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We show that spin polarization of a fermion in a relativistic fluid at local thermodynamic equilibrium can 
be generated by the symmetric derivative of the four-temperature vector, defined as thermal shear. As a 
consequence, besides vorticity, acceleration and temperature gradient, also the shear tensor contributes 
to the polarization of particles in a fluid. This contribution to the spin polarization vector, which is 
entirely non-dissipative, adds to the well known term proportional to thermal vorticity and may thus 
have important consequences for the solution of the local polarization puzzles observed in relativistic 
heavy ion collisions.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a rotating fluid at global thermodynamic equilibrium, particle spin gets polarized along the direction of the angular velocity vector 
by an amount which is proportional to h̄ω/K T . This phenomenon is the essence of the Barnett effect [1] and it has been known for a long 
time. In a relativistic fluid at local thermodynamic equilibrium, the covariant form of statistical mechanics dictates that spin polarization 
is driven by thermal vorticity:

�μν = −1

2

(
∂μβν − ∂νβμ

)
(1)

where β is the four-temperature vector:

βμ = 1

T
uμ, (2)

u being the four-velocity and T the proper temperature. At first order in thermal vorticity, the formula relating the mean spin vector 
Sμ(p) of a spin 1/2 fermion to thermal vorticity reads [2]:

Sμ(p) = − 1

8m
εμρστ pτ

∫
�

d� · p nF (1 − nF )�ρσ∫
�

d� · p nF
(3)

where � is a 3D hypersurface, nF is the Fermi-Dirac phase-space distribution function:

nF = 1

exp[β · p − qμ/T ] + 1
,

q being the charge of the particle and μ the corresponding chemical potential. The equation (3) predicts that a particle can get a spin 
polarization in the presence of gradients of temperature, vorticity and acceleration.

The observation of spin polarization in relativistic nuclear collisions [3] confirmed the predictions of the formula (3) for the global 
polarization (with � the hadronization hypersurface), that is integrated over all momenta. In fact, the formula (3) failed to reproduce the 
measurements as a function of momentum [4–6]; particularly, the sign of the longitudinal polarization and the polarization along the 
angular momentum as a function of the azimuthal angle, which has been investigated in several papers [7–15].
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Fig. 1. The space-time diagram of a relativistic nuclear collision in the center-of-mass frame. �eq is the 3D hypersurface where LTE is achieved, �FO is the freeze-out 
hypersurface. The σ± are the side branches subsets of �eq and �B is the hyperplane connecting the limiting surfaces of �F O . In the volume �, matter is in the quark-gluon 
plasma phase.

In this work, we will show that also the symmetric gradient of β contributes to the spin at local thermodynamic equilibrium at the 
leading order. This term is non-dissipative as well as non-local for it depends on a specific 3D integration hypersurface and implies a new 
relativistic effect, namely a coupling between spin and the shear tensor in a relativistic fluid.

Notation

In this paper we adopt the natural units, with h̄ = c = K = 1. The Minkowskian metric tensor g is diag(1, −1, −1, −1); for the Levi-
Civita symbol we use the convention ε0123 = 1.
We will use the relativistic notation with repeated indices assumed to be saturated. Operators in Hilbert space will be denoted by a wide 
upper hat, e.g. Ĥ , except the Dirac field operator which is denoted by a .

2. Local thermodynamic equilibrium and its gradient expansion

For a relativistic quantum fluid which, at some time, achieves Local Thermodynamic Equilibrium (LTE), a powerful approach is the 
Zubarev’s method of the stationary non-equilibrium density operator [16,17]. We refer the reader to the recent paper [18] for a more 
detailed description. The actual density operator of such a fluid, in the Heisenberg representation, is:

ρ̂ = 1

Z
exp

⎡
⎢⎣−

∫
�eq

d�μ

(
T̂ μν(x)βν(x) − ζ(x)̂ jμ(x)

)⎤⎥⎦ , (4)

where β is the four-temperature vector, ζ the ratio between chemical potential and temperature and �eq is some initial 3D hypersurface 
where LTE is achieved. For relativistic nuclear collisions, this is supposedly the 3D hyperbolic hypersurface where the quark-gluon plasma 
(QGP) thermalizes (see Fig. 1). It should be pointed out that the form of the local equilibrium density operator is pseudo-gauge dependent 
[19,20], with the form in eq. (4) applying to the Belinfante stress-energy tensor only. We note right away that the final result of this work 
would be the same if we used the canonical stress-energy tensor instead; this is shown in detail in the Appendix A. Henceforth, it will be 
understood that T̂ is the Belinfante symmetrized stress-energy tensor.

The operator (4) can be turned into a more manageable form by means of the Gauss’ theorem, taking into account that T̂ and ̂ j are 
conserved currents:

ρ̂ = 1

Z
exp

⎡
⎢⎣−

∫
�eq

d�μ

(
T̂ μνβν − ĵμζ

)⎤⎥⎦ = 1

Z
exp

⎡
⎢⎣−

∫
�(τ)

d�μ

(
T̂ μνβν − ĵμζ

) +
∫
�

d�
(
T̂ μν∇μβν − ĵμ∇μζ

)⎤⎥⎦ , (5)

where �(τ) is some 3D hypersurface at “present” time τ . In the case of heavy ion collisions the hypersurface �(τ) is usually the joining of 
the freeze-out hypersurface �F O encompassing the QGP space-time region and the two side branches σ± subsets of the �eq , as shown in 
Fig. 1. A peculiarity of the heavy ion collisions is that the hypersurface of “present” local equilibrium is partly time-like, that is n̂ · n̂ = −1.

In the right hand side of the density operator (5) the first term is the LTE and, as expected for a quasi-ideal fluid such as the QGP, it 
is the predominant one; the second term is, on the other hand, supposedly a correction and it is responsible for everything that can be 
called dissipative. Indeed, it can be shown that entropy is generated only if the second term is non-vanishing [16].

We shall focus on the LTE term:

ρ̂LE = 1

ZLE
exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν(y)βν(y) − ĵμ(y)ζ(y)

)⎤⎦ . (6)

The density operator (6), as well as eqs. (4) and (5), is independent of the hypersurface only if the β field satisfies the Killing equation 
[21]. When calculating the mean values of any local operator Ô (x), as the thermodynamic fields β and ζ are supposedly slowly varying 
2
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compared to the correlation lengths between Ô and the operators T̂ and ̂ j (see e.g. ref. [22]), it is a good approximation to expand β and 
ζ in a Taylor series from x:

βν(y) � βν(x) + ∂λβν(x)(y − x)λ

and similarly for ζ . Thus, we have:

Tr(ρ̂LE Ô (x)) � 1

ZLE
Tr

⎛
⎝exp

⎡
⎣−

∫
�

d�μ

(
T̂ μν(y)[βν(x) + ∂λβν(x)(y − x)λ] − ĵμ(y)[ζ(x) + ∂λζ(x)(y − x)λ])

⎤
⎦ Ô (x)

⎞
⎠ (7)

= 1

ZLE
Tr

⎛
⎝exp

⎡
⎣−βν(x)

∫
�

d�μ T̂ μν(y) − ∂λβν(x)

∫
�

d�μ (y − x)λ T̂ μν(y) − ζ(x)

∫
�

d�μ ĵμ+

−∂λζ(x)

∫
�

d�μ (y − x)λ̂ jμ

⎤
⎦ Ô (x)

⎞
⎠ .

For the sake of simplicity, we will omit the gradients of ζ and focus on the gradients of β , which are the most relevant for our purposes. 
These gradients can be split into a symmetric and an anti-symmetric part giving rise to:

1

2
�λν

∫
�

d�μ

[
(y − x)λ T̂ μν(y) − (y − x)ν T̂ μλ(y)

] − 1

4
(∂λβν + ∂νβλ)

∫
�

d�μ

[
(y − x)λ T̂ μν(y) + (y − x)ν T̂ μλ(y)

]
(8)

where � is the thermal vorticity (1). We can recognize in the first term of the above equation the total angular momentum-boost 
operators Ĵλν

x (with a proviso, see ref. [23]) centered in x, while the second term includes the non-conserved operator:

Q̂ λν
x =

∫
�

d�μ

[
(y − x)λ T̂ μν(y) + (y − x)ν T̂ μλ(y)

]
(9)

coupled to the thermal shear tensor:

ξλν = 1

2
(∂λβν + ∂νβλ) (10)

which vanishes at global thermodynamic equilibrium due to the Killing condition. It is very important to stress that Q̂ x is a tensor in a 
more limited sense than the angular momentum-boost operator Ĵ x . Indeed, since the integrand of Q̂ x in eq. (9) is not divergenceless:

∂μ

[
(y − x)λ T̂ μν(y) + (y − x)ν T̂ μλ(y)

] = 2T̂ λν

its value specifically depends on the hypersurface �, unlike Ĵ x , and, strictly speaking, should then be denoted as Q̂ x(�) (even though we 
will not use that notation). In quantum language, the operator Q̂ x does not fulfill the transformation rule for a tensor operator under a 
Lorentz transformation, that is:

�̂ Q̂ μν
x �̂−1 �= �

−1μ
ρ �−1ν

σ Q̂ ρσ
x ,

where �̂ is the unitary representation of the Lorentz transformation � in the Hilbert space. This implies that all results involving Q̂ x , for 
instance in quantum correlators, will eventually depend on that hypersurface and are thus expected to break local covariance.

Altogether, in the eq. (7), we can approximate the local thermodynamic equilibrium operator at first order in the gradients as:

ρ̂LE � 1

ZLE
exp

[
−βν(x) P̂ν + 1

2
�λν(x)̂ Jλν

x − 1

2
ξλν(x)Q̂ λν

x (�)

]
, (11)

where P̂ is the total four-momentum operator and the dependence on the hypersurface of the last term was highlighted.

3. Spin and thermal shear tensor

The mean spin polarization vector of a spin 1/2 particle can be obtained from the particle term (i.e. the future time-like part) of the 
Wigner function W + [23]:

Sμ(k) = 1

2

∫
�

d� · k tr
[
γ μγ 5W +(x,k)

]∫
�

d� · k tr [W +(x,k)]
. (12)

As pointed out in ref. [23], this formula applies to free, or quasi-free fields, therefore, in relativistic nuclear collisions, only to hadronic 
fields if � is a 3D hypersurface outside �F O in Fig. 1. Furthermore, it is convenient to set � = �F O to calculate it most accurately. The 
Wigner function is the expectation value of the Wigner operator [24]:

Ŵ +
ab(x,k) = θ(k0)θ(k2)

1
4

∫
d4s e−ik·s : b(x + s/2)a(x − s/2) : , (13)
(2π)

3
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 being the free Dirac field, “::” denotes the normal ordering and θ the Heaviside step function. In the application to relativistic nuclear 
collisions,  is to be understood as an effective hadronic field. For our purposes, the Wigner function is the expectation value of (13) with 
the LTE operator (6) W +

ab(x, k) = Tr
(
ρ̂LEŴ +

ab(x,k)
)
. As has been mentioned, in the hydrodynamic limit of slowly varying thermodynamic 

fields, one can approximate the Wigner function in x by making a Taylor expansion of the four-temperature in (6) around the point x. The 
contribution to the local expectation values of the gradient terms of the (11) is small compared to the contribution from the term β(x) · P̂ , 
hence one can expand the exponential in (11) with the familiar techniques of linear response theory [17]:

e Â+B̂ = e Â +
1∫

0

dz ez Â B̂ e−z Â e Â + · · · ,

where:

Â = −β(x) · P̂ , B̂ = 1

2
�νλ(x)̂ Jνλ

x − 1

2
ξμν(x)Q̂ μν

x .

Thereby, the Wigner function, and the spin vector as well, in (12) will receive two linear corrections: one proportional to thermal vorticity 
involving correlators between the Wigner operator and the angular momentum-boost operator Ĵ x and one proportional to the thermal 
shear tensor, involving correlators between the Wigner operator and the operator Q̂ x . The thermal shear tensor contribution to the spin 
vector has been usually neglected, for a twofold reason: first, it certainly vanishes at global equilibrium because of Killing condition 
and, secondly, the symmetric part of the gradients are canceled by the Levi-Civita tensor in the formula (3). However, we will show, 
that a combination of thermal shear tensor and momenta eventually survives and gives rise to a contribution which can be numerically 
important, especially for a fluid which is not yet very close to global equilibrium.

To make calculations more compact, we will not separate the symmetric and antisymmetric part of the Taylor expansion of β like in 
eq. (8) and study the linear response in terms of the perturbation:

B̂ = −
∫
�

d�λ(y)T̂ λρ(y)�βρ(x, y),

where:

�βρ(x, y) = βρ(y) − βρ(x) � ∂σ βρ(x)(y − x)σ . (14)

Therefore, the particle term of the Wigner function at LTE can be approximated by:

〈Ŵ +
ab(x,k)〉LE � 〈Ŵ +

ab(x,k)〉β(x) + �W +
ab(x,k), (15)

with:

�W +
ab(x,k) = −

1∫
0

dz

∫
�

d�λ(y)�βρ(x, y)〈Ŵ +
ab(x,k)T̂ λρ(y + izβ(x))〉c,β(x) (16)

where with 〈· · · 〉β(x) we denote the thermal expectation values calculated at the homogeneous global thermodynamic equilibrium, i.e. 
with the density operator:

ρ̂0 = 1

Z
exp[−β(x) · P̂ ].

The subscript c on the thermal average in (16) denotes the connected part of the correlator, that is, for the simplest case of two operators:

〈Ô 1 Ô 2〉c ≡ 〈Ô 1 Ô 2〉 − 〈Ô 1〉〈Ô 2〉.
The two terms of the right hand side of the eq. (15) can be evaluated with standard techniques (see Appendix B) and turn out to be:

W +
0 (x,k) = 〈Ŵ +(x,k)〉β(x) = (

m + γ μkμ

)
δ(k2 − m2)θ(k0)

1

(2π)3
nF (k)

and

�W +
ab(x,k) = −

1∫
0

dz

∫
�

d�λ(y)�βρ(x, y)
1

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)

× T λρ(p, p′)ab ei(p−p′)(x−y)ez(p−p′)βnF(p)(1 − nF(p′)),

(17)

where T is

T λρ(p, p′)ab = 1

4

[
(/p′ + m)γ λ(/p + m)

]
ab (pρ + p′ρ) + 1

4

[
(/p′ + m)γ ρ(/p + m)

]
ab (pλ + p′λ). (18)

We can now replace the �β in eq. (17) by using eq. (14):
4
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�W +
ab(x,k) = −

1∫
0

dz

∫
�

d�λ(y)∂κβρ
(y − x)κ

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)

× T λρ(p, p′)ab ei(p−p′)(x−y)ez(p−p′)βnF(p)(1 − nF(p′)).

(19)

It is convenient to work out the integration over � in the eq. (19) by using the Gauss’ theorem, and splitting it into an integral over a flat 
3D hypersurface �B and a 4D integral over the region �B encompassed by � and �B ; for instance, for heavy ion collisions applications, 
it is convenient to choose � = �F O , see Fig. 1. The formula (12) is thus the sum of a 4D integral and a 3D boundary term:

Sμ(k) � Sμ
∂β,�(k) + Sμ

∂β,B(k) = 1

2

∫
�

d� · k tr
[
γ μγ 5��W +(x,k)

]∫
�

d� · k tr
[
W +

0 (x,k)
] + 1

2

∫
�

d� · k tr
[
γ μγ 5�B W +(x,k)

]∫
�

d� · k tr
[
W +

0 (x,k)
] , (20)

where:

��W +
ab(x,k) = −

1∫
0

dz

∫
�B

d4 y
∂κβρ(x)

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)

× T ρκ (p, p′)abei(p−p′)(x−y)ez(p−p′)βnF(p)(1 − nF(p′)),
and

�B W +
ab(x,k) = −

1∫
0

dz

∫
�B

d�λ(y)∂κβρ(x)
(y − x)κ

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)

× T λρ(p, p′)abei(p−p′)(x−y)ez(p−p′)βnF(p)(1 − nF(p′)).
Consider the 4D integral first. Assuming that the region �B is large enough, we can approximate it with:∫

�B

d4 y ei(p−p′)(x−y) � δt(2π)3δ3 (
p−p′) ,

where δt is the temporal extent of the region �B . Hence:

��W +
ab(x,k) = − δt ∂κβρ(x)

1

(2π)3

∫
d3p

4ε2
p
δ4 (k − p)T ρκ (p, p)abnF(p)(1 − nF(p)). (21)

Plugging this expression in the (20), taking into account that

tr
[
γ μγ 5(/p′ + m)γ λ(/p + m)

] = 4iεμλτσ pτ p′
σ ,

and keeping in mind the (18), we readily find that tr
[
γ μγ 5��W +(x,k)

] = 0, so that the 4D integral does not contribute to the spin 
vector. We note that such a result is naturally expected for the angular momentum-boost operators, as they are a conserved charge 
independent of the integration hypersurface, but it is not obvious for the Q̂ x pseudo-tensor. Indeed, the vanishing of the volume term is 
a specific result owing to the choice of the region where the Gauss theorem has been applied and the observable, the spin polarization 
vector.

We can now move on to the �B term. We start to evaluate the numerator:

Nμ ≡
∫
�

d� · k tr
[
γ μγ 5�B W +(x,k)

]

= −2

(2π)6

∫
�

d� · k

1∫
0

dz

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)∫
�B

d�λ(y)∂κβρ(x)(y − x)κei(p−p′)(x−y)

× [
iεμλτσ pτ p′

σ kρ + iεμρτσ pτ p′
σ kλ

]
ez(p−p′)βnF(p)(1 − nF(p′))

and the denominator:

D ≡
∫
�

d� · k tr
[
W +

0 (x,k)
] = 4m

(2π)3

∫
d� · k δ(k2 − m2)θ(k0)nF(k)

of the second term on the right hand side of (20). If the hypersurface �B is large compared to the other scales, it can be approximated 
with an unbounded hyperplane and so:∫

�B

d�λ(y)(y − x)κei(p−p′)(x−y) =
∫
�B

d3 y t̂λ(y − x)κei(p−p′)(x−y)

� − it̂λ�
κ
κ ′(2π)3 ∂

∂ p′ δ3(p − p′) + t̂λt̂κ (2π)3�tδ3(p − p′),
(22)
κ ′

5
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where t̂ is the unit vector normal to �B (which corresponds to the time direction in the QGP frame of Fig. 1) and �μν = ημν − t̂μt̂ν , 
�t = (y − x) · t̂ and y · t̂ is constant in �B by definition. Notice that both terms in the integral of N contain the momenta p and p′
contracted with the Levi-Civita tensor and that the second term in (22) sets p′ = p in N after integrating p′; we therefore conclude that 
the second term in (22) does not bring any contribution. Therefore:

Nμ � − 2

(2π)3

∫
�

d� · k

1∫
0

dz

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)
∂κβρ(x)t̂λ�

κ
κ ′

∂

∂ p′
κ ′

δ3(p − p′)

× [
εμλτσ pτ p′

σ kρ + εμρτσ pτ p′
σ kλ

]
ez(p−p′)βnF(p)(1 − nF(p′)).

Integrating by parts in p′ and taking advantage of the vanishing of the square bracket for p′ = p, we obtain:

Nμ = 1

(2π)3

∫
�

d� · k ∂κβρ(x)

∫
d3p

2ε2
p
δ4(k − p)nF(p)(1 − nF(p))t̂λ�

κ
κ ′

[
εμλτσ pτ

∂ pσ

∂ pκ ′
kρ + εμρτσ pτ

∂ pσ

∂ pκ ′
kλ

]
,

where we have to take into account that ∂ p0/∂ pκ ′ is non-trivial being p on-shell. We can then integrate in p getting:

Nμ = 1

(2π)3

∫
�

d� · k ∂κβρ(x)θ(k0)δ(k
2 − m2)nF(k)(1 − nF(k)) t̂λ�

κ
κ ′

∂kσ

∂kκ ′
kτ

εk

[
εμλτσ kρ + εμρτσ kλ

]
,

where k is on-shell. Notice that the index κ ′ is in fact a spatial index, therefore:

∂kσ

∂kκ ′
= � κ ′

σ − t̂σ
kκ ′

εk
.

Using the previous derivative and the decompositions

kρ = t̂ρεk + �
ρ
ρ ′kρ ′

, εμρτσ = t̂ρεμρ ′τσ t̂ρ ′ + εμρ ′τσ �
ρ
ρ ′ ,

we can rewrite N as:

Nμ = 1

(2π)3

∫
�

d� · k ∂κβρ(x)θ(k0)δ(k
2 − m2)nF(k)(1 − nF(k))

× εμλτσ kτ

εk

(
2 t̂ρ t̂λ�

κ
σ εk + �

ρ
κ ′kκ ′

�κ
σ t̂λ + �

ρ
σ �κ

κ ′kκ ′
t̂λ + �

ρ
λ�

κ
σ εk

)
.

Now we can split the gradient of β as the sum of the thermal vorticity and the thermal shear:

∂κβρ = 1

2

[
∂κβρ + ∂ρβκ

] − 1

2

[
∂ρβκ − ∂κβρ

] = ξκρ − �κρ,

thus obtaining the linear contributions from the angular momentum-boost operators Ĵ x and the operator Q̂ x in the (11). For the thermal 
vorticity � we obtain:

Nμ
� = −1

(2π)3

∫
�

d� · k θ(k0)δ(k
2 − m2)nF(k)(1 − nF(k))εμνστ�νσ kτ

whence:

Sμ
� (k) = − 1

8m
εμνστkτ

∫
�

d� · k nF (1 − nF )�νσ∫
�

d� · k nF
,

which is the known expression in eq. (3). Similarly for the thermal shear term, simple calculations yield:

Nμ
ξ = − 1

(2π)3

∫
�

d� · k θ(k0)δ(k
2 − m2)nF(k)(1 − nF(k))εμνστ kτ t̂νξσρ

kρ

εk

whence it follows, replacing the four-momentum k with p:

Sμ
ξ (p) = − 1

4m
εμνστ pτ pρ

ε

∫
�

d� · p nF (1 − nF )t̂νξσρ∫
�

d� · p nF
, (23)

which is, in general, non-vanishing. As has been mentioned, the integration hypersurface �, in relativistic nuclear collisions, is the freeze-
out �F O (see Fig. 1). This term is a new, non-dissipative contribution to the spin polarization vector at local thermodynamic equilibrium 
to be added to the (3).
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4. Discussion and conclusions

The striking difference between the (3) and the new term (23) is that the latter apparently breaks covariance, for the presence of the 
t̂ν , the time direction in the QGP frame (see Fig. 1). The reason is the inevitable dependence of Q̂ x operator (9) on the particular 3D 
hypersurface of integration, as it has been discussed in section 2. The appearance of a particular vector t̂ , which is, in a sense, the best 
approximation of the unit vector perpendicular to the hypersurface �F O , is the telltale sign of this dependence.

The tensor ξ can be covariantly decomposed along the four-velocity of the fluid into:

ξσρ = 1

2
∂σ

(
1

T

)
uρ + 1

2
∂ρ

(
1

T

)
uσ + 1

2T

(
Aρuσ + Aσ uρ

) + 1

T
σρσ + 1

3T
θ�ρσ . (24)

In the (24), denoting by ∇μ = ∂μ − uμu · ∂ and �μν = gμν − uμuν , A = u · ∂u is the acceleration field, σ is the properly called shear 
tensor:

σμν = 1

2
(∇μuν + ∇νuμ) − 1

3
�μνθ

and θ = ∇ · u the expansion scalar. All of these terms can contribute to the spin vector (23), however only one of them, namely the 
temperature gradient, has a non-vanishing non-relativistic limit:

Sξ = 1

8
v ×

∫
d3x nF (1 − nF )∇ ( 1

T

)∫
d3x nF

(25)

while all remaining terms, including the spin-shear coupling, are purely relativistic. Such a term was already noticed in the non-relativistic 
limit of thermal vorticity [25], and provides an equal contribution. This will be the subject of further work.

The additional term of spin polarization vector (23) is linear in the gradients of the thermodynamic fields and can then play a major 
role in driving the local spin polarization pattern in relativistic heavy ion collisions. We will show its numerical impact in a forthcoming 
paper [26].
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Appendix A. Canonical stress-energy tensor and operator ̂Q x

The purpose of this section is to show that, for the free Dirac field, the operator Q̂ x in eq. (9) with the Belinfante stress-energy tensor:

Q̂ λν
x =

∫
�

d�μ

[
(y − x)λ T̂ μν

B (y) + (y − x)ν T̂ μλ

B (y)
]

(A.1)

is the same if we replaced T̂ B with the canonical stress-energy tensor T̂C of the free Dirac field. Starting from the pseudo-gauge transfor-
mation relation between T̂ B and T̂C :

T̂ μν
B = T̂ μν

C + 1

2
∂α

(
Ŝαμν − Ŝμαν − Ŝναμ

)
,

where Ŝ is the canonical spin tensor of the free Dirac field. This is known to be dual to the axial current, hence it is completely antisym-
metric in the three indices; hence, the above transformation formula simplifies to:

T̂ μν
B = T̂ μν

C + 1

2
∂αŜαμν.

By plugging this formula into Q̂ x , we obtain:

Q̂ λν
x =

∫
�

d�μ

[
(y − x)λ T̂ μν

C (y) + (y − x)ν T̂ μλ

C (y)
]
+ 1

2

∫
�

d�μ

[
(y − x)λ∂αŜαμν + (y − x)ν∂αŜαμλ

]
. (A.2)

We now focus on the integral term involving the spin tensor. Integrating by parts we get:∫
�

d�μ

[
(y − x)λ∂αŜαμν + (y − x)ν∂αŜαμλ

] =
∫
�

d�μ ∂α

[
(y − x)λŜαμν + (y − x)ν Ŝαμλ

] −
∫
�

d�μ

(
Ŝλμν + Ŝνμλ

)
.

The second integral on the right hand side vanishes because of the anti-symmetry of indices, so we are left with a 3D integral which can 
be turned into a surface 2D integral by means of the relativistic Stokes theorem:
7
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∫
�

d�μ ∂α

[
(y − x)λŜαμν + (y − x)ν Ŝαμλ

] =
∫
∂�

d S̃μα

[
(y − x)λŜαμν + (y − x)ν Ŝαμλ

]
.

This integral can be made vanishing by enforcing suitable boundary conditions on the Dirac field; if � = �F O ∪ σ± (see Fig. 1) and 
discussion in section 2), usually anti-periodic boundary conditions for a compact hypersurface � are enforced before taking the limit to 
infinity. Therefore, only the first integral in eq. (A.2) contributes to the operator Q̂ x , which is the same in form as in eq. (A.1).

Appendix B. Local thermal equilibrium value of Wigner function

In this Appendix we evaluate the local thermal equilibrium Wigner function in eq. (15), which is given by the sum of the Wigner 
function at global homogeneous thermal equilibrium [28]

W +
0 (x,k) = 〈Ŵ +(x,k)〉β(x) = (

m + γ μkμ

)
δ(k2 − m2)θ(k0)

1

(2π)3
nF (k)

and the first correction in temperature gradients (16). First, to work out the (16), we take advantage of the following relation between 
Belinfante stress-energy tensor operator and the Wigner operator:

T̂ λρ(y) = 1

2

∫
d4k′ (k′ρ tr

[
γ λŴ (y,k′)

] + k′λtr
[
γ ρ Ŵ (y,k′)

])
,

hence the (16) becomes

�W +
ab(x,k) = −1

2

1∫
0

dz

∫
�

d�λ(y)�βρ(x, y)

∫
d4k′ ∑

cd

(
k′ργ λ

dc + k′λγ ρ
dc

) 〈Ŵ +
ab(x,k)Ŵcd(y + izβ(x),k′)〉c,β(x). (B.1)

Thereby, the calculation of (16) boils down to the evaluation of the correlator of two Wigner operators at homogeneous global equilib-
rium. For this purpose, we shall express the Wigner function in terms of the normal modes of the Dirac field:

(x) =
1/2∑

σ=−1/2

1

(2π)3/2

∫
d3k

2εk

[
uσ (k)e−ik·x̂aσ (k) + vσ (k)eik·x̂b†

σ (k)
]
,

where creation and annihilation operators are covariantly normalized:

[̂aσ (q), â†
σ ′(q′)]± = 2εq δσσ ′δ3(q − q′),

and u and v are the spinors of the Dirac field satisfying:

ūσ (k)uσ ′(k) = 2mδσσ ′ , v̄σ (k)vσ ′(k) = −2mδσσ ′ .

From the definition of Wigner operator (13) we obtain:

Ŵ +
ab(x,k) = 1

(2π)3

∑
τ ,τ ′

∫
d3 p

2εp

∫
d3 p′

2εp′
δ4

(
k − p+p′

2

)
e−ix(p′−p)uτ ′(p′)aūτ (p)b̂a†

τ (p)̂aτ ′(p′).

The thermal correlator between two Wigner operators involves the connected part of the thermal average of four creation and annihilation 
operators which is given by:

〈̂a†
1̂a2̂a†

3̂a4〉c = 〈̂a†
1̂a2̂a†

3̂a4〉 − 〈̂a†
1̂a2〉〈̂a†

3̂a4〉 = 〈̂a†
1̂a4〉〈̂a2̂a†

3〉,
where ̂a†

1 and ̂a2 come from the first Wigner operator and ̂a†
3 and ̂a4 from the second one. The thermal averages of creation-annihilation 

operators at the homogeneous thermodynamic equilibrium are well known quantities:

〈̂a†
τ (k)̂aσ (q)〉β(x) =δτσ 2εqδ

3(k − q)nF(k),

〈̂aτ ′(k′)̂a†
σ ′(q′)〉β(x) =δτ ′σ ′2εq′δ3(k′ − q′)(1 − nF(k

′)),

while all other combinations vanish. Taking advantage of the spinor identity∑
σ

uσ (p)ūσ (p) = /p + m,

it is then straightforward to show that the thermal correlation between two Wigner operators turns out to be:

〈Ŵ +
ab(x,k)Ŵcd(y + izβ(x),k′)〉c,β(x) = 1

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4

(
k − p + p′

2

)
δ4

(
k′ − p + p′

2

)
× (/p′ + m)ad(/p + m)cbei(p−p′)(x−y)ez(p−p′)βnF(p)(1 − nF(p′)).

Plugging this expression into (B.1) we readily obtain the eq. (17).
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