
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN INFORMATICA
CICLO XXXIII

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Paolo Salani

Enhancing cache content
management in a data lake

architecture using Reinforcement
Learning

Settore Scientifico Disciplinare INF/01

Dottorando:
Mirco Tracolli

Tutore
Prof. Marco Baioletti
Prof.ssa Valentina Poggioni

Referente INFN
Daniele Spiga

Coordinatore
Prof. Paolo Salani

Anni 2017/2020

Abstract

In the past few years, data dimensionality has become so high and complex
that a specific field has been created: Big Data. Besides the size of the data,
that is continuing to grow in each sector, from business to scientific domains,
the advent of IoT (Internet of Things) and data from sensors, introduces a large
volume of information that is not simple to manage and to extract valuable
knowledge.

The process to extract useful information and value from such data is mainly
composed of two phases: first, the processing, and then the data access.

One of the main requirements for data access is fast response time, whose
order of magnitude can vary a lot depending on the specific type of processing
as well as processing patterns. Therefore, besides the specific optimization of
algorithms and software processes, there are several aspects that involve the
infrastructure level of the analysis environment that could be enhanced. From
this point of view, the optimization of the access layer becomes more and more
important while dealing with a geographically distributed environment where
data must be retrieved from remote servers of a Data Lake.

From the infrastructural perspectives, caching systems are used to mitigate
latency and to serve better popular data. Thus, the role of the cache becomes
key to effective and efficient data access.

In this thesis, we will explore how to make a cache autonomous and adapt-
able to improve the performances of a system in terms of data management
with the aim of reducing the cache costs, such as the amount of data written
and the amount of data read from the cache memory.

Dedication

I dedicate this work to my family, that sustained me during these years.

Declaration

I herewith formally declare that I, Mirco Tracolli, have written the submitted
thesis independently. I did not use any outside support except for the quoted
literature and other sources mentioned in the paper. This thesis has not been
handed in or published before in the same or similar form.

Acknowledgements

I want to thank all the people that supported me during the difficult moments
and that let me stand up against the current.

Contents

Page

List of Figures iii

List of Tables vii

0 Introduction 1

1 Background on Data Lakes 5

1.1 Cloud service models . 6

1.2 Big Data and the Cloud . 8

1.3 Data caching in cloud systems 11

1.4 Data lakes . 12

2 Background on Machine Learning 15

2.1 Machine learning . 16

2.2 Reinforcement Learning . 20

2.2.1 Concepts and terminology 21
2.2.2 Approach details . 24
2.2.3 Algorithms . 27

3 Related works 31

4 Problem description 35

4.1 Definition and targets . 36

4.2 Context . 39

4.2.1 Data-sets . 44
4.3 Simulation environment . 50

i

5 Smart Caching for Data Lakes 59

5.1 Exploring file scoring . 60

5.2 An agent for a better addition . 62

5.3 Smart caching with double agents 66

6 Experiments 73

6.1 Evaluation metrics . 75

6.2 Tests and results . 81

6.2.1 Selection by file score . 83
6.2.2 Cache composition by SCDL 87
6.2.3 Cache management by SCDL2 90
6.2.4 Extreme use cases . 93

6.3 Evaluation . 95

6.3.1 Metrics correlation . 95
6.3.2 Notes on agent learning . 95
6.3.3 Notes on selected features 97
6.3.4 Result considerations . 98

7 Future steps 103

7.1 Q-Learning improvements .104

7.2 Deep Q-Learning .105

7.3 Integration .106

8 Conclusions 113

Bibliography 117

A Appendix 125

A.1 Cloud services .125

A.2 Data Analysis pipeline .127

A.3 Synthetic datasets .128

A.4 Result view through the simulation analyzer130

List of Figures

1.1 Cloud service model management details, with the responsibili-
ties of the various roles . 7

1.2 New cloud service model schema in comparison to IaaS model . 8
1.3 Data lake model schema with a focus on the internal organization

of the lake . 13

2.1 Machine Learning engineering cycle, from problem issue to the
deployment of a solution . 20

2.2 Generic reinforcement learning interaction schema between the
agent and an environment . 22

4.1 Action schema that depicts when the cache retrieves a file on miss 37
4.2 Action schema that shows when the cache is used as a proxy to

serve a missed file . 37
4.3 Basic environment schema with focus on throughput aspect, a

metric to evaluate the caching behavior 38
4.4 Projections of the increase of data storage at CMS 40
4.5 WLCG Data Lake schema example with focus on internal compo-

nents . 42
4.6 Activity composition in a task of a data analysis user 44
4.7 Data general statistics of Italian requests in 2018 showing the

number of files, requests, jobs, tasks, users, and sites during the
year . 45

4.8 Data general statistics of United States requests in 2018 showing
the number of files, requests, jobs, tasks, users, and sites during
the year . 46

iii

4.9 File size month distribution of Italian requests in 2018 showing
the most common sizes for the file requested in each month of
the year . 47

4.10 File size month distribution of United States requests in 2018
showing the most common sizes for the file requested in each
month of the year . 48

4.11 Data type composition of Italian requests in 2018 showing insight
of domain-specific information about the file type 48

4.12 Data type composition of United States requests in 2018 showing
insight of domain-specific information about the file type 49

4.13 Illustration of environment implementation with the focus on
the components selected to solve the problem 50

4.14 Simulation environment schema showing the several aspects
taken into account and the units measured 52

4.15 Golang cache interface used in the simulator 55
4.16 Simulation environment configuration file example in YAML . . . 57
4.17 Result dashboard example screenshot 58

5.1 Schema of weight function idea to select the file to store 60
5.2 Schema of the environment of single-agent approach that uses

the information of client request to accept or not a file into the
cache . 63

5.3 Reinforcement Learning schema of the double agent approach,
where the AI choose both, the addition and eviction of a file into
the cache memory . 67

6.1 Projection of the metrics on the simulation environment that
shows the several aspects controlled to study the cache behavior 75

6.2 CPU efficiency difference between a local and remote served file 80
6.3 Explanation of the experiments’ targets compared to the cache

model used . 81
6.4 Correlation matrix of the various metric used in the experiments 96
6.5 Result investigation of Read on hit ratio for both datasets with a

cache that has infinite memory . 100

6.6 This plot shows the difference between SCDL2 with no eviction
and LRU, using a cache of size 500T. The red line is the average
gain of SCDL2 . 102

6.7 This plot shows the difference between SCDL2 with no eviction
and a cache size of 500T versus a cache of size 1000T that uses
LRU. The red line is the average gain of SCDL2 102

7.1 Cumulative number of miss on delete for period B of the year
(Apr-Jul) using the Italian dataset 105

7.2 Frequency distribution of miss on delete an miss on skip for SCDL
in period B (Apr-Jul 2018) for the Italian dataset 106

7.3 Frequency distribution of miss on delete an miss on skip for
SCDL2 with no eviction in period B (Apr-Jul) for the Italian dataset106

7.4 Schema of a machine learning typical pipeline 109
7.5 DODAS architecture schema showing how the stack is implemented110
7.6 XCache plugin schema for AI integration which shows where it is

possible to intervene and extend the framework 111

A.1 Cloud service models and abstraction level 125
A.2 Typical data analysis pipeline . 127
A.3 The dataset generator dashboard 128
A.4 Synthetic dataset configuration example in JSON 129
A.5 Throughput comparison using the simulation analyzer 130
A.6 Cost comparison using the simulation analyzer 131
A.7 ϵ decay comparison between SCDL and SCDL2 131

List of Tables

4.1 Simulation parameters . 56

6.1 Test results grouped by function family. 85
6.2 Test results of IT region with cache size of 100T and 10Gbit band-

width. 87
6.3 Test results of IT region with different cache sizes and 10Gbit

bandwidth. 88
6.4 Test results of US region with different cache sizes and 10Gbit

bandwidth. 89
6.5 Test results of IT region with cache sizes of 100T and 10Gbit. . . . 90
6.6 Test results of IT region with different cache sizes and 10Gbit

bandwidth. 92
6.7 Test results of US region with different cache sizes with 10Gbit

bandwidth. 93
6.8 Results of extreme big size synthetic dataset with a cache of

100GB and 10Gbit of bandwidht. 94
6.9 Results of extreme small size synthetic dataset with a cache of

100GB and 10Gbit of bandwidht. 94
6.10 Results of the experiments with a different ϵ decay rate. The

table shows the average gain in performance for each metric
compared to the ϵ value chosen in the thesis experiments 97

6.11 Results of the experiments without the feature size that show
the gain in performance for each metric 97

6.12 Comparison of SCDL and SCDL2 in IT region with cache size of
100T and 10Gbit bandwidth. 98

vii

6.13 Comparison of weight functions in IT region with cache size of
100T and 10Gbit bandwidth. 99

6.14 Comparison of SCDL and SCDL2 in IT region with different cache
sizes and 10Gbit bandwidth. 99

6.15 Result comparison of IT region with different cache sizes and
10Gbit bandwidth. 101

Introduction

In the last decade, data volume has grown beyond any expectation in many
sectors, from science to business.

Nowadays, it is customary to manage and handle data, whose size was
regarded as unimaginable in the past years by means of small-size devices like
our smartphones.

Plenty of information is generated every day by sensors, peripheral systems,
and applications. This gigantic quantity of information is processed via network-
based cloud systems, where users do not have to regard the way their data is
maintained as a burden.

Cloud systems are usually disseminated all around the globe, for satisfying
the demand for access to the services they offer. For this reason, the role played
by the network infrastructure is fundamental. The cloud systems a user can
access can be of various kinds: public, private, community-maintained, hybrid,
or even on-demand.

What is currently being done, is not only storing data onto cloud platforms,
but these resources are also being shared throughout a steeply increasing
number of web services. For instance, thanks to cloud systems, it is possible to
easily access the computational power that would be otherwise unachievable
by a single individual.

The data manageability through cloud systems gave birth to the concepts

1

Mirco Tracolli

of Big Data and Data Lake. The former concept embodies the possibility of
managing data of big dimensions, either in terms of quality, in terms of quantity,
or both. The latter concept, roughly speaking, embodies the idea of storing
and analyzing an enormous amount of data in a single place. The put into the
place of such a concept may occur in different fashions.

In this thesis, we use the concept of Data Lake in the same spirit as WLCG [1,
2] (Worldwide LHC Computing Grid), which defines a Data Lake as a set of data
and computing centers that are interconnected by means of the network in-
frastructure. As in the WLCG idea, this work aims to optimize the resources,
improve performance and efficiency, as well as simplifying and reducing opera-
tion costs. This thesis proposes an autonomous approach to achieve that in the
Data Lake context focusing on cache content management. Despite the study’s
environment regards High Energy Physics, the aims of the project are to be
as agnostic as possible. As a consequence, this work will not use any specific
domain information. Moreover, as a method to manage the cache memory, it
uses a Reinforcement Learning (RL) technique. The RL approaches are generally
used in dynamic contexts and problems, where an agent has to adapt itself as
the environment changes without any human intervention. Also, even if they
do not guarantee the optimality of the solution found, often they are more
efficient than the classical optimization algorithms.

RL solutions are growing in number and are also used in the Big Data
context [3, 4]. Nevertheless, this encourages us to experiment with the reactions
of an agent in a complex environment such as the cache content management
in a Data Lake architecture. Furthermore, the approach is tested in a real Data
Analysis context, with information taken from the High Energy Physics (HEP)
workflow. Thus, it is also questioning how to measure the different behavior of
the cache respects the standard policies and how we can evaluate the cached
content for the specific domain.

The idea of this thesis is to develop an independent service, a helper tool
for the caching management that supports caching decisions. The main goal
is to optimize the content of the cache layer compared to the data stored in
the lake and the user requests. As a consequence, a better storage use should
increase user task throughput. Moreover, reliable networking can be used to
reduce disk replica requirements via caching, despite this will push up the

2

Mirco Tracolli

network capacity requirements. In turn, the desired behavior is to write fewer
data into the cache layer and store only the files more important and more
used. For this reason, it is expected to have a better cache composition to
serve at best the user requests.

This thesis is structured as follows: first, the background on data lakes
Chapter will cover all the notions about modern Data Lakes and Big Data
management. Then, in Chapter 2, it is presented the techniques used in the
project approaches, focusing on the theory part to understand the further
application. In Chapter 3, several related works are presented and compared
with the thesis solution. Chapter 4 presents the addressed problem and also
has a follow-up section on the project context. Then, in Chapter 5 there are
the exploitation of the thesis approaches used in the experiments. Chapter
6 depicts the metrics used to test several techniques and presents tests and
results. Finally, in Chapter 7, it is presented the future evolution of this project
before the conclusion.

3

Background on
Data Lakes

Contents
1.1 Cloud service models . 6

1.2 Big Data and the Cloud . 8

1.3 Data caching in cloud systems 11

1.4 Data lakes . 12

This chapter is an introduction to the Data Lakes’ world, starting from the
infrastructure to the recently adopted models. Furthermore, it is illustrated in
the domain field of the project. Also, there will be an insight into data caching,
especially in distributed storage with a particular focus Data Lake context.

5

Mirco Tracolli 1.1. CLOUD SERVICE MODELS

1.1 Cloud service models

With the evolution of the World Wide Web, the services changed during the
years, and with them, also the level of abstraction from the hardware.

Cloud Computing is the possibility of using computer system resources on-
demand, like data storage, CPU calculus, GPUs, etc., without direct and active
management of such resources by the end-user.

It is explicitly stated in the NIST definition of Cloud Computing [5]:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

Thus, the cloud infrastructure resources are provided as a service, which
means they are well-defined functions, self-contained, and does not depend on
the context or state of other services. This software designs kind, named Service-
Oriented Architecture (SOA [6]), allows access over the network to components
through a specific protocol. The NIST’s cloud computing has three canonical
service models, i) Infrastructure as a Service (IaaS), ii) Platform as a Service
(PaaS), iii) and Software as a Service (SaaS),that are illustrated in Figure 1.1 with
their different level of abstraction (for more details see appendix Appendix A.1).
A lower level of abstraction means that the provider of the service has to
manage a small part of the service components and the client is left with a lot
of control over the resources.

The different models also represent a different cost of consumption for the
users. A higher abstract level, of course, has a higher cost because providers
have to maintain the whole stack service. Instead, in a low-level abstraction
service, the end-users have to manage more aspects of the infrastructure and
pay only the resources asked for. Of course, the payment is on consumption for
each kind of service and the costs depend also on several aspects, such as the
type of hardware required, the number of instances of the service, the location
of the service (geographically speaking), and more.

6

Mirco Tracolli 1.1. CLOUD SERVICE MODELS

Figure 1.1: Cloud service model management details, with the responsibilities
of the various roles

The above three models described are part of the base of "XaaS"[6] and they
are only the main ones used. In fact, the "X" stands for everything as a service
and that means it can be replaced with whatever letter corresponds with the
service provided. For example, there are also Database as a Service (DaaS) or
Backup as a Service (BaaS). Recently, two new models appeared in this cloud
infrastructure organization as a service, and they became so popular because
they are a good compromise between control and responsibility. In particular,
they allow the users to create a very specific task with a high customizable
setting that is also scalable and reproducible with ease. They are the Container
as a Service (CaaS) and the Function as a Service (FaaS) model.

These new types of models introduced the concept of a container, a stan-
dardized unit of software that packages up code and all its dependencies. This
package has the property to run quickly and reliably from one computing envi-
ronment to another. Due to these latest models, the Data Lakes architecture
becomes feasible and started to be explored as the new paradigm for Big Data

7

Mirco Tracolli 1.2. BIG DATA AND THE CLOUD

Figure 1.2: New cloud service model schema in comparison to IaaS model

management.

1.2 Big Data and the Cloud

The current cloud services allowed the management of a huge number of
tasks and the processing of bigger and bigger volumes of data. The Big Data
management could be very different without them today’s services, not to
mention the frameworks and paradigms specially created to support those
kinds of infrastructure described in Section 1.1. In fact, stating also to the Gartner
glossary, Big Data is not only how the volume of information is increased, but
it concerns also how the data is managed:

Big Data is high-volume, high-velocity, and/or high-variety informa-
tion assets that demand cost-effective, innovative forms of informa-
tion processing that enable enhanced insight, decision-making, and
process automation.

8

Mirco Tracolli 1.2. BIG DATA AND THE CLOUD

The central point of Big Data is that they are more expensive in terms of
management, access, and of course, distilling information. Because of that,
the cloud infrastructure has a fundamental role in data analysis, and it also
affected the way analysis tasks are performed.

Generally, there are four points that concern the Big Data information [7]:

i) volume: the amount of data accumulated;

ii) velocity: data can pile up really fast, but a desirable feature also processes
and examine those data with a high speed;

iii) variety: the types of collected information can be very diverse, from
structured data (like database information) to unstructured data (such as
emails, images, videos, etc.);

iv) veracity: being certain that the collecting data contains useful information
that can be separate from the noise and the poor quality data.

Usually, it is possible to find a fifth point named value but, due to the nature
of Big Data, it is easy to guess that the true value of the data is accomplished
when the right information is captured. As a consequence, the Cloud infras-
tructure goes well with the Big Data points and help the users. For example,
it lowers the upfront costs with a more flexible and cheap structure (from
the client point of view), increasing the accessibility, reliability, and the tasks’
automation.

To clarify, manipulating petabytes is not trivial and perhaps, to maintain
an infrastructure that supports those levels of volumes is not affordable for
everyone. In particular, the cost of elaborate information is much higher than
the cost of storing it. Furthermore, CPU and GPU calculus is necessary to extract
value from data and Cloud computing enables fast scalability with a readily-
available infrastructure that can scale on demand. The pay-as-you-go model
contributes to less wasting of resources and lets the users focus more on
creating insights and, at the same time, reduces the cost of analytics because
the infrastructure is managed by the provider.

As well as that, users can be more creative thanks to the direct access to
raw data (unstructured information), and business processes like continuous
integration and disaster recovery are made easier by cloud technologies.

9

Mirco Tracolli 1.2. BIG DATA AND THE CLOUD

Howsoever, the flexibility of the cloud is not the only reason why Big Data
is well fitted to that environment. Since they are composed of unstructured
information, the paradigm with which they are accessed is not comparable
to a query of a database, where the data have a precise number of features,
and they are ordered in memory. In Big Data a standard de facto method to
extract information is the MapReduce [8] programming model. Shortly, it is a
mechanism to apply a function to all entries and then filters depending on some
constraints to produce the result. This practice has influenced so much the
developer community also thanks to a famous framework born to accomplish
that task, today named Apache Hadoop [9]. In detail, Hadoop is a collection of
open-source software utilities that allow solving the problem that involves a
massive amount of data and computation. Its distributed storage is prepared
to be used with the MapReduce paradigm and the tools Apache Spark is the
Swiss knife that allows the analysis of Big Data in a distributed system.

The popularity of HDFS, the Hadoop file system, encouraged the search for
new systems to store and analyze large quantities of files. Unlike databases,
the main storage types in Big Data are the following:

1. file storage: where data is stored as a single piece of information inside
a folder;

2. block storage: where the original data is split into several pieces with a
unique identifier, and they are stored according to rules of convenience;

3. object storage: is a flat structure in which files are broken into pieces and
spread out among hardware.

The latter has become the most used solution in the past years. Also, big
companies like Amazon implemented their own solutions, for example, the S3
storage system of Amazon. There are open source solutions too, like MinIO,
that use the block storage method to manage the data. In conclusion, both the
storage and the computing have obtained more simplicity, performance, and
scalability from the cloud environment and that is the reason why nowadays
Big Data works closely with this ecosystem [10].

10

Mirco Tracolli 1.3. DATA CACHING IN CLOUD SYSTEMS

1.3 Data caching in cloud systems

Since the initial spread of the WWW, several solutions to enhance the perfor-
mances and face the exponential growth of the internet has been hypothesized,
tested, and put into practice [11]. In a network, there are several actors that
can take advantage of using a cache system, starting from the servers to the
clients, but also intermediary objects like the proxies or load balancers that
redirect the traffic.

Despite the field of application and the type of data, the benefits of using a
caching system impact both, the end-users, and the infrastructure. Thus, the
WWW adopted this method to mitigate the constant growth of web contents
(E.g. [12]), and the main earning points that makes so attractive the use of a
cache [13] are:

• it reduces network bandwidth usage;

• it reduces user-perceived delays;

• it reduces loads on the origin server.

However, the main problem of cache content management is the replace-
ment strategy [14] and this applies in all the contexts where a cache is used.
Furthermore, the problem becomes more complex if we talk about Big Data,
where there are numerous heterogeneous files with possibly huge sizes and a
great number of characteristics.

The main policies adopted for the caching content management are LRU
(Least Recently Used, which serves as the golden standard) and LFU (Least
Frequently Used). These policies are known to be easy to implement, and they
do not require large computational calculations (that’s why they are preferable
in embedded environments). Although, they are known to under-perform in
the Big Data environments because they were initially designed for evicting
fixed-size pages from buffer caches [15].

Another type of algorithms used for their simplicity are those based on file
sizes and choose to remove a file from the biggest (Size Big) or the smallest
(Size Small) file stored in the cache.

11

Mirco Tracolli 1.4. DATA LAKES

Nevertheless, the main characteristics that influence the replacement pro-
cess are still the same [16, 17, 18] and they are related only to the file (or object)
requested f :

• recency: time of (since) the last reference to f

• frequency: number of requests of f

• size: the size of f

In conclusion, though the cache concept was born from a specific environ-
ment with different targets, we apply this paradigm in the most varied contexts
to mitigate the high demand for a huge amount of data. This goes perfectly
with the Big Data concept and the current world of cloud computing, where the
information size explosion seems to have no end.

1.4 Data lakes

Data lakes emerged in the last decade to solve the problem of growing
data. The future of data management has to deal with Big Data, a huge mole of
information from several sources and various formats. Organizations need a
scalable solution with a low cost and a unique place where to put their data
to analyze later. The data lake seems like the answer: an ideal way to store
and analyze enormous amounts of data in one location. However, the most
collected information for decades was structured data that do not fit well with
the new approach used in data lakes, where it is preferred to semi-structured
or unstructured memorization of the data.

About the original meaning of the name, according to Dixon [19], it is a large
body of water, into which new water streams from many channels, and from
which samples are taken and analyzed. The water represents ready to use data
where users have a unique access point. This concept has changed during the
years due to the evolution of cloud computing and data store technologies and,
as King said in [20], it becomes a more complex infrastructure that manages
also unstructured data ignoring the information content.

12

Mirco Tracolli 1.4. DATA LAKES

The main difference between a data lake and a data warehouse is that
in a data warehouse, the data is preprocessed and categorized to a fixed
structure when it’s stored. Instead, a data lake stores information of any type
and structure in their native formats and make those data available for future
reporting and analysis. Hence, a key point to better understand this type of
architecture is to think that it enables a comprehensive way to explore, process,
and analyze petabytes of information arriving from multiple data sources.

The way to access and process information is more dynamic in a data lake [21,
22], especially for data analysis patterns. As a consequence, if the data stored
has no value or has a bad quality, the data lake can quickly become a data
swamp: unorganized pools of data that are difficult to use and understand.

The design of a data lake may be different depending on the domain it is
applied to and the background technologies used.

Figure 1.3: Data lake model schema with a focus on the internal organization of
the lake

In the Figure 1.3 there is a schematic view of a data lake architecture used
in this work. In that picture, several data centers, that could be geographically

13

Mirco Tracolli 1.4. DATA LAKES

distributed, are the core of the system. The main storage is surrounded by a
cache layer composed of several caches that serve the user requests.

The cache layer could be distributed in distinct regions in which each cache
instance has not to have duplicate files within its neighbors’ caches. Therefore,
managing the cached content is a key problem in this data lake architecture.

In terms of caching data management, this project wants to solve a problem
that has many affinities with a Content Delivery Network (CDN [23]) and also
with the web content caching (especially with video file streaming [23]).

14

Background on
Machine Learning

Contents
2.1 Machine learning . 16

2.2 Reinforcement Learning . 20

2.2.1 Concepts and terminology 21

2.2.2 Approach details . 24

2.2.3 Algorithms . 27

This chapter provides a global picture of Machine Learning, and more specif-
ically, on the Reinforcement Learning technique used in this work.

15

Mirco Tracolli 2.1. MACHINE LEARNING

2.1 Machine learning

The Machine Learning (ML) term was coined by Arthur Samuel in 1959 to
represent the field where machines can learn how to do a specific task from
experience, without being explicitly programmed. The process is quite similar to
the real meaning but, as we can say that Artificial Intelligence is not intelligence,
Machine Learning is not learning at all [24]. ML consists of building and adapting
models with the support of data analysis. As a result, it creates a useful
experience that improves the ability of the machine to make predictions. The
adoption of ML techniques in the past 10 years dramatically increased to
improve machine problem-solving.

ML improvements have also a direct impact on Artificial Intelligence because
it is strictly related to learning automatically through experience. In fact, the
subtle difference of Artificial Intelligence is that the machine has to understand
and react autonomously, especially when it faces new situations, but it still
remains tied to what it has learned previously. That is the insoluble link between
the two fields and ML could be considered the first brick of the process because
it tries to extract insight from data.

Because of the current computing power and the spread of the information
and tools through the Internet, in modern days ML affects millions of people
and is present in a significant number of fields. The presence of open source
tools contributes to the evolution of the techniques, bringing unimaginable
results to theories of about 50 years ago, such as neural networks (1957) and
nearest neighbor algorithm (1967).

Therefore, we can describe the ML as a process of solving a particular
problem using some raw data (taken from nature, handcrafted, or generated
algorithmically) to build a statistical model that, somehow, will be used to solve
the practical problem. The key concept remains trying to pull out knowledge
that is not obvious from looking at the data.

Generally, ML uses statistics but lies at the intersection of computer science,
engineering, and statistics and also can appear in other disciplines. Because
it is applied in many fields there is a tremendous amount of data created by
humans that can be used, and also nonhuman sources of data are emerging
quickly. Data from sensors are coming as a deluge these days, just think of

16

Mirco Tracolli 2.1. MACHINE LEARNING

the several sensors we have in a mobile phone and the related data that they
generate. As a consequence, ML will be important in the next future, especially
in the current jobs. Quoting Hal Varian, the chief economist at Google:

The ability to take data—to be able to understand it, to process it, to
extract value from it, to visualize it, to communicate it—that’s going
to be a hugely important skill in the next decades, not only a the
professional level but even at the educational level for elementary
school kids, for high school kids, for college kids.

Apart from this, there is a common terminology that identifies the Machine
Learning field and that it is useful to understand the involved processes [25]:

• feature: called also attribute, it represents a measured value, and it is
related to the object it is analyzed, for example its weight or color. Features
can be numeric, binary, or sort of enumeration;

• instance: a collection of features that identify a specific sample or object.
If we consider the columns of a database as the features, an instance
represents a single row;

• classification: one of the basic tasks of ML. It solves the problem to
distinguish an object from another, predicting what class an instance of
data should belong using the features available;

• regression: the task of predicting a numeric value. It is another common
task in ML;

• training set: example set of quality data used to train the machine. It is
composed of several examples that are instances of the desired objects.
In this set, the target variable (attribute) is the machine goal, the desired
prediction. For example, in classification, it is the object class;

• test set: a sample of data with missing target variables. They should be
predicted by the machine;

• knowledge representation: the measure of what the machine has lear-
ned. This can depend also on the algorithm or the technique used. For

17

Mirco Tracolli 2.1. MACHINE LEARNING

example, in classification, could be the accuracy, that is how wrong the
machine has predicted the classes.

Hence, Machine Learning has many algorithms that solve different tasks
with respect to problem goals. Usually, we can classify the ML tasks into three
categories represented by how much feedback or information they have from
the analyzed system:

• unsupervised: here the machine tries to create a model that takes several
features and transforms them into valuable information starting from a
collection of unlabeled example (e.g. clustering method corresponds to
assign a cluster id to a set of features without knowing a priori information
about their membership). Thus, starting from an unlabeled input the
machine has to create a structure out of the inputs on its own;

• supervised (and also semi-supervised): in this case the model has access
to a collection where entries have information about their class. The ma-
chine has to learn how to distinguish the differently labeled data to infer
from features of the correct class. In practice, it creates a mathematical
function that relates input variables to the preferred output variables. In
the semi-supervised learning we have some entries without labels, used
to improve the predictive ability during the training phase;

• reinforcement: in this subfield of Machine Learning we have a machine
that interacts directly with an environment and receives rewards from it
with the goal to learn the best policy (action) to do in a specific situation.
This mechanism of rewards and punishments makes the machine explores
some solutions and exploit what it has already learned to find a balance
that makes to reach the goal.

In this work are used techniques related principally to the last class but in the
next chapter, there will be a detailed discussion on Reinforcement Learning al-
gorithms. Nevertheless, we have to mention that ML offers different approaches
to solve a wide variety of problems, such as neural networks, deep learning,
cluster analysis, decision tree learning, support vector machine, etc [24]. Also,

18

Mirco Tracolli 2.1. MACHINE LEARNING

those techniques are often combined to solve a specific task, but we will not
cover this topic here.

Certainly, it is not trivial to choose the right algorithm or technique, and it
depends on several problem factors. Nevertheless, the steps present during
the development of Machine Learning applications are [25]:

1) collect data: the first action, of course, is to collect samples and take
measures;

2) prepare input data: process the data to prepare them for the algorithm
used. It could be necessary to filter or remove attributes, to scale or
normalize values and also simply change the data format. This task is
also called pre-processing;

3) analyse the input data: an optional step where it is possible to check if
there is no garbage coming or if the data representation is what it should
look like. Usually, it is a step consumed by humans to verify the data
processing before the training phase;

4) train the algorithm: where the Machine Learning takes place. This will
not be done in unsupervised learning because there is no target value;

5) test the algorithm: the phase where the knowledge learned is put into
action and were to evaluate the algorithm;

6) deploy: when the algorithm is used in a real use-case and not only with
the test set data. In short, it put into practice the results of previous steps.

All of these stages compose the basic Machine Learning Engineering (MLE)
cycle [26], where a complex computing system is build using traditional software
engineering and ML tools and techniques. The cycle covers all steps from data
collection to model deployment for end-user customers.

Besides, there are several steps not mentioned here that encompass the
management of the ML as a service and that fall in the field of DevOps. These
involve the phases to maintain and serve the final application, and they are
at the same level as the deployment step. Indeed, we are focusing on the
data analyst point of view and not on service development. The process steps

19

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

Figure 2.1: Machine Learning engineering cycle, from problem issue to the
deployment of a solution

mentioned before are schematized in Figure 2.1. In the schema are also visible
the possible interaction between the phases and the cyclic paths to improve
the model on each iteration. In fact, it is normal to arrive at a model that
triggers some modification of the previous phases because its evaluation in
the test phase was poor.

2.2 Reinforcement Learning

In our lives, we experience the process of cause and effect that put the
base of our knowledge since we are born. Clearly, it is easy to understand that
the consequences of our actions give us information about ourselves and the
environment in which we are. In the field of Machine Learning, this aspect is
used to produce an agent that can interact with a particular environment, and
this kind of learning is named Reinforcement Learning (RL).

The RL approach is different from the other types because it puts the learner
in a situation of trial and error, where the consequences of its actions have an

20

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

impact on the environment and also on the problem’s goal. Furthermore, the
agent is punished or rewarded on the basis of its behavior, with the idea that,
in the future, it will prefer good actions and forego unwanted behaviors.

As a consequence, RL is focused on goal-directed learning from interaction.
For this reason, it differs from Supervised Learning because it does not use
a set of labeled examples provided by a knowledgeable external supervisor.
Supervised Learning has the object to extrapolate or generalize the responses
to acts correctly in situations not present in the training set.

Furthermore, RL differs from Unsupervised Learning because it does not
search for hidden structures in data collections. Still, it is quite similar because
it does not rely on examples of correct behavior.

Thus, RL takes place in a specific problem domain where we have a dynamic
environment and a clear goal to achieve. The knowledge the agent builds for
himself through the experience is, of all the forms of machine learning, the
closest to the kind of learning that humans and other animals do. Consequently,
many of the core algorithms of RL were originally inspired by biological learning
systems. Nevertheless, the challenges that arise in reinforcement learning, and
not in other kinds of learning, is the trade-off between exploration (that is
trying new things) and exploitation (namely applying what was learned). The
balance between them remains an unresolved problem and one of the most
delicate parameters to set.

Apart from this, RL has fruitful interactions with other engineering and
scientific disciplines and can fit a variety of problems (e.g. [27]), also because it
could be an independent component of a larger behaving system.

2.2.1 Concepts and terminology

The main actors involved in a Reinforcement Learning approach are the
agent and the environment [28]. Briefly, the environment is the world where
the agent lives and interacts with. In each step of interaction with the world,
the agent observes the state of the environment and decides the action to take.
Those actions can modify the state of the environment but, the world can also
change on its own.

21

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

Figure 2.2: Generic reinforcement learning interaction schema between the
agent and an environment

As a result, the agent perceives some rewards from the environment, which
tells the agent how good or bad is the current state of the world. In Figure 2.2
there is a simple schema of the actors’ interactions.

The agent main goal is to maximize its cumulative rewards, named return.
Thus, a RL method it’s just a way with which the agent can learn behavior that
leads to the problem goal.

Starting with this big picture, it is possible to define better all the compo-
nents and the concepts behind it:

• state: it represents a full description of the world in a particular step
of the interaction. Usually, it is indicated with s and there is no hidden
information, the agent knows all the world attributes. When the state is a
partial description of the world, thus there is some information omitted,
it is better know as an observation o. In this case, the world is partially
observed instead of fully observed;

• actions and action spaces: depending on the world, there are several
actions that the agent can do. The set of actions allowed by the envi-
ronment is named action space. The actions’ space can be discrete, thus
described by a finite number of actions, or continuous, where the actions’
value is represented by a real-value and there is a finer grane of control
over the action impacts;

22

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

• policies: characterize the brain of an agent because they indicate how
an agent reacts, specifying which action to take. These rules identify the
agent behaviors. If the rule is deterministic it is indicated with the relation
at = µ(st), where the rule µ is used to select the action a from the state s

at time t. Another type is stochastic rules denoted with π and indicated
with the following relation: at ∼ π(·|st). In the latter case the function π

outputs a probability action distribution over the state s at the time t;

• trajectories: a trajector τ is a sequence of states and actions in the world:
τ = (s0, a0, s1, a1, . . .). The initial state s0 could be any of the state available
in the start-state distribution (a set of all possible start-state) and usually
is randomly sampled;

• state transition: indicates what happened from state s at time t and the
state s′ at time t+ 1. This involves the environment natural laws and the
application of the agent’s action, that can be done in a deterministic way:
s′t+1 = f(st, at), where the transition function f applies the action a to
the state s at time t and we have the next state s′ at time t+ 1 as result.
Otherwise, if it is stochastic, the relation is the following: s′t+1 ∼ P (·|st, at).
It should be noted that the stochastic approach is often used when the
environment is uncertain, and it is not possible to choose an action
directly;

• reward and return: a reward r at time t is a value obtained by the function
R that is dependent on the current state st, the next state st+1 and the
action at: rt = R(st, at, st+1). As mentioned before, the return is the sum
of all rewards taken by the agent. It is possible to indicate that with R(τ),
because the agent tries to maximize the reward in a trajectory. Thus, it is
possible to distinguish two kind of return:

1) finite-horizon undiscounted return: that is the sum of rewards in a
fixed size window, denoted as R(τ) =

∑︁T
t=0 rt;

2) infinite-horizon discounted return: where there is a discount factor
γ ∈ (0, 1) that emphasize the recent rewards: R(τ) =

∑︁∞
t=0 γ

trt.

The notations explained above are useful to understand the environment
formalization. Consequently, the RL world obeys the Markov property, where

23

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

the transitions only depend on the most recent state and action, with no prior
history. In fact, the RL can be seen as a Markov Decision Process (MDP), that is
a 5-tuple ⟨S,A,R, P, p0⟩ defined as follows:

• S is the set of all valid states of the world;

• A is the set of the valid actions;

• R is the reward function that goes from S × A× S to ℜ;

• P is the transition probability function that gives the probability to arrive
in state s′ if the action a is applied to the state s: P (s′|s, a);

• p0 is the starting state distribution

2.2.2 Approach details

Independently of the return measure and the policy, the target of a RL is to
select a policy that makes an agent behave in a way to maximize the expected
return. If the transitions and the policy are traited as stochastic, we can define
the probability of a trajector τ of lenght k as follows:

P (τ |γ) = p0(s0)
k−1∏︂
t=0

P (st+1|st, at)π(at|st) (2.1)

Consequently, the expected return J over the policy π can be defined as:

J(π) =

∫︂
τ

P (τ |π)R(τ) (2.2)

The previous equation can be denoted also as the expected return E:

E
τ∼π

[R(τ)] (2.3)

Therefore, the optimal policy π∗, that is the central optimization problem in
a RL approach can be written as:

π∗ = argmax
π

J(π) (2.4)

24

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

To monitor and have feedback on the agent behavior it is often used a Value
Function to evaluate the state or the state-action pair. The output value is
the expected return E when starting with a certain state or state-action and
then follow a particular policy forever after. There are four main functions
to mention that are useful to get the value of a particular state and also its
optimal value when following a policy:

• on-policy value function: denoted as V π(s) it gives the expected return
E if starting from the state s and then always follow the policy π:

V π(s) = E
τ∼π

[R(τ)|s0 = s] (2.5)

• on-policy action-value function: denoted as Qπ(s, a) it gives the expected
return E if starting from the state s, take the action a and then always
follow the policy π:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (2.6)

• optimal value function: denoted as V ∗(s) it gives the expected return E

if starting from the state s and then always follow the optimal policy in
the environment:

V ∗(s) = max
π

E
τ∼π

[R(τ)|s0 = s] (2.7)

• optimal action-value function: denoted as Q∗(s, a) it gives the expected
return E if starting from the state s, take the action a and then always
follow the optimal policy in the environment:

Q∗(s, a) = max
π

E
τ∼π

[R(τ)|s0 = s, a0 = a] (2.8)

The value function equations respond to a dynamic programming method
that breaks the decision problem into smaller sub-problems, in particular, they
follow Bellman’s principle of optimality that is [29]:

25

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

Principle of Optimality: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

If we consider the stochastic process of interaction with the environment and
that principle, value functions could be rewritten. If we defined the following
shorthand:

− s′ ∼ P = s′ ∼ P (·|s, a) (where the next state s′ is sampled from the
environment’s transition rules)

− a ∼ π = a ∼ π(·|s)

− a′ ∼ π = a′ ∼ π(·|s′)

It is possible to write the on-policy value function Equations (2.5) and (2.6)
as:

• on-policy value function:

V π(s) = E
s′∼P
a∼π

[r(s, a) + γV π(s′)] (2.9)

• on-policy action-value function:

Qπ(s, a) = E
s′∼P

[︂
r(s, a) + E

a′∼π
[Qπ(s′, a′)]

]︂
(2.10)

Respectively, the optimal value functions Equations (2.7) and (2.8) should
be:

• optimal value function:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γV ∗(s′)] (2.11)

• optimal action-value function:

Q∗(s, a) = E
s′∼P

[︂
r(s, a) + max

a′
Q∗(s′, a′)

]︂
(2.12)

26

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

The main difference in the Bellman equation value functions, respectively
for the on-policy and the optimal, is the presence of max over actions, which
reflects the fact of the agent has to pick whichever action leads to the highest
value.

2.2.3 Algorithms

RL algorithms are divided in two categories, model-based and model-free.
In the last type, agents do not need previous knowledge of the environment
and interact directly with it to learn the optimal policy. Instead, the other type
has a predefined representation or model of the environment with which the
agent interprets the inputs. It is possible to see the model as a function that
predicts state transitions and rewards. Thus, the model-based approach is
more difficult to design due to the target of accurately reflecting the real world,
and often a ground-truth model of the environment is not available.

Moreover, a sensitive aspect is what to learn, such as i) policies, ii) action–
value functions (Q-functions), iii) value functions or iv) environment models.

However, in a general reinforcement learning task, the goal is to map sit-
uations to the actions that are best in those situations, but we have also to
take into account the extent of the agent’s actions. For example, when we
have multiple choices, and we want the agent to learn which is the best thing
to do, we are using the associative search task, so called because it involves
trial-and-error learning to search for the best actions and association of these
actions with the situations in which they are best. This kind of approach is
intermediate between the k-armed bandit problem and the full reinforcement
learning problem because it involves learning a policy, but each action affects
only the immediate reward. To have full reinforcement learning we have to
allow the actions to affect the next state.

The central idea of the modern RL is the temporal-difference (TD) learning,
a combination of Monte Carlo ideas and dynamic programming ideas. This
method updates estimates based in part on other learned estimates, without
waiting for a final outcome (we say it bootstraps).

In this context, there are several algorithms that could be used [28] and the
Q-Learning is a family of algorithms that approximates Q0(s, a) of the optimal

27

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

action-value function Q∗(s, a). This kind of approximators follow the Bellman
principle Section 2.2.2 and they use as objective a function based on the Bellman
equation (Equation (2.12)).

The Q-Learning implementation consists of a loop for each step of the
problem episodes, where it updates the action value for the current state
(Q(s, s)) observing the consequences of the action on the environment (that
leads to the next state s′). The algorithm procedure is shown in Algorithm 1.
The core part is the update step at a certain time t.

Algorithm 1: Q-Learning [30]
Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0;

foreach episode do until s is terminal
Initialize all s ∈ S;
foreach step of episode do

Choose a from s using policy derived from Q;
Take action a, observe r, s′;
Update Q(s, a) with r;
s← s′;

Assuming that s is the state at time t, s′ is the state at time t+ 1 and r is the
reward taken at time t+ 1, the Q-Learning update function can be resumed in
the following equation:

Q(st, at)← Q(st, at) + α [rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (2.13)

As can be deducted from the Equation (2.13), it makes no decisions to select
the best next action, but it simply selects the maximum value from the next state
st+1. This kind of behavior is named off-policy, and it enables the possibility
to use data collected at any point during the training, regardless of the agent
choices and the environment exploration.

An important part of such an equation (Equation (2.13)) is the r component:
the reward. Several algorithms, included Q-Learning, uses a mechanism of
delayed rewards that simulates what we can see in nature with the stimuli.

28

Mirco Tracolli 2.2. REINFORCEMENT LEARNING

In detail, actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards, such as the mechanisms of
punishment influence the current and next decisions of an animal that reacts
to a stimulus.

The Q-Learning Algorithm 1 is one of the most adopted due to its implementa-
tion simplicity: it can be applied online, with a minimal amount of computation,
to experience generated from interaction with an environment.

The action selection at the time t can be performed with several algorithms.
The most used is the ϵgreedy mechanism, that is a simple method to balance
exploration and exploitation by choosing between them randomly. In details,
there is an ϵ ∈ [0, 1] value decreasing during the time and the action for the
state st is selected from Q as follows:

• maxQt(a) with probability 1− ϵ

• random action a with probability ϵ

Thus, during the step loop of the Algorithm 1, the agent will have less chance
to randomly select an action (exploration), and instead, it will apply what it
learned (exploitation).

Moreover, the algorithm is simple to interpret because the action taken by
the agent is understandable from the Q values, and it is given by the following
equation:

a(s) = argmax
a

Qθ(s, a) (2.14)

In conclusion, the Q-learning approach tends to be less stable because it
indirectly optimizes the agent performance by training a local Qθ that satisfies
the optimal choice. However, this method takes advantage of reuse data more
effectively than other optimization techniques due to its off-policy update.

29

Related works

In this section, the solutions already available in the literature are discussed,
addressing the main difference with respect to the presented work.

There will be presented several examples as a reference for similar problems.

As presented in Chapter 1, Data Lake is an environment where data are
principally exchanged through the network. Also, there are similarities with
the World Wide Web content management, where the caching systems have
a role to improve the reliability of the contents. The scenario is also similar
because in both, independently of the field of application or the users, there is
an ever-growing data size and demand.

As already mentioned, the most used strategies adopted to manage the
caching policies are LRU and LFU [14], that works for the majority of the caches.
Even they are simple, these strategies cannot deal with the dynamics of content
popularity and network topologies. Recent efforts have gradually shifted toward
developing learning and optimization-based approaches, that can smartly
manage the cached content. The problem is not to be taken lightly due to
the increasing storage capacity per decade [31] which consequently allows a
significant increase in data production. The amount of data can vary depending
on the field and the Data Analysis takes advantage of this huge volume of
information to produce new knowledge. In the Big Data field, it is possible to

31

Mirco Tracolli

notice the limits of golden standard policies like LRU [15].
Consequently, several Machine Learning techniques have been proposed to

improve file caching and, in general, better content management.
In [32] the authors propose to train a Deep Neural Network in advance to

manage better the real-time scheduling of cache content into a heterogeneous
network. The target was to minimize the network energy consumption and
reduce transmission delay via caching placement and content delivery opti-
mizations. The better content management aims to have a direct impact on
the infrastructure communication, indirectly improving the user experience
with a better popular content serving. Besides the objective is quite common
in caching management, the approach is not generic and its application field
is very specific: e.g. it uses a cost function related to the network repeaters.
Furthermore, it is not set in the Data Lakes field, as a consequence, the study
concerns a low number of files that are requested with respect to a real use-case
involving Big Data.

With the increase in traffic and transmissions, some network objects like the
routers have now the capability to cache objects and serve directly upon user
requests. This approach led to infrastructure configuration like the content
delivery network (CDN) where the proxy servers are distributed spatially relative
to end-users with the capacity of caching popular data for better content
delivery. Also, with this configuration, there are trends of objects that are
requested once (∼ 70% in [33] web content analysis). Thus, the most difficult
decision remains which object to cache and evict. For this purpose, various
solutions have been tried.

In [34] a deep recurrent neural network is applied to predict the cache
accesses and make a better caching decision. The purpose was to predict
the characteristics of an object ahead of time. In particular, their goal was to
predict the popularity of an object to reduce the network avoiding the eviction
of future popular objects. As a consequence, they expected to increase the
number of cache hits. Howsoever, that project concerns cache and synthetic
dataset sizes far from the Data Lake volumes.

Another example of prediction approach is in [35], where predictions are
used to optimize the eviction of a cache with a fixed size. However, this cover
the aspects to mitigate the the performance when there is a not perfect oracle,

32

Mirco Tracolli

that is often the situation in a Data Lake context.
Big Data and Data Lakes are possible thanks to distributed file systems.

In [36] there was an attempt to automate the caching management of a dis-
tributed data cluster using the Gradient Boosting Tree. But, in that project
they have a small cache size with file distributed as chunks in the storage
system (Hadoop Distributed File System, HDFS) and still, the number of unique
files is not high in comparison of a Big Data target. Moreover, it depends on
a technology related to data distribution. Still, that study tried to lower the
infrastructure load with a better caching prediction.

It is evident that the environment is a critical aspect to take into account
when we talk about caching management and, due to the dynamic set, there is
needed of a more flexible and autonomous solution that can adapt itself to
new solutions.

Recently, techniques that uses the Reinforcement Learning approach are
emerging. For example, in [37] a Deep Reinforcement Learning (DRL) is used to
cache the highly popular contents across distributed caching entities in the
context of content delivery networks (CDN). However, even if the system allows
an online adaptation the experiment uses a small number of files that have to
be placed optimally in the hierarchical cache system.

There are also DRL approaches like the Wolpertinger architecture [38] used
in [39] that tries to optimize the cache hit rate. But, in that case, the authors
assume that all the files in the cache will have the same size and this is not
usual in a Data Lake context where the file sizes could differ, and thus, they are
important for better data management.

Thus, the problems solved by the cited works are not comparable in size
with the ones that are the target of this project. In Data Lakes there are a
higher number of files to manage and a huge amount of requests per day (more
details in the use case). Moreover, a direct comparison is not trivial because
they mostly use synthetic datasets not released online and generated with a
specific distribution that matches their use cases, for example, the network
traffic or HDFS data requests. Conversely, this thesis is discussed as a generic
approach to the problem that respects the Data Lake model. However, the core
of caching management lies in when and what to add or evict, and they are
aspects of the same importance.

33

Problem description

Contents
4.1 Definition and targets . 36

4.2 Context . 39

4.2.1 Data-sets . 44

4.3 Simulation environment 50

In this section, the problem of this project will be addressed in detail. Data
sources used will be discussed as well as the origin of those data. Moreover,
there will be additional information on the real-world use case that is ap-
proached with the intent to give an idea of the size and the complexity of the
problem. The topic context is focused on the Compact Moun Solenoid (CMS [40])
computing model and its evolution towards Data Lakes.

35

Mirco Tracolli 4.1. DEFINITION AND TARGETS

4.1 Definition and targets

This thesis project aims to improve the cache content management in the
context of Data Lakes (Section 1.4). The cache can be seen as an intermediary
object between the client and the storage. A client can be anything is requesting
a file: a real user, a program, or any piece of software. The important thing is
to satisfy the highest possible number of requests. In particular, as shown in
the next chapters, the thesis is contextualized in a specific use case that is the
High Energy Physics (HEP) Data Analysis and the caching layer could have a
high influence on user-experience. Besides the context, this work addresses
the problem using agnostic approaches. Because the functionality of the cache
is similar to other contexts, better content management should bring unaltered
data access and easier infrastructure management. Unaltered data access
means that the cache has a minimal and no perceptible impact on the data
flow and the easier management concerns the way the caches are built and
distributed to mitigate the access to the main storage.

From the client’s point of view, the request will be accepted by a Data Lake.
The caching layer takes care of the underground work needed. The possible
choices by the caching layer are mainly three:

• If the file is already in the cache memory, the cache will serve it;

• If the file is not stored in the cache:

• The cache can retrieve the file from the storage and then serve it
from the memory (Figure 4.1);

• The file is served with the cache as proxy, without storing the file
(Figure 4.2);

Consequently, the Data Lake environment forces the requests to pass
through the cache system to stress the caching mechanisms. For this reason,
this thesis stresses caching content management as the main target of the
project. This work exploits machine learning techniques in order to optimize
and automate cache management. The main motivation is to reduce as much
as possible the hardware resources needed for an effective cache. In other

36

Mirco Tracolli 4.1. DEFINITION AND TARGETS

Figure 4.1: Action schema that depicts when the cache retrieves a file on miss

Figure 4.2: Action schema that shows when the cache is used as a proxy to serve
a missed file

37

Mirco Tracolli 4.1. DEFINITION AND TARGETS

words, the main goal would be to obtain the very same performances by
using a smaller cache thanks to an intelligent, autonomous, and not statically
configured caching policy management.

Another important issue addressed by this project is how to evaluate the
benefits of an approach. For example, since the caching system is a part
of the services and affects the flow of data, a possible metric could be a
measurement for the Quality of service (QoS). In detail, the desired behavior is
to increase the amount of data served by the cache (Figure 4.3). Also, because
services are strictly dependent on the network in the Data Lake model, the
traffic prioritization and data resource management is the characteristic of the
desirable QoS in this project context.

Figure 4.3: Basic environment schema with focus on throughput aspect, a metric
to evaluate the caching behavior

As already mentioned, the result of this project aims to be independent
of frameworks and technology used. Also, this project is to develop a generic
experiment-agnostic model that could be applied to any HEP Experiment adopt-
ing the Worldwide LHC Computing Grid (WLCG) Data Lake model (Section 4.2).
Thus, it evaluates the different methods in a simulation environment described
in the following chapters. For example, the simulation can use also a dataset
taken from the real world analysis (described in Section 4.2.1) in the domain of
HEP without taking care of the different technologies used to manipulate the

38

Mirco Tracolli 4.2. CONTEXT

data, e.g. the ROOT Analysis Framework [41]. Consequently, the resulting ap-
proaches can be deployed in any context despite the technology requirements.

4.2 Context

The Large Hadron Collider (LHC) at CERN (the European Organization for
Nuclear Research) is the world’s largest and most powerful particle accelerator.
The LHC consists of a 27-kilometer ring of superconducting magnets with a
number of accelerating structures to boost the energy of the particles along the
way. The particle beams inside the LHC are made to collide at four locations
around the accelerator ring, corresponding to the positions of four particle
detectors: ATLAS[42], CMS [40], ALICE [43], and LHCb [44].

Since the design phase of the experiments, the Worldwide LHC Computing
Grid (WLCG) project was established, with the target to develop, deploy, and
operate a grid distributed model in order to deal with the huge amount of data
to be processed. This global collaboration is composed of around 170 comput-
ing centers in more than 40 countries, linking up national and international
grid infrastructures. In particular, the referred grid is a heterogeneous and
geographically distributed computer resource used to reach a common goal, in
this case, the High Energy Physics data analysis.

The WLCG grid system worked nicely since the beginning of the data taking
of the four experiments (2009) supporting the continuously increasing demand
for computing resources.

Regarding the next critical challenge at LHC, it is expected for 2028, when
the next generation of the accelerator, named High-Luminosity Large Hadron
Collider (HL-LHC), will be fully operative. The operating conditions of the
HL-LHC will increase and thus the projections on data and computing needs
will be higher than a factor of ∼ 50. Also, just the costs relative to the storage
infrastructure are estimated to be around 16 times higher than today (Figure 4.4).
With such expectation, it becomes clear that software and computing of the
experiment must improve and also the current grid model must be reviewed and
improved as well, especially if the system starts to manage Exabytes instead of
Petabytes of data.

39

Mirco Tracolli 4.2. CONTEXT

Figure 4.4: Projections of the increase of data storage at CMS

Recently, many architectural, organizational, and technical changes are
being investigated to address this challenge and one of the most promising
prototypes (especially related to data analysis) is the WLCG data lake model [1,
2], a storage service of geographically distributed data centers connected by a
low-latency network. Such architecture is designed with the intent of decreasing
the cost and to leverage the economy of scale.

Data Lake at WLCG

The Worldwide LHC Computing Grid (WLCG) collaboration is planning a
strategy to face the storage challenge of the next decade still staying with a flat
budget for funding. It is clear that the current paradigms of data and computing
management cannot sustain future requirements and a breakthrough is needed.

The WLCG community calculated that storage and computing resources nec-
essary in the future with the scheduled upgrades is a factor of ∼ 50 and above,
despite any current technology evolution. Thus, to bring performance and
efficiency without forgetting operation simplification, the community thought
and are experimenting with several solutions to address the problem. One
of these solutions, especially concerning the storage side, is the Data Lake
implementation. In details, this model is meant for i) reduce storage costs,

40

Mirco Tracolli 4.2. CONTEXT

ii) abstract the data layer and iii) manage better the current facilities. The
proposed model is named "Data Lake straw model" and it is a declination of
the canonical Data Lake that involves not only the information management. A
Data Lake in the Straw Model is a group of data and compute centers with no
defined borders by construction. The world is divided into several Data Lakes
that are associated with network latency. The internal configuration may vary
on the scope of the community and experiment needs. Moreover, a Data Lake
hosts a distributed analysis working set of data and several caches are used
to reduce the impact of latency and reduce network load. The data can be
relocated from one Data Lake to another and the most popular datasets may
be hosted in more than one Data Lake.

Starting with this brief description, it is possible to analyze the single com-
ponents that are designed within the Data Lake and their various roles:

• Archive Center (AC): responsible for archive custodial data, the source of
information. It should use not performant storage like tape drivers;

• Data and Compute Center (DCC): focused on disk storage faster than AC
(mechanical hard disks) but with also computing power, it is used to
increase the quality of service (QoS) for analysis tasks;

• Compute Center with Cache (CCC): as the meaning, it is a center focused
on calculus without memory to store the data but with a fast cache to
serve the analysis jobs;

• Compute center without cache (CCDA): a poorer version of CC with also a
lower volume of the cache. It relies especially on the network to access
data. It has no disk space and consumes computing jobs taking data from
either a CCC or a DCC.

In Figure 4.5 there is an example schema of the Data Lake components.
Clearly, the network connections have a significant role in the lake composition
and also if we think about the links with other lakes.

Without a doubt, the Data Lake description of Section 1.4 is included in the
WLCG model. Even so, this project is stressed about the cache component, and
because of this, the schema is further simplified to tackle the specific target of
cache data management.

41

Mirco Tracolli 4.2. CONTEXT

Figure 4.5: WLCG Data Lake schema example with focus on internal components

Data analysis at CMS

In the field of Big Data, there are many sources from business to data science.
This work is taken a use case from the latter one, to be specific, in the High
Energy Physics field. It is used as a real case experiment in the context of the
Compact Muon Solenoid (CMS) data analysis workflow using their request data
logs. The CMS experiment is one of the greatest experiments at CERN, and it
deploys its data collections, simulation, and analysis activities on a distributed
computing infrastructure involving more than 70 sites worldwide.

The current CMS computing environment is a hierarchical distributed in-
frastructure with a primary Tier-0 center at CERN, supplemented by seven
Tier-1, more than 50 Tier-2, and many Tier-3 centers at national laboratories
and universities throughout the world. The CMS software running on this high-
performance computing (HPC) system executes numerous tasks, including the
reconstruction and analysis of the collected data, as well as the generation and
detailed detector simulation of Monte Carlo (MC) event samples. Recently, they
are experimenting with new models to manage the whole computing infrastruc-
ture due to future updates. Thus, it has aroused our attention because they

42

Mirco Tracolli 4.2. CONTEXT

are moving towards the Data Lake model described in Section 4.2 dealing with
a huge amount of data (hundreds of PetaBytes each year). Moreover, this case
is particularly interesting, and it holds a rich source of information for system
tuning and capacity planning: a data log of the past years’ analysis collected by
the monitoring infrastructure deployed at the Worldwide LHC Computing Grid
(WLCG, Section 4.2). Logs are full of data and metadata about the usage of the
distributed computing infrastructure by its large community of users. These
referred monitoring resources are still growing, and now they are stored into a
Hadoop cluster [45] and they occupy nearly 4 PetaBytes.

43

Mirco Tracolli 4.2. CONTEXT

4.2.1 Data-sets

This work uses information on historical user analysis activities at CMS. It
has to be mentioned that also several synthetic datasets are available, but they
are out of the scope of this work (more information are in the Appendix A.3).

Regarding the CMS source, the metadata contains details such as the file
name, the file size, or the file type. The information contained in the log
database refers to the data popularity research made in CMS [46, 47]. The
collected information is archived per day and represents all the file requests
that should be served.

The activities submitted by the users are composed of different parts
schematized in Figure 4.6. Users can launch a task composed of several jobs
that require different files.

Figure 4.6: Activity composition in a task of a data analysis user

The activities stored in the log files are requests coming from the whole
world, depending on where the CMS users are. As a consequence, it was decided
to filter those requests by the field region, which represents the state on where
the request was made. The regions chosen for our experiments are the Italian
(IT) region and the United States (US) region. Furthermore, the project focused
on the work on the year 2018 requests.

The data analysis per day of the mentioned sources shows that the average
number of requests per file is not high, also counting only the files requested
more than once. Therefore, the number of files requested per day is comparable
to the number of requests per day.

The number of tasks is two orders of magnitude lower than the number of
jobs and the number of sites (the origin place of the request which represents
a computing center) is much lower than the number of users. This pattern is
the same in the two selected regions, the only difference is that in the US we
have a greater amount of requests.

44

Mirco Tracolli 4.2. CONTEXT

Figure 4.7: Data general statistics of Italian requests in 2018 showing the number
of files, requests, jobs, tasks, users, and sites during the year

45

Mirco Tracolli 4.2. CONTEXT

Figure 4.8: Data general statistics of United States requests in 2018 showing
the number of files, requests, jobs, tasks, users, and sites during the year

46

Mirco Tracolli 4.2. CONTEXT

Another sensitive information is the file size and, because of the huge
amount of requests, it is very important to correctly manage the data caching.
The Figures 4.9 and 4.10 show that we have files from 1GB to 40GB but the most
are under 10GB, in particular Between 2 and 4GB.

Figure 4.9: File size month distribution of Italian requests in 2018 showing the
most common sizes for the file requested in each month of the year

From the analysis of the data types, the requests seem equally distributed
between data types mc and data. The mc data are files concerning Monte Carlo
simulations and data are real data from the experiment. The file types, which
represent the typology of the file requested, are distributed based on the tasks,
and it is not possible to infer any specific pattern on this distribution, but it
has a confirmation of data type distribution if we compare the file type with
and without SIM, that indicates if the file is a data type Monte Carlo or not.

This preliminary analysis of monitoring data provides useful information
about the dimension of the problem. The number of requested files is very
high with respect to the number of users and sites where the jobs are run.
Nevertheless, the number of requests per file is not too high and the average
value is small even if we consider only the files requested more than once.

Moreover, this behavior is confirmed in the other regions and, as a conse-
quence, it is expected to have comparable results regardless of the region. The
main difference is with the USA region that has a higher order of magnitude in

47

Mirco Tracolli 4.2. CONTEXT

Figure 4.10: File size month distribution of United States requests in 2018
showing the most common sizes for the file requested in each month of the
year

Figure 4.11: Data type composition of Italian requests in 2018 showing insight of
domain-specific information about the file type

48

Mirco Tracolli 4.2. CONTEXT

Figure 4.12: Data type composition of United States requests in 2018 showing
insight of domain-specific information about the file type

the number of requests although, the average number of requests is compara-
ble and also the relationship between the total number of requests and the
number of sites, users, and tasks are the same.

The whole analysis confirms that tackling this problem falls in the field of
Big Data due to the file sizes and the number of requests.

49

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

4.3 Simulation environment

Enhancing an object in a specific context is not trivial and the Data Lake
scenario is complex and has many actors as shown in Section 4.2. Thus, we want
to take control of the different techniques used during the experimentation
for a better understanding of the consequences and to have a reproducible
toolchain for future development. For these reasons, a specific environment
was built, as close as possible to reality, according to the WLCG specifications
and behaviors (Section 4.2).

Figure 4.13: Illustration of environment implementation with the focus on the
components selected to solve the problem

The environment model uses fewer components compared to the full orga-
nization of a Data Lake at WLCG to put in evidence the reaction of the cache
system. As it is depicted in Figure 4.13, the project focuses on the interaction
between the clients and a Data Lake composed of a computing center with a
cache layer and the main storage system. Thus, the principal component is the
cache itself, compliant with the real object used in the WLCG Data Lake model.

50

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Moreover, this model can be used for specific datasets of the real-world use
case (described in Section 4.2.1) or also synthetic datasets.

The simulation environment allows experimenting with the cache in the
Data Lake scenario analyzing the results, with the information contained in the
logs. Each approach used to modify the cache behavior can be stressed using
several configurable parameters and features used as input to the cache system.
The tool created in this project is convenient to use for experimentation before
deployment in the real world, where technologies are dependent on the type
of data flow and the field of application. However, it is possible to use the same
tool to provide a service to external sources.

In fact, this project aims to be as generic as possible to be adapted in any
context of caching management, without relating to any framework. Of course,
it is still possible to use domain-specific information to enrich the explored
method. Hence, the proposed environment aims to experiment with an Artificial
Intelligence that auto adapts itself to new situations in the context of Data
Lakes (Section 4.2), despite the domain of the data or the current topology of
the network.

As mentioned before, the model has three basic components: i) a main
storage system (where the files reside); ii) a cache that serves the requests;
iii) and a client that asks for data. The simulation consists to resolve all the
client’s requests and serve the files from the cache.

As a result, the simplified model allows testing different policy mechanisms
to control the request flow, deciding when the cache has to behave like a proxy
or to not store a file in memory. As a rule, the main actions available in the
simulation environment are to store and not store a file in the memory. When
the cache decides to not store a file it is served in proxy mode, which means
that it will fall back on the network.

The Figure 4.14 shows a schema of the environment and the main statistics
collected to evaluate the behaviors. These data allow us to define several
metrics explained in further chapters.

Accordingly, to the previous description of the environment and the schema
in Figure 4.14, there is an amount of data read from the storage that splits into
two parts:

i) read on miss: data served in the proxy mode because files are not stored

51

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Figure 4.14: Simulation environment schema showing the several aspects taken
into account and the units measured

in the cache memory;

ii) read on hit: data served directly from the cache memory.

An ideal cache aims to hold the read on hit higher than the miss one to
unload as much as possible the main storage server. However, this is not always
possible as anticipated with the analysis in Section 4.2.1 and it very depends
on the client requests. For this reason, introducing new metrics is necessary to
evaluate and compare different algorithms in the Data Lake scenario.

In addition, since the simulator is used to stress the cache decisions, it
uses the simple topology of schema in Figure 4.14 to calculate the hypothetical
daily bandwidth without any mechanism of the file transfer. This limit is used
as a threshold for the daily requests and, if it is exceeded, the request is not
managed by the current cache. This mechanism is used in the real world to
redirect requests to other caches when the selected one is overloaded. Another
approach that could be used is to queue the unresolved requests, but it is
not useful in the current simulation due to the caching layer described in
Section 4.2, where it is expected to have a topology of caches organized to
collaborate.

The bandwidth between the cache and the main storage is an important
aspect to monitor, as well as the two main quantity derived from cache opera-
tions:

52

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

i) written data

ii) deleted data.

As a consequence, the previously described watermarks impact all those
quantities. The watermark thresholds are a reference for the cache to unload a
bulk of files when a certain condition is satisfied. In this mechanism, there are
two watermarks, an high watermark and a low watermark. When the occupied
capacity of the cache reaches the high watermark, the cache starts to delete
files until the low watermark is reached. These two thresholds are parameters
that can be easily configured in the simulation and also disabled.

In conclusion, there are several parameters to keep under control for the
cache content management improvement. It is not trivial to translate the gain
taken with an algorithm or an approach with respect to the user experience
that is strictly related to data access. Of course, the better the cached content
is managed and the greater will be the end-user impact. However, this would
be only a side effect because the main goal of the project is to automate and
facilitate the management of the cache layer for system maintainers.

The Go programming language

The core of the project is the simulation environment and its modules that
allows deploying the different proposed approaches. Because of the great
importance of this component, the choice of the programming language cannot
be done lightly. In fact, despite the great number of languages available, the
final decision was to use the Go programming language [48, 49]. Go allows us to
create a portable environment without losing in performances and, in addition,
it is a very popular choice to build cloud services and tools. Also, the language
allows deploying static executables in a variety of architectures and this is a
very useful feature in a cloud environment that includes devices from the IoT
to HPC (High-Performance Computing) servers.

Citing The Go Programming Language book [49]:

Go is sometimes described as a "C-like language," or as "C for the
21st century."

53

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Go was influenced by several languages, such as C, Alef and others. In
particular, from C has kept the way of compiling to efficient machine code and
cooperating naturally with the abstractions of current operating systems. Also,
it has elements of communicating sequential processes (CSP) and concurrency
programming, and it also has a garbage collector.

Moreover, the Go language includes a whole tool chain, thus with the Go
project, they are available the tools and the standard libraries. The main
strength of this language is its simplicity [49]:

Simplicity requires more work at the beginning of a project to reduce
an idea to its essence and more discipline over the lifetime of a
project to distinguish good changes from bad or pernicious ones.
[...] convenience. Only through simplicity of design can a system
remain stable, secure, and coherent as it grows.

Finally, simplicity does not mean that it is not performant [49]:

in practice Go gives programmers much of the safety and run-time
performance benefits of a relatively strong type system without the
burden of a complex one. (...)

In conclusion, Go is a perfect match for a cloud environment. The portability,
the performances, and the ability to stay close to the system, without losing
modern programming patterns such as the concurrency and async tasks, make
Go a good programming language to solve the problems addressed.

Cache extensions

The cache object in the simulator is a struct that matches the interfaces
in Figure 4.15. Creating a struct that satisfies those requirements implies the
possibility to use the custom object as a cache inside the simulator. Several
methods of the struct are necessary to produce the statistics and the informa-
tion needed to understand the behavior of the cache. Thus, it is advisable to
extend the basic cache already available in the simulator, such as LRU. Also, the
already implemented approaches could be used as references for new custom
methods.

54

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Figure 4.15: Golang cache interface used in the simulator

55

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Simulation parameters

The simulator has been developed to be highly customizable in each of its
aspects. In Table 4.1 are described in detail the main customization parameters
available for the simulation. Other parameters depend on the algorithm or
technique used.

Parameter Info

data source specifies the source of the simulation, that can
be a file or a folder that contains several files

type of the simulation indicates if the simulator has to follow a differ-
ent flow, for example loading a previous cache
instance or not

window length of the simulation. It is possible to indicate
the start, stop and the size of the window. The
unit is the day

region filter data by a specific region

cache type the algorithm or the approach to use

cache dimension the size of the cache memory in two compo-
nents: the value and the unit. E.g. for a cache of
100Terabytes is value = 100 and unit = T

bandwidth the available bandwidth with value entry in Gbits.
Also, the redirect mechanism can be activated

watermarks controls if the cache has to use the watermarks
or not and also both, the high watermark and
the low watermark

Table 4.1: Simulation parameters

As can be reported from Table 4.1, the cache type parameter is used to select
a precise algorithm or policy for caching content management. The cache
simulator supports several types of replacement policies out of the box that is
used for comparison:

• Least Recently Used (LRU): the golden standard policy used in caching
systems;

56

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

• Least-Frequently Used (LFU): another widely-adopted policy that does
not take into account the time of the request but counts how often an
item is needed;

• Size Big and Size Small: policies that remove files starting respectively
from the biggest and the smallest.

In addition, it is possible to extend source code to implement new policies
and select them with the same configuration file (Section 4.3).

The desired configuration can be described as a simple YAML file [50]. YAML
stands for "YAML Ain’t Markup Language" and it is a human-readable data
serialization language. In the Figure 4.16 there is an example of simulation
environment configuration:

Figure 4.16: Simulation environment configuration file example in YAML

57

Mirco Tracolli 4.3. SIMULATION ENVIRONMENT

Simulation analyzer

In addition to the previously described simulator, an analyzer was built to
easily navigate the results. The simulation produces several comma-separated
values following the CSV standard [51]. The results are often compressed for
convenience and the analyzer is written in Python[52] using the framework
Plotly [53]. The Python environment is commonly used for Data Analysis pur-
poses and in fact, has a lot of very useful frameworks and libraries.

The analyzer presents the results of the simulation in a practical dashboard
that can be accessed through the browser. The dashboard is an independent
service, and it is cloud-ready, thus it can be deployed in a container. An example
is shown in Figure 4.17. With such a dashboard it is possible to filter, select, and
compare the results of the different approaches used.

Figure 4.17: Result dashboard example screenshot

58

Smart Caching for Data Lakes

Contents
5.1 Exploring file scoring . 60

5.2 An agent for a better addition 62

5.3 Smart caching with double agents 66

This chapter introduces the various approaches that have been exploited
in the project using the simulation environment described in Section 4.3. It
starts exposing a method to measure the quality of a file from its statistics.
This quality is then used to better evaluate the possibility of storing valuable
information into the cache memory and to discard not useful files.

Then, using the notions presented in Section 2.2, it depicts the Artificial
Intelligent approach: Smart Caching for Data Lakes (SCDL). SCDL is described
in its two versions: the first one, which focuses only on filtering the client
requests to store the most valuable data, and the second one, an upgrade of
the previous version where the agent decisions affect also the eviction of the
stored files.

The various algorithms will be described in detail to explain the methods
and the ideas used to tackle the problem of cache content management.

59

Mirco Tracolli 5.1. EXPLORING FILE SCORING

5.1 Exploring file scoring

The first study was focused on how to guess the goodness of a file to
increment the content of the cache memory [54]. The target of this approach is
exploring a method to evaluate the file before making the decision to store it.
Such a method uses the file features and collects statistics to improve cache
behavior.

This technique named weight function should aid the cache to accept only
files that matter. As shown in Figure 5.1, the basic idea is to evaluate a file
request assigning a precise score and choose if it is worth to be stored.

Figure 5.1: Schema of weight function idea to select the file to store

This approach is based on the concept of file weight (a score) which is used
to determine if the cache has to accept or not the file. The policy is: a file with
a smaller weight is more likely to be inserted into the cache. To accomplish this
task, several statistics about the file are collected to compute the score, and
the average weight value of all files is used as a threshold for cache addition.
Of course, the threshold could be changed but verifying the best threshold is
out of the scope of this thesis. Besides, the intent of this static technique was
principally to have a better insight from the file to use in a more dynamic and
auto-adaptive approach such as Reinforcement Learning.

The algorithm

Given a requested file f at time t, it considers the following features:

60

Mirco Tracolli 5.1. EXPLORING FILE SCORING

• numRequests(f, t): the number of requests (frequency) to f until the
current time t

• size(f): the file size

• requestDelta(f, t): the average time difference between the previous file
requests and the last one (a relative recency)

The average time difference is calculated on the last k = 32 requests (or on
all the last requests, if the file has been requested k < 32 times), according to
the following formula:

requestDelta(f, t) =

∑︁k−1
i=1 time(f, k)− time(f, i)

k
(5.1)

where time(f, i) is the time of the i-th request to f (time(f, k) is the time of
the last request).

The statistics to compute the score (or weight) of a file are kept in a time
window of 14 days. The threshold to accept a file is calculated on the median
value of all the collected file weights until time t.

With this approach were investigated 3 functional families of the weight func-
tion which aggregates in different ways the following features: numRequests,
size and requestDelta.

Each of the 3 families have α, β, γ as parameters

• Additive family

weightA(f, t) = α · numRequests(f, t) + β · size(f)+
γ · requestDelta(f, t)

(5.2)

• Additive-Exponential family

weightE(f, t) = numRequests(f, t)α + size(f)β+

requestDelta(f, t)γ
(5.3)

61

Mirco Tracolli 5.2. AN AGENT FOR A BETTER ADDITION

• Multiplicative family

weightM(f, t) = numRequests(f, t)α · size(f)β·
requestDelta(f, t)γ

(5.4)

In the experimentation phase, several combinations of function parameters
α, β, γ will be tested to evaluate the cache reaction for each function. The
expected result should be a combination of the parameters that enhance the
importance of the file feature to improve the cached content during the time.

5.2 An agent for a better addition

As introduced in Chapter 4, the objective is to apply the method to a comput-
ing environment where data can vary a lot by type and size. Moreover, the client
requests may vary depending on the trend of the analysis or on a special event
incoming. Thus, searching for a score using statistics to make a better content
of cache memory, as explained in Section 5.1, could be not enough for overall
optimization of a cache layer, including the user experience, because it is not a
self-adapting solution to the cache problem but only a better request filtering
for a hotter cache. In fact, a cache system should do a more fine job adapting
itself to the requests and choosing autonomously what to accept or not, relying
only on the client’s necessities. For this reason, following the same idea of
the Weight Function, the Smart Caching approach is conceived as a smarter
solution to filter the file accepted by the cache. Due to the autonomous require-
ment, the choice to use a Reinforcement Learning technique was preferred to
the creation of a model or to other Machine Learning techniques.

Workflow

The proposed approach is based on Reinforcement Learning (RL), a Machine
Learning paradigm that learns how to dynamically operate in any environ-
ment. The main technique used is the associative search task, known also as
contextual bandits in literature [30].

62

Mirco Tracolli 5.2. AN AGENT FOR A BETTER ADDITION

It uses the trial-and-error technique to search for the best actions in a given
situation. As a control algorithm, it uses the off-policy Q-Learning to update
the action values. Furthermore, delayed reward mechanisms are integrated
to improve the action decisions due to the cache environment changes. The
environment is described in Figure 5.2 and, in detail, it is composed of a cache
with a specific size of S and a network bandwidth B with the main storage.

Figure 5.2: Schema of the environment of single-agent approach that uses the
information of client request to accept or not a file into the cache

State Space

The state s is composed using the basic information (features) taken from
the file f statistics collected during the environment lifetime. Thus, to decide
whether a file f should be stored in the cache it selects the following features
of f : i) the size (sf), ii) the number of requests (nf), and iii) the delta time (tf),
i.e. the elapsed time between the current time and the time of the last request.

The statistic history traces 7 days of the file’s requests, and it is deleted if
the file is no longer requested and it is not present in the cache memory. The
environment uses a discrete internal time to calculate the recency of a file.

63

Mirco Tracolli 5.2. AN AGENT FOR A BETTER ADDITION

Moreover, the state is enriched with the cache occupancy percentage oc and
cache hit rate hr.

Since the number of states must be finite, the file features are discretized
in a finite number of classes (using a simple binning technique with ranges)
and hence the state S is represented as a quintuple (σ, ϕ, δ, o, η), where σ, ϕ, δ

are the labels of the class to which the size, the frequency, the delta time of f
belongs, respectively; o, η are the labels of the class to which the occupancy
percentage and the hit rate belongs.

Hence, the states for the addition agent is defined as:

S = (σ, ϕ, δ, o, η) = b(sf , nf , δtf , oc, hr) (5.5)

where b is the function mapping sf , nfm δtf , oc and hr.
The system also takes into account the two cache watermarks, a higher

Whigh watermark and a lower Wlow watermark. When the size of the files stored
in the cache reaches Whigh, the least recently used files are removed until Wlow

is reached. This mechanism prevents the cache memory from becoming too full.
The parameters to Whigh and Wlow are set according to the amount of available
space. Also, the underlying cache uses the Least Recently Used (LRU) criterion
to decide which files have to be removed.

Action Space

Each time the agent requests a file f , the state s is computed in terms of
the statistics of f and the cache. For each possible state, there are two actions:
Store and NotStore. It considers as next state s′ (Equation (5.6)) the same input
state s (Contextual Bandit). As a consequence, the agent has to learn which
action is the best for the current state through the delayed rewards used as
stimuli of past decision traces with the intent to allow only the valuable files to
be stored. To assign the delayed rewards it memorizes the last action a taken
for the input state s and it rewards or penalizes that action based on cache
constraints when the same state s occurs in the next request.

The agent updates the action values of the state using the Q-Learning
method, where the quality Q (goodness) of the state is a combination of the

64

Mirco Tracolli 5.2. AN AGENT FOR A BETTER ADDITION

state and the action value:

Q(s, a)← Q(s, a) + α · (r + γ ·Q(s′, best)−Q(s, a)) (5.6)

where s is the state, s′ is the next state (equal to s for this approach) and a

the action. The α parameter is the learning rate and γ is the discount factor. In
the experiments those variables are fixed: α = 0.9 and γ = 0.5.

Rewards

The reward r is computed as follows: the cache environment will assign
a negative or positive reward on the basis of several constraints that involve
cache statistics.

In this method, those actions that store files that do not increment the
value of Read on Hit are penalized, in particular, the desired target is that the
amount of hits is higher than the miss files.

The positive reward r is the size of f in Gigabytes, while the negative reward
is−f . These rewards are assigned to the last actions decided for the state where
the actions were taken. For each file are stored a maximum of 32 decisions.

The Algorithm

In the Algorithm 2 a simplified description of the SCDL process is described.
The approach uses the ϵ − greedy technique to balance the exploration and
exploitation of actions. The ϵ parameter is always initialized to 1.0 and it is de-
creased with an exponential decay rate set from the environment configuration
with a lower limit of 0.1.

To summarize the algorithm, when a file is requested, its past action history
is used to apply the delayed rewards, as explained before. Also, if the requested
file is not in the cache, the agent choice is stored in the memory.

65

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

Algorithm 2: Algorithm SCDL
Data: file requests
Initialize cache
Initialize historical statistic table stats ; // to collect file statistics
Initialize Q-Table additionTable ; // all action values to 0
Initialize map doneActions ; // history of taken actions
for each requested file req do

stats.update(req.filename)
hit← cache.Check(req.filename)
currentState← cache.State(req)
if map.check(req.filename) = true then

for pastState, pastAction← map.get(req.filename) do
reward← makeReward(pastState, pastAction, req, cache.Statistics)
additionTable.Update(pastState, passtAction, reward)

if hit = false then
if randomNumber() < ϵ then

currentAction← additionTable.peekRandomAction(currentState)
else

currentAction← additionTable.peekBestAction(currentState)

map.insert(req.filename, curState, curAction)
if currentAction = Store then

cache.AddF ile(req.filename, req.size)

else
cache.Serve(req.filename)

5.3 Smart caching with double agents

The proposed approach, named SCDL2 (Smart Cache for Data Lakes), is
based on a previous Smart Caching system for Data Lakes (SCDL) introduced in
the previous Section 5.2. As a consequence, it is pursued in the RL way but with
agents that have more control over the cache memory.

In this upgraded version, SCDL2 uses two different agents to solve the
caching problem: one decides whether a requested file has been stored (ad-
dition agent) and the other chooses how to free the cache memory (eviction
agent) deleting a specific file category. Thus, an agent bases its decision on the
state of the request and the other on the state of the cache memory.

The RL technique employed is the Q-Learning method, which uses the
information taken from the file statistics and from the cache status. The main
difference between SCDL2 and SCDL is that the latter has only the addition
agent, it uses the LRU as a policy for freeing the memory and the associative
search for the best action of a given state. Also, SCDL2 is a full RL and thus it
takes into account the state transitions.

66

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

Consequently, for the addition agent, there is a full RL with the next state
given from the request choice history. Furthermore, for the eviction part, there
is no link with the watermark mechanism but instead, there are several ways
with which the eviction agent is triggered.

The sequential decision process with which the agents learn the best be-
havior through interaction with the environment is described in Figure 5.3.

Figure 5.3: Reinforcement Learning schema of the double agent approach, where
the AI choose both, the addition and eviction of a file into the cache memory

Workflow

As shown in Figure 5.3, the goal is to modify how the cache accepts the files
into the memory and how the files are evicted when new space is necessary. In
particular, only the valuable files should be stored in the memory. The environ-
ment is defined by the cache memory with a specific size S and bandwidth B.
In such an environment, both the agents use the trial-and-error technique to
search for the best actions in a given situation, using the Q-Learning to update
the action values. The delayed reward mechanisms remain integrated to im-
prove the action decisions due to the cache environment changes. Moreover,

67

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

the environment uses a discrete internal time. This time is incremented at each
request, and it is used to calculate the recency of a file.

When a file f is requested:

• the Addition Agent is called in order to decide whether storing or not the
file f ;

• the Eviction Agent is called if a particular event is satisfied and chooses
which files to remove. The possible events are:

• it is necessary to free Space

• it is the end of the day

• k iterations have passed

After a request is managed, both agents receive delayed rewards if necessary
(depending on file choice history).

State Space

The two agents work with different state spaces. The addition agent has the
same state space as SCDL agent Equation (5.5).

Instead, to decide which file to delete, the eviction agent uses statistics
about the current state of the cache. In particular, the files stored in the cache
memory are divided into categories with which the cache chooses the files
to delete. Similarly to the addition agent file features, the eviction takes the
following information from the stored files: i) the size (sf), ii) the number of
requests (nf), and iii) the delta time (tf), i.e. the elapsed time between the
current time and the time of the last request.. These are used to associate the
file to a specific category c with: i) all file of size (sc), ii) a number of requests
(nc), and iii) a delta time (tc). For each category it is calculated the amount of
space occupied by the category itself (occ).

The statistic history traces 7 days as for the previous approach and the
environment uses a discrete internal time to calculate the recency of a file.

Because the number of states must be finite in the Q-Learning, these fea-
tures are discretized in a finite number of buckets.

68

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

Hence, the states for the addition agent are defined as in Equation (5.5):

Sa = (σ, ϕ, δ, o, η) = ba(sf , nf , δtf , oc, hr) (5.7)

where ba is the function mapping sf , nfm δtf , oc (current cache occupancy) and
hr (current cache hit rate).

Instead, the eviction agent has the following state:

Se = (σc, ϕc, δc, oc, o, η) = be(sc, nc, δtc , occ, oc, hr) (5.8)

where be is the function mapping sc, nc, δtc , occ, oc and hr to the corresponding
buckets.

Action Space

The results of agents’ decisions are stored into two different Q-tables, where
there are evaluations of actions for each possible state: additionTable and
evictionTable.

The action space for the addition agent is composed of two actions: Store
and NotStore.

Instead, the action space for the eviction agent contains four actions repre-
senting the four available eviction methods: NotDelete, DeleteAll, DeleteHalf,
DeleteQuarter and DeleteOne. Those methods identify how a selected category
has to be managed. The choice to consider a finite number of actions for a
specific category instead of having a different delete action for each file stored
in the cache (i.e. all the files that are possible to delete in a time) allows us to
limit the agent search space.

The agents update the action values of the state using the Q-Learning
method, where the quality Q (goodness) of the state is computed as a combi-
nation of the state and the action value:

Q(s, a)← Q(s, a) + α · (r + γ ·Q(s, best)−Q(s, a)) (5.9)

where s is the state and a the action. The α parameter is the learning rate and
γ is the discount factor. As in Section 5.2, those variable are fixed during the

69

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

experiments: α = 0.9 and γ = 0.5.

Rewards

Since the decision of storing a file f affects the cache composition and
its actual contribution cannot be determined immediately, the approach uses
delayed rewards.

Therefore, after each file request, it stores the action that the agent chose
for the given state (situation). Then, later in time, it will evaluate that decision
with a positive or a negative reward depending on specific rules.

In short, it chooses to penalize those actions which do the cache more work
more, such as write new files and delete files to free space, trying to avoid
unuseful operations, and limit the cache actions. The reward r has a unitary
value that increments with several constraints. For the addition agents it is
checked if the chain of choices made for the file f complies with the following
rules:

• if current file hit: for each previous choice, r = 1. The action takes and
extra +1 if the situation passed from a miss to an hit;

• if current file miss: for each previous choice, r = −1. An additive malus of
−1 is given if the file passed from hit to miss in the last action in history.

For the eviction agent there is a similar reward policy but focused on the
file category:

• if current file hit: for each previous choice of that category, r = 1. The
action takes and extra +1 if the action is NotDelete and also if the capacity
is not higher;

• if current file miss: for each previous choice of that category, r = −1. An
additive malus of −1 is given if the action is NotDelete or if the capacity
is increased.

As stated in Section 5.3, the categories depend on several file features, and
because these can change during the file life into the cache, the category of a
file change also with them during the time.

70

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

Last but not least, there is a special situation for the eviction agent where
it is rewarded despite the file category. When the agent is forced to delete
files because the cache has to insert a new one, but the operation does not
finish successful, all the decisions of the eviction agent that are NotStore take
a predefined malus r = −P and all the actions that delete files receives r = P .
Usually, P = 1.0 and is defined a priori.

The algorithm

In Algorithm 3 a high level description of the process flow is described, while
in Algorithm 4 and Algorithm 5 there are the details of the two different agent
steps.

Algorithm 3: Main flow of SCDL2
Data: file requests
Initialize an empty cache
Initialize Q-Table additionTable
Initialize Q-Table evictionTable
Initialize map historyaddition
Initialize map historyeviction
for each requested file req do

stats.update(req.filename)
hit← cache.check(req.filename)
additionPhase(hit, req)
if trigger eviction agent then

evictionPhase()

delayedRewardsAddition(req)
delayedRewardsEviction(req)

Both agents use the ϵ − greedy technique to make choices and as in the
previous approach, the ϵ parameter is initialized to 1.0 and it is decreased with
an exponential decay rate set from the environment configuration with a lower
limit of 0.1.

The choices made are collected in a map for each agent and this information
is used to provide late rewards. The delayed rewards function scans all the
choices made for the file f requested and applies the rules explained in the
previous section to reward the agents relying on the history.

71

Mirco Tracolli 5.3. SMART CACHING WITH DOUBLE AGENTS

Algorithm 4: Addition phase in SCDL2
additionPhase(hit, req)
state← cache.state(req)
if hit = false then

if randomNumber() < ϵaddition then
currentAction← additionTable.peekRandomAction(state)

else
currentAction← additionTable.peekBestAction(state)

historyaddition ← (state, currentAction)
if currentAction = Store then

cache.add(req)

else
serve(req.filename)

Algorithm 5: Eviction phase in SCDL2
evictionPhase()
state← cache.state(req)
foreach file f in cache do

updateF ileCategory(f)

foreach category c do
if randomNumber() < ϵeviction then

currentAction← evictionTable.peekRandomAction(state)
else

currentAction← evictionTable.peekBestAction(state)

historyeviction ← (state, currentAction)
apply(curAction)

72

Experiments

Contents
6.1 Evaluation metrics . 75

6.2 Tests and results . 81

6.2.1 Selection by file score 83

6.2.2 Cache composition by SCDL 87

6.2.3 Cache management by SCDL2 90

6.2.4 Extreme use cases . 93

6.3 Evaluation . 95

6.3.1 Metrics correlation . 95

6.3.2 Notes on agent learning 95

6.3.3 Notes on selected features 97

6.3.4 Result considerations 98

This chapter covers the experiments done using the approaches described
in the previous sections. The experiments will be presented as a constructive
flow that respects the logical sequence of the thesis investigation.

73

Mirco Tracolli

Before the tests, a presentation of the metrics and how the experiments
were made are illustrated. The results are first presented and then discussed
in the appropriate section, where used methods are also compared to explain
the obtained results.

74

Mirco Tracolli 6.1. EVALUATION METRICS

6.1 Evaluation metrics

One reason to define several metrics to measure the proposed environment
of Section 4.3 is to have a better understanding of the consequences of the
cache’s choices. A general approach does not relate simply to a cache evaluation
metric such as the hit rate, because the dimension of the problem and the
involved actors are really different and the final target could be diverse: for
example, we want to monitor the choices’ impact on the network bandwidth
because they can have a side effect on user experience in the real world.
Therefore, referring to the environment described in Figure 4.14, the metrics in
Figure 6.1 are proposed to monitor the effect of a cache policy and to compare
different approaches.

Figure 6.1: Projection of the metrics on the simulation environment that shows
the several aspects controlled to study the cache behavior

The metrics have different targets and their purpose will be described in
details:

• Throughput: to evaluate the quality of a cache in fulfilling the client
requests;

75

Mirco Tracolli 6.1. EVALUATION METRICS

• Cost: to evaluate the operational cost of the cache;

• Band saturation: to monitor the load on the network when serves remote
contents;

• Read on hit ratio: to measure how much content is served from the cache
memory;

• Miss on deleted files: to understand if the deleted files are important or
not;

• CPU efficiency: to estimate the user experience effects.

Since there is no particular order with which the metrics are collected, it is
necessary to specify that the first two, the Throughput and the Cost, are the
most valuable for the purpose of this project, and they are used for the main
comparisons. All the metrics’ measures will be collected during the simulation
days.

The first metric, the Throughput, is defined as follows:

Throughput =
readOnHitData− writtenData

C
(6.1)

where C is the cache size and the readOnHitData is calculated as follows:

readOnHitData =
∑︂
hit f

fsize (6.2)

where f is a file requested from the cache memory (cache hit). With the
same logic, the writtenData is the sum of the size of all files written in the cache
memory after a request:

writtenData =
∑︂

written f

fsize (6.3)

then, the readData represents the whole volume of the file requested to
the cache:

readData =
∑︂

requested f

fsize (6.4)

76

Mirco Tracolli 6.1. EVALUATION METRICS

with the Throughput metric, it could be possible to evaluate the goodness of
the memory content during the time. The borderline cases of this measurement
are the following:

• the cache writes nothing: if the written data is 0 the read from the memory
cache is impossible and then the cache is useless;

• the cache writes but there is no hit: this happens when requested files
are always not present in memory.

It follows that the Throughput can not frame the whole cache reaction. Thus,
to get a better picture of the effects of a novel method, it could be measured
by the algorithm’s effectiveness also with respect to the other metrics we
mentioned before in this section. The next one, the measure Cost, aims at
quantifying how much the cache is working in terms of pure cache operations,
i.e. the size of the deleted or written files, with respect to the cache size C:

Cost =
writtenData+ deletedData

C
(6.5)

the deletedData is defined as the sum of the sizes deleted by the cache
memory:

deletedData =
∑︂

deleted f

fsize (6.6)

With the Cost metric, it could be possible to have an idea of the pressure
on the cache, similar to the load factor of a system. The borderline case when
the cache writes nothing at all has to be avoided and usually, there should
be a good balance between data addition and eviction: this is the reason why
it is better to check also the written and deleted data separately. Similarly
to the Throughput, the measure is normalized with respect to the size C to
have a better comprehension of this metric when caches of different sizes are
compared.

Then, it is obvious that a measure to quantify the usage of the network
could be useful, especially the amount of data exchanged between the cache
and the main storage. Therefore, the BandSaturation just measures this aspect
and, of course, mainly depends on the files which were not in the cache at

77

Mirco Tracolli 6.1. EVALUATION METRICS

the moment they were requested (cache miss, Figure 4.14) and the available
bandwidth of the cache B:

BandSaturation =
readOnMissData

B
(6.7)

where the readOnMissData is the sum of the file sizes that have a miss in
the cache memory:

readOnMissData =
∑︂

missed f

fsize (6.8)

with the same idea but with a different perspective, the ReadOnHit ratio
aims to measure the amount of data served from the cache compared to the
whole data requested by the clients:

ReadOnHit ratio =
readOnHitData

readData
(6.9)

where readOnHitData is defined as before in Equation (6.2).
The ReadOnHit ratio value is strictly related to the cached content and

manifests the goodness of the algorithm’s previous choices.
The avg #miss metric computes the average number of misses after file

evictions during a day. In particular, this metric is useful to monitor the errors
made by the eviction agent because it considers how many times a deleted file
has been requested in the future:

avg #miss =

∑︁
missed f #missf

#days
(6.10)

Until now, the proposed metrics include only cache related information but,
since the goal is also to improve the end-user experience, and it is possible to
access historical information about data analysis workflows, a specific metric
was included in the environment. Such a metric is the CPU efficiency of the
analysis jobs, by considering the CPU time and Wall time of each request.

Regarding the CPU efficiency, it is important to highlight that the adopted
strategy for the evaluation is based on a dedicated study which analysis first
measured the loss of CPU efficiency while reading data from a remote storage
element using monitoring data from the CERN MONIT project (Section 4.2). It

78

Mirco Tracolli 6.1. EVALUATION METRICS

resulted in costs on average about 15% of CPU time with respect to local data
reading. Then, thanks to a testbed built over the Italian CMS Tier 2 topology
proved that the CPU efficiency on a cache miss can be treated like remote access
to that file, instead, a hit from the cache is equivalent to local file access. With
this concept, it is possible to estimate in the various simulations the impact of
CPU efficiency depending on the decisions made by the cache.

Hence it is possible to compute the average CPU efficiency as follows:

CPUEfficiency =

∑︁
CPUTime∑︁
WallT ime

(6.11)

Moreover, we can have also an idea of how the proxied requests managed
by the cache can affect this efficiency [55].

In detail, it is possible to estimate the decrease of performances of the
proxied requests treating them as remote requests, which lose performance
due to the delay in retrieving the file (Figure 6.2). As a result, we have two cases
to calculate CPU efficiency:

• file served from cache memory (hit): same CPU efficiency of local files in
the historical data;

• file served in proxy mode (mis): CPU efficiency decreased by δ that is
defining as the following difference:

δ = CPUEfficiencylocalfiles − CPUEfficiencyremotefiles (6.12)

In conclusion, there are several metrics to monitor and evaluate the cache
system. Analyzing the changes of each metric we can deduce the goodness of
behavior compared to another one.

79

Mirco Tracolli 6.1. EVALUATION METRICS

Figure 6.2: CPU efficiency difference between a local and remote served file

80

Mirco Tracolli 6.2. TESTS AND RESULTS

6.2 Tests and results

The problem has been addressed with different approaches that have spe-
cific targets to test. Using the simulation environment of Section 4.3, the
approaches described in Chapter 5 were simulated using as source data the
requests of dataset described in Section 4.2.1. As mentioned before, the dataset
covers the data analysis requests for the entire year 2018. Thus, the simulation
starts to inject requests into the environment for the time specified in the
configuration file (Section 4.3). During the environment simulation, the program
collects several statistics and stores them in log files that can be viewed and
compared with the analyzer tool (Section 4.3).

In the Figure 6.3, it is in evidence the thesis targets upon which a number of
experiments have been made:

Figure 6.3: Explanation of the experiments’ targets compared to the cache
model used

The targets are covered by the approaches of Chapter 5, thus there are
principally three results from the tests that are characterized as follows:

• Selection by file score: this experiment wants to evaluate if it is possible
assigning a precise score for a requested file to make a decision upon its
addition to the cache memory. The target was to find a way to assign a
weight to a file, with the aim to use such information for a better cache
composition. It involves the weight function approach of Section 5.1 and
it is represented in the Figure 6.3 with the yellow question mark;

81

Mirco Tracolli 6.2. TESTS AND RESULTS

• Cache composition by SCDL: the experiment aims to find an autonomous
agent that decides the files that have to be added into the cache using the
client request information. In this case, the question mark on Figure 6.3 is
the red one, and it refers to the SCDL approach described in Section 5.2.
As a result, it is expected a self-adapting artificial intelligence to filter
better the clients’ requests;

• Cache management by SCDL2: this last experiment attempts to find a
smarter way to evict and compose the cached content. The idea is to find
two autonomous agents that deal with the two main aspects of the cache
memory, the addition, and the eviction. It refers to the SCDL2 approach
described in Section 5.3 and involves the question marks green and red
in Figure 6.3.

All the experiments aim to find an independent solution to the problem of
caching content management, trying to tackle the problem from different points
of view. Consequently, each experiment is carried out with a different approach
that holds the strategy adopted to solve the specific task. The obtained results
will be analyzed using the metrics described in Section 6.1.

82

Mirco Tracolli 6.2. TESTS AND RESULTS

6.2.1 Selection by file score

This experiment is performed to investigate how to evaluate a file when it
is requested. The cache system collects statistics about the file, such as the
number of requests, the size, and the time when the request occurs, to assign
a score. This score is treated as a weight, thus the files with a smaller score are
preferred with respect to those having a larger score. That means the target
function has to respect this constraint.

During this class of experiment, the cache uses the watermark mechanism
with the thresholds set for the higher and the lower watermarks respectively to
95% and 75%. All the simulations were made on the Italian dataset (Section 4.2.1)
with a realistic but minimal cache size of 100Terabytes. All the simulated caches
use LRU as a policy to manage the file queue (especially important for the
eviction phase).

The statistics of a file remain in the system for 14 days and the mechanism
to clear the statistics makes the file checks every 7 days.

Algorithm 6: Algorithm used to test the scoring function.
Data: file requests
Result: a cache simulation
Initialization of variables
Inizialization statistic table
for each requested file f do

t← time of the request
hit← checkF ileInCache(f)
table.update(f)
table.updateWeight(f)
if hit then

updateLRUQueue(f)
else

if weight(f, t) ≤ table.avgWeight() then
insertWithLRU(f)

checkWatermark()

The Algorithm 6 is used to perform the tests. To resume the approach
(Section 5.1), with the high level description of algorithm (Algorithm 6), it in-
serts a file into the cache only if the file weight is less or equal the average
weight of all files of the statistic table. It uses this algorithm with each scoring
function weightA, weigthE , weightM by considering the following values for the
parameters α, β and γ: {0, 1

3
, 1
2
, 2
3
, 1, 2, 4, 8, 16, 32, 64}.

83

Mirco Tracolli 6.2. TESTS AND RESULTS

Table 6.1 shows the three measures Throughput (Equation (6.1)), Cost (Equa-
tion (6.5)), and ReadOnHit ratio (Equation (6.9)) for the LRU cache strategy (used
as a baseline in the comparisons) and the best 10 combinations of parame-
ters in each of the 3 functions (Equations (5.2) to (5.4)). Results are sorted by
Throughput, Cost, and read on hit ratio. The main measure that is taken into
account is the Throughput because the target is to optimize the cache work.

It is possible to see that all the proposed weight functions have a smaller
Cost with respect to LRU. Also, they have better Throughput. Thus, they write
fewer data into the cache and they still make the clients read a considerable
amount of data from their memory.

There is no emergent functional family from the experiment results and all
the solutions have a higher load on the network, as it is possible to read from
the bandwidth metric.

Observing the parameter values, it is evident that the file size has the
most important role (β parameter), whereas the number of requests plays a
secondary role (α parameter). Instead, the delta time (γ parameter) does not
seem to affect the best results of the functions.

The fact that the frequency is not too relevant has two possible explanations:
either the range of the number of requests of a file is not comparable with
the other two variables (the size of the file is in Megabytes and the delta time
in minutes) or the α parameter should take a much higher value to have a
significant impact on the score. The same applies to the γ parameter that
seems to be useful just in the multiplicative family (Equation (5.4)) because of
its construction.

Furthermore, despite it seems plausible to have the file size as the center of
the weight, the delta time could be completely overshadowed by the implicit
queue management of the files in the cache. In fact, all the weight functions
still use the LRU mechanism to evict files and make space. Hence, all the score
techniques try to find a good cache composition through file weights giving LRU
a threshold to accept a new one and still they free the memory from oldest and
unused files in the same way as LRU. This is the reason why the γ parameter
has a low impact on the score function.

In the end, despite poor results of the bandwidth, the CPU efficiency seems
not to be compromised and still remaining high. It is ∼ 58% in all the solutions.

84

Mirco Tracolli 6.2. TESTS AND RESULTS

Table 6.1: Test results grouped by function family.

cache Throughput Cost ReadOnHit ratio Bandwidth CPU eff.

LRU −0.1405 0.9799 38.8620 47.68 60.81

function family α β γ Throughput Cost ReadOnHit ratio Bandwidth CPU eff.

Additive 0 1
3

0 0.0278 0.3387 23.6848 57.59 59.00

0 1
2

0 0.0278 0.3387 23.6848 57.59 59.00

0 3
4

0 0.0278 0.3387 23.6848 57.59 59.00

0 1 0 0.0278 0.3387 23.6848 57.59 59.00

0 16 0 0.0278 0.3387 23.6848 57.59 59.00

0 2 0 0.0278 0.3387 23.6848 57.59 59.00

0 32 0 0.0278 0.3387 23.6848 57.59 59.00

0 4 0 0.0278 0.3387 23.6848 57.59 59.00

0 64 0 0.0278 0.3387 23.6848 57.59 59.00

0 8 0 0.0278 0.3387 23.6848 57.59 59.00

AdditiveExp 0 1
3

0 0.0414 0.2280 18.9804 60.39 58.26

0 1
2

0 0.0388 0.2512 20.0446 59.73 58.44

0 3
4

0 0.0342 0.2756 20.9988 59.18 58.59

1
3

1
2

0 0.0335 0.2537 19.6043 60.02 58.36

1
3

3
4

0 0.0331 0.2758 20.8898 59.25 58.57

1
2

3
4

0 0.0307 0.2769 20.6754 59.38 58.53

3
4

3
4

0 0.0292 0.2778 20.5328 59.48 58.51

0 1 0 0.0278 0.3387 23.6848 57.59 59.00

1
3

1 0 0.0277 0.3387 23.6747 57.60 59.00

1
2

1 0 0.0271 0.3387 23.5685 57.66 58.98

Multiplicative 0 1
3

0 0.0414 0.2280 18.9804 60.39 58.26

0 1
2

0 0.0388 0.2512 20.0446 59.73 58.44

0 3
4

0 0.0342 0.2756 20.9988 59.18 58.59

32 32 16 0.0339 0.2835 18.2971 59.69 57.14

32 16 16 0.0291 0.2879 18.1009 59.73 57.08

32 16 1 0.0279 0.3088 19.2294 59.07 57.30

0 1 0 0.0278 0.3387 23.6848 57.59 59.00

32 1
3

8 0.0226 0.3934 23.8249 56.54 58.07

32 1
3

1
3

0.0210 0.4115 25.1731 55.88 58.33

32 8 16 0.0180 0.3849 22.3991 57.42 57.76

85

Mirco Tracolli 6.2. TESTS AND RESULTS

This partially confirms that the proposed metrics are useful to have an idea of
the different cache behaviors with also an approximate side effect evaluation
of the end-user experience.

86

Mirco Tracolli 6.2. TESTS AND RESULTS

6.2.2 Cache composition by SCDL

The goal of this experiment was to test autonomous intelligence that adapts
itself to the client’s requests, choosing not with a fixed function which files to
write into the cache but continuously evolving during the time.

Within the simulation, the artificial intelligence approach was compared
with the golden standard LRU and other commonly used policies (Section 4.3),
such as LFU, Size Big, and Size Small. All algorithms have been implemented
and tested over a simulation produced with the data described in Section 4.2.1.
The experiments were performed using different cache sizes. The test runs in
order to demonstrate the ability of SCDL to improve the measures described
in Section 6.1 with respect to other caching policies. Because LRU is the main
algorithm adopted in a cache layer it is considered as the baseline for these
results.

All the tests uses the Algorithm 2 with an ϵ decay rate parameter depending
on the dataset used: ϵdecayrate = 10−5 for the Italian dataset and ϵdecayrate = 10−6

for the US dataset (due to its higher amount of requests per day). Moreover,
since the simulation covers an entire year of requests, there is a mechanism to
unleash the ϵ when the agent is not performing well. In detail, if the Q−function
is decreasing for 8 days in a row, the ϵ is reset to 1.0 and the past action history
of the files are cleaned.

First, this approach was tested on the Italian dataset with a fixed cache
size of 100Terabytes and comparing the other standard policies. The results
are shown in Table 6.2 attest that the Throughput and the Cost of the SCDL
approach are higher compared to the others, also to the most used LRU. The
measure results are shown in percentage respect to the denominator defined
in Section 6.1.

Table 6.2: Test results of IT region with cache size of 100T and 10Gbit bandwidth.

Cache Type Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL -0.0032 0.6406 35.37 49.90 462 60.21
LRU -0.1405 0.9799 38.86 47.68 471 60.81
LFU -0.2252 1.0538 33.25 51.27 969 59.83
Size Big -0.3044 1.1230 28.46 54.62 1155 59.30
Size Small -0.3193 1.1366 27.31 55.29 1181 58.64

87

Mirco Tracolli 6.2. TESTS AND RESULTS

It scored the best result for the Throughput measurement. Moreover, the
Cost of the Reinforcement Learning approach is half compared to the other
policies. A check by looking at the CPU efficiency shows that it is not penalized
so much because it scored just ∼ 1% less. Hence, the decision to filter the
requests is working quite well, without a heavy impact on the user. Even though
the CPU efficiency is only measured to verify the side effects in this particular
use case because it uses historical information of a different environment to
approximate the cache effect measurement.

Due to the lower performances of the other algorithms, the further tests
focus on several cache sizes with a direct comparison with the golden standard
policy LRU. The new battery of experiments aims to verify the trend of the
filtering agent with respect to the memory available.

Table 6.3: Test results of IT region with different cache sizes and 10Gbit band-
width.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL 500T 0.0474 0.1035 55.84 35.99 766 64.15
SCDL 200T 0.0408 0.3012 42.65 45.04 667 61.61
SCDL 1000T 0.0358 0.0429 65.40 28.76 633 65.91
LRU 500T 0.0328 0.1400 57.50 34.54 828 64.43
LRU 1000T 0.0324 0.0532 67.35 27.10 655 66.25
SCDL 100T -0.0032 0.6406 35.37 49.90 462 60.21
LRU 200T -0.0154 0.4409 45.78 43.04 616 62.17
SCDL 50T -0.1298 1.3210 29.28 53.86 389 59.06
LRU 100T -0.1405 0.9799 38.86 47.68 471 60.81
LRU 50T -0.4491 2.1111 33.54 51.29 327 59.83
SCDL 10T -1.4140 6.8304 22.05 58.29 168 57.70
LRU 10T -3.3340 11.4636 26.64 55.66 183 58.56

As shown in Table 6.3 this approach still work well also with different cache
sizes. Moreover, the most interesting aspect is that there are better results
with smaller cache sizes, also compared to the LRU solutions. Those results
are very interesting because, from the end-user experience, they seem to
maintain a sustainable CPU efficiency with smaller cache requirements. In fact,
it is possible to see that even if the ReadOnHit ratio is lower in the proposed
approach, also the average number of a miss after a file delete is lower. That
could be very precious information to sustain a better user experience, this
could be useful for infrastructure maintainers.

88

Mirco Tracolli 6.2. TESTS AND RESULTS

However, the proposed approach has a slightly higher network load, that is
deductible from the bandwidth column (Equation (6.7)).

Despite that, the target to have less work (from the cache perspective)
is fulfilled. This RL approach makes the cache low active and does only the
minimum operations. This can be seen in a lower amount of written and deleted
data but there are several missed files not stored that affect the network
because the cache will serve those files in proxy mode (Section 4.1).

To verify the behavior of the agent, another test battery was made on a
different dataset, the US one. The results are shown in Table 6.4. This confirms
the good behavior of the agent also with a different environment.

Table 6.4: Test results of US region with different cache sizes and 10Gbit band-
width.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL 500T 0.1022 0.2229 50.67 89.85 2547 74.09
SCDL 200T 0.0911 0.5246 40.33 91.48 1716 73.08
SCDL 1000T 0.0878 0.1138 59.28 86.06 2985 74.92
LRU 1000T 0.0684 0.1711 61.52 84.31 3215 75.14
LRU 500T 0.0545 0.3636 53.67 88.79 2610 74.38
SCDL 100T 0.0212 1.0142 33.56 91.96 1121 72.43
LRU 200T -0.0523 0.9335 44.36 90.87 1888 73.47
LRU 100T -0.3095 1.8825 37.78 91.50 1770 72.83

89

Mirco Tracolli 6.2. TESTS AND RESULTS

6.2.3 Cache management by SCDL2

In this latest test bench, two agents are involved. Contrary to the previous
experiment, there are several results for this algorithm based on the eviction
trigger used. In particular, there are different techniques that characterize the
timing with which the eviction agent is called:

• on free (when it is necessary to delete a file)

• at the end of each day

• every k requests (a fixed parameter of the simulation)

Moreover, it is also tested in the case when the eviction agent is deactivated
and thus it would be similar to the previous approach.

SCDL2 algorithm has been implemented and tested with the data described
in Section 4.2.1. The test ran in order to demonstrate the ability of SCDL2 to
improve the measures described in Section 6.1 with respect to other caching
policies described in Section 4.3.

The results are shown in Table 6.5 attest that the overall performances of
the SCDL2 approach are higher compared to the other policies.

Table 6.5: Test results of IT region with cache sizes of 100T and 10Gbit.

Cache Type Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL2 no eviction -0.02623 0.6789 34.77 50.40 481 60.11
SCDL2 on free -0.06135 0.6986 31.95 52.42 556 59.55
SCDL2 on day end -0.07501 0.7116 30.98 52.91 638 59.39
SCDL2 on k -0.11881 0.7420 28.44 54.73 731 58.87
LRU -0.14059 0.9799 38.86 47.68 471 60.81
LFU -0.22528 1.0538 33.25 51.27 969 59.83
Size Big -0.30448 1.1230 28.46 54.62 1155 59.30
Size Small -0.31938 1.1366 27.31 55.29 1181 58.64

SCDL2 has the best result for the Throughput measurement. However, the
ReadOnHitRatio for SCDL2 is not the best due to our request filtering, as shown
in the previous approach. Also, the eviction agent affects a lot the number of
misses and, as a consequence, the overall performance.

90

Mirco Tracolli 6.2. TESTS AND RESULTS

Within the simulation, it is also checked the CPU efficiency, and it is verified
that it has not substantially changed.

However, the objective of having a lower load from the cache perspective is
fulfilled. Moreover, from the results, it is possible to see that LRU is the only
option that performs well and thus it will be used as a comparison in the next
tests.

In Table 6.6 there are several results with different cache sizes. From these
results, it is evident that the eviction agent makes several errors and a higher
number of misses after delete that lower down the performances. Despite this,
the SCDL2 overall performances are good, and it is possible to conclude that
the best trigger solution is the one that frees memory only on demand (on
free).

To verify the behavior of the agents it was also tested on the bigger US
dataset. In Table 6.7 it is evident that the trend of the approach is the same.
Moreover, considering the CPU efficiency, it is possible to see that there is a
low variance despite the different cache sizes. Therefore, though the eviction
agent makes more errors, of course, the user request pattern affects a lot of
the cache decisions and the available space is a fundamental parameter for
better content management.

To summarize, this RL approach makes the cache less active by doing the
minimum number of operations to maintain a good file composition. This
results in a lower amount of written and deleted data, but the eviction agent
needs a better grasp on which files to delete, to avoid further miss after their
deletion. The presence of missed files still affects the network that has a higher
load, principally caused by the request filtering of the addition agent. The result
tables give a snapshot of the whole simulation, but it has to be mentioned that
the results can be visualized also with the analyzer tool described in Section 4.3
(further information can be found in Appendix A.4).

In conclusion, the two agents affect the cache environment in different
aspects. The addition agent is the main responsible for writing fewer data and
selecting files in a more rigorous way. Hence, the available network bandwidth
is more used and the Throughput is increased. The eviction agent changes
how the files remain in the cache. Hence, its main effects are to increase the
Throughput and to decrease the Cost, maintaining a higher level of Read on

91

Mirco Tracolli 6.2. TESTS AND RESULTS

Table 6.6: Test results of IT region with different cache sizes and 10Gbit band-
width.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL2 no eviction 500T 0.0480 0.09 54.10 37.16 641 63.76
SCDL2 no eviction 200T 0.0382 0.29 41.75 45.79 649 61.44
SCDL2 no eviction 1000T 0.0367 0.03 62.87 30.72 499 65.40
LRU 500T 0.0328 0.14 57.50 34.54 828 64.43
LRU 1000T 0.0324 0.05 67.35 27.10 655 66.25
SCDL2 on free 500T 0.0298 0.11 47.35 42.07 951 62.49
SCDL2 on free 1000T 0.0272 0.04 56.02 35.69 1003 64.12
SCDL2 on free 200T 0.0053 0.32 37.43 48.98 661 60.59
SCDL2 on day end 1000T 0.0052 0.06 39.37 47.08 808 61.00
SCDL2 on day end 500T 0.0046 0.13 37.93 48.30 957 60.69
SCDL2 on day end 200T -0.0046 0.33 35.27 49.94 815 60.17
SCDL2 on k 1000T -0.0107 0.07 29.30 54.18 621 59.04
LRU 200T -0.0154 0.44 45.78 43.04 616 62.17
SCDL2 on k 500T -0.0212 0.14 29.50 54.05 628 59.03
SCDL2 no eviction 100T -0.0262 0.67 34.77 50.40 481 60.11
SCDL2 on k 200T -0.0552 0.37 29.30 53.98 740 59.04
SCDL2 on free 100T -0.0613 0.69 31.95 52.42 556 59.55
SCDL2 on day end 100T -0.0750 0.71 30.98 52.91 638 59.39
SCDL2 on k 100T -0.1188 0.74 28.44 54.73 731 58.87
LRU 100T -0.1405 0.97 38.86 47.68 471 60.81
SCDL2 no eviction 50T -0.2037 1.48 29.68 53.75 403 59.11
SCDL2 on free 50T -0.2529 1.49 27.37 55.20 406 58.71
SCDL2 on day end 50T -0.2583 1.49 26.99 55.45 434 58.63
SCDL2 on k 50T -0.3038 1.53 26.45 55.73 660 58.52
LRU 50T -0.4491 2.11 33.54 51.29 327 59.83
SCDL2 no eviction 10T -2.1534 8.50 23.08 57.78 168 57.89
SCDL2 on free 10T -2.2246 8.22 21.24 58.91 273 57.54
SCDL2 on day end 10T -2.2403 8.16 21.08 58.96 280 57.52
SCDL2 on k 10T -2.3275 8.29 20.92 59.06 450 57.50
LRU 10T -3.3340 11.46 26.64 55.66 183 58.56

92

Mirco Tracolli 6.2. TESTS AND RESULTS

Table 6.7: Test results of US region with different cache sizes with 10Gbit band-
width.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL2 no eviction 500T 0.0968 0.24 51.29 89.79 2565 74.14
SCDL2 no eviction 1000T 0.0880 0.11 59.27 87.18 2944 74.77
LRU 1000T 0.0684 0.17 61.52 84.31 3215 75.14
SCDL2 on free 1000T 0.0644 0.11 54.14 88.87 4347 74.42
SCDL2 no eviction 200T 0.0640 0.62 42.03 91.38 1698 73.24
SCDL2 on free 500T 0.0554 0.23 45.67 90.95 3279 73.60
LRU 500T 0.0545 0.36 53.67 88.79 2610 74.38
SCDL2 on day end 500T 0.0450 0.24 44.44 91.25 2966 73.48
SCDL2 on day end 1000T 0.0322 0.12 46.77 90.88 2755 73.71
SCDL2 on day end 200T 0.0057 0.63 38.14 91.79 2270 72.86
SCDL2 on free 200T -0.0126 0.62 36.68 91.83 2050 72.73
SCDL2 on k 1000T -0.0169 0.12 31.37 92.18 1982 72.21
SCDL2 on k 500T -0.0356 0.25 31.06 92.19 1978 72.18
LRU 200T -0.0523 0.93 44.36 90.87 1888 73.47
SCDL2 no eviction 100T -0.0526 1.28 36.05 91.82 1148 72.67
SCDL2 on k 200T -0.0854 0.62 30.32 93.67 1883 71.98
SCDL2 on free 100T -0.1284 1.20 31.38 92.18 1674 72.22
SCDL2 on day end 100T -0.1396 1.21 31.00 92.19 1565 72.18
SCDL2 on k 100T -0.1822 1.24 29.96 92.22 1984 72.07
LRU 100T -0.3095 1.88 37.78 91.50 1770 72.83

hit.

6.2.4 Extreme use cases

While developing the simulator, two datasets have been generated, with
the Size Focused Dataset Generator Appendix A.3, to test specific extreme use
cases. In particular, the data sources generated are:

• Extreme small size dataset: where the 90% of the files are very small
(between 8MB and 64MB) and a relatively small set of files have a bigger
size (in the range of 1GB to 4GB);

• Extreme big size dataset: where the 90% of the files are big (between 1GB

4GB) and remains set of files have a smaller size (in the range of 8MB to
64MB).

The results made using a cache of 100GB and 10Gbit of bandwidth are
reported in Tables 6.8 and 6.9. Because the tables are a summary of the full

93

Mirco Tracolli 6.2. TESTS AND RESULTS

results, only the SCDL and SCDL2 with on free method are shown to attest that
both the methods have good behavior with these kinds of extreme situations
compared to the standards.

However, the main purpose of a synthetic dataset is to make a further check
on the algorithms when proper source data is not available. Hence, the dataset
generator represents another important tool for future experiments within the
Data Lake environment used in this project, especially to test several stressful
situations for the cache system.

Table 6.8: Results of extreme big size synthetic dataset with a cache of 100GB
and 10Gbit of bandwidht.

Cache Type Throughput Cost ReadOnHit ratio Bandwidth

SCDL2 on free 3.71 17.19 51.98 1.09

SCDL −1.14 21.93 41.64 1.33

LRU −6.99 30.85 35.85 1.46

Size Small −20.05 43.91 7.93 2.08

Size Big −22.50 46.37 2.87 2.19

LFU −23.44 47.30 0.89 2.24

Table 6.9: Results of extreme small size synthetic dataset with a cache of 100GB
and 10Gbit of bandwidht.

Cache Type Throughput Cost ReadOnHit ratio Bandwidth

SCDL2 on free 1.74 20.63 47.96 1.3

SCDL −3.12 24.61 36.91 1.5

LRU −10.43 36.30 31.36 1.72

Size Small −24.06 49.93 3.57 2.36

Size Big −24.26 50.13 3.11 2.37

LFU −25.45 51.31 0.83 2.43

94

Mirco Tracolli 6.3. EVALUATION

6.3 Evaluation

The various experiments show that it is possible to improve the proposed
metrics. Overall, in all the results there is almost no bad impact from the user’s
experience point of view. However, the improvements in the Throughput and
the Cost metrics are significant and very interesting. In the following sections,
there are several insights into the experiment results.

6.3.1 Metrics correlation

The metrics correlation is shown in Figure 6.4. In particular, there is an
inverse correlation between the throughput and the cost because, if the cache
memory is populated with good files, the throughput will grow and the cost
will not be increased. Moreover, the throughput and the read on hit are lightly
related to the CPU efficiency, which is strictly related to reading files from the
cache. The bandwidth is in slight relation with the number of miss after deletion
because, if the cache makes more miss, they will affect the network with the
serving in proxy mode (remote files).

Thus, the proposed metrics seem to take a snapshot from different points of
view of the simulation and, as described in Section 6.1, it has been intentionally
done. However, they could be used to define a new composed evaluation metric
that takes into account all these separated aspects that should have taken
under control, maybe creating a unique score that can state the goodness of
the cache’s behavior.

6.3.2 Notes on agent learning

The ϵ decay rate is a fundamental aspect to take under control in RL ap-
proaches and usually greatly depends on the environment. In those experi-
ments, the chosen value for the decay allows the agents to have a time span
of adaptation (exploration) that is about two weeks. Because of the source
used, the chosen decay allows the agents to learn and make better decisions
compared to LRU in that timeframe. Thus, it was a good fit for the dataset, and
several tests on the ϵ parameter shown the two following situations:

95

Mirco Tracolli 6.3. EVALUATION

Figure 6.4: Correlation matrix of the various metric used in the experiments

• a fast decay that allows the epsilon to reach the minimum value during a
single day will bring a higher read on hit but with a higher cost. The results
in a slightly higher throughput compared to the experiment solutions;

• a slow decay that allows the epsilon to reach the minimum value in a
range of 3 or 4 months (that is plausible for the context of the problem)
allows exploring more before the exploitation also, the results are a lower
cost but with lower throughput.

The mentioned scenarios could change because of the variability of the
problem, but in Table 6.10 it is depicted how the good value of the ϵ chosen is
better than a faster and slower approach.

As a result, the time window chosen for the agent’s training seems to be a
good balance among all the metric values, especially for the metric Cost, but
we must emphasize that this is a parameter strictly related to the source data
and that needs more fine-tuning.

96

Mirco Tracolli 6.3. EVALUATION

Table 6.10: Results of the experiments with a different ϵ decay rate. The table
shows the average gain in performance for each metric compared to the ϵ value
chosen in the thesis experiments

Metric Faster ϵ Slower ϵ

Throughput −3.95% −17.92%
Cost 4.22% −3.92%
Read on hit ratio 1.21% −3.94%
Bandwidth −0.36% 1.93%

6.3.3 Notes on selected features

Since the file feature selection is currently the most independent of the
problem domain, a further investigation was made to explore the weight of
the main file feature for each RL approach used. In those tests, the proposed
algorithms are compared using the Italian dataset and a cache of 100Terabytes.
In particular, it was selected the SCDL algorithm and SCDL2 with all its variants
for the eviction agents. The tests concern about the use or not of the file feature
size.

To summarize, the algorithms that did not use the file size won only on 2
cases of 5. The two winners were the methods using only the addition agent.
However, a further investigation of the difference between the algorithms that
are using the feature size or not shows that globally, it is not convenient to
exclude such a feature. In fact, on average, the values of the metrics are not
improved and there is a deterioration of the performances. The main loss is in
the quantity of the data read directly from the cache memory, as it is possible
to deduce from the Table 6.11.

Table 6.11: Results of the experiments without the feature size that show the
gain in performance for each metric

Metric No size

Throughput −30.13%
Cost 0.4%
Read on hit ratio −30.14%
Bandwidth 0.92%

97

Mirco Tracolli 6.3. EVALUATION

In conclusion, it is evident from Table 6.11 that the file size is useful, in some
way, for the agents. The fact that the winner algorithms were only SCDL and
SCDL2 without the eviction agents also attest that the size is far more important
when the cache deletes the files.

6.3.4 Result considerations

As shown in the results (Section 6.2), the principal improvements come from
the filtering part (addition agent), which has to evaluate the client file requests,
as it is possible to see in Table 6.12. In particular, the SCDL2 approach seems to
cost less than the previous SCDL (Table 6.14) when comparing only the addition
agent with a cache of the same size. Probably it takes advantage of the full
Reinforcement Learning approach but has the same vulnerabilities because it
manages the same inputs.

Table 6.12: Comparison of SCDL and SCDL2 in IT region with cache size of 100T
and 10Gbit bandwidth.

Approach Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL −0.0032 0.64 35.37 49.90 462 60.21

SCDL2 no eviction −0.0262 0.67 34.77 50.40 481 60.11

LRU −0.1405 0.97 38.86 47.68 471 60.81

Moreover, the weight function experiments show that it is not possible a
static solution to evaluate file requests, but it is needed a more auto-adaptive
approach such as SCDL. The gain in Cost and Throughput do not justify the
loss in performance of the ReadOnHit ratioand the greater load of the network
(Table 6.13).

However, the eviction aspect is also important, and it could be the key for
better management of the whole cache memory that leads also to a better
quality of the service (QoS). As shown in Table 6.14, an important aspect for
a better cache composition is to monitor the average number of a miss after
delete. The eviction agent, depending on the trigger, seems to lack a grasp on
this aspect, and this has a bad consequence on future decisions. In fact, also if
the two agents do not interact with each other, they still are influenced by the
decisions of the other.

98

Mirco Tracolli 6.3. EVALUATION

Table 6.13: Comparison of weight functions in IT region with cache size of 100T
and 10Gbit bandwidth.

Approach Throughput Cost ReadOnHit ratio Bandwidth CPU eff.

Additive 0.0278 0.33 23.68 57.59 59.00

AdditiveExp 0.0414 0.22 18.98 60.39 58.26

Multiplicative 0.0414 0.22 18.98 60.39 58.26

LRU −0.1405 0.97 38.86 47.68 60.81

Table 6.14: Comparison of SCDL and SCDL2 in IT region with different cache sizes
and 10Gbit bandwidth.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL2 no eviction 500T 0.0480 0.09 54.10 37.16 641 63.76
SCDL 500T 0.0474 0.10 55.84 35.99 766 64.15
SCDL 200T 0.0408 0.30 42.65 45.04 667 61.61
SCDL2 no eviction 200T 0.0382 0.29 41.75 45.79 649 61.44
SCDL2 no eviction 1000T 0.0367 0.03 62.87 30.72 499 65.40
SCDL 1000T 0.0358 0.04 65.40 28.76 633 65.91
SCDL2 on free 500T 0.0298 0.11 47.35 42.07 951 62.49
SCDL2 on free 1000T 0.0272 0.04 56.02 35.69 1003 64.12
SCDL2 on free 200T 0.0053 0.32 37.43 48.98 661 60.59
SCDL2 on day end 1000T 0.0052 0.06 39.37 47.08 808 61.00
SCDL2 on day end 500T 0.0046 0.13 37.93 48.30 957 60.69
SCDL 100T -0.0032 0.64 35.37 49.90 462 60.21
SCDL2 on day end 200T -0.0046 0.33 35.27 49.94 815 60.17
SCDL2 on k 1000T -0.0107 0.07 29.30 54.18 621 59.04
SCDL2 on k 500T -0.0212 0.14 29.50 54.05 628 59.03
SCDL2 no eviction 100T -0.0262 0.67 34.77 50.40 481 60.11
SCDL2 on k 200T -0.0552 0.37 29.30 53.98 740 59.04
SCDL2 on free 100T -0.0613 0.69 31.95 52.42 556 59.55
SCDL2 on day end 100T -0.0750 0.71 30.98 52.91 638 59.39
SCDL2 on k 100T -0.1188 0.74 28.44 54.73 731 58.87
SCDL 50T -0.1298 1.32 29.28 53.86 389 59.06
SCDL2 no eviction 50T -0.2037 1.48 29.68 53.75 403 59.11
SCDL2 on free 50T -0.2529 1.49 27.37 55.20 406 58.71
SCDL2 on day end 50T -0.2583 1.49 26.99 55.45 434 58.63
SCDL2 on k 50T -0.3038 1.53 26.45 55.73 660 58.52
SCDL 10T -1.4140 6.83 22.05 58.29 168 57.70
SCDL2 no eviction 10T -2.1534 8.50 23.08 57.78 168 57.89
SCDL2 on free 10T -2.2246 8.22 21.24 58.91 273 57.54
SCDL2 on day end 10T -2.2403 8.16 21.08 58.96 280 57.52
SCDL2 on k 10T -2.3275 8.29 20.92 59.06 450 57.50

99

Mirco Tracolli 6.3. EVALUATION

Further studies were made to investigate the motivation and the possible
bottleneck where the approaches can improve. In particular, as shown in
Figure 6.5, it is possible to infer that there is great variability of user requests
during the days.

Figure 6.5: Result investigation of Read on hit ratio for both datasets with a
cache that has infinite memory

In Figure 6.5 there is a focus of the read on hit with respect to the total
amount of file requested from the user using a cache with infinite size. Despite
the dataset used, there are days with a low percentage of files read from the
cache, also 30%. As a consequence, the file requested only once influenced a
lot of the caching behaviors and consequently the user experience. Due to the
lower space available in the cache and the enormous volume of the source
data (in the range of hundreds of Petabytes), it is not trivial to manage the
cached content. In fact, the ending cache size for the Italian and US dataset at
the end of the simulation was respectively ∼ 12Petabytes and ∼ 16Petabytes.
Thus, if the portion of data used in a year respects the source is so different
it is necessary to use domain-specific information to better understand and
guess the clients’ patterns.

100

Mirco Tracolli 6.3. EVALUATION

All the approaches prove that it is possible to enhance the caching content
management in a Data Lake architecture. Also, they performed well compared
to the golden standard LRU policy that is commonly used in the problem context.
From the direct application perspective, the most concrete result of the given
experiments is visible in the following Table 6.15:

Table 6.15: Result comparison of IT region with different cache sizes and 10Gbit
bandwidth.

Cache Type Size Throughput Cost ReadOnHit ratio Bandwidth Avg. #miss after del. CPU eff.

SCDL2 no eviction 500T 0.0480 0.09 54.10 37.16 641 63.76
SCDL2 no eviction 200T 0.0382 0.29 41.75 45.79 649 61.44
LRU 500T 0.0328 0.14 57.50 34.54 828 64.43
LRU 1000T 0.0324 0.05 67.35 27.10 655 66.25

Because of the cost of the storage and the high dynamism of the envi-
ronment, the fact that the cache with less space performed better than the
standard LRU cache with higher memory is a valuable result that can be used
in practice to save storage costs. In Figures 6.6 and 6.7 is visible the constant
work of the SCDL2 with no eviction to improve the throughput compared to
golden standard LRU with the same size and also against its double (Table 6.15).
As depicted from the box plot, the SCDL2 is always better than its sibling LRU
cache with 500T, but it does a good job against its double, of course with a
higher variance due to the difference in the size of the two caches. In fact,
there are more spikes on the comparison with the 1000T LRU cache, especially
negative, because of the possibility by the bigger cache to ingest more files.

In the WLCG scenario, one of the main focuses is resource optimization, with
the ultimate aim of improving performance and efficiency, as well as simplifying
and reducing operation costs. Thus, with such an approach it is possible to
enhance the XCache middleware, the current environment used in CMS for the
caching layer, and implemented with XRootD [56, 57], to take advantage of the
double agent configuration and improve the throughput, without changing the
technology (Figures 6.6 and 6.7). In conclusion, the great value of the work is not
just an autonomous solution to improve the current caching layer performance
in the WLCG Data Lake context, but also a method to contain the costs to face
the future requirements.

101

Mirco Tracolli 6.3. EVALUATION

Figure 6.6: This plot shows the difference between SCDL2 with no eviction and
LRU, using a cache of size 500T. The red line is the average gain of SCDL2

Figure 6.7: This plot shows the difference between SCDL2 with no eviction and a
cache size of 500T versus a cache of size 1000T that uses LRU. The red line is
the average gain of SCDL2

102

Future steps

Contents
7.1 Q-Learning improvements 104

7.2 Deep Q-Learning . 105

7.3 Integration . 106

In this chapter, the future of the work and the possible improvements will
be discussed. An idea of the weakness of the approach is depicted and there
will be addressed several aspects to enhance the agents.

103

Mirco Tracolli 7.1. Q-LEARNING IMPROVEMENTS

Since the approach of this thesis work is as general as possible, the tech-
niques proposed could be used also in other contexts, for example, cloud cache
for file-sharing or video hosting services. Moreover, the environment could
be enriched not only with domain information regarding the data but also
with additional system information: e.g. network topology, the status of other
caches, latency information, etc. However, even if the project is agnostic, it does
not mean that the adaptation is simple and above all, it requires appropriate
datasets for simulations and a further study on the useful features to use.

Regarding the portability of the approach, because the project’s target was
to create an independent object, it is possible to plug in other environments
without any effort. During the development were tested communications with
other services using the HTTP protocol [58] and also gRPC [59]. The Go language
has many frameworks to interact with other ecosystems, thus the developed
solution could be deployed as a service in any environment, from the IoT to
HPC. In conclusion, due to its cloud-native origins, this project can be deployed
in any cloud environment using also the containerization and also systems like
Kubernetes [60].

7.1 Q-Learning improvements

As shown in the results, the agents’ behavior can be improved. In particular,
the number of a miss after delete indicates that there is room for better per-
formances comparing the LRU policy. The inevitable amount of miss for files
requested once could be mitigated with a better decision both, on addition
and on the eviction. The aim is still the same, we have to use better the cache
space.

To investigate better, it was made an analysis of smaller periods of the year
(3 months each period), where the cache behavior was deeply monitored. In
Figure 6.5 is depicted that often the agents make fewer mistakes compared
to the standard cache policy and this is a confirmation of the lower average
number of a miss on delete encountered in the experiments.

However, the analysis of the type of miss shows that most of the cases
are caused by the addition agent, because there is a miss after the choice

104

Mirco Tracolli 7.2. DEEP Q-LEARNING

Figure 7.1: Cumulative number of miss on delete for period B of the year (Apr-Jul)
using the Italian dataset

to not store a file. In addition, the eviction agent still removes some useful
files because there are several misses after the deletion of the file (Figures 7.2
and 7.3).

Altogether, both the agents need an improvement: the addition agent should
make fewer mistakes, especially for the files requested two or more times; the
eviction agent has to be more precise on deletion, hopefully with the ability to
choose and evaluate the deletion of single files.

7.2 Deep Q-Learning

As mentioned in the Section 6.3 there is great variability of the requests
during the days. Thus, there is a need for a predicting approach to tackle
client requests. A possible solution could be the Deep Q-Learning technique,
together with the use of domain information. With a deeper comprehension of

105

Mirco Tracolli 7.3. INTEGRATION

Figure 7.2: Frequency distribution of miss on delete an miss on skip for SCDL in
period B (Apr-Jul 2018) for the Italian dataset

Figure 7.3: Frequency distribution of miss on delete an miss on skip for SCDL2
with no eviction in period B (Apr-Jul) for the Italian dataset

the request, the agent could infer better if a file will be requested in the period
after, for example using the data type or the number of different users that
have requested that information.

Maybe this RL technique could take advantage of an environment model
that gives the agents more precise and selective information. However, this
model is certainly more complex to implement online.

7.3 Integration

The WLCG Data Lake model (Section 4.2) is a concept introduced to optimize
operational and hardware costs, improving efficiency at HL-LHC. In such a model,
storage is consolidated in fewer logical endpoints, and compute capacity is
not necessarily co-located with storage. On the contrary, some facilities could
offer large compute capacity and no persistent storage at all. Stateless caches
would allow data to be buffered close to the compute resources for further
re-use, while no persistent storage would be operated at that site. Latency

106

Mirco Tracolli 7.3. INTEGRATION

hiding technologies would allow data to be processed as if it was local, given
that enough bandwidth is available to fetch it.

For this purpose, the experiments have initiated a major R&D program to
develop new ideas to maximize the positive experience from physicists with
expected manpower and funding at the sites.

This program was formed into the Data Organisation, Management and
Access (DOMA) project, embedded within the WLCG framework. The objective of
the DOMA project has been to share, discuss, and debate the merits of the ideas
and results emerging from this R&D program. The project has collaborated with
the developers of relevant new and emerging technologies, with the objective of
finding tools and solutions suitable beyond the LHC community, in an attempt
to achieve more standardization.

From the data centers point of view, the first step to earn from this technol-
ogy is the application of the caches to optimize the use of the main storage
also within its redundant copies. The importance of efficient utilization of a
heterogeneous infrastructure is already the first goal to face the future in data
storage.

In this context, a valuable aspect is to try to estimate the impact of the dis-
cussed approach, also from a different perspective: the financial one. In order
to do that, it is possible to use the current statistics and budget information for
the Italian region within the CMS Experiment as a reference scenario for LHC:

• in Italy there are 10PB of disk space deployed in order to serve the
computing system of the CMS Experiment;

• the current target is the analysis datasets of CMS (namely MiniAOD and
NanoAOD) which are a fraction of the whole source data;

• the current estimated network cost is ∼ 140€ per TB.

Therefore, defining a possible scenario where approximately 1
3

of the current
total amount of disk space which is devolved to a cache-based mechanism it
is assumed that 7PB of the total amount of disk space is managed as usual
while 3 can be used as a cache.

Regarding the cache, it is assumed to not have any responsibility for data
loss. Consequently, the default policy of CMS in terms of the replica is not

107

Mirco Tracolli 7.3. INTEGRATION

applied to the disk space. Conservatively, it should be estimated a gain of
a factor of ×2 that is obtained in terms of disk capacity. On top of that, the
proposed AI strategy can be applied and, considering the measured results of
the presented work, a factor 2 with regard to the standard LRU behavior.

Overall this means that a 2.25TB of disk space out of the 3 originally con-
sidered can be saved without any performance loss. Aiming at translating this
into budget-saving, one could say that a smart cache-based approach can
save up to 22.5% of the total budget spent on disk in Italy to support the CMS
experiment. Based on the assumption, could be calculated the net cost of the
disk, that is means about 300000€ per year. Out of which, 100000€ would come
from the AI algorithm presented in this thesis.

Of course, with the same assumptions, the gain estimation would be pro-
portional to the amount of the disk managed as a cache. Moreover, it should
be noted that the estimated gain discussed before does not include several
important factors:

• Ease of operations such as the bulk of disk space is JBOD, and losses are
handled automatically upstream;

• Overall, spend a larger fraction of total funding on CPU and GPU than
today;

• Easier management of corrupted file related issues.

Despite the above example made with today’s information, the caching
improvements proposed can be applied as a tool to improve the infrastruc-
ture and belong to the DevOps field. In fact, it is a collaboration between
Dev (development) and Ops (IT operations) sectors in a process that makes
a union of people and technology to continually provide value to customers.
Consequently, the expected result of the project would be deployed in the
real-life environment mentioned before.

To summarize, one of the expected results from the integration and experi-
mentation phase of a testbed is to make an on-field evaluation of the values
obtained within the thesis work.

108

Mirco Tracolli 7.3. INTEGRATION

Machine Learning Infrastructure

The developed tool could have a separate environment where all the calcu-
lus is made and where the AI takes place. However, managing the resources to
apply machine learning techniques is not trivial, especially when we have to
deal with Big Data or opportunistic sites. For this reason, there are solutions
like DODAS [61, 56] (Dynamic On Demand Analysis Service) to deploy a typical
Machine Learning pipeline (Figure 7.4) on-demand, and with custom require-
ments. DODAS is an open-source project for creating analysis container-based
clusters on-demand on any cloud infrastructure.

Figure 7.4: Schema of a machine learning typical pipeline

The ML pipeline is composed of independent modules and each module
provides a specific service for the ML tool-chain. DODAS lets get to have a highly
generic implementation of these building blocks and also to create a platform
with those blocks on "any" cloud provider with a minimal effort, enabling self-
healing and scale-up capabilities. This is a perfect combination of features
that can help to deploy the tool solution with continuous integration with the
environment.

As summarized in Figure 7.5, DODAS provides container-based solutions to
instantiate several solutions. In particular, in the context of Big Data, it provides
the creation of Hadoop clusters, Spark clusters, and generic ML frameworks
for training and inference. In order to implement our service, we used these
available blocks to automatically compose the tool-chain for our experiments.

In the context of this project, it would be used as enabling technology for the
proposed approaches [56]. In particular, a custom container with the required

109

Mirco Tracolli 7.3. INTEGRATION

Figure 7.5: DODAS architecture schema showing how the stack is implemented

dependencies for each approach can be injected and executed as a service
on-demand within the DODAS infrastructure.

XcachePlugin

One of the technologies used for the caching layer in the CMS context
(Section 4.2) but, generally in the High Energy Physics, is the Root cache and
proxy framework named XrootD [62, 57]. Other caching technologies were
considered, but they were discarded because they require more integration
work with the HEP workflow. Consequently, it is possible to deploy one of
the solutions proposed to work directly in the real-world scenario simply by
implementing the plugin interface for such a framework.

Thus, to insert a new technique to control the XCache content management
it is possible to use the plugin interface itself, as shown in Figure 7.6 with a
typical external Machine Learning pipeline mentioned in the previous section.

However, since the project is open source, if the approach needs deep con-
trol over the system it is possible to create several external services and modify
the source code to match the requirements. Moreover, there could be more

110

Mirco Tracolli 7.3. INTEGRATION

Figure 7.6: XCache plugin schema for AI integration which shows where it is
possible to intervene and extend the framework

sophisticated interaction with the cache infrastructure depending on the pro-
tocol used while maintaining a configuration with independent microservices
between them.

111

Conclusions

Data Lake is an emergent concept born to deal with the huge amounts of
data and also to sustain the incessant increase in customer requests. In a world
where Big Data changed everything, from the paradigm used to access them to
the management of the information, Data Lake seems the possible answer to
face future challenges.

Within this context, there are several models and interpretations of the
Data Lake infrastructure. The one that is forming in the field of High Energy
Physics, also thanks to the WLCG vision, is a storage service of geographically
distributed data centers connected by a low-latency network.

As described in this thesis, the key to such a Data Lake infrastructure is
better and autonomous caching data management. The caching layer is an
important part of the process of data access and if it works well it should
increase the user task throughput.

This Ph.D. program was devoted to define and design an autonomous caching
system able to enhance the caching content management, improving the data
throughput towards the clients, and lower the operational costs. Moreover,
the proposed solution has to adapt itself to new situations without human
intervention.

This thesis addresses the problem from different points of view, also by
creating a simulation environment to test different techniques and proposing

113

Mirco Tracolli

several metrics to monitor the effects of the algorithms.
The work produced three different approaches: the first one is a selection

file method based on a Weight Function able to evaluate the goodness of a file
guessing its future desirability. The target of this approach is to evaluate each
file request in order to decide either to store the data or not.

The other two methods instead use a Reinforcement Learning approach.
The first one, called SCDL (Smart Caching for Data Lake), has only one agent
that decides whether to store or not a file; the agent uses a technique similar
to the multiarmed bandit and its decisions are based only on client requests.

The second one, called SCDL2, implements a full Reinforcement Learning
approach based on the Q-Learning technique that involves two agents. This
time, the agents are enabled to make decisions on both file addition and
eviction not only using the information taken from the file request but also
exploiting the information taken from the status of the cache memory.

The results show that the approaches gain in performances compared to
other standard algorithms used in cache management, in particular, compared
to LRU. In detail, all the solutions proposed have a lower cost reaching a profit
starting from∼ 25% up to∼ 50%, considering the same cache size. Furthermore,
the throughput of the cache is improved by ∼ 15% up to ∼ 30%.

Despite the high dimensionality of the problem and the complexity of the
context, this thesis set the first milestone for autonomous caching content
management that outperforms the standard algorithms already used. This is a
usable solution in Data Lake environments and in particular in the HEP Data
Analysis workflows.

The used approaches contribute to better memory management, giving
value to the cached content and thus valuing the cache memory. The results
obtained in the case of lower cache sizes are promising and this particularly
contributes to the objective of cost containment. From this point of view, this
work can be considered ready to be used in a real context adding a significant
value to the Data Lake model.

The obtained results have room for improvements, especially if the al-
gorithms start to use more domain-specific information. In the future, this
technique could be also enhanced with more fine control over file decisions,
with a more sophisticated approach like Deep Reinforcement Learning, or also

114

Mirco Tracolli

with the support of external models of the used environment. In particular,
all the aspects related to the quality of service could be assigned to artificial
intelligence that auto adapts itself for better infrastructure maintenance, giving
information about the real impact of the caching layer and the improvement
of user experience. Moreover, if the future of data storage within Data Lakes
will be side by side with a caching system to enhance the content flow, this
work provides a first perspective on what could be a future profit thanks to the
better autonomous cache management.

In conclusion, the aim to create an autonomous object to enhance the
caching layer is achieved. This original contribution that can adapt itself to the
user requests and improve the flow of the data from the cache memory shows
considerable performance. Also, this work brought several metrics that could
be useful for further comparisons and developments in a field of continuous
evolution such as the Data Lakes.

115

Bibliography

[1] I. Bird, S. Campana, M. Girone, X. Espinal, G. McCance, and J. Schovancová.
Architecture and prototype of a wlcg data lake for hl-lhc.
In EPJ Web of Conferences, volume 214, page 04024. EDP Sciences, 2019.

[2] I. Kadochnikov, I. Bird, G. McCance, J. Schovancova, M. Girone,
S. Campana, and X. E. Currul. Wlcg data lake prototype for hl-lhc.
Advisory committee:127, 2018.

[3] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo.
Renewable energy-aware big data analytics in geo-distributed data
centers with reinforcement learning.
IEEE Transactions on Network Science and Engineering, 2018.

[4] Y. He, F. R. Yu, N. Zhao, V. C. Leung, and H. Yin.
Software-defined networks with mobile edge computing and caching for
smart cities: a big data deep reinforcement learning approach.
IEEE Communications Magazine, 55(12):31–37, 2017.

[5] P. Mell, T. Grance, et al. The nist definition of cloud computing, 2011.

[6] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. Everything as a
service (xaas) on the cloud: origins, current and future trends.
In 2015 IEEE 8th International Conference on Cloud Computing,
pages 621–628. IEEE, 2015.

[7] A. Gorelik. The enterprise big data lake: Delivering the promise of big
data and data science. O’Reilly Media, 2019.

[8] J. Dean and S. Ghemawat.
Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

117

Mirco Tracolli BIBLIOGRAPHY

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In 2010 IEEE 26th symposium on
mass storage systems and technologies (MSST), pages 1–10. Ieee, 2010.

[10] D. Baum. Cloud Data Lakes For Dummies.
John Wiley & Sons, Inc., 111 River St. Hoboken, NJ 07030-5774, 2020.

[11] J. Wang. A survey of web caching schemes for the internet.
ACM SIGCOMM Computer Communication Review, 29(5):36–46, 1999.

[12] N. G. Smith. The uk national web cache—the state of the art.
Computer Networks and ISDN Systems, 28(7-11):1407–1414, 1996.

[13] B. D. Davison. A web caching primer.
IEEE internet computing, 5(4):38–45, 2001.

[14] S. Podlipnig and L. Böszörmenyi.
A survey of web cache replacement strategies.
ACM Computing Surveys (CSUR), 35(4):374–398, 2003.

[15] W. Ali, S. M. Shamsuddin, A. S. Ismail, et al.
A survey of web caching and prefetching.
Int. J. Advance. Soft Comput. Appl, 3(1):18–44, 2011.

[16] G. Tian and M. Liebelt.
An effectiveness-based adaptive cache replacement policy.
Microprocessors and Microsystems, 38(1):98–111, 2014.

[17] T. Koskela, J. Heikkonen, and K. Kaski.
Web cache optimization with nonlinear model using object features.
Computer Networks, 43(6):805–817, 2003.

[18] T. Chen. Obtaining the optimal cache document replacement policy for
the caching system of an ec website.
European Journal of Operational Research, 181(2):828–841, 2007.

[19] J. Dixon. Pentaho, hadoop and data lakes.
https://jamesdixon.wordpress.com/2010/10/14/pentaho-
hadoop-and-data-lakes/, 2010. Last check April 9, 2020.

118

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

Mirco Tracolli BIBLIOGRAPHY

[20] T. King. The emergence of data lake: pros and cons.
https://solutionsreview.com/data-integration/the-
emergence-of-data-lake-pros-and-cons/, 2016.
Last check April 9, 2020.

[21] P. P. Khine and Z. S. Wang. Data lake: a new ideology in big data era.
In ITM Web of Conferences, volume 17, page 03025. EDP Sciences, 2018.

[22] Q. Yang, M. Ge, and M. Helfert.
Analysis of data warehouse architectures: modeling and classification,
2019.

[23] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and
Z.-L. Zhang.
Unreeling netflix: understanding and improving multi-cdn movie delivery.
In 2012 Proceedings IEEE INFOCOM, pages 1620–1628. IEEE, 2012.

[24] A. Burkov. The hundred-page machine learning book, volume 1.
Andriy Burkov Quebec City, Can., 2019.

[25] P. Harrington. Machine learning in action.
Manning Publications Co., 2012.

[26] A. Burkov. Machine learning engineering, 2019.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[28] J. Achiam. Spinning up in deep rl, 2018.
URL https://spinningup. openai. com.

[29] S. Dreyfus. Richard bellman on the birth of dynamic programming.
Operations Research, 50(1):48–51, 2002.

[30] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[31] J. Gray and P. Shenoy. Rules of thumb in data engineering.
In Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073), pages 3–10. IEEE, 2000.

119

https://solutionsreview.com/data-integration/the-emergence-of-data-lake-pros-and-cons/
https://solutionsreview.com/data-integration/the-emergence-of-data-lake-pros-and-cons/

Mirco Tracolli BIBLIOGRAPHY

[32] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas. A deep learning
approach for optimizing content delivering in cache-enabled hetnet.
In 2017 international symposium on wireless communication systems
(ISWCS), pages 449–453. IEEE, 2017.

[33] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman.
Adaptive ttl-based caching for content delivery.
IEEE/ACM transactions on networking, 26(3):1063–1077, 2018.

[34] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang.
Deepcache: a deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML,
pages 48–53, 2018.

[35] T. Lykouris and S. Vassilvitskii.
Competitive caching with machine learned advice.
arXiv preprint arXiv:1802.05399, 2018.

[36] H. Herodotou. Autocache: employing machine learning to automate
caching in distributed file systems. International Conference on Data
Engineering Workshops (ICDEW):133–139, 2019.

[37] A. Sadeghi, G. Wang, and G. B. Giannakis. Deep reinforcement learning
for adaptive caching in hierarchical content delivery networks.
IEEE Transactions on Cognitive Communications and Networking,
5(4):1024–1033, 2019.

[38] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt,
T. Mann, T. Weber, T. Degris, and B. Coppin.
Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679, 2015.

[39] C. Zhong, M. C. Gursoy, and S. Velipasalar.
A deep reinforcement learning-based framework for content caching.
In 2018 52nd Annual Conference on Information Sciences and Systems
(CISS), pages 1–6. IEEE, 2018.

[40] C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan,
A. Sirunyan, W. Adam, T. Bauer, T. Bergauer, H. Bergauer, M. Dragicevic,
et al. The cms experiment at the cern lhc, 2008.

120

Mirco Tracolli BIBLIOGRAPHY

[41] R. Brun and F. Rademakers.
Root—an object oriented data analysis framework.
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
389(1-2):81–86, 1997.

[42] G. Aad, J. Butterworth, J. Thion, U. Bratzler, P. Ratoff, R. Nickerson,
J. Seixas, I. Grabowska-Bold, F. Meisel, S. Lokwitz, et al.
The atlas experiment at the cern large hadron collider.
Jinst, 3:S08003, 2008.

[43] K. Aamodt, A. A. Quintana, R. Achenbach, S. Acounis, D. Adamová,
C. Adler, M. Aggarwal, F. Agnese, G. A. Rinella, Z. Ahammed, et al.
The alice experiment at the cern lhc.
Journal of Instrumentation, 3(08):S08002, 2008.

[44] A. A. Alves Jr, L. Andrade Filho, A. Barbosa, I. Bediaga, G. Cernicchiaro,
G. Guerrer, H. Lima Jr, A. Machado, J. Magnin, F. Marujo, et al.
The lhcb detector at the lhc.
Journal of instrumentation, 3(08):S08005, 2008.

[45] A. Georgiou. Storing Data Flow Monitoring in Hadoop. Technical report,
2013.

[46] V. Kuznetsov, T. Li, L. Giommi, D. Bonacorsi, and T. Wildish.
Predicting dataset popularity for the cms experiment.
arXiv preprint arXiv:1602.07226, 2016.

[47] M. Meoni, R. Perego, and N. Tonellotto.
Dataset popularity prediction for caching of cms big data.
Journal of Grid Computing, 16(2):211–228, 2018.

[48] J. Meyerson. The go programming language.
IEEE software, 31(5):104–104, 2014.

[49] A. A. Donovan and B. W. Kernighan. The Go programming language.
Addison-Wesley Professional, 2015.

[50] O. Ben-Kiki, C. Evans, and B. Ingerson.
Yaml ain’t markup language (yaml™) version 1.1.
Working Draft 2008-05, 11, 2009.

121

Mirco Tracolli BIBLIOGRAPHY

[51] Y. Shafranovich. Common format and mime type for csv files.
Internet Eng. Task Force draft, Mar, 2005.

[52] G. Van Rossum and F. L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009. isbn: 1441412697.

[53] P. T. Inc. Collaborative data science. 2015. url: https://plot.ly.

[54] M. Tracolli, M. Baioletti, D. Ciangottini, V. Poggioni, and D. Spiga.
An intelligent cache management for data analysis at cms.
In International Conference on Computational Science and Its
Applications, pages 320–332. Springer, 2020.

[55] D. Ciangottini. Integrazione di una smart cache italiana federata per cms,
2019. url: %5Curl%7Bhttps:
//web.infn.it/CCR/index.php/it/la-ccr/home-1%7D.
talk at CCR, Italy.

[56] M. Tracolli, M. Antonacci, T. Boccali, D. Bonacorsi, D. Ciangottini,
G. Donvito, C. Duma, L. Gaido, D. Salomoni, D. Spiga, and V. Kuznetsov.
Using DODAS as deployment manager for smart caching of CMS data
management system.
Journal of Physics: Conference Series, 1525:012057, Apr. 2020.
doi: 10.1088/1742-6596/1525/1/012057. url: https:
//doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012057.

[57] L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost,
I. Sfiligoi, A. Tadel, M. Tadel, F. Wuerthwein, et al.
Xrootd, disk-based, caching proxy for optimization of data access, data
placement and data replication.
Journal of Physics: Conference Series, 513(4):042044, 2014.

[58] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol–http/1.1, 1999.

[59] M. Marculescu.
Introducing grpc, a new open source http/2 rpc framework.
Google Open Source Blog, 2015.

[60] D. Bernstein. Containers and cloud: from lxc to docker to kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014.

122

https://plot.ly
%5Curl%7Bhttps://web.infn.it/CCR/index.php/it/la-ccr/home-1%7D
%5Curl%7Bhttps://web.infn.it/CCR/index.php/it/la-ccr/home-1%7D
https://doi.org/10.1088/1742-6596/1525/1/012057
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012057
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012057

Mirco Tracolli BIBLIOGRAPHY

[61] D. Spiga, M. Antonacci, T. Boccali, D. Ciangottini, A. Costantini, G. Donvito,
C. Duma, M. Duranti, V. Formato, L. Gaido, et al. Dodas: how to effectively
exploit heterogeneous clouds for scientific computations.
PoS (ISGC 2018 & FCDD), 24, 2018.

[62] XRootD. Xrootd homepage, 2020. url: %5Curl%7Bhttps:
//xrootd.slac.stanford.edu/index.html%7D.
Last accessed March 4, 2020.

[63] D. Crockford. Ecma-404, the json data interchange standard, 2017.

123

%5Curl%7Bhttps://xrootd.slac.stanford.edu/index.html%7D
%5Curl%7Bhttps://xrootd.slac.stanford.edu/index.html%7D

Appendix

A.1 Cloud services

Figure A.1: Cloud service models and abstraction level

In Figure 1.1 there is a detail about the different kinds of management
controls according to the type of service provided. Clearly, when the user
owns the hardware and there are no services because he has control over the
bare metal, the whole stack is completely in the hand of the user. Instead,
starting from the IaaS (Infrastructure as a Service), the user loses control over
the hardware and become responsible for fewer part of the stack. In this first
model, the end-user will interact directly with the machines of the infrastructure
(Guest OS) and all that he can put on them.

125

Mirco Tracolli A.1. CLOUD SERVICES

After, there is the PaaS (Platform as a Service) model, known also as the
application category because the providers give as a service a platform allowing
customers to develop, run, and manage applications without the complexity
of building and maintaining the underlying infrastructure. This will define the
runtime environment in which the user has full powers and can develop what
he wants.

Last but not least, in the SaaS (Software as a Service) the provider manages
all the layers that compose the service and the end-user has to think only to
use the software. In this case, the provider gives to the users the direct access
to an already deployed application and therefore the actions of the users are
strictly linked to the type of application requested.

126

Mirco Tracolli A.2. DATA ANALYSIS PIPELINE

A.2 Data Analysis pipeline

The typical data analysis pipeline is showed in Figure A.2, where are visible
the two main components that precede the analysis: processing and access.
In the processing phase, data could be cleaned or can be generated new data
useful for the analysis. In the access phase, these data are taken to be processed
in an analysis task that produces a result.

Figure A.2: Typical data analysis pipeline

127

Mirco Tracolli A.3. SYNTHETIC DATASETS

A.3 Synthetic datasets

Testing and evaluate different methods is not trivial and the data used are
very important in the process of the approach validation. For this purpose,
a synthetic dataset generator (Figure A.3) was build to make the source for a
particular situation. The available recipes to generate source data are meant
for stressing a specific pattern and also to check the simulator outputs.

Figure A.3: The dataset generator dashboard

The generator tool is written in Python [52] using Plotly [53], and it can be
used also from the command line with a JSON [63] configuration file to produce
a dataset. An example of the configuration is available in Figure A.4.

Currently, the synthetic dataset generator supports the creation of the
following dataset, each one designed to emphasize a situation:

• High-Frequency Dataset: where the requests of a set of files are distributed
to make a part of them with a high frequency. It should be the best fit for
the LFU policy;

• Recency Focused Dataset: where the requests of a set of files are organized
to focus on recency. It should be the best fit for the golden standard LRU;

128

Mirco Tracolli A.3. SYNTHETIC DATASETS

Figure A.4: Synthetic dataset configuration example in JSON

• Size Focused Dataset: where the most requested files of a set have a
specific size. It should be better for policies such as Size Big and Size
Small.

As mentioned in the description of each generator, the idea of a stressed
situation was something that fits well an already known policy. Despite the
generator tool has several views to inspect the created dataset, a further check
can be done with the simulator using the policy suggested as the best fit.

129

Mirco Tracolli A.4. RESULT VIEW THROUGH THE SIMULATION ANALYZER

A.4 Result view through
the simulation analyzer

The simulation analyzer mentioned in Section 4.3 allows to inspect the
results with several interactive graphs about the metrics and also the statistics
collected during the simulation. Also, it enables to filter the results selecting a
specific method or algorithms, and compare them during the period simulated.

In Figure A.5 there is a sample of the comparison between SCDL, SCDL2 and
LRU regarding the Throughput metric (Equation (6.1)). As stated in Chapter 6, it is
notable how the two proposed approaches have a higher throughput compared
to the golden standard LRU.

Figure A.5: Throughput comparison using the simulation analyzer

Instead, in Figure A.6 there is another sample but regarding the Cost metric
(Equation (6.5)). The results of the experiments (Chapter 6) which attest to the
lower cost of the proposed solutions are easily visible in the graph during the
evolution of the simulation.

Since there is more information available through the analyzer, it is possible
to inspect the different agent behavior as in Figure A.5, where there is a com-
parison between the SCDL and SCDL2 on their ϵ value during the time. From

130

Mirco Tracolli A.4. RESULT VIEW THROUGH THE SIMULATION ANALYZER

Figure A.6: Cost comparison using the simulation analyzer

Figure A.7: ϵ decay comparison between SCDL and SCDL2

131

Mirco Tracolli A.4. RESULT VIEW THROUGH THE SIMULATION ANALYZER

the graph, it can be inferred that the decay factor chosen allows the agents
to learn (or explore) in a period of approximately two weeks. Also, it is visible
how the SCDL does not have an eviction agent, in fact, its ϵ value is always 0.
Moreover, the peaks of the epsilon represent the situation when the agent is
decreasing in performance and it requires exploring more than exploiting.

132

	List of Figures
	List of Tables
	Introduction
	Background on Data Lakes
	Cloud service models
	Big Data and the Cloud
	Data caching in cloud systems
	Data lakes

	Background on Machine Learning
	Machine learning
	Reinforcement Learning
	Concepts and terminology
	Approach details
	Algorithms

	Related works
	Problem description
	Definition and targets
	Context
	Data-sets

	Simulation environment

	Smart Caching for Data Lakes
	Exploring file scoring
	An agent for a better addition
	Smart caching with double agents

	Experiments
	Evaluation metrics
	Tests and results
	Selection by file score
	Cache composition by SCDL
	Cache management by SCDL2
	Extreme use cases

	Evaluation
	Metrics correlation
	Notes on agent learning
	Notes on selected features
	Result considerations

	Future steps
	Q-Learning improvements
	Deep Q-Learning
	Integration

	Conclusions
	Bibliography
	Appendix
	Cloud services
	Data Analysis pipeline
	Synthetic datasets
	Result view through the simulation analyzer

