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A B S T R A C T

We consider three-dimensional nonlinear viscoelastic models that account for both stress relaxation and
creep/recovery phenomena. These models are based on different frame indifferent time derivatives: the
Oldroyd (or upper-convected) derivative, the Jaumann (or co-rotational) derivative and the Cotter–Rivlin
(or lower-convected) derivative. Under a simple tension creep process, these constitutive equations predict
the same stress relaxation but lead to different situations. The models based on the Oldroyd and the
lower-convected derivative require restrictions on the values of the material parameters as well as on the
traction/compression stress. The model based on the Jaumann derivatives does not require any restriction. All
the constitutive models examined are used to study the finite amplitude, horizontal oscillatory motion of a
mass attached to a rate-type viscoelastic string. In this way we generalize the classical results by Beatty and
Zhou (1991).
. Introduction

Polymer-based products are commonplace in automotive, aerospace,
lectronic and biomedical industries. Moreover, nearly all soft tissues
re polymeric materials (see, e.g., [1,2]). For these reasons the chemical
nd structural properties of these materials are studied in details
ith modern methods and ideas but their mechanical properties are
ainly considered in the framework of classical linear elasticity [3].
owadays, technical, industrial and scientific applications of poly-
eric materials are highly sophisticated and thus the development of
echanical and mathematical models accounting for fundamental time-
ependent phenomena (such as creep, recovery and stress relaxation)
s necessary (see, e.g., [4] for stress relaxation in a nonlinear setting).

In a nonlinear framework, creep and recovery phenomena may be
escribed by minimal nonlinear versions of the usual Kelvin–Voigt
odel based on the differential theory of viscoelasticity [5]. These
odels have been proposed by several authors as (see, e.g., [6–9]).
owever, the possibility to model stress relaxation needs a more com-
lex approach based on rate or integral models [5]. Nonlinear models
f viscoelasticity of rate type have been scarcely investigated. For
xample, Zhou [10] proposed a rate model to study what occurs in
imple shear and Filograna et al. [11] proposed a similar model to
tudy the mechanical response of asphalt with respect to some basic
eformations.

∗ Corresponding author.
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G. Saccomandi).

In a recent article Cormack and Hamilton [12] considered stress re-
laxation via a one-dimensional empirical model in nonlinear acoustics.
This perspective has been re-derived from a general three-dimensional
model by Saccomandi and Vianello [13]. In rate models of viscoelas-
ticity a central role is played by objective time derivatives. It is well
known that in Continuum Mechanics the constitutive equations are
required to be frame indifferent [5]. In the rate theory of viscoelasticity,
it is usual to introduce a differential (in time) constitutive equation for
the stress tensor and, clearly, the time derivative involved has to be
frame indifferent. This opens the problem of the choice of the objective
time derivatives to select. Saccomandi and Vianello [13] considered
three different frame indifferent time derivatives: the Oldroyd (or
upper-convected) derivative, the Jaumann (or co-rotational) derivative
and the Cotter–Rivlin (or lower-convected) derivative. They studied
the propagation of shear waves and observed that different objective
derivatives lead to completely different stress fields. Nevertheless, in
the asymptotic limit of small but finite amplitude shear waves, any
objective derivative gives the same approximated stress field and the
same set of equations governing the wave motions.

This is an important result but the fact that different time deriva-
tives give different descriptions of the same phenomena is puzzling and
needs a deeper investigation. Indeed, these indifferent time derivatives
are of interest not only in viscoelasticity, but also in non-Newtonian
fluid mechanics [14], hypoelasticity and elastoplasticity (see [15–18]).
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Moreover, some thermodynamic issues have been recently pointed out
by Morro and Giorgi [19] who studied the thermodynamic consistency
of a specific rate type model (the one that in the sequel will be referred
to as the ‘‘third’’ model). By following similar arguments as in Morro
and Giorgi [19], the thermodynamic consistency of all the models we
shall consider can be analyzed. However, this analysis goes beyond
the scopes of the manuscript as we are here interested in isothermal
processes.

The objective of this study is twofold. By limiting our analysis to
simple extension experiments, we investigate the role of three frame
indifferent time derivatives (Oldroyd, Jaumann and Cotter–Rivlin) in
modeling these deformations. Viscoelasticity is an appropriate frame-
work for such a comparison because the dynamical properties in a
quasi-static process are summarized by a single parameter: the retarda-
tion time (eventually different in creep and relaxation) [20]. By means
of the retardation time it is possible to measure the speed of the stress
relaxation and of the creep or recovery phenomena which are the
standard tests to investigate this kind of material behavior. The second
target is to investigate the adequacy of three constitutive models for
incompressible, isotropic viscoelastic materials of the rate type (already
considered in the literature by Saccomandi and Vianello [13], Zhou
[10], Nasseri et al. [21], Phan-Thien et al. [22]) in describing simple
extensions. These constitutive equations generalize the standard model
in linear viscoelasticity.

Using a notation that allows to handle at same time all the three
types of derivatives, we investigate the differences of the use of these
objective differential operators and their main features.

We point out that for polymeric melts (i.e. viscoelastic fluids) ex-
tensional rheometry has been deeply studied [23], but for solids the
situation is quite different. Apart from the classical papers by Gent [24]
and Gottenberg et al. [25] (see also the book by Findley et al. [26]),
the literature has not advanced significantly. In fact, more recent papers
have focused mainly on the linear theory or empirical approaches [27,
28].

The outline of the paper is as follows. In Section 2 we set down
the basic equations. In Section 3 we consider stress relaxation and in
Section 4 we consider the phenomena of uniaxial strain into detail.
In this framework, it is possible to better understand the differences
among the three objective time derivatives. In Section 5 we apply the
models to the longitudinal oscillations of a free mass and then conclude
with some remarks.

2. Preliminaries

Here we recall some standard notations used in Continuum Mechan-
ics (see, e.g., [29–31]). Let

𝒙 = 𝝌(𝑿, 𝑡) (1)

be the deformation of a three-dimensional body in the Euclidean space,
where 𝒙 and 𝑿 are the respective position of a generic particle of the
body at time 𝑡 and at a given initial time 𝑡𝑜. Then

∶=
𝜕𝝌(𝑿, 𝑡)

𝜕𝑿
, B ∶= FFT, L ∶=

∙

FF−1, (2)

define, respectively, the deformation gradient, the Cauchy–Green de-
formation tensor, and the spatial velocity gradient tensor. The superim-
posed dot identifies the usual material time derivative. The symmetric
tensor

D ∶= 1
2
(

L + LT) , (3)

is the stretching tensor. In particular, we consider the incompressibility
constraint

det F = 1, or trD = 0, (4)
2

hich entails the introduction of an unknown spherical tensor −𝑝I, with
referred to as pressure [32]. Next, we define the frame time derivative

or a given second-order tensor S

𝛾 (S) =
∙

S +
𝛾 − 1
2

(

SLT + LS
)

+
𝛾 + 1
2

(

SL + LTS
)

, (5)

where 𝛾 can be −1, 0, or +1, identifies the Oldroyd (also referred to
s upper-convected or Truesdell rate since trD = 0, [5]), the Jaumann
or co-rotational), and the lower derivative (or Cotter–Rivlin rate [33]),
espectively.

We remark that the 𝛾 is not a constitutive parameter since it can take
nly three values (−1, 0, or +1) and so it selects the specific objective
ime derivative.

We consider three constitutive laws for the Cauchy stress T of
n incompressible viscoelastic material of the rate type. For a better
nderstanding of differences among these three models, it is useful to
efer to the deviatoric (or shear) part of the Cauchy stress T̂ = T + 𝑝I

• First model [10]
1
𝜙
𝒟𝛾 (T) + T = T − T̂

⏟⏟⏟
−𝑝 I

+𝛽1B + 𝛽−1B−1 + 2𝜂D. (6)

• Second model (derived by the general constitutive laws pre-
sented by Saccomandi and Vianello [13])

1
𝜙
𝒟𝛾

(

T̂
)

+ T̂ = 𝛽1B + 𝛽−1B−1 + 2𝜂D. (7)

• Third model [21,22]

⎧

⎪

⎨

⎪

⎩

T̂ = T𝑉 + 𝛽1B + 𝛽−1B−1,
1
𝜙
𝒟𝛾

(

T𝑉 ) + T𝑉 = 2𝜂D.
(8)

t is evident from these definitions that the difference among them
onsists, essentially, in which part of the Cauchy stress the operator
𝛾 is applied to.

In the above models 𝛽1, 𝛽−1, are, in general, material functions while
and 𝜙 are constant parameters representing the material viscosity

nd a characteristic time, respectively. In particular, we take 𝜙 and 𝜂
on-negative as prescribed by simple thermodynamic issues.

To simplify the algebra 𝛽1 and 𝛽−1, are set to be constant parame-
ers. However this hypothesis it is not strictly necessary and many of
ur results may be extended to the general case [10]. In particular, we
ake

1 =
𝐺

1 + 𝛼
, 𝛽−1 = − 𝛼𝐺

1 + 𝛼
, (9)

with 𝐺 =
(

𝛽1 − 𝛽−1
)

> 0, material elastic modulus and 𝛼 ∈ [0, 1]. In the
lastic case, when 𝛼 = 0, we recover the neo-Hookean case, while for
≠ 0, we have the incompressible Mooney–Rivlin model.

We point out that in the linear limit the three models collapse to
he same model, i.e. the three dimensional version of standard linear
olid also known as the Zener model. The one dimensional empirical
ersion of such model is given, in the Maxwell representation, by

+ 𝜈
𝐸2

𝜎̇ = 𝐸1𝜀 + 𝜈
𝐸1 + 𝐸2

𝐸2
𝜀̇, (10)

where 𝜎 is the one dimensional applied stress and 𝜀 is the one dimen-
sional strain. In the Maxwell representation we are indeed considering
a spring and spring plus a dashpot in parallel. The parameters 𝐸1 and
𝐸2 are the Young’s modulus of the two springs and 𝜈 is the viscosity of
the dashpot.



A. Farina, L. Fusi, F. Rosso et al. International Journal of Non-Linear Mechanics 138 (2022) 103851

d
i
p
o
T

T

i
c
c

⎧

⎪

⎨

⎪

⎩

𝑝

a
h
t
d
i

4

𝑥

m

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

3. Stress relaxation

Stress relaxation phenomena have been observed in all viscoelastic
materials and consist in a decay process of the stress T under constant
eformation (and, consequently, constant pressure1), starting from an
nitial stress T𝑖𝑛. We now show that, for the three models, these
rocesses are characterized by the same universal equation, regardless
f the material response functions. If we look at the equilibrium stress
𝑒 corresponding to a given deformation F𝑒, with det F𝑒 = 1, i.e.

𝑒 = −𝑝𝑒I + 𝛽1B𝑒 + 𝛽−1B−1
𝑒 , (11)

n all cases we get T = T𝑒, meaning that the equilibrium stress
orresponding to a given deformation is completely determined by the
onstitutive equation for incompressible hyper-elastic materials.

Concerning the first model, i.e. (6), we have

∙

T = −𝜙
[

(T + 𝑝I) −
(

𝛽1B𝑒 + 𝛽−1B−1
𝑒

)]

= −𝜙
[

(T + 𝑝I) −
(

T𝑒 + 𝑝𝑒I
)]

,

T|𝑡=0 = T𝑖𝑛 ,

(12)

yielding, since 𝑝 = 𝑝𝑒, to such a Cauchy problem

⎧

⎪

⎨

⎪

⎩

∙

𝑇 𝑖𝑗 = −𝜙
(

𝑇𝑖𝑗 − 𝑇𝑒,𝑖𝑗
)

, 𝑖, 𝑗 = 1, 2, 3
𝑇𝑖𝑗

|

|

|𝑡=0
= 𝑇 𝑖𝑛

𝑖𝑗 ,
(13)

i.e. problem (26) in Zhou [10]. The constant 𝜙−1 is often referred to as
stress relaxation time or simply relaxation time. However, in the visco-
elasticity literature, the term retardation time, usually denoted as 𝑡𝑟,
is often used as a measure of this property, so that the identification
𝑡𝑟 = 𝜙−1 is frequently encountered.

Focusing on the second model, i.e. (7), and considering, as before,
= 𝑝𝑒, we obtain again the Cauchy problem (13).

Concerning the third model, i.e. (8), we have T − T𝑒 = T𝑉 , since
𝑝 = 𝑝𝑒, and thus

∙

T = −𝜙
[

T − T𝑒
]

, i.e. Cauchy problem (13).
We can therefore conclude that the three models are indistinguish-

ble by performing only stress relaxation experiments. In order to
ighlight possible differences between the dynamics predicted by the
hree constitutive models, it is necessary to consider a time dependent
eformation. In particular in the next section a uniaxial creep process
s investigated.

. Uniaxial strain and creep process

We represent the body deformation (1) as

= 𝜆𝑋, 𝑦 = 1
√

𝜆
𝑌 , 𝑧 = 1

√

𝜆
𝑍, (14)

where constraint (4) is taken into account, and 𝜆(𝑡) is the stretch
(dimensionless), always positive. Next, we consider a creep process,
i.e. the evolution of the deformation under the action of a constant
stress until reaching an asymptotic equilibrium state. In particular, the
initial state is the undeformed one and the applied stress takes the form

T =
⎛

⎜

⎜

⎝

𝜎 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

. (15)

Before proceeding, a brief remark is in order. While deformation (14)
and stress (15) are in one-to-one correspondence in case of elastic
materials [34], it has not been shown (at least as in our knowledge) that
a simple tensile load produces a simple extension when the material

1 The stress due to the incompressibility constraint does not vary as the
aterial undergoes static deformation.
3

is modeled as an incompressible viscoelastic continuum of rate type.
Therefore the results that we shall illustrate in the sequel are not
definitive, but should be taken as indicative since, in principle, the
axial stress (15) could produce deformations different from the simple
extension.

The first model, i.e. constitutive Eq. (6), gives rise to this system

𝑇11 = −𝑝 + 𝛽1𝜆2 + 𝛽−1𝜆−2 −
1
𝜙

(

𝑇̇11 + 2𝛾 𝜆̇
𝜆
𝑇11

)

+ 2𝜂 𝜆̇
𝜆
,

𝑇22 = −𝑝 + 𝛽1𝜆−1 + 𝛽−1𝜆 − 1
𝜙

(

𝑇̇22 − 𝛾 𝜆̇
𝜆
𝑇22

)

− 𝜂 𝜆̇
𝜆
,

(16)

with 𝑇33 fulfilling identical to the one governing 𝑇22.
Considering the second model, we have 𝑇𝑖𝑖 = −𝑝 + 𝑇𝑖𝑖 (𝑖 = 1, 2, 3),

here 𝑇𝑖𝑖 obeys Eq. (7), i.e.

𝑇11 = 𝛽1𝜆2 + 𝛽−1𝜆−2 −
1
𝜙

(

∙

𝑇 11 + 2𝛾 𝜆̇
𝜆
𝑇11

)

+ 2𝜂 𝜆̇
𝜆
,

𝑇22 = 𝛽1𝜆−1 + 𝛽−1𝜆 − 1
𝜙

(

∙

𝑇 22 − 𝛾 𝜆̇
𝜆
𝑇22

)

− 𝜂 𝜆̇
𝜆
.

(17)

The equation for 𝑇33 is identical to the one for 𝑇22.
Concerning the third model, i.e. constitutive Eq. (8), we obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑇11 = −𝑝 + 𝛽1𝜆2 + 𝛽−1𝜆−2 + 𝑇 𝑉
11,

𝑇22 = −𝑝 + 𝛽1𝜆−1 + 𝛽−1𝜆 + 𝑇 𝑉
22,

𝑇 𝑉
11 = − 1

𝜙

(

∙

𝑇
𝑉

11 + 2𝛾 𝜆̇
𝜆
𝑇 𝑉
11

)

+ 2𝜂 𝜆̇
𝜆
,

𝑇 𝑉
22 = − 1

𝜙

(

∙

𝑇
𝑉

22 − 𝛾 𝜆̇
𝜆
𝑇 𝑉
22

)

− 𝜂 𝜆̇
𝜆
,

(18)

where the equations for 𝑇33 and 𝑇 𝑉
33 are formally identical to the ones

for 𝑇22 and 𝑇 𝑉
22.

Because of (11), the stress (15) gives rise, for all models, to the
equilibrium stretch 𝜆𝑒

𝜎 =
(

𝛽1 −
𝛽−1
𝜆𝑒

)(

𝜆2𝑒 −
1
𝜆𝑒

)

=
(9)

𝐺
𝜆𝑒 + 𝛼
1 + 𝛼

(

𝜆𝑒 −
1
𝜆2𝑒

)

, (19)

and to the equilibrium pressure2

𝑝𝑒 = 𝛽1𝜆
−1
𝑒 + 𝛽−1𝜆𝑒 =

(9)
𝐺

1 − 𝛼𝜆2𝑒
𝜆𝑒 (1 + 𝛼)

. (20)

In particular we get, 𝜆𝑒 > 1 (extension) when 𝜎 > 0, 𝜆𝑒 = 1 if 𝜎 = 0
and 𝜆𝑒 ∈ (0, 1) (compression) if 𝜎 < 0.

4.1. First model

The first model, but only when 𝛾 = 1, has been already investigated
in Zhou [10]. Here we also consider the cases 𝛾 = 0,−1. Focusing
on (16) where we set 𝑇11 = 𝜎 and 𝑇22 = 𝑇33 = 0, we obtain, after
eliminating 𝑝 and recalling (19), the following Cauchy problem for 𝜆(𝑡)

(

3𝜂 − 2𝜎
𝛾
𝜙

)

𝜆̇
𝜆
= 𝐺

(1 + 𝛼)

[

(

𝜆𝑒 + 𝛼
)

(

𝜆𝑒 −
1
𝜆2𝑒

)

− (𝜆 + 𝛼)
(

𝜆 − 1
𝜆2

)

]

,

𝜆(0) = 1 .

(21)

As in Zhou [10] we introduce the retardation time

𝑡𝑟 =
(1 + 𝛼)

𝐺

(

3𝜂 − 2𝜎
𝛾
𝜙

)

, (22)

and we immediately realize that 𝛾 plays a fundamental role in the sign
of such a quantity. In other words, if 𝛾 = −1, sign 𝑡𝑟 is positive provided

2 We remark that 𝜆 = 1 entails 𝜎 = 0, and 𝑝 = 𝐺 1−𝛼 .
𝑒 𝑒 1+𝛼
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𝜎 > 0. On the contrary, for 𝛾 = +1, 𝑡𝑟 may become negative for 𝜎 > 𝜎∗

where 𝜎∗ = 3𝜂𝜙
2 , is a critical value of applied tension. The situation is

reversed if we take 𝜎 < 0. In this case 𝑡𝑟 could change sign when 𝛾 = −1.
When 𝛾 = 0 the retardation time 𝑡𝑟 is independent of 𝜎.

The requirement 𝑡𝑟 > 0 may be considered in the framework of
the one-dimensional empirical Zener model (10). This is not a rigorous
argument but it may give a sort of rule of thumb to understand this
inequality. If we use the empirical model it is possible to make the
following correspondence among the various parameter of (10) and the
first model (in case of 𝛼 = 0, i.e. neo-Hookean model, and 𝛾 = 1)

=
𝜈(𝐸1 + 𝐸2)

𝐸2
, 𝜙 =

𝐸2
𝜈
, 𝐸1 = 3𝐺. (23)

Therefore requiring 𝑡𝑟 > 0 entails

𝐸1 + 𝐸2 >
2
3
𝜎,

but (19) and (23) relate 𝜎 to 𝐺 and 𝜆𝑒 and 𝐺 to 𝐸1, so that

1
2

(

1 + 9
𝐸2
𝐸1

)

> 𝜆2𝑒 −
1
𝜆𝑒

.

his gives a quite strict bound on 𝜆𝑒 that shows that the model maybe
sed for finite but moderate deformations. This is not truly a problem
ecause it is well known that both the neo-Hookean and the Mooney–
ivlin material model are valid only for moderate deformations also in

he purely elastic case. This bound is relaxed for 𝛼 ≠ 0, and significantly
elaxed if we use strain hardening elastic models [35].

Clearly, the identification (23) may be discussed and the only
igorous observation is that when 𝜙 → ∞ we recover the retardation
ime of a viscoelastic solid of differential type for any value of 𝛾. This
eans that when the stress relaxation time, i.e. 𝜙−1, is very small,

arger values of applied tension are admissible and therefore the critical
ension 𝜎∗ may approach the failure load. Moreover, when 𝜎 > 0 (i.e. in
ase of extension) we have that:

• if 𝛾 = 1, the creeping speed is smaller than in the pure differential
viscoelastic model;

• if 𝛾 = 0, the creeping speed is exactly the same of the differential
model;

• if 𝛾 = −1, the creeping speed is larger.

Therefore we have pointed out a striking difference about the role
f the different objectives derivatives. It is therefore that the selection
f the derivative is a constitutive issue and not just a mathematical
ssue. However, we remark that if 𝛾 ≠ 0, restrictions must be imposed
n the values of the material parameters 𝜂, 𝜙, 𝐺, 𝛼 as well as on the
pplied stress 𝜎 so that the Cauchy problem (21) does not give rise to
eaningless solutions. Moreover, we remark that, if 𝛾 = 0, the stress

elaxation time 𝜙−1, does not appear in the (22), i.e. the definition of
he retardation time. This is formally correct since, in creep processes,
he stress remains unchanged over time.

Let us end this section pointing out that taking 𝛾 = 0, and scaling
he time with 𝑡𝑟 which now is given by 3 (1 + 𝛼) 𝜂∕𝐺, problem (21)
ewrites as

𝜆̇
𝜆
= 𝜆𝑒

(

𝜆𝑒 −
1
𝜆2𝑒

)

− 𝜆
(

𝜆 − 1
𝜆2

)

,

𝜆 (0) = 1.

(24)

Problem (24) can be solved analytically and an implicit formula
for 𝜆 can be obtained. However, this formula is very complicated and
for this reason we prefer to solve (24) numerically. In Fig. 1 we show
solutions to (24) for several choices of the equilibrium stretch larger as
well as smaller than one.

4.2. Second model

Recalling that 𝑇11 = 𝜎 and 𝑇22 = 𝑇33 = 0, we have

𝑇 = 𝜎 + 𝑝, 𝑇 = 𝑇 = 𝑝,
11 22 33

4

which, once replaced in (17), gives raise, with the help of (9) and (19),
to the following system

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

3𝜂 − 2
𝛾
𝜙

(

𝜎 +
𝑝
2

)

]

𝜆̇
𝜆
= 𝐺
(1 + 𝛼)

[

(

𝜆𝑒 + 𝛼
)

(

𝜆𝑒 −
1
𝜆2𝑒

)

− (𝜆 + 𝛼)
(

𝜆 − 1
𝜆2

)]

,

𝑝̇ +
(

𝜙 − 𝛾 𝜆̇
𝜆

)

𝑝 =
𝜙𝐺
1 + 𝛼

( 1
𝜆
− 𝛼𝜆

)

− 𝜂𝜙 𝜆̇
𝜆
,

(25)

whose initial conditions are 𝜆 (0) = 1 and 𝑝 (0) given by (20) with 𝜆𝑒 = 1,
i.e. 𝑝 (0) = 𝐺 1−𝛼

1+𝛼 . Again, restrictions must be imposed on 𝜙, 𝐺, 𝛼 and
n the stress 𝜎 in order to get meaningful solutions if 𝛾 = ±1. Indeed,
sufficiently large tensile stress (i.e. 𝜎 > 0) can give rise to a negative

̇ if 𝛾 = 1, while a sufficiently large compression stress (i.e. 𝜎 < 0) can
ive rise to a positive 𝜆̇ if 𝛾 = −1. In Fig. 2 we report 𝜆 solution to (25)
or 𝜆𝑒 in a physically meaningful range (for example, 10% of the initial
alue). The time has been normalized with 3𝜂∕𝐺, 𝛼 = 0, 𝜂𝜙∕𝐺 = 1 and,
ccording to (19), 𝜎∕𝐺 = 𝜆2𝑒 − 1∕𝜆𝑒.

Next, as remarked in Section 4.1, we have that the creeping speed
epends on 𝜎 (as well as on 𝑝) when 𝛾 = ±1. In other words,
he creeping speed in compression can be different from the one in
xtension. No difference occurs when 𝛾 = 0. Moreover, if 𝛾 = 0, no

restrictions on 𝜎 are needed and in problem (25) two different time
scales are evident: 𝜙−1 for the stress (or better for the pressure) and
the usual 𝑡𝑟 = 3 (1 + 𝛼) 𝜂∕𝐺 for the stretch. Moreover, taking 𝛾 = 0,
the stretch evolution equation is decoupled from the pressure and we
recover problem (24). This is very interesting since the evolution of 𝑝
(which, in principle, is defined up to a constant) should have no effect
on 𝜆, which is the actually measurable quantity.

4.3. Third model

Setting 𝑇11 = 𝜎 and 𝑇22 = 𝑇33 = 0 in system (18) and introducing

𝐴 (𝜆) = 𝛽1𝜆
2 + 𝛽−1𝜆

−2 = 𝐺
1 + 𝛼

(

𝜆2 − 𝛼𝜆−2
)

,

[0.04𝑖𝑛]𝐵 (𝜆) = 𝛽1𝜆
−1 + 𝛽−1𝜆 = 𝐺

1 + 𝛼
(

𝜆−1 − 𝛼𝜆
)

,

we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎 + 𝑝 − 𝐴 (𝜆) = 𝑇 𝑉
11,

𝑝 − 𝐵 (𝜆) = 𝑇 𝑉
22,

𝑇 𝑉
11 = − 1

𝜙

(

𝑇̇ 𝑉
11 + 2𝛾 𝜆̇

𝜆
𝑇 𝑉
11

)

+ 2𝜂 𝜆̇
𝜆
,

𝑇 𝑉
22 = − 1

𝜙

(

𝑇̇ 𝑉
22 − 𝛾 𝜆̇

𝜆
𝑇 𝑉
22

)

− 𝜂 𝜆̇
𝜆
,

which gives rise to the following differential equation for the unknown
function 𝜆 (𝑡)

𝜆̇
𝜆

[

3𝜂 −
𝛾
𝜙
(2𝜎 + 3𝑝 − 2𝐴 − 𝐵) − 𝜆

𝜙
(

𝐵′ − 𝐴′)
]

= 𝐺
(1 + 𝛼)

[

(

𝜆𝑒 + 𝛼
)

(

𝜆𝑒 −
1
𝜆2𝑒

)

− (𝜆 + 𝛼)
(

𝜆 − 1
𝜆2

)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎−(𝐴−𝐵)

,

where (19) has been exploited and where ′ denotes 𝑑∕𝑑𝜆. Also in this
case the physically meaningless evolutions of 𝜆 (𝑡) may occur when
𝛾 = ±1, if restrictions on 𝜙, 𝐺, 𝛼 and 𝜎 are not imposed. In this case,
taking as time scale 𝑡𝑟 = 3 (1 + 𝛼) 𝜂∕𝐺, we have,

𝜆̇
𝜆

[

1 +
𝜙−1

𝑡𝑟

(

𝛼𝜆 + 2𝜆2 + 1
𝜆
+ 2𝛼

𝜆2

)]

=
(

𝜆𝑒 + 𝛼
)

(

𝜆𝑒 −
1
𝜆2𝑒

)

− (𝜆 + 𝛼)
(

𝜆 − 1
𝜆2

)

,
(26)

where now 𝜙−1, i.e. the stress relaxation time introduced in Section 3,
enters the dynamics of 𝜆. However, if 𝜙−1 ≪ 𝑡 , the third model
𝑟
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Fig. 1. Solutions to (24) for various 𝜆𝑒.
Fig. 2. 𝜆 (𝑡) solution to (25) for 𝛼 = 0, 𝜎∕𝐺 = 𝜆2𝑒 − 1∕𝜆𝑒 and 𝜂𝜙∕𝐺 = 1. The left panel shows the extension case with 𝜆𝑒 = 1.1. The right panel shows the compression case with
𝜆𝑒 = 0.9. Time is normalized with 3𝜂∕𝐺.
converges to the first model and to the second model, provided 𝛾 = 0.
Moreover, in this case the creeping speed is unaffected by the sign of
𝜎 (see Fig. 3).

5. Free oscillations of a mass

We consider the mechanical system schematically depicted in Fig. 4,
i.e. a body of mass 𝑚 constrained to move on the horizontal 𝑥 axis under
the action of a string, whose material obeys the constitutive equations
given by the first, the second and the third model, respectively. We
denote with 𝓁(𝑡) the string length and with 𝓁(0) its non-stretched length.
We assume that: the guide is frictionless, the loads acting on the lateral
string sides vanish, the string deforms according to (14) and its mass is
definitely smaller than 𝑚 (thus we can safely neglect the string inertia).

The problem of the finite amplitude, horizontal oscillatory motion
of a mass attached to a neo-Hookean rubber spring and supported by
a fixed, ideally smooth and rigid horizontal surface has been solved
exactly by Beatty [36]. The undamped, large amplitude, vibrations of
a body supported symmetrically by isotropic elastic shear mounts has
been studied by Beatty [37]. The damped case has been analyzed by
Beatty and Zhou [38] and Zhou [10].

Concerning the motion equation of the body, we have

𝑚𝓁(0)𝜆̈ = −𝑇11𝐴, (27)

where 𝐴 is the area of the contact surface between the body and
the string, which we consider fixed. This causes a deviation from
the deformation (14) near the string end in contact with the body.
However, we neglect this edge effect.

We analyze the problem whose initial datum is the equilibrium
stretch 𝜆(0) = 𝜆 > 1 corresponding to: (i) the stretch caused the load
𝑜

5

𝜎𝑜 > 0, i.e. recalling (19)

𝜎𝑜
𝐺

=
𝜆𝑜 + 𝛼
1 + 𝛼

(

𝜆𝑜 −
1
𝜆2𝑜

)

, (28)

(ii) 𝜆̇(0) = 0, (iii) 𝜆̈ (0) = −𝜎𝑜𝐴∕𝑚𝓁(0) . In particular, the equilibrium
state corresponds to 𝜎0 = 0 since it entails 𝜆𝑜 = 1 and vice-versa.

The purpose of this section is to highlight the difference in the
dynamics predicted by the three models. In particular, we shall see that
the first and the second model give rise to the same motion equation
for the body of mass 𝑚 (provided 𝛾 = 0). Furthermore, when we model
the string with Eq. (8), i.e. with the third model, we obtain a motion
equation different from the previous ones.

5.1. First and second model

Focusing at first on the first model, i.e. on system (16), we follow
the same procedure illustrated in Section 4 and take 𝛾 = 0. After
eliminating 𝑝, we obtain

1
𝜙
𝑇̇11 + 𝑇11 = 𝐺𝜆 + 𝛼

1 + 𝛼

(

𝜆 − 1
𝜆2

)

+ 3𝜂 𝜆̇
𝜆
. (29)

Setting then

𝑇̃11 =
𝑇11
𝐺

, 𝑡 = 𝑡
𝑡𝑐
, with 𝑡𝑐 =

√

𝑚𝓁(0)
𝐺𝐴

, (30)

and

𝑎 =
3𝜂𝜙

, 𝑏 = 𝜙𝑡 , (31)

𝐺 𝑐
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Fig. 3. Solution to (26) for 𝛼 = 𝛾 = 0 compared with that to (24) for 𝜆𝑒 = 1.2, and two different values of the ratio 𝜙−1∕𝑡𝑟.
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Fig. 4. Horizontal uniaxial oscillations of a rigid block under the action of the stress
𝑇11(𝑡) due to a deformed ideal viscoelastic string.

e obtain such a system (where we omit “̃” to keep the notation as
ight as possible)

𝜆̈ = −𝑇11,

𝑇̇11 + 𝑏 𝑇11 = 𝑏 𝜆 + 𝛼
1 + 𝛼

(

𝜆 − 1
𝜆2

)

+ 𝑎 𝜆̇
𝜆
,

𝜆(0) = 𝜆𝑜, 𝜆̇(0) = 0, 𝑇11 (0) =
(28)

𝜆𝑜 + 𝛼
1 + 𝛼

(

𝜆𝑜 −
1
𝜆2𝑜

)

,

(32)

that we rewrite as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆 + 𝑏 𝜆̈ + 𝑎 𝜆̇
𝜆
+ 𝑏 𝜆 + 𝛼

1 + 𝛼

(

𝜆 − 1
𝜆2

)

= 0,

𝜆(0) = 𝜆𝑜, 𝜆̇(0) = 0, 𝜆̈ (0) = −
𝜆𝑜 + 𝛼
1 + 𝛼

(

𝜆𝑜 −
1
𝜆2𝑜

)

.
(33)

In particular, we remark that, once prescribed 𝜆𝑜, i.e. the load 𝜎𝑜,
ystem (33) is characterized only by three dimensionless parameters,
amely 𝑎, 𝑏, and 𝛼.

Focusing now on the second model, i.e. Eq. (7), and recalling that
𝑇22 = 𝑇33 = 0, we have 𝑇22 = 𝑇33 = 𝑝, while 𝑇11 = 𝑇11 + 𝑝. Using (17)
with 𝛾 = 0, we get such a system

⎧

⎪

⎨

⎪

⎩

𝑇11 + 𝑝 = 𝛽1𝜆2 + 𝛽−1𝜆−2 −
1
𝜙
(

𝑇̇11 + 𝑝̇
)

+ 2𝜂 𝜆̇
𝜆
,

𝑝 = 𝛽1𝜆−1 + 𝛽−1𝜆 − 1
𝜙
𝑝̇ − 𝜂 𝜆̇

𝜆
.

ombining the two equations we again obtain (29). Consequently the
econd model gives rise, after performing the non-dimensionalization
30), to system (32) or (33), provided 𝛾 = 0. Hence, the first and the
econd model identify if and only if 𝛾 = 0 (Jaumann derivative).

Let us now analyze the equilibrium state 𝜆 = 1. We remark that
= 1 is reached by the solutions of the first as well as the second model
6

nly if 𝑎 is not too small. This is made evident by a simple perturbation
nalysis. Indeed, Eq. (33)1, has 𝜆 = 1 as the sole equilibrium solution
or any choice of 𝑎, 𝑏, and 𝛼. System (33) is equivalent to 𝒖̇ = 𝑭 (𝒖) with
𝑇 = (𝑢1, 𝑢2, 𝑢3) = (𝜆, 𝜆̇, 𝜆̈) and

𝑇 =

(

𝑢2, 𝑢3, −𝑏𝑢3 − 𝑎
𝑢2
𝑢1

− 𝑏
𝑢1 + 𝛼
1 + 𝛼

(

𝑢1 −
1
𝑢21

))

.

Thus, by linearizing around the steady state (1, 0, 0), we get

𝒖̇ =
⎛

⎜

⎜

⎝

0 1 0
0 0 1

−3𝑏 −𝑎 −𝑏

⎞

⎟

⎟

⎠

𝒖.

The eigenvalues are given by

𝜉3 + 𝑏 𝜉2 + 𝑎 𝜉 + 3 𝑏 = 0. (34)

Then we can apply the Routh–Hurwitz criterion [39] which guarantees
that all roots of (34) have strictly negative real part if and only if
𝑎 > 3. For completeness, we show in Fig. 5 the real part of the three
eigenvalues as functions of 𝑎 for given 𝑏. Of course, changing 𝛼 has no
effect on this conclusion.

5.2. Third model

Using (18) with 𝛾 = 0, and setting

𝑇 𝑉 = 𝑇 𝑉
11 − 𝑇 𝑉

22, 𝑇𝐸 (𝜆) = 𝐺𝜆 + 𝛼
1 + 𝛼

(

𝜆 − 1
𝜆2

)

,

get such a system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆̈ = − 𝐴
𝑚𝓁(0)

𝑇11,

𝑇11 = 𝑇𝐸 (𝜆) + 𝑇 𝑉 ,

𝑇̇ 𝑉 = −𝜙𝑇 𝑉 + 3𝜂𝜙 𝜆̇
𝜆
,

hich reduces to this third order equation

⃛+ 𝜙𝜆̈ + 𝐴
𝑚𝓁(0)

(

3𝜂𝜙 + 𝑑𝑇𝐸

𝑑𝜆
𝜆
)

𝜆̇
𝜆
+

𝐴𝜙
𝑚𝓁(0)

𝑇𝐸 (𝜆) = 0. (35)

Recalling (30), (31) and scaling, as usual, 𝑇𝐸 and 𝑇 𝑉 with 𝐺, the
imensionless version of (35) is

⃛+ 𝑏𝜆̈ +
(

𝑎 + 𝑑𝑇𝐸

𝑑𝜆
𝜆
)

𝜆̇
𝜆
+ 𝑏𝑇𝐸 (𝜆) = 0. (36)

and the corresponding Cauchy problem to solve is

⎧

⎪

⎪

⎨

⎪

⎪

𝜆 + 𝑏𝜆̈ +
(

𝑎 + 𝑑𝑇𝐸

𝑑𝜆
𝜆
)

𝜆̇
𝜆
+ 𝑏𝑇𝐸 (𝜆) = 0,

𝜆(0) = 𝜆𝑜, 𝜆̇(0) = 0, 𝜆̈(0) = −
𝜆𝑜 + 𝛼
1 + 𝛼

(

𝜆𝑜 −
1
𝜆2

)

.
(37)
⎩

𝑜
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Fig. 5. Real part of solutions 𝜉 to (34) for 𝑏 = 0.4 (left) and 𝑏 = 4 (right). The critical value 𝑎 = 3 is emphasized in both plots. The curve Re
(

𝜉1
)

and Re
(

𝜉2
)

coincide.
Fig. 6. Real part of solutions to (38) for 𝑏 = 7 (left) and 𝑎 = 25 (right). The curve Re
(

𝜉1
)

and Re
(

𝜉2
)

practically coincide.
We proceed as before and analyze the equilibrium state 𝜆 = 1. In
this case we have

𝑭 𝑇 =
(

𝑢2, 𝑢3, −𝑏𝑢3 − 𝑢2

(

𝑑𝑇𝐸

𝑑𝑢1
+ 𝑎

𝑢1

)

− 𝑏𝑇𝐸
)

,

nd by linearizing around the steady state (1, 0, 0), we obtain

̇ =
⎛

⎜

⎜

⎝

0 1 0
0 0 1

−3𝑏 −𝑎 − 3 −𝑏

⎞

⎟

⎟

⎠

𝒖.

The eigenvalues are the solutions to
3 + 𝑏𝜉2 + 𝜉 (3 + 𝑎) + 3𝑏 = 0. (38)

nce more, we apply the Routh–Hurwitz criterion which guarantees
hat all roots of (34) have always negative real part. Fig. 6 shows the
ehavior of the real part of the eigenvalues by keeping, alternatively,
ne parameter fixed and varying the other one.

Concerning the stability of the configuration 𝜆 = 1 (i.e. the con-
iguration in which the string is not deformed) we have a difference
etween the three constitutive models. The third model predicts that
= 1 is asymptotically stable for each value of parameters 𝑎 and 𝑏. In

addition, if we model the string with the first or the second model,
we obtain that 𝜆 = 1 is asymptotically stable when 𝑎 > 3.

In the next section we analyze the differences between the three
constitutive models when we consider the dynamics, that is, the oscil-
lations of the mass 𝑚.

5.3. Oscillations

We now compare the solutions to (27) predicted by the three models
for the same value of the material parameters. As shown by Fig. 7,
𝜆 (𝑡) displays only “little differences” between the third model and the
second (or first) model. Furthermore, we note that the response of the
three models to the variation of the parameter 𝑎 is similar: by increasing
𝑎, all models show an increase of the dumping effect. In general,
7

what emerges from the simulations is that the three models give rise
to similar dynamics. However, the evolution of 𝜆 (𝑡), while remaining
similar when skipping from one constitutive model to another, can
change significantly if the parameters and 𝜆𝑜 are varied. This fact is
highlighted by Figs. 8–10 where the string is modeled with the third
model (we point out, however, that the first and second model give
similar results) and the initial condition 𝜆𝑜 is changed, considering both
𝜆𝑜 > 1 and 𝜆𝑜 < 1.

Fig. 8 shows 𝜆 (𝑡) for 𝑎 = 2 by changing 𝑏. Figs. 9 and 10 show a
comparison between the solutions corresponding to two different initial
conditions 𝜆𝑜: the blue line corresponds to 𝜆𝑜 above the equilibrium
while the red line to 𝜆𝑜 below the equilibrium. The observed general
feature is that both solutions are almost symmetric during the whole
evolution, although by decreasing 𝑎 and 𝑏 there is a slight change in
phase.

6. Concluding remarks

It is well known that there are many objective “time-like” tensor
derivatives which are acceptable for formulating rates of change in
constitutive equations. An important result of our study is that the
choice of the objective derivative is a true constitutive matter. The
retardation time in creep experiments depends strongly on such a
choice. Therefore only an experimental test can elucidate the kind of
derivative needed.

Moreover, we have confirmed the result by Prager [40] who em-
phasized that the Jaumann derivative is somehow the best choice
from a mathematical perspective as it exhibits all the formal algebraic
properties of the ordinary time derivative. Here we have pointed out
that the models based on the Jaumann derivative are the simplest
to handle from a mathematical point of view. When we consider a
creep process and the deformation obeys (14), the models based on the
Oldroyd or the lower-convected derivative, have be handled with care
to avoid nonphysical situations (see Table 1).
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Fig. 7. Model comparison for the same material parameters, provided that 𝑎 > 3.
Fig. 8. Response of the third model, i.e. model (8), when 𝑎 = 2, for 𝑏 = 2 (left) and 𝑏 = 20 (right).
Fig. 9. Comparison between solutions to system (37) for (𝑎, 𝑏) = (8, 1) (left) and (𝑎, 𝑏) = (2, 5) (right), by changing the initial condition 𝜆0 close to 1, both larger and smaller than
1.
Another constitutive issue we encounter in the generalization of the
standard linear model is posed by the evolution equation for the stress
rate. Indeed, in some approaches this evolution equation is written for
the total Cauchy stress, in other cases only for the Cauchy extra-stress
and in other situations only for the viscous part of the Cauchy stress.
For this reason the first model is a possible mechanical setting that we
can imagine to generalize the classical Zener model.

In considering the finite amplitude free damped vibration of a mass,
we have obtained another result. Only for the model considering the
8

evolution equation in the viscous part of the Cauchy stress, i.e. third
model , the oscillations are asymptotically stable for any value of the
constitutive parameters (see Table 2). Therefore this model seems the
more natural choice.

We point out that our results have been derived considering for
the elastic part of the stress a Mooney–Rivlin constitutive strain-energy
density function. This choice has been dictated only by the sake of
algebraic simplicity. All our results can be easily generalized to more
complex forms of strain–energy density functions.
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Fig. 10. Comparison between solutions to system (37) for (𝑎, 𝑏) = (8, 0.5) (left) and (𝑎, 𝑏) = (2, 7) (right), by changing the initial condition 𝜆0.
able 1
omparison among the three models and the three material derivatives for the uniaxial
reep experiment. Regardless of the selected model, only the Jaumann derivative does
ot need any restrictions upon material parameters and the stress in order to avoid
on-physical solutions.
Model Oldroyd Jaumann Cotter–Rivlin

First restrictions needed no restrictions restrictions needed
Second restrictions needed no restrictions restrictions needed
Third restrictions needed no restrictions restrictions needed

Table 2
Comparison among the three models and the three material time derivatives for the
oscillation experiment. Regardless of the derivative used, only the third model provides
asymptotically stable solutions for any value of the material parameters.

Model Oldroyd Jaumann Cotter–Rivlin

First restrictions needed restrictions needed restrictions needed
Second restrictions needed restrictions needed restrictions needed
Third no restrictions no restrictions no restrictions
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