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Abstract 

In the last decade satellite remote sensing has become an effective tool for monitoring geo-hazard-induced 

ground motions, and has been increasingly used by scientific community. Geo-hazards direct and indirect 

costs are currently rising, causing serious socio-economics and casualty losses. Therefore, creating a priority 

list turns out to be essential to highlight the most relevant ground deformations and to better focus the risk 

management practices at regional scale. The Sentinel-1 constellation, thanks to the 6-days repeatability and 

the free availability of the data, allows to easily update the geo-hazard-induced ground motions, compared 

to other kind of satellite sensors 

In this PhD Thesis, the potentialities and drawbacks of the interferometric technique have been presented 

and then exploited to define three different procedures, applied in different environment and at different 

scales, for the use of multi-band PSI products. This thesis work represents the main outcome of a three years-

long activity at the Department of Earth Sciences of the University of Florence, Centre technologic de 

telecomunicacions de Catalunya research center and TRE-Altamira (Barcelona).  The main goal is to test and 

evaluate the potential and applicability of space-borne SAR data, processed by means of different PSI 

approaches, as operational tools for the characterization of geohazards in different geological and 

geomorphological environments. 

For this work, two Italian test areas at regional scale are been selected: Tuscany and Valle d’Aosta Regions. 

Furthermore a site at detailed scale was analyzed, the mining area of Saline di Volterra (Tuscany). The main 

goal of the thesis hinges on illustrating different methodologies that could be merged in one single workflow 

to detect active moving areas, characterize them in detail and cross-correlate the satellite data with ancillary 

information, implementing the obtained products and results in the Civil Protection chain and geohazard risk 

management. The proposed case studies were intended as examples, although referred to different 

environments and geohazards, for the working approaches to be used from regional to detailed scale. 

For the Tuscany Region, there were exploited Sentinel-1 images for active moving areas detection at regional 

scale. A hotspot-like methodology was used, exploiting the temporal repetitiveness of Sentinel-1 data 

analysed by means of the SqueeSAR algorithm to create deformation maps in three different periods with a 

6 months update. Thanks to a filtering approach based on a velocity threshold, it was possible extract a total 

of 652 deformation clusters, divided in three different periods, to study their spatial and temporal evolution. 

The final output is a flexible geo-database that contains interferometric parameters, geographical, 

geomorphological and geological information, a brief evaluation of the possible triggering cause and 

information about the temporal evolution of the moving areas.  

 

For the Valle d’Aosta Region, it was used a clustering analysis applied to a large stack of Sentinel-1 satellite 

interferometric products that has been derived using the SqueeSAR algorithm. Valle d’Aosta Region is an 

alpine region characterized by a wide spectrum of mass wasting phenomena. The approach, based on simple 

GIS tools and indexes, allowed detecting 277 moving areas above the selected velocity threshold. Overall, 

landslides (complex, rotational, Deep Seated Gravitational Slope Deformation (DSGSD)), rock glacier 

evolution and detrital-related deformation are responsible for the detected motions.  

In mountainous areas, where the field data collection is sometimes limited or impossible, the presented 

approach is intended to create priority areas to be focused for further investigations. In this way, it is possible 

to increase, with reduced economic and personnel costs, the “landslide knowledge” of all the actors involved 

within the landslide risk management chain at regional scale. 
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In this context, easily updatable clustering methodologies are very useful tools for MTInSAR data analysts; it 

is possible to obtain reliable results in a fast way and to compare them with previous results.  

Well knowing the limitations of the interferometric technique, especially in mountain regions, it is reasonable 

to rely on clustering approaches in order to derive multi-temporal synoptic views of ground motions over 

wide areas.  

 

For the Saline di Volterra case, it is presented a local scale application of multi-temporal satellite 

interferometry targeting a solution mining area in southern Tuscany. The surroundings of Saline di Volterra 

host several brine wells that pump water into a salt level at a depth ranging between 60 and 400 m below 

surface. The mining activity has a relevant environmental impact in terms of depletion of the water resources 

and in terms of ground motion, creating several sinkholes which were mapped through multi-temporal 

analysis of orthophotos. The deformation map, obtained through the analysis of Sentinel-1 images, revealed 

the presence of several subsidence bowls, sometimes corresponding to sinkholes formed in the recent past. 

The subsidence bowls have a common deformation pattern, with LOS velocities increasing forward the center 

of the bowl. The temporal evolution of the measurement points can vary a lot on case-basis. Finally, a 

correlation between LOS velocities and age of formation of sinkholes have been found. The Sentinel-1 images 

were processed with an ad hoc processing chain, elaborated in Centre Technologic Telecomunicacions 

Catalunya research center (Barcelona). With this new procedure, it was possible to detect fast deformation 

rates that are usually puzzling to solve in mining areas. This detailed scale and target-oriented approach 

demonstrated its capability to provide useful information in terms of density of measurement points and 

quality of the time series.  

 

Riassunto 

Nell'ultimo decennio il telerilevamento satellitare è diventato uno fra gli strumenti più efficaci per il 

monitoraggio dei movimenti del suolo innescati dai geohazards. I costi diretti e indiretti di quest’ultimi sono 

attualmente in aumento, causando numerose problematiche socio-economiche. Pertanto, la creazione di 

una priority list risulta fondamentale per evidenziare le deformazioni del suolo più rilevanti e per gestire al 

meglio il rischio idrogeologico a scala regionale. La costellazione Sentinel-1, grazie al tempo di rivisitazione di 

soli 6 giorni e alla fruizione gratuita delle immagini, permette di aggiornare facilmente le aree in 

deformazione, rispetto ad altri tipi di sensori satellitari. 

Questo lavoro rappresenta il risultato principale di tre anni di attività presso il Dipartimento di Scienze della 

Terra dell'Università di Firenze, il centro di ricerca Centre technologic de telecomunicacions de Catalunya 

(Barcelona) e TRE-Altamira (Barcelona). L'obiettivo principale è quello di testare e valutare il potenziale e 

l'applicabilità dei dati SAR spaziali, elaborati attraverso diversi approcci PSI, come strumenti operativi per la 

caratterizzazione dei geohazards in diversi patterns geologici e geomorfologici. 

Per questo lavoro sono state selezionate come aree d’analisi le Regioni Toscana e Valle d'Aosta. Inoltre è 

stata analizzata anche l’area mineraria di Saline di Volterra, come sito a scala locale. L'obiettivo principale 

della tesi consiste nell’elaborare una metodologia efficace in grado di evidenziare le aree in deformazione 

più rappresentative, cross-correlando i dati satellitari con i dati ancillari a disposizione. Questo per migliorare 

le procedure di protezione civile per la gestione del rischio idrogeologico. 
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Per la Regione Toscana sono state utilizzate le immagini Sentinel-1 per il rilevamento delle aree in 

deformazione. Le immagini satellitari sono state elaborate con l’algoritmo SqueeSAR, in modo da ricavare 

mappe di deformazione in tre diversi periodi temporali, di sei mesi in sei mesi. L’obiettivo è stato quello di 

estrarre dei cluster di deformazione (un totale di 652), tramite una metodologia hotspot-like, che si basa sul 

filtraggio dei punti delle mappe di deformazione a seconda di una soglia specifica di velocità. Il risultato finale 

è un geodatabase flessibile che contiene parametri interferometrici, informazioni geografiche, 

geomorfologiche e geologiche, una breve valutazione della possibile causa scatenante e informazioni 

sull'evoluzione temporale delle aree in movimento.  

Allo stesso modo, Per la Regione Valle d'Aosta è stata utilizzata una metodologia hotspot-like, processando 

le immagini Sentinel-1 mediante l’algoritmo SqueeSAR, permettendo di rilevare 277 aree in deformazione al 

di sopra della soglia di velocità applicata ai punti delle mappe di deformazione. La Regione Valle d'Aosta si 

trova in un contesto geomorfologico alpino, dove gli episodi di natura franosa sono piuttosto frequenti, come 

ad esempio le deformazioni gravitative profonde di versante. Nelle aree montuose, dove la raccolta di dati 

sul campo può essere limitata o impossibile, è fondamentale avere a disposizione un database con le aree di 

deformazione più rappresentative, per migliorare e rendere più gestibile la gestione del rischio idrogeologico. 

Tenendo conto dei limiti dell’interferometria satellitare in aree montuose, è stato possibile in ogni caso 

estrarre i cluster di deformazione, che hanno permesso una visione e una maggiore comprensione a larga 

scala del dissesto idrogeologico regionale.  

 

Il caso Saline di Volterra rappresenta un'applicazione a scala locale dell’interferometria satellitare multi-

temporale mirata all’analisi dell’area mineraria in zona. L’area all’interno di Saline viene sfruttata per 

l’estrazione di sale tramite dissoluzione. Questa tecnica consiste nel pompare acqua tramite dei pozzi negli 

strati d’alite nel sottosuolo, ad una profondità compresa tra 60 e 400 m. Successivamente l’acqua satura in 

sale viene pompata in superficie dove viene raccolta per la purificazione del minerale. L'attività mineraria ha 

un impatto ambientale rilevante in termini di esaurimento delle risorse idriche e di deformazione del suolo. 

Infatti, nelle aree circostanti ai pozzi, si formano cavità che danno origine a movimenti rapidi di subsidenza, 

che possono causare anche il collasso della superficie dando origine a fenomeni chiamati sink-holes.   

La mappa di deformazione, ottenuta attraverso l'analisi delle immagini di Sentinel-1, ha rivelato la presenza 

di diverse bolle di deformazione riconducibili a fenomeni di subsidenza, talvolta corrispondenti a sink-holes 

formati in passato. Le immagini Sentinel-1 sono state elaborate con una processing chain ad hoc, ideata nel 

centro di ricerca Centre Technologic Telecomunicacions Catalunya (Barcellona). Con questa nuova 

procedura, è stato possibile rilevare tassi di deformazione dalle velocità molto elevate, solitamente difficile 

da individuare in un contesto minerario. Questo approccio target oriented ha permesso di fornire risultati 

ottimi in termini di densità dei punti di misura e qualità delle serie temporali.  
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1.Introduction 

In the last two decades, the high number of available spaceborne sensors able to quantify geophysical 

phenomena associated with earth surface movements (earthquakes, landslides, etc) changed the way the 

scientific community assesses and predicts natural disasters. The increasingly common use of Earth 

Observation (EO) techniques is in part due to increased awareness of environmental issues such as climate 

change, but also to the increase in geospatial technologies and the ability to provide up-to-date imagery to 

the public through the media and internet (Joyce et al., 2009). The scientific knowledge gained along with 

the ability to disseminate timely geospatial information is contributing to comprehensive risk mitigation 

planning and improved disaster response (Tralli et al., 2005). As technology is enhanced, expectations for 

near real-time assessment of natural hazard increase because of the improvements made to the satellite 

platforms (data acquisition rates, ground resolution) and to the reliability of processing and image analysis 

algorithms (Gillespie et al., 2007).  

Observations from Earth orbiting satellites are complementary to local and regional airborne observations, 

and to traditional in situ field measurements and ground-based sensor networks in Earth and Environmental 

sciences. Satellite remote sensing is proving a systematic framework for scientific knowledge of the Earth, 

integrating multi-scale observations over a broad portion of the electromagnetic spectrum with increasingly 

refined spatial and spectral resolution and over time scales that encompass phenomenological lifecycles with 

requisite sampling frequency (Tralli et al., 2005). Advances in computational science and numerical 

simulations are allowing the study of long-term processes exploiting observational data for constraints and 

validation of the remotely sensed information (Donnellan et al., 2004).  

Between 1999 and 2020, over 190 Earth observing satellites have been successfully launched (data provided 

by the ITC's database of satellites and sensors, available online at https://www.itc.nl/Pub/ sensordb). These 

satellites contain passive or active sensors that can be utilized by the scientific community for monitoring 

natural hazards. Passive sensors record reflected (visible and infrared wavelengths) and emitted energy 

(thermal wavelengths). Many passive sensors, providing panchromatic imagery are operational, such as 

IKONOS 2, QuickBird 2, SPOT 5 and OrbView 3 that acquire optical images at very high resolution (0.6 m to 

2.5 m) and with short temporal repeatability (3 to 14 days). Shortwave infrared and thermal bands acquisition 

represent another commonly used application of passive sensors. MODIS and ASTER operate in these bands, 

with a lower ground resolution than panchromatic images (30m to 1 km) but with a very high temporal 

repeatability on an area (one day). Active sensors emit and receive an energy pulse to create an image; the 

most commonly used are the sensors using a radar (Radio Detecting and Ranging) signal that can penetrate 

cloud covers and that can operate both day and night. The radar sensors, known as Synthetic Aperture Radar 

(SAR), measures the backscattered microwave signal within discrete wavelengths (X-, C- and L- bands, 

ordered from the shortest to the longest).  

The SAR sensors are the most commonly used for deriving ground deformation with centimeter to millimeter 

precision above large areas (up to 200 km) with medium (30 – 40 m for C-band data) to high resolution (1 m 

for X-band data). This is possible exploiting two or more SAR acquisitions above the same areas by means of 

the InSAR (Interferometric SAR) technique. This approach allows to derive the Earth’s surface deformation 

with high precision and it is applicable for monitoring and detecting landslides, land subsidence, volcanic and 

tectonic motions. Moreover, has been successfully used to derive deformation data from single targets, with 

building scale analyses (Ferretti et al., 2006).  
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Many processing algorithms, generally named as Persistent Scatterer Interferometry (PSI), were developed, 

starting from early 2000, to retrieve the spatial distribution of displacements and their evolution along the 

monitored period at a relatively low cost over wide area. Thanks to the availability of historical archive 

datasets of SAR images acquired by ERS1/2 and ENVISAT satellites (ESA - European Spatial Agency), spanning 

from 1992 to 2010, and images by RADARSAT 1/2 (CSA - Canadian Spatial Agency) and Sentinel-1 (ESA) 

sensors, as well as satellite data from current X-band high resolution satellite systems, i.e. COSMO-SkyMed 

(ASI - Italian Space Agency) and TerraSAR-X (DLR - German Aerospace Center), PSI techniques can be applied 

to provide back analysis and monitoring of ground displacements with high precision up to about 1 mm/yr 

on a single measure. For all these characteristics, the PSI-derived products have demonstrated their 

usefulness as support tool for mapping and monitoring ground motions associated with a wide range of 

geohazards, from the local to the national scale (Bally et al., 2012). 

In the last decade ESA, EC (European Commission), Civil Protection Authorities (CPA) and many other entities 

in charge of risk management started a wide range of projects contributing to the understanding, mitigation, 

preparedness and management of geological risks. In the European context, hydrogeological services and 

applications exploiting InSAR products are widely exploited and common part of the risk management chain 

in Italy, Switzerland and Spain and are becoming consolidated in Greece, Slovakia, Hungary, Germany, Poland 

and France. Many national initiatives such as the projects SLAM (Farina et al., 2006), DO-SMS 

(http://dosms.get.obs-mip.fr), and international projects such as ESA Terrafirma (Raspini et al., 2016), the EC 

FP7 SAFER (Casagli et al., 2016) and DORIS (http://www.doris-project.eu), are exploiting single-pair InSAR 

and multi-interferometric techniques such as Permanent Scatterer Interferometry (PSInSAR) and Small-

Baseline (SBAS) approaches for geohazards mapping and operational support to regional and national bodies 

and local authorities in charge of hazard and risk management and land use planning. In Europe, thanks to 

the efforts made and the time spent by the scientific community in the last decade to make InSAR-based 

applications accepted among users and practitioners, 50 geological surveys have become users of terrain 

deformation services. Recent national initiatives (e.g., SAR.net 1/2 projects in 2005-2017) funded by the 

Italian National Civil Protection Department were carried out to enhance the acceptance of InSAR-based 

applications and services for landslide risk in Italy. These projects provided successful examples on how 

interferometric data can operatively support the CPA in the definition of operative procedures for the rapid 

assessment of risk during emergencies. 

 

1.1 Purpose of the study 

The thesis work represents the main outcome of three years-long activity at the Department of Earth Sciences 

of the University of Florence, with 1 year and a half of period abroad between the Centre Tecnològic 

Telecomunicacions Catalunya (CTTC) of Castelldefels (Barcelona) and TRE-Altamira (Barcelona). The main 

goal is to test and evaluate the potential and applicability of space-borne SAR data, processed by means of 

different PSI approaches, as operational tools for the characterization of geohazards in different geological 

and geomorphological environments, at regional and detailed scale. Three test sites were presented to show 

different approaches aimed both at reconstructing the deformation history of ground motions (mainly 

related to subsidence and landslides), in order to evaluate the effectiveness and the potential of InSAR data 

in a very different study areas geomorphological patterns, by means of the Sentinel-1 data analysis.  

For the testing areas at regional scale, the methodology exploits a hot-spot-like method based on radar 

images processed by means of SqueeSAR algorithm to create a new geodatabase of moving areas, useful not 
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only from a scientific point view, but also for risk management and Civil Protection purposes. At the same 

time, a new processing chain for the detailed scale was developed, in order to overcome some InSAR 

limitation and highlight the fastest movements in the study area.  

 

2 Radar Remote Sensing 

Remote sensing data acquired by sensors operating in the microwave portion of the electromagnetic 

spectrum are nowadays widely used for detecting and monitoring hydrogeological phenomena. The 

microwaves are chosen between all the possible bands of the spectrum because of their capability of 

penetrating the atmosphere under virtually all conditions (clouds, smoke, night and so on). Moreover, the 

microwaves reflections or emissions from Earth materials bear no direct relationship to their counterparts in 

the visible or thermal portions of the spectrum (Lillesand and Kiefer, 1979). For example, a “rough” surface 

in the visible portion can appear “smooth” if seen by the microwaves and vice versa.  

The word radar is an acronym for Radio Detection and Ranging, name that implies the use of radio waves to 

detect the presence of objects and determine their position (range). This process entails transmitting short 

burst or pulses of microwave energy, at a certain wavelength depending on the type of sensor, in the 

direction of interest, recording the strength and origin of the backscattered echoes received from different 

object in the field of view (FOV) of the sensor (Lillesand and Kiefer, 1979).  

The capability of a sensor to identify as separate two closely spaced targets is called resolution. For a radar 

system, the resolution defines the minimum ground distance between two object that allows the receiving 

antenna to record two different backscattered signals, so identifying the targets in the radar image. In 

particular, a simple mathematical law regulates the resolution of a radar sensor in the azimuth direction, 

parallel to its orbit: 

Razimuth=R x b 

where R is the target-sensor distance and b is defined as: 

b = λ/L 

where b is the width of the radar beam, λ is the wavelength of the signal and L is the length of the transmitting 

antenna.  

Considering these laws, for a beam width of 10 milliradians, at a distance of 800 km, the azimuth resolution 

will be 8 km; as the results suggest, this resolution is not suitable for monitoring ground movements, that are 

the final target of the microwave remote sensing. For guarantying a suitable resolution two changes have to 

be made: i) increase the length of the physical transmitting antenna or ii) use a shorter wavelength. The 

latter, would led to a higher atmosphere and cloud impact on the capability of imaging radars, so worsening 

the obtainable results. On the other hand, to obtain an acceptable azimuth resolution for a real-aperture 

radar system, it would be necessary a very long physical antenna, e.g. some kilometers long. This is due to 

the inverse relation between the area illuminated on the ground and the physical dimensions of the antenna 

(Skolnik, 2001).  

For overcoming these limitations, the SAR (Synthetic Aperture Radar) systems were designed. A SAR system 

acquires at long wavelengths (centimetric) by using a small antenna and obtains the required ground 

resolution by means of a particular acquisition strategy (Figure 1). The SAR concept separates two targets at 
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the same range but at different azimuth positions by their dissimilar relative velocities with respect to the 

moving sensor. The reflected monochromatic waves from two different targets, illuminated by the same 

beam, have different Doppler shifts (phases) associated with them. Knowing the path of the satellite orbit, it 

is possible to compute the exact phase history for every point target on the ground. Multiple echoes are than 

combined to effectively create a synthetic aperture that is able to separate the two targets; this aperture is 

longer that the “real” one and so called synthetic. The final resolution is dependent on the total amount of 

phase information available for each target: the longer the target is illuminated, the higher is the resolution 

obtainable. A SAR sensor exploits a single beam antenna, few meters long, for repeatedly illuminating the 

area of interest; during the forward movement of the satellite, the scene is then illuminated from different 

positions in distinct instants, guarantying the necessary repeatability. Individual echoes, received 

successively at the different antenna positions, are recorded, stored, combined and then processed together, 

simulating a “synthetic aperture”, to provide the required azimuth resolution (Hooper, 2006). 

 

Figure 1 - SAR system: the sensor, observing repeatedly the target and recording the backscattered echoes, simulates a 
“real” aperture antenna, obtaining a high-resolution image (from http://treuropa.com). 

 

The product acquired by a SAR sensor has to be processed in order to be used for further analysis. The 

algorithms of image analysis are used to convert the recorded echoes into a high-resolution image of ground 

in a Single Look Complex (SLC) format, that is the standard for this type of image processing. A review of the 

many different algorithms present in the scientific community was proposed by Cumming and Wong, 2005. 

The SLC image is composed by an array of complex numbers ordered in a matrix of pixels. The indices of 

pixels in the matrix are directly related to the azimuth and range position of the scatterers with respect to a 

reference point on the platform’s path. 

In particular, each pixel value corresponds to both amplitude and phase information about the backscattered 

microwave signal. The phase refers to the oscillation of electromagnetic waves of the radar signal and mainly 

depends on the sensor-to-target distance. The amplitude represents the radiation backscattered by the 

objects towards the radar. Typically, exposed rocks or metal structures have a high capacity to reflect incident 

radar energy and thus the amplitude of the corresponding pixel is high. Reflectivity of smooth flat surfaces 

like water basins or soil is lower, so the amplitude of the reflected signal decreases. Besides the material, 
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amplitude depends on the shape, size, orientation and moisture content of the scatterers, and on the 

characteristics of the radar beam (frequency, polarization and incident angle of the radar pulses). 

A spaceborne SAR sensor is carried by a satellite along a predefined polar orbit with the transmitting antenna 

pointed to the ground surface in the plane perpendicular to the orbit (Hooper, 2006). The incidence angle of 

the radar signal on the assumed flat Earth surface is equal to the inclination of the antenna with respect to 

the nadir direction (Off-nadir angle). The SAR sensor are usually “right-looking”, meaning that the antenna 

illuminates the ground surface always from the right side along its flight, this direction is called azimuth 

direction. The area illuminated on the ground is called antenna footprint, while the direction of the main lobe 

of the transmitting antenna is called ground range direction. The width of the illuminated area is called swath. 

Finally, the satellite-to-target direction is called slant range.  

In Figure 2 the standard acquisition scheme for a SAR sensor acquiring in the widely used Stripmap mode is 

shown. Less common acquisition modes are the ScanSAR and SpotlightSAR. The first, is based on the concept 

of a multi-beam antenna that can illuminate different sub-swath through different beams (Monti Guarnieri 

& Prati, 1996); by merging this sub-swath images is possible to generate a wider swath image than the one 

obtainable by the Stripmap mode (400 – 500 km). The increase in the acquisition area is contrasted by the 

loss in resolution, especially along the azimuth direction (Monti Guarnieri & Rocca, 1999). More accurate 

description of benefits and disadvantages of ScanSAR mode are included in Monti Guarnieri and Prati (1996), 

Moreira et al. (1996) and Holzner & Bamler (2002). The second mode uses a large real antenna to achieve a 

good signal to noise ratio focusing on a target of interest, obtaining a great increase in the resolution; on the 

other hand, the large antenna used have a small bandwidth that can guarantee the illumination of a limited 

area of the Earth surface (Belcher & Baker, 1996). 

A further development of the acquisition modes of a SAR satellite is the TOPSAR mode, that overcomes the 

limitations imposed by the ScanSAR wide swath mode. During the acquisition, the antenna is steered along 

the track from backwards to forwards, so that every target on the ground is observed with the complete 

azimuth antenna pattern. The TOPS mode was firstly experimentally applied by the German X-band sensor 

TerraSAR-X (Meta et al., 2010) and then became the standard acquisition mode of the European C-band 

sensor Sentinel-1, launched in October 2014 (Yagüe-Martínez et al., 2016). 

Each SAR sensor is designed to work at a specific wavelength, ranging from the shortest one, Ka, to the longest 

one, P (Figure 3). The letter codes for the various bands were originally selected arbitrarily to ensure military 

security during the early stages of development of the radar technology. Every sensor emits its signal at a 

specific central frequency (operating frequency) that defines the signal propagation and penetration 

features. For satellite applications, the three most commonly used bands are: C-band (4-8 GHz, ≈5.6 cm 

wavelength), X-band (8-12 GHz, ≈3.1 cm wavelength) and L-band (1-2 GHz, ≈23 cm wavelength). 
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Figure 2 – Stripmap mode acquisition scheme. The elliptical grey area represents the footprint (from 
https://www.asf.alaska.edu /about-sar/sar-basics). 

 

The satellites that usually carry the SAR sensor travel along a near-polar sun-synchronous orbit, inclined of a 

certain angle with respect of the Earth meridians at an altitude ranging from 500 to 800 km above ground 

surface. The sensor-to-target direction is called Line Of Sight (LOS), inclined of an angle θ (off-nadir angle) 

with respect to the vertical; this angle is an intrinsic characteristic of every sensor and varies between 23° to 

45° (Figure 4A). A SAR satellite has two polar orbit directions: ascending, if the sensor moves from the south 

pole to the north, and descending, when the sensor moves on the second half of its orbit (from north towards 

south). During its movement, the SAR sensor always acquires to the right side of the track, thus observing 

the same scene from the East in the descending orbit and from the West when capturing images in ascending 

orbit (Figure 4B). The COSMO-SkyMed sensor has the possibility of acquiring to the left side for short period 

of time if specific requests are made, i.e. during environmental emergencies.  
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Figure 3 - Electromagnetic spectrum. In red the wavelength range for the microwaves. The table shows the different 
bands composing the microwaves, in which the most common bands for satellite sensors are highlighted in yellow. CF, 
central frequency. 

 

 

 

Figure 4 – SAR sensor acquisition geometry. A) ERS 1/2 satellite imaging geometry (from http://esrl.noaa.gov); B) 

Ascending and descending geometries for the Sentinel-1 satellite (from http://tre-altamira.com).   

 

 

 

 

http://esrl.noaa.gov/
http://tre-altamira.com/technology/#sar-imagery
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One of the most important characteristics of a SAR sensor is its capability of acquiring data on the same area 

in a certain time that is called revisiting time. The technological evolution of the satellites allowed to greatly 

reduce this time, passing from the 46 and 35 days of the first L- and C- band sensors (ALOS-1 and ERS 1/2) to 

the 6 days of the Sentinel-1 twin constellation (Figure 5). This parameter is fundamental not only for the 

temporal density of image acquired but also for the quality of the obtainable results; in fact, increasing the 

number the images in a certain time interval allows deriving high quality InSAR results because of the high 

redundancy of data (Hooper, 2008). Starting from the 1992, several satellite-based SAR sensors have been 

launched, providing images acquired at different wavelengths and that can be used for ground deformation 

monitoring (Figure 5). 

Another fundamental feature is the ground resolution of the sensor that defines the dimension of the pixels 

of the SAR image. In fact, the applicability of a typology of SAR data to the monitoring of a specific 

environment highly depends on this parameter. The lowest ground resolution is obtained by the L-band 

sensors ALOS 1 and ALOS 2 whereas the highest is reached by the X-band sensors (1 m). The ground resolution 

of the C-band sensors varies between 30 m (Envisat) and 10 m (Sentinel-1 A&B). The L-band data, despite 

having the lowest ground resolution, are suited for environmental applications, such as land cover and land 

use monitoring (Longépé et al., 2011), forestry management (Shimada et al., 2014), oceanography (Karang & 

Nishio, 2011) and snow researches (Singh et al., 2014). This is possible because of the ground and vegetation 

penetration of the L-band; moreover, the quadra-polarization asset of the ALOS sensors signal allows 

studying landslide-related deformation where a high density of vegetation is present (Yonezawa et al., 2012). 

On the other hand, the X-band data are ideally suited for studies in urban areas, especially focusing on single 

building monitoring, thanks to their very high ground resolution (Bonano et al., 2013).  

 

Figure 5 – Available satellites for interferometric applications (from http://tre-altamira.com). The revisiting time and 

ground resolution of each sensor is shown.  

http://tre-altamira.com/technology/#sar-imagery
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Distortions in radar images are frequent, especially when sensors illuminate target surfaces such as mountain 

slopes with high relief (i.e., surfaces with different angles). These distortions are clearly visible as effects on 

radar images, whose appearance and information can significantly vary. The most common, well-known 

effects in radar images are Foreshortening, Shadowing and Layover (Figure 6). As the terrain slope increases 

with respect to a flat horizontal surface (i.e. as the perpendicular to the terrain moves toward the LOS), 

ground resolution cell dimension in range increases. Thus, this terrain slope, facing the illumination of side-

looking radar, is subject to a spatial distortion. This effect is called Foreshortening and it can be defined as a 

compression (shortening) of those slopes on the illuminated side of the beam. Shortened slopes appear 

bright-toned in the radar image. On the contrary, when the terrain slope is close to the radar off-nadir angle, 

the cell dimension becomes very large and all the details are lost. This happens when topographic surfaces 

on the opposite side of incoming beam generally are not illuminated and they suffer of Shadowing (dark-

toned). The effect is more pronounced for sensors that use steeper incidence angles and for steeper slopes. 

In some situations, the terrain slope exceeds the radar off-nadir angle, and so the scatterers are imaged in 

reverse order and superimposed on the contribution coming from other areas. In other words, the 

electromagnetic beam reaches the top of the slope facing the illuminating front before it reaches the foot of 

the slope. As a consequence, the top of the slope is reflected first to the receiving antenna and seems to be 

closer to the radar, in the slant range direction, than the lower portion of the slope. This is called Layover 

effect and it is most pronounced in near range field and for sensors with smaller incidence angle. 

 

Figure 6 – SAR images distortions related to local topographic effects. 
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A SAR image is visualized using a grey scale levels because of the single frequency acquisition (Figure 7). Bright 

pixels correspond to strong reflecting objects (e.g. urban areas, exposed rocks, metallic structures) while dark 

pixels correspond to low backscattered radiation (e.g. water basin without waves, woods). Multiple object, 

with different reflectivity values, are found in the resolution cell of a SAR image. The registered echoes can 

add both constructively and destructively, creating a noise effect attributed to random interference between 

the coherent returns issued from the numerous scatterers present on the surface (Gagnon and Jouan, 1997). 

This effect is known as speckle and it is easily recognizable by a granular degradation of the image (salt and 

pepper visualization).    

 

 

Figure 7 – SAR amplitude image acquired by the Sentinel-1 C-band satellite over Houston (Texas). Black pixels represent 

radar-absorbing surfaces (i.e. water) whereas white pixels indicate radar-reflective surfaces (i.e. rocks or buildings). All 

the surfaces with intermediate radar reflectance are represented in grey tones.  

 

2.1 SAR interferometry – Fundamental laws 

For the use of the phase signal included in each image pixel, a single SAR image is not useful. To obtain this 

information, at least one other image, acquired above the same area, is required to be “interfered” with the 

first image. This technique is called interferometry and the principle of using space-borne SAR systems as 

“interferometers” dates back to early 1970s (Richman, 1971). The conventional Synthetic Aperture Radar 

Interferometry (InSAR) deals with the pixel-by-pixel phase difference of two acquisitions, gathered at 

different times with slightly different looking angles. In particular, InSAR is the measurement of signal phase 

change of two or more SAR images over the same scene, acquired at two different times and/or slightly 

different locations (Bamler and Hartl, 1998).  
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The basic principles that regulates the conventional InSAR technique are briefly explained below. Firstly, 

considering a single pixel (P) on the ground, the sensor acquires a SAR image from a M position along its 

orbit, measuring a ϕM phase (1, Crosetto et al., 2016): 

𝜙𝑀 =  𝜙𝐺𝐸𝑂𝑀−𝑀 + 𝜙𝑆𝐶𝐴𝑇𝑇−𝑀 =
4𝜋∗𝑀𝑇

𝜆
+ 𝜙𝑆𝐶𝐴𝑇𝑇−𝑀     (1) 

where MT is the sensor to target distance referred to the position M, ϕSCATT is the phase shift generated during 

the interaction between the radar signal and the target, the 4π is referred to the two-way path “sensor-

target-sensor”. Assuming that the sensor acquires a second image above the same area but from a different 

position (S) along the orbit, the phase ϕS can be calculated with equation (1), with the only difference that 

the sensor to target difference is referred to the position S (and to the distance ST). The phase difference 

between 2 images is then derived using (2, Crosetto et al., 2016): 

𝛥𝜙𝐼𝑁𝑇 =  𝜙𝑆 − 𝜙𝑀 =
𝑆𝑃−𝑀𝑃

𝜆

4𝜋

+ 𝜙𝑆𝐶𝐴𝑇𝑇−𝑆 − 𝜙𝑆𝐶𝐴𝑇𝑇−𝑀        (2) 

This equation allows deriving the interferometric phase for each pixel and is related to the distance difference 

SP-MP, which is necessary for extracting the interferometric Digital Elevation Model (DEM) and estimating 

the topography of the observed scene. This is true in the case of a not moving target; If the target moves 

from a position P to a position P’, the second image is acquired from the satellite position S referred to the 

target to sensor distance SP’. In this case, the interferometric phase is given by (Crosetto et al., 2016):   

𝛥𝜙𝐼𝑁𝑇 =  𝜙𝑆 − 𝜙𝑀 =
𝑆𝑃−𝑀𝑃

𝜆

4𝜋

+
𝑆𝑃′−𝑆𝑃

𝜆

4𝜋

+ 𝜙𝑆𝐶𝐴𝑇𝑇−𝑆 − 𝜙𝑆𝐶𝐴𝑇𝑇−𝑀        (3) 

where the first term is the component related to the topography (ϕTOPO) and the second term is the 

displacement phase component (ϕDISP) related to the movement of the target P between the two images 

acquired at the position M and S. The last 2 terms of the equation can be removed in the calculation, so 

obtaining that the interferometric phase is only dependent from the displacement and topographic 

components. The latter can be simulated (ϕTOPO_SIMU) if a DEM of the area of interest is available and then 

subtracted to the ϕDISP component; we derive the DInSAR phase in this way (4): 

𝛥𝜙𝐷−𝐼𝑁𝑇 = 𝛥𝜙𝐼𝑁𝑇 − 𝜙𝑇𝑂𝑃𝑂_𝑆𝐼𝑀𝑈 = 𝜙𝐷𝐼𝑆𝑃        (4) 

This equation represents the fundamental principle that allows deriving the displacements from two SAR 

images acquired above the same area of interest (Massonet & Feigl, 1998; Hanssen, 2001). The equation (4) 

represents only a simplified version of a more comprehensive equation that includes other components (5): 

𝛥𝜙𝐷−𝐼𝑁𝑇 = 𝜙𝐷𝐼𝑆𝑃 + 𝜙𝑇𝑂𝑃𝑂𝑅𝐸𝑆
+ 𝜙𝐴𝑇𝑀𝑆

− 𝜙𝐴𝑇𝑀𝑀
+ 𝜙𝑂𝑅𝐵𝑆

− 𝜙𝑂𝑅𝐵𝑀
+ 𝜙𝑁𝑂𝐼𝑆𝐸 + 2𝑘𝜋       (5) 

 

where: 

 ϕTOPO_RES is the residual topographic error (RTE). This component represents an effect of the local 

topography that cannot be perfectly removed and that increases with the normal baseline (distance 

between the acquisition orbits of two SAR images, usually below 1km) and the elevation error of the 

DEM (Ferretti et al., 2000); 

 ϕATM is the atmospheric phase component at the time of the two acquisitions (S and M). The physical 

characteristics of the atmosphere, especially if the troposphere, can impact the performance of 

spaceborne SAR systems. In fact, the signals emitted by the sensor propagate through the spatially 
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inhomogeneous atmosphere, which has a slightly higher index of refraction than free space, 

producing delays in the signals and reduction of the velocity of the microwaves that contaminate the 

observations (Zebker et al., 1997); 

  ϕORB is the phase component due to the orbital errors of each image that could affect the positions 

M and S. Small variation of the cross-track and along track components of the orbit during the SAR 

acquisition can generate artifacts in the derived interferograms, producing orbital fringes not related 

to a real ground displacement (Shirzaei & Walter, 2011); 

 ϕNOISE is the noise component of the phase. It can be related to speckle effect that are generally 

considered undesirable since they damage the radiometric resolution of the images (Achim et al., 

2003) or can be associated to the temporal and geometric decorrelation of the illuminated surfaces 

and so of the received signal (Hanssen, 2001). For example, in vegetated areas the plants growth can 

produce decorrelation, reducing the coherence of the image, 

 k is an integer value called phase ambiguity that is a result of the wrapped nature of the 

interferometric phase that is bounded in the range –π, +π and that has to be unwrapped to 

determine the displacement occurred between two SAR images (Ghiglia & Pritt, 1998). 

An interferogram is formed by the complex product of the two SAR images (called the master and the slave) 

and its phase, which contains all the information and errors contained the equation (5). The main purpose of 

an interferometric process is to separate the different components, extracting only the one related to the 

displacements and removing or minimizing the others.  

2.2 Differential interferometry (DInSAR) 

The retrieval of the ground displacements that occurred between two different SAR acquisitions can be 

achieved by Differential InSAR (DInSAR) within the repeat-pass interferometry method (Rosen et al., 2000). 

Since the first description of the technique, which was based on L-band SEASAT SAR data (Gabriel et al., 

1989), the great potential of DInSAR for land deformation applications has been recognized. Of major interest 

were the wide areas covered by each image, the global coverage and the repeat observation capabilities, 

associated with the intrinsic high metric quality of the DInSAR observations (Crosetto et al., 2005). 

In Figure 8 the process of deriving deformation measurements from SAR images is shown. In the time interval 

between the acquisition of the two images, the target on the ground changes its relative position (in this case 

for a tectonic movement) and the phase component related to the displacement varies. For every image 

pixel, the displacement occurred, ranging between –π and +π, is then calculated and the interferogram 

derived. The displacement in an interferogram is usually highlighted by a fringe of movement (equal to ±3.14 

cm). Wherever fringes occur, it is possible to calculate deformation by calculating the number of fringes and 

multiplying them by half of the wavelength. These fringes can be observed only where the image is coherent 

enough; for being coherent an image has to maintain its surface electromagnetic characteristics between the 

two images used to derive the interferogram (Hanssen, 2001). If the ground surface loses its electromagnetic 

“stability” (i.e. in agricultural or wooded areas), the noise level of the image increases due to the temporal 

decorrelation of the signal and the coherence consequently decreases; in this case, parts or the totality of 

the image appear to be speckled  

The coherence of an interferogram is affected by other factors: the time between two images (temporal 

baseline, longer time interval means lower level of coherence), the distance between the orbits of the two 

images (normal baseline, higher distance means lower coherence), the local topography (the presence of 
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steep slopes, oriented parallel to the sensor orbit, reduce the coherence) and the terrain properties (humidity 

reduce the coherence). Coherence is usually measured by an index ranging from 0, completely decorrelation, 

to 1, completely coherent. 

 

Figure 8 – Schematic picture showing basic principle of DInSAR and the relationship between ground displacement and 

signal phase shift (from http://www.ga.gov.au/scientific-topics). 

As shown by equation (5), the level of noise, the atmospheric effects and the geometric distortions have to 

be compensated, minimized and removed throughout the application to the SLC images of specific filters (i.e. 

Goldstein filter for atmospheric removal; Goldstein and Werner, 1998). These image correction procedures 

allow obtaining an interferogram in which the phase variation is largely due to the displacement occurred 

between the two SAR acquisitions. This is true only for very short temporal intervals and represent almost 

ideal conditions; in a common situation, all the sources of noise cannot be totally removed.  

Despite these limitations, DInSAR has been widely used to detect, map and quantify surface deformations 

with centimeter precision over large, contiguous areas along the sensor's line-of-sight direction (Figure 9). In 

particular, the technique represents an ideal solution for monitoring:  

 

 subsidence (i.e. Ferretti et al., 2000; Mora et al., 2001; Crosetto et al. 2003; Tomás et al., 2010; 

Sarychikhina et al., 2011); 

 tectonic motions and earthquake-induced deformations (i.e. Stramondo et al.; 2002; Hernandez et 

al., 2004; Atzori et al., 2009; Chini et al., 2010; Solari et al., 2016); 

 landslides (i.e. Refice et al., 2001; Nagler et al., 2002; Ferretti et al., 2005; Peyret et al., 2008; Jebur 

et al., 2015);  



20 
 

 mining activity (i.e. Spreckels et al., 2001; Chang et al., 2005; Herrera et al., 2007; Przyłucka et al., 

2015); 

 volcanic activity (i.e. Avallone et al., 1999; Pritchard & Simons, 2004; Lagios et al., 2005; Papageorgiu 

et al., 2012; Del Negro et al., 2013). 

 

In the last two decades, space-borne DInSAR techniques have improved their capability in a wide range of 

application fields. Nowadays this technique became a consolidates and well-established measurement tool 

that has become the starting base of several projects and scientific studies. Moreover, in the last years, free 

software and web platforms (i.e. SNAP software, developed by ESA) grew up to allow new users to apply the 

DInSAR approach, expanding the scientific community.  

 

Figure 9 – Example of DInSAR-derived deformation maps. Earthquake-induced deformation derived from 

Sentinel 1-A carried out by IREA-CNR. 
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2.3 Persistent Scatterers Interferometry (PSI) 

To overcome the main limitations of the single-pair interferometry (difficult atmospheric and decorrelation 

phenomena removal), a new technique, exploiting long stack of interferograms, was developed starting from 

the early 2000s. This technique is called Persistent Scatterers Interferometry and it includes numerous 

approaches, developed by different scientific groups worldwide, for deriving the multi-temporal behavior of 

the ground movements in an area.  

PSI hence represents a specific class of DInSAR, which exploits multiple SAR images to separate the phase 

component related to the displacement (ϕDISP) from all the other noise sources (see equation 5) in a more 

reliable way than the DInSAR technique, throughout the exploitation of appropriate algorithms of analysis.  

The number of images that construct the data stack to be exploited in a PSI analysis depends on the revisiting 

time of the sensor, on the data acquisition policy (a regular acquisition plan is not possible for all the world 

and for all the satellites) and on the orbital tube that is the set of distances between the multiple SAR images 

(Rocca et al., 2004). Considering these limitations, a minimum of 20 images is needed to perform a reliable 

analysis on C-band data; this number decreases if X band data are used. In fact, the shorter wavelength and 

higher resolution allow obtaining consistent results with a shorter data stack (Bovenga et al., 2012). Anyhow, 

if the number of images increases, the estimation of the deformation values and of the time series will greatly 

improve (Crosetto et al., 2016).  

The PSI approach cannot derive measurement points from every Earth surface; it is able to derive the 

displacements only from the available Persistent Scatterers (PS). These points represent surfaces or objects 

with that reveals stable amplitude properties and coherent signal phase within a resolution cell, throughout 

all of the SAR images within a data stack. PS point-wise targets exhibit reduced temporal decorrelation due 

to their high electromagnetic reflectivity and their coherent and stable scattering behavior. Having a stable 

radar signature, PS are only slightly affected by decorrelation effects and the backscattered radar signal is 

much higher than the noise of the sensor (Ferretti et al., 2001). PS are abundant over urban areas, where 

buildings, man-made metallic structures and roads are found, in rocky areas or where isolated buildings or 

metallic elements are found (Figure 10). The PS density is very low in vegetated, forested, agricultural or low-

reflectivity areas and in steep slopes facing the radar sensor (shadowing effect). Snow coverage, construction 

work and roads re-pavement can lead to the complete or partial loss of PS (Crosetto et al., 2016). The 

exploitation of PSI data allows remarkably increasing the number of measurement points in an area, at a 

relatively low cost, compared to GPS (Global Positioning System) surveys, for example. On the other hand, 

the position of a PS cannot be known before the processing of the data; this can be critical for the study of 

targets with small spatial extent, because they can be under sampled or not sampled at all. This fact can be 

partially mitigated by using X-band very high-resolution data (Crosetto et al., 2010). Another crucial point is 

the difficulty to assign a PS to a specific part of the analyzed object, i.e. a group of PS referred to a building. 

This fact represents a limitation, especially when working at building scale. Some experiments where 

proposed by Auer et al., 2011 to improve the understanding of multiple reflections of the radar signal on 

buildings and so the interpretation of PSI data.  

The density of PS in an area can be artificially improved by deploying Corner Reflectors (CR). These metallic 

structure, installed in situ, provide an almost perfect reflection of the SAR signal, resulting in an improvement 

of the coherence of the ground surface where they are used and guaranteeing the estimation of the 

deformation (Sarabandi & Chiu, 1996). The CR can be permanently and strategically installed in vegetated 

areas, especially where landslide movements have to be monitored, in order to provide deformation 

measurements where it was not possible before. Many examples of their application for ground movements 
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monitoring can be found in bibliography, i.e. Xia et al., 2002; Ferretti et al., 2007; Fan et al., 2010; Crosetto 

et al., 2013; North et al., 2017; Aslan et al., 2020) 

PSI deformation rates measurement are 1D, projected along the LOS of the sensor and so estimating only 

one component of the deformation (Figure 11). The displacement vector measured in this way is so 

underestimating the real displacement vector. A way to obtain a 2D reconstruction of this vector is the 

decomposition of the LOS vector into the vertical and east-to-west horizontal components of deformation; 

this is possible only if data acquired in both orbits and processed separately are available (Ferretti et al., 2007 

- Figure 11).  Each measurement point is characterized by a value of velocity (usually in mm/yr of cm/yr) 

estimated on the basis of a linear or non-linear model, depending on the type of deformation (Kempes, 2006). 

Moreover, the velocity value is always referred to a reference point (one for all the data stack), assumed to 

be completely stable and characterized by a very high value of coherence (> 0.95). The velocity will have a 

sign, depending on the ground movement in respect of the LOS of the satellite: positive velocities indicate 

movements through the sensor (uplift or movement along slope), negative velocities indicate movements 

away from the sensor (subsidence or movement along slope).  

 

Figure 10 – Basic principles of the PSI technique. The satellite acquires multiple n images above the same moving area 

(Rn indicates the motion of the target). At every new acquisition of the sensor a new interferogram is formed between 

the last image and the new one. The displacement maps are then derived from the interferogram and stacked together, 

composing the final product. For every coherent pixel (i.e. PS) of the displacement map the time series of deformation 

is finally derived.  

 

Each PS point contains also the information referred to the cumulated displacement of every acquisition, 

allowing the reconstruction of the deformation history of a point throughout the analysis of the so derived 

time series of deformation. These series are fundamental to study the kinematic of a phenomenon, 

highlighting accelerations, decelerations, hyperbolic trends (typical of pre-failure) and correlate these trend 

changes with external and causative factors (Cigna et al., 2011).  The time series of deformation are a zero-

redundancy product, in fact, for every acquisition only one data of displacement is available; for this reason, 

they are particularly sensitive to the phase noise. This is evident especially for C-band data, while X-band data 
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show a remarkable quality improvement of the time series (Crosetto et al., 2010). The deformation time 

series can be affected also by anomalous trend not related to real ground motions that can be easily detected 

because affecting the whole dataset. They can be due to (Notti et al., 2015): long term geological processes, 

errors in the atmosphere correction during the data processing, uncompensated phase ramps, reference 

point not stable, thermal effects on the target. The latter is particularly important in urban areas (buildings 

and bridges). Due to the high sensitivity of the interferometric phase, the thermal expansion of the materials 

caused by temperature variations can produce distortions in the deformation time series, especially when 

the PSI dataset is short and when very high-resolution X-band data are used (Crosetto et al., 2015). The effect 

of temperature in urban areas is not usually modeled during the data processing but is possible to estimate 

the thermal expansion parameters (deriving thermal maps) for selected areas, if a high precision of the time 

series is needed for a building scale analysis (Monserrat et al., 2011).  

One big limitation of the PSI technique is its impossibility of capturing “fast” deformations due to the intrinsic 

wrapped nature of the phase. Considering the fundamental equations that regulate the SAR interferometry, 

if the deformation phase between two acquisitions is bigger than π, the real deformation cannot be retrieved 

unambiguously (Crosetto et al., 2016). This limit corresponds to a maximum differential deformation 

between two acquisitions of λ/4 over the revisit interval (Ferretti et al., 2007). Considering the wavelength 

and the revisiting time, the maximum differential deformation rate measurable for the most used SAR sensor 

is: 14.7 cm/yr for ERS 1/2 and Envisat, 21.2 cm/yr for RADARSAT-2, 25.7 cm/yr for TerraSAR-X, 35.3 for 

COSMO-SkyMed, 42.6 cm/yr for Sentinel-1 (A&B) and 46.8 cm/yr for ALOS-2. 

 

 

Figure 11 - Extraction of vertical and horizontal (E-W) deformation components, projecting the ascending and 

descending acquisition geometries (from Tofani et al., 2013). 

 

After almost 20 years of advance and improvement of the PSI technique, at least 15 different algorithms 

were developed by private companies or research entities (Table 1). The first PSI approach proposed is the 

PSInSAR (Ferretti et al., 2000, 2001), developed by a spin-off of the University of Milano that is now a private 
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company, TRE-Telerilevamento Europa. Few years later, the SBAS algorithm (Berardino et al., 2002) was 

developed by the CNR-IREA of Naples. These two pioneering algorithms, constructed on different strategies, 

represent the starting points for the evolution end development of the PSI analyses. In the next years, several 

approaches that modify the PSInSAR or the SBAS techniques were proposed, such as: IPTA, developed by 

Swiss company Gamma Remote Sensing (Werner et al., 2003), the STaMPS method developed by Hooper et 

al. (2004) at the Stanford University. The latter, represents one of the first examples of freely available 

software, for non-commercial use, for SAR images PSI processing. Another technological step forward was 

made in 2011, when the SqueeSAR algorithm was firstly presented (Ferretti et al., 2011).  

In the following section, a brief description of each one of these methods will be illustrated: 

 PSInSAR; this technique analyzes long stacks of co-registered SAR images to identify point-wise 

targets (PS, Permanent Scatterers) within the ground resolution cell which can be natural or man-

made and have stable radiometric characteristics during the entire acquisition interval. Phase 

information backscattered from these coherent points is used to derive the ground displacement 

and the temporal evolution of the movement. The PS approach adopts essentially a model-based, 

temporal unwrapping strategy that necessitates to know a priori the characteristics of the motions 

to be analyzed. In general, the average linear displacement velocity and the DEM error are 

considered as the two major parameters of 2D linear regression of the wrapped phases (Ferretti et 

al., 2001); 

 SqueeSAR; this approach represents the evolution of the PSInSAR technique, in which the 

displacement information is retrieved from the Distributed Scatterers (DS), measurements points 

referred to partially coherent areas and not to single coherent objects (buildings, man-made 

structures, etc…) as the standard PSInSAR.  The SqueeSAR algorithm was developed to process the 

signals reflected from these low-reflectivity homogeneous areas, but it also incorporates PS data, 

hence no information is loss and the measurement accuracy is improved (Ferretti et al., 2011).  

 SBAS; the key feature of this algorithm’s chain is the selection of the SAR images that will be used to 

generate the interferograms; this is done by choosing only those data pairs characterized by short 

temporal and perpendicular baselines (Berardino et al., 2002). This procedure allows for a 

minimization of the noise effects thus maximizing the number of coherent pixels in the generated 

interferograms. Independent acquisition datasets, separated by large baselines, are properly linked 

by applying the Singular Value Decomposition (SVD) method, to retrieve deformation time series 

and velocity maps. The SBAS algorithm is also capable of producing results at two different scales 

(Lanari et al., 2004): a regional-scale, for investigating diffused deformation phenomena at a 

medium spatial resolution (the cell resolution ranges from 100 × 100 m to 30 × 30 m); and a local 

scale, which exploits the full resolution interferograms (benefiting from the high-resolution 

capability of the SAR satellite system) for generating products ideally suited for building analysis.  

 CPS; this approach includes three main processing blocks. In the first one, a set of correctly 

unwrapped and temporally ordered phases are derived, which are computed on Persistent 

Scatterers (PSs). The key element of this block is given by the so-called Cousin PSs (CPSs), which are 

PSs characterized by a moderate spatial phase variation that ensures a correct phase unwrapping. 

In the second block, the above phases are used to estimate the atmospheric phase screen. The third 

block is used to derive the PS deformation velocity and time series. Its key tool is a 2+1D phase 

unwrapping using a set of redundant interferograms (Devanthéry et al., 2014). 
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PSI method Main references 

PSInSAR (Permanent Scatterers Interferometry) Ferretti et al., 2000, 2001 

SBAS (Small Baseline Subset) Berardino et al., 2002 

CPT (Coherent Pixels Technique) Mora et al., 2003; Blanco et al., 2006 

Modified SBAS Schmidt & Burgmann, 2003 

IPTA (Interferometric Point Target Analysis) Werner et al., 2003 

SPN (Stable Point Network) Duro et al., 2003; Crosetto et al., 2008 

StaMPS (Stanford Method for Persistent Scatterers) Hooper et al. 2004 

STUN (Spatio-Temporal Unwrapping Network) Kampes, 2006; 

PSP (Persistent Scatterers Pairs) Constantini et al., 2008, 2014 

DePSI (Delft Persistent Scatterer Interferometry) Ketelaar, 2009 

SqueeSAR Ferretti et al., 2011 

WAP (Wide Area Product) Adam et al., 2011 

SARproZ Perissin & Wang, 2012 

MInTS (Multiscale InSAR Time Series) Hetland et al., 2012 

Distributed Scatterers approach Goel & Adam, 2014 

Modified SqueeSAR Lv et al., 2014 

CPS (Cousin PS) Devanthéry et al., 2014 

Table 1 – List of the main PSI approaches in chronological order. 

 

3. PSI data for geohazards monitoring 

The results retrieved from satellite InSAR make it a unique instrument for ground displacement analysis, 

which contributes to the portfolio of technologies of traditional monitoring techniques and can be used in 

many diverse applications (Ferretti, 2014). PSI is often seen as a “new technology” for surface deformation 

monitoring and its potential is commonly underestimated, even within the scientific community (Ferretti et 

al., 2015). By the way, the successful application of the PSI algorithms for the detection of ground motions 

at different scales, ranging from buildings to entire regions or nations, has shown that the interferometric 

approach is a mature technology, based on robust algorithms that can pave the way to new applications 

(Ferretti et al., 2015).  

PSI is defined as a multi-scale tool that offers the ability to detect ground displacements over wide areas (i.e. 

10000 km2 for a ERS1/2 and Envisat StripMap frame or 62500 km2 for a Sentinel-1 Interferometric Wide 

Swath frame) with relatively high spatial density of measures. At the same time, the technique can be 

efficaciously exploited for monitoring single infrastructures or small areal extent phenomena thanks to its 

high sensitivity to small deformations, moreover when using X-band data. The availability of these type of 
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data since 2007 has significantly increased the application potential of PSI (Crosetto et al., 2016). A unique 

aspect of PSI is the possibility to construct large archives of SAR images, going back in time of many years 

before the phenomenon occurrence. PSI also enables to potentially reduce the amount of ground-based 

observations needed to analyze a geohazard and so the personnel time and costs.  

In addition, the Sentinel-1 launch in 2014 represent a fundamental passage between multi-purpose SAR 

sensors (even with military functions) to a fully free civilian satellite specifically designed for surface 

deformation monitoring over large areas (Torres et al., 2012). Apart from Sentinel-1, the number of satellite 

data sources is continuously increasing (at least 8 satellites are operative at the moment), guaranteeing to 

design redundant acquisition schemes in which the possible failure of one of the systems chosen cannot 

compromises the monitoring strategy (Ferretti et al., 2015).   

All these features can be extremely useful in characterizing and addressing hazardous areas over hundreds 

or thousands of square kilometers, allowing Civil Protection Authorities (CPA) to evaluate different scenarios 

and to plan specific actions based on homogeneous and reliable measurements. The technological evolution 

reached by the PSI algorithm and the data processing and storage capabilities of the cloud computing, added 

to the SAR sensors temporal and spatial resolution, allow thinking and designing a satellite-based early 

warning system that cover a region.  

In the following section, a general review of PSI approaches applied to monitor different geohazards 

(landslide, subsidence, tectonic and volcanic motions) is proposed, as well as a brief overview on the regional 

and national monitoring systems based on InSAR data.   

3.1 Landslides 

Spaceborne SAR sensors are usually used for the detection of unstable landslide prone and affected areas, 

and for the assessment of the long-term behavior of the detected phenomena. The multi-temporal InSAR 

(MT-InSAR) analysis allows deriving useful information on the dynamics and behavior of mass movements 

(Hilley et al., 2004; Strozzi et al., 2005) and can be successfully exploited to improve or create Landslide 

Inventories Maps (LIM), and updating the state of activity of already mapped phenomena (Farina et al., 2006; 

Singhroy et al., 2009; Hölbling et al., 2012). The scale of the analysis ranges between 1:250000 to 1:5000 (Fell 

et al., 2008); this is true not only for landslides but for all the different geohazards.  

The main limitation to the definition of an InSAR-based strategy for landslide monitoring is related to the 

maximum displacement detectable between two SAR images. As stated in Chapter 2.3 Persistent Scatterers 

Interferometry (PSI)” this intrinsic threshold of the InSAR approach depends on the wavelength of the SAR 

sensor and to the revisiting time of the satellite above a certain target. For this reason, only landslides 

classified as “extremely slow” or “very slow” can be detected; their definition is based on the classification 

proposed in 1996 by Cruden and Varnes in which the “extremely slow” landslides register velocity below 16 

mm/yr, while the “very slow” landslides show velocity below 1.6 m/yr. Landslide characterized by velocities 

higher than these thresholds cannot be detected because of the impossibility of completely and coherently 

unwrap the phase signal due to the ground deformation.  

For the abovementioned limitations, intrinsically fast-moving landslides (e.g. rockfalls, topples, debris flows 

and rock avalanches) cannot be detected or their movement can be underestimated because of phase 

unwrapping errors (Cigna et al., 2011). Regarding rockfalls, the PSI data have been successfully used to detect 

precursors of the landslide on top of the rock slope (Frodella et al., 2016). Rotational and translational slides 

can be profitably monitored by means of the PSI technique (i.e. Notti et al., 2010; Bianchini et al., 2015). 
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Regarding flow-like landslides, a distinction depending on the involved material has to be made: rock flows, 

characterized by slow movements of the entire mass or of portions regularly distributed in the dislocated 

mass without a well-defined slip surface can be effectively monitored with the MT-InSAR approach, moreover 

because of the high reflectivity of the rocky outcrops (Kenyi & Kaufmann, 2003). Earth flows can be detected 

only if the landslide mass has low deformation rates and so has a low water content that cannot lead to the 

fluidification of the moving material (Greif & Vlcko, 2012). Debris flows, that usually register very high 

velocities, cannot be monitored by means of the PSI technique. Spreads can be partially analyzed by the 

satellite sensors, since only the sub-vertical component of the motion can be measured, related to the sinking 

of the upper coherent layers and induced by the lateral or sub-horizontal spreading of the lower fine-grained 

layers (Sato & Une, 2016). Lateral spreads due to liquefaction cannot be monitored by satellite 

interferometry because of their rapid occurrence. 

The choice of the best radar data stack for monitoring a landslide has to be taken depending on two factors: 

orientation of the slope and land cover. The first parameter is fundamental for knowing a priori if there could 

be geometrical errors induced by the slope orientation (foreshortening, shadowing, etc…); the optimal choice 

is using data provided by both satellite orbits (ascending and descending), in this way it is possible to compare 

the data and improve the “radar interpretation” of the data (Farina et al., 2007). The second parameter has 

a crucial importance for deciding which band length is more suitable for a PSI analysis above the area of 

interest. Overall, few considerations can be made on the applicability of each band for landslide monitoring: 

 C-band satellites cover large areas and are ideally suited for regional analysis at medium resolution 

exploiting very large databases of images (data stacks that start in 1992 with the ERS 1/2 data) and 

for the “back monitoring” of very slow- moving landslides (Cigna et al., 2011); 

 X-band sensors, thanks to their temporal and spatial resolution, are ideally suited for building-scale 

analysis in urban areas affected by landslide movements (Notti et al., 2010). Moreover, exploiting 

not the phase but the amplitude component of the radar signal of X-band data, is possible to derive 

the deformation field induced by the landslide exploiting the Rapid Motion Technique (RMT, Raspini 

et al. 2015; Solari et al., 2017c). This approach can be used in case of displacements exceeding the 

phase unwrapping threshold;  

 L-band data are useful in case of landslides affecting densely vegetated areas, thanks to the high 

penetration coefficient of the radar signal (Jebur et al., 2015); moreover, because of the long 

wavelength, it is possible to detect faster landslides (in terms of displacement rates) than the other 

two bands (Strozzi et al., 2005), reducing the decorrelation phenomena.  

In summary, the main applications of PSI in landslide practices are: 

 detection of slow moving landslides, reconstructing the historical deformation field of the event and 

combining the PSI-derived information with ground data and ground-based monitoring systems; 

 landslide mapping at basin to regional scale, providing an update of preexistent LIMs; 

 define the main components of the movement and the vector of displacement, providing useful 

information for the reconstruction, throughout a back-analysis process, of the original slope 

geometry. This can be made also exploiting interferometry-derived DEMs (Digital Elevation Models);  

 define the triggering factor of the landslide by comparing rainfall data with the displacement time 

series; 
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 refinement of susceptibility models using the PSI data to improve the prediction reliability of the 

susceptibility maps; 

 quantify the impact of landslides on a territory, deriving impact assessment maps that can be used 

as input for more sophisticated hazard and risk analysis; 

 asses building damage and derive fragility curves for each building. 

 

3.2 Subsidence  

Land subsidence detection is one of the most common application of the PSI technique because of two main 

reasons: firstly, it is a phenomenon that usually involve urban areas, so allowing to obtain reliable results 

with a dense measurement grid (thousands of points for km2), secondly, it is related to a mainly vertical 

component of the ground motion. The latter, simplifies a lot the PSI data interpretation, allowing to use only 

one orbit, not necessitating of post-processing analysis (i.e. projection of the LOS data in the slope direction 

or decomposition of the LOS vector into the vertical and horizontal components (see Chapter 2.3 Persistent 

Scatterers Interferometry (PSI)”). In the case of sinkhole-related subsidence this simplification can be not 

true, because of the presence of a relevant horizontal component, especially a certain period before the 

ground collapse occurrence (Jones & Blom, 2014). Moreover, the monitoring of surface motions related to 

ground collapses can be difficult with the PSI technique because of the high displacements rates sometimes 

recorded before the failure, near the λ/4 limit of the PSI approach, thus generating decorrelation 

phenomena. In this case, the classical DInSAR approach is preferable (Rucker et al., 2013). 

The term land subsidence usually refers both to a gradual, gentle down-warping and to a sudden sinking of 

the Earth’s surface (Galloway & Burbey, 2011). Subsidence can be triggered by natural or anthropogenic 

factors. Among the natural causes, it is worth to remember long periods of drought, dissolution of evaporite 

rocks below a sedimentary superficial layer, isostatic adjustments, long-term natural compaction of clayey 

sediments and peat oxidation in organic soils. Common causes of land subsidence from human activity are 

collapse of underground mines or cavities, tunneling, drainage of organic soils, hydro-compaction for 

extensive irrigation, rapid urbanization, load imposition (moreover for recent urban sprawl), drainage of 

reclamations or marshlands and backfill compaction in urban areas. Anyway, the most common human factor 

is the water-use practices; water overexploitation is recognized as one of the most important anthropogenic 

causes of subsidence (Hu et al., 2004). In addition, the extraction of deep fluids (water, oil, natural gas) is 

another human activity that can trigger land subsidence with huge areal extent (Galloway & Burbey, 2011).  

Starting from the end of the nineteens, the D-InSAR and then the PSI approaches were exploited to detect 

land subsidence in urban and peri-urban areas all around the world. The scale of analysis depends on the 

type of phenomenon to be analyzed, large subsidence bowls, caused by water overexploitation are usually 

examined at small scale, focusing more on the general distribution of the displacements. On the other hand, 

building scale analyses are chosen when local ground lowering is found, caused by geological or 

anthropogenic factors (presence of high compressibility and organic layers, recent urbanization, cavities 

collapse, etc…).  
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3.3 Volcanic activity and tectonic motions 

For seismic faults and volcanic motions monitoring a very high precision is usually required, because ground 

deformations can be extremely slow (Massonet & Feigl, 1998). This precision allows detecting more accurate 

displacement information and so deriving better fault dynamic models, improving the evaluation of seismic 

hazard. PSI data can be really useful in this context because of the density of measurements (orders of 

magnitude greater than the GPS) and for their higher vertical precision than that of a GPS network (Ferretti 

et al., 2006). Especially in volcanic environments, where the height changes abruptly, leading to intense 

atmosphere variations, thus representing a major limitation for the application of a “classical” two-

interferograms approach, the PSI technique has proven to be reliable in estimating and removing the 

atmospheric phase delay that can cause misinterpretation errors (Bonforte et al., 2011). For these reasons, 

the PSI approach was chosen by several authors to analyze and monitor ground deformation related to active 

or quiescent volcanic systems or to faults activity. 

3.4 Building and infrastructures 

The PSI approach is also commonly used for the monitoring of the structural stability of single buildings or 

main infrastructures (e.g. bridges, pipelines) and of elements of the cultural heritage. This application is 

possible thank to the high number of PS point obtainable from a man-made structure, especially when the 

data processing is dedicated, and the SAR images used are acquired by X-band sensors.  

Regarding the structural monitoring of buildings and infrastructures, Sousa & Bastos (2013) demonstrated 

the potential of MT-InSAR technique for detection of the deformation registered starting from 1995 of a 

bridge, crossing the Douro River in Northern Portugal, that collapsed in March 2001, killing 59 people. The 

satellite data confirmed the existence of high deformation rates in the sector of the future bridge collapse. 

Lazecký et al. (2014) proposed a multi-temporal monitoring, exploiting both C- and X-band SAR images, of a 

sector of a main Czech highway recently built on an undermined area affected by severe ground subsidence 

and fissuring. Bianchini et al. (2015) developed a methodology for assessing the stability of buildings affected 

by landslide phenomena based on two parameters derived on the basis of the PSI-derived deformation rates 

(maximum differential settlement and angular distortion). Huang et al. (2017) focused their analysis, 

exploiting Sentinel-1 C-band data, on determining the health of a high-speed railway bridge that crosses the 

Yangtze River in China; moreover, longitudinal profiles were used to defines the direct correlation between 

temperature and recorded displacements variations in the investigated time period. Another important 

application of PSI for infrastructural monitoring is the stability of artificial dams, that can register 

deformations connected to the water pressure, to bad design problems or to the compaction of the 

constructive materials (earth dams); in this case, the PSI data are extremely useful for preventing possible 

collapses of the structures (e.g. Wang et al., 2011; Tomás et al., 2013; Di Martire et al., 2014).  

The monitoring of cultural heritage elements it is another common research topic. Tomás et al. (2012) 

analyzed the general stability of a gothic church (Santas Justa and Rufina) in the historical city center of 

Orihuela (Alicante Province, Spain), comparing PSI-derived deformation maps, piezometric level decrease, 

geological asset (presence of compressible layers) and the structure design of the church with the detected 

damage. Tapete et al. (2012) verified the possible application of PSI-derived C-band products for monitoring 

different archeological site in the center of Rome (Roman Forum, Palatino and Oppio Hills), obtaining reliable 

results confirmed by site evidences. Alberti et al. (2017) exploited the SqueeSAR algorithm to verify the 

stability of the stone monuments of the archeological UNESCO heritage of Petra in Jordan, in a non-urban 

environment, challenging for this type of analysis that anyway gave reliable results, confirmed by in situ 
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geotechnical data. Cigna & Tapete (2017) catalogued and assessed the availability of satellite-derived ground 

motion information from multi-temporal InSAR and Persistent Scatterers (PS) techniques for several 

European UNESCO sites. This work, in the framework of the PROTHEGO project, represent a valuable 

overview of all the open access data available and a literature review of preexistent researches, providing 

the coverage and the gaps of PSI data for each of the European World Heritage List. 

 3.5 Regional and national scale applications 

The maturity of the interferometric algorithms coupled with the increasing computational power of personal 

computers allow rethinking the scale of analysis of the PSI approach. In fact, in recent years, projects and few 

applications aiming at exploiting PSI data at regional or national scale grew up, raising this technique to a 

new level in which it can be used not only for single sites characterization.  

Italy represents the first example of this new way of considering the PSI data. Back in 2007, the Italian 

Government began supporting the largest ever InSAR analysis to be founded by a national government. The 

project was designed to map unstable areas over the entire national territory. This was possible thanks to 

the combined effort between Tre-Telerilevamento Europa, e-geos and Compulab (Costantini et al., 2015). 

The project involved processing, by means of the PSInSAR and the PSP techniques, the entire ERS 1/2 and 

Envisat archives over Italy (more than 15000 SAR images covering more than 330000 km2), which called for 

the creation of a dedicated geospatial database to manage millions of PS points (MATTM, 2010). This 

interferometric database, spanning from November 1992 to September 2010, is freely available online by 

everyone interested in this topic (http://www.pcn.minambiente.it/mattm/progetto-piano-straordinario-di-

telerilevamento/, National Cartographic Portal). The reliability of these interferometric data has successfully 

been proven by other authors in other Italian study cases (e.g. Pratesi et al., 2015; Peduto et al., 2017; Solari 

et al., 2017a). The data provided by this platform will be used in the Chapter 4 of this Thesis to demonstrate 

their usefulness in a building-scale analysis of deformation induced by land subsidence in the city of Pisa 

(Central Italy).  

In the last year, a new project that exploits the capabilities of multi-pass interferometric Sentinel-1 images, 

has been developed by the Department of Earth Sciences of the University of Florence for continuous 

monitoring of ground deformation induced by hydrogeological processes in the entire Tuscany Region 

(Raspini et al., 2017). The SAR images, analyzed by means of the SqueeSAR algorithm, are implemented in an 

operational service devoted to the generation of advanced interferometric products ideally suited for being 

included in the risk management chain of the region. This service relies on the systematic and automatic 

processing of Sentinel-1 images to create updated ground deformation maps and displacement time series 

at every new Sentinel-1 acquisition. Moreover, deformation time series are automatically analyzed through 

a new post-processing method, devoted to the early identification of any anomalous trend and/or 

acceleration occurring during the monitoring period.  

In other world nations, Sentinel-1 or data provide by other sensors have been used only to assess the 

feasibility of region-to-nationwide surface displacement mapping. In Great Britain ERS 1/2 and Envisat 

coverage was simulated and the density of PS predicted considering the possible geometric distortions 

generated by the topography, using what has been called “visibility map”, and the land cover of the national 

territory (Cigna et al., 2014). An update of this work, referred to Sentinel-1 data, was presented by Novellino 

et al. (2017). Similar approaches have been followed in Denmark (Marinkovic et al., 2016), in the Vorarlberg 

Region in Austria (Vecchiotti et al., 2017) and in Germany (Kalia et al., 2017).  
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4 Test sites characterization  

For this work two Italian test areas at regional scale are been selected: Tuscany and Valle d’Aosta Regions. 

Furthermore a site at detailed scale was analyzed, the mining area of Saline di Volterra (Tuscany). In this 

chapter, the main geological and geomorphological characteristics of the study areas will be explained.  

4.1 Geographical and geomorphological setting of Tuscany Region 

The Tuscany Region is located in central Italy and extends up about 22.994 km². It is administratively 

subdivided into 279 municipalities and 10 provinces: Arezzo (AR), Siena (SI), Grosseto (GR), Pisa (PI), Livorno 

(LI), Massa-Carra (MC), Pistoia (PT), Prato (PR) and Lucca (LU). Furthermore, the Tuscan territory includes an 

island archipelago composed by six main islands and other small ones. The regional capital is Florence, the 

most populated city, with about 380.000 inhabitants.  

Tuscany Region presents an extremely variegated landscape. Mountains cover 25.1% of the region from NW 

to SE along the Apennines, where mountain heights can be greater than 2000 meters a.s.l. (the highest Monte 

Prado, 2054 meters a.s.l.). The central part of the territory is predominantly characterized by hills (66.5%) 

and flat areas (8.4%), or wide valleys where the main rivers flow (Figure 12a). 

From the climatic point of view, the region is generally Mediterranean, with hot and dry summers and moist 

and mild winters (Csa as in the Köppen-Geiger classification) (Peel et al., 2007), even if it locally can vary 

according to the position of orographic elements and coast. By a rainfall point of view, there are two 

precipitation peaks: the main one during the autumn period, the second one during winter or spring period. 

Summer is the driest season of the year (Rapetti and Vittorini, 1974). The major rainfall events are located 

along the Apennines, especially in the NW part, with mean annual peaks up to 2000 mm/year in Apuan Alps. 

Instead, the lower rainfall values are typical in the southern Tuscany, with mean annual peaks lower than 600 

mm/yr (Rapetti and Vittorini, 1974; Rosi et al. 2012).     

By a geological point of view, Tuscany Region belongs to the Northern Apennine. The geological setting is 

characterized by an overlapping of three main geological units: Ligurian, Tuscanian and Umbro-Marchigian. 

The Apennines are one of the youngest mountain chains in the world, formed during the Neogene and 

Quaternario. Active tectonic makes Apenninic area prone to several geological hazards such as earthquakes 

and slope instability (Bortolotti 1992; Vai and Martini, 2001).  

Tuscany Region is characterized by various geological and topographic patterns; thus, geo-hazards are 

heterogeneously distributed throughout the territory. Figure 12b shows the spatial distribution of typical 

phenomena observable by radar satellite, such as landslides and subsidence. In this work it was used the 

landslides database published by Rosi et al. (2017), based on the improvement of Italian Landslides Inventory 

(IFFI) project, produced by Institute for Environmental Protection and Research (ISPRA). In this database 

117.000 landslides are identified and mapped, with the definition of their state of activity; 22% of them are 

classified as “active”, 74% as “dormant” and 4% as “stabilised”. Rosi et al. (2016) derived a subsidence 

database for the Tuscany Region, on the basis of ERS 1/2 and Envisat interferometric products. This database 

is composed by 13 main zones, with a total area of 2035 km2, equals to the 9% of the Tuscany surface. In 

Figure 12b shows the distribution of landslides or/and subsidence for each municipality. Sixty nine percent 

of the municipalities include mapped landslides, 28% record both landslides and known subsidence areas 

and only 0.4% of them register no-known geohazards (i.e. 1 of the 279 municipalities). These data confirm 

the need and importance of a priority list to manage geo-risks in an effective way. 
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Figure 12 - Geographical characterization and Digital Elevation Model (DEM) of Tuscany Region (a) and spatial 

distribution of geohazard observable by satellite radar data (b). 

 

4.2 Saline di Volterra mining site 

The area of interest is located a few kilometers southwards the cities of Volterra and Montecatini Val di 

Cecina in the Tuscany Region (central Italy) within a hilly landscape dominated by gentle slopes and moderate 

reliefs (Figure 13). The village of Saline di Volterra is surrounded by 5 different mining concessions where the 

two deformation targets of this research are located (Figure 13). The name of the village “Saline” (salt mine 

in English) reflects the long-term mining activity of this area. The mining concessions cover a total of 28.5 

km2; the biggest one, Buriano, spreads for 10 km2, whereas the smallest one, Casanova, has a surface of only 

1 km2 (Figure 13).  

In addition to mining-related phenomena (i.e. sinkholes) the slopes surrounding the study area are 

characterized by intense denudation processes and superficial erosion phenomena that reach their 

maximum evolution forming badlands areas whose presence creates a peculiar landscape (Bianchini et al., 

2016).   

The following three chapters introduce i) the local geological context, which facilitated and promoted the 

mining activities, ii) the history of the Saline di Volterra brine fields with an overview on the mining activity 

and iii) the ground effects registered in the area. 

a b
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Figure 13 – Localization of the area of interest and of the mining concessions in the surroundings of Saline di Volterra in 

the Volterra Municipality. The background image is a 20cm AGEA orthophoto (from 

http://www502.regione.toscana.it/geoscopio/servizi/wms/OFC.htm).  

 

By a geological point of view, the area of interest is located in the Volterra basin, a NW-SE oriented Miocene-

Pliocene extensional basin developed in response to the eastward migration of the Apennine thrust-belt 

(Patacca et al., 1990). The basin is filled by a sedimentary succession ~2500 m thick (Testa and Lugli, 2000) 

that includes an evaporitic Messinian succession composed by gypsum and halite layers alternated with 

conglomerates, sandstone and claystone (Speranza et al., 2016). The upper part of this Messinian sequence, 

known as “Saline di Volterra formation”, hosts laminitic gypsum, turbiditic gypsarenite, microcrystalline 

gypsum and halite with intercalations of clay, silt and sandstones (Testa and Lugli, 2000). The Saline di 

Volterra formation has a variable thickness ranging from a few meters to 200 m, depending on the position 

within the Volterra basin (Speranza et al., 2016). The whole sequence is unconformably overlaid by Pliocene 

marine clays (“Blue Clays”), which represent the closing sedimentation of the basin and widely outcrop in the 

investigated area (Figure 14).  

Just a few information is available to reconstruct the subsurface setting of the Messinian sequence in the 

area of interest. Nicolich et al. (2002) investigated the area of the Buriano mining concession through high 

resolution 3D seismic surveys, discovering the presence of cavities in the saline layer at a depth of 150 m to 

300 m. Burgalassi et al. (2010), stated that the productive salt levels are 10 to 40 m thick and are found at a 

depth ranging from 60 to 400 m. Speranza et al. (2013, 2016) analyzed the rheological properties of the salt 

levels in the mining area of Saline di Volterra. The salt samplings were collected from deep cores which 

intersected the salt deposit between 122 and 165 m below surface, for a total thickness of 43 m. These 

authors recognized four salt facies, with variable percentage of halite and gypsum layers and variable grain 

size of the crystals. Speranza et al. (2016) estimated that halite represents the 40% of the total volume of the 

Messinian series.  

http://www502.regione.toscana.it/geoscopio/servizi/wms/OFC.htm
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Figure 14 – Geological map of the study area. From the Geological Map of Italy, 1:50.000 scale, Sheet 295-Pomarance 

(https://www.isprambiente.gov.it/Media/carg/note_illustrative/295_Pomarance.pdf).  

 

The presence of exploitable salt levels in Saline di Volterra was already known during the Roman Empire. The 

Romans called the area “moje” from the Latin word “muriae” (brine in English). The real exploitation of the 

salt layers started in the Middle Ages when the saturated water that gushed out from several springs was left 

evaporating naturally (Nannoni and Capperi, 1989). The intensive industrial extraction of the salt levels 

started at the beginning of the nineteenth century (1910) by the Saline di Stato, a company ruled by the 

central government, and by the private company Solvay (Burgalassi et al. 2010). In the area of interest, five 

mining concessions are present (Figure 13): Buriano and Casanova in the Montecatini Val di Cecina 

municipality, Cecina, Poppiano and Volterra in the Volterra municipality.  

Salt solution is the mining technique applied here, following the Trump method. Such method is rather 

simple: a dissolving fluid, typically water, is pumped at the depth of interest to dissolve the salt level; the 

saturated brine is then pumped back to the surface (Johnson, 1998; Warren, 2016). The process is subdivided 

in two phases. Firstly, water is pumped through the boreholes at the depth of interest and starts to dissolve 

the salt level. Compressed air is used to constrict and contain the fluid within the salt level, creating a flow 

that allows connecting the multiple cavities created by adjacent boreholes. Then, some boreholes are 

equipped with pumps to extract the produced semi-saturated brines; other boreholes continue to reinject 

new fresh water. After multiple cycles, the final saturation value of 300 g/L is reached (Burgalassi et al., 2010) 

and the brine is extracted and channeled, through a system of pipes, to the treatment plant of Rosignano, 

along the coast (38 km western than Saline di Volterra). In the treatment plant, the sodium chloride is finally 

extracted from the brine trough a chemical process. The injection/extraction boreholes are disposed in the 

mining concessions in a regular grid with spacing between the boreholes of 40-45 m. Every mining panel 

https://www.isprambiente.gov.it/Media/carg/note_illustrative/295_Pomarance.pdf
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counts 60 to 360 boreholes (Burgalassi et al., 2010). As stated by ARPAT (2006) the actual production rate 

requires to drill 50-60 additional boreholes per year.  

Burglassi et al., 2010 estimated that the total amount of salt deposits in the subsurface of this area is 466 

million tons; however, considering an extraction ratio of 65% (Pinna, 2002), the effective amount of mineable 

material is 300 million tons. The time needed for the total consumption of this resource has been estimated 

in about 200 years. The main environmental impacts of the mining activity are three: i) overexploitation of 

fresh water, ii) salinization of streams and aquifers and iii) subsidence/sinkholes 

(http://www.arpat.toscana.it/notizie/arpatnews/2013/174-13/174-13-gli-impatti-ambientali-nelle-attivita-

minerarie-connesse-alla-coltivazione-del-salgemma).  

 

4.3 Geographical and geomorphological context of Valle D’Aosta Region 

Valle d’Aosta (VdA) is the smallest Italian Region, covering only 3,262 km2. Almost the 50% of its territory has 

an elevation higher than 2,000 m. a.s.l., thus it can be considered as a mountain region with peaks reaching 

4,000 m. a.s.l. and main valleys above 300 m. a.s.l. (Figure 15).  

By the geological point of view VdA is part of the Western Alps, cutting through the main alpine structural 

domains: Austroalpine, Penninic and Helvetic (Dal Piaz et al., 2003). All the units show a metamorphic 

imprinting passing from eclogitic or blueschist facies to low grade metamorphism (Frey et al., 1999). 

Therefore, the geological context of VdA is characterized by a complex pile of metamorphic-tectonic nappes, 

consequence of an intense post collisional and neo-tectonic activity (Bistacchi et al., 2001). Thus, the tectonic 

and geo-structural characters influenced the evolution of the reliefs and the current slope dynamics 

(Martinotti et al., 2011). 

Glacial action is another main factor that control the past and current orography of VdA (Martinotti et al., 

2011). The main morphological traits of VdA are: i) a central valley, east-west oriented, in which the Dora 

Baltea River flows, and ii) several lateral/tributaries valleys north-south oriented. This configuration is a 

remnant of the Quaternary glacial modelling still influencing slope dynamics (Carraro et al., 2004). The glacial 

morphology has been progressively deepened by fluvial action that eroded glacial landforms, depositing 

alluvial fans at valley bottoms (Martinotti et al., 2011). 

VdA has a high population density only along the main valley whereas entire portions of the regional territory 

are partially or totally inhabited. The land cover is mainly composed of forests and grasslands, gradually 

replaced at high altitudes by exposed rocks, debris with sparse or no vegetation and glaciers. This 

environmental asset is strongly influenced by local climatic variations produced by high peaks that act as 

morphological barriers for humid air masses coming from the Mediterranean Sea or the Atlantic Ocean (Ratto 

et al., 2003). Thus, the morphology of VdA creates a wide spectrum of temperature and snow/rain 

precipitation regimes in which mountainous areas records abundant snowfalls and average rainfalls around 

1,000-1,100 mm/yr, whereas along the main valley the climate is drier with average precipitation around 600 

mm/yr (Ratto et al., 2003).  

In the VdA Region 2,052 landslides have been mapped in the framework of the Italian Landslide Inventory 

(IFFI) project, founded by the Italian Government and conducted by the Institute for Environmental 

Protection and Research (ISPRA) starting from 1999 (Trigila et al., 2010). The VdA database includes both 

landslide and DSGSD phenomena, covering 592 km2, and has been updated in 2015 (Figure 15). The density 

of slope movements is equal to 0.7 phenomena/km2 and the landslide index (ratio between area covered by 

landslides and the regional territory) amounts to the 18%. The 30% of landslides mapped are classified as 

rockfalls (including topples) mainly affecting metamorphic rocks (Giardino et al., 2007). Shallow landslides 

and mud/debris flows are quite frequent as well, composing the 24% of the landslides mapped. These 
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motions are related to intense rainfalls events that also locally induce flooding (Salvatici et al., 2018). Despite 

being only the 13% of the total known phenomena, DSGSD cover the 76% of the total area occupied by 

landslides, sometimes involving entire mountain flanks (e.g. Hône, Villeneuve, Quart and Breuil-Cervinia 

DSGSD).  

Considering its geomorphological and climatic context, VdA is characterized by mass movements related to 

periglacial landforms, such as rock glaciers, that are quite common in alpine environments (Haeberli et al., 

2006). Rock glaciers are defined as ice-rich or frozen debris steadily creeping along non-glacierized mountain 

slopes; they are commonly subdivided in active, inactive or relict, depending on their ice content (Haeberli 

et al., 2006). Active rock glaciers register a steady-state creep with deformation rates varying from cm/yr to 

several m/yr (Haeberli et al., 2006), whereas inactive and relict rock glaciers, because of the low or null ice 

content, do not almost move (Barsch, 1996). In VdA 937 rock glaciers are mapped, covering the 2% of its 

territory; 57% of them are classified as relict (Morra et al., 2011). Active rock glaciers are usually found above 

2,200 m. a.s.l. along north-exposed slopes whereas relict landforms are found at lower altitudes, but never 

below 1,600 m. a.s.l. (Cignetti et al., 2016). 

 

Figure 15 - Geographical localization and digital elevation model of the Valle d’Aosta Region. The landslide 

contours and the DSGSD are included in the IFFI catalogue of VdA. The map is overlaid on a Bing Aerial image. 
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5. Methodology  

In this chapter, it will be explained the methodological approach in order to retrieve the most representative 

moving areas in the Tuscany and Valle d’Aosta Regions. Furthermore, the target oriented processing 

approach for Saline di Volterra mining area it will be presented.  

5.1 Tuscany region: wide area mapping 

The goal of this methodology is to highlight the most relevant ground deformations in Tuscany Region by 

means of satellite interferometry and using simple GIS (Geographical Information System) tools, making an 

analysis from April 2017 to April 2018 subdivided into three periods. The workflow is conceived to be 

reproducible and fast to apply, providing a geodatabase that contains interferometric and qualitative 

parameters, concerning the hydrogeological phenomena. 

The methodology is subdivided into three main steps: 

(1) deformation map generation; 

(2) active moving areas extraction; 

(3) cluster classification and persistence analysis. 

5.1.1 Deformation maps generation 

To obtain the ground deformation map of Tuscany Region we used Sentinel-1A and Sentinel-1B images from 

October 2014 to April 2017, to create the first deformation map by means of SqueeSAR algorithm (Ferretti 

et al., 2011). After that, others two deformation maps were obtained, i.e. from October 2014 to October 

2017, and from October 2014 to April 2018, in order to update the results every six months and highlight the 

evolution of the hydrogeological phenomena of interest. For these three periods, a total of 130 Sentinel-1 

images have been used.    

The SqueeSAR algorithm represents the evolution of the Permanent Scatterer SAR Interferometry (PSInSAR) 

(Ferretti et al., 2001), that is aimed at identifying radiometrically stable reflectors called Permanent 

Scatterers (PS), exploiting the whole stack of SAR images. Every PS represents a pixel of a SAR image with 

high signal coherence, mainly corresponding to rock outcrops and man-made objects. The main drawback of 

this technique is the low density of PS that could be obtained in agricultural and peri-urban areas (< 10 PS/km² 

using C-band radar images), compared to the PS density in urban areas (> 100PS/km² using C-band radar 

images).  

 

The SqueeSAR algorithm was designed to overcome this limitation, defining a new type of PS points: the 

Distributed Scatterers (DS). A DS is a target corresponding to an area, where a certain number of 

neighbouring pixels share similar reflectivity values and moderate interferometric coherence. By combining 

and merging the signal of these pixels, it is possible to extract a point-like feature with high interferometric 

coherence. DS typically match with homogeneous areas such as deserts, debris areas or uncultivated area. 

SqueeSAR approach jointly process PS and DS considering their different statistical behaviour. This is possible 

thanks to a space adaptive filtering, DespecKS (Ferretti et al., 2011), that is able to statistically average 

homogeneous pixels (SHP) preserving the information of point-wise associated to point targets. The filter is 

based on Kolmogorov-Smirnov statistical test (Stephens 1970; Kvam et al., 2007). Basically, for every image-

pixel, this kind of statistical test is applied to all the pixels within a certain estimation window, centred on the 
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pixel under analysis to select SHP families (Ferretti et al., 2011).  After that, it is possible 1) to despeckl 

amplitude data; 2) to filter interferometric phase values; 3) to estimate coherence values properly.  

5.1.2 Active moving areas extraction 

Extracting deformation maps from Multi-temporal InSAR technique represents a good starting-point to 

highlight possible relevant zones affected by hydrogeological risk. In this case, we derived active moving areas 

using a simple hot-spot-like method in GIS environment, already followed by other authors (Meisina et al., 

2008; Barra et al., 2017), divided in two main steps: 

 Velocity filtering: PS and DS points were filtered with a velocity threshold of ±7,5 mm/year. This value 

is equal to three times the standard deviation of the velocity values of both datasets. This value has 

been chosen to extract just the most representative points for “fast” moving areas at regional scale.  

 Cluster extraction: the resulting filtered map was further analysed to derive the final moving areas. 

This product was obtained buffering PS/DS. We choose a buffer size of 100 meters and a cluster size 

with minimum three PS. We chose this buffer size and cluster size based on our knowledge, defining 

the common size of a landslide (Bianchini et al., 2012). Each cluster is characterized by a value of 

mean velocity, mean standard deviation and mean coherence of the time series of PS/DS points 

composing the clusters. 

5.1.3 Cluster classification and persistence analysis 

The classification of each cluster is based on radar interpretation, as firstly defined by Farina et al., (2007), 

introducing the PSI analysis cross-compared with ancillary data, such as geology, geomorphology, multi-

temporal ortophoto, regional technical maps. For every type of geohazard the following databases were 

used:  

 for lanslides (La) phenomena, the IFFI inventory improved with ERS 1/2 and Envisat interferometric 

data (Rosi et al., 2017); 

 for subsidence (Su) and uplift (Up) phenomena, the inventory published by Rosi et al., (2016); 

 for deformations due to geothermal activity (GA), the geothermal inventory of Tuscany Region; 

 for deformations due to mining activity (MA), the mining inventory of Tuscany Region. 

Furthermore, the three periods were analysed to highlight possible temporal and geometric persistence 

areas (TGPA) among clusters. A TGPA is defined when clusters of moving points, which are present in each 

period and acquisition geometry, overlap each other. TPGA represent the most enduring and representative 

ground deformations, thus they are useful to highlight the most relevant situation that have to be prioritized. 

5.2 Saline di Volterra detailed scale target oriented processing 

 In this case, a detailed scale processing approach developed in the CTTC research centre was used, in order 

to improve the point density and to catch properly the most representative deformation movements. It is 

based on the direct integration of the interferograms, in order to retrieve the deformation occurred in the 

mining area of Saline di Volterra. The workflow of the methodology is presented in Figure 16.  

5.2.1 Processing set up 

Data processing starts with the generation of the interferogram stack, following the classical differential 

interferometry approach (Rosen et al., 2000). Interferograms (ITFs) are generated starting from a stack of 
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127 coregistered Sentinel-1 images (both 1A and 1B). The images cover the period between September 2016 

and November 2018. ITFs are generated with the shorter temporal baseline possible, i.e. 6 or 12 days. A 30 

m Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model is used to remove the topographic 

contribution from the interferograms. The precise orbits provided by the European Space Agency are used 

as well. 

Phase splitting is performed on the stack of wrapped ITFs to extract the low (LF) and high (HF) frequency 

components. A spatial filter is applied to every ITF to do so. A Butterworth filter is used in this work, in the 

form: 

𝐺(Ω) =
1

√1 + (
Ω

Ω𝐶
)

2𝑁

     (1) 

where G is the gain, Ω is the frequency, ΩC is the cut-off frequency and N is the order. The spatial filtering 

generates the LF interferograms, whose residuals represent the HF component. The LF component is 

assumed to be almost completely formed by the atmospheric contribution (Gomba et al., 2015) although 

some fast movements with high spatial correlation can still be present. The HF component contains the slow 

movements (few mm/yr to several cm/yr), the fast local movements (below 2 mm/day) and the residual 

topographic errors (Crosetto et al 2011). The analysis of LF and HF ITFs is performed by following two parallel 

paths (Figure 4). 

The HF path is composed of three steps: i) pixel selection, ii) phase unwrapping and iii) direct integration. 

Pixel selection is based on a novel approach called “triplets closure”. As the name suggests, the method is 

based on triplets of radar images (i, j and k) and interferograms generated with different temporal baselines, 

in this case 6 and 12 days (ΔΦi-j, ΔΦj-k, ΔΦi-k). Assuming that the sum of the short baseline ITFs (ΔΦi-j + ΔΦj-k) 

equalizes ΔΦi-k, the error (ε) is: 

𝜀𝑖−𝑗 + 𝜀𝑗−𝑘 = 𝜀𝑖−𝑘    (2) 

in case of low noise ITFS, ε is close to zero. The error increases along to the level of noise. The standard 

deviation of ε calculated with (2) over the whole interferograms stack for each pixel is used to select the 

points reliable enough to unwrap the phase. The pixels with standard deviation values below the threshold 

are selected as phase unwrapping candidates. Phase unwrapping is performed by means of the Minimum 

Cost Flow method (Costantini et al., 1999). Finally, a point-wise direct integration of the unwrapped 

interferograms is performed. The direct integration is expressed in the form: 

𝑛 = 0 ÷ 𝑁 {
Φ𝑛 = Φ𝑛−1 + ΔΦ(𝑛−1)𝑛

Φ0 = 0
   (3) 

where Φn is the accumulated phase at the acquisition time n, Φn-1 is the accumulated phase at the acquisition 

time n-1 and Φ(n-1)n is the unwrapped interferometric phase of the interferogram calculated using the images 

acquired at the times n-1 and n. The first image is set to zero (Φ0). The output of the direct integration is, for 

each point, the temporal evolution of the phase with respect the first acquisition. The phase is converted in 

displacement by following: 

𝐷𝑖𝑠𝑝𝑛 =
Φ𝑛

4𝜋
𝜆   (4) 
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where Dispn is the accumulated displacement of the point at the acquisition time n, Φn is the accumulated 

phase at the acquisition time n (in radians) and 𝜆 is the wavelength of the satellite. Each point is then 

characterized by n values of displacement, forming the time series, and by a value of velocity calculated over 

the reference period. 

The LF path is composed by three steps: i) network generation, ii) pixel selection, iii) 2+1D phase unwrapping. 

The LF analysis begins with the set of short baseline LF ITFs which were previously generated. In order to 

increase the redundancy of the network, the LF ITFs are crossed to derive synthetic ITFs with longer temporal 

baselines. The measurement point candidates are then selected by applying the triplets closure concept (2) 

to the newest LF network of interferograms. The 2+1D unwrapping method is finally applied to derive the 

time series of deformation (Devanthéry et al., 2014). Through this method is possible to check the 

consistency of the spatial unwrapping in time, thanks to the redundant ITFs network, and on a pixel-wise 

basis, i.e. on the points selected with the triplets closure method. 

The final products of the two parallel processing paths are time series and deformation maps for the low and 

high frequency components. The two products are then combined again in order to annul the accumulation 

of errors related to the LF-HF splitting. This error accumulation results in residual trends, with opposite sign 

between the LF and HF results. Finally, a classical atmospheric phase filtering is applied to remove the 

remaining low frequency signal not due to the ground deformation. The final deformation map is then 

georeferenced in a geographic reference system. 

 

Figure 16 – Workflow of the processing approach. ITFs, interferograms; HF, high frequency; LF, low frequency. 
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5.3 Valle D’Aosta Region wide area mapping 

The concept of the methodology is to extract moving areas from large interferometric datasets that are 

subsequently radar-interpreted by using simple GIS (Geographical Information System) tools (Farina et al., 

2007). The final output is a geo-database containing multiple information, regarding both magnitude of 

ground motion and type of process that generated it. In addition, a qualitative parameter for the evaluation 

of the “interferometric reliability” of each moving area is derived. 

Following this concept, the methodology is subdivided into four main phases: 

1) pre-processing analyses: 

2) deformation map generation; 

3) active moving areas extraction; 

4) radar-interpretation and geo-database compilation. 

5.3.1 Pre-processing analyses 

Because of its climate, morphology and land cover, VdA is a challenging environment for interferometric 

analyses. Considering this facet, we performed a pre-processing analysis of the possible topographical and 

land cover effects on the spatial distribution of PS/DS points. For this aim we exploited the methodology 

presented by Notti et al. 2014, that allows deriving the Corrected R Index (CRI), a combination between the 

effects of topography (R Index - RI) and land cover (Land Cover Index - LUI) on PS points detection.  

The RI depends on the terrain morphology (slope and aspect) and on the radar geometry (incidence and 

azimuth angles). It varies between 0 and 100, where 0 means that layover, foreshortening or shadowing 

effects limit the detection of radar targets; on the other hand, 100 defines an area where the topography is 

“radar friendly”, thus guaranteeing the recognition of PS points. Usually, a value of RI higher than 50 ensures 

that the topography not much affects the obtainable results; in this case the land cover acts as main factor 

for radar targets detection (Notti et al., 2014; Bianchini et al., 2013). In this work, we used a 10 m resolution 

Digital Elevation Model for deriving slope and aspect maps of the VdA.  

The definition of the LUI is not related to a fixed rule, but to an empirical classification of land cover that 

varies depending on the land use, on the sensor band, as well as on the PSI processing. The LUI ranges 

between 0 and 100, where 0 means that a surface with extremely low probability of producing radar targets 

whereas the value 100 identifies a surface with a very high probability of hosting PS points. Table 2 presents 

the values of LUI selected for the VdA Region, considering the acquisition band and the type of processing (C 

band/SqueeSAR algorithm). In fact, for a SqueeSAR approach the values of LUI can be slightly increased, 

especially in grasslands and cultivated areas. Table 2 has been used to reclassify the Corine Land Cover (CLC) 

of the VdA produced, at the 1:100,000 nominal scale, for the whole Italian territory in 2012 (Corine Land 

Cover of Italy (2012) available online).   

The final CRI is obtained as a weighted average of RI and LUI. In case of RI values higher than 50 only the LUI 

is considered (Notti et al., 2014). If just one of the two input layers is equal to 0, the CRI will be null. The input 

data and the output map are simply derived in a GIS system by means of standard tools, common for the 

most used GIS environments. 
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CLC class Description LUI value 

111 Continuous urban fabric 100 

112 Discontinuous urban fabric 90 

121 Industrial or commercial units 100 

122 Road and rail networks and associated land 100 

124 Airports 100 

131 Mineral extraction sites 80 

142 Sport and leisure facilities 60 

221 Vineyards 40 

222 Fruit trees and berry plantations 30 

231 Pastures 40 

242 Complex cultivation patterns 40 

243 
Land principally occupied by agriculture, with 

significant areas of natural vegetation 
40 

311 Broad-leaved forest 10 

312 Coniferous forest 10 

313 Mixed forest 10 

321 Natural grasslands 50 

322 Moors and heathland 40 

324 Transitional woodland-shrub 50 

332 Bare rocks 80 

333 Sparsely vegetated areas 70 

335 Glaciers and perpetual snow 0 

511 Water courses 0 

512 Water bodies 0 

 

 Table 2 - LUI values for the different classes of the third level CLC of the VdA Region. 
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5.3.2 Deformation map generation and moving areas mapping 

The ground deformation map for the whole VdA Region is derived by analyzing large stacks of C-band 

Sentinel-1 images, composed by 130 images reaching the end of February 2018, starting from October 2014 

for the ascending orbit and from November 2014 for the descending orbit. They are been processed by means 

of the SqueeSAR algorithm, the same used for the Tuscany region site, obtaining one deformation map for 

each geometry.   

Firstly, the deformation map is filtered to extract the PS points in both orbits that records the highest 

deformation rates above the region. A stability threshold equal to 10 mm/yr is set to this aim. This quite high 

value, equal to 4 times the standard deviation of the datasets, has been chosen for detecting only the highest 

deformation rates that commonly characterize unstable rock debris on the steep slopes of VdA. The value is 

near the threshold of 16 mm/yr used for distinguishing very slow and slow landslides, as defined by Cruden 

and Varnes, 1996. Moreover, this value has been chosen jointly with the regional authorities, considering 

their specific requirements. Considering this, we will not map DSGSD-related deformation that involve large 

slope sectors with deformation rates frequently lower than 10 mm/yr (Crosta et al., 2013). Activations of 

portions of DSGSD systems are anyway a priori not excluded. 

Secondly, the filtered deformation maps are further analyzed to extract significant deformation clusters and 

remove isolated, non-representative, points. This is done by buffering the PS points of the filtered 

deformation maps and then automatically join adjacent PS in a GIS environment. We choose, as for the 

Tuscany region, a buffer size of 100 m and a minimum cluster size of 3 PS points for obtaining the final moving 

areas (Bianchini et al., 2012).  

Finally, for each moving area an index of the “interferometric reliability” of the measured deformation is 

derived. This index is based on two parameters: i) mean coherence of the time series of the PS points 

composing the cluster and ii) percentage of the real ground motion vector that can be registered considering 

the Line Of Sight (LOS) of the sensor (coefficient C). Coherence is used as a proxy for the noise of the time 

series, considering the parameter as the deviation between the linear model used to calculate the velocity 

and the real time series. This parameter gives hints on the presence of possible non-linear deformation 

affecting the PS point. Coefficient C is calculated starting from a relationship between slope, aspect and 

direction cosine of the LOS, as defined by Notti et al., 2014. This parameter is a powerful index for evaluating 

the magnitude of the real displacement vector that can be seen along the LOS of the sensor. Coefficient C 

ranges between -1 and 1; values close to zero means that the ground motion cannot be correctly estimated 

or that can be highly underestimated. For combing these two parameters we defined a contingency matrix, 

shown in Figure 17. The result of the matrix is a code that express the level of interferometric reliability 

depending on the quality of the time series (coherence) and on the topography effect (coefficient C). 

The final moving areas are delivered in shapefile format, one for each orbit, containing the value of mean 

velocity, mean coherence, mean standard deviation and interferometric reliability of each one of them. 
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Figure 17 - Contingency matrix for the calculation of the interferometric reliability of each moving area. Values ranges 

between A (high reliability) to D (not reliable).  

 

5.3.3 Radar-interpretation and geo-database creation 

To provide a complete database of ground motions, functional for Civil Protection practices, the moving areas 

have to be radar interpreted (Farina et al., 2007) and included into a specifically designed geodatabase. 

In addition to the interferometric data, the geodatabase contains information regarding: 

 geographical localization of the moving area, i.e. municipality, local toponym, nearest road 

name; 

 morphological context, i.e. mean altitude and slope; 

 intersection between moving areas and VdA landslide inventory (i.e., 2015 IFFI catalogue). If 

a moving area contains or is contained into an already mapped landslide specific information 

regarding the phenomenon will be added to the geodatabase (type of movement, 

identification code, year of occurrence and so on); 

 intersection between moving areas and VdA catalogue of rock glaciers. These data could be 

useful to identify the high-altitude instabilities of permafrost-rich rock masses. The catalogue 

is available online and contains information about the location of glaciers and rock glaciers 

and their state of activity (Valle d’Aosta Region Glaciers and Rock Glaciers Catalogue, 2018). 
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6. Results 

In this chapter the results obtained by following the previous methodologies will be explained for all of the 

test areas.  

6.1 Tuscany Region 

The first step of the methodology is devoted to the generation of three deformation maps performing a 

SqueeSAR analysis of Sentinel-1 images. Figure 18a and Figure 18b show the deformation maps regarding 

the first period (October 2014 - April 2017), representing the starting point for the multi-temporal 

comparison of deformation clusters. These maps offer a great wealth of information of ground velocity 

distribution and they can be used to spot unstable area at regional scale. It is possible to observe two main 

areas in red (representing points with negative velocities, i.e. movements away from the sensor), the first 

one located in northern Tuscany and the biggest one in the south-western part. These areas are well-known 

in scientific environment, both referred to subsidence phenomena: the first one along the Firenze-Prato-

Pistoia basin (Colombo et al., 2003; Del Soldato et al., 2018b) and the second one in the Larderello-Travale 

area where geothermal activities take place (Batini et al., 2003), producing relevant subsidence effects 

(Manzella et al., 2018). In the same way, it is possible observing PS/DS points probably attributable to 

landslides phenomena, both in the Apennine area and in the southern part of the Tuscany Region.  

Table 3 shows the information about PS data of the three analysed periods. The deformation maps were 

obtained starting from a minimum of 68/70 radar images for the first period (October 2014 – April 2017) to 

a maximum of 126/130 images for the last period (October 2014 – April 2018). The number of PS/DS 

extracted is between 855.000 and 863.000, with a mean density of 33 points/km². This latter parameter turns 

out to be maximum in urban areas, while minimum or equal to zero in cultivated areas and forested Apennine 

areas.  

 

Figure 18 - Deformation map in ascending geometry (a) and descending geometry (b) from October 2014 to April 2017 

using SqueeSAR algorithm. 1): Firenze-Prato-Pistoia basin; 2): Larderello-Travale area. 
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Table 3. Statistics of deformation maps. 1° period: October 2014 to April 2017, 2° period: October 2014 to October 2017, 

3° period: October 2014 to April 2018. 

 

6.1.1 Active moving areas extraction 

Once that the deformation maps are obtained, it is possible to extract the active moving areas as described 

in the Chapter 5.1.2. After the velocity filtering equal to ± 7,5 mm/yr, the PS/DS number is decreased by 99% 

in all the acquisition periods and geometries. In Table 4, the statistics about clusters extraction are 

summarised. “PS/DS” column indicates the number of remaining points after velocity filtering; this number 

decrease from the first to the third period, with a maximum of 5.818 points in the first one, and a minimum 

of 4.328 points in the third one. This is due to a reduction of the general noise level of the datasets connected 

to the increase of the number of radar images analysed that grants an improvement of the accuracy of the 

results and of the velocity estimation. Consequently, the number of single points, that could represent false 

positive, is reduced. In the same way, clusters extracted from the deformation maps decrease from the first 

to third period as well, with a minimum of 86 in the 3° period, to a maximum of 127 in the 1° period. The 

percentage of clusters overlapping in different periods is equal to 50% in ascending geometry and 62% in 

descending orbit.  

 

Period Geometry PS/DS Clusters 
Overlapping 

percentage 

1° Asc 5.818 127 

50% 2° Asc 5.490 94 

3° Asc 4.328 86 

1° Desc 5.694 120 

62% 2° Desc 5.113 123 

3° Desc 4.845 102 

  

Table 4 - Statistics for filtered deformation maps. 1° period: October 2014 to April 2016, 2° period: October 2014 to 

October 2017, 3° period: October 2014 to April 2018. 

 

Period 
Geometr

y 
Images PS/DS 

Velocity (mm/yr) Mean 

Coheren

ce 
min mean max 

1° Asc 70 858.000 -63 0.9 26 0.89 

1° Desc 68 855.000 -104 0.87 43 0.91 

2° Asc 99 863.000 -77 0.95 22 0.9 

2° Desc 96 861.000 -43 0.92 43 0.9 

3° Asc 130 860.000 -65 1.2 21 0.9 

3° Desc 126 859.000 -39 1.1 34 0.88 
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6.1.2 Clusters classification  

Following the last step of the methodology, the deformation clusters are classified on the basis of their 

triggering factor. Figure 19 shows the classification and position of the clusters and TGPA. The clusters due 

to landslides are located especially in the mountain areas (88%) along the Apennine chain and near Mt. 

Amiata. The landslide cluster with the highest PS/DS density is located in the mucipality of Cavriglia (Arezzo 

province), with a maximum of PS/DS points of 210 in the second period and a minimum of 90 in the third 

period, in an area of 1.6 km2. The maximum LOS velocity recorded is equals to 24 mm/yr. The 100% of the 

clusters due to geothermal activity are located in Larderello-Travale area, the most ancient exploited 

geothermal field in the world (Batini et al., 2003). The clusters due to subsidence phenomena are mainly 

found in the Pisa and Livorno provinces, with a percentage equals to the 60% of the total. They are mainly 

located in agricultural areas, likely due to the exploitation of groundwater, and in harbour areas, related to 

sediment compaction. In this zone, the main group of clusters, with an area of 9 km2, affect the structures of 

the Livorno freight terminal, started to be built in 2000, and composed by heavy facilities, such as warehouses 

and commercial areas. The subsidence probably depends on the consolidation process of compressible soils 

induced by the construction of heavy buildings. LOS velocities reach the maximum rate of 40 mm/yr. Another 

interesting and relevant group of subsidence clusters is situated along Firenze-Prato-Pistoia basin. This group 

is composed of five clusters covering a total area of 44 km2 during the first period. The number of PS/DS 

points forming the clusters decrease along the time, therefore also their areal distribution decreases, 

reaching 39 km2 in the third monitored period (October 2014 – April 2018). LOS velocities recorded a little 

variation of few mm/yr, with maximum subsidence rates decreasing from 21 mm/yr to 18 mm/yr.  

Figure 20 shows the temporal evolution of moving areas over Tuscany Region and their classification. The 

results indicate a homogeneous percentage among geohazard, with the landslides as the most occurring 

phenomenon, followed by the subsidence and the geothermal activity. On the other hand, the most common 

triggering cause for TPGA is subsidence (47%), followed by landslides (21%) and geothermal activity (14%). 

The percentage of landslides is reduced by more than a half considering the first and the last monitoring 

period, whereas the percentage of subsidence-related clusters is doubled. This is due to three principal 

factors: i) in general, the subsidence has a deformation velocity more linear and regular than a movement 

caused by a landslide, and with a lower spatial and temporal variability; ii) subsidence phenomena are located 

in flat areas, which are not subjected to typical radar distortions, such as foreshortening, layover and 

shadowing. Sometimes from a slope, on the basis of its aspect, it can be easier extract data in ascending 

geometry, rather than in descending geometry and vice versa, with differences in terms of PS/DS density and 

velocity; iii) landslide phenomena are connected with rainfall, therefore during periods with low rainfall rates, 

the landslide velocity could fall below the used threshold. 
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Figure 19 - Cluster classification and TGPA maps. a): 1° period (October 2014 – April 2017); b): 2° period (October 2014 

– October 2017); c): 3° period (October 2014 – April 2018); d): Temporal and Geometric Persistent Areas. GA: 

Geothermal Activity; La: Landslide; Su: Subsidence; MA: Mining Activity; Up: Uplift. 1): Firenze-Prato-Pistoia basin; 2) 

Cavriglia’s landslide; 3): Livorno freight terminal; 4): Larderello-Travale area. 
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Figure 20 - Classification statistics of the clusters in TR during the 1° period (October 2014 – April 2017), 2° period 

(October 2014 – October 2017), 3° period (October 2014 – April 2018) and Temporally and Geometric Persistent Areas. 

GA: Geothermal Activity; La: Landslide; Su: Subsidence; MA: Mining Activity; Up: Uplift.  

 

Figure 21 presents an example of TGPA, related to subsidence due to water overexploitation, located in the 

plain between the cities of Prato and Pistoia, in the central portion of the Firenze-Prato-Pistoia basin. The 

Firenze-Prato-Pistoia basin has an extension of approximately 824 km2 and a mean elevation of ca. 50 m 

a.s.l. The plain is crossed by the Ombrone creek in the Pistoia area, the Bisenzio River in the Prato province 

and the Arno River in the Florence area. The plain has an oblong shape in the NW–SE direction and is 

approximately 35 km wide and 100 km long (Del Soldato et al., 2018b). By geological point of view, this plain 

is an intermountain valley formed during the late extensional phase of the formation of the northern 

Apennines and later filled with alluvial deposits, reaching a thickness of hundreds of metres. The shape is 

defined by normal faults in the NO flank, forming a semi-graben filled by an important thickness of marshy-

lacustrine sediments (Capecchi et al., 1975). The hydrogeological setting of the area is characterised by 

several confined aquifers situated at different depth, composed by clay lenses where water is extracted. Such 

aquifers supply the municipal aqueducts, the textile industries as well as trees and flowers nurseries that 

characterize the importance of this area. They were overexploited for more than thirty years, creating large 

subsidence bowl already detected by means of ERS 1/2 and Envisat interferometric products (Colombo et al., 

2003; Del Soldato et al., 2018b). The TGPA (12 km²) is composed by an average of 1756 PS/DS in the first 

period, 1730 for the second one, 1717 for the last one. The velocity analysis shows that the mean velocity is 

equal to 10.4mm/yr and the maximum 19,3 mm/yr; for the second one the mean velocity is 10.1 mm/yr and 

the maximum 21 mm/yr; for the last one a mean velocity of 9,9 mm/yr and the maximum of 17,2 mm/yr. 

The time series of deformation show a linear and constant motion in the whole investigated period, the series 

shown in Figure 21 is an example.  

Figure 22 shows an example of TGPA related to a landslide motion taken from the municipality of Abbadia 

San Salvatore located in the Siena province along the eastern flank of the Amiata Mountain (1780 a.s.l.), a 
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Middle-Late Pleistocene volcano. By a geological point of view, Amiata Mountain is characterized by a 

superimposition of different tectono-stratigraphic units, through the action of low-angle normal faults of 

different ages. The geological setting is subdivided from the bottom to the top: the Tuscan Nappe succession 

(Late Triassic), the Ligurian Complex (Middle Jurassic – Olocene), the sediments of Radicofani basin (Early-

Middle Pliocene), the magmatic complex (300 ka) Calamai et al. (1970); Gianelli et al. (1988); Brogi (2007). 

According to the study of Coltorti et al. (2009), Abbadia San Salvatore and the eastern flank of the Volcano 

are characterized by a deep-seated gravitational slope deformation (DSGSD), subdivided in a deeper part 

with an activity difficult to verify and an active shallower part. The TGPA (500 m²), located in the northern 

part of the municipality, is composed by 99 PS/DS in the first period, whit a maximum velocity of 24 mm/yr 

and a mean velocity of 14 mm/yr. The second period has a total of 79 PS/DS with a maximum velocity 19 

mm/yr and a mean velocity of 12.1 mm/yr. The last one has 67 PS/DS, with a maximum velocity of 18 mm/yr 

and a mean velocity of 11.7 mm/yr. The motion is linear through the whole monitored period in both orbits, 

as testified by the time series shown Figure 22. 
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Figure 21 - Example of TGPA in Pistoia - Prato - Firenze basin affected by subsidence phenomena. The PS/DS data 

correspond to the period from October 2014 to April 2018. The black, blue, green and red circles indicate the PS points 

from which time series were extracted. 
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Figure 22 - Example of TGPA Abbadia San Salvatore (SI) affected by landslides phenomena. The PS/DS data correspond 

to the period from October 2014 to April 2018. The black and the red circles indicate the PS points from which time 

series were extracted. 

 

6.1.3 Update of the landslide’s state of activity 

The cluster database can be a reliable tool for the checking landslide’s State of Activity (SoA). In Figure 23a 

the municipalities map is shown, classified on the basis of the Landslides Activity Index (LAI), which is the 

ratio between the number of active landslides and the total number of landslides, in order to highlight the 

municipalities with the higher critical level. Figure 23b shows the municipalities where the landslide’s state 

of activity is changed, and where new landslides are found thanks to the analysis of Sentinel-1 data. In 50 

municipalities at least one landslide changed its SoA with respect to the IFFI database (already updated by 
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means of ERS 1/2 and Envisat data), (Rosi et al., 2017) and 12 of these register the presence of potential “new 

detected” landslides. A total of 197 landslides have been updated from “dormant” to “stable”. 

 

Figure 23 - a): shows the municipalities classified based on Landslide Activity Index. b): shows in red the municipalities 

where the landslides changed their state of activity in “active” and, in green, if there are also new landslides in 

municipalities’ territories. 

 

6.2 Saline di Volterra  

 

As previously said in chapter 4.2, subsidence is one of the main environmental impacts of the mining activity 

in Saline di Volterra. Sinkholes are the clearest evidence of this process. So, in order to better understand the 

evolution of these phenomena an aerial orthophotos are exploited to create a multi-temporal inventory of 

sinkholes occurrence for the two target areas. Digital orthophotos were made available through the web 

map service of the Tuscany Region (http://www502.regione.toscana.it/geoscopio/servizi/wms/OFC.htm). 

Sinkholes were manually mapped using a database of 9 orthophotos acquired in different years, i.e. ranging 

between 1954 to 2018 (Table 5). 

 

 

 

 

 

a b

http://www502.regione.toscana.it/geoscopio/servizi/wms/OFC.htm
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Year Nominal scale Image acquisition Data owner 

1954 1:10’000 Italian Aeronautical Group (GAI) Italian Geographic Military Institute (IGM) 

1978 1:10’000 Rossi Brescia Aerophotogrammetry Tuscany Region 

1988 1:10’000 CGR Parma Tuscany Region 

1999 1:10’000 CGR Parma Agricultural Payments Agency (AGEA) 

2003 1:10’000 CGR Parma Agricultural Payments Agency (AGEA) 

2007 1:10’000 BLOM-C.G.R. BLOM-C.G.R. 

2010 1:10’000 Rossi Brescia Aerophotogrammetry Agricultural Payments Agency (AGEA) 

2013 1:10’000 BLOM-C.G.R. Agricultural Payments Agency (AGEA) 

2018 1:5’000 BLOM-C.G.R. Agricultural Payments Agency (AGEA) 

 

Table 5 – Digital orthophotos used to create the multi-temporal sinkhole database. 

 

Figure 24 presents the results of the orthophoto analysis for the mining concessions of Buriano-Casanova 

(Figure 24A) and Poppiano-Volterra (Figure 24B). It is worth noting that the definition of the sinkhole 

contours can be affected by the quality of the oldest images and by the not perfect alignment of some of the 

WMS services used. This is acceptable since the contours are only used to testify the surface effects of the 

mining activity.  

The total number of mapped sinkholes is 105, with a maximum of 22 and 19 phenomena for the periods 

1954-1978 and 1978-1988, respectively. The age of the sinkholes is clearly connected to the activity of the 

salt dissolution wells. Buriano-Casanova was the first oldest area where the mining activity took place; thus, 

it is the area where the oldest sinkholes are recorded. On the contrary, Poppiano-Volterra is the newest most 

recent concession to be exploited for salt extraction. As said before, salt dissolution mining began in 1910 

and, until 1978, it was mainly localized in the south-western sector of the Buriano concession. Then, the 

mining activity expanded to the north, involving the Casanova concession as well. In Poppiano-Volterra a 

small sector of the Volterra concession was active already before 1978. The expansion of the mining activity 

to the Poppiano concession took place at the beginning of the 2000s. The oldest sector seems to be nowadays 

inactive, as testified by the migration of the sinkhole occurrence in the two areas of interest.  

The raise and decrease of the number of sinkholes for comparable time periods, e.g. 1978-1988 and 1988-

1999 or 2007-2010 and 2010-2013, is probably related to different rates of extraction. Of course, the 

development of sinkholes is not instantaneous and there can be a lag time of years between their formation 

and the mining exploration of a salt level in a certain area. Moreover, considering the fact that not the entire 

water pumped underground is extracted, the dissolution of the underground holes and chambers can 

continue for years (Warren, 2016). 
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Figure 24 – Sinkholes catalogue for the mining concessions of Buriano-Casanova (A) and Poppiano-Volterra (B). The 

background image is an AGEA 2018 orthophoto (Table 5). The distribution of boreholes for temporal periods is 

presented in inset C. Sinkholes with contour variations are counted as their first appearance. 
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The obtained deformation map is presented in Figure 25. A total of ~24’0000 points cover the mining area of 

Saline di Volterra with an average density of ~800 MP/km2. This high density is due to the fact that the 

thresholding applied during the InSAR processing was maintained low enough to maximize the MP coverage, 

but guaranteeing the reliability of the results within the two target areas, where the sinkholes are present 

and where the highest deformation rates are likely to be found. The coherence threshold was 0.35. This 

implies to have a noisier deformation map outside of the high displacement areas. This is acceptable since 

the targets of this paper are exactly these “fast” moving pixels.  

The deformation map is classified on the basis of the average velocity values, expressed in mm/yr. A stability 

threshold of ±20 mm/yr was defined to highlight the subsidence bowls within the two mining areas. This 

threshold is defined depending on the standard deviation of the velocities, here equal to 2.5 times such value. 

A classical red-green-blue scale bar is used to classify the deformation map; yellow to dark red points refer 

to movements away from the sensor with negative sign, light blue points refer to movements through the 

sensor whereas green points fall within the stability threshold. All the measurements are referred to the Line 

of Sight (LOS) and are differential values, i.e. referred to a reference point assumed as stable. The reference 

point was selected in the urban area of Volterra in correspondence of the main road crossing the hamlet, 

where the oldest edifices are built. To the knowledge of the authors, the area is stable as confirmed also by 

other interferometric data available for the whole Tuscany Region 

(https://geoportale.lamma.rete.toscana.it/difesa_suolo/#/viewer/openlayers/326 and Raspini et al., 2018).  

The deformation map clearly highlights the presence of several subsidence bowls within the contours of the 

two areas of interest that are part of the mining concessions around Saline di Volterra. Some of the bowl 

reach in their central portion LOS velocities higher than -200 mm/yr. The characterization of the two mining 

areas, Buriano-Casanova and Poppiano-Volterra, is presented in the following chapters. It is worth noting 

that there are some other moving areas outside the mining areas potentially linked to the motion of complex 

landslides and small earthflows, which characterize the clayey slopes around Volterra (Bianchini et al., 2017).  

https://geoportale.lamma.rete.toscana.it/difesa_suolo/#/viewer/openlayers/326
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Figure 25 - Sentinel-1-derived deformation map for the area of interest. The black dot is the reference point, located in 

the stable area of the Saline di Volterra city. The white contours are the two target areas. The two black square represent 

the two areas with the highest deformation rates (1, Buriano-Casanova, part of the Buriano deformation area; 2, 

Poppiano-Volterra, part of the Poppiano deformation area) which are the focus of the next two chapters.  

 

6.2.1 Buriano-Casanova mining area 

The north-western portion of the Buriano-Casanova mining area presents at least five well-defined 

subsidence bowls with LOS velocities higher than 80 mm/yr. Among these, the bowl A and B (Figure 26) are 

the ones with the highest deformation rates, up to -250 and -230 mm/yr, respectively. This implies that the 

two subsidence bowls reach in their central portion an accumulated displacement higher than 500 mm in a 

period a little longer than two years.  

The subsidence bowls are located in the most recent mining expansion of this area, at the border between 

the Buriano and Casanova concessions, where some of the most recent sinkholes are found (Figure 24). Bowls 

A and B occupy a surface of ~0.04 km2 and ~0.03 km2, respectively. In the first case, the orthophotographic 

analysis did not highlight the presence of any formed sinkholes, whereas in the area of bowl B a sinkhole is 

evident from the 2013’ orthophoto and it is expanding in the last years (see Figure 26b).  

Figure 26c shows the time series of deformation for the bowl A. The time series extracted from the center of 

the bowl (point 1) has a purely linear trend with minor oscillations of the displacement values. The 

deformation rate for point 1 is equal to -210 mm/yr. Point 2 is located in the southern border of the 

subsidence bowl and it is characterized by a lower deformation rate (-122 mm/yr), as expected moving away 

from the center of the subsidence area. The time series is again linear with a minor acceleration event 

between May and July 2018 (point 2). During this period, the velocity change is ~150 mm/yr. This behavior is 

shared by several points in the same sector of the bowl. The northern portion of the bowl presents the lowest 

velocities, up to 40 mm/yr and linear trends with no significant accelerations (point 3). 
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Figure 26d presents the time series of deformation for the bowl B. The time series analysis are focused on 

the points around the mapped sinkholes. Points 4 and 5 are extracted from the southern and northern border 

of the sinkhole, respectively. The time series referred to point 4 shows a linear trend with a strong 

acceleration between August and November 2017, with LOS velocities passing from ~-200 mm/yr to ~-420 

mm/yr. Such acceleration is not evident in the time series of point 5 whose deformation rate (-137 mm/yr) 

is constant over time with minor order oscillations. It is interesting to notice that moving away from the 

sinkhole the time series tend to stabilize in the last 6 months (point 6 is an example of this trend). 

 

 

Figure 26 – Deformation map for the high deformation area of Buriano-Casanova. A and B are the two subsidence bowls 

with the highest deformation rates: the first with no signs of sinkhole development, the second with a well-developed 

sinkhole expanding over time Numbers 1 to 6 indicate areas where the time series of insets (c) and (d) have been 

extracted.  
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6.2.2 Poppiano-Volterra mining area 

The central portion of the Poppiano-Volterra area presents a distribution of the measurement points within 

the subsidence bowls slightly different than the previous example. In fact, only the external border of the 

moving areas is well-defined. In fact, the loss of coherence is so strong that a large part of what it is supposed 

to be the main subsidence area is not covered by any measurement point, even considering the specific data 

processing applied. The loss of coherence can have a triple interpretation: i) land cover characteristics; ii) 

high surface changes between the images of the stack and iii) presence of fast motions that create 

decorrelation. It is worth noting that the land cover is basically the same as the Buriano-Casanova mining 

concession and the surface changes induced by salt dissolution mining are not big as in the case of e.g. open 

pit mining. Considering this, the hypothesis of the presence of fast deformation rates exceeding the ~2 

mm/day unwrapping threshold seems the most reasonable. 

Due to the lack of measurement points, the subsidence bowls are less defined as it is for the Buriano-

Casanova area. One clear bowl can be identified in the area of point 1 (Figure 27a). The low point density 

prevents further visual interpretation of the deformation map. In general terms, LOS velocities greatly 

increase forward the low coherence areas, passing from less than ±10 mm/yr to more than 100 mm/yr, in 

some cases exceeding -220 mm/yr.  

The time series of deformation extracted for the points with the highest deformation rates along the internal 

border of the high deformation areas are presented in Figure 27b (points 1,2,4,5 and 6). All these time series 

highlight an acceleration with different magnitudes in the last months of the monitored period. The breaking 

point is located between June and August 2018.  

Point 1 is the one showing the most evident acceleration. Although having already an accumulated 

deformation of 250 mm in less than 2 years (LOS velocity of -152 mm/yr), this point triplicated its deformation 

trend after the beginning of June 2018. In the second part of the time series the accumulated deformation is 

equal to 220 mm in a ~6 months period (the estimated LOS velocity is equal to ~450 mm/yr). Such 

acceleration is not as evident in the other time series, but the velocity change is still relevant, ranging 

between 120 and 180 mm/yr. The behavior of the time series in the last six months supports the previous 

hypothesis, i.e. the presence of very high deformation rates where measurement points could not be 

obtained. 
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Figure 27 – (a) Deformation map for the mining area of Poppiano-Volterra. Numbers 1 to 6 indicate areas where the 

time series of inset (b) have been extracted. The background image of inset (a) is an ESRI World Image. 

 

6.2.3 Sinkhole-scale analysis of the deformation map 

An additional analysis is performed at sinkhole scale. The deformation map is filtered by using the polygons 

of the 105 sinkholes mapped in the areas of Buriano-Casanova and Poppiano-Volterra. A 10 m buff is created 

around each polygon to define an area of influence. The average, maximum, minimum and standard 

deviation values of the LOS velocities of the measurement points within each sinkhole are extracted. This 

information is available for more than half of the sinkholes, 58 in the Buriano-Casanova area and 9 in the 

Poppiano-Volterra concession. For the remaining sinkholes no measurement points are available.  

The analysis of the velocity values allows discovering that sixty percent of the sinkholes (including the areas 

of influence) present average velocities within the ±10 mm/yr interval. Twenty-eight percent of the sinkholes 

have average deformation rates lower than -20 mm/yr. Only 10% of the sinkholes show average velocities 

faster than -40 mm/yr; 3 of them exceed -80 mm/yr.  

In order to assist the interpretation of the results, the pure evaluation of the average velocity values is 

associated to the information regarding the age of formation of the sinkholes. The results are presented in 

Figure 28. The box plot is showing the median, minimum and maximum values of the LOS velocities of all the 
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measurement points included in the sinkholes of each temporal interval. The graph shows an evident 

increase of the deformation rates for the most recent sinkholes. The oldest temporal intervals (before 1988) 

show very similar velocity distributions, with median values around -10 mm/yr. LOS velocities regularly 

increase until the period 2003-2010, when a strong increase of the maximum velocities is recorded. 

 

Figure 28  – Box plot showing the variability of the velocity values depending on the time of formation of the sinkholes 

in the mining concession around Saline di Volterra. The straight line represents the mean value, the stroke within each 

box plot the median value. 

 

6.3 Valle D’Aosta region 

The CRI results for the entire VdA Region show how the PS distribution will be strongly affected by both local 

morphology and land use. 

Depending on the orbit, eastward or westward valleys could be partially visible or incomplete shadowing, 

this is especially evident along the tributaries valleys of the Dora Baltea (Figure 29). These “low PS density” 

areas are represented by values of the CRI below 20, covering around the 25% of the total VdA territory. It is 

worth noting that along these valleys is quite rare to obtain a shadowing zone in both orbits, the coverage of 

at least one orbit is most of the time guaranteed. Values of CRI near zero are also registered where LUI tends 

to zero, i.e. in areas with perennial ice coverage or in water basins. This is evident along the north-north-

western border of the VdA where the largest ice sheets are present.   

On the other hand, CRI values higher than 60 indicate a high to very high radar visibility. The 22% of the 

regional territory records these values. Very high CRI values are recorded only along the flat Dora Baltea 

valley where the largest urban areas are present; here the density of PS measurements depends only on the 

type of surface. It is recalled that the CRI index depends only on the land use when the effect of the 

topography is low, i.e. when RI is above 50. High values of CRI are found along favourably oriented valleys, 

depending on the acquisition geometry, and at high altitudes, where the vegetation is sparse or absent and 

debris or outcropping rocks dominate the landscape. Here the PS density can be quite high, but the quality 

of the derived time series of deformation can be affected by the snow coverage for long periods (Cignetti et 

al., 2016).  
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The 33% of the Region is considered as “medium visibility”. Thus, the number of PS points is related not only 

to topography or land use variations, but also to the type of processing used (Notti et al., 2014).  
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Figure 29 – CRI maps for the Valle d’Aosta Region. A) and B) are referred to the ascending and descending 

orbits, respectively.  
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6.3.1 Deformation maps 

For the deformarion maps there were exploited Sentinel-1A and 1B radar images acquired in C-band 

(wavelength equal to 5.55 cm) in ascending (track 88) and descending (track 66) orbits and their derived 

information (or products). Both data stacks are composed by 130 images reaching the end of February 2018, 

starting from October 2014 for the ascending orbit and from November 2014 for the descending orbit. 

Considering the high number of images composing the datasets, the estimation of the displacements rates 

easily reaches a precision higher than 1 mm/yr (Raspini et al., 2018).  

Despite the challenging environment, the SqueeSAR processing of Sentinel-1 images gives good results in 
terms of both density of points and noise of single measurements. The outputs of the interferometric 
investigation are shown in  

Figure 30. Almost 360,000 points for each orbit were found, obtaining a mean density of around 100 PS/km2. 

The density is maximum along the Dora Baltea valley, in correspondence of the Aosta city, whereas it is 

minimum along tributaries valleys where shadowing/layover effects are possible (as shown by CRI maps, 

Figure 29). No PS are registered where high vegetation or the presence of ice strongly limited the coherence 

of the radar images, as predicted by the CRI (Figure 29).  

Considering a stability threshold of 3 mm/yr, equal to 1.5 times the standard deviation of the estimated 
velocity values of the datasets, the 94.4% of the PS in ascending orbit and the 92.9% in descending orbit are 
considered as stable ( 

Figure 30). This fact means either that the PS points do not record any ground motion or that the deformation 

rate is so small to be distinguishable from the noise without a detailed analysis.  

Significant clusters of moving points outside the 3 mm/yr threshold have been anyway registered, sometimes 
involving entire slope sectors. It is interesting to notice that in some cases the terrain morphology allows 
obtaining consistent results in both orbits. This is evident considering some well-known large slope 
deformations such as the Punta Chaligne, Torgnon, Cervinia and Emarese DSGSDs (areas 1 to 4 in  

Figure 30A and B). All these large slope phenomena records velocities outside the stability threshold, ranging 

between 5 and 10 mm/yr, as expected for this type of movements (Crosta et al., 2013). 

The effects of slope aspect can be seen by the results obtained along N-S oriented valleys in the south-
western portion of VdA. Along these valleys deformation rates above the stability threshold, up to 20-30 
mm/yr, are usually recorded in one single orbit. This is the case of the left flanks of Valgrisenche and Cogne 
Valleys in ascending orbit (points 5 and 6 in  

Figure 30A) and of the right sides of Rhêmes and Valsavarenche Valleys (points 7 and 8 in  
Figure 30B). 
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Figure 30 – Deformation maps, derived using the SqueeSAR algorithm, for the VdA Region. A) ascending orbit 

results, B) descending orbit results. 1) Punta Chaligne DSGSD; 2) Torgnon DSGSD; 3) Cervinia DSGSD; 4) 

Emarese DSGSD; 5) Valgrisenche Valley; 6) Cogne Valley; 7) Rhêmes Valley; 8) Valsavarenche Valley. The maps 

are overlaid on a Bing Aerial image. 
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6.3.2 Moving areas mapping 

The methodology explained in the Chapter 5.3 allows extracting a total of 277 moving areas in the test site 

(Figure 31), 115 for ascending orbit, with mean velocity values ranging from -39 mm/yr to 33 mm/yr, and 152 

for descending orbit (the mean velocity range is equal to -60 mm/yr - +18 mm/yr). 

Moving areas are quite widespread in VdA, with two maximum density sectors along Rhêmes and Cogne 

valleys (see Figure 30A and Figure 30B for the localization). The 71% of VdA municipalities host at least one 

moving area; the 27% of these municipalities records more than 5 deformation clusters and only the 9% more 

than 15 (Figure 31). The 32% of the municipalities registered the presence of only one moving area. The 

maximum number of moving areas (28) are found within the Ayas municipality, located in the north-eastern 

part of the region (polygon enclosing point 3 of Figure 31).  

Considering the radar reliability of the moving areas, the 40% and the 46% of them in ascending and 

descending orbits, respectively, are considered as “highly reliable” (green in the contingency matrix of Figure 

17). This means that both the time series and the measurement of displacement vector are representative 

of the real movement along the slope. On the other hand, the 6% (ascending orbit) and the 15% (descending 

orbit) of the clusters obtain a D grade (Figure 17), meaning that the PS time series are noisy or follow a non-

linear trend and, because of the terrain morphology, the real displacement vector is strongly underestimated. 

The percentage for the ascending orbit is the result of a higher weight of the local morphology, with some 

clusters detected along southward/northward slopes. 

The spatial overlapping between moving areas of different orbits is not quite common. This is due to i) slope 

orientation effects, i.e. velocity variations in the same area considering different orbits and ii) shadowing 

effects, i.e. impossibility of obtaining data because of the presence of steep morphologies that prevent the 

identification of PS in one of the two orbits. 

Landslides and slope mass wasting phenomena are the main target of this work. Thus, we overlapped the 

IFFI catalogue with the database of moving areas in both orbits. The 28% and the 38% of the moving areas in 

ascending and descending orbits, respectively, fall into the contours of already known landslides. Almost half 

of the moving areas are found in correspondence of debris deposits along steep slopes connected to the 

recent activity of rock falls. The largest part of these motions is found at high altitude, preferentially above 

2,000 m a.s.l. Complex and rotational landslides equally featured the remaining 50% of the landslides. Some 

of these active deformations are part of large DSGSD; however, they indicate a localized motion not related 

to an entire flank-scale movement. We found that the 25% of all the moving areas fall into the perimeter of 

a known DSGSD. 

The 10% of the moving areas in ascending orbit (12 in total) fall within the perimeter of a mapped rock glacier, 

6 classified as active and 6 as relict. In descending orbit, the percentage reach the 15% (24 moving areas), 

subdivided into 18 active rock glaciers and 6 relicts. Because of the presence or absence of an active 

permafrost layer, mean velocity values differ between the two types of rock glaciers. Relict forms are barely 

above the 10 mm/yr threshold, whereas active rock glaciers reach values three times higher. This difference 

has been already highlighted by Cignetti et al., 2016 using ERS 1/2 and Envisat interferometric products. 
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Figure 31 – Moving areas above the 10 mm/yr threshold. The contours represent the VdA municipalities. 1) 

Bosmatto landslide; 2) Allesaz landslide; 3) Ayas municipality; 4) Saint Rhémy En Bosses municipality. The 

data are overlaid on a Bing Aerial image. 

 

Figure 32 presents two examples, taken from two valleys located in the north-eastern part of VdA, of moving 

areas falling within the perimeter of already mapped landslides (IFFI catalogue). The first moving area 

characterizes a well-known landslide located above the village of Bosmatto in the Gressoney Saint Jean 

municipality, along the Lys Valley. The landslide is classified as complex (according to Varnes classification) 

and composed by two landslide bodies that involve both detrital deposits and bedrock. The southern portion 

of the body is almost completely vegetated, whereas the northern one presents a heterogeneous detrital 

cover. In October 2000 a debris flows originated from the blocky sector of the Bosmatto landslide was 

triggered by intense rainfalls, running down the Letze Creek and destroying several private houses, depositing 

2-3 m of detrital with rock blocks of maximum estimated volume equal to 103 cubic meters (Luino, 2005). 

The moving area involves the upper portion of the landslide, where the detrital deposit is found, and 

registering very high deformation rates, up to 50 mm/yr in the crown area of the landslide. LOS velocities 

gradually decrease to 15 mm/yr along the central sector of the landslide. This moving area has been only 

detected in descending orbit because of geometric effects of the slope that strongly reduce the amount of 

detectable motion (low C index). A time series of deformation for the upper portion of the landslide, where 

the highest LOS velocities are found, is shown in Figure 32C (black points). The movement is quite regular 

and linear throughout the monitored period, with noisy data in correspondence of snow seasons; this fact is 

evident in the last part of the series (between November and February 2018). The entity and temporal 

evolution is confirmed by levelling data and by GBInSAR (Ground Based Interferometry) measurements (Carlà 

et al., 2018).  
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The second example (Figure 32B) is referred to the village of Allesaz, in the Challand Saint Anselme 

municipality, along the Ayas Valley. The hamlet and its surroundings are affected by large deformation 

clusters in both orbits. These moving areas coincide with the perimeter of already mapped landslides; the 

biggest one, that completely involve the Allesaz village, is 1.8 km long and 600 m large, being a complex 

phenomenon that runs from an altitude of 1800 m a.s.l. to the bottom of the valley, along the Evançon Creek. 

LOS velocities reach maximum values of -20 mm/yr in descending orbit and 15 mm/yr in ascending orbit in 

the upper part of the landslide, at an altitude ranging between 1200 and 1300 m a.s.l. This case study is an 

example of overlapping between moving areas measured in different orbits. Velocities progressively 

decrease along the landslide, dropping below 15 mm/yr in both orbits. The time series of deformation (Figure 

32C, light blue and red points) referred to the upper portion of the landslide show a linear and continuous 

trend, similar to Bosmatto. The noisy periods are here limited and less evident; this is due to a climatic 

evidence, in fact the Bosmatto landslide is located at highest altitude (crown area at around 2,700 m a.s.l.), 

thus characterized by more persistent snow cover during winters. 

Figure 33 shows two examples of moving areas recorded outside of known landslide boundaries, along slopes 

already affected by mapped phenomena. The first case study is taken from the Ayas Valley, in the 

homonymous municipality (Figure 33A). This area is characterized by three moving areas; the first one, the 

largest (area 1 in Figure 33A), is composed by 45 PS points located between Col Tantanè and Barmasc, at a 

height ranging from 2000 to 2600 m a.s.l. The other two areas (2 and 3 in Figure 33A), smaller and composed 

by 4 PS each, are located western than Col Tantanè, at an altitude of 2500 -2600 m a.s.l. LOS velocities of the 

area 1 range between -42 mm/yr in the northern portion and -15 mm/yr along its south-western border. This 

moving area is located between two known landslides, along a steep slope with widespread detrital deposits. 

Considering local morphology and satellite data, we hypothesized the contour of the possible upper limit of 

the unstable area, as shown by the white dashed line in Figure 33A. The time series of deformation for the 

area 1 shows that the movement is constant over time (red points in Figure 33C), with noisy periods related 

to the presence of snow, as shown before (Figure 32C). Area 2 and 3 have similar average LOS velocities 

(around -15 mm/yr) and are placed near the upper limit of a mapped landslide, classified as “rotational slide”. 

Here the deformation recorded could suggest i) a retrogression of the landslide already included in the IFFI 

catalogue (Figure 33A) or ii) the motion of small unstable debris masses on top of the steep slope, not 

connected to the activity of the mapped phenomenon.  

In Figure 33B a second example of moving area that does not intersect landslide inventories is presented. 

The deformation cluster is located in the Saint Rhémy En Bosses municipality, along the Cote de Barasson at 

an altitude between 1,900 and 2,200 m.a.s.l. The cluster is composed by 60 PS points with velocities ranging 

between -30 and -12 mm/yr with time series of deformation showing a linear trend with little winter 

oscillations and a slight deceleration between June and November 2015 (blue points in Figure 33C). This part 

of the Saint Rhémy municipality is affected by two large complex landslides threatening the access to one of 

the main connections between Italy and Switzerland, the Gran San Bernardo (GSB) tunnel. Thanks to the 

satellite data it is possible to mark the contour of a moving area that, if completely mobilized, could hazard 

the state road that in the hamlet of Thoules, 300 m below the cluster of deformation, connects the GSB 

tunnel access road to the local road network. 
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Figure 32 - Moving areas falling within the contour of already mapped landslides. The Sentinel-1-derived PS 

points are represented as triangles with downward orientation if the orbit is descending, upward if it is 

ascending. Red and blue contours represent moving areas in descending and ascending orbits, respectively. 

A) Bosmatto landslide; B) Allesaz landslides; C) average time series of deformation for the sectors indicated 

by yellow rectangles. 
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Figure 33 - Moving areas falling outside the contours of already mapped landslides. The Sentinel-1-derived 

PS points are represented as triangles with downward orientation if the orbit is descending, upward if it is 

ascending. Red and blue contours represent moving areas in descending and ascending orbits, respectively. 

The white dashed lines represent possible landslide crowns traced on the basis of terrain morphology and PS 

data. Two examples from the Ayas (A) and Saint Rhémy En Bosses (B) municipalities are reported. C) average 

time series of deformation for the sectors indicated by yellow rectangles. 
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7 Discussion 

The main goal of the thesis was to propose a “hot-spot” InSAR analysis at regional scale of two Italian Regions 

with strong geomorphological differences, in order to highlight the main active moving areas over the 

Regions. Starting from deformations maps, which contain thousands of measurements points, an easy-to-

use semi-automatic method was performed. 

A large number of geo-hazards affects Tuscany Region, in fact 117.000 landslides are catalogued in the IFFI 

inventory and 1094 km² of subsidence areas are mapped. Therefore, it is important creating a priority list of 

the main active phenomena on the territory, in order to help the local administrator to correctly allocate 

funds and plan proper remedial actions. Therefore, the “hot-spot” analysis has been performed to highlight 

relevant ground deformations such as landslides, subsidence and uplift, starting from large MTInSAR dataset 

updated annually three times. With this approach, it was possible summarising hundreds of thousands of 

points in single clusters, grouped into a geo-database containing interferometric parameters, geographical 

and geomorphological information, a brief evaluation of the possible triggering cause and information about 

the temporal evolution of moving areas.  

In this case, it wasn’t carry out a simple clusters analysis of a single deformation map, but rather a comparison 

among three several periods: i) the first one from October 2014 to April 2017, ii) the second one from October 

2014 to October 2017, iii) the third one from October 2014 to April 2018. In this way, it was possible to study 

the spatial and temporal evolution of the deformation clusters, every six months starting from the first 

period, and determining which of these was more significant. In fact, although the clusters are extracted from 

deformation maps elaborated over a long period, sometimes they may represent unrepresentative episodic 

phenomena (14% of the total). In addition, the TGPA have been defined, as the overlapping between clusters 

detected in different analysis periods and acquisition geometries. These areas give an idea about the 

persistence of the motions, highlighting the most enduring and representative areas affected by geohazards.  

The analysis of the three periods point out a decreasing trend of PS/DS density and as a consequence a 

decrease of the spatial distribution of the clusters and LOS velocity values. On one side, this is probably due 

to the increasing of radar images used during the processing phase, along the three analysis periods, which 

improve the accuracy of the output data. On the other side, the absence of intense rainfall periods during 

the monitored period caused a long-term reduction of landslides motion, causing some of the cluster of the 

first period to fall outside the fixed moving threshold.  

The cluster database, obtained every six months, can be a reliable tool for updating the geo-hazard 

inventories. In fact, it was possible to re-evaluate the state of activity of known landslides within the IFFI 

database. The result does not highlight new areas affected by subsidence, but in the future this methodology 

may ensure the mapping of new phenomena. Detecting new areas affected by subsidence, potentially 

connected with excessive exploitation of the groundwater, can play a role key for the water source managing. 

A second “hot-spot” analysis was carried out for the Valle d’Aosta Region in order to retrieve areas 

characterized by high deformation rates and to interpret the results obtained by a 

geomorphological/geological point of view. Despite the mountain environment and its characteristics that 

could have strongly limited the interferometric analysis, a total of 277 moving areas have been derived. The 

final output of this activity is a “radar interpreted” database of deformation clusters that includes various 

geographical, geomorphological and geological information useful for contextualizing satellite data into the 

natural environment. This database is delivered to regional authorities in charge of hydrogeological risk 

management (geological service of the Valle d’Aosta Region) and to the Regional Civil Protection. These 
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entities actively collaborated to design the database, proving a continuous exchange of information between 

academia and risk management actors. 

The products generated in this way are currently implemented in the landslide risk management chain of the 

Valle d’Aosta Region, focusing on landslide state of activity definition and landslide mapping. The aim is not 

to update or define the activity of every landslide with PS inside but to detect only those ones with the highest 

deformation rates at the moment of the analysis and that could have the highest probability of future 

failures. Landslide mapping based on interferometric data is challenging task; in fact, due to the intrinsic 

limitations of the technique (presence of vegetation, topographic effects, etc…) it is difficult to obtain a 

complete interferometric data coverage of a landslide. Thus, landslide contours must be defined with the 

support of other remotely sensed data, such as multitemporali optical images, in situ measurements and 

field surveys. As shown by Figure 33, the deformation clusters can be used as a proxy for delimiting the spatial 

distribution of active motions, but they cannot be used to define a precise landslide contour without the help 

of other external data. Consequently, the procedure is intended as a tool for a rapid definition of slope 

movements at regional scale, creating a priority list for future ground surveys and further detailed scale 

analyses. 

As mentioned before, the Alpine regions are challenging environments for interferometric applications. It is 

necessary to know a priori the spatial distribution of possible “no data” areas, using approaches based on 

the integration between morphology, land cover and satellite acquisition geometry, as the CRI here used. 

The results obtained are a clear reflection of the morphological limitations forced by valley orientation in the 

Valle d’Aosta territory. The first case presented of Bosmatto (Figure 32A) is an example of this. This landslide 

is in fact well detectable only in descending orbit, where 90% of the real displacement vector can be 

measured. This percentage drastically falls below 20% in ascending orbit. On the other hand, the Allesaz 

landslide (Figure 32B) is one example of slope motion that could be detected more or less in the same way 

in both orbits. It was estimated that this type of overlapping realizes only in 20% of the mapped moving areas.  

Considering topographic and land cover limitations, it is important to rank the cluster of deformations giving 

them a quality score (Barra et al., 2017). In this case we used a “radar visibility index” that can be based on 

two quantities, one related to the time series (coherence), one connected to the terrain (C index). The first 

index takes into account the level of noise of the time series, especially at high altitudes where the snow 

cover is persistent for several months (Cignetti et al., 2016). The second index is introduced in order to 

evaluate the effect of slope orientation on the interferometric measurements.  

 

The regional scale processing approach could have some limitation at detailed scale, especially if the point 

density is low (for different reasons). That is why for the computational power it is unsustainable extracting 

hundreds of millions points and at the same time it is unmanageable for the end-users work with very big 

shape-files as outputs. Therefore, it is worth to apply a proper extraction grid with a well-balanced coherence 

threshold during the processing steps. So, in this thesis we analysed the case of the salt dissolution mine in 

Saline di Volterra, where it was expected to find very high deformation rates as testified by the presence of 

numerous sinkholes. Although the impact of ground deformation is, for now, not directly interfering with any 

human activity, the quantification of the deformation triggered by this mining activity is certainly of interest 

for the local entities and land planners, considering that only part of the mining concessions is currently 

exploited. Therefore, a target oriented processing approach was designed, in order to spot the fastest 

motions over the area, squeezing as much as possible the information contained in the Sentinel-1 images, 

within the technical and intrinsic limitations of the technique. This assumes that sinkholes are likely 

connected to very high subsidence rates (e.g. Raucoles et al., 2003), well recognizable from other slow-

moving phenomena that characterize the area. It is important to maximize the spatial sampling of 
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measurement points and to reduce the temporal baseline of interferograms in order to decrease the aliasing 

error. The result is a deformation map involving low-coherence radar target where the fast moving areas are 

well-detected (see Figure 6) or detected as much as technically possible (see Figure 27). The trade off is a 

higher standard deviation of the velocity estimation and the presence of measurement points with 

uncorrelated signal. It is worth noting that such local-scale approach is clearly not suitable for small scale 

mapping activities, where the high point density would negatively impact on the definition of the moving 

areas, creating too many false positives. The processing approach allowed deriving a high density of 

measurement points covering the mining concessions around Saline di Volterra. The analysis of the 

deformation map revealed the presence of several subsidence bowls which are in some cases correspondent 

to areas where sinkholes have been already formed in the recent past. Figure 34 shows the measurement 

points with the fastest movements spotted within the mining area and all of the points extracted with the 

regional processing approach. As we can see, the density improvement compared to the Tuscany Region 

wide areas results are significant. In this case, 393 points were extracted in the main deformation areas, 

against a total of 33 points with the regional processing approach.  
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Figure 34 – (A) shows the fastest measurement points extracted over the mining areas. (B) shows all of the measurement 
point extracted with the regional processing approach. 

 

A

B
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Conclusion 

In this PhD Thesis, the potentialities and drawbacks of the interferometric technique have been presented 

and then exploited to define three different procedures, applied in different environment and at different 

scales, for the use of multi-band PSI products. This thesis work represents the main outcome of a three years-

long activity at the Department of Earth Sciences of the University of Florence, Centre technologic de 

telecomunicacions de Catalunya research center and TRE-Altamira (Barcelona).  The main goal is to test and 

evaluate the potential and applicability of space-borne SAR data, processed by means of different PSI 

approaches, as operational tools for the characterization of geohazards in different geological and 

geomorphological environments. 

The main goal of the thesis hinges on illustrating different methodologies that could be merged in one single 

workflow to detect active moving areas, characterize them in detail and cross-correlate the satellite data 

with ancillary information, implementing the obtained products and results in the Civil Protection chain and 

geohazard risk management. The proposed case studies were intended as examples, although referred to 

different environments and geohazards, for the working approaches to be used from regional to detailed 

scale. 

For the Tuscany Region, located in central Italy and characterized by an extremely variegated landscape with 

different geohazards, ranging from landslides to subsidence, we exploited Sentinel-1 images for active 

moving areas detection at regional scale.  A hotspot-like methodology is proposed, exploiting the temporal 

repetitiveness of Sentinel-1 data analysed by means of the SqueeSAR algorithm to create deformation maps 

in three different periods with a 6 months update. Thanks to a filtering approach based on a velocity 

threshold, it was possible extract a total of 652 deformation clusters, divided in three different periods, to 

study their spatial and temporal evolution. The final output is a flexible geo-database that contains 

interferometric parameters, geographical, geomorphological and geological information, a brief evaluation 

of the possible triggering cause and information about the temporal evolution of the moving areas. 

Considering the 6-days repeatability of the Sentinel-1 constellation, this clustering methodology turns out to 

be reliable, fast and readily reproducible. This work represents the first cluster database in Tuscany region, 

focused on landslide and subsidence phenomena, required by regional Civil Protection for risk management. 

In fact, thanks to this first update at regional scale it is possible create a priority list, with the most important 

deformation areas, reducing economic and personnel costs and correctly plan countermeasures at municipal 

scale.    

Saline di Volterra is a local scale application of multi-temporal satellite interferometry targeting a solution 

mining area in southern Tuscany. The surroundings of Saline di Volterra host several brine wells that pump 

water into a salt level at a depth ranging between 60 and 400 m below surface. The mining activity has a 

relevant environmental impact in terms of depletion of the water resources and in terms of ground motion, 

creating several sinkholes which were mapped through multi-temporal analysis of orthophotos. The 

deformation map, obtained through the analysis of Sentinel-1 images, revealed the presence of several 

subsidence bowls, sometimes corresponding to sinkholes formed in the recent past. The subsidence bowls 

have a common deformation pattern, with LOS velocities increasing forward the center of the bowl. The 

temporal evolution of the measurement points can vary a lot on case-basis. Finally, a correlation between 

LOS velocities and age of formation of sinkholes have been found. Although with some uncertainties, the 

processing approach presented in this work was able to detect fast deformation rates that are usually 
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puzzling to solve in mining areas. This detailed scale and target-oriented approach demonstrated its 

capability to provide useful information in terms of density of measurement points and quality of the time 

series. A future evolution of this work could be further analyses that involve the decrease of the temporal 

frequency of data processing and its application in other mining contexts, going forward to the creation of a 

monitoring system based on satellite interferometric data. 

Valle d’Aosta Region (Northwestern Italy) is an alpine region characterized by a wide spectrum of mass 

wasting phenomena. Our approach, based on simple GIS tools and indexes, allowed detecting 277 moving 

areas above the selected velocity threshold. Overall, landslides (complex, rotational, DSGSD), rock glacier 

evolution and detrital-related deformation are responsible for the detected motions. This work presents an 

example of a clustering analysis applied to a large stack of Sentinel-1 satellite interferometric products that 

has been derived using the SqueeSAR algorithm. This type of approach allows reducing the time needed for 

a complete analysis of an interferometric dataset. In mountainous areas, where the field data collection is 

sometimes limited or impossible, the presented approach is intended to create priority areas to be focused 

for further investigations. In this way it is possible to increase, with reduced economic and personnel costs, 

the “landslide knowledge” of all the actors involved within the landslide risk management chain at regional 

scale. Well knowing the limitations of the interferometric technique, especially in mountain regions, it is 

reasonable to rely on clustering approaches in order to derive multi-temporal synoptic views of ground 

motions over wide areas.  
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