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Article history: The photopupillary reflex regulates the pupil reaction to changing light conditions. Being
Received 8 December 2020 controlled by the autonomic nervous system, it is a proxy for brain trauma and for the con-
Received in revised form ditions of patients in critical care. A prompt evaluation of brain traumas can save lives.
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This paper presents the early results of our study aiming at designing, prototyping and
validating an app for testing the photopupillary reflex via Android, following the European
Medical Device Regulation and relevant standards.

After a manual validation, the prototype underwent a technical validation against a com-
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ual measurements and better than the commercial solution, with lower errors, higher and
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The design of this medical device was performed based on our expertise in low-resource
settings. This kind of environments imposes more stringent design criteria due to contex-
tual challenges, including the lack of specialized clinicians, funds, spare parts and consum-
ables, poor maintenance, and harsh environmental conditions, which may hinder the safe
operationalization of medical devices. This paper provides an overview of how these
unique contextual characteristics are cascaded into the design of an app in order to con-
tribute to the Sustainable Development Goal 3 of the World Health Organization: Good
health and well-being.
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1. Background

The photopupillary reflex regulates the pupil dilation and
constriction according to the intensity of the light that hits
the retina and is controlled by the sympathetic and parasym-
pathetic nervous systems. Therefore, this reflex is used as an
indirect measure of the central and autonomic nervous sys-
tem [1]. The key medical applications of the photopupillary
reflex measurements include the detection of brain trauma
and the assessment of its severity [2,3], the assessment of
the level of anesthesia and pain [4,5], an aid to the certifica-
tion of death [6], the evaluation of alcohol [7] and drug intox-
ication [8,9], and the study of ophthalmological diseases such
as diabetic retinopathy and Horner’s syndrome [1,10]. A quick
evaluation of brain trauma via pupillometry, i.e., the mea-
surement of pupil size, symmetry and reactivity, can make
the difference on the patient’s health and future life and is
an essential part of the supportive care provided in this case
[11,12]. The early management of traumatic brain injury, in
fact, minimizes the progression of the injury and improves
recovery and clinical outcomes [12,13]. Accordingly, in many
high-income countries, technologies for photopupillary reflex
analysis have been proposed [14-17], also using smartphones
[18-21]. Recently, an app for tracking the photopupillary reflex
using trained object-detectors was introduced [22]. As regards
the pupil and iris detection algorithms, there are various tech-
nical solutions available including edge detection and Hough
transform [23], Starburst transform [24], blob detection algo-
rithms [25], watershed segmentation [26], gradient vector flow
snake-based method [27], and deep learning [28].

However, very little has been proposed for low- and
middle-income countries (LMICs), where traumatic brain
injury is becoming one of the main causes of morbidity and
mortality. In fact, Africa owns less than 5% of the motor vehi-
cles in the world and accounts for 10% of global deaths caused
by vehicular injuries [29]. In LMICs, and in particular in low-
resource settings (LRSs), there is a lack of expertise and diag-
nostics to assess brain trauma [30]. Accordingly, the United
Nations (UN) aims to “halve the number of global deaths
and injuries from road traffic accidents”. This is target 3.6 of
the UN Sustainable Development Goals (SDGs) number 3,
Good health and well-being [31].

The photopupillary reflex can be measured with a simple
penlight. Despite the simplicity of the device, accurate and
reliable assessments of the photopupillary reflex require an
experienced user: Couret et al. [32] demonstrated that the
penlight photopupillary reflex observation in neurocritical
care is prone to human error, limited reproducibility and
low precision. In many LMICs, diagnosis and healthcare deliv-
ery is hindered by the lack of specialized clinicians, alongside
the lack of resources and poor supply chain [33]. An alterna-

tive is the digital pupillometer, i.e., a medical device perform-
ing automated pupillometry using infrared cameras, which
are expensive and not designed (i.e., not resilient) to operate
in the harsh environments (i.e.,, dusty, warm, humid, with
unstable power supply etc.) typical of Sub-Saharan Africa
(SSA).

This article presents the early results of our study aimed at
designing, prototyping and validating a mobile app, based on
relevant international and military standards, for testing the
photopupillary reflex via Android in LRSs.

The aim of this app is to act as a screening tool that can be
used by nurses (or also lay-users) to test the direct pupillary
reflex in order to screen the incoming patients’ conditions
(e.g., suspected presence of brain injuries) and plan further
investigations. This is crucial in LRSs.

Specifically, this paper describes the acquisition of videos,
the signal processing and their technical validation. The
results from eight field studies in SSA have informed the con-
textualized and user-driven design, and can also be relevant
for informing the design of other devices for LMICs. In fact,
we added additional design criteria, due to the challenges
typical of SSA, which included the lack of specialized clini-
cians, the scarcity of funds, of spare parts and consumables,
poor maintenance, which hinder the safe and efficient opera-
tionalization of medical devices. This paper demonstrates
how these peculiar contextual characteristics can be cas-
caded into the design of a mobile app and redesign of a med-
ical device.

This work was inspired and informed by existent regula-
tions and standards. In particular, those related to existing
pupillometers were taken into consideration, because of their
similarity to our solution. Further punctual analysis of stan-
dards and requirements will be needed in the later stages to
pass from prototype to product.

2. Methods

2.1. Ethnography-driven user-need and contextual

analysis in LMICs

Designing medical devices for LRSs requires the synergy of
different but complementary methodologies, comprising of
not only engineering, scientific and quantitative techniques,
but also qualitative approaches such as ethnography research
[34]. Ethnography applied to the design is, in fact, one of the
keys to further develop the current technological progress,
by allowing designers and researchers to understand the
design challenges more deeply, with a focus on a particular
kind of end-users and their surrounding contexts. For this
reason, we conducted the need and context analyses with a
mix of methodologies (Fig. 1).
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Fig. 1 - Context-driven design: the methodologies used for
the design and evaluation of the proposed pupillometer.

They were structured in three steps, which were iterated
twice: general formalization, contextualization in SSA coun-
tries, and field studies in Benin and Uganda.

The first requirements were identified by reviewing the lit-
erature on medical devices and their related standards (i.e.,
ISO 14971 - Medical devices - Application of risk management
to medical devices, IEC 62366 — Medical devices—Part 1: Appli-
cation of usability engineering to medical devices, IEC 62304 -
Medical device software—Software life cycle processes, ISO
15004 - Ophthalmic instruments—Fundamental require-
ments and test methods), and performing focus groups with
international experts of medical device design and manage-
ment, and hospital engineering. Five focus groups were held
with world leading experts of biomedical and clinical engi-
neering during international conferences [35-39].

The contextualization in SSA was performed by: 1) admin-
istering surveys to African Scholars; 2) holding focus groups
with biomedical and clinical engineers in SSA countries (in
accordance with the ethical approval REGO-2018-2283). Five
focus groups were held in SSA and were attended by delegates
from more than 12 SSA countries (two during the Africa-
Health conferences, two in Benin at the Ecole Polytechnique
d’Abomey-Calavi, and one in Ethiopia) [40].

Three field studies were conducted in Benin in April 2017,
January 2018 and November 2019 and one in Uganda in Octo-
ber 2019. During these studies, several aspects of medical
devices and medical locations were analyzed. This included
electric measurements, examinations of medical devices,
inspections of medical locations in 6 African hospitals and
semi-structured interviews with the available staff, including

biomedical engineers, technicians, nurses, doctors and hospi-
tal directors [41-43].

In collaboration with the International Federation of Med-
ical and Biological Engineering (IFMBE) African Working
Group [40], focus groups were organized.

The ethnographic analysis was conducted in accordance
with the ethical approval REGO-2018-2283, obtained from
the Biomedical and Scientific Research Ethics Committee.

For quality insurance, we followed the prescriptions of the
European regulations on medical devices, which equate med-
ical apps to medical devices. Moreover, we based our work on
the 5As principles of the World Health Organization (WHO),
i.e., affordability, availability, adequacy, accessibility, and
appropriateness, in line with the solutions proposed in the
WHO compendium of innovative health technologies for
LRSs.
2.2. Development of the smartphone-based pupillometer
The development of the smartphone-based pupillometer fol-
lowed 5 stages, namely the smartphone pupil stimulation and
video acquisition, the preprocessing, the image processing,
the system integration and the technical validation, which
will be described thoroughly in the following subsections.
These stages were developed and validated with videos
acquired from 11 healthy subjects in accordance with the eth-
ical approval obtained from the Ethical Committee of Univer-
sity of Campania Luigi Vanvitelli’. Further details about the
dataset can be found elsewhere [14].

2.2.1.  Smartphone pupil stimulation and video acquisition
During the first feasibility study, the pupil of a subject with
light brown eyes was stimulated with the flash embedded in
a smartphone (i.e., ZTE Blade C341), with the illuminance
set at 480 1x and the duration at 500 ms. The photopupillary
reflex was captured with a second smartphone, namely a
Samsung Galaxy a7 (2016) with a 13-megapixel camera,
although the final app integrates both functions and only
one smartphone without tripod support is needed for future
use. In fact, in the final app the video recording and the flash
are synchronized as follows: the flash starts 2s after the
recording has started, lasts for 500 ms and the recording is
stopped when 9 s in total are reached. This allows a recording
of about 6-7 s of the pupil reaction, in line with the typical
duration of the event [44].

Both smartphones were selected depending on their avail-
ability at the times of the experiments and were placed on a
tripod at a distance of 8 cm from the subject’s face. In litera-
ture, distances in the range of 8-15 cm were used [20,45,46].
As the luminance will vary according to the distance from
the light source following an inverse-square law [47], the
luminance at various distances (i.e., 5-20 cm, with a 1-cm
step) was also evaluated to check whether small differences
in distance could significantly affect it. It resulted that in
the above-mentioned range, i.e., 11.5 + 3.5 cm, the luminance
had an average percentage change of 10.7%. Furthermore, we

! Registration number 500, approval title “Studio pilota sull’utilizzo della pupillometria cromatica per la diagnosi e il monitoraggio delle

degenerazioni retiniche ereditarie”).
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investigated whether the flashes at 8 cm and at 15 cm would
trigger a pupil reaction, and whether the minimum reached
by the pupil would be similar. This was tested with two
smartphone models available at the time of writing (i.e., a
Doogee S60 Lite and an iPhone 7). The pupil minimum,
expressed as the normalized pupil/iris ratio, resulted to be
varying in the range 71.2+2.7% (percentage variation of
3.8%) with the Doogee S60 Lite flash, and in the range 50.7
+ 0.4 (percentage variation of 0.8%) with the iPhone 7. This dif-
ference is probably due to the more powerful flash embedded
in the second smartphone model. Therefore, assuming the
test will be run with the same device, the pupil contraction
will remain substantially the same in the recommended dis-
tance range.

The height at which the two smartphones were placed was
so that the eye resulted to be at the center of the frame. The
opposite eye was neither stimulated by the flash, nor covered.
Throughout these experiments the ambient light was mea-
sured using a luxometer (Dr. Meter, LX1010B), in order to
ensure an approximately constant baseline light intensity.

The videos were then fed to a dedicated algorithm as
detailed below. At this prototyping stage all the signal elabo-
rations are performed on Matlab.

In the future, the definitive algorithm will either run on a
dedicated server application that will include a Matlab com-
piled dynamic link library (DLL) to foster the accessibility of
older models of smartphones, or will be embedded in the
mobile device itself, for the most performing models.

2.2.2. Preprocessing

The images contained in the frames of the video are prepro-
cessed by turning them into gray-scale (see Fig. 2, Ila), binariz-
ing them according to a certain threshold, and going through
morphological opening (i.e., erosion followed by dilation) and
closing (i.e., dilation followed by erosion) to remove any dark
unrelated pixel or particularly small objects (see Fig. 2, IIb).
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The binarization phase is a pivotal pre-step and can be influ-
enced by the overall light intensity of the frames: if the inten-
sity changes over the frames, the results may not be ideal. In
case the acquisition is performed with high intensity of light
(e.g., flashlight on), a higher threshold is selected, by assess-
ing the mean intensity of the first 3 frames (i.e., baseline)
and setting the highest threshold if the mean intensity of a
frame results 5% greater than the baseline. The values of
the two thresholds were determined empirically. The final
app records 9-s H.264 encoded-videos with a 30-fps framerate
and an average size of 11.5 MB.

2.2.3. Image processing

The image recognition algorithm consists of two main parts:
the pupil and the iris recognition. The reason behind the
choice of including the iris part is due to the contextualization
of the design and will be further explained in the results sub-
section 3.1 named “Ethnography-driven user-need and con-
textual analysis”.

2.2.3.1. Pupil recognition algorithm. The algorithm (see
Fig. 2) starts by prompting a user input, i.e., the framing of
the part of interest (i.e., the eye). The user can draw a rectan-
gular box, superimposing it on the first frame of the video,
and the coordinates of such polygon will be utilized to crop
the frames used during the tuning step of the algorithm
(see Fig. 2, I). The latter consists in running the commands
for preparing the images (as described above) and for finding
the pupil and its center, only over the first three frames of the
video.

As regards the pupil recognition, three different
approaches were tested, namely blob-detection algorithm,
circular Hough transform, and watershed transform. These
methods were assessed computing the mean absolute error
(MAE) and the correlation with the manual measurement
(Pearson’s 1). In particular, the blob-detection algorithm used
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Fig. 2 - The flowchart illustrates the various steps of the preprocessing and image processing, with a specific focus on the

recognition of the pupil.
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in the comparison was a variation of the original that con-
sisted in removing the spikes and substituting them with
the average value of the points preceding and following the
spike.

The blob-detection algorithm was inspired by Barragan’s
[25] algorithm, which detects the “blob” with the greatest area
contained in the picture, circles it, and finds its center. The
diameter output of the tuning stage is called baseline diame-
ter, because it is then utilized to automatically calculate the
cropping frame dimensions for the main part of the algo-
rithm, by creating a framing square with a side equal to four
times the baseline diameter, centered on the pupil. The same
pupil recognition algorithm is then called again upon all the
newly-cropped frames and an array containing the unpro-
cessed diameter is saved (see Fig. 2, III).

2.2.3.2. Iris recognition algorithm.  The algorithm (see Fig. 3)
starts by prompting a user input, i.e., the framing of the part
of interest (i.e., the iris). A circle is superimposed over the first
frame and the user can resize it according to the iris boundary
in the frame. Given the position of three points of such circle,
its equation is derived as well as the baseline radius of the
iris, which is then used as a parameter for the circular Hough
transform algorithm (see Fig. 3, II).

In this case, the same three algorithms tried out for the
pupil recognition were tested as well.

Before being fed to this algorithm, the frames are prepro-
cessed as described above (see Fig. 3, I, Illa, IlIb). Moreover,
as the outcome of the application of the circular Hough trans-
form algorithm depends on the sensitivity, an extra precau-
tion is taken in this direction. In fact, although the initial
sensitivity is set to 0.88, if no circle is found during the first
run, the sensitivity is increased by 0.02 until a circle is found.
An array containing the unprocessed diameter is saved.
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2.2.3.3. Postprocessing.  The acquired pupil measurements
were often subject to artifacts such as blinking and image
overexposure due to flash. For this reason, a series of func-
tions were applied in order to smooth spikes and filter out
noise. In particular, the affected data were identified,
removed from the dataset and the gaps were filled using an
interpolation.

As regards the flash, the above-mentioned threshold for
the binarization was designed to tackle this problem. How-
ever, the method is not completely robust and can fail to
switch to the correct threshold in the first and final frames
of the flash, when it is not at full brightness. Consequently,
the flash-related frames were removed and substituted with
a linear interpolation. This would not affect the overall perfor-
mance as the first part of the constriction phase of the pho-
topupillary reaction is steep and approximately linear.

As regards the blinking artifact, it partially or completely
obstructs the pupil, making the algorithm track nothing or a
larger area (e.g., a shadow under the eyelid). Such sudden
change of the detected area is a good indicator of when the
pupil detection fails. Detrending and differentiation were
used to identify these sudden changes: the data points
affected by blinking are flagged when the local derivative
exceeds a threshold in magnitude. Also in this case, the
flagged points are removed and linear interpolation is used
to fill the gaps.

Finally, the ratio between the diameter of the pupil and
that of the iris is calculated and normalized to the initial
value. The values related to the frames preceding the pupil
reaction are individuated and substituted with 100% values.
The part of the array related to the pupil reaction is fitted with
a Gamma function, as suggested by Knapen et al. [48] (see
Fig. 2, IV).
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Fig. 3 - The flowchart illustrates the various steps of the image processing, with a specific focus on the recognition of the iris.
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The algorithm also calculates some variables relevant to
pupillometry:

e Pupil minimum, the minimum size reached by the pupil at
the end of the constriction phase; the constriction phase
was considered to start when the pupil/iris normalized
ratio fell under 98% of its original value;

e Latency, the delay in the pupil response calculated as the
time between the start of the flash and the start of the con-
striction phase;

e Max constriction velocity, the maximum rate of change in
the pupil diameter during the constriction phase;

e Mean constriction velocity, the average rate of change of
the pupil diameter during the constriction phase;

e Mean dilation velocity, the average rate of change of the
pupil during the dilation phase, which is contiguous to
the constriction phase and was considered to end when
the pupil/iris normalized ratio overtook 98% of its original
value;

e T75, the time implied by the pupil to recover 75% of the
amplitude of the constriction starting from the peak of
the constriction;

2.2.4. System integration
The resulting pupillometry system has been designed as a
three-tier application:

e Presentation layer: the Android app will be used for acquir-
ing the video samples and firing the flash.

e Logic layer: a connection with the server code performing
the analyses will be developed. The app will act as client.
In case of high performance devices, both the client and
the server software will be running on the mobile device.

e Data layer: our system will be linked to the database and
web application described in [15-7] through RESTful dialog
and dedicated APIs.

2.2.5. App design

The app was developed in Android Studio, using Java for the
implementation of functions and XML for the design of the
user interface, targeting Android-based smartphones with
an API level of at least 21 (i.e., Android 5.0 Lollipop), because
of the use of the “camera2”’ package. This choice allows
94.1% of Android users to use our app, as only 5.9% of the
Android-based smartphones have an API level lower than 21
worldwide (and similar trends can be found in Africa) (from
Android Platform/API version distribution - Android Studio)
[49].

The logo, representing an eye-shaped logarithmic spiral,
was hand-drawn and digitized using GIMP (GNU Image
Manipulation Program).

2.3.  Technical validation

2.3.1. Video acquisition procedure and image processing

All the frames of one of the acquired videos were analyzed
both with the Matlab algorithm and manual measurements.
In particular, the frames were analyzed manually by two
independent authors that were blinded to the output of the
pupillometer, in order to reduce the risk of bias: for each
frame the diameters of the pupil and of the iris were mea-
sured twice and averaged in order to reduce the measurement
€error.

Also in this case, the values related to the frames preced-
ing the flash were individuated and substituted with 100%
values. Consequently, Pearson’s r and the associated p-
value, the root mean square error (RMSE) and the MAE were
calculated for the Gamma-fitted signal and the raw auto-
mated signal, compared to the manual measurements. More-
over, the error rate was estimated by calculating the percent
error and counting how frequently it would go over a 10%
threshold.

2.3.2.  Benchmarking

Our pupil tracking algorithm was also validated against the
output of an IR Pupillometer (DP-2000 - NeurOptics). The
gamma fit in this case was not needed because of the non-
interaction between the flash and the IR recording. The tech-
nical validation was done based on the output variables, spec-
ified above. In particular, the variables outputted by the IR
pupillometer were normalized in respect to the initially mea-
sured pupil size in order to make them comparable with those
resulting from our algorithm.

The RMSE and MAE were calculated for each variable and
for both the algorithms, comparing them with those coming
from the manual measurements, taken by two independent
and blinded authors. Consequently, 3 Bland-Altman plots
were generated for each of the 4 variables, after testing
whether their residuals were normally distributed with a
Shapiro-Wilk test [S0] (normality being a necessary condition
for such plots). The Bland-Altman plots compared the app
Algorithm and the IR Algorithm, the app algorithm and the
Manual measurements and the IR algorithm and the Manual
measurements.

2.3.3. Testing the safety of the flash

An experiment was set up to test the safety of use of a smart-
phone flash on the human eye, although the safety of the pro-
cedure has been confirmed by preliminary research [45]. The
smartphone was placed on a tripod and an operator held the
sensor of a luxometer (Dr. Meter, LX1010B) in front of the
camera at a distance of interest for pupillometry, i.e.,
8.5 cm. Firstly, the illuminance in this condition (i.e., ambient
light) was recorded; secondly the flash was turned on and the
illuminance in this condition was recorded. Hence, the illumi-
nance could be easily calculated and compared against the
ISO standards [51] after a conversion to W/cm?.
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3. Results

3.1.  Ethnography-driven user-need and contextual

analysis in LMICs

The contextual analysis highlighted that SSA countries have
[41,43]: extremely limited resources, an insufficient number
of healthcare professionals and of specialized doctors; inade-
quate hospital infrastructures, highly unstable main power
supply, poor transport infrastructure and supply-chain, and
an uneven distribution of the resources that are concentrated
in the capital to the detriment of remote areas. Nonetheless,
SSA can count on a very young population, a wide diffusion of
mobile phones, smartphones [52], and ICT literacy. There is a
wide diffusion of one dominant smartphone operative system
(i.e., 86.39% of smartphones based on Android) [53] and a good
coverage of wireless telecommunication. Prospectively, the
SSA market of medical devices is fast growing (the compound
annual growth rate is around 6%) [54]. The adoption of new
technologies meets limited inertia and healthcare operators
are resilient. In fact, working in challenging conditions
pushes workers to practice with the unpredictable conditions
and events, developing a great capability to react to, respond
to and recover from emergencies. Nonetheless, this positive
attitude comes with evident risks too. Often,
specialized personnel respond to the medical devices mal-
functioning with creative shortcuts, which tend to become
chronic solutions, prone to new risks, hindering the recovery
of the initial level of effectiveness and safety [55]. Finally, a
massive “brain drain” affects doctors and specialized doctors,
who move to other countries for better opportunities, further
depleting SSA health care systems [56].

The results of the contextual analysis have been discussed
with African scholars and healthcare personnel in Benin,
Ethiopia and South Africa, resulting in a series of specifica-
tions for the local manufacturing of a resilient pupillometer,
with its consumables and spare parts. The design should be
low-cost, based on free design and manufacturing processes,
it should empower non-specialized healthcare personnel and
providing clear guidance or affordances, possibly be battery-
based and resilient to the unstable power supply, resilient to
misuses, requiring no maintenance and easy to clean, and
based on Android smartphones, possibly compatible with
the high degrees of ingress protection (e.g., IP68) described
in IEC 60,529 and with rugged and military standards (e.g.,
MIL-STD-810G).

None of the pupillometers reviewed resulted sufficiently
resilient to LMICs. Existing smartphone solutions meet the
cost-requirement, but as it emerged from our study, this is
not the only criterion for being resilient in LMICs. For exam-
ple, most of the proposed solutions widely utilized acces-
sories and spare parts, including external LEDs, filters, and
lenses, which will hinder the lifetime of the device in SSA.
In fact, such parts would be difficult to retrieve, repair or
replace in LRSs [41,43].

Moreover, when deepening the design principles of a
pupillometer, two technical requirements emerged: computa-
tional capability compatible with an old Android smartphone;

non-

use no accessories or only accessories that could be locally
manufactured (e.g., 3D printed).

This last criterion particularly influenced the design of the
app. The majority of existing pupillometers utilize visible
light to stimulate the pupil and infrared (IR) cameras to film
its constriction, in order to avoid artefacts. Most smartphones
do not contain IR cameras, therefore visible light was used
both to stimulate the pupil, using the phone flash, and to film
its reaction with the phone camera. As a consequence, the
video frames coinciding with the flash resulted overexposed
due to the sudden change of luminosity and the proximity
of the subject, requiring the adoption of a fitting algorithm
to recover the missing pupil diameter in those frames. More-
over, phone camera framerates are lower than the one of
many pupillometers. Thus, the proposed algorithm fitted
the acquired diameter data first with a linear fitting, in order
to recover missing data due to the flash, and then with a
Gamma distribution for approximating missing frames,
reconstructing the complete response of the pupil, as pro-
posed in [48]. The interpolation also reduced the blinking arti-
facts, affecting also standard pupillometry. Moreover, the
distance between the eye and the device created artifacts in
the estimation of the pupil diameter. These artifacts could
be limited with a recycled plastic 3D printed accessory clipped
on the mobile phone, aiming at keeping the eye to phone dis-
tance constant. However, since a 3D printer could be not
available, the proposed algorithm for the recognition of the
pupil reflex was based on the ratio between the diameter of
the pupil and that of the iris. In fact, while the pupil diameter
reacts to light, the iris does not. The ratio was normalized
with the value measured before the flash shooting to facilitate
the reading of the pupil diameter. The adoption of these fea-
tures required a specific technical validation of the final algo-
rithm and app.

3.2.  Development of the smartphone-based pupillometer
A total of 4 videos were recorded, in which the eye was stim-
ulated 3 times in order to be sure to capture a good-quality
response (i.e., absence or reduced number of blinks).

3.2.1. Preprocessing and image processing

Three methods were tested for the pupil and iris detection: a
blob-detection algorithm, the circular Hough transform, and
the watershed transform. The blob-detection algorithm out-
performed the other methods with lower MAE (3.9% versus
4.55% of the Hough transform, and 21.25% of the Watershed
transform) and higher correlation (Pearson’s r of 0.95 and p-
value <0.00001 versus 0.84 and p-value p-value <0.00001 of
the Hough transform, and —0.03 and p-value of 0.83), being
selected for the pupil tracking (Fig. 2, III). This choice also
avoided the introduction of an extra user input, i.e., the pupil
radius range, which is necessary for the Hough transform to
work. The Hough transform outperformed the other methods
in tracking the iris. Consequently, the Hough transform was
performed for the iris tracking (see Fig. 3, IV). Fig. 4 shows
the comparison of three signals, namely the gamma-fitted
ratio, the algorithm, and the manual measurements. The
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Fig. 4 - A comparison of the signals: the manual
measurements (dashed gray line), the raw automated
algorithm (dashed orange line) and the Gamma-fitted ratio
(yellow line).

removal of the flash and blink artifacts via post-processing
are evident in Fig. 4.

3.2.1.1. App design. The app, named Oida (meaning “I
have seen” and “I know”, from Ancient Greek “0paw”), for
tracking the photopupillary reflex is being finalized. As of
now, the app comprises of a Main Activity, Instructions Activ-
ity and a Camera Activity. It is available in two languages:
English and French, both widespread languages in SSA.

3.3.  Technical validation

3.3.1. Video acquisition and image processing

During the manual validation (see Fig. 4), the Gamma fitted
ratio resulted significantly highly correlated with the manual
measurement (Pearson’s r=0.963, p-value <0.0001 versus
Pearson’s r = 0.982 and p-value < 0.0001 of the raw automated
signal (app)), with a RMSE and a MAE of 3.20% and 2.24%,
respectively (versus 3.96% and 3.09% of the raw signal). More-
over, the error rate for the Gamma fitted ratio resulted to be
7.14%.

3.3.2.  Benchmarking

Ten videos acquired by clinical ophthalmologists with the IR-
pupillometer on healthy subjects were analyzed with the IR-
pupillometer software and with the app algorithms in Matlab.
Fig. 5 shows the pupil reaction over the frames, captured by
the three different algorithms. Resulting measures were com-
pared with those calculated by hand after annotating the
diameter of the pupil manually for each video-frame. The
MAE and RMSE demonstrated a significant improvement in
comparison with the software provided with the commercial
device, for all the variables, as reported in Table 1. The agree-
ment among the measurement methods, namely app algo-
rithms/IR method, app Algorithms/Manual method and IR
method/Manual method, was estimated with Bland-Altman
plots [57,58] (plots are not reported for brevity, but are avail-
able upon request), following the Shapiro-Wilk test for nor-
mality [50].

(o
0 ©0 o
o =] =]

Normalised Pupil Diameter [%]

~
=]

—IR

App
+ Manual

60
0 20 40 60 80 100 120 14¢
Frame
Fig. 5 - The normalized pupil diameter over the frames.
Superimposed on the curve, 5 sample snapshots acquired
during the app testing. Each snapshot comprises of two
halves, highlighted by a yellow semi-circle: each left half
represents the initial condition, and each right half
represents the evolution of the response.

Table 1 - Values of the mean absolute error and root mean
square error for the IR pupillometer and for our solution.

Parameter MAE RMSE
Pupil Minimum (%) IR 1.11 1.55
app 1.00 1.36
Max Constriction Velocity (%/s) IR 6.76 8.07
app 2.56 3.26
Mean Constriction Velocity (%/s) IR 2.85 3.70
app 0.47 0.70
Mean Dilation Velocity (%/s) IR 6.84 7.35
app 0.11 0.14

All the differences imputed to the Bland-Altman plot
resulted normally distributed with a 0.842<W<1 [59] at a
95% confidence level. Table 2 reports the 95% limits of agree-
ment for each variable (the lower the better). The agreement
between the app and the manual method outperformed the
other methods.

3.3.3. Testing the safety of the flash

The base illuminance (i.e., the one of the ambient) was mea-
sured at 200 Ix; since the illuminance in the “flash on”-state
was 680 1x, the illuminance of the flash alone was 480 Ix.
The comparison of this value to the above-mentioned ISO
standards ensured the safety of the procedure. In fact,
480 Ix convert to 7.03-10” W/cm? under the hypothesis of an
average wavelength of 555nm (the ISO standards set the
max allowed value to 0.706 W/cm?).

4, Discussion

This paper presented the design and technical validation of
an app for the measurement of the pupillary reflex, intended
to be used in LRSs. Given the absence of specific regulations or
clear guidelines for the design of medical devices for LRSs, we

Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillometry via smartphone for low-resource settings, biocybernetics and bio-

medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012

634
635
636
637
638
639

640
641
642
643
644
645
646
647
648

649

650
651
652
653


https://doi.org/10.1016/j.bbe.2021.05.012

655
656
657
658
659
660

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

686
687
688
689
690
691
692
693
694

Q

—_

BBE 573
8 June 2021

BIOCYBERNETICS AND BIOMEDICALENGINEERING XXX (XXXX) XXX

No. of Pages 12, Model 7

9

Table 2 - Values of agreement between methods are shown for each of the four variables.

Variable

Limits of Agreement

Pupil minimum

Max constriction velocity

Mean constriction velocity

Mean dilation velocity

app-IR +2.74%

app-Man +1.99%

IR - Man +3.03%

app-IR +9.48%/s
app-Man +6.33%/s
IR - Man +11.74%/s
app-IR +7.42%/s
app-Man +1.23%/s
IR — Man +7.52%/s
app-IR +5.61%/s
app-Man +0.20%/s
IR - Man +5.53%/s

adopted the prescriptions of the European regulations on
medical devices, the relevant standards for designing smart-
phone applications, and the 5A principle of the WHO.

The first part of this paper illustrated how the local needs
and contextual analyses can be performed enriching engi-
neering design with ethnographic methods. The second part
presented and discussed the technical validation of the soft-
ware, which was performed in two steps: validation of the
acquisition and benchmarking of our app versus a commer-
cial IR-pupilometer assuming as gold-standard the frame-
to-frame manual annotation of pupillary video recordings
from 10 subjects. The very low errors and high correlation
resulting from the former validation confirmed that a
smartphone-based pupillometry acquisition without acces-
sories was viable. This concept was corroborated by the low
errors and narrow limits of agreement for the variables result-
ing from the second validation. The latter proved that the pro-
posed solution, despite being based on a simple app and a
smartphone in order to be sustainable in resource-scarce set-
tings, is able to perform just as well, and often better than the
benchmark. These results were possible due to the interpola-
tion algorithm and the normalization of the pupil diameter
with the iris one, which minimised artefacts due to hand
motions and the use of visible light for pupil stimulation via
mobile phone flash and video acquisition. In fact, commercial
pupilometers use IR for image acquisition, which is not avail-
able in the majority of smartphones. Indeed, the app
described achieved better results than the commercial IR
medical device.

Moreover, the comparison with existing literature sug-
gested that the proposed solution is the only one designed
for LMICs and rigorously validated. In 2013, Tae-hoon Kim
et al. [18] proposed a smartphone-based pupilometer that
works with an Android app and an add-on device, which con-
tains two types of LEDs and an IR filter. Their results showed
that their system could have been a good candidate for pupil-
lometry, however it had not been validated against a CE-
marked or FDA-cleared commercial pupilometer. Moreover,
the required accessories would make its use in LMICs incon-
venient. In 2017, Mariakakis et al. [19] proposed an iPhone-
based pupilometer that works with a box similar to the one

used for virtual reality headsets and makes use of convolu-
tional neural networks. The box was used to eliminate ambi-
ent light and control the distance to the person’s face.
Nonetheless, the authors themselves claimed that such a
box could be a hindrance in case of measuring the pupil light
reaction with an unconscious patient and for tracking the
whole reaction to the flash (i.e., the dilation phase cannot
be captured because of the lack of lighting). Their design, in
fact, only allowed assessing the pupil constriction phase
and seems to require a server connection in order to work.
In 2018, McAnany et al. [20] performed a study proving that
the iPhone camera could be used for this purpose, comparing
it with an IR camera, which was not medical rated. In 2019,
the start-up Brightlamp introduced an iPhone app for tracking
the photopupillary reflex based on trained object detectors
and on the use of no accessory. Such app was manually vali-
dated similarly to part two of our validation with no bench-
marking, resulting in a higher MAE (2.9%) and wider limits
of agreement for the pupil constriction (+14%, which
improved to+ 9% after bias correction). However, a recent
study by McKay et al. [60] benchmarked Brightlamp with a
portable IR pupillometer demonstrating that this particular
iPhone app has poor repeatability and is not practical tool
for supporting clinical decisions. Nonetheless, in general,
iPhone-based pupillometry, relying on Hough transform,
was proved to be possible and accurate enough by Neice
et al. [61].

Moreover, the use of iPhones in SSA is quite uncommon
due to their cost and because iPhone does not have any
rugged model. In 2019, Vigario, et al. [21] proposed a system
for the continuous monitoring of the pupil using a smart-
phone, the Virtoba support for mobile-phones and two LEDs.
However, the system does not provide the typical pupillome-
try stimulus (i.e., flash in the eye) and its validation was lim-
ited to physiological data found in literature (i.e., the reaction
of the pupils to a cold stress test). None of the designs above
were conceived for LRSs. As it emerged from our contextual
analysis, in fact, basing part of the design on extra add-on
parts can turn out to be counterproductive either in a possible
early health technology assessment phase or when already
on the market. Adding extra add-on devices will increase

medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012
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the need for spare parts that will probably not be available in
LRSs. For this reason, the authors of this paper suggest that
the “less is more” philosophy should be adopted when start-
ing considering additional parts of a device conceived for
these settings. Although the study was focused on pupillom-
etry, its findings on the design can be relevant for other appli-
cations. For instance, it emerged clearly that affordability is
not the only criteria for a device to be suitable for LRSs. Many
other issues should be considered during the design, includ-
ing affordance, easiness of deployment and use, resilience
to underlying infrastructures that could be not stable, avail-
ability of spare parts and consumables, and available underly-
ing technologies.

Another issue that emerged is the tendency to release
apps with healthcare ambitions without proper technical val-
idations (e.g., manual and/or benchmarking for apps). In the
past years, both the FDA and the European Commission equa-
ted medical software (including app) to medical devices, mak-
ing validation essential to guarantee safety and adequate
performance. For this reason, in this paper, we decided to
adopt the European perspective for CE marking medical apps,
in order to stress the importance of the technical validation
phase in the design cycle.

medium, and dark). In this way, the efficiency of our applica-
tion on different iris colours could be evaluated. This could
also inform future upgrades of the app software to make it
more efficient.

6. Conclusions

This paper presented the design and technical validation of a
mobile app aimed to perform smartphone-based pupillome-
try, suitable for use in LMICs. The performance of the app
algorithm is promising and, being able to compete with the
performance of the algorithm of a commercial IR pupillome-
ter medical device, suggests furthering the study with more
smartphone models and transitioning towards a dedicated
server application and/or a completely standalone app.

The performance of the algorithms of the app, as con-
firmed by the technical validation, are sound: the proposed
solution, by exploiting the pervasive presence of smartphones
in LMICs and by not requiring expensive settings or complex
procedures, represents a significant improvement towards an
extensive screening of eye pathologies and brain trauma
worldwide.

5. Limitations

This study presents the preliminary results of the design and
technical validation of a smartphone app.

The results are valid and limited to one Android smart-
phone model; further testing could include more models. In
these further tests the different flashes of different smart-
phone models should be checked for safety against the rele-
vant standards.

The current design relies on a server connection, which
may be a bottleneck, although currently many remote areas
of LRSs (e.g., Africa) are served by good quality mobile phone
services. To overcome these limitations, future versions of the
app will also include the processing algorithms. To this
regard, also artificial intelligence may be explored. While this
solution may be difficult to run on very old smartphones, it
should run smoothly on the other models.

Furthermore, a possible bias in the feasibility study might
have been introduced because the opposite eye was not cov-
ered and could have potentially been partially stimulated by
the changes in the ambient light. However, the ambient light
was measured and maintained as constant as possible
throughout the experiment. To this regard, healthcare work-
ers will need to be instructed and cover the opposite eye in
order to avoid bias in the pupillary reactions.

Moreover, as of now, the app is not giving any result in
terms of millimetres; future versions may include this feature
only for the pupil size, as it would be redundant for the pupil/
iris ratio.

Finally, the performance of the app is currently evaluated
on light brown eyes, darker shades should be investigated,
as they may be more challenging for pupillometers relying
on visible light only. Future experiments could test the appli-
cation on subjects with three types of iris colour (i.e., fair,
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