, in order to enrich the approximate front;

iii) the use of a common penalty parameter and Lagrange multipliers for all
points in the set of solutions;

iv) the use of the multi-objective steepest descent algorithm from Fliege and
Svaiter (2000) to make each point in the current set approximately Pareto-
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stationary w.r.t. the augmented Lagrangian, with increasing accuracy
throughout the iterations.

For the proposed algorithm, we prove properties of convergence to Pareto-
stationarity for the generated sequence of sets of points, without the need to
recur to the concept of linked sequence introduced by Liuzzi et al. (2016). In
fact, the convergence along linked sequences is implied by our result.

To the best of our knowledge, the SQP procedure by Fliege and Vaz (2016)
is the only other derivative based method for constructing an approximated
Pareto front of constrained multi-objective problems that can be found in the
literature. It is worth remarking that, in contrast with the SQP method, conver-
gence of our algorithm does not depend on a final refinement step that follows
a finite exploration phase. As also noted by its authors, SQP can indeed be seen
as a single point procedure run in a multi-start fashion. On the contrary, in our
procedure convergence and exploration advance alongside, with both asymptot-
ically improving.

The rest of the manuscript is organized as follows: in Section 2, we introduce
basic concepts and notation that will be used in the presentation of the proposed
procedure; in Section 3 we describe in detail our approach; we then provide
the convergence analysis in Section 4. In Section 5, we show the result of
computational experiments highlighting the good performance of the proposed
procedure compared to a set of different state-of-the-art approaches. We finally
give some concluding remarks in Section 6.

2. Preliminaries

In this paper, we consider optimization problems of the form

min
x∈Rn

F (x) = (f1(x), . . . , fm(x))T

s.t. g(x) ≤ 0,
(1)

where F : Rn → Rm is a continuously differentiable function and g : Rn → Rp
is a continuously differentiable, component-wise convex function, so that the
feasible set Ω = {x ∈ Rn | g(x) ≤ 0} is a closed convex set, which we assume
to be nonempty. We denote by JF and Jg the Jacobian matrices associated
respectively with F and g. In the following, we will also denote by e the vector of
all ones. Note that equality constraints can be equivalently expressed as couples
of opposite inequality constraints, so this formulation is in fact general. Actually,
specific management of equality constraints can often be convenient from a
computational perspective; the following discussion could easily be extended to
address the presence of explicit equality constraints, but we prefer not to take
them into account for the sake of simplicity.

In the following we will make use of a partial ordering of points in Rm. Given
two vectors u, v ∈ Rm, we have

u < v ⇔ ui < vi ∀ i = 1, . . . ,m,
u ≤ v ⇔ ui ≤ vi ∀ i = 1, . . . ,m.
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We also say that u dominates v, and denote it by u � v, if u ≤ v and u 6= v.
Finally, we say that x ∈ Rn dominates y ∈ Rn w.r.t. F if F (x) � F (y).

Ideally, we would like to find a point simultaneously minimizing all the ob-
jectives f1, . . . , fm; however, such a solution is very unlikely to exist; instead,
we rely on the concept of Pareto optimality.

Definition 2.1. A point x̄ ∈ Ω is Pareto optimal for problem (1) if there does
not exist y ∈ Ω such that F (y) � F (x̄). If there exists a neighborhood N (x̄)
such that the previous property holds in Ω ∩ N (x̄), then x̄ is locally Pareto
optimal.

Pareto optimality is a strong property which is hard to attain in practice.
A slightly weaker, but certainly more viable to obtain condition is weak Pareto
optimality.

Definition 2.2. A point x̄ ∈ Ω is weakly Pareto optimal for problem (1) if there
does not exist y ∈ Ω such that F (y) < F (x̄). If there exists a neighborhood
N (x̄) such that the previous property holds in Ω∩N (x̄), then x̄ is locally weakly
Pareto optimal.

The set of all Pareto optimal solutions constitutes the Pareto set of the prob-
lem. The image of the Pareto set through F is referred to as the Pareto front.
We can now turn to the first order necessary conditions for Pareto optimality.

Definition 2.3. A point x̄ ∈ Ω is Pareto-stationary for problem (1) if, for all
feasible directions d ∈ D(x̄) = {v ∈ Rn | ∃t̄ > 0 : x̄+ tv ∈ Ω ∀ t ∈ [0, t̄ ]}, it holds

max
j=1,...,m

∇fj(x̄)T d ≥ 0.

Under differentiability assumptions, Pareto-stationarity is a necessary con-
dition for all kinds of Pareto optimality; note that the Pareto-stationarity con-
dition can be compactly written as

min
d∈D(x̄)

max
j=1,...,m

∇fj(x̄)T d = 0.

Now, let us address well known results for unconstrained problems of the
form

min
x∈Rn

F (x) = (f1(x), . . . , fm(x)). (2)

Pareto optimality notions match those of the constrained case. Even Pareto-
stationarity can be defined as in Definition 2.3, recalling that in such caseD(x) =
Rn for all x ∈ Rn.

If a point x̄ is not a Pareto-stationary point for problem (2), then there exists
a direction which is a descent direction w.r.t. all objective functions. Hence
(according to Fliege and Svaiter, 2000, sec. 3.1) we can define the steepest
common descent direction as the solution of problem

min
d∈Rn

‖d‖≤1

max
j=1,...,m

∇fj(x̄)T d, (3)
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which, if `∞ norm is employed, can be reformulated as the LP problem

min
β∈R, d∈Rn

β

s.t. − 1 ≤ di ≤ 1 ∀ i = 1, . . . , n,

∇fj(x̄)T d ≤ β ∀ j = 1, . . . ,m.

Note that a slightly different characterization of steepest common descent direc-
tions, based on an `2-regularized formulation of problem (3) and again proposed
by Fliege and Svaiter (2000), could be employed. Here we preferred to use for-
mulation (3) because of the simplicity of the LP problem.

The solution of problem (3) may in fact be not unique, but this is not a real
technical issue; we can define function θ : Rn → R such that θ(x̄) indicates the
optimal value of problem (3) at x̄; function θ is continuous. We also denote
by v(x̄) the set of optimal solutions of (3), which is certainly nonempty. As
previously stated, if x̄ is Pareto-stationary, θ(x̄) = 0, if it is not, θ(x̄) < 0.

Now, based on the concept of steepest common descent, the standard (single-
point) multi-objective steepest descent (MOSD) algorithm was proposed by Fliege
and Svaiter (2000). We report the algorithm in Algorithm 1.

Algorithm 1: MultiObjectiveSteepestDescent

1 Input: F : Rn → Rm, x0 ∈ Rn
2 k = 0

3 while xk is not Pareto stationary do
4 Compute

dk ∈ arg min
d∈Rn

‖d‖≤1

max
j=1,...,m

∇fj(xk)T d

5 αk = ArmijoTypeLineSearch(F (·), xk, dk)

6 xk+1 = xk + αkd
k

7 k = k + 1

8 return xk

The algorithm makes use of a backtracking Armijo-type line search, which
is described in Algorithm 2. The idea of the latter procedure is that of reducing
the step size as long as a sufficient decrease has not been reached for all the
objective functions.

We now recall the main theoretical property characterizing the line search
(Fliege and Svaiter, 2000, Lemma 4).

Lemma 2.1. If F is continuously differentiable and JF (x)d < 0 (i.e., θ(x) < 0),
then there exists some ε > 0, which may depend on x, d and β, such that

F (x+ td) < F (x) + βtJF (x)d

for all t ∈ (0, ε].
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Algorithm 2: ArmijoTypeLineSearch

1 Input: F : Rn → Rm, x ∈ Rn, d ∈ Rn, α0 > 0, δ ∈ (0, 1), β ∈ (0, 1)
2 α = α0

3 while F (x+ αd) � F (x) + βαJF (x)d do
4 α = δα

5 return α

The above lemma guarantees finite termination of the line search proce-
dure along a common descent direction. The following convergence properties
(Fliege and Svaiter, 2000, Theorem 1 and Section 9.1) hold instead for the MOSD

procedure.

Lemma 2.2. Every accumulation point of the sequence {xk} produced by Algo-
rithm 1 is a Pareto stationary point. If the function F has bounded level sets,
in the sense that {x ∈ Rn | F (x) ≤ F (x0)} is bounded, then the sequence {xk}
stays bounded and has at least one accumulation point.

Now, we need to introduce relaxations to the concepts of Pareto-stationary
and common descent directions. First, we recall the concept of ε-Pareto-stationarity
introduced by Cocchi and Lapucci (2020).

Definition 2.4. Let ε ≥ 0. A point x̄ ∈ Rn is ε-Pareto-stationary for problem
(2) if

min
d∈Rn

‖d‖≤1

max
j=1,...,m

∇fj(x̄)T d ≥ −ε.

Next, inspired by Cocchi et al. (2020), we can introduce the concept of steep-
est partial descent at x̄ w.r.t. a subset of indices of objectives I ⊆ {1, . . . ,m}.
Given problem

min
d∈Rn

‖d‖≤1

max
j∈I
∇fj(x̄)T d,

we denote by θI(x̄) its optimal value and by vI(x̄) the set of optimal solutions,
which we refer to as steepest partial descent directions w.r.t. I. Partial descent
directions, if used appropriately, can be useful in algorithms to perform explo-
ration steps to enrich the current Pareto set approximation. It is easy to see
(by analogous reasonings as Cocchi et al., 2020, Proposition 3) that, if x̄ is not
a Pareto-stationary point for (2), then θI(x̄) < 0 for any I ⊆ {1, . . . ,m}.

Finally, we recall, from Cocchi and Lapucci (2020), the definition of multi-
objective augmented Lagrangian for problems with inequality constraints.

Definition 2.5. The multi-objective augmented Lagrangian function of penalty
parameter τ associated with problem (1) is given by

Lτ (x, µ) = F (x) +
τ

2

(
p∑

i=1

(
max

{
0, gi(x) +

µi
τ

})2
)
e,

where µ ≥ 0 ∈ Rp is the vector of Lagrange multipliers.
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3. The algorithm

In this section, we describe the multiple-points multi-objective augmented
Lagrangian method proposed in this paper, which we call FRONT-ALAMO, to solve
problem (1). The algorithmic scheme is reported in Algorithm 3. Note that
we have denoted by MultiobjectiveSteepestDescent(·, ·, εk) the procedure in
Algorithm 1 run until the solution is εk-Pareto-stationary. We also denote by
LIτ (x, µ) the components of Lτ (x, µ) indexed by I, and by θk and vk maps θ
and v associated with Lτk(x, µk).

Through the iterations, the algorithm produces a sequence of sets of points
{Xk}, which approximate the Pareto set of the original problem with increas-
ing accuracy. At each iteration, an augmented Lagrangian function defined as
in Definition 2.5 is considered, with penalty parameter τk and multipliers µk.
At the beginning of the generic iteration k, all points that are dominated w.r.t.
Lτk(x, µk) are filtered out of the set; we denote such filtered set by X̂k. Now, the

following iterate is initialized as X̂k; then, each point xc ∈ X̂k is used as a start-
ing point for exploration; in particular, for any possible subset I ⊆ {1, . . . ,m}
the steepest partial descent direction is explored by an ArmijoTypeLineSearch

restricted to the components of LIτk(x, µk), provided that a partial descent direc-
tion actually exists. After the line search step, the obtained point is refined by
steepest descent on all the objectives up to εk-Pareto-stationarity. If it is then
not dominated w.r.t. Lτk(x, µk) by any other point currently in the new iterate
set, it is consequently added to such set, while all points that are dominated by
it are removed.

Once all points in X̂ are tested, the constructed set will constitute the next
iterate Xk+1. The multipliers and the penalty parameter are updated similarly
as in the scalar ALM with multipliers safeguarding (Kanzow and Steck, 2017),
with one key adjustment: to evaluate how much a constraint is violated, the
worst violation attained on that constraint by any point in Xk+1 is considered.
In addition, the second clause of the conditional statement at line 18 allows
to avoid unfortunate cases where a point which is strictly feasible w.r.t. some
constraint gi is unnecessarily pushed to satisfy it with a larger margin.

Remark 3.1. At each iteration k, the setXk+1 is a list of mutually nondominated
points w.r.t. Lτk(x, µk). As we will shortly see, maintaining a set of mutually
nondominated points with respect to the augmented Lagrangian does not pro-
vide theoretical asymptotic properties. However, this has a remarkable impact
from a computational point of view: it allows, especially at late iterations, to
remove solutions that are too far from feasibility or that have bad values for
all the objectives; in addition, in practice the algorithm will be run for a large
enough number of iterations and then stopped; the solutions in the returned
set are mutually nondominated w.r.t. the final augmented Lagrangian; because
of this property, most of the points in the returned set that are “sufficiently
feasible” are nondominated also w.r.t. the original problem.

In the next section, we will show in detail that Algorithm 3 is well defined
and we will carefully address its convergence properties.
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Algorithm 3: FRONT-ALAMO

1 Input: µ0 ∈ Rp+, µ̄ ≥ 0, ρ > 1, σ ∈ (0, 1), τ0 > 0, X0 a list of feasible
non-dominated points for the original problem, {εk} ⊂ R a decreasing
sequence

2 for k = 0, 1, . . . do
3 Let Lτk the current Augmented Lagrangian function defined as:

Lτk(x, µk) = F (x) +
τk
2

(
p∑

i=1

(
max

{
0, gi(x) +

µki
τk

})2
)
e

4 set X̂k = Xk \ {x ∈ Xk | ∃ y ∈ Xk s.t. Lτk(y, µk) � Lτk(x, µk)}
5 set Xtmp = X̂k

6 for xc ∈ X̂k do
7 for I ∈ 2{1,...,m} do
8 if θIk(xc) < 0 then
9 set d ∈ vIk(xc)

10 set α = ArmijoTypeLineSearch(LIτk(·, µk), xc, d)
11 set z =

MultiObjectiveSteepestDescent(Lτk(·, µk), xc + αd, εk)
12 if @ y ∈ Xtmp : Lτk(y, µk) � Lτk(z, µk) then
13 set Xtmp = Xtmp \ {x ∈ Xtmp | Lτk(z, µk) �

Lτk(x, µk)} ∪ {z}

14 set Xk+1 = Xtmp

15 for i = 1, . . . , p do

16 set V k+1
i = min

{
min

x∈Xk+1
{−gi(x)}, µ

k
i

τk

}

17 set µk+1
i = max

{
0,min{µki + τk max

x∈Xk+1
{gi(x)}, µ}

}

18 if (||V k+1|| > σ||V k||) or (∃xk+1 ∈ Xk+1 s.t. gi(x
k+1) < 0 and

µki + τkgi(x
k+1) > 0 for some i ∈ {1, . . . , p}) then

19 set τk+1 = ρτk

20 else
21 set τk+1 = τk

4. Convergence analysis

In this section, we provide a rigorous formal analysis of Algorithm 3 from a
theoretical perspective. We first show that the procedure is actually well defined
and then we state its asymptotic convergence properties. Before proceeding, we
need to make a reasonable assumption.
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Assumption 4.1. The objective function F has bounded level sets in the multi-
objective sense, i.e., the set {x ∈ Rn | F (x) ≤ z} is bounded for any z ∈ Rm.

Concerning algorithm well-definiteness, we begin by noting that the line
search procedure at line 10 of Algorithm 3 stops in a finite time, producing a
valid stepsize. Indeed, this result holds straightforwardly from Lemma 2.1 and
the fact that the procedure is performed considering LIτk(x, µk), starting at a
point xc such that θIk(xc) < 0.

The other nontrivial instruction of the FRONT-ALAMO procedure is step 11,
that we address in the following proposition.

Proposition 4.1. The MultiObjectiveSteepestDescent procedure at line 11
of Algorithm 3 stops in a finite number of iterations.

Proof. Finite termination can be proved as in Proposition 4 from Cocchi and
Lapucci (2020), recalling that Assumption 4.1 holds.

Now, we are able to characterize the points belonging to each iterate set Xk.

Proposition 4.2. Let {Xk+1} be the sequence of sets generated by Algorithm
3. Then, for each k and for each xk+1 ∈ Xk+1, we have:

(a) xk+1 is not dominated by any other point in Xk+1 w.r.t. Lτk(x, µk), i.e.,
there does not exist y ∈ Xk+1 such that Lτk(y, µk) � Lτk(xk+1, µk);

(b) xk+1 is εk-Pareto-stationary w.r.t. Lτk(x, µk).

Proof. We prove the two statements one at a time:

(a) Xk+1 is equal to Xtmp at the end of the main loop of each iteration, at step

14. Xtmp is initialized with X̂k, which contains mutually nondominated
points w.r.t. Lτk(x, µk) by its definition at line 4. Then, Xtmp can be
modified only at step 13, where a point is added only if it is nondominated,
from the condition at line 12, and all points dominated by it are removed.

(b) We have two possible cases: xk+1 ∈ X̂k or xk+1 /∈ X̂k. In the latter case,
xk+1 has necessarily been added to Xtmp through instructions 9-13; in
particular, xk+1 was produced by instruction 11 and is thus εk-Pareto-
stationary.

So, let us assume that xk+1 ∈ X̂k and, by contradiction, that θk(xk+1) <
−εk. In this case, xc = xk+1 would satisfy the conditions at step 8
for I = {1, . . . ,m}, as θIk(xk+1) = θk(xk+1) < −εk < 0. The line
search hence is guaranteed, by Lemma 2.1, to find a step α such that
Lτk(xc + αd, µk) < Lτk(xc, µ

k), and by the properties of the MOSD pro-
cedure we have Lτk(z, µk) ≤ Lτk(xc + αd, µk). Hence, this new point z
(strictly) dominates xk+1 w.r.t. Lτk(x, µk). Now, from the instructions of
the algorithm, either z belongs to Xk+1 or there exists y ∈ Xk+1 such
that Lτk(y, µk) � Lτk(z, µk) < Lτk(xk+1, µk). However, this is absurd,
since xk+1 ∈ Xk+1 and from statement (a) Xk+1 contains mutually non-
dominated points. Hence, θk(xk+1) ≥ −εk.
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Let {Xk} be the sequence of (finite) sets produced by the algorithm. In
order to assess the asymptotic convergence properties of Algorithm 3, we need
to consider sequences of points {xk} such that xk ∈ Xk for all k.

We are now able to begin the convergence analysis with a technical Lemma.

Lemma 4.3. Let {Xk} be the sequence of sets generated by Algorithm 3, and
let {xk} be any sequence of points such that xk ∈ Xk for all k. Let x̄ be a limit
point of {xk}, i.e., there exists an infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞
k∈K

xk = x̄,

and suppose that g(x̄) ≤ 0, i.e., x̄ ∈ Ω. Then, for all i = 1, . . . , p such that
gi(x̄) < 0 we have

max{0, µki + τkgi(x
k+1)} = 0

for all k ∈ K sufficiently large.

Proof. Let gi(x̄) < 0 and k1 ∈ K be such that gi(x
k+1) < c < 0 for all k ≥ k1,

k ∈ K. From the instructions of the algorithm we know that µki ≥ 0 for all k.
There are two possible cases:

(a) τk →∞
The sequence {µk} is bounded by definition, hence there exists k2 ≥ k1,
k2 ∈ K, such that for all k ∈ K, k ≥ k2 we have µki + τkgi(x

k+1) < 0 and
thus max{0, µki + τkgi(x

k+1)} = 0.

(b) {τk} is bounded.
From instruction 18 of the algorithm, there must exist k2 ≥ k1 such that,
for all k ≥ k2, condition

∀x ∈ Xk+1 µkj + τkgj(x) ≤ 0 ∀j ∈ {1, . . . , p} s.t. gj(x) < 0

holds. Hence, for k ≥ k2, k ∈ K, we have µki + τkgi(x
k+1) ≤ 0. Thus, we

have max{0, µki + τkgi(x
k+1)} = 0 for k ∈ K sufficiently large.

Next, we prove feasibility of limit points of all possible points sequences {xk}
produced by the algorithm.

Proposition 4.4. Let {Xk} be the sequence of sets generated by Algorithm 3,
with εk → 0, and let {xk} be any sequence of points such that xk ∈ Xk for
all k. Let x̄ be a limit point of {xk}. Then, x̄ is feasible for problem (1), i.e.,
g(x̄) ≤ 0.
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Proof. Let K ⊆ {0, 1, . . .} be an infinite subset such that

lim
k→∞
k∈K

xk+1 = x̄.

If the sequence {τk} is bounded, from the instructions of the algorithm there
must exist k1 such that, for all k > k1, we have ‖V k+1‖ ≤ σ‖V k‖. Since σ < 1,
this implies

lim
k→∞

‖V k‖ = 0,

i.e., for all i ∈ {1, . . . , p},

lim
k→∞

V k+1
i = lim

k→∞
min

{
min

x∈Xk+1
{−gi(x)}, µ

k
i

τk

}
= 0.

Since by definition µki ≥ 0 for all i and k, it has to be

lim
k→∞

min
x∈Xk+1

{−gi(x)} ≥ 0.

But minx∈Xk+1{−gi(x)} ≤ −gi(xk+1). Hence

gi(x̄) = lim
k→∞
k∈K

gi(x
k+1) ≤ lim

k→∞
k∈K

max
x∈Xk+1

{−gi(x)} ≤ 0.

Now, assume τk → ∞. From Proposition 4.2, we know that each point
x ∈ Xk+1 is εk-Pareto-stationary w.r.t. Lτk(x, µk). Hence

max
j=1,...,m





(
∇fj(xk+1) + τk

p∑

i=1

max

{
0, gi(x

k+1) +
µki
τk

}
∇gi(xk+1)

)T
d



 ≥ −εk ∀ d ∈ Rn : ‖d‖ ≤ 1.

Dividing both sides of the inequality by τk and taking the limits for k → ∞,
k ∈ K, recalling the continuity of JF and Jg, the boundedness of d and {µk}
and that τk →∞, we get

max
j=1,...,m





(
p∑

i=1

max{0, gi(x̄)}∇gi(x̄)

)T
d



 ≥ 0 ∀ d ∈ Rn : ‖d‖ ≤ 1,

which, since the arguments of the outer max operator are independent of j, is
equal to

1

2
∇
(
‖max{0, g(x̄)}‖2

)T
d ≥ 0 ∀ d ∈ Rn : ‖d‖ ≤ 1,

where the max operator is intended component-wise. Thus, x̄ is a critical point
for problem

min
x∈Rn

1

2
‖max{0, g(x)}‖2.

Since Ω 6= 0 and the above problem is convex, x̄ is a global minimum point with
max{0, g(x̄)} = 0, i.e., g(x̄) ≤ 0.
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Finally, we show that limit points are Pareto-stationary for the original prob-
lem.

Proposition 4.5. Let {Xk} be the sequence of sets generated by Algorithm 3,
with εk → 0, and let {xk} be any sequence of points such that xk ∈ Xk for all
k. Let x̄ be a limit point of {xk}. Then, x̄ is Pareto-stationary for problem (1).

Proof. Recalling that, from Proposition 4.2, xk+1 is εk-Pareto-stationary for
Lτk(x, µk), the result follows as in Proposition 6 from Cocchi and Lapucci
(2020), where Lemma 4.3 can be used in place of Lemma 9 from the referenced
paper.

Remark 4.1. Pareto-stationarity, which we are able to prove for limit points of
FRONT-ALAMO, is the same property that holds for limit points of the sequence
produced by the single point ALAMO and analogous, in the scalar context, to
stationarity attained by limit points of scalar ALM. Therefore, it is reasonable
to assume that stronger properties are unlikely to be obtained by an ALM-like
algorithm.

Remark 4.2. In the literature of Pareto front constructing descent methods
(Cocchi et al., 2020; Liuzzi et al., 2016), convergence analysis is based on the
concept of linked sequence. A sequence {xk} is a linked sequence if, for all k,
xk ∈ Xk and xk is generated at iteration k − 1 starting the search procedure
from xk−1. It is easy to see that linked sequences are a particular instance of
the sequences of points considered in Propositions 4.4-4.5, hence the convergence
result obtained for Algorithm 3 is somewhat stronger than those based on linked
sequences.

Remark 4.3. In our theoretical analysis we assumed the existence of a limit
point x̄. As commonly done in the literature of augmented Lagrangian methods
(Birgin and Martinez, 2014; Cocchi and Lapucci, 2020), we do not directly ad-
dress properties of existence of limit points, leaving it to boundedness arguments
on the sequences, level sets, lower-level feasible sets or restart strategies.

Remark 4.4. The SQP algorithm from Fliege and Vaz (2016) which is, to the
best of our knowledge, the only other derivative-based method in the literature
to generate an approximation of the Pareto front, has similar convergence prop-
erties as Algorithm 3, in the sense that limit points of sequences of solutions are
Pareto-stationary. However, the setting is basically different, as the exploration
phase of the SQP method is eventually stopped and all the obtained points are
then independently driven to Pareto-stationarity by an iterative method. Con-
vergence hence follows from a single-point mechanism. On the other hand, in
Algorithm 3 exploration and convergence are performed somewhat in parallel,
in an effectively multiple-points fashion.

5. Computational experiments

In this Section, we show the results of thorough computational experiments,
focusing on the comparisons between FRONT-ALAMO and some state-of-the-art
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methods in the multi-objective constrained optimization context. All the tests
were run on a computer with the following characteristics: Intel Xeon Processor
E5-2430 v2 6 cores 2.50 GHz, 16 GB RAM. The code for all the algorithms
considered in the experiments was written in Python3.

5.1. Experiment Settings

Before commenting the results, we list the state-of-the-art methods used in
the comparisons with FRONT-ALAMO. In addition, we describe the tested problems
and the metrics used in the comparisons.

5.1.1. Metrics

In order to evaluate the performance of the algorithms, we employed the
three metrics defined by Custódio et al. (2011), which are very popular and
used by the multi-objective optimization community: purity, Γ–spread and ∆–
spread. We recall that the purity metric measures the quality of the generated
front, that is, how good the non-dominated points computed by a solver are
with respect to those obtained by the other ones. Clearly, a higher value is
associated with a better performance. In order to calculate this metric, we need
a reference front to which compare the generated front of an algorithm. In our
experiments, the reference front was the one obtained by combining the fronts
of all the considered algorithms and by discarding the dominated points. The
spread metrics are equally essential because they measure the uniformity of the
generated front in the objectives space. In particular, the Γ–spread is defined
as the maximum `∞ distance in the objectives space between adjacent points of
the Pareto front, and the ∆–spread is quite similar to the standard deviation of
the `∞ distances between adjacent Pareto front points. In these metrics, good
performance is associated with a low value.

In addition to the three previous metrics, we evaluated the number of non-
dominated points obtained by a method with respect to the reference front
(ND–points). We supposed that this metric was as important as the purity one.
Indeed, ND–points metric allowed us to see how many non-dominated points
an algorithm was capable to obtain with respect to the whole reference front.

Lastly, we employed the popular performance profiles introduced by Dolan
and Moré (2002), that are an useful tool to better appreciate the relative per-
formance and robustness of the algorithms. The performance profile for a solver
is the (cumulative) distribution function for the ratio of the value of the perfor-
mance measure obtained by the solver to the best one of all of the solvers. In
particular, it is the probability for solver s that one of its performance measure
values achieved in a problem is within a factor τ ∈ R of the best possible value
obtained by all of the solvers in that problem. For a more detailed explanation
about performance profiles, we refer to Dolan and Moré (2002). Note that per-
formance profiles w.r.t. purity and ND–points were generated considering the
inverse of the obtained values, since the metrics have increasing values for better
solutions.
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5.1.2. Algorithms and hyper-parameters

The choices about the FRONT-ALAMO hyper-parameters values were made
based on some preliminary results on a subset of the tested problems, which we
do not report here for the sake of brevity. The values are the following:

• τ0 = 1;

• if the problem only has bound constraints ρ = 10, otherwise ρ = 2;

• σ = 0.9;

• µ = 104;

• µ0 = 0 ∈ Rp;
• in the ArmijoTypeLineSearch β = 10−4 and δ = 0.5.

The first algorithm we chose to use in the comparison with FRONT-ALAMO

is MOSQP (Fliege and Vaz, 2016), which is a gradient-based method for con-
strained and unconstrained nonlinear multi-objective optimization problems
that implements an SQP–type approach. Since it is the only gradient-based
algorithm from the literature designed to produce Pareto front approximations,
we consider it our most important competitor. The chosen hyper-parameters
for MOSQP were the best ones according to Fliege and Vaz (2016). For the
quadratic approximations, we used Hi = Im (Im being the identity matrix) in
the second stage and Hi = ∇2fi(x

k) + Ei (Ei being obtained by a modified
Cholesky algorithm) in the third stage, as Fliege and Vaz (2016) state that it
is the most robust and efficient way to use MOSQP. For a more detailed expla-
nation about the various MOSQP stages and versions, we refer to Fliege and Vaz
(2016). Lastly, we used the Ipopt software package (Wächter and Biegler, 2006)
(https://github.com/coin-or/Ipopt) in order to solve the SQP problems.

DMS (Custódio et al., 2011) is the second algorithm used in the comparisons.
It is a multi-objective derivative-free methodology, which is inspired by the
search/poll paradigm of direct-search methods of directional type and uses the
concept of Pareto dominance to maintain a list of non-dominated points, from
which the new iterates or poll centers are chosen. The hyper-parameters for
DMS were set according to Custódio et al. (2011) and to the authors code (http:
//www.mat.uc.pt/dms).

The third and last algorithm is NSGA-II (Deb et al., 2002), which is a non-
dominated sorting-based multi-objective evolutionary algorithm. In particular,
NSGA-II is a genetic algorithm that is mainly composed by a fast non-dominated
sorting approach and a selection operator that creates a mating pool by combin-
ing the parent and offspring populations and selecting the best N solutions. In
contrast to the other algorithms, NSGA-II considers a fixed number of solutions
in the pool, which was set to 100 in our experiments. The hyper-parameters of
the algorithm were the ones chosen by Deb et al. (2002).

For each algorithm and problem, we decided to execute the test for up to 2
minutes. A termination criterion based on a time limit is the fairest way to eval-
uate the behavior of such diverse algorithms on the tested problems. Clearly,
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PROBLEM n m p #L.C. #N.L.C. B.C.

M-BNH1 2 2 2 - 2 -

M-BNH2 2 2 2 - 2 -

LAP1 2 2 3 1 2 -

LAP2
2, 5, 10, 20, 30,

2 1 - 1 -
40, 50, 100, 200

M-OSY 6 2 18 4 2 lb, ub

CEC1, CEC2, 5, 10, 20, 30,
2 2n - - lb, ub

CEC3, CEC7 40, 50, 100, 200

CEC8, CEC9, 5, 10, 20, 30,
3 2n - - lb, ub

CEC10 40, 50, 100, 200

ZDT1, ZDT2
2, 5, 10, 20, 30,

2 2n - - lb, ub
40, 50, 100, 200

MOP1 1 2 2 - - lb, ub

MOP2
2, 5, 10, 20, 30,

2 2n - - lb, ub
40, 50, 100, 200

MOP3 2 2 4 - - lb, ub

Table 1: Problems used in the computational experiments. #L.C. indicates the number of
linear constraints (in this column the boundary constraints are not considered). #N.L.C.

indicates the number of non linear constraints. B.C. indicates the type(s) of the boundary
conditions.

specific stopping criteria indicating that a certain algorithm cannot improve the
solutions anymore were also taken into account. Since NSGA-II is the only non-
deterministic algorithm used in the computational experiments, we decided to
run it with 10 different seeds for the pseudo-random number generator. Every
execution had the same time limit used for the other algorithms (2 minutes).
After the execution of the 10 runs, we compared the fronts based on the purity
metric and we chose the best one among them. In this case, the reference front
for the comparison was obtained by combining the fronts of the 10 executions.
We considered the resulting best front as NSGA-II output. Executing 10 runs
lets NSGA-II reduce its sensibility with respect to the seed used for its ran-
dom operations. Note however that, since we consider a best case scenario for
NSGA-II, the overall comparison should be considered at least partially biased
in favor of this algorithm. The other methods (FRONT-ALAMO, DMS, MOSQP) are
deterministic. Therefore, they were executed once.

5.1.3. Problems

The tested problems are described in Table 1. In this benchmark, we consid-
ered problems whose objective functions are at least continuously differentiable
almost everywhere. Since some problems present singularities, we counted them
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PROBLEM(S) INITIAL POINT(S)

M-BNH1, LAP1,
0 ∈ Rn

LAP2, MOP1

M-BNH2 [8,−3]

M-OSY [2, 0, 1, 0, 1, 8]

CEC, ZDT, Points from the

MOP2, MOP3 hyper-diagonal

Table 2: Initial points for the tested problems.

as Pareto-stationary points. All the constraints are defined by continuously dif-
ferentiable convex functions.

We included in our benchmark the slightly modified versions of the BNH
problems and the LAP problems from Cocchi and Lapucci (2020). We also
included a modification of the OSY problem (Osyczka and Kundu, 1995). The
modified form of this problem can be found in Appendix A.

Furthermore, we included into the test set problems characterized only by
boundary constraints: the CEC problems (Zhang et al., 2008), the ZDT prob-
lems (Zitzler et al., 2000) and the MOP problems (Huband et al., 2006). It
is worth remarking that the CEC and ZDT problems have particularly diffi-
cult objective functions, so they are interesting to study the effectiveness of the
algorithms when solving hard problems.

For each problem with general constraints, we started the algorithms from
one feasible point (Table 2). In this way, we intended to study the exploration
capabilities of the algorithms. Indeed, algorithms with great exploration abilities
should create a spread and solid Pareto front on these problems. For the bound
constrained problems (MOP1 is the only exception since it is too small in terms
of number of dimensions), the initial points were uniformly selected from the
hyper-diagonal defined by the lower and upper bounds, as done by Custódio
et al. (2011). In these cases, the number of initial points is equal to the number
of dimensions of the considered problem.

5.2. M-BNH, LAP1 and M-OSY problems

We begin by studying the performance of the considered algorithms on the
M-BNH1, M-BNH2, LAP1 and M-OSY problems.

The results on the M-BNH problems (Figure 1) show the great performance
of FRONT-ALAMO with respect to the competitors: indeed, our method obtained
the best purity value in the M-BNH1 problem and a purity value very close to the
best one in the M-BNH2. In this latter problem, the differences with respect
to our gradient-based competitor and DMS are even clearer, as FRONT-ALAMO

obtained a purity value very close to 1. Here, the MOSQP method did not manage
to obtain a single non-dominated point w.r.t. the competitors. Considering
the ∆–spread, FRONT-ALAMO was the second best method in both problems.
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(a) FRONT-ALAMO Pareto front - M-
BNH1
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(b) DMS Pareto front - M-BNH1
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(c) NSGA-II Pareto front - M-
BNH1
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(d) MOSQP Pareto front - M-BNH1
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(e) FRONT-ALAMO Pareto front - M-
BNH2
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(f) DMS Pareto front - M-BNH2
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(g) NSGA-II Pareto front - M-
BNH2
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(h) MOSQP Pareto front - M-BNH2

Figure 1: Pareto front approximation for the four algorithms considering the M-BNH problems
(For interpretation of the references to color in text, the reader is referred to the web version
of the article).
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(b) DMS Pareto front - LAP1
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(c) NSGA-II Pareto front - LAP1
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(d) MOSQP Pareto front - LAP1
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(e) FRONT-ALAMO Pareto front - M-
OSY
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(f) DMS Pareto front - M-OSY
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(g) NSGA-II Pareto front - M-OSY
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(h) MOSQP Pareto front - M-OSY

Figure 2: Pareto front approximation for the four algorithms considering the LAP1 and M-
OSY problems (For interpretation of the references to color in text, the reader is referred to
the web version of the article). 19

                  



As for the Γ–spread, FRONT-ALAMO appears to have a decent behavior, being
the second best algorithm in the M-BNH1 problem and outperforming all the
competitors in the M-BNH2 problem. This behavior can also be observed on
the LAP1 and M-OSY problems (Figure 2). The worst algorithm turned out
to be MOSQP, which seems to lack of search capabilities in the objectives space
on the M-BNH problems. This fact can also be noted for the DMS and NSGA-II

algorithms on the M-BNH2 problem, which turned out to be difficult to solve.
DMS outperformed the NSGA-II method on the M-BNH1 problem in terms of
ND–points and purity, while on the M-BNH2 one it is the opposite. Lastly,
considering the spread metrics, DMS performed better in terms of Γ–spread, while
NSGA-II outperformed DMS on the ∆–spread.

Considering the LAP1 problem (Figure 2), FRONT-ALAMO performed very well
and its scores are close to those of DMS, which was the overall best algorithm
on this problem. This fact can be also seen in the front plots: the Pareto fronts
obtained by the two algorithms are very similar, while the other two methods
(NSGA-II and MOSQP) did not have the same performance. Among these two lat-
ter algorithms, the MOSQP method managed to outperform FRONT-ALAMO on one
metric, that is the purity, while the NSGA-II algorithm performed better on the
∆–spread. In the M-OSY problem (Figure 2) NSGA-II was the most effective ob-
taining an uniform and spread Pareto front. In this case, FRONT-ALAMO achieved
some interesting results. First of all, it outperformed the DMS algorithm: this
achievement is remarkable since DMS is gradient-free and can escape non optimal
Pareto-stationary points, while our method is gradient-based. In addition, our
algorithm obtained more non-dominated points and a better Γ–spread than its
gradient-based competitor (MOSQP).

The last FRONT-ALAMO peculiarity that we can see from these plots is the
number of non-dominated points it achieved. Only the DMS algorithm managed
to obtain a much greater value of ND–points in some problems. However, in
these problems FRONT-ALAMO was equally competitive in terms of this metric
and the purity one.

5.3. LAP2 problems

The LAP2 problems represent another useful class of problems: indeed,
they allow to discuss about the sensibility of the algorithms with regard to n,
that is, how well they scale. Indeed, many algorithms have great performance
considering small values of n. However, when a problem size grows, they lose
their abilities to retrieve good Pareto front approximations. Before seeing some
plots and metric values, we show the performance profiles considering all the
LAP2 problems (Figure 3).

The performance profiles highlight that FRONT-ALAMO strongly outperformed
the other competitors with respect to ND–points, purity and Γ–spread. The
second most robust algorithm is the DMS one. As for the ∆–spread, the methods
performed similarly: here, it is very difficult to indicate the best algorithm.
This fact can be a proof that no algorithm suffered from a non-uniformity in
their fronts. On the contrary, in terms of the Γ–spread there is a clear winner:
FRONT-ALAMO.
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Figure 3: Performance profiles for the four algorithms on the LAP2 problems. Each sub-figure
represents the performance profiles considering as a performance measure one of the metrics
explained in Section 5.1.1 (For interpretation of the references to color in text, the reader is
referred to the web version of the article).

The motivation of these different results on the two spread metrics can be
explained through the Figure 4, where we show the Pareto fronts in four different
LAP2 problems. Here, we show the fronts all together in order to provide a more
direct impression of the results. Indeed, in the LAP2 problems, FRONT-ALAMO
results show the superiority of our method at exploring the objectives space
and creating a spread and uniform Pareto front. The competitors obtained
large Γ–spread values with respect to those of FRONT-ALAMO, since they struggle
to explore the extreme regions of the front.

When n = 2, all the methods managed to obtain the same Pareto front.
However, increasing n, the differences between them become more and more
clear. For instance, NSGA-II performance got worse with n ≥ 10. It seems to be
unable to spread the search in the objectives space and, also, to create a good,
although small, Pareto front. The other gradient-free method (DMS) performed
better but still it hardly reached the extremes of the objectives space. MOSQP

seems not to have this last negative feature but it generally retrieved very few
points and, in addition, most of them are dominated. However, the MOSQP
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performance was good with n ≤ 10.
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Figure 4: Pareto front approximation for the four algorithms considering LAP2 problems at
different dimensionalities (For interpretation of the references to color in text, the reader is
referred to the web version of the article).

The above comments on the algorithm behaviors on the LAP2 problems are
also supported by the numbers in Table 3. Observe that FRONT-ALAMO, whose
performance was quite good on problems with small dimension, outperformed
the competitors as the value of n increased. The superiority of our method
when the dimension of a problem is high is very remarkable, especially consid-
ering ND–points (we obtained the best value, by far, for this metric in all the
four problems), purity and Γ–spread. As we just highlighted commenting the
performance profiles, all the algorithms performed well regarding the ∆–spread
metric.

5.4. CEC, ZDT and MOP problems

In this last section of computational experiments, we comment the results
on the problems characterized only by boundary constraints. Some of these are
very difficult to solve and, in detail, the hardest ones are the CEC and ZDT
problems. The CEC problems have non-continuously differentiable objective
functions. The same feature is present in the ZDT problems, where the objective
functions are also composite. For the sake of brevity, we preferred to show the
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PROBLEM METRIC FRONT-ALAMO DMS NSGA-II MOSQP

LAP2, n = 2

ND–points 3680 3256 34 397

purity 0.747 1.0 0.34 0.936

Γ–spread 0.123 0.035 0.185 0.556

∆–spread 0.722 0.547 0.518 0.844

LAP2, n = 10

ND–points 1395 477 0 23

purity 0.775 0.633 0.0 0.92

Γ–spread 1.149 3.309 43.472 27.501

∆–spread 0.997 1.031 0.808 0.999

LAP2, n = 50

ND–points 944 0 0 0

purity 1.0 0.0 0.0 0.0

Γ–spread 39.861 1275.832 1235.656 570.599

∆–spread 1.003 0.927 0.928 1.165

LAP2, n = 100

ND–points 430 0 0 0

purity 1.0 0.0 0.0 0.0

Γ–spread 90.54 5274.549 5384.548 1517.672

∆–spread 0.996 0.983 0.972 1.141

Table 3: Metrics values obtained by the four algorithms in the LAP2 problems with n =
2, 10, 50, 100. The values marked in bold are the best values (each of which is related to a
specific score) obtained in a specific problem.

performance profiles related to all these problems. The performance profiles are
shown in Figure 5.

Regarding the ND–points metric, FRONT-ALAMO managed to outperform the
competitors once again. Indeed, we can conclude that this is one of the most
important peculiarities of our method: its capabilities allow it to expand the
search towards a great portion of the objectives space and to retrieve many
Pareto points. Considering this metric, the other two best competitors were
NSGA-II and DMS: because of their gradient-free nature, allowing them to po-
tentially escape from non optimal Pareto-stationary points, they managed to
obtain good results in the most complex functions. On the contrary, the perfor-
mance difference between FRONT-ALAMO and the other gradient-based method
(MOSQP) is very sharp.

The performance profiles on the purity metric highlight the effectiveness of
our method: it was not obvious, a priori, to obtain such great results with such
complex functions, especially when some of our competitors are derivative-free.

Lastly, considering the spread metrics, our results are competitive with re-
spect to the other competitors. In particular, in the Γ–spread performance pro-
files FRONT-ALAMO was the third best algorithm, while the gradient-free methods
(NSGA-II and DMS) managed to have slightly better performance. Regarding the
∆–spread, NSGA-II turned out to be the most robust algorithm. However, the
performance profiles on this metric are another proof of the effectiveness of the
four algorithms to retrieve an uniform Pareto front.
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Figure 5: Performance profiles for the four algorithms on the CEC, ZDT and MOP problems.
Each sub-figure represents the performance profiles considering as a performance measure one
of the metrics explained in Section 5.1.1 (For interpretation of the references to color in text,
the reader is referred to the web version of the article).

6. Conclusions

In this paper, we considered smooth multi-objective optimization problems
subject to convex constraints. We focused on the task of generating good Pareto
front approximations for this class of problems. After a brief review of the
existing literature, we proposed an Augmented Lagrangian Method specifically
designed for this task.

The method represents an extension of the ALAMO procedure from Cocchi
and Lapucci (2020), which is designed to produce a single Pareto-stationary
solution. The proposed algorithm handles, at each iteration, a list of points
that are mutually non-dominated and Pareto-stationary with respect to the
current multi-objective augmented Lagrangian. Line searches along steepest
common and partial descent directions are employed to carry out an exploration
of the objectives space. The penalty parameter and the Lagrange multipliers are
updated taking into account constraints violations committed by all the points
in the current list.
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For this algorithm, we proved global convergence to Pareto-stationarity of
the sequences of points in the iterates lists. This type of convergence is more
general than that based on linked sequences. With respect to the only other
derivative-based method for this kind of problems, the SQP from (Fliege and
Vaz, 2016), we obtain similar asymptotic properties for the limit points, but our
method does not stop the exploration phase after a finite number of iterations.

Moreover, thorough computational experiments show that our method out-
performs the SQP algorithm in terms of popular metrics for multi-objective op-
timization. We also compared the proposed procedure with the state-of-the-art
derivative-free (DMS) and genetic (NSGA-II) approaches. Our procedure proved
to obtain better results even w.r.t. the two mentioned ones.
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Appendix A. Modified form of the OSY Problem

In this Appendix, we introduce the modified version of the OSY problem
(Osyczka and Kundu, 1995) used in the computational experiments. The modi-
fication is carried out in order to make the feasible set and the objective functions
convex.
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min
x∈R6

f1(x) = 25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2

f2(x) =
∑6
i=1 x

2
i

s.t. x1 + x2 − 2 ≥ 0,

6− x1 − x2 ≥ 0,

2− x2 + x1 ≥ 0,

2− x1 + 3x2 ≥ 0,

4− (x3 − 3)2 − x4 ≥ 0,

− (x5 − 3)2 + x6 − 4 ≥ 0,

0 ≤ x1, x2, x6 ≤ 10,

1 ≤ x3, x5 ≤ 5,

0 ≤ x4 ≤ 6.
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