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Vanvitelli’, Naples, Italy
cDepartment of Information Engineering, University of Florence, Florence, Italy
A R T I C L E I N F O

Article history:

Received 8 December 2020

Received in revised form

5 May 2021

Accepted 28 May 2021

Available online xxxx

Keywords:

Clinical engineering

Low-resource settings

Pupillometer

mHealth

Contextual Design

Frugal Engineering
A B S T R A C T

The photopupillary reflex regulates the pupil reaction to changing light conditions. Being

controlled by the autonomic nervous system, it is a proxy for brain trauma and for the con-

ditions of patients in critical care. A prompt evaluation of brain traumas can save lives.

With a simple penlight, skilled clinicians can do that, whereas less specialized ones have

to resort to a digital pupilometer. However, many low-income countries lack both special-

ized clinicians and digital pupilometers.

This paper presents the early results of our study aiming at designing, prototyping and

validating an app for testing the photopupillary reflex via Android, following the European

Medical Device Regulation and relevant standards.

After a manual validation, the prototype underwent a technical validation against a com-

mercial Infrared pupilometer. As a result, the proposed app performed as well as the man-

ual measurements and better than the commercial solution, with lower errors, higher and

significant correlations, and significantly better Bland-Altman plots for all the

pupillometry-related measures.

The design of this medical device was performed based on our expertise in low-resource

settings. This kind of environments imposes more stringent design criteria due to contex-

tual challenges, including the lack of specialized clinicians, funds, spare parts and consum-

ables, poor maintenance, and harsh environmental conditions, which may hinder the safe

operationalization of medical devices. This paper provides an overview of how these

unique contextual characteristics are cascaded into the design of an app in order to con-

tribute to the Sustainable Development Goal 3 of the World Health Organization: Good

health and well-being.
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1. Background

The photopupillary reflex regulates the pupil dilation and

constriction according to the intensity of the light that hits

the retina and is controlled by the sympathetic and parasym-

pathetic nervous systems. Therefore, this reflex is used as an

indirect measure of the central and autonomic nervous sys-

tem [1]. The key medical applications of the photopupillary

reflex measurements include the detection of brain trauma

and the assessment of its severity [2,3], the assessment of

the level of anesthesia and pain [4,5], an aid to the certifica-

tion of death [6], the evaluation of alcohol [7] and drug intox-

ication [8,9], and the study of ophthalmological diseases such

as diabetic retinopathy and Horner’s syndrome [1,10]. A quick

evaluation of brain trauma via pupillometry, i.e., the mea-

surement of pupil size, symmetry and reactivity, can make

the difference on the patient’s health and future life and is

an essential part of the supportive care provided in this case

[11,12]. The early management of traumatic brain injury, in

fact, minimizes the progression of the injury and improves

recovery and clinical outcomes [12,13]. Accordingly, in many

high-income countries, technologies for photopupillary reflex

analysis have been proposed [14–17], also using smartphones

[18–21]. Recently, an app for tracking the photopupillary reflex

using trained object-detectors was introduced [22]. As regards

the pupil and iris detection algorithms, there are various tech-

nical solutions available including edge detection and Hough

transform [23], Starburst transform [24], blob detection algo-

rithms [25], watershed segmentation [26], gradient vector flow

snake-based method [27], and deep learning [28].

However, very little has been proposed for low- and

middle-income countries (LMICs), where traumatic brain

injury is becoming one of the main causes of morbidity and

mortality. In fact, Africa owns less than 5% of the motor vehi-

cles in theworld and accounts for 10% of global deaths caused

by vehicular injuries [29]. In LMICs, and in particular in low-

resource settings (LRSs), there is a lack of expertise and diag-

nostics to assess brain trauma [30]. Accordingly, the United

Nations (UN) aims to ‘‘halve the number of global deaths

and injuries from road traffic accidents”. This is target 3.6 of

the UN Sustainable Development Goals (SDGs) number 3,

Good health and well-being [31].

The photopupillary reflex can be measured with a simple

penlight. Despite the simplicity of the device, accurate and

reliable assessments of the photopupillary reflex require an

experienced user: Couret et al. [32] demonstrated that the

penlight photopupillary reflex observation in neurocritical

care is prone to human error, limited reproducibility and

low precision. In many LMICs, diagnosis and healthcare deliv-

ery is hindered by the lack of specialized clinicians, alongside

the lack of resources and poor supply chain [33]. An alterna-
, P. Melillo et al., Pupillom
e.2021.05.012
tive is the digital pupillometer, i.e., a medical device perform-

ing automated pupillometry using infrared cameras, which

are expensive and not designed (i.e., not resilient) to operate

in the harsh environments (i.e., dusty, warm, humid, with

unstable power supply etc.) typical of Sub-Saharan Africa

(SSA).

This article presents the early results of our study aimed at

designing, prototyping and validating a mobile app, based on

relevant international and military standards, for testing the

photopupillary reflex via Android in LRSs.

The aim of this app is to act as a screening tool that can be

used by nurses (or also lay-users) to test the direct pupillary

reflex in order to screen the incoming patients’ conditions

(e.g., suspected presence of brain injuries) and plan further

investigations. This is crucial in LRSs.

Specifically, this paper describes the acquisition of videos,

the signal processing and their technical validation. The

results from eight field studies in SSA have informed the con-

textualized and user-driven design, and can also be relevant

for informing the design of other devices for LMICs. In fact,

we added additional design criteria, due to the challenges

typical of SSA, which included the lack of specialized clini-

cians, the scarcity of funds, of spare parts and consumables,

poor maintenance, which hinder the safe and efficient opera-

tionalization of medical devices. This paper demonstrates

how these peculiar contextual characteristics can be cas-

caded into the design of a mobile app and redesign of a med-

ical device.

This work was inspired and informed by existent regula-

tions and standards. In particular, those related to existing

pupillometers were taken into consideration, because of their

similarity to our solution. Further punctual analysis of stan-

dards and requirements will be needed in the later stages to

pass from prototype to product.

2. Methods

2.1. Ethnography-driven user-need and contextual
analysis in LMICs

Designing medical devices for LRSs requires the synergy of

different but complementary methodologies, comprising of

not only engineering, scientific and quantitative techniques,

but also qualitative approaches such as ethnography research

[34]. Ethnography applied to the design is, in fact, one of the

keys to further develop the current technological progress,

by allowing designers and researchers to understand the

design challenges more deeply, with a focus on a particular

kind of end-users and their surrounding contexts. For this

reason, we conducted the need and context analyses with a

mix of methodologies (Fig. 1).
etry via smartphone for low-resource settings, biocybernetics and bio-
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Fig. 1 – Context-driven design: the methodologies used for

the design and evaluation of the proposed pupillometer.
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They were structured in three steps, which were iterated

twice: general formalization, contextualization in SSA coun-

tries, and field studies in Benin and Uganda.

The first requirements were identified by reviewing the lit-

erature on medical devices and their related standards (i.e.,

ISO 14971 – Medical devices – Application of risk management

to medical devices, IEC 62366 – Medical devices—Part 1: Appli-

cation of usability engineering to medical devices, IEC 62304 –

Medical device software—Software life cycle processes, ISO

15004 – Ophthalmic instruments—Fundamental require-

ments and test methods), and performing focus groups with

international experts of medical device design and manage-

ment, and hospital engineering. Five focus groups were held

with world leading experts of biomedical and clinical engi-

neering during international conferences [35–39].

The contextualization in SSAwas performed by: 1) admin-

istering surveys to African Scholars; 2) holding focus groups

with biomedical and clinical engineers in SSA countries (in

accordance with the ethical approval REGO-2018-2283). Five

focus groupswere held in SSA andwere attended by delegates

from more than 12 SSA countries (two during the Africa-

Health conferences, two in Benin at the Ecole Polytechnique

d’Abomey-Calavi, and one in Ethiopia) [40].

Three field studies were conducted in Benin in April 2017,

January 2018 and November 2019 and one in Uganda in Octo-

ber 2019. During these studies, several aspects of medical

devices and medical locations were analyzed. This included

electric measurements, examinations of medical devices,

inspections of medical locations in 6 African hospitals and

semi-structured interviews with the available staff, including
1 Registration number 500, approval title ‘‘Studio pilota sull’utilizzo d
degenerazioni retiniche ereditarie”).

Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012
biomedical engineers, technicians, nurses, doctors and hospi-

tal directors [41–43].

In collaboration with the International Federation of Med-

ical and Biological Engineering (IFMBE) African Working

Group [40], focus groups were organized.

The ethnographic analysis was conducted in accordance

with the ethical approval REGO-2018-2283, obtained from

the Biomedical and Scientific Research Ethics Committee.

For quality insurance, we followed the prescriptions of the

European regulations on medical devices, which equate med-

ical apps to medical devices. Moreover, we based our work on

the 5As principles of the World Health Organization (WHO),

i.e., affordability, availability, adequacy, accessibility, and

appropriateness, in line with the solutions proposed in the

WHO compendium of innovative health technologies for

LRSs.

2.2. Development of the smartphone-based pupillometer

The development of the smartphone-based pupillometer fol-

lowed 5 stages, namely the smartphone pupil stimulation and

video acquisition, the preprocessing, the image processing,

the system integration and the technical validation, which

will be described thoroughly in the following subsections.

These stages were developed and validated with videos

acquired from 11 healthy subjects in accordance with the eth-

ical approval obtained from the Ethical Committee of Univer-

sity of Campania Luigi Vanvitelli1. Further details about the

dataset can be found elsewhere [14].

2.2.1. Smartphone pupil stimulation and video acquisition
During the first feasibility study, the pupil of a subject with

light brown eyes was stimulated with the flash embedded in

a smartphone (i.e., ZTE Blade C341), with the illuminance

set at 480 lx and the duration at 500 ms. The photopupillary

reflex was captured with a second smartphone, namely a

Samsung Galaxy a7 (2016) with a 13-megapixel camera,

although the final app integrates both functions and only

one smartphone without tripod support is needed for future

use. In fact, in the final app the video recording and the flash

are synchronized as follows: the flash starts 2 s after the

recording has started, lasts for 500 ms and the recording is

stopped when 9 s in total are reached. This allows a recording

of about 6–7 s of the pupil reaction, in line with the typical

duration of the event [44].

Both smartphones were selected depending on their avail-

ability at the times of the experiments and were placed on a

tripod at a distance of 8 cm from the subject’s face. In litera-

ture, distances in the range of 8–15 cm were used [20,45,46].

As the luminance will vary according to the distance from

the light source following an inverse-square law [47], the

luminance at various distances (i.e., 5–20 cm, with a 1-cm

step) was also evaluated to check whether small differences

in distance could significantly affect it. It resulted that in

the above-mentioned range, i.e., 11.5 ± 3.5 cm, the luminance

had an average percentage change of 10.7%. Furthermore, we
ella pupillometria cromatica per la diagnosi e il monitoraggio delle

etry via smartphone for low-resource settings, biocybernetics and bio-
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investigated whether the flashes at 8 cm and at 15 cm would

trigger a pupil reaction, and whether the minimum reached

by the pupil would be similar. This was tested with two

smartphone models available at the time of writing (i.e., a

Doogee S60 Lite and an iPhone 7). The pupil minimum,

expressed as the normalized pupil/iris ratio, resulted to be

varying in the range 71.2 ± 2.7% (percentage variation of

3.8%) with the Doogee S60 Lite flash, and in the range 50.7

± 0.4 (percentage variation of 0.8%) with the iPhone 7. This dif-

ference is probably due to the more powerful flash embedded

in the second smartphone model. Therefore, assuming the

test will be run with the same device, the pupil contraction

will remain substantially the same in the recommended dis-

tance range.

The height at which the two smartphones were placedwas

so that the eye resulted to be at the center of the frame. The

opposite eye was neither stimulated by the flash, nor covered.

Throughout these experiments the ambient light was mea-

sured using a luxometer (Dr. Meter, LX1010B), in order to

ensure an approximately constant baseline light intensity.

The videos were then fed to a dedicated algorithm as

detailed below. At this prototyping stage all the signal elabo-

rations are performed on Matlab.

In the future, the definitive algorithm will either run on a

dedicated server application that will include a Matlab com-

piled dynamic link library (DLL) to foster the accessibility of

older models of smartphones, or will be embedded in the

mobile device itself, for the most performing models.

2.2.2. Preprocessing
The images contained in the frames of the video are prepro-

cessed by turning them into gray-scale (see Fig. 2, IIa), binariz-

ing them according to a certain threshold, and going through

morphological opening (i.e., erosion followed by dilation) and

closing (i.e., dilation followed by erosion) to remove any dark

unrelated pixel or particularly small objects (see Fig. 2, IIb).
Fig. 2 – The flowchart illustrates the various steps of the prepro

recognition of the pupil.

Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012
The binarization phase is a pivotal pre-step and can be influ-

enced by the overall light intensity of the frames: if the inten-

sity changes over the frames, the results may not be ideal. In

case the acquisition is performed with high intensity of light

(e.g., flashlight on), a higher threshold is selected, by assess-

ing the mean intensity of the first 3 frames (i.e., baseline)

and setting the highest threshold if the mean intensity of a

frame results 5% greater than the baseline. The values of

the two thresholds were determined empirically. The final

app records 9-s H.264 encoded-videos with a 30-fps framerate

and an average size of 11.5 MB.

2.2.3. Image processing
The image recognition algorithm consists of two main parts:

the pupil and the iris recognition. The reason behind the

choice of including the iris part is due to the contextualization

of the design and will be further explained in the results sub-

section 3.1 named ‘‘Ethnography-driven user-need and con-

textual analysis”.

2.2.3.1. Pupil recognition algorithm. The algorithm (see

Fig. 2) starts by prompting a user input, i.e., the framing of

the part of interest (i.e., the eye). The user can draw a rectan-

gular box, superimposing it on the first frame of the video,

and the coordinates of such polygon will be utilized to crop

the frames used during the tuning step of the algorithm

(see Fig. 2, I). The latter consists in running the commands

for preparing the images (as described above) and for finding

the pupil and its center, only over the first three frames of the

video.

As regards the pupil recognition, three different

approaches were tested, namely blob-detection algorithm,

circular Hough transform, and watershed transform. These

methods were assessed computing the mean absolute error

(MAE) and the correlation with the manual measurement

(Pearson’s r). In particular, the blob-detection algorithm used
cessing and image processing, with a specific focus on the

etry via smartphone for low-resource settings, biocybernetics and bio-
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in the comparison was a variation of the original that con-

sisted in removing the spikes and substituting them with

the average value of the points preceding and following the

spike.

The blob-detection algorithm was inspired by Barragan’s

[25] algorithm, which detects the ‘‘blob”with the greatest area

contained in the picture, circles it, and finds its center. The

diameter output of the tuning stage is called baseline diame-

ter, because it is then utilized to automatically calculate the

cropping frame dimensions for the main part of the algo-

rithm, by creating a framing square with a side equal to four

times the baseline diameter, centered on the pupil. The same

pupil recognition algorithm is then called again upon all the

newly-cropped frames and an array containing the unpro-

cessed diameter is saved (see Fig. 2, III).

2.2.3.2. Iris recognition algorithm. The algorithm (see Fig. 3)

starts by prompting a user input, i.e., the framing of the part

of interest (i.e., the iris). A circle is superimposed over the first

frame and the user can resize it according to the iris boundary

in the frame. Given the position of three points of such circle,

its equation is derived as well as the baseline radius of the

iris, which is then used as a parameter for the circular Hough

transform algorithm (see Fig. 3, II).

In this case, the same three algorithms tried out for the

pupil recognition were tested as well.

Before being fed to this algorithm, the frames are prepro-

cessed as described above (see Fig. 3, I, IIIa, IIIb). Moreover,

as the outcome of the application of the circular Hough trans-

form algorithm depends on the sensitivity, an extra precau-

tion is taken in this direction. In fact, although the initial

sensitivity is set to 0.88, if no circle is found during the first

run, the sensitivity is increased by 0.02 until a circle is found.

An array containing the unprocessed diameter is saved.
Fig. 3 – The flowchart illustrates the various steps of the image p

Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012
2.2.3.3. Postprocessing. The acquired pupil measurements

were often subject to artifacts such as blinking and image

overexposure due to flash. For this reason, a series of func-

tions were applied in order to smooth spikes and filter out

noise. In particular, the affected data were identified,

removed from the dataset and the gaps were filled using an

interpolation.

As regards the flash, the above-mentioned threshold for

the binarization was designed to tackle this problem. How-

ever, the method is not completely robust and can fail to

switch to the correct threshold in the first and final frames

of the flash, when it is not at full brightness. Consequently,

the flash-related frames were removed and substituted with

a linear interpolation. This would not affect the overall perfor-

mance as the first part of the constriction phase of the pho-

topupillary reaction is steep and approximately linear.

As regards the blinking artifact, it partially or completely

obstructs the pupil, making the algorithm track nothing or a

larger area (e.g., a shadow under the eyelid). Such sudden

change of the detected area is a good indicator of when the

pupil detection fails. Detrending and differentiation were

used to identify these sudden changes: the data points

affected by blinking are flagged when the local derivative

exceeds a threshold in magnitude. Also in this case, the

flagged points are removed and linear interpolation is used

to fill the gaps.

Finally, the ratio between the diameter of the pupil and

that of the iris is calculated and normalized to the initial

value. The values related to the frames preceding the pupil

reaction are individuated and substituted with 100% values.

The part of the array related to the pupil reaction is fitted with

a Gamma function, as suggested by Knapen et al. [48] (see

Fig. 2, IV).
rocessing, with a specific focus on the recognition of the iris.

etry via smartphone for low-resource settings, biocybernetics and bio-
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The algorithm also calculates some variables relevant to

pupillometry:

� Pupil minimum, the minimum size reached by the pupil at

the end of the constriction phase; the constriction phase

was considered to start when the pupil/iris normalized

ratio fell under 98% of its original value;

� Latency, the delay in the pupil response calculated as the

time between the start of the flash and the start of the con-

striction phase;

� Max constriction velocity, the maximum rate of change in

the pupil diameter during the constriction phase;

� Mean constriction velocity, the average rate of change of

the pupil diameter during the constriction phase;

� Mean dilation velocity, the average rate of change of the

pupil during the dilation phase, which is contiguous to

the constriction phase and was considered to end when

the pupil/iris normalized ratio overtook 98% of its original

value;

� T75, the time implied by the pupil to recover 75% of the

amplitude of the constriction starting from the peak of

the constriction;

2.2.4. System integration
The resulting pupillometry system has been designed as a

three-tier application:

� Presentation layer: the Android app will be used for acquir-

ing the video samples and firing the flash.

� Logic layer: a connection with the server code performing

the analyses will be developed. The app will act as client.

In case of high performance devices, both the client and

the server software will be running on the mobile device.

� Data layer: our system will be linked to the database and

web application described in [15–7] through RESTful dialog

and dedicated APIs.

2.2.5. App design
The app was developed in Android Studio, using Java for the

implementation of functions and XML for the design of the

user interface, targeting Android-based smartphones with

an API level of at least 21 (i.e., Android 5.0 Lollipop), because

of the use of the ‘‘camera200 package. This choice allows

94.1% of Android users to use our app, as only 5.9% of the

Android-based smartphones have an API level lower than 21

worldwide (and similar trends can be found in Africa) (from

Android Platform/API version distribution – Android Studio)

[49].
Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
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The logo, representing an eye-shaped logarithmic spiral,

was hand-drawn and digitized using GIMP (GNU Image

Manipulation Program).

2.3. Technical validation

2.3.1. Video acquisition procedure and image processing
All the frames of one of the acquired videos were analyzed

both with the Matlab algorithm and manual measurements.

In particular, the frames were analyzed manually by two

independent authors that were blinded to the output of the

pupillometer, in order to reduce the risk of bias: for each

frame the diameters of the pupil and of the iris were mea-

sured twice and averaged in order to reduce themeasurement

error.

Also in this case, the values related to the frames preced-

ing the flash were individuated and substituted with 100%

values. Consequently, Pearson’s r and the associated p-

value, the root mean square error (RMSE) and the MAE were

calculated for the Gamma-fitted signal and the raw auto-

mated signal, compared to the manual measurements. More-

over, the error rate was estimated by calculating the percent

error and counting how frequently it would go over a 10%

threshold.

2.3.2. Benchmarking
Our pupil tracking algorithm was also validated against the

output of an IR Pupillometer (DP-2000 – NeurOptics). The

gamma fit in this case was not needed because of the non-

interaction between the flash and the IR recording. The tech-

nical validation was done based on the output variables, spec-

ified above. In particular, the variables outputted by the IR

pupillometer were normalized in respect to the initially mea-

sured pupil size in order to make them comparable with those

resulting from our algorithm.

The RMSE and MAE were calculated for each variable and

for both the algorithms, comparing them with those coming

from the manual measurements, taken by two independent

and blinded authors. Consequently, 3 Bland-Altman plots

were generated for each of the 4 variables, after testing

whether their residuals were normally distributed with a

Shapiro-Wilk test [50] (normality being a necessary condition

for such plots). The Bland-Altman plots compared the app

Algorithm and the IR Algorithm, the app algorithm and the

Manual measurements and the IR algorithm and the Manual

measurements.

2.3.3. Testing the safety of the flash
An experiment was set up to test the safety of use of a smart-

phone flash on the human eye, although the safety of the pro-

cedure has been confirmed by preliminary research [45]. The

smartphone was placed on a tripod and an operator held the

sensor of a luxometer (Dr. Meter, LX1010B) in front of the

camera at a distance of interest for pupillometry, i.e.,

8.5 cm. Firstly, the illuminance in this condition (i.e., ambient

light) was recorded; secondly the flash was turned on and the

illuminance in this condition was recorded. Hence, the illumi-

nance could be easily calculated and compared against the

ISO standards [51] after a conversion to W/cm2.
etry via smartphone for low-resource settings, biocybernetics and bio-
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3. Results

3.1. Ethnography-driven user-need and contextual
analysis in LMICs

The contextual analysis highlighted that SSA countries have

[41,43]: extremely limited resources, an insufficient number

of healthcare professionals and of specialized doctors; inade-

quate hospital infrastructures, highly unstable main power

supply, poor transport infrastructure and supply-chain, and

an uneven distribution of the resources that are concentrated

in the capital to the detriment of remote areas. Nonetheless,

SSA can count on a very young population, a wide diffusion of

mobile phones, smartphones [52], and ICT literacy. There is a

wide diffusion of one dominant smartphone operative system

(i.e., 86.39% of smartphones based on Android) [53] and a good

coverage of wireless telecommunication. Prospectively, the

SSA market of medical devices is fast growing (the compound

annual growth rate is around 6%) [54]. The adoption of new

technologies meets limited inertia and healthcare operators

are resilient. In fact, working in challenging conditions

pushes workers to practice with the unpredictable conditions

and events, developing a great capability to react to, respond

to and recover from emergencies. Nonetheless, this positive

attitude comes with evident risks too. Often, non-

specialized personnel respond to the medical devices mal-

functioning with creative shortcuts, which tend to become

chronic solutions, prone to new risks, hindering the recovery

of the initial level of effectiveness and safety [55]. Finally, a

massive ‘‘brain drain” affects doctors and specialized doctors,

who move to other countries for better opportunities, further

depleting SSA health care systems [56].

The results of the contextual analysis have been discussed

with African scholars and healthcare personnel in Benin,

Ethiopia and South Africa, resulting in a series of specifica-

tions for the local manufacturing of a resilient pupillometer,

with its consumables and spare parts. The design should be

low-cost, based on free design and manufacturing processes,

it should empower non-specialized healthcare personnel and

providing clear guidance or affordances, possibly be battery-

based and resilient to the unstable power supply, resilient to

misuses, requiring no maintenance and easy to clean, and

based on Android smartphones, possibly compatible with

the high degrees of ingress protection (e.g., IP68) described

in IEC 60,529 and with rugged and military standards (e.g.,

MIL-STD-810G).

None of the pupillometers reviewed resulted sufficiently

resilient to LMICs. Existing smartphone solutions meet the

cost-requirement, but as it emerged from our study, this is

not the only criterion for being resilient in LMICs. For exam-

ple, most of the proposed solutions widely utilized acces-

sories and spare parts, including external LEDs, filters, and

lenses, which will hinder the lifetime of the device in SSA.

In fact, such parts would be difficult to retrieve, repair or

replace in LRSs [41,43].

Moreover, when deepening the design principles of a

pupillometer, two technical requirements emerged: computa-

tional capability compatible with an old Android smartphone;
Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
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use no accessories or only accessories that could be locally

manufactured (e.g., 3D printed).

This last criterion particularly influenced the design of the

app. The majority of existing pupillometers utilize visible

light to stimulate the pupil and infrared (IR) cameras to film

its constriction, in order to avoid artefacts. Most smartphones

do not contain IR cameras, therefore visible light was used

both to stimulate the pupil, using the phone flash, and to film

its reaction with the phone camera. As a consequence, the

video frames coinciding with the flash resulted overexposed

due to the sudden change of luminosity and the proximity

of the subject, requiring the adoption of a fitting algorithm

to recover the missing pupil diameter in those frames. More-

over, phone camera framerates are lower than the one of

many pupillometers. Thus, the proposed algorithm fitted

the acquired diameter data first with a linear fitting, in order

to recover missing data due to the flash, and then with a

Gamma distribution for approximating missing frames,

reconstructing the complete response of the pupil, as pro-

posed in [48]. The interpolation also reduced the blinking arti-

facts, affecting also standard pupillometry. Moreover, the

distance between the eye and the device created artifacts in

the estimation of the pupil diameter. These artifacts could

be limitedwith a recycled plastic 3D printed accessory clipped

on the mobile phone, aiming at keeping the eye to phone dis-

tance constant. However, since a 3D printer could be not

available, the proposed algorithm for the recognition of the

pupil reflex was based on the ratio between the diameter of

the pupil and that of the iris. In fact, while the pupil diameter

reacts to light, the iris does not. The ratio was normalized

with the value measured before the flash shooting to facilitate

the reading of the pupil diameter. The adoption of these fea-

tures required a specific technical validation of the final algo-

rithm and app.

3.2. Development of the smartphone-based pupillometer

A total of 4 videos were recorded, in which the eye was stim-

ulated 3 times in order to be sure to capture a good-quality

response (i.e., absence or reduced number of blinks).

3.2.1. Preprocessing and image processing
Three methods were tested for the pupil and iris detection: a

blob-detection algorithm, the circular Hough transform, and

the watershed transform. The blob-detection algorithm out-

performed the other methods with lower MAE (3.9% versus

4.55% of the Hough transform, and 21.25% of the Watershed

transform) and higher correlation (Pearson’s r of 0.95 and p-

value <0.00001 versus 0.84 and p-value p-value <0.00001 of

the Hough transform, and �0.03 and p-value of 0.83), being

selected for the pupil tracking (Fig. 2, III). This choice also

avoided the introduction of an extra user input, i.e., the pupil

radius range, which is necessary for the Hough transform to

work. The Hough transform outperformed the other methods

in tracking the iris. Consequently, the Hough transform was

performed for the iris tracking (see Fig. 3, IV). Fig. 4 shows

the comparison of three signals, namely the gamma-fitted

ratio, the algorithm, and the manual measurements. The
etry via smartphone for low-resource settings, biocybernetics and bio-
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Fig. 4 – A comparison of the signals: the manual

measurements (dashed gray line), the raw automated

algorithm (dashed orange line) and the Gamma-fitted ratio

(yellow line).

Fig. 5 – The normalized pupil diameter over the frames.

Superimposed on the curve, 5 sample snapshots acquired

during the app testing. Each snapshot comprises of two

halves, highlighted by a yellow semi-circle: each left half

represents the initial condition, and each right half

represents the evolution of the response.

Table 1 – Values of the mean absolute error and root mean
square error for the IR pupillometer and for our solution.

Parameter MAE RMSE

Pupil Minimum (%) IR 1.11 1.55
app 1.00 1.36

Max Constriction Velocity (%/s) IR 6.76 8.07
app 2.56 3.26

Mean Constriction Velocity (%/s) IR 2.85 3.70
app 0.47 0.70

Mean Dilation Velocity (%/s) IR 6.84 7.35
app 0.11 0.14
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removal of the flash and blink artifacts via post-processing

are evident in Fig. 4.

3.2.1.1. App design. The app, named Oida (meaning ‘‘I

have seen” and ‘‘I know”, from Ancient Greek ‘‘ὁqάx”), for

tracking the photopupillary reflex is being finalized. As of

now, the app comprises of a Main Activity, Instructions Activ-

ity and a Camera Activity. It is available in two languages:

English and French, both widespread languages in SSA.

3.3. Technical validation

3.3.1. Video acquisition and image processing
During the manual validation (see Fig. 4), the Gamma fitted

ratio resulted significantly highly correlated with the manual

measurement (Pearson’s r = 0.963, p-value < 0.0001 versus

Pearson’s r = 0.982 and p-value < 0.0001 of the raw automated

signal (app)), with a RMSE and a MAE of 3.20% and 2.24%,

respectively (versus 3.96% and 3.09% of the raw signal). More-

over, the error rate for the Gamma fitted ratio resulted to be

7.14%.

3.3.2. Benchmarking
Ten videos acquired by clinical ophthalmologists with the IR-

pupillometer on healthy subjects were analyzed with the IR-

pupillometer software and with the app algorithms in Matlab.

Fig. 5 shows the pupil reaction over the frames, captured by

the three different algorithms. Resulting measures were com-

pared with those calculated by hand after annotating the

diameter of the pupil manually for each video-frame. The

MAE and RMSE demonstrated a significant improvement in

comparison with the software provided with the commercial

device, for all the variables, as reported in Table 1. The agree-

ment among the measurement methods, namely app algo-

rithms/IR method, app Algorithms/Manual method and IR

method/Manual method, was estimated with Bland-Altman

plots [57,58] (plots are not reported for brevity, but are avail-

able upon request), following the Shapiro-Wilk test for nor-

mality [50].
Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
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All the differences imputed to the Bland-Altman plot

resulted normally distributed with a 0.842 < W < 1 [59] at a

95% confidence level. Table 2 reports the 95% limits of agree-

ment for each variable (the lower the better). The agreement

between the app and the manual method outperformed the

other methods.

3.3.3. Testing the safety of the flash
The base illuminance (i.e., the one of the ambient) was mea-

sured at 200 lx; since the illuminance in the ‘‘flash on”-state

was 680 lx, the illuminance of the flash alone was 480 lx.

The comparison of this value to the above-mentioned ISO

standards ensured the safety of the procedure. In fact,

480 lx convert to 7.03�10-5 W/cm2 under the hypothesis of an

average wavelength of 555 nm (the ISO standards set the

max allowed value to 0.706 W/cm2).

4. Discussion

This paper presented the design and technical validation of

an app for the measurement of the pupillary reflex, intended

to be used in LRSs. Given the absence of specific regulations or

clear guidelines for the design of medical devices for LRSs, we
etry via smartphone for low-resource settings, biocybernetics and bio-
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Table 2 – Values of agreement between methods are shown for each of the four variables.

Variable Limits of Agreement

Pupil minimum app-IR ±2.74%
app-Man ±1.99%
IR – Man ±3.03%

Max constriction velocity app-IR ±9.48%/s
app-Man ±6.33%/s
IR – Man ±11.74%/s

Mean constriction velocity app-IR ±7.42%/s
app-Man ±1.23%/s
IR – Man ±7.52%/s

Mean dilation velocity app-IR ±5.61%/s
app-Man ±0.20%/s
IR – Man ±5.53%/s
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adopted the prescriptions of the European regulations on

medical devices, the relevant standards for designing smart-

phone applications, and the 5A principle of the WHO.

The first part of this paper illustrated how the local needs

and contextual analyses can be performed enriching engi-

neering design with ethnographic methods. The second part

presented and discussed the technical validation of the soft-

ware, which was performed in two steps: validation of the

acquisition and benchmarking of our app versus a commer-

cial IR-pupilometer assuming as gold-standard the frame-

to-frame manual annotation of pupillary video recordings

from 10 subjects. The very low errors and high correlation

resulting from the former validation confirmed that a

smartphone-based pupillometry acquisition without acces-

sories was viable. This concept was corroborated by the low

errors and narrow limits of agreement for the variables result-

ing from the second validation. The latter proved that the pro-

posed solution, despite being based on a simple app and a

smartphone in order to be sustainable in resource-scarce set-

tings, is able to perform just as well, and often better than the

benchmark. These results were possible due to the interpola-

tion algorithm and the normalization of the pupil diameter

with the iris one, which minimised artefacts due to hand

motions and the use of visible light for pupil stimulation via

mobile phone flash and video acquisition. In fact, commercial

pupilometers use IR for image acquisition, which is not avail-

able in the majority of smartphones. Indeed, the app

described achieved better results than the commercial IR

medical device.

Moreover, the comparison with existing literature sug-

gested that the proposed solution is the only one designed

for LMICs and rigorously validated. In 2013, Tae-hoon Kim

et al. [18] proposed a smartphone-based pupilometer that

works with an Android app and an add-on device, which con-

tains two types of LEDs and an IR filter. Their results showed

that their system could have been a good candidate for pupil-

lometry, however it had not been validated against a CE-

marked or FDA-cleared commercial pupilometer. Moreover,

the required accessories would make its use in LMICs incon-

venient. In 2017, Mariakakis et al. [19] proposed an iPhone-

based pupilometer that works with a box similar to the one
Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
medicalengineering, https://doi.org/10.1016/j.bbe.2021.05.012
used for virtual reality headsets and makes use of convolu-

tional neural networks. The box was used to eliminate ambi-

ent light and control the distance to the person’s face.

Nonetheless, the authors themselves claimed that such a

box could be a hindrance in case of measuring the pupil light

reaction with an unconscious patient and for tracking the

whole reaction to the flash (i.e., the dilation phase cannot

be captured because of the lack of lighting). Their design, in

fact, only allowed assessing the pupil constriction phase

and seems to require a server connection in order to work.

In 2018, McAnany et al. [20] performed a study proving that

the iPhone camera could be used for this purpose, comparing

it with an IR camera, which was not medical rated. In 2019,

the start-up Brightlamp introduced an iPhone app for tracking

the photopupillary reflex based on trained object detectors

and on the use of no accessory. Such app was manually vali-

dated similarly to part two of our validation with no bench-

marking, resulting in a higher MAE (2.9%) and wider limits

of agreement for the pupil constriction (±14%, which

improved to ± 9% after bias correction). However, a recent

study by McKay et al. [60] benchmarked Brightlamp with a

portable IR pupillometer demonstrating that this particular

iPhone app has poor repeatability and is not practical tool

for supporting clinical decisions. Nonetheless, in general,

iPhone-based pupillometry, relying on Hough transform,

was proved to be possible and accurate enough by Neice

et al. [61].

Moreover, the use of iPhones in SSA is quite uncommon

due to their cost and because iPhone does not have any

rugged model. In 2019, Vigàrio, et al. [21] proposed a system

for the continuous monitoring of the pupil using a smart-

phone, the Virtoba support for mobile-phones and two LEDs.

However, the system does not provide the typical pupillome-

try stimulus (i.e., flash in the eye) and its validation was lim-

ited to physiological data found in literature (i.e., the reaction

of the pupils to a cold stress test). None of the designs above

were conceived for LRSs. As it emerged from our contextual

analysis, in fact, basing part of the design on extra add-on

parts can turn out to be counterproductive either in a possible

early health technology assessment phase or when already

on the market. Adding extra add-on devices will increase
etry via smartphone for low-resource settings, biocybernetics and bio-
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the need for spare parts that will probably not be available in

LRSs. For this reason, the authors of this paper suggest that

the ‘‘less is more” philosophy should be adopted when start-

ing considering additional parts of a device conceived for

these settings. Although the study was focused on pupillom-

etry, its findings on the design can be relevant for other appli-

cations. For instance, it emerged clearly that affordability is

not the only criteria for a device to be suitable for LRSs. Many

other issues should be considered during the design, includ-

ing affordance, easiness of deployment and use, resilience

to underlying infrastructures that could be not stable, avail-

ability of spare parts and consumables, and available underly-

ing technologies.

Another issue that emerged is the tendency to release

apps with healthcare ambitions without proper technical val-

idations (e.g., manual and/or benchmarking for apps). In the

past years, both the FDA and the European Commission equa-

ted medical software (including app) to medical devices, mak-

ing validation essential to guarantee safety and adequate

performance. For this reason, in this paper, we decided to

adopt the European perspective for CE marking medical apps,

in order to stress the importance of the technical validation

phase in the design cycle.

5. Limitations

This study presents the preliminary results of the design and

technical validation of a smartphone app.

The results are valid and limited to one Android smart-

phone model; further testing could include more models. In

these further tests the different flashes of different smart-

phone models should be checked for safety against the rele-

vant standards.

The current design relies on a server connection, which

may be a bottleneck, although currently many remote areas

of LRSs (e.g., Africa) are served by good quality mobile phone

services. To overcome these limitations, future versions of the

app will also include the processing algorithms. To this

regard, also artificial intelligence may be explored. While this

solution may be difficult to run on very old smartphones, it

should run smoothly on the other models.

Furthermore, a possible bias in the feasibility study might

have been introduced because the opposite eye was not cov-

ered and could have potentially been partially stimulated by

the changes in the ambient light. However, the ambient light

was measured and maintained as constant as possible

throughout the experiment. To this regard, healthcare work-

ers will need to be instructed and cover the opposite eye in

order to avoid bias in the pupillary reactions.

Moreover, as of now, the app is not giving any result in

terms of millimetres; future versions may include this feature

only for the pupil size, as it would be redundant for the pupil/

iris ratio.

Finally, the performance of the app is currently evaluated

on light brown eyes, darker shades should be investigated,

as they may be more challenging for pupillometers relying

on visible light only. Future experiments could test the appli-

cation on subjects with three types of iris colour (i.e., fair,
Please cite this article as: D. Piaggio, G. Namm, P. Melillo et al., Pupillom
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medium, and dark). In this way, the efficiency of our applica-

tion on different iris colours could be evaluated. This could

also inform future upgrades of the app software to make it

more efficient.
6. Conclusions

This paper presented the design and technical validation of a

mobile app aimed to perform smartphone-based pupillome-

try, suitable for use in LMICs. The performance of the app

algorithm is promising and, being able to compete with the

performance of the algorithm of a commercial IR pupillome-

ter medical device, suggests furthering the study with more

smartphone models and transitioning towards a dedicated

server application and/or a completely standalone app.

The performance of the algorithms of the app, as con-

firmed by the technical validation, are sound: the proposed

solution, by exploiting the pervasive presence of smartphones

in LMICs and by not requiring expensive settings or complex

procedures, represents a significant improvement towards an

extensive screening of eye pathologies and brain trauma

worldwide.
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