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Abstract

A nonnegative integer sequence is k-graphic if it is the degree se-
quence of a k-uniform simple hypergraph. The problem of deciding
whether a given sequence V admits a 3-uniform simple hypergraph
has recently been proved to be NP -complete, after long years of re-
search. Thus, it is helpful to find which classes of instances are poly-
nomially solvable in order to restrict the NP-hard core of the prob-
lem and design algorithms for real-life applications. Several necessary
and few sufficient conditions for V to be k−graphic, with k ≥ 3, ap-
pear in the literature. Frosini et al. defined a polynomial-time al-
gorithm to reconstruct k-uniform hypergraphs having regular or al-
most regular degree sequences. Our study fits in this this research line
defining some conditions and a polynomial-time algorithm to recon-
struct 3-uniform hypergraphs having step-two degree sequences, i.e.
V = (d, . . . , d, d − 2. . . . , d − 2). Our results are likely to be easily
generalized to k ≥ 4 and to other families of degree sequences having
regular shapes.

Keywords: 3-uniform hypergraph, degree sequence, dis-
crete tomography, reconstruction problem

1 Introduction

The degree sequence of a simple hypergraph is the list of its vertex degrees,
usually arranged in decreasing order. Given a nonnegative integer sequence
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V , the possibility of an efficient test for the existence of a simple hypergraph
having degree sequence V has remained unsolved for many years (see [2],
[4]). The corresponding problem for graphs was solved by the Erdös-Gallai
conditions ([8]). From their result, a polynomial time algorithm can be
defined to reconstruct the adjacency matrix of a graph having a given degree
sequence (if such a graph exists).

Assuming that P 6= NP , such an effective characterization cannot exist
even for the case of 3-uniform hypergraphs (see Deza et. al [6]).

Necessary and sufficient conditions for a nonnegative integer sequence V
to be k−graphic, with k ≥ 3, can be found in the literature, and they rely
mainly on a result by Dewdney [5], based on a recursive decomposition of
V . However this characterization does not yield an efficient algorithm and
the question to determine a more practical characterization remained open.
Brlek and Frosini in [3] defined a P -time algorithm in case of homogenous de-
gree sequences. Later this result was extended to almost regular sequences.
A remarkable fact is that in both cases, all the 3-graphic sequences satisfy a
simple necessary and sufficient condition. In our work, we investigate step-
two 3-graphic sequences and we discovered that such a conditions are not
sufficient any more. So the step change from 1 to 2 in the degree sequence
is critical for the reconstruction of the related 3-hypergraph.

Frosini, Picouleau and Rinaldi provided sufficient and necessary condi-
tions in case of k-uniform and (almost) regular hypergraphs (see [9]). In our
present study we we extend their result to two-step 3-graphic sequences.
We will characterize them and prove some fundamental properties. Thus,
relying on these results, we design an efficient algorithm that determines the
incidence matrix of the characterized sequences.

In the next section, we provide the definitions and the previous results
useful for our study, then, we introduce the main problem. The section 3 is
devoted to the consistency problem concerning 3-uniform hypergraphs hav-
ing two-step degree sequences. Then in section 4, the reconstruction prob-
lem is solved and the related polynomial time algorithm for the 3-uniform
hypergraphs is provided. We conclude the article pointing out some open
questions concerning k−uniform hypergraphs and degree sequences having
span two, in section 5.
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2 Definitions, previous results and introduction of
the problems

A hypergraph H is defined as a couple (V er,E), where V er is a finite set of
vertices, v1, . . . , vn, and E is a set of hyperedges, i.e., a collection of subsets of
V er, {e1, e2, . . . , em} where each ei is a non-empty subset of V er, (see [2]).
A hypergraph is simple if it is loopless and without parallel hyperedges,
i.e. e 6= e′ for any pair e, e′ of hyperedges. Moreover, a hypergraph is
said to be k-uniform if each hyperedge has cardinality k. The degree of
a vertex v ∈ V er is the number of hyperedges e ∈ E such that v ∈ e.
The degree sequence of H is the list of its vertex degrees, usually written in
nonincreasing order. In this context, the problem of the characterization of
the degree sequence V = (d1, d2, . . . , dn) of a k−uniform hypergraph H asks
whether there is a binary matrix A ∈ U(H,V ) with nonnegative projections
vectors H = (k, k, . . . , k) and V = (d1, d2, . . . , dn) and distinct rows. The
matrix A is an incidence matrix of H; thus, rows and columns correspond
to hyperedges and vertices, respectively.

Let H = (h1, h2, . . . , hm) and V = (v1, v2, . . . , vn) be two nonincreasing
vectors of nonnegative integers, and U(H,V ) the class of binary matrices
A = (aij) satisfying

∑n
j=1 aij = hi, with 1 ≤ i ≤ m, and

∑m
i=1 aij =

vj , with 1 ≤ j ≤ n. In this context, the problem of the characterization
of the degree sequence (d1, d2, . . . , dn) of a k−uniform hypergraph H asks
whether there is a binary matrix A ∈ U(H,V ), its incidence matrix, with
nonnegative projections vectors H = (k, k, . . . , k) and V = (d1, d2, . . . , dn)
and distinct rows. Rows and columns of A correspond to hyperedges and
vertices, respectively.

The investigation in the special case where the k−uniform hypergraph
to reconstruct is also d−regular, i.e. each vertex w has the same degree d,
V = (d, . . . , d), or almost d−regular, i.e. V = (d, . . . , d, d − 1, . . . , d − 1),
was done by Frosini, Picouleau and Rinaldi in [9]. The authors studied
the decision problem and gave the following conditions that characterize
the degree sequences of d−regular hypergraphs: Condition 1: For each
1 ≤ i ≤ m and 1 ≤ j ≤ n, it holds hi ≤ n and vj ≤ m.

Condition 2: The sum of the entries of the horizontal and vertical
projections are equal (i.e.

∑m
i=1 hi =

∑n
j=1 vj).

Condition 3: The following inequality holds: d ≤ k
n ·
(
n
k

)
.

Moreover, they also analyzed the related reconstruction problem, i.e.
the problem of determining an element of U(H,V ) consistent with H and
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V . To accomplish this task they design a polynomial-time algorithm, with
respect to the dimensions m and n of the matrix to reconstruct. Since each
row of a binary solution matrix can be regarded as a binary finite word
u = u1u2 . . . un, whose length n is the number of columns of the matrix, and
whose number of 1-elements is the common horizontal projection, that is
3; Frosini at al. used Lyndon words and necklaces of fixed density, in their
algorithm. Following the notation in [13], we recall that a binary necklace
is the equivalence class of binary words under cyclic shift. In particular, an
aperiodic word is called a Lyndon word. We are interested in fixed-density
words (resp. Lyndon words), in which an additional parameter h, called
density, that represents the number of 1s in the words, is added. The set
of necklaces (resp. Lyndon words) with density h is represented by N(n, h)
(resp. L(n, h)). Concerning step-two nonnegative integer sequences, i.e.
V = (d, . . . , d, d − 2, . . . , d − 2), it can be easily observed that there are
instances (e.g. V = (7, 7, 7, 7, 7, 7, 5, 5, 5)) that satisfy Conditions 1, 2 and
3, but the same method of reconstruction of d−regular hypergraphs cannot
be applied. In some cases, however, the matrix can still be reconstructed.

In light of this, we present results concerning step-two sequences in the
special case of 3-uniform hypergraphs. For sake of brevity, we denote P,
the set of all step-two integer sequences that satisfy Conditions 1, 2, and 3,
and writing vectors we sometimes use the exponential notation, i.e. (sx, fy)
indicates a vector with x times the component s, followed by y times f.

We believe these few notions are enough to state the two problems we
will address in this paper.

Consistency(V , C)
Input: an integer vector V = (d, . . . , d, d− 2, . . . , d− 2), and a class of

discrete sets C.
Question: does there exist an element of C whose horizontal and vertical

projections are the homogenous vector H = (3, . . . 3) and V , respectively?

Reconstruction(V , C)
Input: an integer vector V = (d, . . . , d, d − 2, . . . , d − 2), and a class C

of discrete sets.
Task: reconstruct a matrix A ∈ C whose horizontal and vertical pro-

jections are the homogenous vector H = (3, . . . 3) and V , respectively, if it
exists, otherwise give failure.

In the sequel we are going to consider the class of binary matrices having no
equal rows and homogeneous horizontal projections H = (3, . . . , 3) of length
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m and step-two vertical projection V , denoted E , due to its connections with
the characterization of the degree sequences of 3-uniform hypergraphs.

3 The Problem Consistency(V , E)
We face the consistency problem for the class E on the instance V =
(d, . . . , d, d− 2, . . . , d− 2).

We now give the definition of the complement of a step-two degree se-
quence, as it will be useful in the following.

Given a step-two degree sequence V = (dg, (d − 2)n−g), we define com-
plement of V , denoted by V , the vector V = ((dmax−d+2)n−g, (dmax−d)g),
where dmax = k

n ·
(
n
k

)
.

A direct consequence of the definition of complement of a degree sequence
is the following proposition:

Proposition 1. Given a degree sequence V , if V is k−graphic then also its
complement V is k−graphic.

Proof. The fact that V is k−graphic means that we can reconstruct the inci-
dence matrix associated with V . Given the incidence matrix associated with
the homogeneous regular vector (d, d, . . . , d) of length n (the latter matrix
can be reconstructed, see [9]), the rows that remain from the elimination of
a set of rows whose vertical projection is the vector V , have exactly V read
from right to left as vector of vertical projections. It is a direct consequence
of the definition of complement of V . By flipping horizontally the columns
of the obtained matrix, we find the incidence matrix of a hypergraph having
V as degree sequence. Hence, V is k−graphic.

There are no 3-uniform hypergraphs having step-two degree sequences
of length n ≤ 4. Concerning step-two sequences in P, whose length is n ≥ 5,
we show the following result:

Theorem 2. Every step-two sequence V = (23, 0p), with p ≥ 1, is not a
3-graphic sequence.

Proof. The matrix associated with the sequence V = (23, 0p) is not recon-
structable, because it would need two equal rows.

Let us call basic sequences, the integer sequences (dg, (d − 2)n−g) ∈ P,
with 2 ≤ d ≤ 4, not considered in Theorem 2 and the sequences (53, 3p),
with p > 0.
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Proposition 3. Every basic sequence is a 3-graphic sequence.

Proof. We obtain the result by defining, for each type of basic sequences a
class of 3-hypergraphs satisfying it. We consider separately the cases of the
basic sequences:

1. (23g, 0p), with g > 1, p ≥ 1 and such that 3g + p > 4;

2. (3g, 13p), with g ≥ 1, p ≥ 1 and such that g + 3p > 4;

3. (43g, 23p), with g ≥ 1, p ≥ 1 and such that 3g + 3p > 4;

4. (53, 3p), with p ≥ 3.

Case 1 can be reconstructed just using the cyclic shifts of the Lyndon
word (111)(0)n−3 where the first 1-element is in position i, with 1 ≤ i <
3g − 1 and i is not a multiple of 3; and the Lyndon word 103(g−1)110n−3g.

Case 2 is divided into 3 subcases:

2.1. If g = 1, then p ≥ 2 (otherwise n = 4). We use the Lyndon word
130n−3 and its cyclic shift 10n−311. We eventually use the cyclic shifts
051110n−8, . . . , 0n−511100, if necessary. Then we use the Lyndon word
100110n−5.

2.2. If g = 2; we use the Lyndon word 130n−3 and its cyclic shift 110n−31.
We eventually use the cyclic shifts 041110n−7, . . . , 0n−41110, if neces-
sary. Then we use the Lyndon word 11010n−4.

2.3. If g ≥ 3 we use the Lyndon word 130n−3 and its cyclic shifts, where
the first 1-element is in position i, with 1 ≤ i ≤ g − 1; thus, its cyclic
shift 110n−31. We eventually use the cyclic shifts 0g+21110n−g−5, . . . ,
0n−41110, if necessary. Then we use the Lyndon word 10g−21010n−g−2.

Case 3 is divided into 3 subcases:

3.1. (43x, 23y), with x, y > 0, n > 6, since the length is a multiple of 3,
we can use the cyclic shifts of the periodic word (10n/3−1)3, and the
matrix associated with the sequence (33x, 13y) that we have already
reconstructed in Case 2.

3.2. (43x+1, 23y+1), with x, y ≥ 0, we use the cyclic shifts of the Lyndon
word (111)0n−3, with the first 1-element in position i, with 1 ≤ i ≤ 3x;
the cyclic shifts of the same Lyndon word with the first 1-element in
position 3x + 3, . . . , n − 2. Now, we have to reconstruct the matrix
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associated with the sequence S = (22, 13x−1, 03y+1). This can be done
wisely arranging the cyclic shifts of the the Lyndon word 10101(0)n−5.
If the length of the sequence S is even, this is sufficient. Instead, we
have also to use the Lyndon word 110n−31.

3.3. (43x+2, 23y+2), with x, y ≥ 0, we use the cyclic shifts of the Lyndon
word (111)0n−3, with the first 1-element in position i, with 1 ≤ i ≤
3x+2; the cyclic shift of the same Lyndon word with the first 1-element
in position 3x + 4, . . . , n− 1. Now, we have to reconstruct the matrix
associated with the sequence S = (2, 13x+1, 03y+2). Analogously as
before, this can be done using three Lyndon words at most.

Case 4 can be reconstructed using the matrix obtained from the matrix
of the necklaces obtained by cling shifting the word 130n−3, and removing
the necklace 0n−313. Now, we have to reconstruct the matrix associated with
the sequence G = (23, 0n−6, 13). This can be done using the Lyndon word
110n−5102 and its cyclic shift 0110n−510, and the Lyndon word 1010n−41.

Remark 4. The basic sequences can be reconstructed using three different
necklaces at most.

The procedure that reconstructs the incidence matrix associated with a
basic element V is denoted RecBasic(V ).

4 An Algorithm to Solve Reconstruction(V , E)
We recall that Sawada [15] presented a constant amortized time (CAT)
algorithm FastFixedContent for the exhaustive generation of necklaces
N(n, h) of fixed length and density, and a slight modification of it, here
denoted GenLyndon(n, h), for the CAT generation of the Lyndon words
L(n, h). This latter constructs a generating tree of the words, and since the
tree has height h, the computational cost of generating k words of L(n, h)
is O(k · h · n).

Our reconstruction algorithm works as depicted in Algorithm 1.

Proposition 5. For n > 4 there is a sufficient number of Lyndon words
required in the application of the Algorithm 1.

Proof. For n = 5 there are only four sequences in P: V1 = (32, 13) and its
complement V1 = (53, 32), and V2 = (4, 24) and its complement V2 = (44, 2).
V1 is basic sequences. Since L(5, 3) = 2 and the procedure RecBasic(V1)
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Algorithm 1 Rec(V , E)

Input: The vector V = (d, . . . , d, d− 2, . . . , d− 2) ∈ P of length n ≥ 5; and
the class E .
Output: An element of the class E .
We solve Rec(Vi,E), where Vi is the minimum between V and V in the
lexicographical order .
Step 1: We initialize the matrix B = ∅, and the vector D = V . By applying
GenLyndon(n, 3), generate the sequence of Lyndon words u1, . . . , uq.
Step 2: While D is not a basic sequence, do D = D − (3n).
Step 3: B = RecBasic(D).
Step 4: While D is different from V , generate the matrix M(ui), where ui
is a word not already taken in B. Add M(ui) to B and update the vector
of the vertical projection D.

requires just two words then they are sufficient to reconstruct the matrices
associated with V1. Concerning V2, the procedure RecBasic(V2) would
need three words, however, as the following matrix shows, two words are
sufficient. 

1 1 1 0 0
1 0 0 1 1

1 1 0 1 0
1 0 1 1 0


We observe that the sequence V1 is not a basic sequence and does not

fall within the sequences considered in Theorem 2. However, it can be
reconstructed as a complement to a 3-graphic sequence.

For n = 6 there are only seven sequences in P: V1 = (33, 13) and its
complement V1 = (93, 73), V2 = (43, 23) and its complement V2 = (83, 63),
V3 = (53, 33) and its complement V3 = (73, 53), and V4 = V4 = (63, 43).
Sequences V1, V2, V3 are basic sequences and can be reconstructed with a
maximum of 3 Lyndon words. Since L(6, 3) = 4, the words are sufficient.
Concerning V4 four words are sufficient too, indeed it takes two words to
apply the procedure RecBasic(V1), and then another word to obtain a
matrix having vertical projections (3, 3, 3, 3, 3, 3).

For n > 6, there is a sufficient number of Lyndon words as the following
inequality holds:

d12 ·
3
n

(
n
3

)
e − dB

3
≥ 3

where d12 ·
3
n

(
n
k

)
e is the maximum degree that can appear in a step-two degree
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sequence in P (except the complements of sequences that preced them in the
lexicographical order), dB is the greatest degree of a basic sequence (hence
dB = 2, or dB = 3, or dB = 3 or dB = 4, or dB = 5) and n is the length
of the degree sequence. From the previous inequality we get the worst case
behavior:

(n− 1) · (n− 2) ≥ 4 · (9 + dB)

Theorem 6. Given a sequence V ∈ P, V is 3-graphical if and only if V
can be reconstructed with the Algorithm 1.

Proof. (⇐) is trivial.
(⇒) Suppose that V is a 3-graphic sequence and that it cannot be re-

constructed with the Algorithm 1. Then there are two possibilieties:

1. There are not enough words to complete the algorithm.

2. The procedure RecBasic can not be applied, since one of the se-
quences considered in Theorem 2.

Case 1 cannot occur because Proposition 5 proves that there are always
a sufficient number of words. Concerning Case 2, since there is a sufficient
number of Lyndon words, we reach a sequence in which the maximum degree
is less than or equal to 5 and is considered in the Theorem 2, that is B1 =
(23, 0p), with p ≥ 1. It is not possible that the algorithm takes as input
V which is 3-graphical and has to reconstruct B1, since for such V the
algorithm would stop at the basic sequence (53, 3p).

To better understand the reconstruction algorithm, we propose a sim-
ple example with the instance H = (3, . . . , 3) of length m = 15, and
V = (7, 7, 7, 7, 7, 5, 5) of length n = 7. In Step 1 the matrix B is initialized
as the empty matrix, and the vector D = (7, 7, 7, 7, 7, 5, 5). Then, Gen-
Lyndon(7,3) generates q = 5 Lyndon words, i.e. the words u1 = 0000111,
u2 = 0001011, u3 = 0001101, u4 = 0010011, and u5 = 0010101. From Step
2, we get D = (4, 4, 4, 4, 4, 2, 2). In Step 3, using the procedure RecBasic
we reconstruct the matrix B associated with D. In Step 4, we add the ma-
trix M(u2) to B. We evaluate the vector of the vertical projection D. Since
D is equal to V , we stop. The output matrix C, depicted in Figure 1.
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0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0

1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 1 0 0 0 0 1

1 0 1 0 1 0 0

1 1 0 1 0 0 0


The validity of Rec(V , E) is a simple consequence of Theorem 6. Clearly,

the obtained matrix has homogeneous horizontal projection equal to H, and
step-two vertical projection equal to V , and, by construction, all the rows
are distinct. Moreover, the algorithm always terminates since at each iter-
ation, we add as many rows as possible to the final solution. Concerning
the complexity analysis, we need to generate O(m) different Lyndon words
and shifts each of them O(n) times. Thus, since the algorithm GenLyn-
don(n,3) requires O(f · h · n), that is O(3 · f · n) steps to generate f words
of L(n, 3), the whole process takes polynomial time.

5 Conclusions and future developments

We designed a polynomial algorithm that reconstructs the incidence matrix
of a 3-uniform hypergraph realizing a step-two sequence of integers, when
such a hypergraph exists.

The algorithm we furnished, is tuned for 3-uniform hypergraphs, but we
believe that it admits a generalization to k-uniform ones. Thus, a possible
direction for further research is to generalize our algorithm to obtain a poly-
nomial algorithm for the reconstruction of k-uniform hyeprgraphs having a
step-two degree sequence. The characterization of the degree sequences of
k-uniform hyperpgraphs, k ≥ 3, is an NP -hard problem. Therefore, under
the assumption that P 6= NP there is no hope to find a good characteriza-
tion; but to find a compact nice looking characterization should be of great
interest in order to design algorithms for real-life applications.
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Another line of research concerns the characterization and the study of
integer sequences having span two, i.e. V = (d, . . . , d, d − 1, . . . , d − 1, d −
2, . . . , d− 2).
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