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Abstract

With the aim of studying the spread of the SARS-CoV-2 infection in the Tuscany region of

Italy during the first epidemic wave (February-June 2020), we define a compartmental

model that accounts for both detected and undetected infections and assumes that only

notified cases can die. We estimate the infection fatality rate, the case fatality rate, and the

basic reproduction number, modeled as a time-varying function, by calibrating on the cumu-

lative daily number of observed deaths and notified infected, after fixing to plausible values

the other model parameters to assure identifiability. The confidence intervals are estimated

by a parametric bootstrap procedure and a Global Sensitivity Analysis is performed to

assess the sensitivity of the estimates to changes in the values of the fixed parameters.

According to our results, the basic reproduction number drops from an initial value of 6.055

to 0 at the end of the national lockdown, then it grows again, but remaining under 1. At the

beginning of the epidemic, the case and the infection fatality rates are estimated to be

13.1% and 2.3%, respectively. Among the parameters considered as fixed, the average

time from infection to recovery for the not notified infected appears to be the most impacting

one on the model estimates. The probability for an infected to be notified has a relevant

impact on the infection fatality rate and on the shape of the epidemic curve. This stresses

the need of collecting information on these parameters to better understand the phenome-

non and get reliable predictions.

1 Introduction

The SARS-CoV-2 epidemic, the new coronavirus strain identified by the Chinese authorities

in early January 2020, is characterized by strong contagiousness which translates into a fast

growth of the number of infected individuals. The serious complications due to COVID-19,

the respiratory disease caused by the new coronavirus, may require hospitalization in intensive

care units and lead to death, especially among the elderly and those affected by multiple co-

morbidities.

Italy was the first European country to be hit by the epidemic. Since the first case of infec-

tion was reported in the Lodi/Codogno area on February 21st, the situation in Italy has evolved
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rapidly, with the largest number of confirmed cases and deaths in the Northern regions, where

the pressure on the health system has been very strong. Following the example of China, Italy,

as well as most European countries, has implemented progressive measures of social distanc-

ing starting from small areas limited to the first cases of infection, up to a complete lock-down

extended to the whole nation. From March 9th to May 4th, the restrictions have been progres-

sively intensified and citizens were prohibited from leaving home except in cases of proven

need or urgency.

The process of spreading of an infectious disease is very complex and depends on countless

factors. However, under some assumptions, its dynamics can be simplified and reproduced

through mathematical models. A well-known class of models is the one of the compartmental

models, based on the assumptions that at any time point during the epidemic the population is

divided into compartments, i.e. groups of individuals who are in the same state, and that the

transitions from one state to another follow simple probabilistic rules [1]. The most famous

example of compartmental model is the SIR model that divides the population into Susceptible

(individuals that are exposed to the risk of infection), Infected, and Resolved (individuals that

have either recovered or died) [2]. Through compartmental models, one can obtain informa-

tion about key quantities regulating the epidemic spreading and make short or long-term fore-

casts, allowing comparative assessment of alternative policies to be adopted to face the

epidemic [2, 3].

Since the beginning of the emergency, several approaches based on compartmental models

have been proposed to study the SARS-CoV-2 epidemic, also in the Italian context [4–7]. The

interested reader can find an accurate description of the literature in [8]. Some of the proposed

compartmental models explicitly account for the presence of undetected asymptomatic indi-

viduals, thus for the fact that part of the epidemic is submerged [9–15].

The present paper is placed in this strand of literature, with the aim of studying the spread

of the SARS-CoV-2 infection in Tuscany, a region in the center of Italy (3’737’000 inhabitants),

during the first wave of the epidemic. With this purpose, we use a compartmental model

which generalizes the classical Susceptible-Infected-Recovered-Deceased (SIRD) model [16,

17], defining distinct compartments for notified and not notified infected and for notified and

not notified recovered, hence the acronym SI2R2D. Calibrating the model on two targets, the

daily cumulative counts of deaths with COVID-19 and the daily cumulative counts of notified

infections, we investigate the change of the basic reproduction number from the very early

stage of the outbreak—before the introduction of the restriction policies—to the beginning of

the summer season on June 20th, 2020. Additionally, we obtain estimates of both case fatality

rate and infection fatality rate [18], after combining literature and local data to derive a value

of the probability for an infected person to be notified. Estimates of the size of the compart-

ments over time are produced as well.

A crucial point in compartmental models concerns parameter identifiability [19]. Especially

in complex models including many compartments, the number of parameters to be estimated

can be high and the data could be not sufficient to guarantee practical identifiability [20].

Additionally, different combinations of parameters could lead exactly to the same predictions,

a situation which is usually called “theoretical non-identifiability”. In our model, to assure

practical and theoretical identifiability, we leave unknown only a subset of the parameters, fix-

ing the others to values obtained from the literature. This poses the problem of evaluating the

sensitivity of the results to variations of the values used for the fixed parameters. So, we use the

Global Sensitivity Analysis (GSA) to assess the relevance of the fixed parameters in determin-

ing the calibration results [21]. The GSA, which is not widely used in epidemiology and is

rarely employed for compartmental models [22, 23], appears as one of the five recommenda-

tions in the manifesto “Five ways to ensure that models serve society: a manifesto” proposed
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by Saltelli and colleagues in a recent commentary which offers a critical view of modeling in

time of pandemic [24].

2 Data

We use the data made available on a daily basis from February 24th, 2020 by Protezione Civile

[25]. This database collects the daily numbers of notified positive, hospitalized, recovered, and

deceased subjects by region. For our analysis, we focus on the cumulative daily number of

COVID-19 deaths and on the cumulative daily number of notified infections in Tuscany up to

June 20th, 2020.

3 Materials and methods

3.1 The SI2R2D model

Our model assumes that at any given time the population is divided into six compartments—

Susceptible (S), Not Notified Infected (INN), Notified Infected (IN), Not Notified Recovered

(RNN) (recovered without being previously detected as infected), Notified Recovered (RN)

(recovered after being previously detected as infected), Deceased (D)—and that the individuals

can move between compartments according to the admissible transitions reported in Fig 1.

We indicate with S(t), INN(t), IN(t), RNN(t), RN(t), and D(t) the number of subjects belonging to

the six compartments at time t = 0, 1, 2, . . ., measured discretely on a daily basis. Notice that

individuals in INN can be either notified as infected or remain undetected by the authorities.

The model, that we call SI2R2D due to the presence of two compartments for the infected

and two compartments for the recovered individuals, relies on the following assumptions:

1. The epidemic starts with one infected individual and the rest of the population susceptible,

i.e. I(0) = 1 and S(0) = N − 1, where N is the regional population size.

2. The population is closed (we ignore demographic turnover, immigrations and emigra-

tions): S(t) + INN(t) + IN(t) + RNN(t) + RN(t) + D(t) = N, 8t.

3. The population is homogeneously mixed and people make contact at random.

4. The transition parameters are constant across individuals who are present at the same time

in the same compartment.

5. An individual entering the compartment INN on day t is supposed to be able to infect indi-

viduals belonging to S starting from time t + 1 until the transition to RNN or IN. We assume

Fig 1. Admitted transitions between compartments of the SI2R2D model with the corresponding transition

parameters.

https://doi.org/10.1371/journal.pone.0250029.g001
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in fact that individuals entering the compartment IN are no more able to spread the conta-

gion since they are detected and placed in isolation.

6. Recovered individuals cannot go back to being susceptible within our study period (the re-

infection rate is equal to zero).

7. Only infected who are notified can die with COVID-19 (only asymptomatic or mild infec-

tions are eventually left undetected).

According to these assumptions, the dynamics underlying the model are described by the

following equations:

SðtÞ ¼ Sðt � 1Þ � b
Sðt� 1Þ

Sð0Þ INNðt � 1Þ

INNðtÞ ¼ INNðt � 1Þ þ b
Sðt� 1Þ

Sð0Þ INNðt � 1Þ � gINNðt � 1Þ � aNNINNðt � 1Þ

INðtÞ ¼ INðt � 1Þ þ gINNðt � 1Þ � aNINðt � 1Þ � dINðt � 1Þ

RNNðtÞ ¼ RNNðt � 1Þ þ aNNINNðt � 1Þ

RNðtÞ ¼ RNðt � 1Þ þ aNINðt � 1Þ

DðtÞ ¼ Dðt � 1Þ þ dINðt � 1Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð1Þ

where t = 0, 1, 2, . . ., and β, γ, αN, αNN, δ are the parameters which regulate the transitions, in

the form of daily rates.

It is worth pointing out that in our analysis we use a model parametrization, detailed in S1

Appendix, which expresses the transition rates γ, αNN, αN, and δ as functions of:

• π, the probability of being notified for an infected subject, which is related to γ and αNN;

• h, the value of the case fatality rate, i.e. the probability of dying for a notified infected subject,

which is related to δ and αN;

• the average transition times between compartments, TRNN
, TRN

, TIN
, and TD, described in

Table 1.

Table 1. Values of the transition times used in the SI2R2D modela.

Time From To value

τ1 infection symptoms 5 days [31–33]

τ2 symptoms test 4 days [27]

τ3 symptoms death 11 days [34]

τ4 symptoms recovery 28 days [32]

TIN
¼ t1 þ t2 infection test 9 days

TD = τ3 − τ2 test death 7 days

TRN
¼ t4 � t2 test recovery 24 days

TRNN
infection recovery (for undetected) 14 days

a The upper part of the table shows the literature values used to derive the transition times reported in the lower part

of the table.

https://doi.org/10.1371/journal.pone.0250029.t001

PLOS ONE The SARS-CoV-2 epidemic in Tuscany (Italy): A compartmental model with uncertainty evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250029 April 21, 2021 4 / 23

https://doi.org/10.1371/journal.pone.0250029.t001
https://doi.org/10.1371/journal.pone.0250029


We introduce these parameters since they are meaningful quantities to estimate and make

it simpler to include in the estimation procedure external information from literature and

local data, which may enhance model identifiability (Section 3.2).

Regarding the transition rate β, it can be expressed as a function of αNN, γ, and R0, the so-

called basic reproduction number, via the following equation [16]:

b ¼ R0ðaNN þ gÞ: ð2Þ

R0 represents the number of secondary infections that are expected to originate from the only

positive person at the beginning of the epidemic. In our analysis we allow R0 to vary over time

[26], inducing a time-varying β(t) via Eq (2). In particular, we assume that R0(t) is a piece-wise

constant function with steps at times t?
0
, t?

1
, t?

2
, t?

3
:

R0ðtÞ ¼ r01ft 2 ½0; t?0Þg þ
X3

j¼1

rj1ft 2 ½t
?

j� 1
; t?j Þg þ r41ft 2 ½t

?

3
; te�g; ð3Þ

where te is the number of days from the beginning of epidemic (t = 0) to June 20th. We a priori

fix t?
0
, t?

1
, t?

2
, t?

3
at the following dates: March 16th (the Monday after the start of the lockdown),

April 6th, April 27th, and May 18th.

Finally, the model allows the case fatality rate (CFR) to decrease, starting from time t�
2

(April 27th):

CFRðtÞ ¼ h1ft 2 ½0; t?
2
Þg þ

h
k

1ft 2 ½t?
2
; te�g; ð4Þ

where k� 1. This implies that the infection fatality rate (IFR), which represents the risk of

death among the infected individuals, decreases too, as it is obtained as the product of CFR(t)
and π:

IFRðtÞ ¼ pCFRðtÞ ¼ p1ft 2 ½0; t?
2
Þg þ

p
k

1ft 2 ½t?
2
; te�g; ð5Þ

where p = πh.

3.2 Model identifiability and calibration

In order to avoid identifiability problems [19], in our analysis we consider several parameters

of the SI2R2D model as fixed. In particular, we fix π to a value obtained by combining literature

estimates and local data (see Section 3.3), the transition times TIN
, TRNN

, TRN
, TD to the values

reported in Table 1. While TIN
, TRN

, and TD are derived from the literature after assuming an

average time of 4 days from symptoms to infection detection in the notified cases (value based

on Italian data [27]), TRNN
is fixed to 14 days—this is partly consistent with evidence indicating

that the lowest viral load is reached 15 days after the infection onset [28]. Finally, we set

k = 1.5, assuming that the case fatality rate and the infection fatality rate decrease by a 1/3 after

April 27th [29, 30]. On the contrary, the parameters r = (r0, r1, . . ., r4) and h are left unknown

and estimated through calibration as well as the date of the first infection. The infection fatality

rate is derived from π and the estimate of h according to Eq (5).

Let us indicate with θ = (r, h) the vector of the unknown parameters. Given the fixed

parameters, different values of θ correspond to different evolutions of the size of the compart-

ments over time. Calibration is defined as the search for the value of θ producing the model

trajectory that best matches target empirical data. In this work, as in [35], empirical data used

for calibration are the observed daily time series of cumulative deaths (Dobs) and of cumulative
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notified infections (Cobs), both considered from March 9th, the day of the first observed death

in the region, to the end of the study period on June 20th. For every θ, we can simulate the cor-

responding time series D(t) and C(t)—the dependence of D(t) and C(t) on θ is omitted to ease

notation—via the transition equations of the SI2R2D model. Notice that also the number of

days from the first simulated infection to the first simulated death depends on θ. Let D�, C� be

the vectors obtained removing initial elements from D and C in order for their first element to

correspond to the day of the first simulated death.

We minimize over θ the following weighted average of normalized root mean squared

errors:

Q ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðD�ðtÞ � DobsðtÞÞ
2

s

XT

t¼1

DobsðtÞ
þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðC�ðtÞ � CobsðtÞÞ
2

s

XT

t¼1

CobsðtÞ

0

B
B
B
B
@

1

C
C
C
C
A
; ð6Þ

where T is the number of days from March 9th to June 20th (104 days). Comparing D�(t) with

Dobs(t) and C�(t) with Cobs(t), we constrain each simulated model to produce the first death on

the same day when the first death is actually observed. This condition allows us to indirectly

derive for each θ the date of the beginning of the epidemic.

In order to express a greater belief in the deaths counts, rather than in the observed notified

infections, which are more prone to registration errors, false positives (albeit probably negligi-

ble) or delays, we a priori set w1 = 0.6 and w2 = 0.4 [11].

Minimization of Eq (6) is performed using the Hooke and Jeeves pattern search [36]

through the function hjn in the R package optimR [37]. It is well-known that optimization

methods in the context of compartmental models often depend on the chosen initial values of

the algorithm [20, 38]. To avoid the problem of getting stuck in local minima we select the

starting point through a preliminary minimization of Q on a multidimensional grid [19, 38].

The confidence intervals of the model parameters and of the size of the compartments are

obtained through parametric bootstrap [39]. More precisely, we computed the percentile inter-

vals according to the procedure proposed specifically for compartmental models by Chowell

et al. [19]. We assume that the increments of the time series are distributed according to Nega-

tive Binomial distributions—a standard choice to model increments in mechanistic compart-

mental models [19, 40–44]—with parameters estimated by minimizing Eq (6) [40]. Then, we

sample n = 1000 series of deaths and notified infections from these Negative Binomial distribu-

tions. Repeating the calibration procedure on each of the 1000 sampled pairs of series, we thus

obtain 1000 bootstrap estimates of the model parameters θ and bootstrap 90% confidence

intervals for the quantities of interest are calculated as the 5th and 95th percentiles of the distri-

butions of these bootstrap replications [39]. Details about the procedure can be found in S1

Appendix, and its limitations are discussed in Section 5.2.

3.3 Estimation of π
Assuming that all infected subjects who undergo to SARS-CoV-2 test are correctly classified,

the probability π for an infected individual to be notified is equivalent to the probability for an

infected individual to be tested and can thus be written as P(testjinfected). Let ss, sm, and s0 be

the events “the subject has severe symptoms COVID-19-like”, “the subject has mild symptoms

COVID-19-like” and “the subject has not symptoms COVID-19-like”, respectively. The set {ss,

sm, s0} is a partition of the event space O. The probability for a subject with ongoing infection

PLOS ONE The SARS-CoV-2 epidemic in Tuscany (Italy): A compartmental model with uncertainty evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250029 April 21, 2021 6 / 23

https://doi.org/10.1371/journal.pone.0250029


to be tested can be decomposed as follows:

p ¼ Pðnotified j infectedÞ ¼ Pðtest j infectedÞ ¼
¼ Pðtest; ss j infectedÞ þ Pðtest; sm j infectedÞ þ Pðtest; s0 j infectedÞ ¼
¼ Pðtest j ss; infectedÞPðss j infectedÞ þ Pðtest j sm; infectedÞPðsm j infectedÞþ
þPðtest j s0; infectedÞPðs0 j infectedÞ ¼
¼ Pðtest j ssÞPðss j infectedÞ þ Pðtest j smÞPðsm j infectedÞ
þPðtest j s0ÞPðs0 j infectedÞ;

ð7Þ

where the last equality derives from the assumption that being tested is conditionally indepen-

dent of the actual infection status given symptoms.

Relying on Eq (7) and using a Monte Carlo (MC) approach, we get an estimate of π and

evaluate the uncertainty around it, combining information from the literature and local data

(see Table 1). In particular, we consider as an estimate of P(s0 j infected) the proportion of

asymptomatic patients among the infected subjects (0.425%) observed by Lavezzo and col-

leagues [45] in the study aimed to detect, through molecular tests, the presence of SARS-Cov-2

infection in the small town of Vo’ (Italy). Due to the large percentage of participants (up to

85% of the residents), the descriptive data on the COVID-19 symptoms among the infected

from this survey should not be affected by relevant selection bias related to the testing strate-

gies adopted for detecting infections. Additionally, based on the assumption that all and only

severe patients are hospitalized, we use the proportion of hospitalized subjects observed in

the same study (0.16%) as an estimate of P(ss j infected). The estimate of the probability

P(sm j infected) is obtained as one’s complement of the first two and results similar to that

reported by a recent review [46].

We obtain estimates of P(test j sm) and P(test j s0) from the “IO CONTO” study, a survey

conducted on students and staff of the University of Florence (Tuscany, Italy) in the months of

April-May 2020 [47]. Due to the characteristics of the sample, we use this survey only to esti-

mate the probability of being tested for subjects without symptoms or with mild symptoms

(symptoms that did not require hospitalization). We consider as affected by COVID-19-like

symptoms the respondents who declare to have experienced fever and/or cough and/or at least

two of the following symptoms: respiratory problem, headache, diarrhea, vomit, asthenia,

muscle pain, and loss of taste or smell [45]. According to this definition, we find an estimated

value for P(test j sm) equal to 0.017 (22 tested subjects over 1294) and an estimated value for

P(test j s0) equal to 0.021 (29 tested subjects over 1410). Finally, we assume that all people with

severe COVID-19-like symptoms requiring hospitalization have been tested for SARS-CoV-2,

i.e. P(test j ss) = 1.

Given this information, we define two independent Beta distributions on P(test j sm) and

P(test j s0) and a Dirichlet distribution on (P(s0 j infected), P(sm j infected), P(ssjinfected)), with

parameters estimated through the method of moments (Table 2). Then, we repeatedly sample

from these distributions, calculating at each iteration, for a total of 10’000, a value of π

Table 2. Estimated proportion and 5th and 95th percentiles of the Dirichlet/Beta distributions with parameters obtained via the method of moments.

Ref. Estimate 5th percentile 95th percentile

P(s0 j infected) Lavezzo et al. [45] 0.425 0.394 0.456

P(ss j infected) 0.16 0.138 0.184

. P(sm j infected) 0.415 0.384 0.446

P(test j sm) IO CONTO study 0.017 0.011 0.023

P(test j s0) 0.021 0.015 0.027

https://doi.org/10.1371/journal.pone.0250029.t002
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according to Eq (7). In this way, we obtain an MC sample from the distribution of π. We use

the average of this distribution as a fixed parameter in the calibration of the SI2R2D model; we

use the entire distribution in the GSA.

We highlight that the value of π is assumed to be constant over time under the assumptions

that the COVID-19 testing policies always rely on the same symptom-based criteria and that

the distribution of the symptoms does not change over time during the study period (see also

Russo et al. for a similar assumption [15]).

3.4 Global sensitivity analysis

In order to quantify the relevance of each parameter assumed as fixed in determining the cali-

bration results, we perform a global sensitivity analysis (GSA) [21]. Given KX mutually inde-

pendent inputs ðX1;X2; :::;XKX
Þ and a model which, given the inputs, returns KY outputs

ðY1;Y2; :::;YKY
Þ, the GSA explores how the outputs vary as the inputs change, with the aim of

determining the most contributing input variables to the output behavior (factor prioritiza-

tion), finding non-influential inputs (model simplification), and investigating interaction

effects between inputs. This is done relying on Sobol’s decomposition of the variance of each

output in the sum of variances of increasing order [48] (see S1 Appendix for further details).

The variance decomposition allows computing several indexes as described in S1 Appendix,

including the total effect index for each input Xi and output Y (from here on, we suppress the

subscript i of the output variable for sake of simplicity). This index represents the proportion

of the total variance of Y which is due to the main effect of the input Xi and all its interactions

with the other inputs. Denoted as Stot
i , it is defined as

Stot
i ¼

EðVarðYjX�iÞÞ
VarðYÞ

ð8Þ

where X*i denotes the vector ðX1;X2; :::Xi� 1;Xiþ1; :::XKX
Þ. According to the notation adopted

in Saltelli [21], X*i is also the argument on which the outer operator E is applied to.

In the case of a multivariate output (KY > 1), an aggregated index can be obtained for each

input as a weighted average of the single-output indexes, with weights proportional to outputs

variances [49, 50].

In our application, we consider as inputs the fixed parameters of the SI2R2D model (TRNN
,

TD, TRN
, TIN

, π, and k) and, as outputs, the parameters estimated by calibration, as well as

derived quantities, such as IFR, date of the first infection, and date of infection peak. The

model is the calibration algorithm, given the observed data.

Sobol’s indexes are obtained through an MC approximation. We calculate for each input

the total effect indexes on each output and the aggregated indexes on r, relying on the results

of 8’000 calibrations. Each calibration is performed under a different combination of inputs,

obtained by sampling from the empirical distribution of π (Section 3.3, Fig 2), from a continu-

ous uniform distribution U½1; 2� for k and from the following discrete uniform distributions

for the transition times: TRNN
� Uf7; 21g, TD � Uf3; 14g, TRN

� Uf14; 40g, TIN
� Uf3; 14g.

The GSA is conducted by using the soboljansen and the sobolMultOut functions of the R

package sensitivity [51].

4 Results

The average of the MC distribution of π, obtained according to the procedure described in Sec-

tion 3.3, is 0.175 and the 5th and 95th percentiles are 0.115 and 0.246, respectively (see also

Fig 2).
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As shown in Fig 3, the fit of the SI2R2D model is quite good, with the expected cumulative

time series C and D close to the observed ones. Table 3 reports the estimated values of the

unknown model parameters. From the beginning of the epidemic, estimated to be February

14th, to April 27th, the estimated case fatality rate, h, and the estimated infection fatality rate,

Fig 2. Monte Carlo approximation of the distribution of the probability π with median (dashed red line), 5th and 95th percentiles

(dashed blue lines).

https://doi.org/10.1371/journal.pone.0250029.g002

Fig 3. Cumulative number of deaths and number of notified infected circulating in the region estimated from the SI2R2D model (continuous lines)

and observed (points).

https://doi.org/10.1371/journal.pone.0250029.g003
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p, are 0.131 (90% CI 0.121, 0.141) and 0.023 (90% CI 0.021, 0.025), respectively. Then, these

rates decrease to 0.087 and 0.015, according to the fact that we fix k = 1.5.

The basic reproduction number drops from an average value of 6.055, estimated for the

period before March 16th, to 0.722 (90% CI 0.642, 0.819) from March 16th to April 5th. After

this date it continues to fall reaching 0.393 (90% CI 0.318, 0.46) in the period April 6th- April

26th, and then 0 (90% CI 0, 0.164) in the period April 27th-May 17th. Thereafter, it seems to

grow again with an estimated value of 0.493 (90% CI 0, 0.699) (Table 3 and Fig 4). The confi-

dence intervals around the last two steps of R0(t) are quite large, suggesting a certain degree of

uncertainty which is likely due to the scarce information on infection transmission when the

number of new cases is low.

Table 3. Estimates of the unknown parameters of the SI2R2D model with 90% confidence intervals.

Time period Estimate IC90%

r0 Before March 16th 6.055 6.006 6.099

r1 March 16th—April 5th 0.722 0.642 0.819

r2 April 6th—April 26th 0.393 0.318 0.46

r3 April 27th—May 17th 0 0 0.164

r4 May 18th—June 20th 0.493 0 0.669

h 0.131 0.121 0.141

https://doi.org/10.1371/journal.pone.0250029.t003

Fig 4. Estimated R0(t) with 90% confidence intervals.

https://doi.org/10.1371/journal.pone.0250029.g004
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In the upper panel of Fig 5 we report the change over time of the total daily number of the

currently infected individuals, part of whom are notified (orange line in the graph). The peak

of the epidemic (the day with the largest number of circulating infections) is estimated on

March 16th, with a number of circulating infections in the region equal to 24’918 (90% CI

23’086, 26’754). This peak does not correspond to the peak for the notified infections, which is

estimated to happen 25 days later, on April 10th. In Fig 5 (lower panel), the cumulative num-

ber of recovered individuals (total and notified) is shown as well.

Let us call back that the inputs of the GSA are the fixed parameters of the SI2R2D model,

while the outputs are the unknown ones. Furthermore, we compute the total variance indexes

for three derived quantities: date of the first infection, date of the infection peak, initial infec-

tion fatality rate p. Table 4 reports the total variance indexes by single output. The transition

time TRNN
turns out to be the most impacting factor on the single components of r, followed by

TRN
and TIN

which are particularly influential on r1 and r3. With the exception of r0, the values

of the basic reproduction numbers are slightly influenced by k and π as well. In order to evalu-

ate the impact of the inputs on the basic reproduction number as a whole, we calculate the

aggregate total variance indexes for the vector r (last column in Table 4). These indexes indi-

cate that TRNN
is the most impacting input on R0(t) (aggregate index equal to 0.918). The rele-

vance of TRNN
on the estimate of R0(t) is confirmed even when we exclude from the aggregate

index calculation r1, which is the element of r with the largest variance, thus the largest weight

in the aggregate index calculation (aggregate index equal to 0.754). The parameter h is mostly

influenced by TRN
and to a lesser extent by k.

Looking at the derived quantities one can see that the date of the peak is particularly sensi-

tive to variations of TRN
, TIN

, TRNN
, and π. The date of the first infection is mostly influenced by

TRNN
while the only parameter that seems to have a relevant impact on p is π.

Considering that the sum of the total variance indexes relative to the same output exceeds

1, we can conclude that there is a relevant interactions effect among the inputs (see

S1 Appendix).

In Table 5, we summarize in terms of mean, median, 5th and 95th percentiles the distribu-

tions of the outputs arising from the 8’000 simulations of the GSA. The same distributions are

shown in the bar charts and box plots in Fig 6. They express the variability of the reported out-

puts, which propagates over them from the uncertainty around the parameters which are con-

sidered as fixed. This variability should be not confused with the sampling variability and the

reported percentiles do not represent the extremes of confidence intervals.

5 Discussion

The results indicate that in Tuscany the basic reproduction number changed over time during

the study period, reaching its minimum around the end of the national lockdown on May 4th,

then slightly coming back to higher values from the half of May 2020. This descriptive pattern,

which seems confirmed even when considering the uncertainty related to the variations of the

fixed parameters in the SI2R2D model (Fig 6 and Table 5), is indicative that the lockdown has

likely had a very strong effect on virus transmission, even if, on the basis of our analysis, it is

not possible to exclude that other factors, such as for example the increase in air temperatures,

have had a role in bringing the level of contagions at its minimum immediately after the end of

the lockdown [52, 53].

The fact that the estimate of R0(t) becomes exactly zero between April 27th and May 18th

deserves a discussion also in the light of the model assumptions. Being the population close

and TRNN
¼ 14, the resumption of the epidemic from May 18th—which implies the presence

PLOS ONE The SARS-CoV-2 epidemic in Tuscany (Italy): A compartmental model with uncertainty evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250029 April 21, 2021 11 / 23

https://doi.org/10.1371/journal.pone.0250029


Fig 5. Evolution in time of the total daily number of currently infected and recovered individuals, part of whom are notified (orange line).

https://doi.org/10.1371/journal.pone.0250029.g005
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of infectious individuals at that date—may appear at first glance paradoxical after 21 days of a

null R0(t). However, this result is perfectly justified if one considers that our model implicitly

assumes exponential distributions on the transition times [2], thus a not negligible probability

that the time spent by an individual in the compartment of origin is much longer than the

average. We cannot exclude that assuming on TRNN
a different probability distribution, nar-

rower than the exponential around the mean, for example an Erlang distribution with a large

shape parameter [54], could lead to a basic reproduction number above zero over the whole

study period.

The value of the basic reproduction number estimated for the time window from the begin-

ning of the epidemic to one week after the beginning of the national lockdown expresses the

initial capacity of the SARS-CoV-2 to spread (in terms of the average number of people whom

every infected person transmits the virus to), which depends not only on the virus characteris-

tics but also on factors related to the social, demographic and economic context. These factors

may include population density, level of daily commuting and use of public transport, social

closeness, family structure, and composition. For this reason, a strong heterogeneity of the

index across regions or countries is expected. Having said this, we estimate an initial R0(t)
equal to 6.055, which could range between 4 and 8.462, according to the GSA. These estimates

are quite high, but consistent with part of the literature that reports values of R0 at the begin-

ning of the epidemic even larger than 6, in particular in high contact density situations, as

during the outbreak on the Diamond Princess cruise ship [55]. For example, the review per-

formed by Liu and colleagues [56] reports R0 values in China ranging from 1.4 to 6.49, with

the highest estimates obtained when compartmental models are used. Not least, in comparing

our estimate of the basic reproduction number with those reported elsewhere, it is necessary to

Table 4. Total variance indexes of each model input (by row) on the model outputs (by column); aggregated total variance indexes on r.

h r0 r1 r2 r3 r4 Aggregated for r p First infection Peak

k 0.230 0.017 0.313 0.216 0.261 0.315 0.077 0.039 0.140 0.537

π 0.030 0.03 0.353 0.112 0.545 0.136 0.057 0.039 0.140 0.537

TD 0.016 0.008 0.138 0.045 0.181 0.047 0.018 0.002 0.062 0.314

TRN
0.788 0.030 0.715 0.172 1.034 0.238 0.081 0.128 0.417 1.014

TRNN
0.026 0.963 0.646 0.812 0.845 0.747 0.918 0.005 0.724 0.829

TIN
0.028 0.052 0.466 0.186 0.700 0.145 0.080 0.004 0.260 0.885

Values of the total index slightly exceeding 1 are due to MC approximation.approximation.

https://doi.org/10.1371/journal.pone.0250029.t004

Table 5. Mean, median, 5th, and 95th percentiles of the model outputs as the inputs vary.

Mean Median 5th percentile 95th percentile

h 0.136 0.134 0.115 0.159

r0 6.106 5.997 4.000 8.462

r1 0.652 0.6739 0.271 0.912

r2 0.382 0.346 0.000 1.017

r3 0.020 0.000 0.000 0.169

r4 0.636 0.528 0.000 1.792

p 0.024 0.023 0.015 0.035

First infection February 14th February 14th February 12th February 17th

Infection peak March 17th March 16th March 16th March 23rd

https://doi.org/10.1371/journal.pone.0250029.t005
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consider that our model accounts also for the undetected cases, leading to a number of second-

ary infections caused by a carrier possibly higher than in analyses that exclusively focus on the

notified cases [57, 58].

Our model estimates an initial CFR equal to 13.1% which, according to the GSA, could

range from 11.5% to 15.9%. Then, we assume that after April 27th the CFR decreases by one-

third. Evidence of a decreasing CFR, although still debated, is supported by some studies. For

example, Pachetti and colleagues [29] document a decrease in the CFR during the month of

April 2020 in several European countries, including Italy. A decrease in CFR is in line with a

possible improvement of patients care after the first months of the emergency—partly as a con-

sequence of a decreased pressure on the health system –, but also with less explored scenarios:

changes of the typical COVID-19 patients, reduced population vulnerability as related to mod-

ified environmental conditions (e.g. raising air temperatures, lower air pollution level due to

the lockdown), reduced virus aggressiveness [30]. An interesting hypothesis has been recently

suggested by Gandhi and Rutherford [59]: population-wide masking could increase the per-

centage of asymptomatic infections, thus induce a reduction in the CFR, especially in regions

and countries where the use of masks is mandatory—as in the Tuscany region during the

study period.

Changes in the CFR could be also due to variations in the testing policies: more extensive

testing campaigns could detect milder and asymptomatic cases and could do it earlier, thus

increasing the chance of recovery for the notified cases [29]. However, relying on the fact that

the regional and national guidelines about testing did not substantially change during the

study period, we have a priori discarded this hypothesis, assuming that both π and TT do not

vary over time [60, 61].

Fig 6. Distributions of the model outputs as the inputs vary.

https://doi.org/10.1371/journal.pone.0250029.g006
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The CFR estimated in our analysis is in line with that reported for Italy by Sartor and col-

leagues [62] and in the range of those reported for other Italian regions, but higher than that

observed in other countries [61, 63]. The CFR obviously depends on the number of detected

cases that, in turn, depends on the adopted testing policies, but possible explanations of the

observed differences are also the different age structure of the population (Italy has one of the

oldest population in Europe and fatal COVID-19 outcomes are mostly among the elderly) and

the different definition of the COVID-19 deaths (in Italy the COVID-19–related deaths are all

those occurring in SARS-CoV-2 positive patients regardless the role of possible previous dis-

eases) [61]. The hypothesis that higher CFRs can be related to increased population frailty

induced by long-term exposure to high air pollution levels should not be ruled out as well (see

for example [64]).

We estimate an initial IFR value equal to 2.3% (between 1.5% and 3.5% from the GSA) that,

like the CFR, decreases by one-third since April 27th. This estimate should be interpreted

accounting for the same issues already highlighted for the CFR, with the difference that it mea-

sures the mortality among all infected individuals regardless of their notification status. The

IFR estimate is strongly affected by the value of π, which, regulating the proportion between

notified and undetected infections, allows calculation of IFR from CFR.

The estimate of π is obtained by combining information from different sources and relying

on assumptions that are consistent with the guidelines issued by the regional government on

SARS-CoV-2 testing during the study period, in particular with the fact that these guidelines

relied on symptom-based criteria. Furthermore, the resulting distribution of π is coherent with

the results of the SARS-CoV-2 seroprevalence survey initiated by the Italian Ministry of Health

and Istat, which reports a ratio between notified infected and actually infected subjects of 1

over 6 in Italy and slightly higher in Tuscany [65]. This indicates that data about symptoms

and testing, relatively simple to collect, might be a low-cost alternative to seroprevalence sur-

veys in order to get estimates of the proportion of notified infections over the total.

The cumulative number of new infections from the beginning of the epidemic to the end of

the study period estimated by the SI2R2D model corresponds to 1.4% of the regional popula-

tion, slightly higher than the value (1%) obtained for the Tuscany region from the seropreva-

lence survey [65].

Interestingly, calibration leads to epidemic dynamics where the estimated peak of circulat-

ing infections in the region is earlier than the estimated peak for the notified cases. This result,

which cannot be corroborated by empirical data, is likely related to the fact that in our model

time from infection onset to recovery is assumed to be shorter in case of non-notification than

in case of notification, in agreement with the literature.

The relevance of using mathematical modeling in facing health emergencies has emerged in

recent months together with the dangers related to the false sense of certainty deriving from

the quantitative evaluation of complex systems such as those regulating the epidemic dynamics

[24, 66]. Models can provide estimates of meaningful quantities, short and medium-long term

forecasts and can be used to assess the impact of actual or hypothetical policies and interven-

tions [4, 26, 67–69]. On the other hand, the risk of over-interpreting their results is high and

mostly related to unsatisfactory evaluation and communication of model uncertainties. Uncer-

tainty evaluation in the form of GSA is not routinely used in the context of epidemic dynamics

modeling, but examples exist in which Sobol’s variance decomposition and variance indexes

are employed in the phase of model definition, in order to reduce model complexity by detect-

ing the parameters which have a negligible impact on specific predictions (e.g. the infected

population size at the peak of the epidemic) [22, 23].

In this paper we use the GSA in a different way, to evaluate how the uncertainty around the

parameters taken as fixed in the SI2R2D model propagates and affects the calibration estimates
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of the parameters that are left unknown. In some sense, this is not far from the GSA-GLUE

approach, which is a version of GSA conditioned to observations, where a distance measure

between observed and predicted data is estimated at each run of the GSA, then a classification

of the model runs is done according to this distance measure [70]. It is worth noting that,

being each run of the GSA conditioned to the observed data, we decompose, according to

Sobol’s formula, the variance of the point estimates of the unknown parameters as the inputs

change, which does not include sampling variability. In fact, the sampling variability is quanti-

fied a part via bootstrap.

The GSA indicates that, in order to reduce outcomes variability, additional evidence would

be needed on the transition times, in particular on the time from infection to recovery for the

infected that are not notified, the only ones able to spread the contagion. The recovery time for

these individuals, who are likely asymptomatic or paucisymptomatic, is here assumed to coin-

cide with the duration of their infectious status. While a reliable estimate of this duration

would be crucial also from a practical point of view—for instance to define an appropriate

quarantine length for asymptomatic individuals who came into contact with infected -, the evi-

dence on it is still limited [71].

The probability π has only a moderate impact on the point estimates of the basic reproduc-

tion number and CFR, but, given its role in tuning the relative size of notified and not notified

compartments, has a high impact on the IFR and on the epidemic curve.

5.1 External validity of the model

Applying the SI2R2D model proposed in this paper to different contexts requires a critical dis-

cussion of the main assumptions which it relies on [24].

First of all, performing analyses at a regional or sub-regional level, as in this paper, instead

of at a national one is to be preferred if the parameters that regulate the epidemic dynamics are

heterogeneous. On the other hand, the assumption of a closed population is all the more criti-

cal the smaller is the study area, unless there are conditions of reduced mobility that minimize

the possibility of inter-regional contagion, as during the national lockdown and more in gen-

eral during the study period (the national borders were kept closed until the half of June when

they have been progressively re-opened). This aspect should be accounted for in defining the

study area.

Second, our SI2R2D model includes two infected and two recovered compartments while

only one deceased compartment is specified, because we assume that the undetected infections

did not bring to major health problems, nor to death. This assumption, already used in [72]

and reasonable for the Tuscany region, could be inappropriate if the model is adopted to inves-

tigate the epidemic dynamics in areas where, being the health service under stress, part of the

COVID-19 mortality ended up being not notified, as happened in the Northern Italian regions

during the first epidemic wave [73, 74]. Similarly, it could be needed to modify the transition

equations in order to allow a certain level of contagion coming from the notified infected, if

there is evidence of ineffective isolation of the individuals that are notified as infected (viola-

tion of assumption 5). This eventuality, which is excluded also by other authors who used simi-

lar compartmental models [15], seems to be remote for the Tuscany region during the study

period, but it could be more plausible in other contexts, depending on the level of prepared-

ness of the health care system, the availability of personal protective equipments for population

and health care workers and of adequate and sufficient facilities to ensure patient isolation.

A third relevant assumption is that the re-infection rate is equal to 0, consistently with a

long-term immunity theory, which however is still to be confirmed [75]. Being the size of the

susceptible compartment extremely large at the beginning of the epidemic, the effect of a
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violation of this assumption is negligible for the purpose of the present study. However, this

could be not the case at later stages of the epidemic or if the focus is on a longer study period.

Regarding the calibration procedure, additional targets could be considered. In our analy-

sis, we calibrate on the observed cumulative time series of deaths and of notified infected, but

in principle, the observed cumulative time series of the notified recovered could be considered

as well, if of good quality. More in general, the weights used for the calibration targets should

be defined according to the actual data reliability.

5.2 Study limitations

Our study has several limitations. Here, we highlighted the main ones. The first one concerns

the estimation procedure. We estimate the parameters in a deterministic way, in the sense that

the calibration estimates are obtained without making distributional assumptions on the data.

Successively, a Negative Binomial distribution is used to generate bootstrap samples and to

quantify sampling uncertainty, but this probability distribution does not enter in calibration.

This kind of procedure is quite usual in compartment models literature, since modeling data

through stochastic differential equations results in the definition of very complex likelihood

functions [19, 20]. However, more sophisticated alternatives exist. Among these, calibration

via Approximate Bayesian Computation has been recently proposed as a tool to make Bayesian

inference on stochastic compartmental models, bypassing the definition of the likelihood and

allowing to take into account also the uncertainty around parameters values [76].

The bootstrap procedure adopted for obtaining the confidence intervals has some limita-

tions. In particular, still preserving the allowable parameter range [39, Ch 13], which is a useful

property in our context, percentile intervals have lower coverage than intervals obtained

through other procedures. Better coverage could be get by calculating iterated bootstrap confi-

dence intervals or bias-corrected and accelerated bootstrap confidence intervals. However,

both solutions appear too complex or computationally demanding in our setting [77], as well

as performing simulations aimed at assessing the frequentist coverage of the intervals. A differ-

ent procedure for confidence intervals calculation in compartmental models can be found in

[78].

Our procedure fixes the date of the first infection by aligning the simulated time series of

deaths with the observed one, so that the time of the first simulated death coincided with the

time of the first observed death. This procedure is probably responsible for an underestimation

of the sampling variability around the date of the onset of the epidemic in the region and

around the initial value of the basic reproduction number.

The basic reproduction number and the CFR are assumed to vary over time according to

piece-wise functions with steps at fixed calendar days. Flexible modeling, for example through

regression splines, could provide more realistic results. Additionally, the percent of decrease of

CFR, thus of IFR, is a priori fixed on the basis of empirical evidence, and not estimated from

the epidemic data used for calibration.

Although we are confident that the reported total variance indexes correctly describe the

actual impact of the model inputs on the outputs, a formal evaluation of the convergence of

the indexes estimate could be useful [79]. As this evaluation would require an additional

important computational effort, we reserve the right to address this issue in an ad hoc study.

Finally, assumption 3 of the SI2R2D model states that the average transition rates are the

same for all individuals belonging to the same compartment at a certain time t. Similarly, it

assumes that all individuals have the same chance to come into contact with each other, ruling

out, for example, the possibility that contacts are more frequent within specific subgroups and

in general that virus transmission follows pathways reflecting the complex structure of the
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population. Compartmental models that stratify by age could be the first step to relax this

assumption [80].

5.3 Comparison with similar models

With the aim of taking into account the undetected infected, our model includes more com-

partments than a standard SIRD. In the same spirit of our work, other authors proposed com-

partmental models allowing for the presence of undetected asymptomatic individuals in the

population [9–15]. Calafiore and colleagues [12] resort to a standard SIRD model and take

into account the undetected infected individuals assuming that they represent a fixed fraction

of the notified ones, as we do. However, they also assume that the rate of recovery and the rate

of death are the same among detected and undetected infected individuals. Our SI2R2D model

overcomes this strong assumption by introducing two further compartments. Quaranta and

colleagues [11] define a compartmental model that, under the assumption that all and only the

symptomatic cases are detected, is very similar to ours. Like us, they also consider a time-vary-

ing infection rate and calibrate the model on more than one target quantity. A key feature of

our proposal, when compared with theirs, is the choice of a parametrization that allows for

directly estimating meaningful quantities such as the basic reproductive number and the fatal-

ity rates.

Also, the very recent model by Russo et al. [15] has the same compartments as our SI2R2D

model. However, as Quaranta et al. [11] and most of the other referred authors, it does not

take into account sampling uncertainty and only gives point estimates of the unknown param-

eters. An approach incorporating sampling uncertainty has been proposed in Kucharski et al.

[81]. Interestingly the same authors also emphasize the need to perform sensitivity analyses to

evaluate the robustness of the model results. This is a crucial point in compartmental models.

In most applications, key quantities on which solid evidence is not yet available, such as transi-

tion times between compartments and infection fatality rates, are actually assumed as fixed

without performing any robustness or uncertainty evaluation [45]. In Sen et al. [13] a sensitiv-

ity analysis is performed through comparisons among simulated scenarios corresponding to

different parameter values. In our paper, we formally address this issue by performing a GSA

that provides a global evaluation of the robustness of our estimates when the fixed quantities

change within plausible ranges of values.

To wrap up, the main contributions of our paper are: the formulation of a compartmental

model which takes account for undetected infections; the use of a parametrization allowing for

a direct estimate of epidemiological meaningful quantities such as reproduction number, IFR,

CRF; the quantification of uncertainties. Specifically, we account for sampling variability by

estimating percentile confidence intervals through a bootstrap procedure and we quantify the

structural uncertainty related to having fixed the values of key parameters through the GSA.

6 Conclusions

In this paper, we use a compartmental model to estimate meaningful quantities such as basic

reproduction number, CFR, and IFR during the first wave of the SARS-CoV-2 infection in an

Italian region. Our results indicate that the virus transmission, very high at the beginning of

the epidemic outbreak, strongly decreased immediately after the introduction of the national

lockdown and that R0(t) remained below the threshold of 1 up to the beginning of the summer

season. We find as well that in the first months of the epidemic wave the 2.3% of the infected

died, corresponding to 13.1% of the notified cases. The observed data are consistent with a

possible decrease of the COVID-19 fatality from the end of April.
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The need to fix some parameters to assure identifiability and the need to check the sensitiv-

ity of the results to the values used for the fixed quantities in the model are two faces of the

same coin. The GSA is useful to investigate how the results change with the fixed parameters

and indicates which are the most impacting ones, suggesting investigation priorities. For

example, the estimate of R0(t) seems to be strongly influenced by the average waiting time

from infection to recovery for the not notified infected. This suggests that a better definition of

the infection duration in asymptomatic cases could enhance the understanding of the trans-

mission dynamics.

The proposed model relies on strong assumptions that could be inappropriate in other

areas and at different stages of the epidemic. Therefore, the opportunity of modifying the

model structure should be considered in future applications.

Supporting information

S1 Appendix. Additional details on parameter definition, parametric bootstrap, Sobol’s
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(PDF)
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