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Simple Summary: Research on plant epigenetics aims to understand how endogenous, biotic, and
abiotic factors regulate plant development and growth independent of changes in the genome
sequence. Often, the epigenetic changes are heritable across generations and modulate plant growth
and crop tolerance, particularly in response to environmental stimuli. To take advantage of epigenetic
adaptation, recent research has focused on implementing targeted epigenetic diversity to engineer
plants that harbour advantageous traits for optimal crop production. Epigenetics has the potential
to provide a powerful toolbox for crop breeders; however, most mechanistic studies are based on
information from model plant species due to the challenges that arise when working with crops.
Here, we summarise the contribution of epigenetics to optimising crop adaptation in response to
climate change and overview potential future applications as well as challenges.

Abstract: Epigenetics has emerged as an important research field for crop improvement under the
on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence
alterations and have been associated with altered gene expression and transmitted phenotypic varia-
tion. By modulating plant development and physiological responses to environmental conditions,
epigenetic diversity—naturally, genetically, chemically, or environmentally induced—can help opti-
mise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the
epigenetic modifications may contribute to breeding by providing useful markers and allowing the
use of epigenome diversity to predict plant performance and increase final crop production. Given
the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to
crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated
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to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration
to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression
of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop
production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides
fundamental molecular information with potential direct applications in crop enhancement, tolerance,
and adaptation within the context of climate change.

Keywords: breeding; climate change; DNA methylation; epigenomics; memory; plant epigenetics;
prediction models; priming

1. Introduction

Based on the Paris Agreement in 2015, the United Nations agreed to limit global
warming to 2.0 ◦C with the ambition to attempt to cap warming at 1.5 ◦C (UNFCCC, 2015).
Greenhouse gases (GHGs) released from human activities are universally recognised as
the most significant driver of shifts in climate change observed since the mid-20th century
(IPCC, 2013). Agriculture, forestry, and other land uses are responsible for almost a quarter
of anthropogenic GHG emissions [1], and a reduction in agriculture-derived emissions
is essential for limiting global warming [2]. On the other hand, numerous studies have
shown that agricultural crop production and food security is one of many sectors already
affected by climate change [3–5]. Recent reports on the impact of climatic trends on wheat,
maize, and barley yields based on new statistical and empirical models revealed a negative
response of global yields to increased temperatures [6,7]. Besides global warming, biotic
constraints, such as pathogens, pests, and weeds, can be detrimental to crop production
worldwide. Numerous studies on different crops, such as soybean [8], have revealed the
effect of pathogens, pests, and insects on annual soybean production worldwide, and on
wheat and cotton, where pest attacks are responsible for damaging more than 50% or 80%
of the annual production [9]. A global strategy to minimise major crop losses by optimising
crop protection and resilience in response to biotic and abiotic stresses is essential for
safeguarding future food availability [10]. To face these biotic and abiotic constraints,
emergence for improved adaptation and selection of superior genotypes through the study
of epigenetics will have a significant impact on future crop sustainability.

In eukaryotes, including plants, genomic DNA is tightly packaged into a dynamic but
stable nucleoprotein complex, known as chromatin, whose conformation enables DNA
accessibility and controls all DNA-based activities [11]. The primary structural unit of
chromatin compaction is the nucleosome, comprising DNA wrapped around a core of
eight highly conserved histone molecules. The level of nucleosome occupancy orchestrates
chromatin accessibility to the transcriptional machinery and to other regulatory proteins,
thus affecting gene availability for transcription. In this context, “epigenetic” can be de-
fined as mitotically and/or meiotically heritable changes in gene function that cannot
be explained by changes in DNA sequence. Then, modulators of chromatin compaction
are regarded as epigenetic marks, including DNA methylation, histone modifications,
chromatin remodelers, and to some extent small RNAs [12]. DNA methylation is defined
by the covalent addition of a methyl group (CH3) to the fifth position of a cytosine ring
(5 mC) by DNA methyltransferases without altering the DNA sequence [13–15]. His-
tone variants and post-translational modifications (PTMs) [16], such as phosphorylation,
acetylation, and methylation, are essential elements of the chromatin signalling path-
way. Lastly, RNA molecules are either small RNAs (small interfering RNAs-siRNAs and
microRNAs-miRNAs) or long non-coding RNAs (long ncRNAs) and have been demon-
strated to contribute to phenotypic changes. All these epigenetic marks are closely linked,
acting together to coordinate gene activity at the transcriptional level, and regulate dif-
ferent cellular processes, such as DNA replication and repair, stem cell maintenance, the
establishment of cell identity, and tissue and organ development and differentiation, but
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also responses to environmental stimuli [17]. The main benefit derived from the dynamic
nature of epigenetic networks is associated with the stability and reversibility of chromatin
modifications. The stability of these changes is essential for maintaining epigenetic memory
(somatic memory and inter/transgenerational memory), which allows cells to maintain
their identity during plant development and “remember” favourable alterations leading
to a selective advantage. The reversible nature of epigenetic changes confers plasticity,
enabling differentiated cells to regain totipotency, and adequately respond and adapt to
internal and environmental stimuli [18].

The relevance of epigenetic regulation to crop breeding has been demonstrated, for
example, by its effect on growth vigour and yield in tomato [19]. Silencing of the MutS
HOMOLOG1 (MSH1) gene in tomato using RNAi results in enhanced plant growth and
productivity, even in the absence of the transgene. Total fruit weight and number are
increased under field conditions. In addition, under high-temperature field conditions,
the MSH1-silenced line produced a higher proportion of red ripe fruits, similarly to the
FLA8044 heat-tolerant cultivar. These phenotypic changes are linked to DNA methylation,
as the methylation inhibitor 5-Azacytidine (5-AzaC) represses the observed phenotypes [19].
In a later study, it was shown that METHYLTRANSFERASE 1 (MET1) and HISTONE
DEACETYLASE 6 (HDA6) are essential components of these changes [20]. In Arabidopsis,
MSH1 mutants displayed enhanced tolerance to drought and salt stress, and increased
susceptibility to freezing temperatures [21]. This example, along with various others
(Table 1), highlights the link between epigenetics and multiple important traits, as well
as the potential of epigenetics in crop breeding. Additional examples demonstrating the
importance of epigenetic regulation of crop resilience and productivity to environmental
and endogenous factors are anticipated to be uncovered in coming years.

According to the facts stated above, this review aims to decipher the contribution of
epigenetics to crop adaptation in response to climate change, which is already affecting or
will have a significant impact on crop production. Here, we present a series of different
examples of how epigenetics can be applied to improve crop productivity in the following
three sections:

Firstly, we discuss the physiological significance of epigenetic changes regulating
all aspects of plant development and responses to adverse environmental conditions in
the model plant Arabidopsis in relation to phenotypic variation and plant reproduction.
Potential applications of our knowledge to economically important crop species towards
fulfilling crop improvement requirements in an era of global climate change.

Secondly, we present the current knowledge about epigenetic diversity in the view of
different aspects, such as: (a) the naturally occurring epialleles and their connection with
important phenological traits, (b) the usage of chemicals and modification of epigenetic
diversity, (c) the usage of epimutations as a source of transgenerational inheritance potential
of epigenetic marks in crops, (d) environmental conditions which are associated with
epigenetic diversity through priming and local adaptation, (e) how clonal propagation is
associated with epigenetic diversity/DNA methylation and phenotypic divergence and
inheritance, and (f) the significance of epi-biomarkers as a tool for predicting superior
hybrid performance or as a diagnostic tool, at early developmental stages, for undesired
phenotypes in clonally propagated material with high economic impact.

Finally, an overview of how molecular strategies can be improved and implemented
in order to study epigenetics more efficiently and to use epigenetic-based approaches for
crop improvement is highlighted in this study. These strategies include: (a) approaches and
strategies for dissecting detailed epigenetic mechanisms, (b) efficient correlation between
phenotypes and epigenome status through modelling, (c) prediction of epigenetically
controlled adaptive traits, and (d) epigenome editing.

2. From Epigenetics to Crop Improvement: Lessons from Arabidopsis and Other
Model Plant Species

Key advances in our understanding of plant epigenetic machinery derive from species
adopted as models in plant biology, such as Arabidopsis thaliana [22], Brachypodium distachyon [23],
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Lotus japonicus [24], and Medicago truncatula [25,26]. Other species that represent crop mod-
els including Oryza sativa [27], Zea mays [28,29], Triticum aestivum [30], Glycine max [31], and
Solanum lycopersicum [32] provide a source of valuable information about plant-specific epige-
netic phenomena and regulators (Table 1). Delivering fundamental knowledge across different
aspects of plant adaptability to environmental cues mediated by heritable epigenetic variance
will greatly help in improving agriculturally desired developmental or stress-related crop traits
(Figure 1).

Figure 1. How the development of epigenetic data and tools will lead to epi-bred crops and new varieties in the field
adapted to climate change. Section to find each topic in the review is indicated. In brown are indicated data already
supporting epigenetics for breeding, in blue the uses of epigenetics for crop improvement (actually under development),
and in purple the post-production steps until new varieties in the field (future challenge).

2.1. Epimutations Contribute to Phenotypic Variation in Model Plants

Similarly to genetic mutations, epimutations can occur spontaneously or in an induced
manner, and be transmitted to the next generations, producing new epigenetic alleles (epial-
leles), which provide additional sources of phenotypic diversity [33,34]. Some spontaneous
somatic epimutations accumulate during development in an age-related manner [32]. In
A. thaliana, their number at individual CG dinucleotides is approximately five orders of
magnitude greater than the genetic mutation rate [34,35]. In general, changed methylation
at a single cytosine residue does not trigger phenotypic alterations in plants. However,
methylation changes affecting large genomic regions have been associated with altered
gene expression and heritable phenotypic variations. In the model plant A. thaliana, such
region-level epimutations can occur in CG and non-CG sequence contexts, and have similar
rate and spectrum as single cytosine epimutations, which imply their independence from
genetic mutations. The region-level changes display strong dependence on chromosomal
location, with the highest accumulation in genes and chromosome arms, and the lowest in
centromere-specific TEs [36]. Therefore, region-level epimutations provide an additional
source of methylome and phenotypic diversity in A. thaliana [37]. Interestingly, in the
long-lived perennial tree Populus trichocarpa, the rates of epimutations per-year are lower
than in A. thaliana, which has been proposed to be attributed to the limited number of
meristematic cell divisions during the tree lifespan as a protection mechanism against
environmental mutagens [38]. The same authors conclude that transgenerationally heri-
table somatic epimutations derive mainly from aberrant DNA methylation maintenance
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during mitotic cell divisions. On the other hand, a study with two mutation accumulation
lines in A. thaliana has shown that methylated genome regions are stably inherited across
generations, and spontaneous epialleles are rarely observed [39], which is consistent with
very recent results on rice hybrids [40]. Spontaneous epimutations that are linked with
variations in gene body methylation, mostly in the CG sequence context, frequently do not
have functional outputs for the plants [41]. On the other hand, the epi-variants related to
transposable elements (TEs) can lead to a loss of DNA methylation in all three sequence
contexts, forming potentially stable epialleles that transmit across generations [42]. Thus,
stable epi-allelic inheritance tends to rely on the total loss of DNA methylation. Interest-
ingly, Wendte [43] has shown another mechanism that includes initiation of gene body
methylation and induction of genic CG epimutations by CHROMOMETHYLASE 3 (CMT3),
which can be maintained over generational time.

Epimutations can arise as a consequence of environmental fluctuations, and then can
be transmitted to the progeny. Transgenerational epiallelic stability has been observed in a
single trait linked to seed dormancy upon drought exposure of Arabidopsis [44]. Similarly,
multi-generational rice drought treatment resulted in epimutations maintaining changed
methylation status in the next generations, as many of them are detected in loci associated
with drought resistance [45]. Some of these epimutations may have adaptive potential to
drought stress, and could be considered as epigenetic markers for predicting rice drought
response. Salinity stress has been reported to induce demethylation of certain regions
in the Arabidopsis genome, as part of salt-induced responses that are transmitted to their
progeny through the female germline, and then lost when this stress no longer exists [46].
Ferreira [47] identified a series of differentially methylated regions (DMRs) in salt-exposed
plants, and has noted a general tendency of losing methylation in these regions. The
progeny of salt-exposed plants is pre-adapted, but this adaptive response is repressed
when RNA-directed DNA methylation (RdDM) or active DNA demethylation pathways
are impaired. Therefore, the identified salt-induced variations are primarily involved in
intergenerational stress memory. Although long-term epigenetic memory in response
to UV light exposure also showed a decreased strength over several generations, some
transgenerational epimutations are directly involved in UV stress-responsive pathways [48].
The UV-C-mediated activation of some transposons can be transmitted further than to one
unexposed generation, which requires the involvement of Dicer-like (DCL) proteins [49].
Analysis of seed and leaf size, flowering time and transposon expression in two consecutive
generations of UV-C exposed Arabidopsis plants revealed reduced leaf number, delayed
flowering, and transcriptional reactivation of transposons in the stressed progeny. The
observed changes are less prominent in the dcl mutants than in wild-type plants. Overall,
all these studies have shown that epimutations provide an additional source of phenotypic
variation that can stably persist over generations. Investigating the role of spontaneous
and environmentally induced epimutations and shaping patterns of epigenetic variation is
an important task to be addressed in the near future.

2.2. Epigenetic Control of Plant Development

Successful sequencing of model plants with well-annotated genomes, such as Ara-
bidopsis [50], rice [51], and soybean [52], has created more opportunities for exploring
the epigenome, including whole-genome methylation analysis at single-nucleotide res-
olution [53,54]. Comprehensive maps of DNA methylation patterns have allowed us to
broaden the knowledge and understanding of the potential tissue-specific epigenetic vari-
ations and functions in plants. Widman [55] compared DNA methylation, nucleosome
distributions, and transcriptional levels in the shoots and roots of Arabidopsis accession
Columbia-0 (Col-0) and linked the observed organ-specific alterations in gene activity
to particular epigenetic profiles. Despite the lack of global variations in DNA methyla-
tion levels between the studied tissues, hypermethylated genome regions tend to occur
preferentially in shoots relative to roots. The same authors identified a group of genes
belonging to the extensin family that have at least 10-fold higher expression and lower
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nucleosome density in roots relative to shoots. The biological significance of these obser-
vations has yet to be elucidated. Earlier studies of DNA methylation and demethylation
patterns in four rice genotypes indicated that the relative DNA hypomethylation in roots
ensure greater plasticity and adaptability to stress [56]. Although other studies have also
demonstrated tissue-specific relationships between various chromatin modulators and
gene expression [57–60], this topic is still a subject of debate. Specialised tissues, such
as embryo, endosperm, and pollen, have shown large-scale changes in the expression
of specific genes and DNA methylation patterns during Arabidopsis development [61,62].
In pollen and somatic cells, the methylation is maintained by comparable mechanisms;
however, higher efficiency of CG methylation maintenance has been noted in pollen, which
could contribute to the inheritance of methylation across generations [61].

Meristems that are centres for histogenesis and organogenesis are also key sites for
the epigenetic control of developmental plasticity in annual, biennial, and perennial plants
such as Arabidopsis, sugar beet, and poplar [58,59,63,64]. Meristems may mitotically or even
meiotically (for shoot apical meristem) transmit epigenetic memory to new organs or to the
next generation [65–67] or not (as in the case of vernalisation) [68]. Recent findings suggest
that hormonal and redox signalling pathways interact with the epigenetic machinery to
control plasticity in meristems [69], allowing the integration of epigenetic contribution in
the frame of the physiological response.

Finally, the level of overall methylation appears to be relatively stable [55,70], but it can
diverge from the varying DNA methylation profiles in different plant tissues or environ-
ments [71]. Although the impact of DMRs on gene expression and phenotypic variability
is often low and is still under debate [13,72,73], it could lead to natural variation of impor-
tant plant traits, such as flower development [74], fruit development, ripening [75–77], and
flavonoid metabolism [78].

Many agricultural crops are vegetatively propagated, producing clonal plants [79],
which despite their clonal nature, exhibit phenotypic variability in the progeny [80,81].
Examination of regenerant lines from somatic embryos of A. thaliana, induced from roots or
leaves, indicates that the original tissue-specific methylation and gene expression patterns
are present in the sexual progeny of the regenerated plants. The epigenetic profiles and
the resulting phenotypes related to the identity of the original tissue are stably transmitted
during meiosis for at least four self-crossing generations [82]. Thus, the specific tissue
used as explant can affect the epi-methylation and gene expression profiles of clonal plants,
providing novel phenotypic variation through altered inheritance of epigenetic marks.

Taken together, the collected information from model plants could be extrapolated to
other plant species including crops, and serve as a valuable resource base for crop breeders
(Table 1).

2.3. Epigenetic Control of Plant Reproduction and Meiosis

Epigenetic modifications play an important role in the rate and location of crossovers,
although the identification of epigenetic marks and the understanding of molecular mecha-
nisms on pericentromeric meiotic recombination is far from being fully elucidated [83].

Germ cell development requires epigenetic reprogramming to allow a highly coor-
dinated gene expression. Recent findings have shown that epigenetic mechanisms play
an important role in key molecular and physiological processes during plant meiosis. The
epigenetic modulation of plant meiosis has important implications for breeding. The
transmission of epi-alleles generated in response to environmental stresses poses questions
of how agronomic treatments and environmental conditions may affect the expression
of key crop traits, considered in specific strategies of genetic improvement. Indeed, the
understanding of the epigenetic control of plant reproduction and meiosis is of high interest
from a perspective of crop genetic improvement.

In premeiotic and meiotic anthers, 21-nt phased small-interfering RNAs (phasiRNAs)
were found to be highly abundant in maize and rice [84]. MAIZE OUTER CELL LAYER 4
(OCL4) encoding an HD-ZIP IV transcription factor is required for the production of small



Biology 2021, 10, 766 7 of 46

RNAs and the other 21-nt phasiRNA biogenesis in maize [85], as well as other proteins
belonging to pentatricopeptide repeat (PPR) proteins, NB-LRR, and MYB families in other
species [86,87]. These findings suggest that meiotic phasiRNAs play an important role in
epigenetic control of meiotic chromosome condensation, with essential implications for
crop genetic improvement. Mapping of genes encoding 21-nt phasiRNAs will allow the
development of epi-molecular markers that could be utilised for the selection of genotypes
with different rates of occurrence of meiotic events.

Concerning crossover occurrence, it has been shown that it is positively associated
with the occupancy of the histone variant H2A.Z [88]. DNA methylation and H3K9me2
lead to a repression of plant crossover hotspots [89]. Similarly, loss of DNA methylation
has been shown to alter crossover distribution in a chromatin-type dependent manner in
Arabidopsis [90]. These discoveries highlight the importance of investigating the conserva-
tive role of these epigenetic marks among crops. Future studies will identify molecular
markers associated with epi-alleles, which may help to control crossover occurrence en-
hancing the genetic variability, and consequently, the effects of breeding selection. DNA
double-strand breaks are generated by SPO11 topoisomerase-like transesterases, and
SPO11-1-oligonucleotides provided a high-resolution method to profile meiotic double-
strand break patterns genome-wide. SPO11-1-oligonucleotides have been mapped in the
Arabidopsis genome and their role in regulating chromatin, DNA, and crossover frequency
have been studied [91]. The identification and mapping of these short DNA sequences
in crop genomes will be important to discover epigenetic markers associated with key
epigenetic modulators. Another important gene involved in the epigenetic modulation of
plant reproduction is DECREASE IN DNA METHYLATION1 (DDM1). DDM1 has ATPase
activity that controls DNA methylation linked to crossover occurrence [92].

How epigenetic regulatory events can provide a source of variability by regulating
chromosome dynamics during meiosis that could be usable for plant breeding is illustrated
through the following examples: (i) Histone post-translational modifications: Epigenetic
landscape of meiotic chromosomes highly changes during the first stage of meiosis in rice,
increasing dimethylation and repressing H3K9 acetylation [93]. (ii) Small RNA and phasiR-
NAs: In male gametogenesis, these RNA oligonucleotides seem to be targeted towards
meiocytes to allow important 3D re-organisation events at particular stages, premeioticially
and in early meiosis [94]. (iii) The activity of MALE MEIOCYTE DEATH1 (MMD1) protein:
MMD1 binding to methylated histones (H3K4me2) in the promoters of CONDENSIN
genes modulates gene expression linked to chromosome condensation and meiotic pro-
gression [95]. (iv) The Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1):
MEL1 plays a key role in large-scale epigenetic meiotic chromosome reprogramming lead-
ing to homologous recombination and synapsis during meiosis in rice [95]. Altogether,
these findings clearly demonstrated that epigenetic mechanisms are important for the
control of crossing-over frequency and position along chromosomes, having a dramatic
role in genetic variation within populations. This has major implications in generating
genetic variability by breeding activities, as it allows better selection of parental genotypes
that are utilised for artificial crossings [89]. Any future studies aiming at understanding
the epigenetic mechanisms involved in the change of crossing-over events throughout
the chromosomes will be of high benefit for enhancing genetic improvement. This would
allow reduction of the issues of linked traits. The identification of genes and molecular
mechanisms regulating recombination should be one of the hot topics for future research
in plant sciences.

Concerning gametogenesis, DNA methylation seems to be responsible for determin-
ing sexual-lineage-specific DNA methylation signatures occurring through RdDM. De
novo methylation is important for modulating gene expression and splicing, which are
essential for normal meiosis. RdDM activity has been shown to be involved in the Arabidop-
sis male sexual lineage controlling transcription in meiocytes. The clarification of genes
and oligonucleotides involved in the modulation RdDM and their mapping in sequence
genomes will be of extreme interest for developing new molecular markers associated with
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fertility, male sterility, and self-incompatibility. This will be very important in order to
create new cultivars with desired reproductive behaviours, which will enhance the success
of marker-assisted selection in breeding activity of both annual and perennial crops. The
control of pollen development occurs through modifications in global DNA methylation
levels from the microspore to mature stage [96]. DNA methylation is significantly different
between vegetative and generative nuclei in tricellular pollen, affecting TE activity and
21 nt small RNA expression [97]. The RdDM machinery plays a crucial role in female germ
cell specification and imprinting, and in the establishment and maintenance of genomic
imprinting [98]. Whole-genome DNA methylation events have been observed in female-
sterile line (fsv1) mutants in comparison to wild-type. According to Liu and Nonomura [93],
3471 significant DMRs are observed, showing that several genes controlling ovule de-
velopment and hormone responses are differentially methylated, and these epigenetic
differences are linked to female gametophyte abortion [93]. In addition, Arabidopsis protein
ARGONAUTE 9 (AGO9) has been shown to play an important role in the development
of female germ cell lineages. The ago9 mutant showed aberrantly multiplied megaspore
mother cells in the developing ovule, causing unreduced megaspores [99].

2.4. Epigenetic Control of Plant Response to Stress

The epigenetic mechanisms of chromatin mark modifications and remodeling in plant
stress responses (biotic and abiotic) have already been reported in multiple reviews (see
recent reviews [100–102]).

For example, epigenetic modulation of heat-shock protein expression [103], which
occurs in germ cells, may affect plant growth in adult plants [104]. Epigenetic processes
are involved in heat stress responses in pollen [105]. Heat stress changes DNA methylation
throughout the genome and methyltransferase expression during particular stages of pollen
developmental stages [96]. Epigenetic TE silencing using RdDM in pollen can occur in
response to heat stress [95]. In addition, heat stress modulates chromatin conformation
through critical chromatin modifications [106] and regulates the expression of several small
RNA in pollen [105]. Pollen tolerance to temperature stress is regulated by small RNAs,
which are able to reprogram the male germline, repressing TEs. Some of these TEs are
reactivated when the DDM1 enzyme is mutated causing the enhanced biosynthesis of
siRNAs, which work as safeguards of the epigenetic information in male gametes through
the reduction of TE mobility. The elucidation of genes encoding enzymes involved in DNA
methylation activity, which may affect transposon silencing, will have positive effects on
pollen fertility potential, with beneficial consequences on yield in abiotic stress conditions.

3. Epigenetic Advances in Crop Improvement: Exploiting Epigenetic Diversity
3.1. Natural Epi-Alleles

Naturally occurring epi-alleles have been linked to agriculturally important plant pheno-
types including morphological [107–110], developmental [111–113], metabolic [114–116], and
immunity traits [117]. While the origin of these epi-alleles is not always entirely clear, many
of them seem to have arisen as spontaneous epimutations [34], that is, through stochastic
gain or loss of DNA methylation. In crops, examples include the spontaneous hypermethyla-
tion of the COLORLESS NON RIPENING (CNR) locus in tomato, which leads to inhibition
of fruit maturation [113], or the hypomethylation of the FERTILIZATION-INDEPENDENT
ENDOSPERM1 (FIE1) gene in rice, which is associated with reduced stature [109]. Because
epi-alleles are often meiotically stable and independent of genetic variation, they present
potential breeding or complementary editing targets for the agricultural sector [118,119]. Yet,
examples of naturally occurring epialleles are rare, and it remains unclear how to harness them
systematically for crop improvement. Epigenetic editing has the potential to introduce another
source of variation that leads to phenotyping changes and an increased crop production,
especially under environmental influence. Moreover, it is an alternative way to manipulate a
gene by repressing or activating it for a long period of time. This gene expression modification
without altering the DNA sequence itself does not lead to secondary, often uncontrolled
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effects, as in the case with a gene knock out during genome editing, and can be reversible and
adjustable to environmental stimuli. Epigenome editing is more thoroughly discussed in the
last part of this review.

3.2. Chemically Induced Epigenetic Diversity

A variety of chemicals capable of modifying epigenetic information have been de-
scribed. Based on their function, we have categorised them into two main groups: inhibitors
of DNA methyltransferases (DNMTs) and histone deacetylase inhibitors [120]. The first
group consists mainly of a cytidine analogue that specifically inhibits DNA methylation
by sequestering DNMTs. Once incorporated to DNA during its replication, the analogues
covalently trap the DNA methyltransferases and mediate their degradation, leading to a
passive loss of DNA methylation in the cell [121,122]. The most commonly used representa-
tives are 5-AzaC and Zebularine, but there are also more stable variants [123]. The second
major group consists of histone deacetylase inhibitors, which are classified into different
groups such as hydroxamic acids, amino-benzamides, cyclic peptides, and short-chain
fatty acids [120].

Currently, DNA demethylating compounds that can de-repress the expression of
the genes with hypermethylated promoters have wider applications. The most common
applications are in tissue cultures, where 5-AzaC treatment has a beneficial effect on the
induction of somatic embryogenesis [124–126], microspore embryogenesis [127,128], and
shoot regeneration [129]. Another study has taken advantage of the fact that flowering
is controlled by, amongst other things, DNA methylation [130]. With this in mind, the
treatment of 5-AzaC has been shown to cause earlier or more frequent flowering compared
to untreated control plants [131–133]. DNA methylation has been suggested to play a role
in suppressing transposon activity. Therefore, increased activity of transposons is antici-
pated upon 5-AzaC or Zebularine treatment, which was confirmed by Nishimura [134],
Konečná [135], and Boonjing [136]. Another group of applications focuses on the fact
that the activity of the transgene in genetically transformed tissues is silenced by DNA
methylation of the promoter contained in the transgenic construct. Treatment of such si-
lenced transformants with 5-AzaC then caused reactivation of silenced transgenes [137,138].
Due to the commonly discussed role of DNA methylation in the field of priming or in
transgenerational memory, treatment with 5-AzaC or Zebularine is also used for deeper
understanding of DNA methylation in stress-memory-related phenomena. Verhoeven and
Gurp [139] showed that Zebularine treatment affected the within-generation response to
nutrient stress and indicated a role for DNA methylation in phenotypic plasticity. Rend-
ina [140] showed that stress-induced memory alters growth of clonal offspring of white
clover and that this transgenerational effect is not observed in offspring of parents that
receive 5-AzaC. Similar results were obtained by Yang [141], where 5-AzaC diminished
the difference between memorised and wild-type lines of Arabidopsis. The use of the sec-
ond group of epigenetically active substances, histone deacetylase inhibitors, is currently
sporadic. If they were used, it was mainly as a treatment within plant tissue cultures.
Specifically, the use of Trichostatin A induced microspore embryogenesis in wheat [142]
and somatic embryogenesis in Arabidopsis [143]. Treatment by trichostatin A and sodium
butyrate also improved regeneration efficiency from mature wheat embryos [144]. It can
be concluded that utilisation of epigenetically active substances is focused on topics, where
it is suspected that the level of DNA methylation or acetylation of histones play a role in
the respective phenomena. Specifically, this means trying to influence the various devel-
opmental stages of plants (flowering, embryogenesis, in vitro regeneration) or verifying
whether DNA methylation or histone acetylation participates in a given phenomenon
(stress memory molecular background). The disadvantage of such an approach is that
inhibitor effects are global and not localised, affecting the whole genome and not only the
locus of interest.
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3.3. Inducing Epigenetic Diversity through Genetic Mutation

One emerging approach that aims to induce stable epi-alleles is through genetic
mutations in DNA methylation pathways [145]. In the model plant A. thaliana, many
studies have shown that DNA methylation mutants exhibit altered phenotypes, which are
due to trans-induced hyper- or hypo-methylation of specific gene loci [146–150]. While
many of these induced traits appear to be deleterious, with varying degrees of pene-
trance [148,149,151], several examples do exist where induced epi-allelic variation leads
to advantageous phenotypes [152–154]. For instance, in Arabidopsis, mutants in RdDM
displayed enhanced resistance against biotrophic pathogens, such as the downy mildew
pathogen Hyaloperonospora arabidopsidis [152]. In addition, reduced DNA methylation levels
in Arabidopsis DNA methylation mutants flowered earlier without the requirement for
vernalisation [154], an agronomic trait that is usually preferable over late flowering. In
the model tree poplar (Populus spp.), hypomethylation through a mutation in DDM1 in-
creased tree tolerance in response to water deficit, showing how DDM1 context-dependent
DNA methylation plays a crucial role in tree phenotypic plasticity under drought stress
conditions [155]. The authors suggest major roles for DNA methylation in the shoot api-
cal meristem in regulating genes involved in hormone-related stress responses, and the
maintenance of genome integrity through repression of TEs.

Importantly, these phenotypes can sometimes persist for many generations, even when
the inducing mutations are segregated away [156–158], indicating that they are acquired
through epigenetic variation. This latter observation has been exploited systematically in
the construction of so-called epigenetic recombinant inbred lines (epiRILs) [156,157]. This
experimental system is derived by crossing a DNA methylation mutant to wild type. The
F1 progeny of this cross are either backcrossed to wild type or intercrossed, and individual
homozygous wild type for the inducing mutation are repeatedly self-pollinated to derive
recombinant inbred lines. The final plant material thus consists of isogenic, epi-homozygous
individuals, whose methylomes are a mosaic of the two original parents. These novel
epi-genotypes can be systematically screened for favourable traits. Two epiRIL panels have
been created in A. thaliana using DDM1 [156] or MET1 gene [157] as inducer mutations.

Extensive phenotypic surveys of the ddm1-derived epiRILs have revealed large herita-
ble variation for key agricultural traits, such as plant height, root length, flowering time,
rosette size [156,159,160], pathogen resistance [153], and phenotypic plasticity under salt
stress [161]. Heritability estimates are in a range similar to what is typically seen in crop
breeding [159,162]. By design, the epiRILs are also amenable to epigenetic quantitative
trait locus (QTLepi) mapping approaches, where DNA methylation markers are used
in genome-wide linkage scans [159]. Numerous epigenetic QTL have been identified.
In some cases, the mutant epigenotypes at the QTL locus are associated with improved
phenotypic performance relative to wild type, indicating that the underlying epialleles
could be exploited in breeding programs [153,159,161,163]. More recently, epiRILs have
also been utilised to generate large panels of so-called epiHybrids by crossing selected
lines to wild type [164,165]. The epiHybrids display substantial best-parent heterosis for
important traits like early vegetative growth [165], early flowering time, increased leaf area,
plant height, and main stem branching, several of which could be linked to differential
methylated regions in the parental genomes [164].

There have been efforts in the academic and private sectors to implement similar
epigenetic perturbation strategies in crops. Such approaches could complement more
mainstream breeding tools focused on genetic variation. However, the choice of inducer
mutation is more challenging here, since loss of MET1 or DDM1 tend to be lethal or cause
severely reduced fertility in complex crop genomes [166–168]. A promising alternative
candidate is the MSH1 system. The MSH1 mitochondrial and plastid-targeting protein is
involved in genome stability and influences plant growth patterns [169,170]. By crossing
MSH1 to wild type, MSH1 is suppressed by RNA interference, resulting in enhanced plant
growth and heritable epigenetic changes in Arabidopsis [171], as well as in tomato [19].
Notably, the methylome reprogramming in Arabidopsis is accompanied by changes in
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siRNA expression and heritable non-genetic memory [141]. In addition to crosses, the
MSH1 system has also been employed in grafting experiments to introduce rootstock
epigenetic variation, where the progeny also displays increased seed yield and growth
vigour [20,171]. Most importantly, the MSH1 system seems to be reproducible in tomato
field size experiments, making it a promising system for agricultural applications.

3.4. Environmentally Induced Epigenetic Diversity

Plants are immobile and exploit various tools to survive and reproduce under subop-
timal or harsh surroundings. In the case of environmental stimuli, they undergo physio-
logical response and phenotypic changes, which, according to the length of exposure, are
divided into developmental plasticity (short term stimuli), memory and priming (mid-term
stimuli), and local adaptation (long term exposure) [172]. There are many examples shown
above that plants are better prepared for repetitive exposure to stress, either in a given
individual, a derived clone, or even transgenerationally [173]. It is therefore possible to
expect that similar mechanisms of plant adaptation also occur in situations where plants
are exposed to natural stress conditions. Despite the relatively well-described and known
memorising effect, the unique properties of plants that are naturally adapted to their re-
spective environment is not yet very widespread in practice. One example is the fact that
plants in different environments produce different ranges of secondary metabolites [174],
which may theoretically be useful in the field of medical plants or spices [175]. From
the evolutionary point of view, the issue of environmentally induced changes indirectly
includes the strategy of vernalisation as a possible way for plants to adapt to extreme
winter frosts [176] or for the epigenetic background of invasive species to successfully
establish in different environments [177,178].

3.4.1. Epigenetic Stress Memory and Priming

Although we tend to think that plants need to adapt to unpredictable environments,
many of the environmental cues and stresses that a plant experiences throughout its life
are recurrent. This is the case for daily changes (e.g., decrease of temperature at night) and
seasonal changes (e.g., increase of temperature in spring). It is frequent that plants and
their offspring must cope with repeated similar stresses—whether they occur throughout
the growing season or over successive plant generations. These climatic patterns can
lead to the so-called stress priming, that is, a first encounter with the stress can trigger
the establishment of a molecular memory that primes or acclimates the plant and/or its
offspring, which will be better prepared to respond in the eventual case of a second stress
(Figure 2). This priming effect induced by stresses, also known as acclimation when the
trigger is of abiotic nature, (i) is conserved, (ii) can be triggered by stresses of different
nature (i.e., biotic or abiotic), and (iii) can occur intra-generationally (the molecular memory
can be transmitted to new cells and organs) and inter/transgenerationally (the memory is
passed to the offspring). In addition, priming has been shown to be effective at different
stages of the plant life cycle, from seed (i.e., seed priming) to seedlings and to subsequent
adult stages. However, while much is known about the physiological consequences of
priming in the adaptability of the plant and hence its applications—products that boost
plant vigour through priming are available from different agricultural companies—much
less is known about the molecular mechanisms that establish, regulate, and even erase this
molecular memory [179–182].
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Figure 2. Intragenerational memory and priming in plants. Unstressed plants (tomato as an example of crop) are depicted
on the left panel. One of them is shown growing over time in the other panels on the left with red healthy fruits. Stressed
plants with the first exposure to biotic and/or biotic stimuli are shown on the middle panel with orange fruits and decreased
size. The plant on the right developed an epigenetic response to stress, allowing the establishment of a priming memory.
Stress is only temporary and is followed by a period of recovery (not shown). A second exposure to stress is shown on the
right panel, with the primed plant (on the right) getting new red fruits and restart of growth compared to the prime plants
(in the middle) exhibiting severe symptoms (brown fruits).

Although metabolic and physiological pathways have been shown to play a role in
priming, it has been proposed that a long-lasting process able to be transmitted through cell
division, such as epigenetics, could be key in establishing the primed memory [183–186].
More recently, the molecular evidence supporting this hypothesis in diverse plant species
has brought a novel focus on this field [179,180,187].

When plants are exposed to stress, a transcriptional response is triggered in response to
the stress. Among the stress-responsive genes, some of them will be involved in establishing
a memory of the stress and are, therefore, known as stress memory genes. Isabel Bäurle,
who has extensively contributed to our understanding of heat stress priming in Arabidopsis,
has proposed that memory genes can be classified considering their transcriptional response
to the stress. In type I memory genes, the epigenetic changes induced by the stress will
induce the maintenance of the new transcriptional state posed by the stress during a certain
period of time, while in type II memory genes, epigenetic marks that are established on the
chromatin of the gene during this first encounter, will induce a modified transcriptional
response to a second stress, usually stronger and faster than the first one [179,180]. For intra-
generational memory, the lapse of time between the repeated stresses seems to be limited
to a few days or, occasionally, several weeks [188,189]. For trans-generational memory the
repetition of the stress in successive generations is key for keeping the transcriptional state
associated with the primed response [46,190,191] and a stress recovery phase of the mother
plants may be crucial [191]. Although priming has been well-studied in annual plants, such
as Arabidopsis [179] or the model crops maize and rice [172,192,193], the molecular memory
induced by stress may indeed be particularly relevant for perennial species, among them
economically important crops such as poplar [65,66,194], and clonally propagated plants,
for instance grapevine [195]. In addition, maintaining the primed state required to surpass
the energetic costs, otherwise resetting the memory, may be more advantageous for the
plant [181,187,191].

Both DNA methylation and PTMs have been linked to the primed transcriptional
changes in memory genes, although DNA methylation may be the key epigenetic mark for
mediating trans-generational memory, as it may be more stable to the epigenetic reprogram-
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ming that occurs during gamete formation [179,181]. Among the histone modifications
related to priming, changes in the repressive mark H3K27me3 and, particularly, in the
active mark H3K4me3 have been shown to occur on memory genes in response to different
stresses. RNA biology, such as small RNAs, RNA turnover, and RNA-mediated epigenetic
changes, can also mediate the memory to past stresses [179,189,196]. Chromatin remodel-
ers able to alter DNA–histone interactions add another layer of regulation to the primed
transcriptional response [179]. Finally, factors involved in the deposition of nucleosomes
and the inheritance of epigenetic states into new DNA molecules have been involved in
perpetuating the stress memory [179,187].

It is tempting to speculate that a better understanding of the epigenetic mechanisms
that govern the establishment of a priming memory may contribute to developing novel
molecular technologies for crop stress adaptation improvement without affecting plant
fitness. However, this will still require a deeper knowledge of intra and trans-generational
memory events in response to multifactorial on-field conditions and further development
of transient or stable transformation methods able to reprogramme the epigenome of stress
memory [197,198]. The importance of including primed responses to develop predictive
models of crop fitness and adaptation to environmental changes is further discussed in
Section 4.

3.4.2. Clonal Propagation and Uses

An additional area where environmentally induced changes are becoming important
is the clonal propagation of plant species such as perennial woody plants, especially if they
are grown in a broad range of environmental conditions. As clonal plants, they provide
a great opportunity to study the effects of epigenetics without concern for genetic varia-
tion. Different climatic conditions establish locally unique epigenetic marks that can be
theoretically used for the study of epigenetic mechanisms underlying plant–environment
interactions or phenotypic plasticity. Guarino [199] studied changes that occur in the
epigenome of ramets of the same poplar clone living in different natural environments of
Sardinia. Analyses clearly demonstrated that ramets of the same clone were differentially
methylated in relation to their geographical origin, that is, in response to environmen-
tal stimuli. A different approach was used by Schönberger [200], who collected clonal
Populus trichocarpa (cv. Muhle Larson) cuttings from two sites in Germany that differ
in phosphorus availability. Clones were subsequently transferred into a common, fully
nutrient-supplied environment. Despite identical underlying genetics, stem cuttings de-
rived from sites with lower phosphorus availability showed impaired establishment. Si-
multaneously, genome-wide DNA methylation differences between variants were iden-
tified. Vanden Broeck [201] also investigated the establishment of a Lombardy poplar
(Populus nigra cv. Italica Duroi), a cultivated tree representing a single genotype worldwide
distributed since the eighteenth century, collected from 37 locations in Europe and Asia
with different environments. The collected cuttings were transferred to common conditions
where bud set and CG methyl polymorphisms were studied on one-year-old offspring.
Correlations among epigenotype, bud phenology, and the climate at the home site of
the donor trees were observed. Pereira [202] compared patterns of DNA methylation of
biological replicates of leaf and xylem tissue samples from four commercially planted
elite Eucalyptus grandis × Eucalyptus urophylla clones and one Eucalyptus urophylla in
two contrasting sites in Brazil by using high-throughput MS-DArT-seq (Methyl Sensitive
DArT-seq sequencing). Association of methylation patterns proved by using MS-DArT-seq
was registered for the respective environments and growth traits. All of the above examples
confirm that the DNA methylation landscape usually differs in clonal materials grown in
different environmental conditions. The question therefore arises as to whether, on the
contrary, different DNA methylation profiles could be useful in determining the origin
of a given plant material. If this hypothesis was confirmed, it would bring a relatively
valuable tool to the field of authentication of the origin of plant products. The first article
on this field presented by Xie [203], who studied genetic and epigenetic diversity across 22
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vineyards planted with the cultivar Shiraz in six wine sub-regions of South Australia. It
was observed that DNA methylation differences between vineyards are influenced by the
geographic location where the North–South axis of the topology significantly contributed
to the variability. The pruning system used in individual vineyards also contributed to
the observed variability but to a lesser extent. For the first time, the idea was presented
here that it would be possible to use that epigenetic variability as a tool to track terroir
of grapevines. Baránková [204] indirectly proved this hypothesis when they compared
DNA methylation patterns among clones of Merlot and Pinot Noir varieties planted in
completely different climatic conditions in the Czech Republic (Central Europe) and Arme-
nia (Southern Caucasus). The DNA methylation landscapes (79.9% and 70.7% for Merlot
and Pinot Noir plants, respectively) were primarily affected by the different geographical
locations of the Czech and Armenian vineyards. On the other hand, DNA methylation
diversity within individual vineyards of Merlot and Pinot Noir cultivars represent only 16%
and 14% of the overall diversity and suggest uniqueness of DNA methylation landscapes
for individual vineyards. The phenotypic traits and epigenomes of three clones of cv. Mal-
bec cultivated in two contrasting vineyards in Argentina were compared by Varela [205].
They concluded that DNA methylation has an important role in the phenotypic plastic-
ity and that epigenetic modulation was more clone-dependent than location-dependent.
Thus, on the basis of published literature, it is clear that additional follow-up studies
comparing more factors (for example different tissues, growing seasons, geographical loca-
tions) need to be performed to verify if DNA methylation can be utilised as a marker for
terroir authentication.

3.5. Hybridisation and Epigenetic as a Predictive Marker of Hybrid Performance

Heterosis, or hybrid vigour, is the superior phenotypic performance of F1 hybrids com-
pared to the two inbred parents [206]. The phenomenon is extensively exploited to increase
crop production worldwide [207]. Breeding programs aim to optimise heterosis by carefully
selecting parental genotypes for crossing. However, genotypic information is often insuffi-
cient to accurately predict heterosis, and the molecular basis of this phenomena remains
poorly understood [207]. Accumulating evidence points to a strong epigenetic contribution
to heterosis. Molecular profiling of hybrids shows that their epigenomes are substantially
remodelled with respect to their parental lines, leading to epigenetic states that diverge both
positively and negatively from the expected mid-parent values (MPV) [208,209]. Extensive
remodelling has been observed at the level of DNA methylation in Arabidopsis [164,208–211],
rice [212,213], pigeon pea [214], broccoli [215], and in rapeseed [216], and occurs either at
regions where parents are differentially methylated (DMRs) [164,208,209,217] or in regions
where the parents are similarly methylated (SMRs) [213,215,218]. Similar observations have
been made at the level of small RNA (sRNAs) abundance [196,208,210,212,214,216,218–225]
and at various histone modifications [212,226]. In many cases, these epigenetic changes lead
to downstream non-additive gene expression levels, which have been linked to heterotic
phenotypes [118,208,209,212,214,216,219,227,228], often associated with salicylic acid (SA)
metabolism and response [218,229]. For example, differences in the SA endogenous level
in F1 heterotic hybrids have been correlated with enhanced leaf growth in Arabidopsis [229],
and Zhang [218] not only revealed DDM1 as an epigenetic link between growth vigour
and SA metabolism but also suggested that parental SA differences can predict heterosis
level in the F1.

While it is possible that the remodelling of hybrid epigenomes is “just” the molecular
consequence of classical genetic complementation effects, recent evidence shows that it also
occurs when the parental genomes are isogenic or nearly isogenic [164,165,208,210,211,230].
This suggests that non-additive epigenetic changes observed in hybrids may originate
from interactions between divergent parental epigenomes. Given the close association
between DNA methylation, PTMs, small RNAs, and gene expression, parental epigenetic
differences may therefore be used as indicators of hybrid performance, independently
of genetic differences. Lauss [164] demonstrated that this is indeed the case. Using a
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panel of A. thaliana epigenetic Hybrids (epiHybrids) obtained from crosses of isogenic but
epigenetically divergent parents, they showed that heterosis for flowering time, height,
and leaf area could be associated with specific DMR between the parents. Similarly, in
canola, hybrids obtained from isogenic parents which had undergone prior divergent
selection for high energy-use efficiency showed increased yield. The artificial selection of
the agronomical characteristics and the distinct DNA methylation parental patterns were
heritable in the hybrids and allowed the targeted increase of yield [231].

These results show there is predictive information in epigenetic markers beyond DNA
sequence variation. Epigenetic measurements may therefore be used as complementary
biomarkers, even in crop systems where the parental lines are highly polymorphic. To illus-
trate this, Seifert [220] quantified differences in sRNA expression profiles among different
heterotic groups in maize. The parental divergences in sRNA were strong indicators for
grain yield in the hybrids [220,232]. The magnitude of these predictions exceeded those
obtained with polymorphism data [220,232].

Beyond heterosis, epigenetic markers have been used to associate epigenetic with
trait variation in experimental and natural populations. Classic quantitative genetics
methods used to estimate the genetic component of the phenotype could also be used
to assess natural epigenetic variations. DNA methylation represents a trait allowing
the estimation of narrow-sense heritability or genetic differentiation index describing the
genetic control of epigenetic variation [66,233]. Epigenetic polymorphisms (SMPs or DMRs)
could be used as epigenetic markers in genome-scan-based approaches to estimate the
role of epigenetics in population structure and phenotypic variation (epiFST, epiQTL). In
oilseed crop using stable and heritable methylation-sensitive amplification polymorphisms
(MSAP) and retrotransposon (RT) epigenetic markers, Long [234] identified QTLs for
seven agronomic traits. In a similar MSAP-based approach in sorghum, a methylation
linkage map was constructed that could help associate methylome hotspots to elite genes
responsible for traits [235]. A common question is whether epigenetic variation is a
cause of differentially expressed genes or the consequence of it. Recent evidence from
maize supports the former, as DMRs that are not tagged by genetic variation are more
prevalent and strongly associated with the expression of genes identified in phenotyping
variation [78]. In addition to this, many metabolic traits showed notable correlations
with DMRs and not with single nucleotide polymorphisms (SNPs), thus highlighting
DNA methylation variation as a powerful phenotypic predictor independently of genetic
polymorphism data [78]. Epigenome-wide association-mapping approaches have also
been employed in clonally propagated oil palm. This approach uncovered a recurrent
epimutation, which could be shown to be responsible for parthenocarpy and loss of oil
yield [108]. Local hypomethylation near the Karma transposon could be shown to predict
deleterious phenotype and is being further developed as a biomarker for juvenile screening
of trees.

Beyond statistical predictions, knowledge of epigenotype–phenotype associations
may provide deeper insights into the molecular regulation of agriculturally important
plant traits and has the potential to contribute to breeding with useful markers. Even
though there are already several studies in model plants that were able to quantify the
epigenotype–phenotype interactions by distinguishing between the DNA sequence and
epigenome variation, a defined epigenetic-oriented breeding strategy is yet to come. The
creation of such systems in crops would allow not only the targeted use of the epigenome
diversity to detect agronomically important epialleles, but also has the power to predict a
plant’s performance, decrease field trials costs, and result in an increased crop production.

4. Gaps in Knowledge and Future Challenges
4.1. Improving Strategies for Studying the Role of Epigenetics in Crops under
Changing Environment

Most studies on crops have focused on developmental and/or environmental interac-
tions with epigenetic marks (particularly DNA methylation), mainly through descriptive or
correlative approaches between agronomic traits and epi/genomics data (Table 1). Recently,
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Alonso [236] proposed suitable approaches to improve plant functional phenotypic traits
for biotic stress. The authors proposed (i) “concurrent analysis of epigenetic variation
and phenotypic trait variation, including plant fitness between individuals exposed to
contrasted biotic interactions” and (ii) “analysis of specific loci and physiological pathways
to clarify the epigenetic contribution to the stabilisation of environmentally induced phe-
notypes (priming) or across generations” to gain insights into functional relationships. In
addition to these recommendations, Amaral [194] proposed a complementary methodolog-
ical plan for tree breeding that can be easily extended to crops, including (i) use of both
forward and reverse (epi)genetic approaches and development of population epigenomics;
(ii) assessment of the effects of multiple, potentially interacting, stressful conditions (in-
tensity, duration, frequency, interaction); (iii) favour of field experimental designs; (iv) use
of kinetics approaches by sampling biological material along a developmental gradient
for a better understanding of the molecular chain acting from short to long term during
development and environment interactions; (v) taking into account crop features (species,
genotype or variety, physiological and chronological ages, organs, tissues), but also the
geographic origin, clone or seed history, clonal propagation vs. sexual reproduction, and all
features of breeding, management of genetic resources and culture; and (vi) development
of trans-omics approach to overcome the lack of comprehensive understanding and the
information gap regarding interaction across multiple -omic layers to move from correlative
to causal inference and predictions.

4.2. Modelling Epigenetically Regulated Complex Traits in Crops
4.2.1. The Need to Link Epigenetic Marks to Phenotypes into Modelling Frames

Although epigenetic marks have been the matter of prediction in many recent stud-
ies, most modelling approaches concern human health studies, for example computa-
tional modelling of histone modification, DNA methylation, and their interdependency
in environmentally induced cancer initiation or neurodegenerative and autoimmune dis-
eases [230–232]; and age prediction for which the degree of cytosine methylation in specific
genes could help estimating the age of a person, thus predicting the risk of age-related
disorders [237] or complex human traits (such as body mass index, lifestyle factors) us-
ing genome-wide DNA methylation profiling [238]. This approach has been much less
undertaken in plant science, and so far, most efforts were devoted to the development
of statistical and mathematical models to link DNA methylation profiles at the promoter
region of specific genes to a phenotype (e.g., prediction of plant height in Arabidopsis
in [239]) or to identify parental epigenetic markers to predict characteristics in hybrids
(commented on in Section 3.5, [240]).

Epigenetic regulating marks were shown to be involved in a wide range of plant
agronomic traits, irrespective of environmental cues, such as vernalisation [241,242], plant
height [156], seed development [243], nodule formation in legumes [244], and lycopene
production in fleshy fruits [75]. Therefore, improving crop features requires being able to
predict these agronomic traits and/or developmental behaviours by taking into account
the underlying epigenetic functions for prediction purposes. For example, bolting tolerance
in sugar beet was shown to be a genotype-dependent control of DNA methylation and
expression of an integrative gene network [63]. To our knowledge, however, the incorpora-
tion of epigenetic regulatory mechanisms into modelling frames or even into process-based
crop models is almost non-existent. The following two examples illustrate that modelling
approaches have been published but are still scarce. One of the first modelling studies deals
with the well-known process of vernalisation that allowed the quantitative prediction of
epigenetic silencing of the gene encoding the floral repressor FLOWERING LOCUS C (FLC)
in relation to the duration of cold exposure [241,245]. Another pioneering attempt concerns
lycopene production in tomato [246]. Based on a detailed description of the ripening
processes at the molecular level, where the silencing of DEMETER-LIKE DNA DEMETHY-
LASE (DML2) was shown to impair DNA methylation levels and thus hamper carotenoid
accumulation, a predictive model of lycopene production was developed. It relies on the
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interplay between the key ripening-related transcriptional factor NON RIPENING (NOR),
the PHYTOENE SYNTHASE 1 (PSY1), and the level of DNA methylation at their respective
promoters [75]. This example highlights the importance of deciphering the cascade of
complex epigenetic regulations, which is the prerequisite to building process-based models
(i.e., models that rely on specific mechanistic steps and their interactions) dedicated to
the prediction of agronomic traits irrespective of adaptive responses. Associated with this
challenge is the required transfer of epigenetic knowledge acquired from model plants
towards crops.

4.2.2. Modelling Epigenetic Regulation Induced by Environmental Stress

For the last decades, predictive modelling has become a central tool to help agronomists
and breeders orienting towards key adaptive crop traits to climate change. Indeed, the
use of crop models has been extended to climate-change-driven predictions [247–253].
Crop models which were originally designed and implemented to take into account en-
vironmental constraints such as light and temperature but also fertilisation management
(e.g., APSIM [254], STICS [255], SUCROS [256], DSSAT [257], CROPGRO [258]) need to
be updated and redesigned to carefully consider new features of climate change (i.e.,
higher frequency of extreme events such as heat waves, frost, drought, flooding or salinity).
Indeed, the repetition of extreme events highlights the question of stress memory (i.e.,
the ability to store and further retrieve the information induced by a first stress exposure
supported by, among others, epigenetic mechanisms, which can be beneficial to plant
performance and adaptation under recurrent stresses [179,189,196]).

Therefore, the climatic context prompts one to take into account the stress factors that
trigger the epigenetic changes which contribute to the beneficial effects of stress memory on
crop performance throughout the growing season or over successive generations. Although
breeders have already seized the challenge [118,259–261], crop modellers are urged to
do it in order to avoid growing modelling biases in the prediction of crop yield and to
improve quality of harvested products in the near future [251,262–264]. Crop models are
usually calibrated and evaluated with datasets that do not focus on successive stresses,
but on long-lasting stresses (e.g., mineral limitation, increased temperature over one
specific phenological stage). Therefore, the emerging question concerns the extent of
biases in the responses of crops that are challenged to a long-term stressing period vs.
to repeated stressing events as observed when plants acquire stress memory. Indeed,
when two stressing events occur, the modelled plant response will result in two levels
of decreased performance which do not represent the plant behaviour when the first
stressing event triggers beneficial stress memory (Figure 3). Another example of model
disruption deals with the characteristics of seeds from stressed mother plants. Studies on
several crops indicated that germination kinetics were modified when seeds came from
heat- or drought-stressed mother plants [265,266], thus leading to a lower value of the
base temperature for germination and to faster seed germination kinetics under higher
temperature (Brunel-Muguet, unpublished). This is in line with prior observations which
indicated that landraces (or ‘peasant seeds’) are more resilient to extreme climate events
than varieties produced under semi-controlled or homogeneous and stable conditions [267].
For crop models where the base temperature for germination is a key plant parameter
(e.g., SIMPLE) [268,269], unchanged value will result in prediction biases. This example
highlights the evidence for trans-generational memory of heat stress that can modify plant
parameter values in a crop model.
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Figure 3. Illustration of the above-raised modelling questions when simulating stress response
(measured through plant performance) in a two-stressing-event sequence when a priming effect from
the first stressing event is observed. Graphs (a) (green dotted line) and (b) (green dotted line) display
negative effect of a single stressing event (early (a) and late (b)) on plant performance along with
associated molecular events (levels of RNA transcripts and chromatin structure changes). Graph (c)
(green dotted line) shows how priming alleviates the negative effect of the first stress exposure on
the plant performance through the maintenance of chromatin changes, allowing faster (sometimes
more efficient) gene transcription and hence plant adaptive response. Simulated performance under
the two-stressing-event sequence (graph (c), grey dotted line) might result in the addition of the two
decreases that followed each single event if the model does not take into account the stress memory
effect. Adapted from [270].
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In conclusion, crop improvement under ongoing and future climate change relies on
our ability to predict plant behaviour (i.e., the magnitude and direction of stress responses,
the mechanisms of which are supported by epigenetic regulations). Therefore, process-
based models could be the cornerstone of the prediction of epigenetically controlled
adaptive traits, and their implementation and redesign open up a promising field of
investigation for crop improvement under climate change.

4.3. Biotechnologies and Epi/Genome Editing

A key challenge in agriculture of the 21st century is to speed up crop breeding and
the development of new varieties, with higher yield, superior agronomic traits, and more
resilience to climate changes in a context of increasing demand for global food security.
In forestry, improvement programs search for trees that are better adapted to biotic and
abiotic stress conditions as temperatures increase. In vitro plant regeneration systems
are essential in modern breeding techniques, since they permit one to clonally propagate
elite genotypes (through somatic embryogenesis), to produce double-haploids with new
genetic variability (through microspore embryogenesis), and to perform gene editing or
transformation (which require efficient plant regeneration methods).

4.3.1. Targeting Epigenetics for In Vitro Regeneration to Improve and Accelerate
Crop Breeding

Biotechnology methods for in vitro plant regeneration and breeding are based on the
exploitation of the potential for cell reprogramming, a process where epigenetic regulation
plays a key role, which is not yet completely understood [271,272]. Conversely, in vitro
culture is known to induce somaclonal variations with genetic and epigenetic instabili-
ties. Recently, Ghosh [273] reviewed these aspects with respect to DNA methylation and
crop improvement. Through in vitro embryogenesis, somatic cells can be reprogrammed,
giving rise to embryos and plants, without the fusion of gametes [274]. If the microspore
(haploid cell, precursor of pollen grain) is reprogrammed towards an embryogenic path-
way [275], haploid embryos are developed and, after spontaneous or chemically induced
diploidisation, doubled-haploid (DH) plants are produced, permitting one to accelerate the
breeding process. With DH technology, completely homozygous plants can be established
in only one generation, while in a conventional breeding programme the development
of homozygous lines normally involves several generations of selfing and selection [276].
Somatic embryogenesis, induced from vegetative tissues, has been demonstrated to be
very useful for large-scale clonal propagation of selected genotypes, with improved traits,
in species with long reproductive cycles, like many fruit and forest trees [271], as well as
for the production of genetically modified and, more recently, gene-edited plants.

Somatic embryogenesis also constitutes a unique system for studying the epigenetic
memory and its influence on adult plant fitness and adaptation. One of the best examples
has been documented in Picea abies, where epigenetic memory marks can be established
in response to the (high) temperature conditions imposed during somatic embryogenesis,
being the epitype fixed during embryo formation and mitotically propagated to the adult
tree [277]. Epigenetic memory formed in the somatic embryos permanently affects several
important adaptive traits of the tree, improving its adaptation to higher temperatures. Inter-
estingly, formation of the temperature-induced epigenetic memory in somatic embryos of
Norway spruce is associated with defined transcriptional changes that include differential
expression of specific epigenetic regulators, writers and erasers of epigenetic marks [278].
Transcriptomic analyses enabled the identification of a number of epigenetic regulators
involved in the process, and supported the key role of DNA and histone methylation and
sRNAs to establish an epigenetic memory in P. abies [278].

Despite the important role of in vitro plant regeneration systems in breeding tech-
niques, plant cell reprogramming and in vitro embryogenesis systems still show very
low efficiency in many crop and forest species, as technical innovations in this field are
hampered by our incomplete understanding of the molecular mechanisms underlying
these processes. Increasing evidence indicates that together with hormones, epigenetic
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mechanisms play an important role in somatic embryogenesis induction and progres-
sion [275,279,280]. This data opens the door for targeting epigenetics as a potential biotech
strategy to improve and accelerate crop plant regeneration and breeding [66,194]. For
these studies, methodologies to monitor changes in global DNA methylation levels and
nuclear patterns have been very useful [281,282]. Recent reports have shown that cell
reprogramming and embryogenesis initiation require widespread DNA hypomethyla-
tion [96,283], histone H3K9 and H3K27 demethylation [179,284], and histones H3 and
H4 acetylation [285,286]. Moreover, chromatin-modifying enzymes, like DNA METHYL-
TRANSFERASES, HISTONE LYSINE METHYLTRANSFERASES and DEMETHYLASES,
and HISTONE ACETYLTRANSFERASES and DEACETYLASES have been proposed as
modulators of plant cell reprogramming that act by changing the distribution of some
epigenetic marks and promoting an open chromatin state [287]. It has been suggested
that these changes in epigenetic repressor marks would lead to the expression of specific
transcription factors which would activate auxin signalling and regulatory feedback loops,
which would eventually trigger embryogenesis [288–290].

Recent advances in chemically controlled mammalian cell reprogramming have shown
the high potential of application of synthetic small molecules, including epigenetic in-
hibitors, to control cellular reprogramming, proliferation, and differentiation, as well as
cancer cell reprogramming [291,292]. In plants, epigenetics chemical targeting with in-
hibitors of DNA methylation (5-AzaC, Zebularine), H3K9 methylation (BIX-01294), or
histone deacetylases (Trichostatin A, Suberoylanilide hydroxamic acid, SAHA) has been
demonstrated to improve in vitro plant cell reprogramming and regeneration, to produce
DHs, and to propagate selected clonal plants in a number of crop and forest species, such
as rapeseed, barley, wheat, and cork oak [128,142,284,286,293,294].

Another plant biotechnological application where our knowledge in epigenetics can
be exploited is the production of secondary metabolites for industrial use. Recently, an
integrative analysis has unravelled the role of DNA methylation in the developmental
and environmental control of specialised metabolisms (alkaloids) in a medicinal plant
(Catharanthus roseus) [71]. One possibility will be to exploit the potential coordination
between epigenetics and hormonal control [69] to improve the production of secondary
metabolites for pharmaceutical applications using plants.

Some of the potential future challenges are to identify new elements of the regulatory
epigenetic pathways controlling plant cell reprogramming and regeneration, together with the
design and synthesis of novel small compounds and chemical libraries for epigenetic targets,
which will pave the way for new biotechnological strategies by using small cell-permeable
synthetic molecules to enhance in vitro plant regeneration yield. Furthermore, research on
the development of high-throughput screening and phenotyping assays to test epigenetic
modulators from newly created chemical libraries will be necessary to efficiently exploit
epigenetic targeting approaches to improve the efficiency of in vitro embryogenesis systems
for accelerating crop breeding to adapt to climate change, even in recalcitrant species.

4.3.2. Epigenetic Editing

As discussed here and in other reviews, many epigenetic factors play a regulatory
role in multiple developmental and physiological processes by directly affecting chromatin
organisation and gene transcription. Therefore, modification of epigenetic factors harbours
the potential for crop improvement, namely epi-breeding. Similarly to genetic editing for
precise genetic modifications, epigenetic editing refers to a targeted change of a specific
epigenetic mark (i.e., methylated cytosine or histone tail methylation, acetylation, etc.)
at a predefined genomic site, mostly in order to modulate transcription. Unlike genetic
editing that is already commercially implemented in tomato [295], epigenetic editing is
still far from being applied in crop species, however several publications demonstrate its
feasibility in Arabidopsis. Using programmable DNA-binding proteins fused to different
components of the RdDM machinery, DNA methylation was induced specifically at the
FWA target locus [296]. FWA is a flowering inhibitor in Arabidopsis, normally silenced due
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to DNA methylation of tandem repeats in its promoter, leading to early flowering. In
the fwa epi-allele, the lack of methylation on its promoter results in delayed flowering
and extended vegetative phase [148]. This system was utilised to study the effect of
DNA methylation on gene expression and to develop new tools for DNA methylation
editing [297]. Johnson [298] fused SUVH2 to a zinc finger (ZF) protein designed to target
the FWA promoter and showed that this fusion is capable of recruiting PolV to the target
site and inducing DNA methylation. ZF fusions were shown to induce methylation at
the FWA target also when joined with other RdDM components, such as SHH1, NRPD1,
RDR2, DMS3, and RDM [296]. In addition, a fusion between a ZF and the catalytic domain
of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1) caused highly
efficient demethylation of the FWA promoter, transcriptional up-regulation, and a heritable
late-flowering phenotype. Other ZF–TET1 fusions designed to target methylated regions
of the CACTA1 transposon were used to induce targeted demethylation and changes in
expression [299]. The recently developed CRISPR/dCas9 system enabled the targeting of
the TET1 catalytic domain to the same loci, inducing targeted demethylation and activating
gene expression [299], as well as inducing alternation between two epi-allelic states at
a specific locus [300]. The CRISPR/dCas9 tool was further adapted to induce targeted
methylation using the catalytic domain of the Nicotiana tabacum DRM methyltransferase
(NtDRMcd), which was known to be well-folded and well-expressed [198,301]. This
system enabled an efficient and specific induction of DNA methylation at the FWA and
SUPERMAN loci, affecting gene transcription [198].

In order to harness these epigenetic editing tools for crop improvement, we need
to identify specific targets and define the specific mark(s) linked with traits of interest.
These targets should exhibit a specific, stable epigenetic feature at a well-defined genomic
locus. This is a challenging task, mainly due to the dynamic nature of epigenetic features.
Few genetic elements that are related to an agricultural trait and are controlled by DNA
methylation were identified in different crops. A naturally occurring epi-allele that accu-
mulates high levels of vitamin E in tomato was associated with differential methylation of
a SINE retrotransposon located in the promoter region of the VTE3 gene [115]. In maize,
the ZmMI1 element is transcribed only under cold stress accompanied by changes in
DNA methylation patterns [302], and in allo-tetraploid cotton, the COL2 epi-allele affects
flowering time, which is linked with changes in DNA methylation [303]. Such genes
are possible candidates for DNA methylation editing for crop enhancement (Table 1). In
addition, accumulating epigenomic data in various crops will facilitate the identification of
additional candidate targets. For example, genome-wide changes in DNA methylation in
response to environmental stress conditions were described in rice [304,305], maize [306],
foxtail millet [307], and sesame [308]. These and additional surveys of comparative DNA
methylation patterns in response to environmental conditions reveal many possible targets
for which causality should be assessed.

While precise and highly efficient targeted methylation/demethylation can be achieved
in Arabidopsis, the efficiency and applicability of these tools are yet to be demonstrated in
crop plants. Moreover, additional limitations hinder the use of DNA methylation editing for
crop epi-breeding. First, the occurrence of genome-wide off-target methylation (including
chloroplast methylation) was reported in the Arabidopsis system, which could be reduced
to background levels when modifying the components of the expression cassettes [198,296],
implying the importance of an in-depth calibration of the system for each plant species.
Furthermore, the choice of the effector protein will potentially affect targeting efficacy,
so additional calibration is needed to identify the best component(s). Importantly, DNA
methylation is part of a complex transcriptional regulatory system, and the sole modifi-
cation of DNA methylation patterns may not be sufficient to affect gene transcription. In
this respect, editing of histone tail modifications is yet to be explored. Considering the
dynamic nature of epigenetic marks, the transgenerational stability is of central importance.
Although short-term heritability of DNA methylation patterns was well demonstrated in
several species, including rice and wheat [309,310], most studies are limited to one or two
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generations, so the long-term methylation pattern stability, if desired, remains to be studied.
Additionally, the level of stability/inheritance might be dependent on the genetic context
and histone marks occupancy [300,311]. It should be noted, however, that in Arabidopsis,
selected epi-alleles were found to be stable for more than twenty generations [300]. Epige-
netic editing technologies continue to develop, providing insights into the mechanism of
editing and transgenerational stability. Thus, more precise and stable modifications are
expected, as was recently reported in a mammalian cell line system [312].

Targeted changes in DNA methylation can therefore be exploited to modulate gene
expression and create novel epialleles, including gain of function epi-alleles, which are less
likely to be achieved using the current genetic editing methods. Furthermore, these tools
could be employed to repair undesired methylation changes arising, for instance, from
plant regeneration through tissue culture [313] or by stressful environmental conditions in
a previous generation [185]. The induced methylation could be heritable in the absence
of the initial activating construct, making targeted manipulation of DNA methylation an
approach to permanently modify a locus [190]. Importantly, the components needed to
manipulate DNA methylation can be delivered through direct transfer of RNA molecules
and proteins to plant cells [314,315], circumventing the need for genetic transformation
and paving the way to the manipulation of DNA methylation in various crop species.

5. Conclusions

As described in this review, it is now well established that epigenetic mechanisms con-
trol phenotype variations, agronomic traits, and particularly responses to environmental
fluctuations, notably through priming (Figure 1). Therefore, epigenetic-knowledge-based
technologies provide a promising toolbox for breeders. Indeed, epigenetic diversity (nat-
ural or induced by different ways) can be exploited as a source of phenotypic diversity
or priming, for the creation of new varieties acclimated to climate changes, or as molec-
ular epi-markers for selecting elite individuals or for the identification of new candidate
genes. The transfer of the knowledge on epigenetic signatures associated with stress
tolerance/resistance in crops is still at the beginning. There are typically hundreds of
molecular markers already mapped in crop genomes associated with important traits,
including tolerance to environmental stresses. On the other hand, few epigenetic mark-
ers dealing with agronomic traits have been mapped and used in breeding [316]. While
the potential applications of epigenetic-based strategies in crops have already been re-
ported [119,182,246,317,318], this review not only provides an updated overview of the
rapidly evolving field, but also discusses novel strategies as well as challenges on our way
to engineer crop improvement (Figure 1). The main challenges to reach crop improvement
using epigenetics could be summarised as follows:

• Identification of new epigenetically regulated traits

The elucidation of epigenetic variability and molecular mechanisms involved in plant
adaptation to climate change will assist breeders in developing broad-resistant and plastic
cultivars obtained from the phenotypic variability currently available.

• Facilitate the selection of elite genotypes for the development of new cultivars/varieties

The identification of transgenerational epigenetic modifications will allow one to
increase the number of molecular markers mapped in the genome, increasing the associ-
ation of markers with important agronomic traits. This will facilitate the improvement
of the selection of more favourable climate-smart crop varieties that are more resilient to
climate change.

• Understand how epigenetic mechanisms trigger resistance/tolerance to multiple
stresses and evaluate their stability

Better knowledge of the molecular epigenetic mechanisms underlying crop responses
to environmental stresses will allow breeders to develop cultivars with higher yield stability
during seasons characterised by different climates. It is needed to clarify the role of
thousands of different spliced transcript variants in the regulation of expression of genes
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involved in key agronomic traits. More research and techniques are needed to gain insight
into the function of this large part of untranslated RNA. The connections between these
transcripts and epigenetic modifications of hereditary material (DNA methylation and
chromatin modifications) needs to be clarified. In addition, the identification of genes
(such as DDM1) modulating DNA methylation activity through orthology between closely
phylogenetic plant species will be essential in order to map epigenetic marks involved
in de novo or maintaining methylation linked not only to genomic imprinting but also
transgenerational memory of important agronomic traits [155].

Another important issue is represented by the requirement of identifying epigenetic
modifications that are stable and inherited to the filial generation, distinguishing them
from those transiently induced. Indeed, epigenetic modifications are able to modify the
activity of TEs, notably in stressful environments. These TEs, by inserting at new genomic
positions, induce stable genetic (and epigenetic) variations. Recently, Baduel and Colot [42]
have argued that “TE-associated epivariation, whether stable or not, lies predominantly in
its capacity to modulate TE mobilization in response to the environment, hence providing
hard-wired opportunities for the flexible exploration of the phenotypic space”. The ability
to induce transposon bursts in crops, as already shown by Thieme et al. [319], is also a
promising tool for breeders.

Among the inherited ones, another challenge is to identify those that are inter-
generational (transmitted only for a few generations and then eliminated) from those
that are trans-generational (transmitted for many generations and responsible for stress
memory). Further investigation is needed to identify epi-alleles which are stable during
breeding. Another important issue will be to identify epigenetic changes that are stable
during successive generations in order to render efficient selection during the breeding.

Finally, recent findings focused on the role of 21-nt phasiRNAs in epigenetic modu-
lation of chromatin re-structuring highlight the importance of mapping such epigenetic
marks in the genome sequence of key crops. This work will allow the identification of
key epigenetic players involved in imprinting and crop adaptation for the development
of epigenetic markers that can be utilised for crop genetic improvement. In addition,
small RNAs and cross-kingdom RNA interference are part of plant immune responses
against pathogens [318]. Thus, pathogens and pests can be controlled by sRNAs, targeting
their essential or pathogenicity genes, raising the possibility of plants that are protected
from diseases by a novel, eco-friendly, durable, and highly specific RNA fungicide or
pesticide [320,321].

• Improve integrative approaches, statistics, and modelling for crops using epigenetics

The integrative statistical analysis of “-omics” data increases study power and pro-
vides insight into the interactions between the various mechanisms of molecular regulation,
such as epigenetic determination of the phenotype. The success of the trans-omics approach
(reconstruction of molecular networks by connecting multiple -omic data) will be associated
with the development of dedicated tools using mathematical network models or kernels
and kernel-based methods for crop improvement [66]. Recently, Champigny [322] applied
statistical learning experiments to genetically diverse populations of Populus balsamifera
trees grown at two common garden sites and showed that traits in novel genotypes can
be modelled using small numbers of methylated DNA predictors. The authors proposed
that DNA-methylation-based models can be used as a strategy to validate the identity,
prevalence, or quality of agroforestry products. Development of mathematical models will
allow the prediction of the identification of inherited epigenetic phenotypes which could
be important for breeding programs. These models may be used in the study of epigenetic
mark transmissibility, to integrate them in genome-wide association analysis [323]. The
perspectives for crop applications should be envisaged in the near future.

• Reduce loss of genetic variability

The characterisation, maintenance, and increase in epigenetic variation will promote
total genetic variance which could be exploited in the genetic breeding. This will compen-
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sate for the loss of genetic variability due to the use of a limited number of cultivars for
each crop.

• Use epigenetics and priming for enhanced management of a/biotic stresses in crops

Epigenetic analysis will enable the discovery of new epi-alleles involved in toler-
ance/resistance to those biotic stresses regulated by single genes. For example, in rice,
a high number of epimutations were shown to be involved in drought tolerance. These
altered methylation markers were trans-generationally inherited. They were shown to
play a role in the tillering and grain-filling stage [45]. Epigenetic analysis will also allow
us to clarify mechanisms of stress-priming to enhance a crop’s ability to tolerate environ-
mental stress without any reduction in yield and yield components. Another important
challenge is the understanding and the characterisation of a different epigenetic status of
primed/unprimed seeds. In addition, seed banking and conservation are performed at low
temperatures, to maintain a dormant state until planted, and could lead to significant yield
loss. Recent data suggest that epigenetic mechanisms may play a key role in, and should
be assessed to improve, seed storage practices [324,325].

• Reduce efforts on molecular breeding

The standardisation and normalisation of epigenetic pipelines, methods used in both
lab and in silico analysis, will allow the development of methodologies and approaches
which could be used by breeders for molecular-marker-assisted selection. Epi-genotyping
will allow us to identify epi-alleles from genetic ones for the discovery of spontaneous
epi-alleles. The development of epi-mutagenesis and epigenome editing will allow the
engineering of the crop epigenome. In addition, recent advances in single-cell sequencing
technology concerning genomics and epigenomics are promising for dissecting cell het-
erogeneity [326]. This could be useful to support crossover detection in gametophyte or
in vitro technologies based on cell regeneration. Finally, the identification of epigenetic
variants involved in crossover repression will be helpful to promote linkage and maintain
association between preferred agronomic traits. More generally, changes to epigenetic
marks can affect the rate and location of crossovers and may represent a valuable tool for
breeders [83]. However, further research is still necessary to identify the suitable strategy
for a given crop. For example, next-generation sequencing will be useful to identify gene
alleles encoding histone variants positively linked with increased crossover events in order
to enhance genetic variation created by artificial crossing activities.

• Clarify epigenetic mechanisms for public acceptance

The clarification of meaning, nature, and methodologies in epigenetics will allow
public opinion to understand the differences between transgenic and genome editing
technologies, increasing the value of any epigenetic discovery and highlighting the role of
environmental and natural changes on the genetic material. This will allow us to explain
how safe and healthy these approaches are in comparison with other traditional and
molecular breeding methods.

• Requirement for further research in plant epigenetics and synergy between academic
and private or public partners.

For this reason, the EPI-CATCH consortium has been launched in the framework of a
recently funded COST Action with the aim of studying the epigenetic adaptation to climate
change. This project will be important for strengthening the network between academic
and private research in this under-investigated field in plant sciences. The EPI-CATCH
COST Action (2020–2024) involves more than 25 countries from Europe and nearby COST-
associated countries and aims to develop a consortium to address the challenges of climate
changes at the epigenetic level.
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Table 1. Examples of epigenetics for crop improvement.

Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Arabidopsis, rice,
maize, and
other plants

Identification of a
sexual-lineage-specific

DNA methylation
signatures occurred by

RNA-directed DNA
methylation (RdDM)

during plant
gametogenesis.

DNA methylation

The clarification of genes and
oligonucleotides involved in the

modulation of RNA-directed
DNA methylation and their

mapping in sequence genomes
will be of extreme interest to

develop new molecular markers
associated with fertility, male

sterility, and self-incompatibility.

[327]

Arabidopsis, tomato

Rootstock epigenetic
variation in a comparative

analysis in Arabidopsis
and tomato.

Small RNA

They showed how the enhanced
plant vigour phenotypes of the
MSH1 system is reproducible in

tomato field size experiments
and therefore demonstrated how

epigenetic perturbation
strategies can be used in crops.

[20]

Arabidopsis, white
clover

Diminishing the
differences between

memorised and wild-type
plants by DNA

demethylating chemical.

DNA methylation
Studies focused on description
of DNA methylation in stress

memory phenomenon.
[141]

Basket willow,
spinach, Arabidopsis

More frequent flowering
after treatment by DNA
demethylating chemical.

DNA methylation Artificial induction
of flowering. [131]

Canola

In an isogenic canola
population, the authors
showed how energy use
efficiency can be selected

artificially through an
epigenetic feature to

increase yield in hybrids.

DNA methylation and
histone modifications

The shaping of the epigenome
has the potential to artificially

increase yield in crops.
[231]

Cork oak

Interplay between
epigenetic markers related
to the acclimation of cork

oak plants to high
temperatures.

DNA methylation and
histone modifications

Increased DNA methylation
under high temperature.

Dynamics of
methylation/demethylation
patterns over stress. DNA

methylation and histone H3
acetylation have opposite effects

and a
particular dynamic.

[328]

Cotton

Epigenomic and functional
analyses reveal roles of
epialleles in the loss of
photoperiod sensitivity
during domestication of
allotetraploid cottons.

DNA methylation

DNA methylation is suggested
to affect photoperiodic flowering

time and
seed dormancy.

[303]

Grapevine Epigenetic memory
induced by stress. DNA methylation

Conservation of DNA
methylation changes in response
to medium-high temperatures in

regenerated plants.

[195]
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Table 1. Cont.

Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Grapevine, poplar

Locally established unique
epigenetic marks used for

authentica-
tion/declaration

of origin.

DNA methylation Authentication of plant origin;
use of locally adapted clones. [203]

Grapevine, fruit,
woody- crop, and

forest trees

Woody plants grafting and
epigenetic changes.

All chromatin
interactions

Woody species grafting is a
promising agriculture

technology for generating
improved woody plants that can
face environmental challenges
without major compromise in
yield and quality and with low

input requirements.

[14]

Madagascar
periwinkle

Production of medicinal
secondary metabolites. DNA methylation

An epigenetic regulation of
specialised metabolisms

(alkaloids) was unravelled in C
roseus, notably targeting

transcription factors, which in
turn may control the expression
of enzyme-encoding genes. This
could be exploited to improve
the production of secondary

metabolites for pharmaceutical
applications using

plant biotechnologies.

[71]

Maize Defence priming
to herbivores. DNA methylation

Possibility to increase plant
defence by application of

volatiles related to
this mechanism.

[329]

Maize

The maize methylome
influences mRNA splice

sites and reveals
widespread

paramutation-like switches
guided by small RNA.

DNA methylation

The methylation map will
provide an invaluable resource
for epigenetic studies in maize
and how methylation patterns

can be used to predict
key phenotypes.

[240]

Maize

DNA methylation
variation (and specific
DMRs) as a powerful
phenotypic predictor,

independent of genetic
polymorphism data.

DNA methylation

A first effort to perform
genome-wide association

analysis using epigenetic data in
a crop species.

[78]

Maize

Analysis of DNA
methylation in different
growth zones of maize

leaves and transcriptional
analysis of genes involved
in chromatin remodeling,
cell cycle progression, and

growth regulation.

DNA methylation

DNA methylation controls cell
division in maize leaves and

correlates with the mitotic exit
and entering cell expansion.

[28]



Biology 2021, 10, 766 27 of 46

Table 1. Cont.

Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Maize

Investigation of the
diversity of DNA

methylation states and
their association to
genotype and gene
expression in maize

inbred lines.

DNA methylation

Many genes located near the
identified DMRs have

tissue-specific expression. The
expression patterns of over 300
of these genes strongly correlate
with the methylation state and

are often
stably inherited.

[70]

Maize

H3K4me3 and H3K27me3
changes involved in the

memory of drought stress.
Floral patterning is affected

in response to stress as a
possible consequence of

epigenetic changes.

Histone modifications

Coordinated transcriptomic and
epigenomic reprogramming of
maize plants in response to a

main abiotic stress with an
impact on plant development

and recovery to the stress.
Identification of different types
of memory genes that may be

used as future targets to enhance
plant resilience to stress.

Identification of putative stress
marks which are not associated

to direct transcriptional changes.

[192]

Maize

Parental divergence in
sRNA are strong predictors

for grain yield in
the hybrids.

Small RNA
Epigenetic measurements may

be used as complementary
biomarkers in crops.

[220]

Maize, rice

Epigenetic mechanisms
involved in meiotic events

during pollen
development.

Non-coding
mechanisms

Mapping of genes encoding
21-nt phasiRNAs will allow the
development of epi-molecular

markers usable for the selection
of genotypes with different rates
of occurrence of meiotic events.

[84]

Maize, wheat,
barley, rice,

chickpea, pea,
tomato

Possible applications of
epigenetics in
climate-smart
crop breeding.

DNA methylation and
chromatin

modifications

Gaining insight into epigenetic
mechanisms will allow

improvement of crop adaptation
and resilience to environmental

stresses, producing a next
generation of stable
climate-smart crops.

[182]

Oil palm
Epiallele responsible for
poor fruit production in

oil palm.

DNA methylation and
small RNA

The ability to predict and cull
mantling at the plantlet stage

will facilitate the introduction of
higher-performing clones and

optimise environmentally
sensitive land resources.

[108]

Poplar Memory of drought stress
in cultivated trees. DNA methylation

Epigenetic memory in the
meristem of stressful

environmental conditions
occurred during the preceding
summer period. This memory
may facilitate tree acclimation
through priming for cuttings.
Clonal propagation of primed

trees.

[65]
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Table 1. Cont.

Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Poplar Drought tolerance in trees. DNA methylation

RNAi-ddm1 lines are more
tolerant to drought stress. DNA
methylation controls hormonal
pathway genes (salicylic acid,

cytokinins, ethylene) and some
transcription factors, but also the

activation of TEs that induce
mutations potentially near or in
genes. This, taking place in the
shoot apical meristem, may be

transmitted mitotically to
primed organs and to the next

generation. Confirmation
is needed.

[155]

Rapeseed, white
oak

DNA hypomethylation
characterises somatic

embryogenesis initiation in
quercus trees.

DNA methylation

DNA hypomethylation
characterises somatic

embryogenesis initiation in
clonal propagation techniques of

forest trees

[280,285]

Rapeseed

DNA methylation changes
during pollen development
and cell reprogramming in

somatic embryogenesis.

DNA methylation

DNA hypomethylation is
required for plant cell

reprogramming to initiate
microspore embryogenesis and
doubled haploid production for

crop breeding.

[96]

Rapeseed, barley

Epigenetic modulators that
reduce DNA methylation

promote cell
reprogramming and

microspore embryogenesis
for double

haploid production.

DNA methylation

DNA de-methylating agents
promote cell reprogramming in
microspore embryogenesis and

doubled-haploid production,
favouring acceleration of crop

breeding programs.

[128]

Rapeseed, barley

Small molecules that
produce H3K9

de-methylation to promote
cell reprogramming and

somatic embryogenesis in
crop species.

Histone modifications

Novel small molecules that
decrease histone H3K9

methylation levels promote cell
reprogramming in microspore
embryogenesis and doubled

haploid production, favouring
acceleration of crop breeding

programs.

[284]

Rice Long-term semantic
memory to salinity stress. DNA methylation

Rice is considered a
salt-sensitive crop; molecular

processes involved in memory to
stress may help to breed more

resistant plants.

[172]

Rice
Phasing analysis of the

transcriptome and
epigenome in a rice hybrid.

DNA methylation

Developed a phasing pipeline
that provides insights into

alternative splicing, interaction
networks, trans-acting

regulation, and the inheritance
of DNA methylation in rice.

[40]
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Table 1. Cont.

Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Rice

Exploring the role of DNA
methylation variations in

rice adaptation to
drought stress.

DNA methylation

Multi-generational drought
improves drought adaptability

of offspring, which could be
linked to non-random

appearance of drought-induced
transgenerational epimutations.

Some of the genes related to
these epimutations are directly

involved in stress-
responsive pathways.

[45]

Rice

Identification of DNA
methylation

transgenerational inherited
changes in heavy-metal-

responsive genes.

DNA methylation

How plants can cope better with
heavy metal stress through

heritable changes in
DNA methylation.

[193]

Rice

A large-scale
whole-genome sequencing

analysis to assess the
specificity of genome

editing by Cas9 and Cpf1
nucleases in rice.

Whole-genome
sequencing

Cas9 and Cpf1 nucleases are
very specific in generating

targeted DNA modifications,
and off-targeting can be avoided
by designing guide RNAs with

high specificity.

[51]

Rice

DNA methylation and
H3K9me2 was shown to
repress plant crossover

hotspots.

DNA methylation and
chromatin

modifications

Important implications in the
creation of genetic variability

produced by breeding activities,
because it allows better selection
of parental genotypes usable for

artificial crossings.

[89]

Rice, pea, tomato

Controlled recombination
through counting on

crossovers can facilitate
plant breeding.

Epigenetic
modifications and

crossovers

Use of genome editing reagents
that induce double-stranded
breaks (DSBs) or modify the
epigenome at desired sites of

recombination, and
manipulation of cofactors, are

increasingly applicable
approaches for achieving this

goal. These strategies for
‘controlled recombination’ have
potential to reduce the time and

expense associated with
traditional breeding, reveal

currently inaccessible genetic
diversity, and increase control

over the inheritance of
preferred haplotypes.

[83]

Rubber trees

Chilling-induced DNA
demethylation is associated
with the cold tolerance of

Hevea brasiliensis

DNA methylation

Chilling treatments induced
methylation changes and
transcriptional activity of

methylation and
cold-stress-related genes.

[51]
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Soybean

DNA methylation
reprogramming during

soybean seed
development.

DNA methylation

DNA methylation dynamically
changes during soybean seed

maturation, affecting the
expression of multiple genes.
Majority of the DMR genes in

the CHH context are
downregulated, and closely

linked to DNA replication and
cell division. This seems to be a
protective mechanism that keeps

transposons silent to prevent
inactivation of genes essential

for seed development.

[31]

Soybean DNA methylation patterns
in soybean root hairs. DNA methylation

DMRs in each methylation
context have distinct

methylation patterns between
root hairs and stripped roots,

and under heat stress. At normal
temperature, root hairs are more
hypermethylated than stripped
roots. Upon heat stress, both cell

types are hypomethylated in
each context, especially in the

CHH context.

[59]

Soybean

DNA methylation and
histone modifications of

salt-responsive
transcription factor genes.

DNA methylation and
histone modifications

Salinity stress was shown to
affect the methylation status of

several transcription factors (one
MYB, one b-ZIP, and two

AP2/DREB family members).
For some of them, DNA

methylated transcription factors
were correlated with an

increased level of histone H3K4
trimethylation and H3K9

acetylation, and/or a reduced
level of H3K9 demethylation in
various parts of the promoter or

coding regions.

[330]

Sugar beet Tolerance to bolting. DNA methylation

Tolerance to bolting is an
agronomic trait for biennial

cultivated sugar beet. Bolting is
associated with the use of

sucrose root stock and should be
avoided in the field. Here,
tolerance to bolting was
correlated to epigenomic
polymorphism in DNA

methylation, notably in genes
involved in cold acclimation,

hormonal pathway genes, and
flowering genes.

[63,242]
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Species Topic Epigenetic
Modification

Main Conclusions towards
Crop Improvement Reference

Tobacco

Abiotic stress induces
demethylation and

transcriptional activation
of a gene encoding a

glycerophosphodiesterase-
like protein in
tobacco plants.

DNA methylation

Aluminum stress, salt, and low
temperature treatments induced
demethylation patterns. These

results suggested a close
correlation between methylation
and expression of NtGPDL upon

abiotic stresses with a
cause–effect relationship.

[331]

Tobacco, potato
Reactivation of silenced

transgenes by DNA
demethylating chemicals.

DNA methylation More efficient genetic
transformation of plants. [137]

Tobacco, rapeseed
onion, barley,

cork oat

Method to evaluate global
DNA methylation changes

and nuclear pattern
distribution in a variety of

crop and forest species.

DNA methylation

Method to estimate differences
in global DNA methylation

levels among different cell types
and organs during development,

which can help to evaluate
epigenetic reprogramming

events associated with plant
growth and adaptation.

[281,282]

Tomato

Epigenetic marks in an
adaptive water

stress-responsive gene in
tomato roots under normal

and drought conditions.

DNA methylation

Drought induces the removal of
methyl marks in the regulatory

region (at 77 of the 142 CNN
sites) DNA methylation

involved in drought acclimation.

[332]

Tomato
A DEMETER-like DNA
demethylase governs
tomato fruit ripening.

DNA methylation

Active DNA demethylation is
central to the control of ripening

in tomato. RNAi SlDML2
knockdown results in ripening

inhibition via hypermethylation
and repression of the expression

of genes encoding ripening
transcription factors and

rate-limiting enzymes of key
biochemical processes such as

carotenoid synthesis.

[75]

Tomato

Chilling-induced tomato
flavor loss is associated

with altered volatile
synthesis and transient

changes in DNA
methylation.

DNA methylation

Changes in DNA methylation
are associated with reduced

levels of specific volatiles and
reductions in transcripts

encoding key volatile synthesis
enzymes during fruit ripening.
RNAs encoding transcription
factors essential for ripening,

including RIPENING
INHIBITOR (RIN),

NONRIPENING, and
COLORLESS NONRIPENING,

are reduced in response to
chilling and may be responsible
for reduced transcript levels in

many downstream genes during
chilling. Those reductions are

accompanied by major changes
in the methylation

status of promoters.

[333]
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Tomato

Single-base resolution
methylomes of tomato fruit

development reveal
epigenome modifications
associated with ripening.

DNA methylation

DNA methylation changes
through fruit ripening: the

epigenome is not static during
development and may have
been selected to ensure the
fidelity of developmental

processes, such as ripening.

[334]

Tomato

Relationships between
genome methylation, levels

of non-coding RNAs,
mRNAs, and metabolites
in ripening tomato fruit.

DNA methylation

Multiple changes in gene
methylation were linked to the

ethylene pathway and
ripening processes.

[335]

Tomato

Naturally occurring
epialleles determine

vitamin E accumulation in
tomato fruits.

DNA methylation

Vitamin E content is controlled
by mQTL9-2-6—an expression

QTL associated with differential
methylation of a SINE

retrotransposon located in the
promoter region of VTE3—that

catalyses one of the final steps in
the biosynthesis of vitamin E.

These findings indicate,
therefore, that naturally
occurring epialleles are

responsible for regulation of a
nutritionally important

metabolic QTL.

[115]

Wheat

The contribution of
epigenetic modifications to
the expression divergence

of three TaEXPA1
homoeologs in
hexaploid heat.

DNA methylation and
chromatin

modifications

Epigenetic modifications
contribute to the expression

divergence of three TaEXPA1
homoeologs during
wheat development.

[30]
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