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Abstract: Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal 

therapy for the right patient by considering each patient’s unique disease and individual health 

status. In the last years, it has become evident that breast cancer is an extremely heterogeneous 

disease, and therefore, patients need to be appropriately stratified to maximize survival and quality 

of life. Gene-expression tools have already positively assisted clinical decision making by estimating 

the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these 

approaches need refinement to further reduce the proportion of patients potentially exposed to 

unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated 

to be an optimal approach for cancer research and has provided significant results in BC, in 

particular for prognostic and stratification purposes. In this review, we give an update on the status 

of NMR-based metabolomic studies for the biochemical characterization and stratification of breast 

cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine). 
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1. Breast Cancer: Why Precision Oncology? 

Precision medicine, also called personalized medicine, is an emerging approach for 

disease treatment and prevention that takes into account genetics, epigenetics, 

metabolism, environment, and lifestyle of each individual person with the goal to select 

the optimal therapy for the right patient. In oncology, tumor molecular profiling leads to 

the identification of patient specific alterations that could inform about the optimal 

treatments and maximize patient’s survival. 

For several years breast cancer (BC) has been seen as a single clinical entity and 

treated with one general approach. However, now it has become extremely clear that BC 

has to be considered a highly heterogeneous disease with different subclasses. The 

discovery of endocrine receptors, and the understanding that endocrine therapy 

significantly improves outcomes in patients with hormone receptor-positive disease, 

marks the beginning of the target therapy for patients with BC [1–3]. By the late 1990s, it 

was discovered that a subgroup of breast tumors (15–20%) overexpresses the HER2 
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receptor or have HER2 gene amplification. HER2-positive disease had a dismal outcome 

until the development of targeted agents, which has significantly improved outcomes in 

both the (neo)adjuvant [4–8] and the metastatic setting [9,10]. The more recent gene-

expression assays allow clinicians to assess the risk of recurrence in early breast cancer 

(EBC) [11–13], as well as to predict potential benefit from adjuvant chemotherapy [14–17]. 

In many patients found to have a disease with favorable gene-expression profile, 

chemotherapy could be avoided; however, a significant population of EBC patients may 

still be overtreated. Precision oncology aims at identifying the optimal treatment for each 

patient, specifically tailored to each unique cancer profile and to each individual health 

status in order to maximize survival and quality of life. Omics sciences are instrumental 

for this aim (Figure 1). 

 

Figure 1. Precision oncology in a nutshell. 

2. Metabolomics and NMR 

Metabolomics, one of the latest -Omic sciences, entails the comprehensive 

characterization of the ensemble of endogenous and exogenous metabolites presents in a 

biological specimen. Metabolites simultaneously represent the downstream output of the 

genome, the transcriptome, and the proteome, as well as the upstream input from various 

external factors such as environment, lifestyle, diet, and drug exposure [18]. As a 

consequence, in the last few years, metabolomic phenotyping has been extensively 

applied in biomedical research. 

Nuclear Magnetic Resonance spectroscopy (NMR) and mass spectrometry are the 

two most widely used analytical platforms for metabolomics. These two techniques can 

be considered complementary, since the weaknesses of one platform are compensated by 

the strengths of the other [19]. In contrast to the approach typically adopted in mass 

spectrometry, which is focused on target metabolites of interest, NMR metabolomics is 

usually performed using a high-throughput, untargeted approach, which provides a 

complete picture of all metabolites present or quantifiable in the sample above the NMR 

detection limit (concentrations >1μM) [19,20]. To date, NMR metabolomics are 

increasingly used for successful patient stratification in various diseases, and it provided 

unique insights into the fundamental causes of several physiological and 

pathophysiological conditions [21–35]. 

In principle, any biospecimen (i.e., cells, biofluids, and tissues) can be analyzed via 

NMR. The most common biological fluids analyzed by metabolomics are blood 

serum/plasma, urine, and saliva, as they can be collected with low invasiveness, and yield 

plentiful in biological information. Blood derivatives contain all the molecules that are 

secreted by different tissues in response to different physiological stimuli, conditions, or 

stressors [36]. Due to its important systemic role, the concentrations of metabolites in the 

blood are strongly controlled by feedback cycles, so serum/plasma samples are not 

subjected to extreme daily variations and can give information at a systemic level. 

Conversely, urine essentially contains metabolic waste, and thus is more affected by diet, 

environment lifestyle, and drug administration, resulting in significant day-to-day 
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variability [37]. Saliva is an important physiological fluid that contains a highly complex 

mixture of substances, and it reflects both the systemic status [38] and the local health 

condition of the oral cavity [39]. A number of other local biofluids, such as exhaled breath 

condensate [40–42], cerebrospinal fluid [43,44], amniotic fluid [45], bile [46], synovial fluid 

[47,48], seminal fluid [49], and fecal extracts [50] can also be analyzed to investigate the 

metabolome of specific compartments. Cell lysates, cell growth media, and extracts of 

tissues can also be analyzed [51,52]. Further, the development of high resolution (HR) 1H 

magic angle spinning (MAS) spectra [53] has made viable the acquisition of data on small 

slices of tissue without the need of any extraction or pre-treatment [54–56]. 

Metabolomic fingerprints, as well as the identification and quantification of the most 

abundant metabolites (metabolomic profiling), can be directly obtained by the analysis of 

basic one-dimensional (1D) NMR spectra. 1D NOESY [57], 1H CPMG (Carr–Purcell–

Meiboom–Gill) [58], and 1H diffusion-edited [59] are the pulse sequences most commonly 

used in metabolomics studies. NOESY spectra enables the detection of all molecules 

present in the sample above the NMR detection limit, CPMG spectra allow the selective 

detection of low molecular weight metabolites, whereas diffusion-edited spectra permit 

the observation of only high-molecular weight macromolecules (i.e., proteins and 

lipoproteins). The latter two sequences are particularly useful in biofluids such as 

serum/plasma that contain high amounts of both low and high molecular weight 

compounds. 

Limiting the analysis to the most common biofluids employed in metabolomics, the 

number of molecules detectable and quantifiable by 1D-NMR span from slightly more 

than ten in breath condensate, to more than one hundred in urine. Assignment is mostly 

based on literature data, public databases, such as the de-facto reference standard Human 

Metabolome Database (HMDB) [60–62], commercially available databases and profiling 

software (i.e., ChenomX, AssureNMR). Spectra acquired at high magnetic field and two-

dimensional experiments can be non-routinely employed in selected samples to identify 

unknown metabolites or to confirm NMR assignment [63]. Remarkably, besides small 

metabolites, serum and plasma also contain lipoproteins that with appropriate software 

(i.e., the Bruker IVDr platform) can be finely analyzed to derive, from serum and plasma 

NMR spectra, about 100 different lipid parameters that describe the distribution and 

analytical composition of lipid main fractions and subclasses [64]. This is especially 

important in the lipidomics domain, because the composition of lipoproteins has a strong 

influence on disease development, including BC [65]. 

If applied for population screening, NMR-based metabolomics/lipidomics could 

become a powerful clinical tool in precision oncology. However, to permit experimental 

reproducibility among different studies and/or different collection centers, it is extremely 

important that metabolomic data are collected under rigorously controlled standard 

operating procedures (SOPs). SOPs need to be strictly followed in all the main steps 

involved in the metabolomic work-flow, including sample collection, preanalytical 

processing, and storage [66–68]; NMR spectra recording [69]; and data/metadata 

compilation, description and storage [70]. 

In this review, we will present an overview on the current status of NMR-based 

metabolomics studies in the setting of breast cancer using three different biological 

samples: breast tissue, serum/plasma and urine (Figure 2, Table 1). The translation in the 

clinical practice and the future perspectives for this analytical approach will be also 

examined and discussed. 
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Figure 2. Selection of the scientific articles included in this NMR-based metabolomics review. The 

figure shows the workflow of the papers’ selection. 

Table 1. List of evaluated publications. 

Ref. Biospecimen 
Population Study 

(n) 

Cohort 

Allocation 
EBC/MBC ER Status 

HER2 

Status 

Mean Age 

(Yrs) 

NMR 

(MHz) 

Borgan et al. 

2010 [71] 
T 46 BC 

Trondheim 

(Norway) 
46 EBC 

41 ER+/ 

5 ER− 
Not reported 64 600 

Li et al. 2011 

[72] 
T 31 (13 BC; 18 HC) 

Seoul 

(South Korea) 

13 EBC (11 IC; 2 

DCIS) 

11 ER+/ 

2 ER− 

12 HER2+/ 

1 HER2 
50 500 

Bathen et al. 

2013 [73] 
T 228 BC 

Trondheim 

(Norway) 
228 EBC 

168 ER+/ 49 

ER− 
Not reported 60.7 600 

Chae et al. 

2016 [74] 
T 60 BC 

Seoul 

(South Korea) 

60 EBC (30 

DCIS; 30 DCIS + 

IC) 

40 ER+/ 

20 ER− 

4 HER2+/ 

36 HER2− 
48.7 400 

Park et al. 

2016 [75] 
T 31 BC 

Seoul 

(South Korea) 
31 EBC (IC) 

21 ER+/ 

10 ER− 

23 HER2+/ 

8 HER2− 
54.2 600 

Gogiashvili 

et al. 2018 

[76] 

T 18 BC 
Oberhavel 

(Germany) 
18 EBC 

Not 

reported 
Not reported Not reported 600 

Giskeødegår

d et al. 2010 

[77] 

T 160 BC 
Trondheim 

(Norway) 
160 EBC (IC) 

119 ER+/ 39 

ER− 
Not reported 62 600 

Choi et al. 

2012 [78] 
T 34 BC 

Seoul 

(South Korea) 
34 EBC (IC) 

26 ER+/ 

6 ER− 

5 HER2+/ 

27 HER2− 
52.2 500 

Cao et al. 

2014 [79] 
T 75 BC 

Trondheim 

(Norway) 
75 EBC (IC) 

44 ER+/ 

31 ER− 

30 HER2+/ 

45 HER2− 
64 600 

Tayyari et al. 

2018 [80] 
T 82 (47 BC; 35 HC) 

Multicenters 

USA 

47 EBC (44 IC; 3 

DCIS) 

29 ER+/ 

18 ER− 

47 HER2+/ 

0 HER2− 
Not reported 800 

Cheng et al. 

1998 [81] 
T 19 BC 

Boston 

(USA) 

19 EBC (18 IC;1 

DCIS) 

Not 

reported 
Not reported 60 400 

Bathen et al. 

2007 [82] 
T 77 BC 

Trondheim 

(Norway) 
77 EBC (IC) 

62 ER+/ 

15 ER− 
Not reported 62 600 

Sitter et al. 

2006 [83] 
T 

85 (83 BC, 1 LC, 1 

HC) 

Trondheim 

(Norway) 
83 EBC 

Not 

reported 
Not reported 62 600 

Sitter et al. 

2010 [84] 
T 29 BC 

Trondheim 

(Norway) 
29 EBC (IC) 

18 ER+/ 

11 ER− 
Not reported Not reported 600 

Choi et al. 

2013 [85] 
T 37 BC 

Seoul 

(South Korea) 
 

25 ER+/ 

12 ER− 

14 HER2+/ 

25 HER2− 
50.5 500 
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Euceda et al. 

2017 [86] 
T 122 BC 

Trondheim 

(Norway) 
122 EBC (IC) 

101 ER+/ 

21 ER− 
122 HER2− 49 600 

Cao et al. 

2012 [87] 
T 30 BC 

Trondheim 

(Norway) 
30 EBC (IC) 

27 ER+/ 

3 ER− 
Not reported 62 600 

Giskeødegår

d et al. 2012 

[88] 

T 98 BC 
Trondheim 

(Norway) 
98 EBC (IC) 

71 ER+/ 

24 ER− 
Not reported 69 600 

Cao et al. 

2012 [89] 
T 85 BC 

Trondheim 

(Norway) 

80 EBC, 5 MBC 

(IC) 

50 ER+/ 

34 ER− 
Not reported 49 600 

Haukaas et 

al. 2016 [90] 
T 228 BC 

Oslo 

(Norway) 

228 EBC (224 IC; 

4 DCIS) 

178 ER+/ 

40 ER− 

26 HER2+/ 

192 HER2− 
55.5 600 

Yoon et al. 

2016 [91] 
T 53 BC 

Seoul 

(South Korea) 
53 EBC (IC) 

36 ER+/ 

17 ER− 

12 HER2+/ 

41 HER2− 
49.6 600 

Debik et al. 

2019 [92] 
T, S 118 BC Oslo (Norway) 118 EBC (IC) 

100 ER+/ 

18 ER− 
118 HER2− 48.9 600 

Bro et al. 

2015 [93] 
P 

838 (419 BC; 419 

HC) 
Denmark not reported 

not 

reported 
not reported not reported 600 

Cala et al. 

2018 [94] 
P 58 (29 BC; 29 HC) 

Bogotà 

(Colombia) 

29 EBC (19 IDC; 

10 ILC) 

19 ER+/ 

10 ER− 

6 HER2+/ 

23 HER2− 
51 400 

Lecuyer et 

al. 2018 [95] 
P 

602 (206 BC; 396 

HC) 
France not reported 

not 

reported 
not reported 49.3 500 

Louis et al. 

2015[96] 
P 145 (73 BC; 72 HC) 

Hasselt 

(Belgium) 

73 EBC (61 IDC; 

11 ILC; 1 DCIS) 

62 ER+/ 

11 ER− 
not reported 58.5 400 

Richard et 

al. 2017 [97] 
P 65 BC Mons (Belgium) 

50 EBC (IC); 15 

MBC 

not 

reported 
not reported 57.6 500 

Suman et al. 

2018 [98] 
P 122 (72 BC; 50 HC) Lucknow (India) not reported 

not 

reported 
not reported 44.3 800 

Vignoli et al. 

2020 [99] 
P 43 BC Aviano (Italy) 43 EBC (IC) 

22 ER+/ 

21 ER− 
43 HER2+ 49 600 

Jobard et al. 

2021 [100] 
P 

1582 (791 BC; 791 

HC) 
Lyon (France) 

791 EBC (685 IC; 

69 DCIS) 

EBC: 536 

ER+/ 

100 ER− 

Not reported 56.8 600 

Keun at al. 

[101] 
S 21 BC 

London 

(England) 
Not reported 

Not 

reported 
Not reported 59 600 

Asiago et al. 

[102] 2010 
S 56 BC 

Houston (TX, 

USA) 
56 EBC (IC) 

26 ER+/ 

25 ER− 
not reported 53.7 500 

Gu et al. 

2011 [103] 
S 57 (27 BC; 30 HC) 

Detroit (MI, 

USA) 
not reported 

not 

reported 
not reported 55.9 500 

Stebbing et 

al. 2012 [104] 
S 88 BC 

London 

(England) 
13 EBC; 75 MBC 

64 ER+/ 

24 ER− 

34 HER2+/ 

54 HER2− 
59 600 

Hart et al. 

2017 [105] 
S 699 BC International 

590 EBC (IC); 

109 MBC 

EBC: 552 

ER+/ 

37 ER− 

EBC: 108 

HER2+/ 

388 HER2− 

41.5 600 

Jiang et al. 

2018[106] 
S 29 BC Singapore 29 MBC 

not 

reported 

6 HER2+/ 

7 HER2− 
52.7 800 

Jobard et al. 

2017 [107] 
S 79 BC France 79 BC 

not 

reported 
79 HER2+ 50.5 800 

Jobard et al. 

2014 [108] 
S 190 BC Lyon (France) 

104 EBC; 86 

MBC 

not 

reported 

32 HER2+/ 

156 HER2− 
57.1 800 

McCartney 

et al. 2019 

[109] 

S 115 BC New York (USA) 
28 MBC; 87 EBC 

(IC) 
115 ER+ 115 HER2− 54 600 

Oakman et 

al. 2011 [110] 
S 140 BC Prato (Italy) 

89 EBC (IC); 51 

MBC 

111 ER+/ 

29 ER− 

28 HER2+/ 

108 HER2− 
57 600 

Singh et al. 

2017 [111] 
S 42 (27 BC; 15 HC) Lucknow (India) 27 EBC (IC) 

not 

reported 
not reported 58.6 800 
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Tenori et al. 

2012 [112] 
S 579 BC International 579 MBC 

not 

reported 
not reported not reported 600 

Tenori et al. 

2015 [113] 
S 175 BC New York (USA) 

95 MBC; 80 EBC 

(IC) 

62 ER+/ 

110 ER− 

47 HER2+/ 

126 HER2− 
53 600 

Wei et al. 

2013 [114] 
S 28 BC 

Tübingen 

(Germany) 
28 EBC 

19 ER+/ 

9 ER− 

13 HER2+/ 

15 HER2− 
47.9 600 

Wojtowicz et 

al. 2020 [115] 
S 95 (9 BC; 86 HC) 

Wroclaw 

(Poland) 
not reported 9 ER− 9 HER2− 56.67 600 

Flote et al. 

2016 [116] 
S 56 BC Norway 56 EBC (IC) 

52 ER+/ 

4 ER− 

3 HER2+/ 

53 HER2− 
55.1 600 

Madssen et 

al. 2018 [117] 
S 60 BC Norway 

56 EBC (4 DCIS; 

56 IC) 

52 ER+/ 

4 ER− 

3 HER2+/ 

53 HER2− 
55.4 600 

Zhou et al. 

2017 [118] 
S; U 22 (11 BC; 11 HC) Xi’an (China) 

10 EBC (IC); 1 

MBC 

not 

reported 
not reported 58 600 

Men at al. 

2020 [119] 
U 

144 (106 BC; 38 

HC) 

Tengzhou 

(China) 
106 EBC (IC) 

not 

reported 
not reported 50.6 600 

Silva et al. 

2019 [120] 
U 78 (40 BC; 38 HC) 

Funchal 

(Portugal) 
not reported 

not 

reported 
not reported 59 400 

Slupsky et 

al. 2010 [121] 
U 

170 (48 BC; 50 OC; 

72 HC) 

Edmonton 

(Canada) 

37 IDC; 7 DCIS; 

4 ILC 

not 

reported 
not reported 56 600 

P: Plasma; S: Serum; U: Urine; T: tissue; BC: breast cancer; HC: healthy controls; IDC: invasive ductal carcinoma; ILC: 

Invasive lobular carcinoma; DCIS: ductal carcinoma in situ; EBC: early breast cancer; MBC: metastatic breast cancer; LABC: 

locally advanced breast cancer; HER2+: human epidermal growth factor receptor 2 positive; RBC: relapsed breast cancer; 

NRBC: non-relapsed breast cancer; TNBC: Triple-negative breast cancer. 

The scientific publications reviewed in the present article were identified by database 

searching in three electronic databases [National Library of Medicine (Medline via 

PubMed®), Web of Science and Scopus] without any restriction on date of publication or 

publication status. Keywords were used as follows: (“metabolomics” OR “metabonomics) 

AND (“NMR” OR “nuclear magnetic resonance spectroscopy”) AND (“breast cancer”) 

AND (“biospecimen”, where biospecimen is tissue or plasma or serum or urine). The 

results of the searches were manually refined in order to remove non pertinent articles. In 

addition, previous systematic reviews were checked to ensure complete data collection. 

3. NMR Metabolomics of Breast Tissue 

High resolution magic angle spinning (HR-MAS) NMR spectroscopy allows the 

quantification of approximately 40 metabolites with a safe, non-destructive method that 

requires minimal sample preparation. Since HR-MAS analyzes intact tissue, it offers the 

potential to further characterize the same specimen via histopathology or utilizing 

transcriptomics and/or proteomics [71,90]. Several studies (Table 2) have shown that HR-

MAS is able to discriminate between malignant and normal breast tissue [72,73], and 

between in-situ and infiltrating carcinoma [74]. Two studies have shown that the 

metabolic profile does not differ significantly based on intra-tumoral location and 

biospecimen type [75,76]. 
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Table 2. List of altered metabolite levels identified in breast tissue of breast cancer patients to study their metabolomic 

profiles. 

Metabolite 
BC vs CTR 

IC vs 

DCIS 

Poor Prognosis vs 

Good Prognosis 

GR vs PR Changes in 

Response 

to 

Treatment 

High 

SER/SUV 

vs Low 

SER/SUV 

Pre-Treatment Post-Treatment 

[72] [73] [80] [81] [83] [74] [78] [84] [88] [89] [92] [85] [86] [87] [86] [87] [89] [91] 

Choline   ↑         ↓ ↑  ↓   ↑ 

Phosphatidylcholine/ creatine            ↓       

Total choline ↑ ↑        ↑    ↑  ↓ ↓  

Phosphatidylcholine   ↑ ↑ ↑    ↑   ↓ ↑  ↓  ↓ ↑ 

Glycine  ↑     ↑ ↑ ↑ ↑ ↑ ↓ ↑  ↓  ↓ ↑ 

Scyllo-inositol       ↑            

Myo-inositol      ↓             

Glycerophosphocholine     ↓     ↓  ↓ ↑  ↓ ↓ ↓  

Creatine  ↑       ↓    ↑  ↓    

Glutamine               ↑    

Glutamate             ↑      

Taurine ↑ ↑       ↓ ↓  ↓ ↑  ↓    

Alanine      ↓       ↑  ↓    

Ascorbate  ↑           ↑      

Lactate         ↑ ↑ ↑  ↑  ↑    

Succinate      ↓       ↑  ↓    

Methionine   ↑                

Uridine   ↑                

Lipids   ↓                

Unsatured lipids   ↓                

ATP   ↓                

Glycerophosphocholine/ 

hosphatidylcholine 
    ↓              

Glycerophosphocholine/choline     ↓              

Phosphatidylcholine/ choline     ↑              

Glucose  ↓       ↓    ↓  ↑  ↑  

Glutathione             ↑      

Glycerophosphocholine/choline      ↓             

BC: breast cancer; CTR: control; IC: invasive carcinoma; DCIS: ductal carcinoma in situ; PR: poor responders; GR: good 

responders; SER: signal enhancement ratio; SUV: maximum standardized FDG uptake value. ↑/↓ higher/lower level in the 

first group of each comparison. 

3.1. Correlation with Clinicopathological Factors 

Metabolomics has been shown to be capable of predicting the status of BC prognostic 

factors such as estrogen receptor (ER), progesterone receptor (PR), and axillary lymph 

nodes (Table 3) [77]. In the study of Choi et al. [78], higher choline levels were found to 

correlate with ER-negative and PR-negative tumors. In addition, triple negative status 

(i.e., the absence of ER, PR, and HER2 receptors) was associated with higher choline-to-

creatine and total choline-to-creatine ratios. In a study of Cao et al. [79], the metabolomic 

characterization of triple negative tumors confirmed higher choline levels, but also 

showed an association with lower creatine and glutamine levels, together with higher 

levels of glutamate, glycine, and lactate (Table 3). Tayyari et al. [80] performed a metabolic 

analysis to identify the potential differences between triple negative and hormone 

receptor-positive tumors, within both African-American and Caucasian patients. African-

American patients with triple negative tumors showed higher concentrations of choline, 

glutamine, and glutathione compared to patients with hormone receptor-positive tumors. 

Conversely, Caucasian patients with triple negative tumors showed lower levels of 

glutamine in comparison with African-American patients with triple negative tumors. 
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Table 3. List of altered metabolite levels identified in breast tissue of breast cancer patients to study clinicopathological 

factors. 

Metabolite 

ER+ 

vs 

ER− 

PR+ 

vs. 

PR− 

HER2+ 

vs. 

HER2− 

High G 

vs. 

Low G 

TN 

vs. 

NonTN 

N+ 

vs. 

N0 

T>2 

cm 

vs. 

T<2 

cm 

High Ki67 

vs. 

Low Ki67 

[77] [78] [79] [82] [77] [78] [78] [79] [78] [53] [83] [78] [79] [80] [82] [83] [83] [78] [84] 

Choline ↓ ↓ ↓  ↓ ↓      ↑ ↑   ↓ ↑   

Choline/creatine            ↑        

Total choline/creatine            ↑        

Phosphatidylcholine/ 

creatine 
        ↑         ↑  

Total choline                  ↑  

Phosphatidylcholine ↑   ↓ ↓   ↓     ↑  ↑ ↑  ↑  

Glycine ↓  ↓ ↓ ↓   ↑     ↑  ↑ ↑ ↑   

Scyllo-inositol    ↓   ↑             

Myo-inositol       ↑         ↑    

Glycerophosphocholine ↓   ↑ ↓      ↑  ↑   ↓    

Creatine ↑    ↓ ↓  ↑     ↓   ↓    

Glutamine   ↑     ↑     ↓       

Glutamate   ↓          ↑       

Taurine ↑   ↑  ↓ ↑        ↓ ↓    

Alanine ↓    ↓   ↓            

Ascorbate ↑    ↓               

Lactate ↓  ↓ ↓ ↓           ↓    

Succinate        ↑            

ATP              ↓      

Lactate/Choline          ↑          

Betaine                ↓    

Glucose                ↑   ↓ 

↑/↓ higher/lower level in the first group of each comparison. 

In the context of HER2-positive tumors, Choi et al. [78] showed a significant 

correlation with higher levels of taurine, scyllo-inositol, and myo-inositol. Moreover, Cao 

et al. [79] described an association with higher concentrations of creatine, succinate, 

glycine and glutamine, and lower concentrations of alanine. 

Choline-containing compounds have been found to be correlated with tumor grade 

and the proliferative marker Ki67. Choi et al. [78] showed that phosphocholine-to-creatine 

ratio was significantly greater in high grade and highly proliferative tumors. In addition, 

Ki67 was associated with increased phosphatidylcholine (PC) and total choline levels. In 

a different study published in 1998, a higher lactate-to-choline ratio was significantly 

correlated with high grade tumors [81]. Axillary lymph node involvement was associated 

with increased glycine and phosphocholine, and reduced betaine and taurine in a study 

by Bathen et al. [82]. 

Sitter et al. [83] showed that higher choline and glycine concentrations are 

characteristic of tumor larger than 2 cm as compared with smaller tumors. A later analysis 

of the same group [84] correlated the metabolic profile of 29 intact BC samples with clinical 

prognosis. Patients with an estimated good prognosis, defined by the absence of disease 

in axillary lymph nodes, primary tumors smaller than 2 cm, and ER- and PR-positive 

disease, were found to have a trend toward a lower concentration of glycine compared to 

those patients with poor prognosis. Moreover, the metabolomic analysis of tissue samples 

with a high proliferation index correlated with low concentrations of glucose. 

3.2. Correlation with Response to Neoadjuvant Therapy 

Metabolic profiling of breast tumor tissue using HR-MAS has been correlated with 

pathological response to neoadjuvant therapy in several studies (Table 2). In the study by 

Choi et al. [85], patients who achieved a pathological complete response (pCR) following 
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neoadjuvant chemotherapy and subsequent surgery were compared with patients 

without a pCR result. No significant differences in the metabolite concentration of pre-

treatment samples were found between responders and non-responders. Moreover, the 

metabolomic profile was not able to predict pCR prior to neoadjuvant treatment in a study 

of Euceda et al. [86]. However, pre-treatment biopsies of responders showed lower levels 

of glucose and higher levels of lactate compared with non-responders. Responders also 

showed an increase in glucose, lactate, and glutamine levels after treatment, and a 

decrease in phosphocholine, choline, and succinate. Cancer cells preferentially switch 

from anaerobic to aerobic glycolysis as result of the Warburg effect [122]. This 

phenomenon is associated with rapid glucose consumption and increased lactate 

production. As such, the lower levels of glucose and higher lactate found in pre-treatment 

samples of responders could reflect a more malignant metabolic profile that paradoxically 

also makes cells more sensitive to chemotherapy. The increase of glucose observed after 

treatment may be an expression of lower glucose consumption. 

Cao et al. [87] showed that the pre-treatment levels of total choline (tCho) were higher 

in patients with tumors responsive to neoadjuvant chemotherapy than those with non-

responsive tumors. Moreover, there was a reduction of tCho levels from pre-treatment to 

post-treatment samples in patients with partial response while this was not observed in 

patients with stable disease. However, these differences were not statistically significant. 

Conversely, glycerophosphorylcholine (GPC) was significantly decreased in post-

treatment samples of patients in the responder group. The tCho signal is involved in 

cellular membrane turnover, therefore a decrease in tCho levels after treatment could 

suggest lower cellular proliferation. 

3.3. Correlation with Survival 

In the study by Giskeodegard et al. [88], the metabolic profile of BC tissue was 

correlated with 5-year survival rates. Higher levels of lactate and glycine were found to 

be associated with worse prognosis in patients with ER-positive BC undergoing upfront 

surgery without any prior treatment. This was not observed in the ER-negative subgroup, 

likely due to the small number of patients (n = 24), whilst also reflecting the metabolic 

differences between ER-positive and ER-negative tumors. 

Similar results were found by Cao et al. [89]. In this study, increased levels of lactate 

on post-treatment tumor samples were associated with worse prognosis (survival < 5 

years), while reduced levels of glycine and choline containing compounds correlated with 

better prognosis. Patients disease-free after five years of follow up also showed increased 

levels of glucose in response to treatment, in comparison with non-survivors. Conversely, 

pre-treatment metabolic analysis of tumor samples gave no prognostic information, 

suggesting that the difference observed between survivors and non-survivors resulted 

from a metabolic response to treatment. In this study, the impact of ER status on metabolic 

profile variations in response to treatment was not investigated. 

Debik et al. [92] analyzed tissue samples from 132 women undergoing neoadjuvant 

chemotherapy. The metabolic profile of tumor biopsies detected during treatment was 

predictive of 5-year survival. In concordance with previous studies, patients with short 

survival had higher lactate and glycine levels in comparison with disease-free patients at 

five years. Increased lactate levels after treatment may reflect the activation of aerobic 

glycolysis and tumor response to hypoxia that led to high tumor aggressiveness and poor 

prognosis. Conversely, decreased glycine and tCho levels in response to treatment may 

be related to altered glycolysis and reduced cell proliferation, as an expression of lower 

disease aggressiveness and better prognosis. 

3.4. Correlation with Transcriptomics and Proteomics 

Metabolomics has been combined with transcriptomics and proteomics to better 

characterize breast tumors and to identify the mechanisms underlying BC heterogeneity. 



Int. J. Mol. Sci. 2021, 22, 4687 10 of 24 
 

 

Metabolite, gene expression, and protein data from 228 BC samples were analyzed 

by Haukaas et al. [90]. At the time of sample collection, patients had not received any 

treatment. HR-MAS identified three distinct metabolic clusters (MC1, MC2, and MC3). 

MC1 was characterized by the highest levels of GPC and phosphocholine (pCho); glucose 

was the most concentrated metabolite in MC2; glycine, alanine and lactate were 

predominant in MC3. These three clusters showed different expression of genes involved 

in glycolysis, gluconeogenesis, and glycerophospholipid metabolism, and genes related 

to extracellular matrix. They also expressed different cancer-related proteins. However, 

there were no significant differences in the distribution of PAM50-characterized 

molecular subtypes between the clusters. In a previous study merging transcriptomics 

and metabolomics [71], three subgroups of luminal A tumors with different metabolic 

profile and gene expression were identified. Thus, this supports the premise that 

metabolomics adds relevant information to transcriptomics and proteomics, in turn 

contributing to a more refined subclassification of breast tumors. 

3.5. Correlation with Quantitative Conventional Breast Imaging 

In the study by Yoon et al. [91], 53 BC specimens derived from pre-treatment core 

needle biopsies (CNB) were analyzed with HR-MAS. The metabolomic profile of each 

lesion was then correlated with conventional quantitative breast imaging parameters. It 

was shown that patients with high signal enhancement ratio (SER) at MRI with dynamic 

contrast enhanced (DCE), and with high FDG uptake value (SUV) at PET-CT scan, had 

higher levels of phosphatidylcholine (PC), choline and glycine. Choline was significantly 

correlated with SER, while PC correlated with SUV. Both these correlations were justified 

by the role of choline and PC in cell membrane synthesis, required for tumor cell 

replication and angiogenesis. High SER and SUV levels have been related to poor 

prognostic markers; therefore, choline and PC could be promising metabolites to be used 

to predict poor prognosis. 

4. NMR Metabolomics of Blood Plasma/Serum 

Circulating blood metabolites and lipoproteins may not only reflect the tumor 

metabolism, but more likely may provide a systemic picture of the fine balance between 

the tumor and the host metabolism considering the global physiological and 

immunological conditions of each patient with BC. For all these reasons, several aspects 

of the NMR-based metabolomic signature of BC in plasma/serum have been explored as 

providing novel insight into the molecular aspects of this disease. 

4.1. Characterization of the Metabolomics Profile of BC Patients 

Blood NMR-based metabolomics have been shown to have potential of 

distinguishing patients with BC with respect to healthy controls (HC) with high 

discrimination accuracies [94,95,98,111,115]. The levels of several circulating amino acids, 

and glyco- and lipo-proteins, have been shown to be statistically significantly altered in 

patients with BC (Table 4), implying a disruption of energetic homeostasis and amino acid 

metabolism to support cancer growth and evolution [94,95]. Recently, Jobard et al. [100] 

reported perturbations in circulating plasma metabolites prior to a breast cancer diagnosis 

in a population of 791 breast cancer cases and 791 matched controls. These alterations 

involved particularly histidine, N-acetyl glycoproteins (NAC), glycerol, and ethanol, but 

are statistically significant only in the premenopausal subgroup. 

The metabolome of specific BC molecular subtypes has been also investigated. Study 

of the metabolomic profile of patients with triple-negative BC has further refined the 

molecular characterization of this BC subtype that accounts for 10–22% of all diagnosed 

BC and has the worst survival rate [115]. A recent study on plasma unravels how ER status 

impacts on the metabolomic profiles of patients with HER2-positive BC, with 

metabolomic data also studied in association with levels of circulatory cytokines [99]. 
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Blood metabolomics has also shown how high expression of the receptor for the inositol 

1, 4, 5 Trisphosphate, of which deregulation promotes tumor growth and aggressiveness, 

influences the host system metabolome by increasing lipoprotein content and the levels 

of lactate, lysine, and alanine and by decreasing the levels of pyruvate and glucose [111]. 

Important efforts have been made in order to describe the differences on 

plasma/serum metabolome across EBC and metastatic breast cancer (MBC) 

[97,105,108,110,113]. These two groups of patients can be discriminated by NMR 

metabolomics with high accuracy, and as reported in Table 4, several metabolites showed 

statistically different levels in patients with EBC and MBC, implying a progressive 

disruption and rewiring of several metabolic pathways following the evolution of the 

disease. 

4.2. Blood Metabolomics: Prognosis and Risk of Relapse 

Of interest to clinicians is the potential of metabolomics from a prognostic point of 

view. Metabolomics could provide the ability to discern between patients with EBC at 

high risk of recurrence, and those who may be cured by locoregional therapy alone. In the 

current era of precision medicine, this would represent an invaluable tool for clinicians, 

who may in turn offer more aggressive adjuvant therapies to the former group and 

sparing the latter from treatments whose benefit–risk ratio is poor [123,124]. In 2010, the 

first evidence supporting the usefulness of metabolomics as a potential biomarker of 

recurrence was published by Asiago and coauthors [40]. In this retrospective analysis, a 

PLS-DA model built using 11 metabolites provided a sensitivity of 86% and a specificity 

of 84% in discriminating patients with previous EBC free from disease at six years and 

patients with disease relapse. Of note, 55% of patients were correctly predicted to develop 

recurrence about 13 months before the clinical diagnosis of the same. 

Over the past years our group has pursued this research line establishing a 

reproducible method of quantifying individual serum metabolomic fingerprints and 

demonstrating, in monocentric and multicentric cohorts of patients, its ability to 

accurately discriminate between MBC and EBC [105,109,110,113]. Furthermore, our data 

have shown that patients with EBC classified as “metastatic” on the basis of their 

metabolomic fingerprints presented high risk of disease recurrence. Thus, we 

hypothesized that EBC patients with occult micro-metastatic disease may already have 

features of the metastatic signature in their metabolomic fingerprint, and that this 

signature may be predictive for relapse. Following this approach, in a monocentric cohort 

of ER negative EBC patients we were able to predict cancer relapse with 82% accuracy 

[113]. These results have been reproduced obtaining 71% predictive accuracy by analyzing 

serum samples collected in several centers in South-East Asia, as a part of an unrelated 

Phase III adjuvant trial, from an heterogenous group of patients with mainly ER positive 

EBC [105]. Moreover, we have demonstrated that the serum NMR-based metabolomic 

fingerprinting approach can be effectively utilized to further refining the genomic risk of 

relapse predicted using the OncotypeDX 21-gene expression assay risk recurrence score 

[109]. 
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Table 4. List of altered metabolite levels identified in plasma/serum samples of BC patients to study several aspects of this pathology. 

Metabolite 

BC vs. CTR 

ER

+ 

vs. 

ER

− 

MBC vs. EBC REL vs. NR 

Response to Chemotherapy 

PR vs. GR Changes during Treatment 

[115] [98] [95] [94] [111] [100] [99] [97] [98] [105] [108] [110] [113] [105] [102] [112] [106] 
[92] 

(NAC) 

[114] 

(NAC) 

[99] 

(NAC) 

[92] 

(NAC) 

[92] (NAC + 

Bevacizumab) 

[107] (Trastuzumab+ 

Everolimus) 

3-hydroxy- 

2-Methyl-butanoic acid 
              ↓         

3-Hydroxybutyrate          ↑ ↑    ↓       ↑  

Acetate          ↑       ↓    ↓↑↑  ↓ 

Acetoacetate ↑          ↑          ↓↑↓ ↑ ↓ 

Acetone ↓  ↓                    ↑ 

Alanine ↓   ↑ ↑     ↑ ↓            ↓ 

Albumin Lysyl                       ↓ 

Apo-B       ↑             ↑    

Arginine  ↑ ↑                     

Betaine           ↓            ↓ 

Cholesterol       ↑             ↑    

Choline          ↑    ↑ ↓        ↓ 

Citrate ↑                 ↑   ↓↓↓  ↓ 

Creatine   ↑       ↑           ↓↑↑  ↓ 

Creatinine   ↑    ↑   ↑           ↓↑↑  ↓ 

Dimethylglutarate                     ↑↓↑   

Ethanol      ↑              ↑    

Formate  ↓        ↑     ↓  ↓    ↓↓↓ ↓  

Glucose ↑ ↑ ↑  ↓   ↑  ↓  ↑ ↑   ↓       ↓ 

Glutamate ↓ ↑   ↑    ↑ ↑ ↑   ↑ ↓ ↑        

Glutamine ↑ ↓ ↑     ↓  ↓         ↑     

Glycerol      ↑     ↑             

Glycerol-derived 

compounds 
  ↓                    ↑ 

Glycerophosphocholine                       ↓ 

Glycine  ↓       ↓ ↑    ↑       ↑↑↓   

Glycoproteins   ↓                     

Histidine      ↑    ↑ ↓  ↓ ↑ ↓   ↓ ↓  ↓↑↑  ↓ 

Isoleucine  ↓        ↑    ↑     ↓ ↑ ↑↓↓  ↓ 

Lactate ↓ ↑  ↑ ↑   ↓ ↑ ↑   ↑ ↑ ↑      ↑↓↓   
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Leucine          ↑    ↑       ↑↓↑ ↑  

Linolenic acid                   ↑     

Lipids  ↑ ↓ ↑ ↑      ↑ ↓ ↑          ↑ 

Lipoproteins  ↑ ↓                    ↑ 

Lysine  ↑ ↑  ↑   ↓    ↑         ↑↓↑  ↓ 

Mannose           ↑            ↑ 

Methanol                       ↓ 

Methionine          ↑           ↓↑↑   

Myo-Inositol                       ↓ 

N-acetyl glycoproteins  ↑   ↓ ↑   ↑  ↑            ↑ 

N-Acetyl-Cysteine            ↑            

N-Acetyl-Glycine               ↓         

Nonanedioic acid               ↓         

Ornitine                     ↓↑↑   

Phenylalanine          ↑ ↑ ↑  ↑  ↑  ↓   ↓↑↑  ↓ 

Phospholipids       ↑             ↑    

Proline          ↑  ↑   ↓        ↓ 

Pyruvate     ↓   ↓   ↑          ↓↓↑   

Threonine                   ↑     

Triglycerides                    ↑    

Tyrosine ↓ ↑        ↑   ↑ ↑ ↑        ↓ 

Unsaturated lipids   ↓                     

Valine  ↓ ↑ ↑          ↑      ↑ ↓↑↑  ↓ 

BC: breast cancer; CTR: control; ER: estrogen receptor; PR: poor responders; GR: good responders; NAC: neoadjuvant chemotherapy; MBC: metastatic BC; 

EBC: early BC; REL: relapse; NR: no relapse. ↑/↓ higher/lower level in the first group of each comparison.
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4.3. Pharmacometabolomics in Breast Cancer Setting 

The application of metabolomics for the study of drug effects and response—the so-

called pharmacometabolomics—can contribute to personalized drug therapy [125], with 

relevant examples of its applications in the setting of BC already having been published. 

The primary aim of metabolomics in this context is to predict which patients will benefit 

most from a specific treatment. First in 2012, our group demonstrated that metabolomics 

may play a role in identifying patients with MBC with HER2-positive disease with a 

greater sensitivity to paclitaxel plus the anti-HER2 agent lapatinib [112]. Jiang and 

colleagues utilized NMR-based pharmacometabolomics to predict response to 

gemcitabine/carboplatin chemotherapy in a population of 29 patients with MBC. Baseline 

serum levels of formate and acetate were identified as potential predictive biomarkers of 

chemotherapy response [106]. In postmenopausal BC women treated with chemotherapy, 

the combination of lactate, alanine, and glucose has been associated with cancer 

progression [104]; moreover, high basal lactate levels were correlated with weight gain in 

postmenopausal women receiving chemotherapy [101]. 

More recently, some metabolomics studies have focused their attention on 

neoadjuvant chemotherapy (NAC). In breast cancer, NAC has become the approach of 

choice for patients with large primary tumors and for locally advanced disease [126]. The 

neoadjuvant approach offers the advantage of downstaging disease and reducing the size 

of tumors prior to surgery, thus making patients with inoperable tumors candidates for 

surgical resection or enabling breast-conserving surgery rather than mastectomy [92,126]. 

However, less than 30% of patients overall show complete pCR to NAC [114], with lower 

rates of response found in ER-positive, HER2-negative disease. Published metabolomic 

studies have been targeted at predicting response to NAC to enable the development of 

personalized treatment protocols, and at characterizing the effects of NAC on the 

metabolome [92,99,107,114]. Plasma/serum metabolomics has been shown to be effective 

in predicting pCR in different NAC regimes [99,114]. Moreover, it has been demonstrated 

that NAC induces relevant changes in patient metabolism during treatment, and that 

these alterations also persist some weeks after the completion of systemic therapy [92,107]. 

In particular, in the study conducted by Jobard et al. [107], the effects of trastuzumab and 

everolimus in combination were associated with alterations that involve several metabolic 

pathways reflecting a systemic effect, particularly on the liver and visceral fat. 

4.4. NMR Lipidomics in Breast Cancer 

Lipidomics represents a relatively new and promising complement to the more 

classical NMR metabolomics. In this particular setting, MS has been for a long time the 

preferred technology, however recent advancements on NMR analysis of blood plasma 

and serum have permitted its wider use. The Bruker IVDr Lipoprotein Subclass Analysis 

platform™ (Bruker Biospin) has enabled a fast and reliable quantification of the main 

lipoprotein parameters and their subfractions. This tool utilizes a chemometric approach 

based on a PLS regression model to perform lipoprotein subclass analysis on 1H NMR 

NOESY spectra [64,127]. 

The lipoproteins analysis via NMR was capable of providing further insights into the 

host metabolic alterations induced by different clinicopathological factors: HDL 

subfraction contents were strongly associated with PgR expression, whereas Ki67 

expression was inversely associated with HDL phospholipids. Conversely no correlation 

was observed between lipoproteins and ER expression. This metabolic information could 

be relevant to characterize breast tumor aggressiveness and prognosis [116]. Moreover, it 

has been observed that women characterized by lower plasma levels of lipoproteins, 

lipids, glycoproteins, acetone, glycerol-derived compounds, and unsaturated lipids 

present a higher risk of developing BC over time [95]. 

Relevant alterations of the lipoproteins’ profiles of BC patients were also observed in 

association with chemotherapy treatments. In particular, alterations of HDL, LDL, VLDL 
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cholesterols and triglycerides were observed during and after treatments. These 

observations were hypothesized to be related to inflammation processes and lipids 

homeostasis [107,117]. 

5. NMR Metabolomics of Urine 

Although urine samples can be easily and non-invasively collected in large volumes, 

and require minimal pre-analytical and analytical preparation, the NMR-based urinary 

metabolome of patients with BC is relatively unexplored to date. Indeed, database 

research located only four published research articles. 

In 2010, Slupsky and coauthors [121] described for the first time the urinary metabolic 

phenotype of a population of 48 patients with BC via NMR. Patients with BC in 

comparison to controls showed significantly lower levels of several metabolites (Table 5). 

However, the BC group was very heterogenous in terms of histologic types (including 

both invasive ductal and lobular carcinoma, as well as ductal carcinoma in situ), lymph 

node status (10 patients had at least one positive lymph node), and age (ranging from 30 

to 86). These factors, if not properly considered, can present significant confounding 

factors. To date, other three research articles (Table 1) have been published [118–120] 

comparing the metabolic profiles of patients with BC to those of healthy controls. These 

studies confirmed the reduction of excretion levels of several metabolites, with the 

exception of citrate which showed a controversial trend (Table 5). The study by Men and 

coauthors [119] also examined the urinary levels of heavy metals, with As, Cd, and Cr 

significantly increased in the urine of patients with BC compared to controls. This finding 

suggests that urine concentrations of heavy metals and BC development could be 

associated. 

Although these published results are thought provoking and point to relevant 

metabolite dysregulations in patients with BC, no large-scale study—mono- or 

multicenter—has been performed to date. Moreover, clinically relevant markers and 

outcomes (i.e., cancer stage, cancer recurrence, response to therapy) have never been 

explored via urine metabolomics. 

Table 5. List of altered metabolite levels identified in urine samples of BC patients with respect to healthy controls. 

Metabolite 
Studies on Urine Samples 

[119] [120] [121] [118] 

2-oxoisocaproate ↓    

3-methylglutarate ↓    

4-cresol sulphate  ↓   

4-hydroxyphenylacetate   ↓  

acetate  ↓ ↓  

acetone  ↓   

alanine ↓ ↓ ↓  

asparagine   ↓  

betaine  ↓   

carnitine  ↓   

choline  ↓   

cis-aconitate  ↓   

citrate  ↓  ↑ 

creatine  ↓ ↓  

creatinine ↓ ↓ ↓  

dimethylamine ↓ ↓ ↓  

ethanolamine   ↓  

formate  ↑ ↓  

glucose   ↓  

glutamate (n-acetylaminoacides) ↓    

glutamine ↓ ↓   
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glycine ↓ ↓   

guanidoacetate  ↓  ↓ 

hippurate ↓  ↓  

histamine ↓    

hypoxanthine  ↓   

isoleucine ↓  ↓  

lactate  ↓ ↓  

leucine ↓  ↓  

levoglucosan   ↓  

lysine ↓    

malonate ↓    

mannitol  ↓   

methylhistidine ↓    

phenylacetylglycine    ↓ 

pyroglutamate   ↓  

pyruvate  ↓   

serine  ↓   

succinate  ↓ ↓  

sucrose   ↓  

taurine ↓ ↓   

threonine  ↓ ↓  

trans-aconitate   ↓  

trigonelline  ↓   

trimethylamine n-oxide ↓ ↓   

uracil   ↓  

urea   ↓  

valine ↓ ↓ ↓  

α-hydroxybutyrate  ↑   

α-hydroxyisobutyrate  ↓   

α-oxoglutarate  ↓   

β-hydroxyisobutyrate ↓    

β-hydroxyisovalerate  ↓   

↑/↓ higher/lower level in the first group of each comparison. 

6. Translation of NMR-Based Metabolomics in Clinics 

This review aimed at highlighting the relevant results obtained using metabolomics 

by NMR in the BC setting and the possible role of this approach in the clinical practice. 

BC is the most common type of cancer and the second most common cause of death 

in women worldwide [128]. Early detection and prompt treatment has been associated 

with a significantly improved prognosis observed over time in patients with BC. 

The serum tumor markers, CEA and CA 15.3, are routinely used in therapy 

monitoring and follow up of patients with BC; conversely, their sensitivity and specificity 

for early diagnosis are poor [129]. Mammography is considered the gold standard in BC 

screening, however it has a sensitivity of 86.9% with relevant variability depending on 

tissue density and age [130]. 

Malignant tumors are characterized by increased gluconeogenesis, glycolysis, and fat 

mobilization, and decreased protein synthesis. The results described in the previous 

paragraphs show that these metabolic changes peculiar to malignant neoplastic change 

can be detected by metabolomics. Metabolomics is able to discriminate between cancer 

and normal breast tissue from the same patient with accuracy, sensitivity, and specificity 

around 90% [73]. Moreover, the metabolite analysis of blood and urine samples from BC 

patients differs significantly from healthy controls [94,95,98,111,115,131,132]. This 

evidence offers potential for the use of metabolomics, a minimally invasive technique, for 

early diagnosis of BC in the general population [133]. 
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BC is a heterogeneous disease with high variability in prognosis and response to 

treatment driven by genetic, epigenetic, and phenotypic differences. The identification of 

the mechanisms underpinning this heterogeneity support the development of new drugs 

targeted to specific subgroup of patients, with the final aim to improve patient outcome. 

Transcriptomics and proteomics have attempted to classify breast tumors according to 

gene expression (intrinsic molecular subtypes—[134]) and protein expression (RPPA 

subtypes—[135]). As shown in the previous sections of this review, metabolomics can 

provide additional information to these -omics, leading to a deeper tumor 

characterization. ER and HER2 status are well estimated by metabolite analysis [79]. In 

addition, metabolomics can identify metabolic clusters within breast tumors, not 

reflecting the intrinsic molecular subtypes, but presenting significant differences in gene 

expression and protein expression profiles, and unique susceptibility to metabolically 

targeted drugs [90]. 

Neoadjuvant chemotherapy is commonly used to treat BC, not only for downsizing 

tumors, but also for the potential to monitor individual drug response. Moreover, in 

selected molecular subtypes, the achievement of a pCR after neoadjuvant treatment 

correlates with excellent long-term outcomes and a lower risk of disease recurrence [136]. 

Currently HER2 positivity, triple negative subtype, high Ki67, and the presence of tumor 

infiltrating lymphocytes (TILs) are the biomarkers most frequently used in recommending 

neoadjuvant chemotherapy. Predicting response to chemotherapy can spare patients with 

unresponsive disease from unnecessary side effects. Metabolomics was shown to play a 

role in predicting response to NAC. 

We have summarized in this review that metabolomic profiling of serum samples 

collected before neoadjuvant chemotherapy was able to predict response in two small 

cohorts of patients. The first cohort was unselected for molecular subtype [114], while the 

second included only HER2-positive breast tumors [137]. The potential role of 

metabolomics in predicting response to treatment was also evaluated on breast tumor 

tissue. This analysis demonstrated that tumor metabolism changed significantly in 

response to neoadjuvant treatment. Metabolomic analysis on post-treatment tissue 

samples was able to discriminate between patients who experienced disease response to 

treatment and those who had non-responsive cancer. However, metabolomic analysis of 

pre-treatment tumor biopsies was not predictive probability of response to chemotherapy 

[85–87]. 

Developing prognostic biomarkers is one of the focuses of metabolomics in BC. 

Clinicopathological features are used to predict the risk of recurrence or development of 

metastatic disease. More recently, gene-expression assays such as Oncotype DX and 

Mammaprint have been introduced in clinical practice to refine risk estimation and 

prediction from adjuvant chemotherapy. However, these assays are time consuming, 

expensive, and can overestimate the risk of recurrence [138]. In addition, they are 

estimated on the primary tumor tissue and cannot identify the presence or absence of 

occult micro-metastases. Metabolomics can contribute to overcoming these limitations. As 

already detailed in the above paragraphs, our group developed a metabolomic score that 

classified patients as high or low risk of recurrent disease on the basis of the degree of 

metabolomic similarities with MBC fingerprints [105,113]. A high metabolomic score 

correlates with increased risk of recurrence and worse disease-free survival. Moreover, 

this metabolomic risk score can be used to sub-stratify the three Oncotype DX risk 

categories [109]. 

However, how far are we now from adopting NMR-based metabolomics as a 

population-wide screening method? The conceptual distance from the present situation 

to this ambitious goal is still wide, but it can be bridged by working in two directions: first 

it is necessary to standardize both the pre-analytical and the analytical procedures. 

Indeed, the biochemical composition of biospecimens is affected by how samples are 

collected, stored, prepared, and analyzed, and consequently differences in these steps can 

be particularly detrimental in multi-center studies [139]. Specifications for pre-
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examination processes for metabolomics in urine, venous blood serum and plasma have 

been already published by CEN (CEN/TS 16945:2016) [140]; however, these 

recommendations are still not universally employed. Secondly, to increase the robustness 

and the reliability of the results already provided, well-planned, large-scale, multicenter, 

population-based studies in which all heterogeneous BC patient groups are well 

represented are needed. NMR-based metabolomics is a fast, high-throughput, robust, and 

reproducible technique, thus moving from the analysis of hundreds to thousands of 

samples is realistically an approachable target [19,141]. 

7. Conclusions 

The NMR-based metabolomics studies presented in this review have demonstrated 

that a metabolic signature of BC exists and can be detected in breast tissue, blood 

serum/plasma, and urine. This approach has the potential to improve early diagnosis of 

BC, to allow early prediction of recurrence and estimating prognosis, and to further 

stratify the heterogenous spectra of BC patients and the individual response to 

(neo)adjuvant treatments. Metabolomics by NMR can play a pivotal role in precision 

oncology and it is mature enough to support, and eventually sub-stratify, the 

identification of risk groups obtained by clinical and genomic tools already in use. 
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