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ABSTRACT

We derive two new forms of the Kármán-Howarth-Monin equation for decaying compressible Hall
magnetohydrodynamic (MHD) turbulence. We test them on results of a weakly-compressible, two-
dimensional, moderate-Reynolds-number Hall MHD simulation and compare them with an isotropic
spectral transfer (ST) equation. The KHM and ST equations are automatically satisfied during the
whole simulation owing to the periodic boundary conditions and have complementary cumulative
behavior. They are used here to analyze the onset of turbulence and its properties when it is fully de-
veloped. These approaches give equivalent results characterizing: the decay of the kinetic + magnetic
energy at large scales, the MHD and Hall cross-scale energy transfer/cascade, the pressure dilata-
tion, and the dissipation. The Hall cascade appears when the MHD one brings the energy close to
the ion inertial range and is related to the formation of reconnecting current sheets. At later times,
the pressure-dilation energy-exchange rate oscillates around zero with no net effect on the cross-scale
energy transfer when averaged over a period of its oscillations. A reduced one-dimensional analy-
sis suggests that all three methods may be useful to estimate the energy cascade rate from in situ
observations.

1. INTRODUCTION

Turbulence is ubiquitous in astrophysical plasma en-
vironments (Matthaeus & Velli 2011). The solar wind
constitutes a natural laboratory for studying turbulence
in weakly collisional plasmas (Bruno & Carbone 2013).
As it expands from the solar corona, it exhibits a strong
non-adiabatic behavior and to sustain its thermal ion en-
ergetic properties it needs to be heated (Vasquez et al.
2007; Cranmer et al. 2009; Hellinger et al. 2011, 2013).
The situation is less clear for electrons that carry a strong
heat flux (Štverák et al. 2015). The solar wind is a
strongly turbulent flow with large-amplitude fluctuations
of the magnetic field, particle velocity field, and other
quantities as well. These turbulent fluctuations are the
usual suspect for the observed particle heating.

Besides phenomenological approaches, the Kármán-
Howarth-Monin (KHM) equation (de Kármán &
Howarth 1938; Kolmogorov 1941; Monin & Yaglom 1975;
Frisch 1995) represents a way how to determine the cas-
cade/dissipation rate in turbulence. This equation was
originally derived for incompressible (constant-density)
hydrodynamic (HD) turbulence and further extended
to incompressible magnetohydrodynamic (MHD) turbu-
lence (Politano & Pouquet 1998) and to incompressible
Hall MHD turbulence (Galtier 2008; Hellinger et al. 2018;
Ferrand et al. 2019). Starting from the KHM equations
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and under further assumptions (e.g., isotropy), the so
called exact (scaling) laws can be derived to connect
the third-order structure functions with the energy cas-
cade/dissipation rate. In magnetized plasmas, the as-
sumption of isotropy is, however, questionable due to
the anisotropy introduced by the ambient magnetic field
(Shebalin et al. 1983; Oughton et al. 1994). Once relaxed,
the cascade rate is given by the divergence of third-order
structure functions.

In situ spacecraft observations of turbulence are based
on one-dimensional time series and it is not fully clear
to what extent these characterize the inherently three-
dimensional turbulent fluctuations, and how well the
KHM equation can be used to estimate the cascade rate
(Podesta et al. 2009; Smith et al. 2018). First appli-
cations of the KHM equation to in situ observations
showed linear scaling of the third-order structure func-
tions (Sorriso-Valvo et al. 2007; Marino et al. 2008) and
isotropy was assumed to estimate the corresponding cas-
cade rate. To account for the expected anisotropy, a
hybrid model that combines a two-dimensional (2D) per-
pendicular (with respect to the ambient magnetic field)
cascade with a parallel one-dimensional (1D) was de-
veloped (MacBride et al. 2008; Stawarz et al. 2009).
The turbulent energy cascade and its anisotropy can be
partly constrained by multi-spacecraft observations (Os-
man et al. 2011), but observational works need to be
complemented by numerical simulations. Verdini et al.
(2015) analyzed the effect of using different turbulence
models for estimating the cascade rates using direct
MHD simulations, showing that the isotropic approxi-
mation may lead to large errors in the estimation of the
cascade rate. The hybrid model (MacBride et al. 2008;
Stawarz et al. 2009) gives, on the other hand, relatively
good energy-cascade estimates. In this respect, Franci
et al. (2020) compared in situ observations of turbu-
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lence with simulation results based on observation-driven
plasma parameters, finding good quantitative agreement
between spectral properties of the observed and simu-
lated turbulent fluctuations, but also a good agreement
between the observed and simulated third-order struc-
ture functions and the resulting cascade rates.

To date, there are not many studies estimating the en-
ergy cascade rate in the solar wind and estimates based
on the KHM equation are typically sufficient to explain
the observed temperature radial profiles (Coburn et al.
2015; Smith & Vasquez 2021), however, estimated cas-
cade rates exhibit a large variability and may even reach
negative values in fast solar wind streams with a large
cross-helicity (Smith et al. 2009). Most of the works is
done at 1 au (or further away from the Sun. Recently,
Bandyopadhyay et al. (2020a) used data from the Parker
Solar Probe at 0.17 and 0.25 au and showed (assum-
ing isotropy) that the estimated cascade rate is consis-
tent with the radial profile of the proton temperature.
However, a systematic study of the radial dependence
of the cascade rate is missing. On the other hand, it is
not clear, if solar wind turbulence is strong enough to
keep heating the plasma. While the numerical study of
Montagud-Camps et al. (2018) shows that turbulence is
able sustain a radial profile of the temperature similar to
the observed one in the inner heliosphere (at least within
the MHD approximation with an isotropic temperature),
phenomenological transport models of solar wind turbu-
lence (Zhou & Matthaeus 1990; Oughton et al. 2011)
indicate that, eventually at larger radial distances from
the Sun, turbulent fluctuations would be exhausted and
need to be, in turn, sustained by some energy injection.

The KHM equations can be also used to understand
at which scales the dissipation becomes important. So-
lar wind turbulence exhibits a transition in the form of
a spectral break, at ion scales (Chen et al. 2014) and
a similar transition is also observed in direct numerical
simulations (e.g., Franci et al. 2016; Papini et al. 2019a,
and references therein). Analyses of in situ observations
and numerical simulations based on the incompressible
Hall MHD KHM equation suggest that this transition is
a combination of the onset of Hall physics and dissipa-
tion (Hellinger et al. 2018; Bandyopadhyay et al. 2020b).
These results have some limitations: the simulations are
2D, the observations are based on 1D time series and
assume isotropy.

The solar wind exhibits weak density fluctuations,
δn/n ∼ 0.1, so that the incompressible approximation
(or the nearly-incompressible one, cf., Zank et al. 2017)
is likely applicable. On the other hand, closer to the Sun
the compressibility is expected to be larger (cf., Krupar
et al. 2020). Furthermore, at ion characteristic scales the
level of compressibility (density fluctuations) increases
(Chen et al. 2013; Pitňa et al. 2019) so that the incom-
pressible approximation may not hold. Also in high-cross
helicity flows, the incompressible nonlinearity may be re-
duced and the compressible coupling may become impor-
tant. Banerjee et al. (2016) and hadial17 show that the
compressible KHM equation gives larger cascade rates.
Andrés et al. (2019) show that the compressibility may
be important at sub-ion scales where the Hall physics be-
comes important. However, these results (Banerjee et al.
2016; Hadid et al. 2017; Andrés et al. 2019, and references
therein) have a major limitation, they include the inter-

nal energy in the isothermal closure (consequently they
estimate the cascade rate of the total energy including
the redistribution of the internal energy).

In order to avoid issues in the calculation of the diver-
gence of the third-order structure function, Banerjee &
Galtier (2017) proposed an alternative form of the KHM
equation (for the incompressible Hall MHD) where the
cascade rate is expressed using second-order structure
functions. In this paper we analyze three different ap-
proaches that may be used to estimate the cascade rates
of the kinetic + magnetic energy in compressible Hall
MHD turbulence. We derive a new form of the compress-
ible (standard) KHM equation (Hellinger et al. 2018; Fer-
rand et al. 2019) and we also generalize the alternative
formulation of Banerjee & Galtier (2017) to the com-
pressible Hall MHD. We compare these KHM approaches
with an isotropic spectral transfer equation (Hellinger
et al. 2021). We use these methods to analyze results of
a 2D weakly compressible Hall MHD simulation. We also
look at reduced 1D results in the context of in situ obser-
vations. The paper is organized as follows. In section 2,
we derive the standard (subsection 2.1) and the alterna-
tive KHM (subsection 2.2) equations. In section 3, we
analyze the results of a 2D Hall MHD simulation using
the KHM equations. In section 4, we present and apply
the ST analysis to the Hall MHD simulation. Results
of the ST and KHM analyses are then compared. In
section 5, we analyze the energy cascade rates from 1D
reduced forms of the two KHM equation and of the ST
one. In section 6 we discuss the obtained results.

2. KHM EQUATION

We investigate a system governed by the following Hall
MHD equations for the plasma density ρ, the plasma
mean velocity u, and for the magnetic field B:

∂ρ

∂t
+ (u ·∇)ρ = −ρ∇ · u, (1)

ρ
∂u

∂t
+ ρ(u ·∇)u = (∇×B)×B −∇p+ ∇ · τ , (2)

∂B

∂t
= ∇× [(u− j)×B] + η∆B, (3)

where p is the plasma pressure, τ is
the viscous stress tensor (given by τij =
µ (∂ui/∂xj + ∂uj/∂xi − 2/3δij∂uk/∂xk) where the
dynamic viscosity µ is assumed to be constant), η
the electric resistivity, j is the electric current density
in velocity units, j = J/ρc = u − ue (ρc being the
charge density). Here we assume SI units except for the
magnetic permeability µ0 that is set to one (SI results

can be obtained by the rescaling B → Bµ
−1/2
0 ).

For the formulation of the KHM equation in terms of
structure functions, we use the density-weighted velocity
field w = ρ1/2u (Kida & Orszag 1990; Schmidt & Grete
2019; Praturi & Girimaji 2019) to take into account a
variable density. In order to represent the kinetic and
magnetic energy we use the following structure functions

Sw =
〈
|δw|2

〉
and SB =

〈
|δB|2

〉
,

respectively. Here δw = w(x′)−w(x), where x′ = x+
l, and 〈•〉 denotes spatial averaging (over x); the same
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definition holds for δB and other quantities. Henceforth,
we denote the value of any quantity a at x and x′ as
a = a(x) and a′ = a(x′), respectively.

2.1. Standard KHM

For the total structure function, S = Sw+SB , one can
get a dynamic KHM equation, taking Eqs. (2–3) at two
positions, x′ and x. Subtracting those one gets equa-
tions for ∂δw/∂t and ∂δB/∂t. Assuming a statistically
homogeneous system one can get then the following form
of the KHM equation (for the detailed derivation see Ap-
pendix)

∂S
∂t

+ ∇l · (Y + H) +R = C + 2 〈δθδp〉 − 2 〈δΣ : δτ 〉
− 4Qη + 2η∆lSB , (4)

Where θ = ∇ · u is the dilatation field, Σ = ∇u is the
stress tensor, and ∆l denotes the Laplace operator (with
respect to the separation l). Eq. (4) combines the second-
order structure functions with the third-order ones re-
lated to the energy transfer/cascade rate

Y =
〈
δu
(
|δw|2 + |δB|2

)
− 2δB (δu · δB)

〉
H =

〈
δB (δj · δB)− 1

2
δj|δB|2

〉
.

Eq. (4) also contains the explicitly compressible contri-
bution to the cascade rate,

R = 〈δw · (θ′w − θw′)〉 ,
of hydrodynamic origin (cf., Hellinger et al. 2021). The
dissipation part includes the resistive incompressible-like
terms Qη−η∆lSB/2 and the generally compressible vis-
cous term 〈δτ : δΣ〉 /2, where Qη = η 〈∇B : ∇B〉 =
η
〈
|J |2

〉
is the Joule dissipation rate per unit volume

(J = ∇ × B being the electric current density). The
correction term C can be given in the form

C = 2C√ρ [u,∇p]− 2C√ρ [u,∇ · τ ]

+ 2C√ρ [u,B × J ] + Cρ [B × j,J ] ,

where

Cρ [a, b] =

〈(
ρ′

ρ
− 1

)
a′ · b+

(
ρ

ρ′
− 1

)
a · b′

〉
.

Note that this term explicitly depends on the density
variation and disappear in the constant density approx-
imation.

Eq. (4) can be cast in the following form

1

4

∂S
∂t
−KH −KMHD = Ψ −D (5)

where we have combined some terms as

KMHD = −1

4
∇ ·Y − 1

4
R+

1

2
C√ρ [u,B × J ]

KH = −1

4
∇ ·H +

1

4
Cρ [B × j,J ] (6)

Ψ =
1

2
〈δpδθ〉+

1

2
C√ρ [u,∇p]

D = Qη −
η

2
∆SB +

1

2
〈δτ : δΣ〉+

1

2
C√ρ [u,∇ · τ ] ,

and where we dropped the l index for ∇ and ∆. Here,
KMHD and KH are the MHD and Hall cascade rates,
respectively, Ψ represents the pressure-dilatation effect
whereas D accounts for the effects of dissipation and
heating.

As noted by Hellinger et al. (2021), the KHM struc-
ture functions in hydrodynamic (HD) turbulence have
a cumulative behavior that is complementary to the
isotropic ST equation. We will see in section 4.1 that
this is also true in Hall MHD. Here we just note that
the viscous term 〈δτ : δΣ〉 is the generalization to the
compressible case of the two incompressible dissipa-
tive terms 2ν 〈∇u : ∇u〉 − ν∆

〈
δu2

〉
. The behavior of

〈δτ : δΣ〉 changes with scales. At large scales |l| →
∞, where the correlations 〈τ (x′) : Σ(x)〉 → 0 the vis-
cous term becomes twice the viscous heating rate Qµ,
〈δτ : δΣ〉 → 2 〈τ : Σ〉 = 2Qµ and the dissipation term
reaches D → Qtot, where we denote the total heating
rate as Qtot = Qµ +Qη.

2.2. Alternative formulation

The cross-scale energy transfer/cascade rates in Equa-
tion 4 contains terms with a divergence of third-order
structure functions that are difficult to evaluate from 1D
time series. Banerjee & Galtier (2017) presented an alter-
native formulation of the KHM equation for incompress-
ible Hall MHD turbulence where these terms are replaced
by second-order structure functions. This approach can
be easily generalized to the compressible case and the
resulting equation can be given the following form

∂S
∂t

+ Ỹ + H̃+ R̃ = C̃ + 2 〈δθδp〉 − 2 〈δΣ : δτ 〉
− 4Qη + 2η∆SB (7)

where

Ỹ = −2 〈δw · δ (u×$)〉 − 2

〈
δw · δ

(
J ×B√

ρ

)〉
− 2 〈δJ × δ (u×B)〉 (8)

H̃ = 2 〈δJ × δ (j ×B)〉 (9)

R̃ = 〈δw · δ (wθ)〉+ 2 〈δw · δ [(∇w) · u]〉 (10)

C̃ = 2C√ρ [u,∇p]− 2C√ρ [u,∇ · τ ] (11)

and $ = ∇ × w. The other terms are defined in the
previous section.

From Eq.(7) we get the MHD and Hall cascade rates
as

KMHD = −1

4
Ỹ − 1

4
R̃, KH = −1

4
H̃. (12)

Note that only the first term in R̃ disappears in the in-
compressible, constant-density limit. The second term,
in this limit, is proportional to 〈δu·δ(∇|u|2)〉 (cf., Baner-
jee & Galtier 2017) and is generally non-negligible.

3. NUMERICAL SIMULATION

Now we test the predictions of the compressible KHM
equations using a Hall MHD simulation. The Hall MHD
model consists of the nonlinear, compressible viscous-
resistive MHD equations, modified only by the presence
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of the Hall term in the induction equation, The system is
described by Eqs. (1–3), complemented by the equation
for the plasma temperature

∂T

∂t
+ (u ·∇)T = (γ − 1)

(
−T∇ · u+

η|J |2
ρ

+
τ : Σ

ρ

)
,

(13)

where γ = 5/3. These equations are solved using the
pseudo-spectral approach and a 3rd-order Runge-Kutta
scheme (Papini et al. 2019a,b). We consider a 2D (x, y)
periodic domain and use Fourier decomposition to calcu-
late the spatial derivatives. In the Fourier space we also
filter according to the 2/3 Orszag rule (Orszag 1971), to
avoid aliasing of the quadratic nonlinear terms. Alias-
ing of the cubic terms is mitigated by the presence of
a finite dissipation (Ghosh et al. 1993). We consider a
2D box of size 256di × 256di and a grid resolution of
∆x = ∆y = di/8, corresponding to 20482 points, where
di is the ion inertial length. We set a constant back-
ground magnetic field B0 along the z (out-of-plane) di-
rection. The initial state is populated by large-amplitude
Alfvénic fluctuations in the xy-plane up to the injec-
tion scale `inj = 2πdi/k

inj
⊥ , with kinj⊥ di ' 0.2, where

k⊥ =
√
k2x + k2y. The relative root-mean-square (rms)

amplitude of these fluctuations is set to 0.17 in units of
B0 = |B0|. The plasma beta is initially β = 0.5. No forc-
ing is present, so the simulation resolves the evolution of
freely decaying turbulence and we assume the viscosity
and resistivity µ = η = 10−3.

In the simulation the total energy Etot = Ekin +Eint +
Emag is well conserved. Here Ekin = 〈ρu2〉/2 is the ki-
netic energy, Eint = 〈ρT 〉/(γ − 1) is the internal one,
Emag = 〈B2〉/2 (here 〈•〉 denotes spatial averaging over
the simulation box). Fig. 1a displays the evolution of
the relative changes in these energies, ∆E(t) = [E(t) −
E(0)]/Etot(0), where E = Ekin,tot,mag,int. The relative
change of the total energy is negligible, ∆Etot(t = 8) ∼
3 10−5. Fig. 1b shows the evolution of the rms values of
the out-of-plane components of the current Jz and the
vorticity ωz. 〈|Jz|2〉 reaches a maximum at t ' 255Ω−1i ,
which is a signature of a fully developed turbulent cas-
cade (Mininni & Pouquet 2009). The z component of the
vorticity exhibits a similar evolution. Fig. 1c shows the
maximum value (over the simulation box) of Jz. The
sharp increase of max|Jz| for 40 . tΩi . 60 indicates
the formation of thin current sheets and the saturation
at tΩi ∼ 60 is due to the onset of magnetic reconnection
(Franci et al. 2017; Papini et al. 2019a). Fig. 1d dis-
plays the rms value of the density, 〈(ρ− 〈ρ〉)2〉1/2, which
steadily increases until at t & 210Ω−1i there is an indica-
tion of a saturation. Fig. 1e shows the dissipation and the
pressure-dilatation rates. The dissipation rate increases
with time and becomes quasi-stationary at later times.
The pressure-dilatation rate becomes initially negative
but at later times, t & 210Ω−1i , it oscillates around zero.

To check the prediction of Eq. (5) in the simulation we
define the validity test as

O = −1

4

∂S
∂t

+KH +KMHD + Ψ −D. (14)

The top panel of Figure 2 shows this validity check O
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Figure 1. Evolution of different quantities as a function of time:
(a) the relative changes in the kinetic energy ∆Ekin (solid line),
the magnetic energy ∆Emag (dashed line), the total energy ∆Etot
(dotted line), and the internal energy ∆Eint (dash-dotted), (b)
squared rms values of the out-of-plane components of the current
Jz and the vorticity ωz (dashed line), (c) the maximum value of Jz ,
(d) the rms value of the density fluctuations, and (e) the total dis-
sipation rate Qtot (solid line) and the pressure-dilatation rate 〈pθ〉
(dashed line); the dotted line denotes the zero level for comparison.

in the 2D simulation at t = 255Ω−1i as well as the con-
tributing terms. The compressible KHM equation is very
well conserved: |O|/Q < 0.3 %, where Q is the heat-
ing/dissipation rate at t = 255Ω−1i , Q = Qtot(255Ω−1i );
henceforth we use Q to normalize all the relevant quanti-
ties. At large scales, ∂S/∂t/4−Ψ ∼ −D ∼ −Q, that rep-
resents the energy conservation. The pressure-dilatation
term Ψ is small. At intermediate scales the MHD cas-
cade dominates, KMHD ∼ 0.85Q. This term is mostly
compensated by the dissipation term D. At small scales
the Hall cascade sets in and becomes comparable to the
MHD one. One these scales the viscous and resistive
dissipation also starts to act.

The pressure-dilatation effect is weak but not negli-
gible. Since the energy exchanges owing to this effect
oscillate around zero, it is interesting to look at the av-
erage behavior of the KHM equation over one period of
these oscillations (see Fig. 1; cf., Hellinger et al. 2021).
The bottom panel of Figure 2 displays the different terms
contributing to the KHM equation averaged over such
a period (240 ≤ tΩi ≤ 264) as well as their minimum
and maximum values over this time (here 〈•〉t denotes
the time average) . The pressure-dilatation term varies
within few percents of Q over this period, and, on av-
erage, the effect of the pressure-dilatation effect is neg-
ligible. The terms −∂S/∂t/4 and KMHD exhibit similar
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Figure 2. KHM analysis: (top) The validity test of the com-
pressible KHM O, Eq. (14) (black line), as a function of l at

t = 255Ω−1
i along with the different contributing terms: (blue)

the decay −∂S/∂t/4, (green) the MHD cascade KMHD, (orange)
the Hall cascade KH, (red) the dissipation −D, and (magenta) the
pressure-dilatation Ψ . (bottom) Time-averaged (240 ≤ tΩi ≤ 264)
contributing terms (solid lines) with their minimum and maximum
values (dotted lines) for (blue) the decay −〈∂S/∂t〉t/4, (green) the
MHD cascade 〈KMHD〉t, (orange) the Hall cascade 〈KH〉t, (red)
the dissipation/heating term −〈D〉t, and (magenta) the pressure-
dilatation 〈Ψ〉t. All the terms are normalized with respect to the
total heating rate Q.

variability whereas KH and D are about constant.

3.1. Evolution

The compressible KHM equation is valid during the
whole simulation, the homogeneity condition, 〈(∇x′ +
∇x)•〉 = 0, is automatically satisfied for the periodic
boundary conditions. Figure 3 displays the validity test
O as well as the different contributing terms (normal-
ized to Q) as functions of time and l. Figure 3a shows
that the compressible KHM equation is well conserved,
max|O|/Q . 1% for t > 20Ω−1i . During early times,
the maximum relative error in |O|/Q is about 2%. At
later times, the |O|/Q is below 1% and is fluctuating
with time and roughly constant at all scales at a given
time. This is caused by numerical errors; in particular,
the time derivative ∂S/∂t is estimated by the finite dif-
ference with ∆t = Ω−1i . This is likely not sufficient for
the transition from the initial superposition of large scale
Alfvénic fluctuations. The interpretation is supported by
the fact that O increases when we increase ∆t.

Figure 3bc show that initially ∂S/∂t and KMHD com-
pensate each other, ∂S/∂t+ 4KMHD ∼ 0. ∂S/∂t evolves
and, at later times, dominates at large scales indicating
a decay of the kinetic + magnetic energy at large scales.
KMHD becomes dominant at intermediate scales. Fig-
ure 3d shows that the Hall term becomes important at
40 . tΩi . 60 for l . 3di; this is about the time when
thin current sheets form and start to reconnect (Papini
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Figure 3. Evolution of the compressible KHM law: color scale
plots of (a) O, (b) −∂S/∂t/4, (c) KMHD, (d) KH, (e) D, and (f) Ψ
as functions of time and scale l. All the terms are normalized with
respect to the total heating rate Q.

et al. 2019a). Interestingly, there is an indication of a
negative Hall cascade rate, starting earlier 40 . tΩi for
3di . l . 20, indicating an energy transfer from small to
large scales, that may be part of the onset of turbulence
(cf., Franci et al. 2017). The Hall term settles to the
asymptotic value after t ' 150, when the energy at large
scales has had time to participate to the cascade.

Figure 3e demonstrates that the dissipation gradually
develops as the (MHD and Hall) cascade evolves and
brings energy to small scales. Figure 3f displays the
pressure-dilatation term Ψ . After the initial transition,
this term is important on relatively large scales for a long
time; its negative value indicates a compressible plasma
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heating. Then it becomes weakly oscillating around zero
for t & 210Ω−1i .

Note that the alternative KHM equation, Eq. (7),
gives, unsurprisingly, almost the same results as Eq. (4).
The cascade rates KMHD and KH differ within 10−3Q
between the two methods. On the other hand, for the
weakly-compressible simulation, the incompressible ap-
proximation (Hellinger et al. 2018; Ferrand et al. 2019)
exhibits an error that is mostly related to the neglected
pressure-dilatation term. However, the incompressible
MHD and Hall cascade rates are close to their compress-
ible counterparts (not shown).

4. SPECTRAL TRANSFER

Another way to analyze the scale dependence of tur-
bulence and its processes is the spectral (Fourier) de-
composition. To characterize the kinetic energy in the
compressible flow one can use the density-weighted ve-
locity field w as in the KHM approach. The evolution
for the energy in a given Fourier mode

ŵ(k) =
∑
x

w(x)exp(ik · x), (15)

B̂(k) =
∑
x

B(x)exp(ik · x) (16)

follows from Eqs. (1–3) (cf., Mininni et al. 2007; Grete
et al. 2017)

1

2

∂
(
|ŵ|2 + |B̂|2

)
∂t

=− TMHD − TH −<ŵ∗ ·
∇̂p√
ρ

+ <ŵ∗ · ∇̂ · τ√
ρ
− ηk2|B̂|2, (17)

where the MHD and Hall transfer terms are

TMHD =<
[
ŵ∗ · ̂(u ·∇)w +

1

2
ŵ∗ · ŵθ

− ŵ∗ ·
̂(∇×B)×B√

ρ
− B̂∗ · ̂∇× (u×B)

]
,

TH =<
[
B̂
∗ · ̂∇× (j ×B)

]
,

respectively; here wide hat denotes the Fourier trans-
form, the star denotes the complex conjugate, and < de-
notes the real part.

In the inertial range, one expects that the time-
derivative terms in Eq. (17) are zero and the same is ex-
pected for the dissipation and pressure-dilatation terms.
The transfer term TMHD + TH is also expected to be
zero, as all the energy that arrives from larger scales
proceeds to smaller scales. To characterize (isotropic)
turbulence we use a low-pass filtered kinetic + magnetic
energy (i.e., the energy in modes with wave-vector mag-
nitudes smaller than or equal to k, cf., Hellinger et al.
2021)

Ek =
1

2

∑
|k′|≤k

(
|ŵ|2 + |B̂|2

)
. (18)

For Ek one gets the following dynamic equation

∂Ek
∂t

+ SMHDk + SHk = Ψk −Dk (19)

where

SMHDk =
∑
|k′|≤k

TMHD(k′), SHk =
∑
|k′|≤k

TH(k′), (20)

Ψk = −
∑
|k′|≤k

ŵ∗ · ̂ρ−1/2∇p, (21)

Dk = η
∑
|k′|≤k

k′
2|B̂|2 −

∑
|k′|≤k

ŵ∗ · ̂ρ−1/2∇ · τ . (22)

Here SMHDk and SHk represent the MHD and Hall energy
transfer rates, respectively, Ψk describes the pressure-
dilatation effect, and Dk is the (viscous and resistive)
dissipation rate for modes with wave-vector magnitude
smaller than or equal to k. When SMHDk or SHk are con-
stant, the corresponding energy transfer rate is constant,
and can be identified with the cascade rate. For large
wave vectors, one gets the unfiltered values

Ek → Ekin + Emag, Ψk → 〈pθ〉, and Dk → Q, (23)

To check the spectral transfer of energy given by
Eq. (19), we define the validity test (similarly to Eq. (14))
as

Ok =
∂Ek
∂t

+ SMHDk + SHk −Ψk +Dk (24)

Fig. 4 (top panel) shows the validity test and the con-
tributing terms as functions of k at t = 255Ω−1i . Eq. (19)
is well satisfied, |Ok|/Q < 0.3 %. At large scales,
small positive values of ∂Ek/∂t compensated by SMHDk

indicate an inverse cascade/energy transfer from small
to large scales. At medium scales, the MHD cascade
term dominates, reaching the maximum value about
0.85Q; the MHD cascade term is compensated mostly
by ∂Ek/∂t. At small scales, the Hall cascade sets in but,
at the same time, the dissipation gets important and a
weak pressure-dilatation effect appears. For large k one
recovers the energy conservation

∂(Ekin + Emag)

∂t
= 〈pθ〉 −Q. (25)

As in the KHM case, it is interesting to look at the
properties of the ST equation averaged over one period
of the pressure-dilatation oscillation. Fig. 4 (bottom
panel) displays the terms contributing to the ST equation
(Eq. 19) averaged over the time interval 240 ≤ tΩi ≤ 264
along with their minimum and maximum values. The
pressure-dilatation term Ψk exhibits a variation of few
percents of Q and, on average, it is negligible. The de-
cay ∂Ek/∂t and the MHD cascade SMHDk have also a
similar variability whereas the Hall cascade SHk and the
dissipation Dk tend to be about constant during the os-
cillation period.

The ST equation is valid during the whole simulation
owing to the peridic boundary condisions as in the case
of the KHM equation. Figure 5 displays the evolution
of the ST equation in the simulation in a format similar
to that of Fig. 3. Figure 5 shows that the ST and KHM
equations give similar results. Note, moreover, that a
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Figure 4. Spectral transfer analysis: (top) The validity test of
the compressible ST Ok, Eq. (24), (black line) as a function of k at

t = 255Ω−1
i along with the different contributing terms: (blue)

the decay ∂Ek/∂t, (green) the MHD cascade SMHDk, (orange)
the Hall cascade SHk, (red) the dissipation Dk , and (magenta)
the pressure-dilatation term −Ψk. (bottom) Time-averaged con-
tributing terms (solid lines) with their minimum and maximum
values (dotted lines) for (blue) the decay 〈∂Ek/∂t〉t, (green) the
MHD cascade 〈SMHDk〉t, (orange) the Hall cascade 〈SHk〉t, (red)
the dissipation 〈Dk〉t , and (magenta) the pressure-dilatation term
−〈Ψk〉t. All the quantities are given in units of the total heating
rate Q.

good quantitative agreement between the two approaches
appears at later times when turbulence is well developed.

4.1. Comparison between KHM and ST approaches

The KHM and ST equations give similar results. They
are empirically related through the inverse proportional-
ity between the wave vector k and the spatial separation
length l as kl '

√
2. The top panel of Fig. 6 shows

the power spectra of the velocity (blue), magnetic field
(red), and the total power spectrum as functions of k (at
t = 255Ω−1i ) as a reference. The dashed line denotes a

k−5/3 power law for comparison.
The bottom panel Fig. 6 displays a direct comparison

between the ST and KHM contributing terms as func-
tions of k (through the inverse proportionality kl =

√
2).

Fig. 6 shows that the MHD and Hall cascade rates in both
the approaches are comparable 〈SMHDk〉t ' 〈KMHD〉t,
〈SHk〉t ' 〈KH〉t. Note that the MHD cascade term dom-
inates at scales where the total power spectrum is close
to a k−5/3 power law. The average pressure-dilation ef-
fect is negligible. Similarly to the hydrodynamic case
(Hellinger et al. 2021), the ST and KHM approaches are
complementary:

〈∂Ek/∂t〉t + 〈∂S/∂t〉t/4 ' −Q (26)

〈Dk〉t + 〈D〉t ' Q (27)

∂Ek/∂t represents the rate of change of the kinetic en-
ergy at scales with wave-vector magnitudes smaller or
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Figure 5. Evolution of the compressible ST law: color scale plots
of (a) Ok, (b) ∂Ek/∂t/4, (c) SMHDk, (d) SHk, (e) Dk, and (f) −Ψk
as functions of time and scale l. Dotted lines denote the injection
scale kdi = 0.2. All the terms are normalized with respect to the
total heating rate Q.

equal to k whereas ∂S/∂t/4 represents approximatively
the rate for wave-vector magnitudes larger than k. Simi-
larly, Dk is the dissipation rate on the scales ≤ k whereas
D represents the dissipation rate on the scales > k.

5. REDUCED, ONE-DIMENSIONAL ANALYSES

In the present simulation, due to the reduced dimen-
sionality, we cannot address the question of the spec-
tral anisotropy (Verdini et al. 2015). We can, however,
test what estimates of the cascade rate we can get from
1D cuts representing observed 1D time series. We take
1D cuts (both in x and y direction) to calculate the ST
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Figure 6. (top) The power spectra of the velocity (blue), mag-
netic field (red), and the total power spectrum as functions of k

at t = 255Ω−1
i . (bottom) Solid lines show the contributing terms

of the ST equation (averaged over 240 ≤ tΩi ≤ 264, see Fig. 4,
bottom) as function of k: (blue) the decay 〈∂Ek/∂t〉t, (green) the
MHD cascade 〈SMHDk〉t, (orange) the Hall cascade 〈SHk〉t, (red)
the dissipation 〈Dk〉t −Q , and (magenta) the pressure-dilatation
term −〈Ψk〉t. Dashed lines show the corresponding time-averaged
results of the KHM equation (see Fig. 2, bottom) as function of k

through the relation l =
√

2/k: (blue) the decay −〈∂S/∂t〉t/4−Q,
(green) the MHD cascade 〈KMHD〉t, (orange) the Hall cascade
〈KH〉t, (red) the dissipation −〈D〉t, and (magenta) the pressure-
dilatation 〈Ψ〉t. All the quantities are given in units of the total
dissipation rate Q. Note that some terms are shifted by −Q with
respect to Figs. 2 and 4.

predictions S
(1D)
MHD and S

(1D)
H and the KHM predictions

K(1D)
MHD and K(1D)

H .
For the reduced 1D ST equation we take 1D Fourier

transform in Eq. (19) and we retain all the spatial deriva-
tives, and, similarly, we use all the spatial derivatives (in
the real space) for the alternative KHM equation. On
the other hand, for the standard KHM equation, Eq. (4),
only the derivative along the 1D direction in the separa-
tion space l is used to estimate ∇·(Y+H). Results from
these estimates are shown in Fig. 7. This figure shows
the MHD and Hall cascade rates obtained from the re-
duced 1D analyses as functions of k for the ST approach
and k = 1/l for the KHM approaches. The calculation is
done for the time t = 255Ω−1i , see top panels of Figs. 4
and 2. The reduced ST equation gives the cascade rates
relatively similar to those obtained from the whole sim-
ulation domain. On the other hand, the reduced 1D re-
sults based on the standard KHM equation, Eq. (4), are
quite different from the full results: the maximum value
of the MHD cascade rate is notable about half the ex-
pected value. This can be partly amended by assuming
isotropy, ∇ ·Y ∼ 2∂Yl/∂l. However, even after this cor-
rection the agreement between the 1D ST and standard
KHM method is poor. Interestingly, the reduced 1D re-
sults based on the alternative KHM equation, Eq. (7), are
in a good agreement with the full results, as well as with

the results of the reduced 1D ST equation. This likely
related to the fact that for the alternative, divergence-
less formulation we use higher-dimensionality derivatives
that correspond to the divergence in the standard KHM
equation. Finally, we note that the agreement between
the 1D ST and KHM results appears for kl = α, where
α ∼ 1.
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Figure 7. Reduced 1-D analyses of (green) MHD and (orange)
Hall cascade rates (see the text for details): Solid lines show the ST

cascade rates S
(1D)
MHD and S

(1D)
H as functions of k, estimated from 1D

cuts using Eq. (19). Dashed lines displays the cascade rates K(1D)
MHD

and K(1D)
H as functions of k = 1/l estimated from 1D cuts using

the standard KHM equation, Eq. (4), in the top panel, whereas in
the bottom panel they denote the cascade rates estimated using
the alternative KHM equation, Eq. (7). Dotted lines displays the
MHD cascade rate SMHD from the full analysis (see Fig. 4, top
panel) for comparison. All the quantities are given in units of the
total heating rate Q.

6. DISCUSSION

In this paper we derived two new forms of the KHM
equation for compressible Hall MHD turbulence. We
tested these equations, along with an isotropic ST
equation, on the results of a 2D Hall MHD simula-
tion of weakly compressible turbulence with a moderate
Reynolds number. The KHM and ST equations are well
satisfied in the simulation cross-validating these equa-
tions and simulation results. The two KHM equations
give the same results and they are equivalent and com-
plementary to the ST equation via the inverse propor-
tionality kl = α with α '

√
2. Note that a similar cor-

respondence is observed in three-dimensional (3D) HD

turbulence (Hellinger et al. 2021) for α '
√

3 and prelim-
inary results of isotropic (unmagnetized) 3D Hall MHD
turbulence suggest the same relationship. In the reduced,
1D analyses we observe α ' 1. This indicates that the
relationship between the ST and KHM equation kl = α
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depends on the dimensionality d of the analyzed space,
α '

√
d. This simple relationship is useful to inter-

pret the KMH results in the context of spectral analyses.
Equations analogous to the ST and KHM ones can be
obtained using the low-pass filtering/coarse graining of
the energy conservation laws (Eyink & Aluie 2009; Aluie
2011, 2013; Yang et al. 2016; Yang et al. 2017; Campo-
reale et al. 2018).

The KHM and ST equations are valid during the whole
simulation, owing to the periodic boundary conditions
and they can be used to analyze the onset of turbu-
lence. The agreement between the two approaches is
at least qualitative during the whole simulation but only
at later times, when turbulence is well developed, there
is a good quantitative agreement; this indicates that the
KHM and ST approaches become equivalent when tur-
bulence is well developed and the energy transfer is ex-
pected be local so that one can talk about the energy
cascade. The simulation results suggest that the onset of
the Hall cascade is related to formation of reconnecting
current sheets (Papini et al. 2019a) and that, at least
during the onset, the Hall term leads to an energy trans-
fer from small to large scales at a range of scales above
di (cf., Franci et al. 2017); at this stage, this transfer
is likely not local and one cannot speak about a energy
cascade. The locality can be tested using a (spectral)
shell-to-shell transfer analysis (Alexakis et al. 2005). For
the weakly compressible simulation, the incompressible
approximation is not correct to a large extent due to
the neglected pressure-dilatation effect. This error is im-
portant during the turbulence onset. When turbulence is
well developed, the time-averaged pressure-dilatation be-
comes negligible, and the compressible and incompress-
ible KHM predictions for MHD and Hall cascade rates
are close to each other.

It is interesting to note that the standard compress-
ible KHM equation, Eq. (4), does not depend (except for
the correction term C) on the background magnetic field
B0 = 〈B〉 similarly to the incompressible case (Oughton
et al. 2013). On the other hand, there is in principle a
contribution from the mean fluid velocity u0 = 〈u〉 (Ha-
did et al. 2017). In the incompressible, constant-density
limit one recovers the incompressible results (Hellinger
et al. 2018; Ferrand et al. 2019; Banerjee & Galtier 2017).

There is a couple of differences between our standard
KHM equation (Eq. (4)) and that of Andrés et al. (2018):
We describe the kinetic energy by the structure function
〈|δw|2〉 that guarantee positive values in contrast with
〈δ(ρu) · δu〉. Similarly, we represent the magnetic en-
ergy contribution by the structure function SB = 〈|δB|2〉
instead of 〈δ(ρ1/2B) · δ(B/ρ1/2)〉. This difference is
very likely not substantial. In the case of compressible
HD turbulence, the corresponding two approaches give
very similar results (Hellinger et al. 2021). However,
the important difference between our results and those
of Andrés et al. (2018) is that we formulate the KHM
equations for the kinetic + magnetic energy. The sim-
ulation results exhibit no net energy exchange between
the kinetic + magnetic energy and the internal one for
later times when turbulence is well developed and the
pressure-dilation effect does not lead to cross-scale en-
ergy transfer (cf., Aluie et al. 2012). The inclusion of the
internal energy into the KHM equation (Andrés et al.

2018, and references therein) is therefore not needed.
Moreover, the HD results of Hellinger et al. (2021) in-
dicate that it is hard to represent the kinetic energy and
the internal one by compatible structure functions. Fur-
thermore, Andrés et al. (2018) use the isothermal clo-
sure to modify the description of the pressure-dilatation
effect; this closure is not generally applicable. Finally,
estimates of the energy cascade rate in the solar wind
based on such approaches (Banerjee et al. 2016; Hadid
et al. 2017; Andrés et al. 2019) include the scale redis-
tribution of the internal energy and cannot be simply
related to the plasma heating rates (cf., MacBride et al.
2008).

For our study, we used one 2D Hall MHD simula-
tion of weakly compressible turbulence for a moderated
Reynolds number and zero cross-helicity. This was suffi-
cient for testing and comparing the KHM and ST equa-
tions, but our results need to be extended to more com-
pressible and/or larger system that extends further to
the Hall range of scales, and/or to systems with larger
cross (canonical) helicity, etc. Our results need to be
extended to 3D in order to investigate the anisotropy of
the turbulent cascade. Both the KHM equations can be
naturally used (cf., Verdini et al. 2015). However, it is
not clear how to extend the isotropic ST approach to
an anisotropic situation (cf., Verma 2017); the low-pass
filtering/coarse graining approaches also usually assume
isotropy.

The Hall cascade rate in the simulation is a fraction
of the MHD one because of the dissipation. In both ki-
netic simulations and in-situ observations the situation
is similar (Bandyopadhyay et al. 2020b). The decrease
of the cascade rate from the MHD to the Hall range is
likely due to some sort of dissipation/particle energiza-
tion. The present work assumes a scalar pressure p that is
relevant for collision-dominated plasmas. In weakly col-
lisional/collisionless systems, such as in the solar wind,
it is necessary to employ the full pressure tensor P and
to replace the pressure-dilatation coupling, pθ, by the
pressure-strain one, P : Σ, (Yang et al. 2019; Matthaeus
et al. 2020). The KHM and ST approaches can be eas-
ily generalized to account for the pressure tensor. For
instance, 〈δpδθ〉 becomes simply 〈δP : δΣ〉 (see the vis-
cous dissipation term).

Our reduced 1D analysis suggests that the ST equa-
tion and the alternative KHM equation give better esti-
mations of the cascade rate from in situ observed time
series compared to the usually used standard KHM. How-
ever, this is likely owing to the usage of multi-dimensional
spatial derivatives that may possibly be only estimated
using multi-point data of Cluster or MMS missions. Fur-
thermore, the ST equation is formulated for an isotropic
situation. Nevertheless, we believe that the ST and al-
ternative KHM approaches are worth pursuing as they
provide other methods for measuring the energy cascade
rates from in situ observations.
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Cineca ISCRA initiative (grant HP10C2EARF). L.F. is
supported by the UK Science and Technology Facilities
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APPENDIX

DERIVATION OF THE STANDARD KHM
EQUATION

We start by reformulating the compressible Hall MHD
equation in terms of w = ρ1/2u.

∂w

∂t
+ (u ·∇)w +

wθ

2
=
f√
ρ

(A1)

∂B

∂t
+ (u ·∇)B = (B ·∇)u−Bθ + η∆B + h (A2)

where we denoted

f = (∇×B)×B −∇p+ ∇ · τ (A3)

h = −(B ·∇)j + (j ·∇)B +B (∇ · j) . (A4)

We take the Hall MHD equations at two different points,
x′ = x+ l and x and subtract them to get

∂δw

∂t
+ (δu ·∇′)δw +

[
u ·
(
∇ + ∇′

)]
δw

+
1

2
(w′θ′ −wθ) = δ

(
f√
ρ

)
(A5)

where we denote a = a(x), a′ = a(x′), and δa = a′ − a
for any variable a; analogically, ∇ = ∇x, ∇′ = ∇x′

and ∆ = ∆x, ∆′ = ∆x′ , ∆ being the Laplace opera-
tor. Here and henceforth this relationship is repeatedly
applied (Carbone et al. 2009)

δ [(a ·∇)b] = (a′ ·∇′)b′ − (a ·∇)b

= (a′ ·∇′)δb+ (a ·∇)δb

= (δa ·∇′)δb+ [a · (∇ + ∇′)]δb, (A6)

and x and x′ are assumed to be independent, i.e., ∇′a =
∇a′ = 0 for any a.

∂|δw|2
∂t

+ ∇′ ·
(
δu|δw|2

)
+
(
∇ + ∇′

)
·
(
u|δw|2

)
(A7)

+ δw · (θ′w − θw′) = 2δw · δ
(
f√
ρ

)
(A8)

Taking a spatial average

∂Sw
∂t

+ ∇l ·
〈
δu|δw|2

〉
+R = 2

〈
δw · δ

(
f√
ρ

)〉
(A9)

where Sw = 〈|δw|2〉 and R = 〈δw · (θ′w − θw′)〉. Here
we assume that the system is homogeneous, i.e.,

〈
(
∇ + ∇′

)
· a〉 = 0 (A10)

for any quantity a (Frisch 1995).
Similarly for the magnetic field we have

∂|δB|2
∂t

+ ∇′ ·
(
δu|δB|2

)
+
(
∇ + ∇′

)
·
(
u|δB|2

)
= 2δB · (δB ·∇′)δu+

(
B′2 −B2

)
(θ − θ′)

+ 2δB ·
[
B ·

(
∇ + ∇′

)]
)δu

+ 2ηδB ·
(
∆′B′ −∆B

)
+ 2δB · δh (A11)

Taking the spatial average

∂SB
∂t

+ ∇l ·
〈
δu|δB|2

〉
− 2

〈
δB · (δB ·∇′)δu

〉
= −

〈
δ
(
B2
)
δθ
〉

+ 2
〈
δB ·

[
B ·

(
∇ + ∇′

)]
)δu
〉

− 4Qη + 2η∆lSB + 2 〈δB · δh〉 (A12)

where SB = 〈|δB|2〉, Qη = η〈∇B : ∇B〉 = η〈J2〉. In
order to derive an equation for the structure function S =
Sw +SB and to obtain a simple equation we introduce a
correction term CMHD = 2〈δw · δ

(
ρ−1/2f

)
〉 − 2〈δu · δf〉.

The last term can be expressed as

2 〈δu · δf〉 = 2
〈
δu ·

(
B ·

(
∇ + ∇′

))
δB
〉

+ 2
〈
δu ·

(
δB ·∇′

)
δB
〉
−
〈
δu · δ

(
∇B2

)〉
+ 2 〈δθδp〉 − 2 〈δΣ : δτ 〉 . (A13)

Combining the previous results we get for S
∂S
∂t

+ ∇l ·Y +R = CMHD + 2 〈δθδp〉 − 2 〈δΣ : δτ 〉
− 4Qη + 2η∆lSB + 2〈δB · δh〉

(A14)

where Y =
〈
δu
(
|δw|2 + |δB|2

)
− 2δB (δB · δu)

〉
To finish the calculation we need to evaluated the Hall

contribution 2〈δB · δh〉. First, for δh is easy to get

δh = −(δB ·∇′)δj − (B ·
(
∇ + ∇′

)
)δj

+ (δj ·∇′)δB + (j ·
(
∇ + ∇′

)
)δB

+ δB
(
∇′ · δj

)
+B

([
∇ + ∇′

]
· δj
)

(A15)

The term 2〈δB · δh〉 may be then given in the form
(Hellinger et al. 2018; Ferrand et al. 2019)

2 〈δB · δh〉 = −2∇l ·H + 2A (A16)

where

H =
〈
δB (δB · δj)− δj |δB|2 /2

〉
=
〈
δB × (δB × δj) + δj |δB|2 /2

〉
(A17)

and

A =
〈
j ·
(
B′ × J ′

)
+ j′ · (B × J)

〉
. (A18)

The term A can be expressed as

A = CH +
〈
J ·
(
B′ × j′

)
+ J ′ · (B × j)

〉
(A19)

= CH + ∇′ ·
[〈
δB ×

(
B′ × j′

)
+ δB × (B × j)

〉]
where

CH =
〈
j ·
(
B′ × J ′

)
+ j′ · (B × J)

〉
−
〈
J ·
(
B′ × j′

)
+ J ′ · (B × j)

〉
. (A20)

It can also be transformed into this form

A = −
〈
J ·
(
B′ × j′

)
+ J ′ · (B × j)

〉
= −∇′ ·

〈
δB ×

(
B′ × j

)〉
−∇′ ·

〈
δB ×

(
B × j′

)〉
−
〈(
j′ ·∇

)
|δB|2/2

〉
−
〈(
j ·∇′

)
|δB|2/2

〉
. (A21)

Combining Eq. (A20) and Eq. (A21) gives

2A = CH + ∇l ·H (A22)
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The final version of the KHM equation in compressible
Hall MHD gets this form

∂S
∂t

+ ∇l · (Y + H) +R = C + 2 〈δθδp〉 − 2 〈δΣ : δτ 〉
− 4Qη + 2η∆lSB (A23)

with C = CMHD + CH.
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Štverák, Š., Trávńıček, P. M., & Hellinger, P. 2015, J. Geophys

Res., 120, 8177
Vasquez, B. J., Smith, C. W., Hamilton, K., MacBride, B. T., &

Leamon, R. J. 2007, J. Geophys Res., 112, A07101
Verdini, A., Grappin, R., Hellinger, P., Landi, S., & Müller,

W. C. 2015, ApJ, 804, 119
Verma, M. K. 2017, Rep. Prog. Phys., 80, 087001
Yang, Y., Matthaeus, W. H., Shi, Y., Wan, M., & Chen, S. 2017,

Phys. Fluids, 29, 035105
Yang, Y., Shi, Y., Wan, M., Matthaeus, W. H., & Chen, S. 2016,

Phys. Rev. E, 93, 061102
Yang, Y., Wan, M., Matthaeus, W. H., Sorriso-Valvo, L.,

Parashar, T. N., Lu, Q., Shi, Y., & Chen, S. 2019, MNRAS,
482, 4933

Zank, G. P., Adhikari, L., Hunana, P., Shiota, D., Bruno, R., &
Telloni, D. 2017, ApJ, 835, 147

Zhou, Y., & Matthaeus, W. H. 1990, J. Geophys Res., 95, 10291

http://arxiv.org/abs/2103.12005

	ABSTRACT
	1 Introduction
	2 KHM equation
	2.1 Standard KHM
	2.2 Alternative formulation

	3 Numerical simulation
	3.1 Evolution

	4 Spectral Transfer
	4.1 Comparison between KHM and ST approaches

	5 Reduced, one-dimensional analyses
	6 Discussion
	A Derivation of the standard KHM equation

