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Chapter 1

Introduction

In the last decade, research in multi-rotor UAVs drawn increasing interest

and funding from both academic and industrial communities, thanks to their

versatility, low-cost realization, and promising unexplored applications [1,2].

Indeed, UAV research led to technological advances in mechatronic servo-

systems, microelectronics, and sensors, which, combined with novel eco-

nomically affordable and high-performing micro-controllers and embedded

boards, rapidly increased their general performance [3–5]. Notable exam-

ples of successful application of UAV technologies can be found in precision

agriculture [6–8], where drones equipped with Real-Time Kinematic Global

Navigation Satellite Systems (GNSSs-RTK) [9] are used to minimize human

intervention.

Other important applications, instead, are related to monitoring and pa-

trolling. For example, drones are well suited to explore or inspect large

environments and buildings [10, 11] aiming, for instance, to 3D reconstruc-

tion. Moreover, drones high maneuverability in small spaces fits both ur-

ban missions [12–15, 28], such as monitoring road traffic, and rescue mis-

sions [29–32,34,35], such as patrolling dangerous zone after natural disasters.

In many of these applications Vision-Based Navigation (VBN) algorithms

are often used to improve accuracy in the positioning [36–43]. Film makers

and video studios are successfully using UAVs for aerial shooting [44, 45].

These drones are usually big, because they need to load heavy cameras and

their gimbals. The size, the weight, and the large number of engines make

them very stable, and so, under the driving of skillful pilots, they are able

to accomplish high precision maneuvers of the order of tens of centimeters.

1



2 Introduction

On-board systems are only used for improving stability and assisted ma-

neuvering, while the navigation performance is completely left to the pilot’s

ability and sensitivity.

In the field of autonomous UAVs, the actual precision for outdoor appli-

cations is limited by the mostly used sensing technology, i.e., by standard

GNSS devices, which today are able to locate the drone within a one me-

ter radius at the very best [46, 47]. The development of novel applications

is severely limited by this performance level, and, therefore, the demand

for better technologies is growing by the day. When higher performance

is required, then, a finer positioning system turns out necessary, as it al-

ready happens for acrobatic drones [48–50]. In this case the most effective

approach consists in exploiting a ground-assisted positioning system. For

example, in indoor applications, the typical solution involves a large number

of fixed cameras, which are able to detect special markers on the drone (mo-

tion capture). A ground station processes the data from the cameras by a

computer vision algorithm that generates a high-precision position estimate

at high-frequency. Possibly, the cameras can be replaced by other ground

localization systems without changing the overall paradigm [51–59]. The

ground station either can send the computed information to the drone, or,

more usually, can pilot directly the UAV exploiting this data. Whichever

the case, this solution prevents a completely autonomous drone.

The degree of autonomy of a UAV is a non-secondary factor when devel-

oping new applications, because any necessary environmental set up repre-

sents a cost and a delay. Recent projects, indeed, are investigating solutions,

which may lessen the limits of the actual technologies recurring to an ex-

tensive use of sensor fusion techniques [60–62]. Nevertheless, precision and

complete autonomy are yet difficult features to get together.

1.1 My objectives

The objectives that I set myself during the PhD course were to develop au-

tonomous navigation techniques and algorithms for UAVs, capable of mov-

ing with centimeter accuracy and to follow three-dimensional trajectories.

Studying the literature, I soon realized that in order to apply research in

this field it would be necessary to develop a hardware and software platform,

through which realize the algorithms of interest. This is because currently

there are no valid and cheap platforms on the market able to meet the re-
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quirements for this type of application. For this purpose, part of my research

has focused on the development of the technology by which it is possible to

test the autonomous navigation algorithms.

1.2 Novel contributions

Among the novelties shown in this research work it is possible to mention the

innovative techniques and methodologies developed for the tracking of 3D

trajectories in the UAV field, through the use of systems based on artificial

vision. A not insignificant aspect is the fact that all the technologies pre-

sented are of the on-board type and do not rely on external sensors (such as

fixed cameras in the environment that create motion capture systems), this

guarantees high performance (thanks to computer vision technique) and high

flexibility (thanks to the fact that autonomous UAV prototypes do not need

external help to function). The software engineering approaches are also

mentioned, which in their latest implementations are able to make UAVs

capable of carrying out missions with an unknown path. Finally, the design

phase of the multilevel hardware architecture also constitutes an important

innovative contribution, as it provides a solid platform for doing research in

the autonomous UAV field.
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1.3 Tables of notations and abbreviations

Main notations

φ̂k Attitude estimate

φ̂k+1 Updated attitude estimate

Ωk Vector of the angular velocities

Q̂f Estimate of the drone position in fixed frame

Qb Drone position in body frame

Qc Position of the marker in camera frame
~Qcb Offset vector between the camera and the body

af Acceleration vector in fixed frame

ab Acceleration vector in body frame

ag Gravity acceleration

ψfd Desired heading angle in fixed frame

ψfb Heading angle of the body in fixed frame

ψcg Heading of the gate in camera frame

ϕfb Pitch angle of the body in fixed frame

θfb Roll angle of the body in fixed frame
~Of Offset vector in fixed frame
~Oc Offset vector in camera frame
~P cid Position of the gate in camera frame
~P fb Position of the body in fixed frame

Rx(φ) Simple rotation of an angle φ around the x axis

Ry(φ) Simple rotation of an angle φ around the y axis

Rz(φ) Simple rotation of an angle φ around the z axis

Rxyz(φ) Complex rotation of an angle φ around the three axes
~Ec Endpoint in camera frame
~Eg Endpoint in gate frame
~Ef Endpoint in fixed frame

~eb Error vector in body frame

~ef Error vector in fixed frame

⊗ Hamilton rule
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Main abbreviations

DOF Degrees of freedom

IMU Inertial measurement unit

UAV Unmanned aerial vehicle

PID Proportional-integral-derivative

PPM Pulse position modulation

SBUS Serial bus

NED North-east-down

FIFO First input first output

FPS Frame per second

CSI Camera serial interface

MIPI Mobile industry processor interface

UART Universal asynchronous receiver-transmitter

MOCAP Motion capture

VBN Vision based navigation

GPS Global positioning system

GNSS Global navigation satellite systems

RTK Real time kinematic

UWB Ultra wide band

ROS Robotic operating system

CAD Computer aided design

CNC Computer numerical control

SLAM Simultaneous localization and mapping

GPIO General purpose input-output

EEP Engine efficiency percentage

OSD On screen display

FCF-CF Fixed camera frame complementary filter

FCF-MF Fixed camera frame Madgwick filter

SCF-MF-2DOF Stabilized camera frame Madgwick filter 2DOF

SCF-MF-3DOF Stabilized camera frame Madgwick filter 3DOF

FPGA Field programmable gate array

ID Identifier

VISP Visual servoing platform

API Application programming interface

UDP User datagram protocol

TCP Transmission control protocol
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Chapter 2

Overview on autonomous UAVs

In this chapter the technologies used on autonomous UAVs in the

academic field will be presented. Furthermore, we will discuss the

current state of the art for these systems and on which themes the

research community is currently focused. Finally, the concept of

multilevel hardware and the type of boards most cited in literature

will be introduced.

2.1 Usable technologies

In recent years the number of technologies that can be used in the field

of autonomous drones have had a significant increase. The first technol-

ogy implemented on the drones for position estimation was GPS. However,

this technology hardly guaranteed sub-meter accuracies and was limited to

outdoor environments (as GPS triangulation is not able to work inside build-

ings). Given the poor accuracy obtainable through the use of this approach,

for a long time autonomous drones have been able to carry out limited mis-

sions in pursuit of 2D trajectories, formed by a set of points called ”way-

points” [79,80].

Over the time there has been an exponential increase in the features of

the UAVs, which has made them increasingly ”smart”. An example is the

use of additional sensors such as: (i) ultrasonic sensors, useful for avoiding

obstacles at short range; (ii) optical flow, minimal optical sensors able to

refine the rough positioning estimate provided by the GPS. Lately, thanks

to technological evolution, VBN systems are becoming increasingly popu-

7



8 Overview on autonomous UAVs

lar. This technology, unlike the previous one, can make UAVs capable of

following 3D trajectories in space. The performances obtainable through

the use of these systems are superior to those that could be obtained with

the use of GPS technology alone, moreover it is able to function also in-

doors. These features greatly increase the autonomous driving capabilities

of UAVs, making them able to execute increasingly complex and research-

oriented missions. The VBN technology is divided into two conceptually

different branches: (i) off-board VBN techniques [83, 88] (realized through

the use of motion capture systems), where both the cameras and the com-

puting units for autonomous navigation are mounted externally to the UAV

in a fixed position; (ii) on-board VBN techniques, where there is no ground

aid and all autonomous navigation hardware is mounted on board the UAV.

Both configurations have their weaknesses and their advantages.

Off-board VBN techniques have the advantage of guaranteeing extremely

high estimation accuracies (of the order of a millimeter), this mainly derives

from the fact that the cameras are mounted externally in a fixed position and

are able to maintain visual contact of the UAV, avoiding the vision noise that

would be present if they were mounted on board the drone. Obviously the

weaknesses of this approach are related to the low flexibility of the technique,

as it can only work in controlled environments suitably set up. As for on-

board VBN techniques, they are able to guarantee lower accuracy than off-

board ones, however they have the advantage of being flexible and usable in

any environment. Lately, in the literature, there are references on the use

of “event-based” cameras, which are used for the development of on-board

VBN techniques for robotic applications [84,85]. The advantages that event-

based technology offers compared to cameras based on standard technology

are mainly related to the very low latency they can guarantee. However,

this technology is currently very expensive when compared to classic vision

systems. This issue unfortunately widely limits its use.

Another recent technology, usable for precision autonomous navigation,

uses multiple UWB sensors, where each module is called node [86,87]. Con-

ceptually it is no different from off-board VBN techniques, as only the tech-

nology used changes but not the technique itself. Specifically, a constellation

of nodes (UWB modules) mounted in a fixed position in the environment is

used and a node is mounted on board the drone. This constellation of fixed

nodes, joined to the mobile node, is able to triangulate with high precision

the position of the UAV within the constellation itself. As for the off-board
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VBN techniques, also the localization techniques based on UWB technology

are able to guarantee high performance at the expense of the flexibility of

the system itself.

2.2 State of the art

In the scientific community, one of the topics of greatest interest in the

UAV field concerns autonomous navigation based on computer vision. In

the academic field, many works are done through the use of motion capture

systems (mocap) [83,88], as they guarantee the highest performance. Given

the high precision that these systems are able to achieve, they are often used

to compare different control techniques. This approach allows to establish

in a very accurate way the small differences in performance existing between

the various control algorithms to be tested on the UAV, providing a powerful

measurement tool useful for research purposes.

However, often the researches that are done through the use of mocap

systems are not reflected in the industrial sector since most of the naviga-

tion algorithms and control techniques that exploit mocap technology can

hardly be implemented on drones that must be able to work even in en-

vironments without this technology. Recently, thanks to the technological

evolution and the proliferation of the open-source board market such as

Raspberry Pi, Nvidia Jetson etc. (able of running operating systems such as

Linux on board), the research world has become increasingly interested in

on-board VBN techniques [63,81]. Given the possibilities currently offered by

technology, interest has shifted to how to solve the problem of autonomous

navigation of UAVs without ground assistance.

To investigate this new formulation of the problem, the classic UAV ar-

chitecture consisting of a microcontroller, sensors connected to it and a re-

ceiver capable of receiving commands is no longer sufficient. It is therefore

necessary to use a multilevel architecture, composed of both classic micro-

controllers and boards capable of processing images and complex algorithms

(Raspberry Pi, Nvidia Jetson, etc.). In addition, each board must be able to

communicate with the adjacent hardware layer. This aspect highlights the

fact that to solve this type of problem the hardware complexity of the drone

inevitably increases.
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2.3 Multilevel Architecture

A very common autopilot board for UAV robotic applications is the Pix-

Hawk. Indeed, most of the scientific papers dealing with the development

of technology and algorithms for autonomous UAVs use this platform [95].

The reasons are more than one, among the most important are: (i) the Pix-

Hawk board was one of the first and most complete open-source platforms

for drones; (ii) some custom versions of the firmware give native support for

Robot Operating System (ROS ) [88]. The latter is a set of frameworks for

robot development and programming.

In fact, as mentioned in the previous section, the development of au-

tonomous UAV applications based on on-board VBN techniques involves the

use of multiple hardware levels, which must be able to communicate with

each other [88]. In particular, on these UAVs (based on multilevel hardware)

an additional high level card is used (which can be a Rasberry PI card) on

which ROS is installed. The high-level hardware is then able to commu-

nicate with the PixHawk platform through a UART port, which uses the

MAVLINK protocol. While there is currently no standard for these systems,

it can be generally said that complex tasks such as autonomous navigation

and building exploration are performed by the high-level hardware, while

the task of attitude stabilization is performed by the PixHawk card.

2.4 Conclusion

From the previous sections it is evident how the technologies applicable on

drones are many and in continuous evolution. However, there is no stan-

dard plug and play platform on which to develop innovative techniques and

algorithms. This forces research groups to develop home-made platforms

through which carry out their topics of interest.

The PixHawk board partially solves the problem, giving the possibility

to be driven also through the MAVLINK protocol (standard compatible

with ROS). However, it cannot be the definitive solution, since it would

not be possible to replace the PixHawk autopilot board with another if it

were necessary (currently, there are no immediate alternatives for interfacing

additional boards to other flight controllers known to the researcher). In

this regard, in the next chapter five different UAVs will be shown in detail,

which make use of a modular hardware and software architecture, allowing



2.4 Conclusion 11

Figure 2.1: The figure shows the PixHawk open-source autopilot board.

This microcontroller is suitably customized for use on drones, in normal use

it is able to automatically stabilize the attitude and control the altitude. If

required, it can carry out simple automatic missions based on the use of GPS

technology.

the simple replacement of individual components.

Any autopilot card can be used with this approach. In fact, as will be

explained, the hardware architecture in question will be able to generate the

autonomous signals to be sent to the autopilot board in the same standard

used by the wireless receivers (normally used to receive the manual com-

mands sent by the human pilot). This method theoretically makes possible

to use proprietary controllers, such as the DJI Naza N3, which is compatible

with standard drone receivers currently on the market.
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Chapter 3

Developed hardware platforms

In this chapter we describe the architecture of the developed hard-

ware and all derived versions. The nature of the proposed hard-

ware is designed for autonomous navigation and thus provides

an excellent basis to develop computer vision algorithms and ad-

vanced methods for navigating complex spaces. This hardware

platform, called DART, allows to focus on developing high-level

algorithms, leaving low-level tasks such as attitude stabilization

to the flight controller. In particular, all the versions of the plat-

form developed over time are shown, starting from the first up

to the most advanced version. Each version is associated with a

different acronym, this will be useful in subsequent chapters to

explain on which versions the various algorithms have been de-

veloped and tested. Furthermore, all the technical choices made

during the development of the various prototypes are motivated.

3.1 Introduction of the hardware architecture

of the prototype designed for autonomous

flight

DART project is aimed to investigate if suitable tweaks of standard tech-

nologies can be used to implement a completely autonomous high-precision

drone, i.e., a drone able to follow a reference trajectory with centimetric

precision exploiting only on-board systems without any assistance from the

13



14 Developed hardware platforms

ground, neither for sensing nor for computing. On a different perspective, it

is also intended to measure how this kind of drones is far from mass market.

Indeed, low-cost technologies are considered a key factor to boost the market

of many innovative drone applications [64,65].

Autonomy comes from a digital signal mixer that allows the on-board

navigation system to override the human commands and to replace the pilot,

as long as this latter decides to get the lead back. This way, the navigation

system just substitutes the human pilot, and thus, they share the same in-

terface with the drone. The concept behind DART project is to separate the

simpler tasks all concerning attitude stabilization from the so-called “smart”

tasks related to complex navigation routines, such as the tracking of a com-

plex trajectory in the 3D space. For this purpose it is referred to as “low-level

hardware”, the flight controller that only performs attitude stabilization and

which can be a commercial board. Instead, “high-level hardware” is defined

as all the additional and necessarily non-commercial electronics useful for

autonomous navigation.

This choice provides a two-fold advantage: (i) it requires the least number

of modifications and the smallest customization; (ii) it allows one to focus

only on the development of intelligent “high-level” algorithms for computer

vision and tracking. Here, it is worth noting that in the DART platform,

high and low-level tasks are performed by two different hardware, since at-

titude stabilization, unlike high-level tasks needs a control high-band to be

successfully carried out. The first hardware is able to execute complex cal-

culations at a lower rate (generally, a few hundred Hz) with respect to

a standard micro-controller, while the second is optimized just to perform

simple calculations but at a very high-frequency (in the order of KHz).

Indeed, the attitude variation is much faster than the dynamics of the

drone position. For the reasons shown in the following sections, the solution

that we adopted to design the hardware architecture is, to our knowledge,

the closest to the actual mass market of UAV technologies. Due to its pecu-

liar nature the automatic pilot is here referred to as “cyber-pilot”. Moving

backward from the process output up to the inputs, the signal chain can be

summarized as follows.

• Engines

• Flight Controller

• Signal Mixer
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– Receiver

∗ Human pilot

– Navigation System (Cyber-pilot)

∗ Sensors

· IMU

· Stabilized Camera

Over the time, many hardware upgrades have been made and more advanced

versions of the DART platform have also been developed. For clarity we will

define an acronym for each hardware version. This will make it easier to

explain in later chapters which versions the various algorithms have been

tested on.

3.2 DART-1.0 platform

In this paragraph, the first version of the DART platform is introduced,

which from now on we define DART-1.0. This platform is based on a stan-

dard class 250 frame. This means that the diagonal of the drone measures

250mm, this measurement is usually defined by the position of the motors.

After some preliminary tests, emerged as the smallest kind of drones, where

one can carve out sufficient space and payload for some additional on-board

devices. Besides the basic electronics for engines and batteries, the drone

features a 2.4GHz remote receiver, and a flight controller, which has the

sole task of stabilizing the attitude.

In particular, this version uses a Raspberry Pi 3B+ with a Raspicam

camera mounted in fixed position with respect to the frame (all the software

for autonomous navigation runs on the Raspberry board). The signal mixing

operation is carried out by an Arduino Nano board, which is connected

between the Raspberry and the low-level flight controller (CC3D revo). The

hardware architecture and the interactions between the various levels will be

explained in detail in the following subsections.

3.2.1 High-level board: Raspberry Pi 3B+

In the first version of the platform, the high-level part has been developed

using a Raspberry PI 3 B + board. In fact, this board, unlike Arduino micro-

controllers, uses a Linux operating system and is able to process images
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coming from a camera. At the beginning of the project it was the best

choice, also considering the small size and weight (essential characteristics

for use on small drones). The Raspberry board also has an indispensable

General Purpose Input/Output (GPIO) for communicating with the mixer

board and the IMU. The specifications of the card are shown below.

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

• 1GB LPDDR2 SDRAM

• 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2,

BLE

• Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

• Extended 40-pin GPIO header

• Full-size HDMI

• 4 USB 2.0 ports

• CSI camera port for connecting a Raspberry Pi camera

• DSI display port for connecting a Raspberry Pi touchscreen display

• 4-pole stereo output and composite video port

• Micro SD port for loading your operating system and storing data

• 5V/2.5A DC power input

• Power-over-Ethernet (PoE) support (requires separate PoE HAT)

3.2.2 Mid-level board: Arduino Nano

The signal mixing operation (autonomous and manual) is carried out by

using an Arduino Nano board (chosen for its small size and low cost), on

which a custom firmware has been written. This firmware is able to com-

municate with the high-level card, receive manual commands (coming from

the 2.4GHz receiver of the drone) and at the same time generate a second

command signal to be sent to the low-level controller (the details of this ap-

proach are explained in subsection 3.2.4). The characteristics of the Arduino

Nano are shown below.
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• Microcontroller: ATmega328

• Architecture: AVR

• Operating Voltage: 5 V

• Flash Memory: 32 KB of which 2 KB used by bootloader

• SRAM: 2 KB

• Clock Speed: 16 MHz

• Analog IN Pins: 8

• EEPROM: 1 KB

• DC Current per I/O Pins: 40 mA (I/O Pins)

• Input Voltage: 7-12 V

• Digital I/O Pins: 22 (6 of which are PWM)

• PWM Output: 6

• Power Consumption: 19mA

• PCB Size: 18 x 45 mm

• Weight: 7 g

3.2.3 Low-level flight controller: CC3D revo

As discussed in section 2.3, currently in the literature, the most widely used

flight controller is the Pixhawk, based on the open-source Ardupilot project.

In the scientific works of the sector, the approach used for the communication

of additional cards with this flight controller involves the use of ROS [88].

However, the approach precludes the choice of other flight controllers, since

the firmware running on Pixhawk is the only one that natively supports

communication with ROS. In fact, the only way to use flight controllers

other than Pixhawk is to modify the low-level firmware. Considering that

the dimensions of the Pixhawk are considerable compared to the size of

our drone, we preferred to design the aforementioned multilevel architecture

(high / medium / low-level). Which, in addition to being able to pilot

any flight controller available on the market, avoids modifying the low-level
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firmware. In this regard, a very small flight controller was chosen, called

CC3D-Revo. On this board runs LibrePilot firmware, a parallel project to

Ardupilot, of open-source type. As already mentioned, this module has the

sole task of stabilizing the attitude of the drone with respect to the set-points

received from the signal mixer. Since neither the altitude nor the position

are controlled by the low-level module, another controller is required to carry

out these tasks, as it will be shown in subsection 3.2.4. As a further remark,

it is worth noting that the low-level flight controller allows for hovering the

drone even in case of faults from the high-level navigation system. The

specifications of the flight controller are shown below.

• Processor: STM32F405RGT6 ARM Cortex-M4 microcontroller 168

MHz/1 MB Flash

• Sensors:

– InvenSense MPU6000 IMU (accel, gyro)

– Honeywell HMC5883L compass

– MS5611 barometer

• Power: 4.8 V - 10 V input power provided through ESC connection

• Default Interfaces:

– 8 PWM outputs (1 - 6 on PWM output pins, 7 and 8 on Flex-IO

/ RC input port).

– RC input (requires PPM/SBUS) on Flex-IO / RCInput ports CH3

pin.

– analog to digital inputs for battery voltage and current monitoring

( set pins 12,11 in params ), more adcs possible on arbitrary pins.

– GPS (SERIAL3) on Flexi Port.

– Telemetry (SERIAL1) on Mainport.

– USB (SERIAL0) port.

– SWD Port for flashing and debugging, including 3.3 V output for

optional periphereals.

– MMCX antenna connector for integrated HopeRF RFM22B 100

mW 433 MHz.

– OPLink port.
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High-level Mid-level Low-level

Figure 3.1: Hardware configuration and dependencies. The PPM-mixer

board is an interface between the low-level flight controller and the Rasp-

berry PI board, on which the high-level navigation software is implemented.

3.2.4 Hardware architecture

The architecture of the hardware is shown in Fig. 3.1, where one can observe

the interconnections between all components. The Raspberry PI 3 B+ board

is connected with the Raspicam camera and the IMU, sensor units from

which the vision and inertial data are obtained. The idea is to run the

autonomous navigation software on the Raspberry board generating the set-

points for attitude and motors thrust, which are sent to the low-level flight

controller. Currently the low-level board has the sole task of stabilizing the

attitude by following the set-points from the cyber-pilot (high-level board)

or from the human one.

Between the Raspberry PI and the low-level, the custom signal mixer

board is employed, also called mid-level board. The mixer board takes in

input the attitude set-points coming from the Raspberry (by using bidirec-

tional UART protocol to convey the data stream) and the manual set-points

coming from the 2.4 GHz receiver through the Pulse Position Modulation

(PPM ) protocol [16]. As output the mixer generates a second PPM signal,

that is obtained by properly elaborating the inputs. It is important to note

that the use of the PPM standard guarantees a maximum command band of

44Hz, which for human commands are more than sufficient but can repre-

sent a bottleneck for the cyber-pilot. However, in the following paragraphs

it will be shown how in subsequent versions of the platform this limitation
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Figure 3.2: Example of the PPM modulation implemented on the mixer

board. The information part relating to a single channel is contained within

the time interval between two consecutive peaks. Once the status of each

channel has been sent, a time value greater than the maximum value that the

single channel can assume is expected. This is done to separate one frame

of pulses from the next.

has been eliminated. The resulting device is able to switch safely between

autonomous and manual flight modes. The autonomous flight mode is still a

hybrid mode where the cyber-pilot commands are overlapped to the manual

controls.

The concurrence between manual and autonomous controls also allows

for the rectification of possible anomalous behaviors of the drone along the

chosen trajectory, thus improving the safety. In Fig. 3.3 we show the block

diagram of the algorithm representing the operating logic of the mixer board.

In details, the algorithm takes as input signals the manual PPM and the

autonomous contribute transmitted via UART protocol. The PPM signal is

decoded in a vector of time intervals, which are expressed as integer numbers

where each unit increment equals to 1 µs. Each time interval identifies a

specific set-point that has been converted into the low-level flight controller

format. Instead the autonomous contribute is already coded as time intervals

by the Raspberry PI, in order to decrease the computational effort of the

mixer and, thus, to improve the rate of the output signals. Then, we sum

together the time intervals coming respectively from the manual PPM signal
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Decoding Time 
intervals

Time 
intervals

Coding

Manual PPM

Autonomous 
Contribute 

Figure 3.3: Functional scheme of the mixer board. The two input command

signals, converted in time intervals, are merged into a single signal at the

output of the board. We have named this operating logic as Hybrid Mode.

and the autonomous contribute, by also taking into account their sign. The

resulting time intervals are finally re-encoded in a PPM signal, which is then

sent to the low-level flight control board.

In other terms, one can see the mixer board as an interface between

the high-level navigation system (managed by the Raspberry board) and

the attitude stabilization algorithm, which is implemented on the low-level

controller. The main advantage of this architecture is to generate command

signals directly in the standard of flight controllers for drones. This allows

one to use any flight controller available on the market without making any

changes to the low-level firmware, eliminating the possibility of introducing

catastrophic and uncontrolled bugs.

3.2.5 Sensors units

The sensors units employed in this project are composed by (i) the IMU

connected to the Raspberry PI through the I2C serial bus, and (ii) a Raspi-

cam camera for the purpose of computer vision. In particular, the IMU is

a Pololu AltIMU-10 v5 that implements several standard sensors commonly

used to estimate the pose of smart devices: Gyroscope, accelerometer, com-

pass, and altimeter. It is worth saying that the algorithms, which we are

going to present in the following chapters, only use the camera, the gyro-

scope and the accelerometer, but not the other sensors. Instead, regarding
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Figure 3.4: Connection diagram of the high and mid-level components with

the low level controller.

the Raspicam camera V1, it is connected to the Raspberry PI through a

Mobile Industry Processor Interface (MIPI ) cable.

3.2.6 Wiring of high-level electronic components

In this subsection we focus briefly on the wiring of high-level electronic com-

ponents. Fig. 3.4 shows the wiring diagram of how the high and mid-level

blocks are connected to the low-level block. It is important to note that the

pins of the Raspberry are not 5V tolerant, for this reason it is preferable not

to connect it directly to the Arduino Nano (which pins work at a logic level

of 5V ). For this purpose, a bidirectional level shifter was used, capable of

adapting the different logic levels of the two cards (3.3V -5V ). In the wiring

diagram of Fig. 3.4 a buzzer connected to the Arduino nano board is also
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Figure 3.5: CAD view of the complete model related to the DART-1.0 plat-

form. The custom parts were made using 3D printing.

visible, it generates an acoustic signal if the Raspberry board fails during

autonomous flight mode.

3.2.7 Mechanical structure

The DART-1.0 body frame is mostly composed by laminated standard car-

bon fiber parts which improve the rigidity of the frame and reduce its weight.

The body frame hosts other custom parts which have been 3D printed at low

density, leaving empty spaces inside the material to make it lighter. These

parts serve to assembly the additional hardware necessary for autonomous

navigation and computer vision tasks. In this hardware version, the motors

used are 2205-2550kV , combined with 5-inch propellers and with a 3-cell lipo

battery pack (the choice of these three components will be detailed in para-

graph 3.2.8). Fig. 3.5 shows a CAD view of the first version of the prototype,

complete with all the custom parts designed for the assembly of high-level

electronics. It is important to note that in this first version of the platform,

the artificial vision camera is fixed with respect to the drone. This implies a

greater entity of the vision noise due to the mechanical vibrations generated

by the rotation of the motors. To reduce vision noise, silicone dampers were

fitted between the camera body and the UAV frame. This allowed the de-

coupling of the two parts, almost totally canceling the vibrations captured

by the camera. Fig. 3.6 shows in detail the method of fixing the camera
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Figure 3.6: Support for fixing the ”Raspicam” camera for computer vision,

complete with silicone dampers.

to the UAV frame using the silicone dampers [17]. Fig. 3.7 shows the real

prototype, once assembled with all the custom parts.

3.2.8 Brushless motors for UAV

It is worth briefly investigating the identification code of the motors used,

thus clarifying the logic on the basis of which they were chosen. Please note

that the identification code of the engines used in the DART-1.0 platform is

2205-2550kV . The first part of the code, that is the number 2205, identifies

the diameter and height of the stator in millimeters respectively. Increasing

the stator diameter also increases the diameter of the bell-shaped rotor where

the propeller is fixed. This implies that by varying the diameter of the bell-

shaped rotor, the torque of the motor also varies. This happens because

the arm of the applied lever varies, for this reason propellers of a specific

diameter must be coupled with motors having an adequate lever arm.

If this combination is not done carefully the result is low motor effi-

ciency [18], which is usually measured as g
W . Instead the second part of the

identification code (in the specific case 2550) defines the number of rotation

per minute for each Volt supplied to the engine. This quantity is measured

in kV and is defined by eq. 3.1.

kv =
rpm

V
(3.1)
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Figure 3.7: A picture of the DART-1.0. To increase safety during indoor

flight, para-propellers have been fitted.

The number of kV together with the diameter of the propeller determines the

maximum thrust obtainable from the motor-propeller couple. Normally the

motor data are provided by the manufacturer through specific tables. These

tables show the maximum thrust and power consumption values referred to

some types of propeller. It is good practice to size the maximum thrust of

the UAV considering that the thrust/weight ratio must be at least 2/1. The

DART-1.0 platform including the 3-cell battery has a weight of 1Kg, so the

motors should be sized to be able to provide at least 2Kg of thrust. Fig. 3.9

shows the table provided by the motor manufacturer where the row relating

Figure 3.8: Exploded diagram showing the architecture of a brushless motor

for UAV. The bell-shaped rotor is shown including the permanent magnets.

This architecture allows to obtain a high torque, since it maximizes the lever

arm.
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to our use case is highlighted in red.

Figure 3.9: Table provided by the manufacturer of the motors used in the

DART-1.0 platform. The operating conditions in our setup when the engine

is providing the maximum thrust is highlighted in red.

As can be seen in our configuration, the maximum thrust of a single en-

gine is 570g which multiplied by 4 reaches 2280g, therefore the thrust/weight

relationship is respected. Another interesting data shown in Fig. 3.9 is the

EEP, which is the value of the engine efficiency in a specific operating con-

dition. In the specific case we have an EEP value of 3.9 g
W relative to the

maximum throttle, which represents one of the best values among those

tabulated. This indicates that the motor-propeller-battery combination is

correct.

3.3 DART-1.1 and DART-1.2 platforms

To reduce the vision noise due to the UAV maneuvers, it was decided to

introduce a 2-DOF gimbal. The gimbal is able to decouple the attitude of

the drone from that of the camera, keeping it leveled with respect to the

pitch and roll angle. However, the gimbal adds weight to the UAV and

requires additional space to be properly installed. This raises two problems:

(i) motors with 5-inch props are no longer the choice that guarantees the best

efficiency; (ii) the frame of the UAV must be modified for the installation
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Figure 3.10: Table provided by the manufacturer of the motors used in the

DART-1.1 platform. The operating conditions in our setup when the engine

is providing the maximum thrust is highlighted in red.

of the gimbal; The addition of the gimbal in fact implies a weight increase

of at least 280g, consequently the constraint of the thrust/weight ratio of

2 to 1 is no longer respected. For this reason it is necessary to increase

Figure 3.11: In the image it is possible to observe the two versions of arms,

where the custom arm is the longer one. The finished carbon fiber arms

are shown on the left side of the figure (standard version and customized

version). On the right side of the figure there is a CAD view of the two

versions of the arm. For the realization of the customized arm, a carbon

fiber plate suitably worked by means of a CNC milling machine was used.

the maximum thrust that the UAV can generate [18]. For this purpose in

the DART-1.1 platform the motor-propeller combination has been changed,

passing from the old 2205-2550kV motors with 5-inch propellers, to the new

2508-1200kV motors with 7-inch propellers. This new type of engine having
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a greater lever arm than the previous one allows the mounting of propellers

with a larger diameter that provide a much higher thrust than the previous

configuration. Since the number of kV is lower than that of the old motors,

the battery was also replaced with one with a higher voltage. In other

words, we have switched from a lipo with 3 cells (11.1V ) to a lipo with 4

cells (14.8V ). Fig. 3.10 shows the table provided by the manufacturer for the

configuration adopted in the DART-1.1 platform. The current configuration

makes it possible to generate a maximum thrust for each engine equal to

1.182Kg (with an efficiency coefficient equal to 4.22 g
W ), which multiplied

by 4 corresponds to a maximum thrust of 4.728Kg. Since the weight of

the DART-1.1 platform is 1.370Kg, the thrust/weight constraint is largely

respected. The frame of the DART-1.1 platform has also undergone changes,

the most important was the creation of custom arms for the motors, able

to support the 7-inch propellers. The new arms are longer than the original

ones and increase the size of the frame taking it from 250mm to 350mm. In

Figure 3.12: CAD view showing the DART-1.1 platform in all its parts.
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Fig. 3.11 it is possible to see a CAD view of the two versions of arms, while in

Fig. 3.12 the CAD view of DART-1.1 is shown. In addition to designing the

support necessary for the correct fixing of the gimbal to the frame and the

support necessary to adapt the ”Raspicam” camera, it was also necessary

to draw pins to lift the frame from the ground. In fact, as can be seen in

Fig. 3.13, the size of the gimbal is considerable and it was necessary to mount

it under the drone. Also in Fig. 3.11 the two versions of the finished arms

are shown. As already mentioned, the custom version is the longest one and

was made from a 4mm thick carbon fiber sheet. Once the CAD model of the

arm was finished, a Computer Numerical Control (CNC ) cutter was used to

process the carbon plate, thus obtaining the finished piece. The Fig. 3.13

shows the gimbal fixed under the drone once the update is finished, as can be

seen the fixing method to the drone frame is equivalent to the CAD model.

Figure 3.13: The figure shows the engineering done to be able to mount

the 2-DOF gimbal under the UAV. in fact it is important to underline that

commercial gimbals are designed to be mounted on UAVs with dimensions

much larger than ours. Normally no part engineering is required for correct

assembly. Please note that this image refers to the DART-1.1 platform.

The electronic architecture is the same as the one presented in para-

graph 3.2, that is, it is the same as the DART-1.0 platform. However, the

gimbal used in the DART-1.1 platform is a 2-DOF gimbal. This means that

it can stabilize the roll and pitch angle, but it cannot stabilize the yaw angle.

The latter is in fact fixed with the UAV frame. It can be easily deduced that

following variations in the drone yaw angle there may be vision noise directly

coupled with the horizontal axis (this phenomenon will be explored in the

chapter on experimental tests). To improve the performance of the vision

system by further reducing the vision noise, we then switched to a 3-DOF
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gimbal that also stabilizes the yaw angle. In fact, a 3-DOF gimbal is able to

decouple the yaw angle of the camera from that of the drone. This version

of the platform will hereafter be called DART-1.2. To adapt the new gimbal

to 3-DOF the fixing system to the frame has been modified as shown in the

CAD view of Fig. 3.14.

Figure 3.14: CAD view of the DART-1.2 platform showing the 3-DOF gimbal

attachment method. The two aluminum tubes (visible in blight lue) improve

the stiffness by further decreasing vision noise.

Here it is possible to observe the two supports (front and rear) that hold

two aluminum tubes to which it is possible fix the new gimbal, as shown in

Fig. 3.15. This method, in addition to being faster in the assembly phase,

guarantees a higher stiffness than the method of fixing the 2-DOF gimbal of

the DART-1.1 platform (using a single plastic support).
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Figure 3.15: 3-DOF gimbal mounted on the DART-1.2 platform.

In Fig. 3.16 it is possible to see the finished DART-1.2 platform complete

of the 3-DOF gimbal. Compared to the CAD model, para-propellers (also

3D printed) have been added for indoor flight.

Figure 3.16: DART-1.2 platform.
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3.4 DART-2.0 and DART-2.1 platforms

In this paragraph, we show the second version of the DART platform, which

uses a completely different technology than the previous versions. In fact,

the Raspberry PI 3B+ board has been replaced with an Nvidia Jetson Nano

board. Another technological advancement of this platform is due to the

implementation of a stereoscopic camera produced by Intel, called Intel Re-

alsense t-265. Even the mid-level has been improved, in fact the PPM-mixer

(which in previous versions was realized through the use of an Arduino Nano

board) has been replaced by a new SBUS-mixer, which can guarantee a

higher communication band with the low-level.

3.4.1 Intel Realsense t-265 camera

The Intel Realsense t-265 is a stereoscopic camera, which means it has two

distinct optical sensors. This system simulates human vision and is able

to locate itself in the environment [21, 22]. It also implements a Bosch

Figure 3.17: Intel Realsense t-265 stereoscopic camera capable of providing

its position and attitude at a frequency of 200Hz and with a latency of

5-6ms.

BMI055 IMU that provides the inertial data to which the camera is sub-

jected. Through a Simultaneous Localization and Mapping (SLAM ) algo-

rithm [19, 20], which runs on board the camera, it is able to provide its

position with a frequency of 200Hz and a latency of 5-6ms. This feature

is very important, as it does not use the computing power of the high-level

board (Nvidia Jetson Nano), which remains free to perform other tasks. In

addition, it can provide the video stream of the two fisheye lens sensors at

a frequency of 30Hz. Since the hardware that makes up the camera is of

excellent quality and the electronics are specially designed to run the SLAM

algorithm, the precision it is able to provide on the position estimation is
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sub-centimeter. This makes it an excellent tool to be employed on drones

(currently representing the state of the art for these systems), as it is an

order of magnitude more accurate than GPS sensors and is capable of op-

erating in indoor enviroments (where GPS sensors cannot work). It is also

necessary to consider that unlike GPS sensors, which are able to provide only

the position on the plane (2D position), systems that use computer vision

are able to provide the complete state vector (3D position). Thanks to these

sensors and algorithms that exploit computer vision, today it is possible to

use drones to carry out advanced missions that were unthinkable until a few

years ago. The data that this stereoscopic camera can provide is not limited

to just the position vector and the inertial vector. The complete list of all the

data that it can provide (if requested) and the relative update frequencies is

shown below.

• 3D position vector. - 200Hz.

• 3D vector of linear velocities. - 200Hz.

• 3D vector of linear accelerations. - 200Hz.

• Quaternion of attitude. - 200Hz

• Angular velocities. - 200Hz

• Angular accelerations. - 200Hz

• Tracker confidence (variable whose value indicates the degree of relia-

bility of the estimated data). - 200Hz

• Video stream of left and right lens. - 30Hz

3.4.2 High-level board: Nvidia Jetson Nano

The Nvidia Jetson Nano development platform has a much higher computing

power than the Raspberry board and has slightly larger dimensions (which

makes it possible to mount it on small drones). It is currently the smallest

development platform that has a dedicated GPU [23, 74]. In fact, the most

interesting feature of the Jetson platform is the dedicated GPU with 128

cuda cores, making it ideal for developing computer vision applications. It

has 4GB of LPDDR4 RAM and is mounted on a carrier-board through a

special connection slot. The carrier-board is useful for development, plus
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Figure 3.18: Nvidia Jetson Nano module complete with development carrier

board.

it implements a GPIO compatible with the Raspberry standard. Like the

Raspberry board, the Jeston Nano carrier-board also has a MIPI connec-

tor, which allows mounting of CSI (Camera Serial Interface) cameras (such

as the Raspicam camera). The specifications of this development platform

produced by Nvidia are shown below.

• GPU: NVIDIA Maxwell 128 core.

• CPU: ARM A57 quad-core a 1,43 GHz.

• RAM: LPDDR4 4 GB 64-bit 25.6GB/s.

• Storage space: microSD.

• Encoder video: 4Kp30/4x 1080p30/9x 720p30 (H.264/H.265).
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• Decoder video: 4Kp60/2x 4Kp30/8x 1080p30/18x 720p30 (H.264/H.265).

• Connectivity: Gigabit Ethernet, M.2 Key E.

• Camera: 1 or 2 connectors MIPI CSI-2 (depends on the carrier board

version).

• Display: HDMI and DP.

• USB connector: 4 USB 3.0, USB 2.0 Micro-B.

• Others: 40-pin (GPIO, I2C, I2S, SPI, UART), 12 pin (power supply

and related signals, UART), fan 4-pin.

• Size: 100mm ∗ 80mm ∗ 29mm

3.4.3 Mid-level board: Teensy 4.0

One of the major limitations of previous DART platforms was the mixer

board. In fact, in previous versions an Arduino Nano board was used, which

has a limited computing power, having a clock of only 16MHz. Further-

more, the PPM protocol was used (which can guarantee a maximum band of

44Hz) to communicate with the low level. The use of this protocol has two

disadvantages: (i) The information is contained in the time intervals between

consecutive signal peaks. This means that the information that must be sent

will have an uncertainty due to the computing power of the card that gen-

erates the signal. In fact, the greater the computing power, the greater the

temporal precision of the signal peaks generated by the board. Considering

that the Arduino Nano board has little computing power, the PPM signal

generated by it has a non-negligible amount of noise; (ii) The signal band-

width is not high and depends on the number of channels to be transmitted.

In addition to the poor computing power of Arduino Nano, there are at least

two other limitations due to the use of this board: (i) the presence of only

one serial port available (therefore it is possible to use the UART protocol

to communicate with only one device and it is not possible to use the serial

monitor during debugging); (ii) it has only two pins that can handle interrup-

tions and one of them is already used for receiving the PPM signal coming

from the 2.4GHz receiver. For these reasons, in the new version of the drone,

the Arduino Nano has been replaced by a Teensy 4.0 micro-controller, which

is currently one of the fastest micro-controllers available on the market. In
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Figure 3.19: The figure shows the upper and lower side of the Teensy 4.0

micro-controller.

fact it has a ARM Cortex CPU with a clock frequency of 600 MHz, all its

pins can handle interruptions and unlike the Arduino Nano it has 7 UART

ports. The specifications of this micro-controller are shown below.

• ARM Cortex-M7 at 600 MHz

• 1024K RAM (512K is tightly coupled)

• 2048K Flash (64K reserved for recovery and EEPROM emulation)

• 2 USB ports, both 480 MBit/sec

• 3 CAN Bus (1 with CAN FD)

• 2 I2S Digital Audio

• 1 S/PDIF Digital Audio

• 1 SDIO (4 bit) native SD

• 3 SPI, all with 16 word FIFO

• 3 I2C, all with 4 byte FIFO

• 7 Serial, all with 4 byte FIFO
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• 32 general purpose DMA channels

• 31 PWM pins

• 40 digital pins, all interrrupt capable

• 14 analog pins, 2 ADCs on chip

• Cryptographic Acceleration

• Random Number Generator

• RTC for date/time

• Programmable FlexIO

• Pixel Processing Pipeline

• Peripheral cross triggering

• Power On/Off management

Based on this new hardware it was decided to replace the PPM standard

with a more performing SBUS (Serial BUS ) protocol, which represents the

most advanced communication protocol used on UAVs. The SBUS standard

is based on the use of one of the two pins of a UART port (Rx-Tx) for sending

channels. The advantages of this protocol are mainly three: (i) it is a digital

protocol (unlike the PPM standard) and therefore it is not affected by noise.

(ii) the usable communication band is greater than the PPM protocol and

is 100Hz. (iii) There is a higher resolution than the PPM protocol. In

fact, in the PPM protocol it is possible to distinguish a maximum of 1000

values (the time range is 1000µs and the unitary value is 1µs), while in

the SBUS protocol it is possible to send up to 2047 different values (11-bit

integers). An SBUS frame can transmit up to 16 channels and is made up

of 24 bytes. The first byte represents the header, the bytes between the

second and the 22nd contain the status of the 16 channels, while the 23th

byte contains information about packet loss and failsafe status, finally the

last byte represents the closing of the frame. Fig. 3.20 shows the shape of

an SBUS frame.
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Byte[23]
bit 7                         bit 6                         bit 5                         bit 4 … Byte[22-1] Byte[0]

Header16 channels, 11 bits 
each

Failsafe activated 
(0x10)

Frame lost 
(0x20)

bit 7 bit 6 bit 5 bit 4

Channel 18 
(0x40)

Channel 19 
(0x80)

Digital on/off channels (these bits are 
not universally available on all SBUS 

receivers)

Byte[24]

Footer

Figure 3.20: The figure shows the frame architecture according to the SBUS

standard, which unlike older standards is a digital protocol. It is currently

the best choice for sending commands to the flight controller, as in addition

to guaranteeing a greater useful band, it is not affected by noise.

3.4.4 Hardware architecture

In the DART-2.0 platform, the hardware architecture has evolved from pre-

vious versions. This is not only due to the replacement of the hardware,

but is also due to the implementation of faster and more performing com-

munication protocols such as the SBUS protocol. This protocol, unlike the

less performing PPM, also allows bidirectional communication. In fact, it

uses only one of the two pins of the UART port, leaving the other free to be

used for the transmission of telemetry (through appropriate communication

standards, such as the FrSky SmartPort). This means that the low-level

can send telemetry data (which may contain, the estimated attitude, height

estimated by the on-board barometer, any error messages, battery status,

flight mode, etc.) at the mid-level. Consequently, it is possible to send all

this information at the high-level, which in addition to providing a good

level of redundancy, can add useful information, (such as the battery status)

on the basis of which behavior policies of the autonomous part can be de-

fined. Fig. 3.21 shows the hardware architecture scheme of the DART-2.0

platform, where all the connections with the sensors can be seen. In the

high-level block the stereoscopic camera and the Raspicam are connected

(through the Realsense and GStreamer libraries), the latter in the DART-

2.0 version is facing the ground. Since the Realsense t-265 camera has an

IMU inside, the Pololu AltIMU-10 v5 board has been eliminated.

However, it was thought that in some experimental conditions it might be

interesting not to use the Intel stereoscopic camera, for this purpose a second

MPU-6050 IMU (which is not normally used) was connected to the system.
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As can be seen from diagram 3.18 this IMU is no longer connected directly

to the high-level module, but is connected to the mid-level. This choice

was made with the intention of improving attitude estimation performance,

since the inertial data from an IMU have dynamics of the order of KHz.

As presented in the paragraph 3.1, these data are more easily processed by

a micro-controller, which by its nature is able to work at high frequency

(unlike the high-level module). This allows to exploit the entire information

band of inertial data (which is concentrated at high frequencies).

SBUS-mixer

868 MHz receiver 
(FrSky r9m-slim)

 

SBUS Input

SBUS Output
UART

GStreamer 
library

Nvidia Jetson nano

Flight controller
(CC3D revo)

Raspicam v2

Intel library

Intel Realsense 
t-265

UARTi2c

IMU - MPU 
6050

GPS - Ublox 
SAM-M8Q

High-level Mid-level Low-level

Figure 3.21: Hardware architecture of the DART-2.0 platform.

A GPS has also been added to the mid-level block, which can be use-

ful for providing an absolute position reference in open environments. As

is known, unlike inertial sensors, GPS work at lower frequencies (at most

20Hz). In this regard, one might think that this sensor should be connected

directly to the high-level module. However, hardware devices such as Nvidia

Jetson cards have a limited number of I/O pins. Therefore, to get around
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this limitation, it was decided to use the mixer board also as a HUB for the

connection of additional sensors. The adoption of a mid-level managed by a

micro-controller guarantees many advantages not achievable with the classic

architectures reported in the literature. In fact, the multilevel architecture

of the DART platform allows you to exploit both the advantages offered

by the Jetson/Raspberry modules (designed for computer vision and artifi-

cial intelligence applications) and the advantages offered by micro-controllers

(designed to work at high frequencies and have many GPIO pins).

3.4.5 Wiring of high-level electronic components

Fig. 3.22 shows the diagram of the connections between the mid and high-

level blocks with the low-level. As already mentioned, in this version the

IMU was connected directly to the mixer through an i2c port. 4 UART

ports were used to generate the 2 SBUS signals (input and mixed output),

to manage communication with the high-level and to allow connection with

a GPS. Also in this version the alarm buzzer is used to signal a possible

failure of the high-level module. The stereoscopic camera, as it is possible to

observe in the diagram, is connected via USB 3.0 cable, while the Raspicam

via the usual MIPI cable. It is interesting to note that the First Person

View FPV camera, useful for ground video transmission, is not connected to

the high-level module. However, an On Screen Display OSD board is used

which communicates with the low-level controller, to overlay some useful

information on the video stream (which is transmitted to the ground). Such

as, for example, the battery status and any error messages relating to the

low-level controller. Finally, it should be noted that the level shifter present

in previous versions of the platform has been eliminated. This is because

unlike Arduino Nano, the Teensy board works with a logic level of 3.3V

(which is the same logic level as the Jatson Nano board).
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Figure 3.22: Wiring diagram of the DART-2.0/2.1 platform. Where all the

connections between the various boards and sensors are visible.
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Figure 3.23: CAD and real view of the DART-2.0 platform, in this image it is

possible to observe the engineering work that has been done for the assembly

of the new hardware. It should be noted that the small blue camera serves

the sole purpose of transmitting the view of the drone to the ground and is

not connected to the high-level block. It is commonly referred to as an FPV

camera.

3.4.6 Mechanical structure

In the DART-2-0 and DART-2.1 platforms the carbon fiber parts and the

motors are the same as in the previous version. What changes is how these

parts have been assembled together to make it possible to fit the new hard-

ware. Fig. 3.23 shows the DART-2.0 platform, where significant changes can

be appreciated compared to previous versions. In particular, the case has

been redesigned to accommodate the new hardware. In addition, a plate

was designed capable of fixing the carrier board of the Jetson Nano module

to the drone frame (this plate was then made through 3D printing). In the

front it is possible to observe the Intel Realsense t-265 camera, which is fixed

with respect to the frame.

In fact, in this new version the Gimbal has been eliminated, since the

Intel camera does not suffer from problems related to the vision noise. This

saved the weight of the gimbal and the relative space under the drone, used

for mounting the battery. The Intel stereoscopic camera (used as a sensor

position) has very short focal lenses (fisheye), which are effective for locating

very lateral objects but useless for detecting distant objects. For this reason

it was decided to move the Raspicam camera to the front position, in order to

have the possibility of receiving streaming video from cameras with different
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Figure 3.24: In the left part of the figure the CAD view of the DART-2.1

platform is visible, while in the right part the final prototype is visible once

all the parts have been made and assembled. As you can see, the Raspicam

camera has been moved to the front position (under the FPV camera).

focal lengths. This increases the field of view of the drone, which remains able

to see very lateral objects, but can also detect distant objects, which would

not have been visible with the use of the stereoscopic camera alone. This

latest variant of the platform is called DART-2.1 and is shown in Fig. 3.24.

3.5 Conclusions

In this chapter, five different versions of the DART platform and their de-

velopment phases have been presented. The technologies they use were ex-

plained and the multilevel hardware architecture was shown, which allows

the separation of the low-level controller from the high-level electronics. Fur-

thermore, given the presence of several cards on board the UAVs, it was

necessary to program protocols capable of allowing communication between

the various hardware levels. For this purpose, the different communication

standards compatible with the flight controllers available on the market have

been studied. In fact, the biggest bottleneck for UAVs based on multilevel

architectures is represented by the communication band width with the low-

level controller. It should be noted that this bottleneck does not exist when

a human pilot drives the drone, as it is not able to generate commands with

frequencies higher than 2 ∼ 3Hz, unlike the “cyber-pilot”, who is able to

send commands at much higher frequencies. Currently the best performing
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communication standard that can be used to communicate with low-level

flight controllers is the SBUS protocol, which guarantees 100Hz of band-

width, more than double compared to sending 8 channels via PPM protocol.

Finally, this approach was fundamental to obtain a solid platform on which

was then possible to develop the autonomous navigation and computer vision

algorithms that will be shown in the following chapters.



Chapter 4

Software architectures and

algorithms for autonomous

navigation based on artificial

vision

This chapter shows the software architectures and algorithms that

have been developed on the first 3 versions of the platforms (DART-

1.0, DART-1.1 and DART 1.2). In particular, the critical issues

that have led from time to time to the development of alternative

techniques are explained. All techniques make use of computer

vision for the creation of an odometry system [63], which allows

the drone to locate itself in the environment (no technique uses

GPS). At the same time, the software architectures that have been

developed over time are also explained. Finally, a comparison will

be made between the performances obtained through the use of the

various algorithms [33].

4.1 Introduction

The main elements of the navigation system, i.e., the computer vision sys-

tem, the multi-PID controller, and a Madgwick sensor fusion filter are here

discussed. Before continuing, we stress the fact that we use two different

45
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representation for the drone attitude: In section 4.5.2, for the purpose of

implementing the Madgwick sensor fusion filter, it is more convenient at the

software level to describe the attitude via the quaternion formalism, while

the representation with rotation matrices is adopted in Sec. 4.5 to simply get

the estimate of the drone position. Since to maximize the performance of

the software (which runs on cards with limited computing power), we have

to prefer solutions that allow to reduce as much as possible the complexity

of the software implementation.

4.2 Computer vision system

A computer vision algorithm is used to provide the drone with absolute

references for position and attitude. This way, the drone can be accurately

driven in the 3D space in a desired manner by referring the time-variation

of its pose (position and orientation) to these fixed references captured from

the environment.

In the first three versions of the UAV prototype, the computer vision

system is the main element of the drone navigation system. The vision

algorithm, that manages the acquisition of the images and that takes care of

stitching together the acquired frames, is set to detect one or more known

markers in the environment. The algorithm estimates the relative pose of

the drone with respect to the markers, and, by knowing their absolute pose,

is able to infer the absolute pose of the drone, as well. The camera has

been tested both as a built-in device inside the body frame and mounted on

a stabilized gimbal (see Section 4.5), as shown in Figure 3.15. It is worth

noting that the lens frame and the one referring to the center of the thrust

do not usually have the same orientation.

The marker used in this implementation of the drone are boards featur-

ing black and white squares. Their recognition is achieved, according to a

standard practice [67], by evaluating for each pixel of the image the local

magnitude of the pixels gradient, given by point-to-point differences in the

pixel colour scale. Then, the gradient direction is evaluated, and pixels with

similar gradient directions and magnitudes are grouped into sets by using

graph-based methods. A line segment is eventually fit to each clustered pixel

set. Such sets of pixels identify in the image edges from which the algorithm

searches for the correct marker sequence, whose position is defined in pixel

coordinates by the two-dimensional vector [u, v]T , as shown in Figure 4.1.
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Figure 4.1: Detection and tracking process: the marker reference frame is

shown in red, green and blue for x, y and z axes, respectively. The computer

vision algorithm runs on Raspberry PI with a frequency rate of 30Hz and

provides the marker attitude and position in the lens frame [63].

The position of the marker is located in the 3D space by referring [u, v]T

with respect to the lens frame. In such a frame, the coordinates

Qc ≡ [xc, yc, zc]T (4.1)

of the marker in camera frame (denoted by means of the superscript c in the

formulas) are computed through the following relations (in this regard, see

also Ref. [63]) that also take into account the barrel distortion:

xc

zc
=

(u− u0)(1 + kudr
2)

ρx
(4.2)

yc

zc
=

(v − v0)(1 + kudr
2)

ρy
(4.3)

where

r2 =
(u− u0)2

ρ2x
+

(v − v0)2

ρ2y
, (4.4)

and [u0, v0]T denotes the coordinates in pixel of the principal (reference)

point in respect of which the image is calibrated. Instead, the parameters

ρx e ρy are the ratio between the focal length and the size of the pixel, while

kud is the parameter that corrects lens distortions. Note that kud, ρx and ρy
are intrinsic camera parameters, which are commonly obtained through an
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iterative calibration process involving the acquisition of frames of a known

image in different poses. The calibration process has been performed off-line

and is based on acquiring at regular time intervals at least 5 images of a

chessboard with known dimension in different poses.

As further remark, observe that, if the geometrical properties (shape and

dimension) of the marker are known, it is possible to retrieve additional

information also with a monocular camera, such as the distance zm between

the camera lens and the marker or the relative orientation among the marker

and lens frames.

Therefore, the computer vision module is definitely able to provide infor-

mation both on the position vector and on the attitude vector of the marker

with respect to the drone. Hence, if the marker has a known position and

attitude, also the position and orientation of the drone can be straightfor-

wardly obtained. From here on, we will define with

Φ ≡ [ϕ, θ, ψ]T (4.5)

the attitude vector of the marker with respect to the camera lens. Note

that we have removed the subscript c from each element of Φ for the sake of

simplicity of notation.

4.3 PID-based control system

The autonomous driving module, i.e., the core of the cyber-pilot running

on the Rasperry board, computes the commands in the same form of those

coming from the remote control receiver, i.e., as proper reference values for

roll, pitch, yaw and thrust. During the preliminary implementation stage

of the project, they were conceived to maintain the drone over time in a

desired position, denoted as Q ≡ [x, y, z]T , with zero yaw relative angle

ψ = 0, intending that the drone was facing the marker. More generally,

the computer vision system provides both relative orientation and position

with respect to the marker frame. This information is further integrated

by means of a fusion algorithm with data coming from the on-board IMU

to improve the estimate from the sole image processing, as shown in next

paragraph. The final result of the sensor fusion process is a refined estimate

of the drone position Q ≡ [x, y, z]T . Four different algorithms have been

tested to compute Q with different performance. As illustrated in Figure 4.2,

the information on the errors of the drone pose, respectively given by the
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Flight controller 
internal control 
system attitude

Manual control

Drone state

Navigation control system

  Vision + IMU

Figure 4.2: Control architecture. The navigation control system is a feedback

control loop composed by four PID controllers, respectively Cx, Cy, Cz and

Cψ one for each pose degree of freedom, and a position estimation module

fusing together stream data from the IMU and the Raspicam camera. Ck,

with k ∈ {x, y, z}, have as input signals drone position errors and provide

in output an attitude reference signal to be sent to the low-level module.

Instead, Cψ takes in input an error signal on ψ and returns a reference for

the yaw angular velocity.

differences Q−Q and ψ−ψ, are used to feed four distinct (decoupled) PID

controllers (Cx, Cy, Cz and Cψ), which respectively generate the driving

commands that the low-level module uses as references inputs to control roll

and pitch angles, yaw angular velocity, and thrust. One can observe that the

control architecture of the autonomous driver is composed by simple modules

that individually act on a different pose degree of freedom. This decoupled

control architecture does not directly consider the mutual interconnections

among the components of the drone pose, as the fact, for example, that a

change in the pitch modifies the net thrust. However, this solution for the

control system has to be preferred for its reliable implementation, robustness

and low computational cost. Moreover, also note that, in a first phase,

each PID controller has been tuned after numerical simulations based on a

simplified model of the actual drone. Then, experiments have been carried
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out thanks to a large number of repeated flights.

4.4 Software architectures

In this paragraph we show two software architectures which have been de-

veloped for the first 3 versions of the platform (DART-1.0, DART-1.1 and

DART-1.2). In particular, the first version uses a single-task architecture

(which was developed first), while the second, more advanced than the first,

uses a multi-task architecture.

4.4.1 Single-task architecture

The first software architecture developed is also the simplest, in fact it is

based on a single task model where the code is sequential and separated into

functions. In this model, the biggest limitation is the existence of a bottle-

neck on the frequency of software execution. This bottleneck is imposed by

the slower function, in this case by the computer vision function, which is

the most onerous from a computational point of view. For this reason, the

maximum execution frequency on the Raspberry PI 3 B + platform cannot

exceed 35 Hz. Furthermore, this sampling frequency is not managed by the

operating system scheduler and therefore the perfect periodicity of the ”main

task” is not guaranteed. This phenomenon is shown in Fig 4.4, where peaks

on the sampling time can be observed. However, as shown in Fig 4.5, this

architecture is not completely sequential, but the computer vision function

generates four threads (one for each Raspberry cpu core) to improve the per-

formance of this part of the software. These threads are managed directly by

the libraries required for the computer vision, which in this implementation

are the VISP (Visual Servoing Platform). It is important to note that the

IMU function is performed before the computer vision function, this is done

since the data extrapolated from the vision function is affected by a latency,

while in the inertial ones the latency is negligible. To minimize this time gap

it was decided to perform the functions in the order shown in Fig 4.5.

4.4.2 Multi-task architecture

After the implementation of the single task architecture, it was decided to

move to a more performing multi-task architecture. The advantages are

many, but the most important are 3: (i) the sampling time of each single
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Figure 4.3: In the figure it is possible to see the single task software ar-

chitecture. It is important to note that the attitude estimation function is

performed before the computer vision function. This is because the latency

of the images is higher than that of the data coming from the IMU.

task is decided by the operating system scheduler; (ii) the flexibility of the

software is increased as it is possible to dynamically manage which tasks

must be performed; (iii) it is possible to separate tasks that need to be

performed at a higher frequency from others that don’t need them. In fact,

the inertial data coming from the IMU must be performed at high frequency

since their information content is contained there, while the vision data can

be processed more slowly. In this software architecture, the drone navigation

system stack comprises five distinct principal tasks. They are managed by

a standard Linux scheduler set as SCHED FIFO (meaning “first input first

output scheduler”), such that threads with the same priority are managed
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Figure 4.4: The figure shows how the sampling time obtained with the single

task architecture is not perfectly periodic. This phenomenon occurs because

the software is not managed directly by the operating system scheduler.

with FIFO policy. This mode can be used to implement real-time policies

and it can be activated only with root permissions. It is usually adopted to

reduce the time variability of the execution period of individual tasks, which

is a desired feature when working with sampled processes. All the software

in the higher level of the navigation system is written in C++ language and

has been implemented on the Raspberry Pi 3 model B+ platform, as already

described in Chapter 3.

The main task manages the computer vision system and it is responsible

to carry out the processes for the marker detection and the estimation of its

position and attitude. In particular, the computer vision is an aperiodic task

that works at about 30 FPS (frame per second) with a resolution of 660×
660 pixels. After many experimental tests on different configurations, this

working condition has been found a good compromise between the number

of FPS (i.e., the computational load) and the precision of the results. To

improve the performance, the main task has been parallelized in four sub-

tasks, one for each Raspberry core, which process part of the same frame at

the same time. This way, a better use of the available calculation resources

is reached, and the computations are performed faster.
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Figure 4.5: The software architecture is composed by 5 concurrent tasks:

the vision, Fusion, log, control and communication threads. To increase the

performance, a readers-writers synchronization method is used. The latter

allows simultaneous access to multiple reading tasks of the same shared vari-

ables. In addition, thanks to the implemented software architecture enabling

the parallel calculation, all the cores of the Raspberry platform are exploited,

thus reducing overall the computation time.

The second task is a thread that manages the IMU and performs (i) the

acquisition of the inertial data from the IMU itself, (ii) the Madgwick fil-

ter (explained in subsection 4.5.2) routine for the estimation of the drone

attitude, and (iii) the drone position estimation process. Since the inertial

data from the IMU is informative at high frequencies (unlike computer vi-

sion), the frequency of this thread has been increased as much as possible.

In particular, the fusion thread is periodic and works at 200Hz.

Instead, the third task is the thread for the control of the position trajec-

tory: Given the desired (reference) trajectory, which in the simplest case the

drone has to track point-by-point with possible constraints on the velocity

profile, the control routine uses the position displacement error to generate

the attitude set-points to be sent to the signal mixer. The control samples

are computed only when the autonomous flight mode is activated. This con-

trol routine is managed as a periodic task forced to work at 22Hz. The

frequency is decided by the PPM protocol: Since the maximum bandwidth

ensured by the PPM protocol is 44Hz, the control routine cannot occupy

more than 22Hz, i.e., half of the maximum bandwidth, so to avoid aliasing
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Figure 4.6: The figure shows the trend of the sampling frequency of a thread

running in the multi-task architecture (whose execution is decided by the

Linux scheduler) and the trend of the global sampling frequency of the single

task architecture (which it is not managed by the scheduler). As can be seen

from the graph, the thread running in the multi-task architecture, and which

is managed by the scheduler, has a more stable trend.

effects. However, as it will be shown in the next section on experimental

results, the band of the dynamics of the drone position is comparable with

the working frequency of the control task, thus making this architecture suf-

ficient to accurately control the drone, especially when gimbal suspension are

implemented. On a technical note, the integral component of the PID con-

trollers is activated only at specific instants, i.e., whenever the autonomous

flight mode is enabled (event reported by a specific variable). This choice is

motivated by the need to avoid discontinuities caused by the wind-up effect,

when the autonomous mode is activated.

As fourth task, a communication thread coordinates the transmission of
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the set-points to the mixer, that, in the autonomous mode, will send them to

the flight controller. To reduce the computational load of the mixer, the atti-

tude set-points are first converted into time intervals (see also Section 3.2.4)

and then sent to the other boards. The communication task is a periodic

routine, working at 44Hz to exploit all the available bandwidth provided by

the PPM protocol.

Finally, the fifth task generates the mission log by saving all the data in

a txt file for offline processing. This task has the least priority and due to

the access to the memory it works almost periodically at 20Hz.

As a final technical remark, let us stress that the tasks architecture is

based on a readers-writers synchronization method, where several tasks,

which need to read shared variables (reader task), can access them simulta-

neously. Having implemented this distinction between readers and writers

tasks, the software has better performance with respect to the standard case

(mutual exclusion synchronization method, i.e., readers and writers can ac-

cess to the shared variables separately and one-at-a-time) and, thus, the data

exchange process between threads is sped up.

4.5 Position estimation methods

In this paragraph, four different methods which have been tested to estimate

the drone position exploiting the marker frame as reference are presented.

The algorithms that are explained in the following paragraphs have been

designed and developed for the different DART platforms. For this pur-

pose, the following table shows on which hardware and software platform

the various algorithms have been tested and developed.

Algorithm Hardware platform Software architecture

FCF-CF DART-1.0 single-task

FCF-MF DART-1.0 single-task, multi-task

SCF-2DOF DART-1.1 single-task, multi-task

SCF-3DOF DART-1.2 multi-task

In particular in the FCF-M algorithm it will be shown how the per-

formance of the madgwick filter changes according to the type of software

architecture used, which consequently determines the maximum sampling

frequency.
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4.5.1 FCF-CF position estimation method

The first algorithm developed, called Fixed Camera Frame Complementary

Filter (FCF-CF) [63], Was implemented on the DART-1.0 platform. This

algorithm only uses the computer vision system and the gyroscope. The

schematic representation of the algorithm is depicted in Figure 4.7. To merge

the information flows from the two sensors, we adopt a complementary filter

that works according to the following relation:

Φ̂k+1 = λ(Φ̂k + T Ωk) + (1− λ)Φk , (4.6)

where λ is a real number belonging to [0, 1], T is the actual sampling period,

Φk ≡ [ϕk, θk, ψk]T is the attitude vector from the vision system and

Ωk = [ωx, ωy, ωz]
T

(4.7)

is the vector of the angular velocities around the three main drone axes com-

ing from the gyroscope. The new attitude estimate Φ̂k+1 at the discrete time

instant (k+1)T provided by Eq. (4.6) (from now on Φ̂k+1 will be abbreviated

with Φ̂) can now be employed in the following coordinates transformation

returning the estimate of the drone position:

Q̂f =

 xf

yf

zf

 = Rxyz(Φ̂)

 xc + xcb
yc + ycb
zc + zcb


= RXYZ(Φ̂) [Qc +Qcb] . (4.8)

In Eq. (4.8), the rotation matrix

Rxyz(Φ̂) = cϕcψ cϕsψsθ + sϕcθ −cϕsψcθ + sϕsθ
−sϕcψ −sϕsψsθ + cϕcθ sϕsψcθ + cϕsθ
sψ −cψsθ cψcθ

 (4.9)

transforms the coordinates defined in the body frame into a fixed frame,

while the vector Q̂f is the estimate of the drone position in fixed frame.

Instead, Qcb is a constant offset vector that takes into account the distance

between the camera and the center of thrust of the drone. In this regard, by

defining Qc as the position of the marker in camera frame with respect to

the center of thrust, Eq. (4.8) can be rewritten as

Q̂f = Rxyz(Φ̂)Qb . (4.10)
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Figure 4.7: Schematic representation of the algorithm “Fixed Camera Frame

Complementary Filter” (FCF-CF). The method adopts a complementary

filter that fuses the stream data from the computer vision system and the

gyroscope (here, the accelerator is not used). This allows to recover the in-

formation on the dynamics of the drone that is separately lost (not detected)

by the two sensors. The complementary filter returns the estimate Φ̂ of the

drone attitude vector. In this way, by rotating of such an estimated angles

the position of the marker (rectified by the offset vector Qcb), one can also

derive the estimate of the drone position.

It is important to observe that in this first algorithm (FCF-CF) the camera is

mounted on the drone in a fixed position. Thus, no auxiliary system stabiliz-

ing the attitude of the camera, as a gimbal suspension, is used. This entails

the drawback of persistent noise sources affecting the data stream coming

from the Raspicam camera. Indeed, the coupling among the pose compo-

nents makes each disturbance reflect on all of them. Moreover, the accuracy

of the attitude provided by the camera degrades very quickly as the distance

between the marker and the drone increases. Indeed, the estimate of the

marker attitude depends on how its planar projection is warped within the

image. Therefore, at greater distance (of the order of meters) its dimensions

within the scene shot by the camera are smaller and the informative content

of the data decreases very quickly. Also note that the degradation of the

estimation accuracy, respectively for the position and attitude, is not uni-

form as a function of the distance to the marker. Therefore, for the FCF-CF
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algorithm, taking the attitude from the vision system is a limitation that,

however, has been overcome in this paper by the algorithms in the following.

In conclusion, the FCF-CF algorithm is simple to implement and has low

computational cost, but it is expected to be very noisy and, then, to suffer

from distance.

4.5.2 Madgwick sensor fusion filter

The navigation system implemented on the DART-1.0 drone works without

explicitly modeling the dynamics of the UAV. This choice is mainly dictated

by the following two reasons. First, the computational cost has not to exceed

a certain threshold in order to not overload the Raspberry processor. Second,

the aim is to ensure that the response of the drone to control pulses is as

fast as possible, as well as the convergence of the control error.

In the chosen architecture, all the information about the pose of the drone

needs to be extrapolated solely from the on-board sensors data stream. In

the subsequent algorithms it was chosen to replace the complementary filters

with the Madgwick filter [68], that together with the Mahony filter [69, 70]

it represents the state-of-art to efficiently fuse the data coming from the ac-

celerometer and the gyroscope within the IMU, respectively for the tracking

of the translational and rotational DOFs. On one hand, the gyroscope eval-

uates the angular velocities of the portion of the UAV on which the IMU

is mounted. The measured angular velocities are referred to the frame cho-

sen as reference for the IMU. In principle, the corresponding orientation of

the drone could be computed by integrating over time the angular velocities;

however, this solution is usually highly discouraged due to the error originat-

ing from such a calculation. On the other hand, the accelerometer indirectly

measures the gravitational field of the earth [71], taken as absolute reference.

Also the information from the accelerometer is affected by noises, and this

especially holds true when the sensor is moving.

The Madgwick sensor fusion filter estimates the orientation of the drone

by optimally fusing the data stream from the accelerometer and the gyro-

scope. The orientation processed and returned by the filter is described by

the quaternion representation, as e.g. adopted in [72,73]. The quaternion is

a vector with four elements and generally describes the orientation of a coor-

dinate frame with respect to another. For example, the relative orientation

between the coordinate frame A and B by the angle α around the generic
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axis r ≡ [rx, ry, rz]
T can be represented by quaternion

qAB ≡ [cos(θ/2), rx sin(θ/2), ry sin(θ/2), rz sin(θ/2)]T

= [q1, q2, q3, q4]T (4.11)

that by definition is of unitary length. To each quaternion is uniquely asso-

ciated the rotation matrix RAB that rotates the coordinate frame A towards

B according to a sequence of at least 3 rotations of the so-called Euler angles

around the x, y, z axes.

In the quaternion formalism, the angular velocities measured by the gy-

roscope are arranged in the quaternion

ωIMU ≡ [0, ωx, ωy, ωz]
T . (4.12)

Thus, if we solely use the data coming from the gyroscope, the orientation of

the drone, expressed in the IMU coordinate frame that in turn is referred to

the North-East-Down (NED) coordinates, at the k-th discrete time instant

is equal to

qg
IMU
NED[kT ] = q̂[(k − 1)T ] + q̇IMU

NED[kT ]T , (4.13)

where T is the sampling period, q̂[(k − 1)T ] denotes the estimate of the

orientation at the previous time instant, and q̇ is the quaternion derivative.

For the specific case of the gyroscope, the quaternion derivative is just given

by the quaternion product (for more details on the quaternions algebra the

reader can refer e.g. to Refs. [68, 72, 73]) between the estimate q̂[(k − 1)T ]

and the quaternion of angular velocities ωIMU[kT ] at discrete time kT .

On the other hand, the tri-axis accelerometer can measure a reaction

force that counteracts gravity in the opposite direction and thus indirectly

measure gravity [71]. This means that, the gravity earth field being known,

the vector of measured accelerations

aIMU ≡ [0, ax, ay, az]
T (4.14)

can be automatically referred to earth coordinate frame, here given in the

NED coordinates. As conventionally taken, we assume that the direction

of the gravity field is along the vertical z axis and is thus defined by the

quaternion

gNED ≡ [0, 0, 0, 1]T . (4.15)

Then, the orientation of the accelerometer is obtained by numerically solving

the following optimization problem: Minimize a cost function f(aIMU, gNED, qa
IMU
NED)
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that identifies the distance between the vector of measured accelerations

aIMU and the direction of the gravity field gNED rotated by the quaternion

qa
IMU
NED, the unknown parameter to be determined. The explicit analytical

expression of the cost function f can be found in Ref. [68]. Here, it is worth

observing that the possibility to resort to the solution of a minimum problem

comes from the evidence that the direction of the gravity field is uniquely

defined in the NED coordinate frame. Thus, once measured the accelera-

tions aIMU, one can determine the unknown quaternion qa
IMU
NED. As proposed

in [68], to carry out the minimization

min
qIMU
NED

f(aIMU, gNED, qa
IMU
NED) (4.16)

in our drone we have implemented an iterative mechanism based on the

gradient descent algorithm. Hence, the orientation from the accelerometer

at the k-th discrete time instant turns out given by

qa
IMU
NED[kT ] = q̂[(k − 1)T ]− µ[kT ]

∇f
‖∇f‖

[kT ] , (4.17)

where ∇f denotes the gradient of the geometrical surface defined by the cost

function f , and µ is the step-size (in general, a time-dependent parameter)

associated to the minimization procedure. The latter parameter determines

the rate of convergence of the optimization. In this experimental work,

the value of µ has been chosen constant and large in magnitude, so as to

ensure that the convergence rate is equal or greater than the physical rate

steering the change of the sensor orientation. Then, the resulting estimate

of the orientation provided by the Madgwick filter is obtained by fusing the

orientations qIMU
NED (for each discrete time instant kT ) as given by Eqs. (4.13)

and (4.17), respectively from the gyroscope and the accelerometer. The

fusion is practically attained according to the following relation:

q̂[kT ] = γ qa
IMU
NED[kT ] + (1− γ) qg

IMU
NED[kT ] , (4.18)

with γ ∈ [0, 1]. Also the value of γ, depending on the value of µ, has

been empirically chosen, so that Eq. (4.18), which realizes the fusion of the

gyroscope and accelerometer data streams, is properly balanced, i.e., qa
IMU
NED

and qg
IMU
NED have on average the same convergence rate. On the experimental

side, this assumption leads to a quite small value of γ that privileges the

stream data coming from the gyroscope with respect to the ones from the

accelerometer.
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Figure 4.8: The attitude pitch, roll and yaw angles are here plotted during

a flight which includes both a take-off and a hovering phase. The blue solid

lines denote the output signals from the Madgwick fusion filter elaborated

on board at the frequency rate of 200Hz, whereas the red dotted lines are

computed at 20Hz.

In Figure 4.8 the plots of pitch, roll and yaw attitude angles, provided

by the Madgwick filter implemented on DART-1.0 platform, are reported as

functions of time. In particular, the blue solid lines refer to the orientation

estimates provided by the Madgwick filter where the data from the IMU is

updated with a frequency rate of 200Hz. Instead, the red dotted lines are

obtained implementing the same algorithm using a frequency rate of 20Hz.

In the figure one can observe that the red and blue lines have the same

phase profile, though a greater amount of noise is present in the red curves.

This difference can be immediately attributed to the different values of the

frequency rate sampling the IMU data stream. Similarly, it is also worth

noting that a higher sampling frequency rate leads to a less pronounced drift

of the yaw orientation angle. This shows how in the multi-task architecture

the attitude estimation guarantees higher performances compared to the
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Figure 4.9: Schematic representation of the algorithm “Fixed Camera Frame

Madgwick Filter” (FCF-MF). Unlike the algorithm FCF-CF, only the data

stream from the accelerometer and the gyroscope are sent as input signals

to the Madgwick sensor fusion filter. The latter provides an estimate of the

drone orientation, whose precision does not depend on the distance between

the drone and the marker.

single task implementation. In fact, in the multi-task implementation the

attitude estimate runs at a frequency of 200Hz, against 35 for the single

task one.

4.5.3 FCF-MF position estimation method

In order to lessen the drawbacks of the first algorithm, the Fixed Camera

Frame Madgwick Filter (FCF-MF) has been developed. In this new sce-

nario, the Raspicam camera is still fixed with respect to the drone body, but

the complementary filter has been replaced by the Madgwick filter, already

mentioned in the previous paragraph. The schematic representation of this

algorithm is shown in Figure 4.9. Since the Madgwick filter naturally ex-

ploits the intrinsic features of the inertial sensors, it is expected to be more

robust with respect to the coupling effects on the pose, and, therefore, less

noisy. It is worth also noting that, by adopting the Madgwick filter, it is no

longer necessary to use the attitude vector coming from the vision. In this

way, we are able to decouple the accuracy of the attitude estimate from the
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marker distance, which, as previously explained, is the main limitation of the

FCF-CF algorithm. The Madgwick filter takes as input raw data from the

IMU (accelerometer and gyroscope) and estimates the attitude of the drone.

Then, as in the previous method, the attitude estimate Φ̂ is transformed

into an estimate of the drone position by applying the rotation matrix Rxyz,

which depends on all the three space axes.

4.5.4 SCF-MF-2DOF position estimation method

The third algorithm features the Raspicam camera mounted on a 2-DOF

gimbal in order to stabilize the lens frame. It is important to note that the

camera attitude estimate is made by the gimbal controller. Indeed being

based on a microcontroller it is able to process the data of the IMU fixed

with the camera at frequencies higher than KHz. This order of magnitude

cannot be reached by non-real-time boards such as Raspberry. Therefore,

the control of the gimbal is more efficient if delegated to its on-board elec-

tronics (separate from the rest of the drone). Thus, the position estimation

method, named as Stabilized Camera Frame Madgwick Filter 2DOF (SCF-

MF-2DOF), has been accordingly adapted. The block diagram of the SCF-

MF-2DOF algorithm is shown in Figure 4.10, where it can be observed that

the estimate made by the gimbal controller relative to the IMU fixed with

the camera is not present. Indeed the electronics of the gimbal are closed

and it is not possible to obtain any kind of information. Again, the algo-

rithm uses the Madgwick sensor fusion filter to process the data stream from

the accelerometer and gyroscope, but differently from the previous methods,

here Qc and Qcb, denoting respectively the coordinates of the marker (in

camera frame) and of the center of thrust with respect to the camera (con-

stant offset vector between the frames of the lens and the center of thrust)

can rotate independently. In particular, Qcb is corrected by the complete ro-

tation matrix Rxyz defined in Eq. (5.2) and applied to the estimate Φ̂ of the

attitude vector provided by the Madgwick filter. Instead, thanks to the use

of the 2-DOF gimbal suspension, the coordinates of the marker need to be

stabilized only by means of the rotation around the z-axis of the estimated

attitude yaw angle ψ̂. More formally,

Q̂f = RZ(ψ̂)Qc +Rxyz(Φ̂)Qcb (4.19)
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Figure 4.10: Schematic representation of the algorithm “Stabilized Camera

Frame Madgwick Filter 2DOF“ (SCF-MF-2DOF). Differently to previous

methods, the 2-DOF gimbal suspension is used to stabilize the video stream

data with respect to the pitch and roll angles of the attitude vector. As a

result, the marker coordinates have to be corrected by means of a rotation

just along the z-axis of the estimated attitude yaw angle ψ̂. This stabilization

procedure has the advantage to reduce the noise in the video stream and thus

improve the accuracy of position estimation [24].

where

Rz(ψ̂) =

 cos ψ̂ sin ψ̂ 0

− sin ψ̂ cos ψ̂ 0

0 0 1

 . (4.20)

It is worth noting that, since in this implementation the video stream is

stabilized with respect to the pitch and roll angles by the 2-DOF gimbal, the

effects caused by the noise sources affecting the camera are mitigated. The

experiments reported in next section show that accuracy turns out improved

almost by a factor of 5 with respect to previous methods.

4.5.5 SCF-MF-3DOF position estimation method

Finally, in the fourth estimation method, the 2-DOF gimbal is replaced by

a 3-DOF gimbal. Hence, the marker coordinates are mechanically stabilized

also with respect to the yaw angle ψ. The corresponding algorithm is here
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Figure 4.11: Schematic representation of the algorithm “Stabilized Camera

Frame Madgwick filter 3DOF” (SCF-MF-3DOF). By improving the mechan-

ical stabilization of the camera by means of a 3-DOF gimbal suspension, the

marker coordinates Qc are directly summed, without being corrected, to the

term Rxyz(Φ̂)Qcb to obtain the estimation Q̂ of the drone position. In this

way, the noise on the video stream data is further mitigated, and also less

calculations are necessary to carry out the estimation procedure.

forth denoted as Stabilized Camera Frame Madgwick filter 3DOF (SCF-MF-

3DOF). See Figure 4.11 for its schematic representation, whereby the block

related to the correction of the marker position has been eliminated. Accord-

ingly, to estimate the drone position, the marker coordinates do not need to

be stabilized. This means that Q̂ is just provided by the following relation:

Q̂f = Qc +Rxyz(Φ̂)Qcb. (4.21)

Therefore, in addition to reducing the effects of noise on vision stream data,

the 3-DOF gimbal has also the advantage of reducing the computational load,

thus improving the precision in the estimate of both attitude and position

vectors.



66
Software architectures and algorithms for autonomous navigation

based on artificial vision

4.6 Experimental tests

The reference scenario used for the experimental tests presented in this sec-

tion consists in tracking of a straight trajectory with triangular velocity

profile. To carry out these tests, the drone takes off manually and is driven

to a position where the Raspicam camera is able to identify the marker.

The drone is then switched to an autonomous hovering mode (i.e., a flying

mode where the reference trajectory is a point and the velocity profiles is

constantly equal to zero), and finally the mission begins: The navigation

software generates (on the three environmental axes x, y and z) a rectilinear

trajectories with respect to the marker, and its tracking starts.

Figure 4.12: In the figure we show an image taken from the video made by a

fixed camera that frames the drone during autonomous hovering. The image

shows the tracking of the drone over time made by the ”Kinovea” software.

4.6.1 Validation of the on-board computer vision sys-

tem

Some preliminary tests were conceived to first verify the precision of the on-

board computer vision system. To this aim, the drone was driven in front
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of a marker and set to hovering at a distance of about 4m. The navigation

algorithm computed the drone camera position (here stabilized by the 3-axis

gimbal) and the related data was logged with respect to the marker inertial

frame. During the experiment, a specific tag on the back of the drone camera

was recorded by a high precision external camera mounted on a tripod, and

the corresponding video was processed off-line by the open-source software

“Kinovea” [25, 26], which is able to infer the tag position with respect to

the camera point of view. Such a signal, computed independently from the

on-board system of the drone, was finally scaled to the marker reference

system. A comparison between the off- and on-board measured trajectories

along the y-axis (altitude) is reported in Figure 4.13. In the lower panel the

difference between the two estimates is shown in yellow. In this experiment

the standard deviation of this difference over the acquisition interval [0, 70]

seconds is about 4.2 mm, confirmed by other tests which witness similar

values. In conclusion, the data from the on-board computer vision system

turned out sufficiently informative and the very limited differences could be

likely explained by the transient dynamics of the gimbal stabilization system.

4.6.2 Comparison between the position estimation meth-

ods

In this subsection, the performance reached with the proposed position es-

timation methods and their ability to be used in a reliable virtual position

sensors for the drone navigation system are discussed.

In a first experiment, the drone has just been set to hovering in front

of a marker at 4 m distance. Given the same control system described in

Section IV-B, the experiment has been repeated alternatively using the al-

gorithms FCF-CF, FCF-MF, and SCF-MF-2DOF, and eventually the drone

ability to hover in the right position has been investigated. In Figure 4.14

the drone position py (altitude) as it has been estimated by the algorithms

FCF-CF, FCF-MF and SCF-MF-2DOF is compared to the desired reference.

As one can observe, the FCF-CF and FCF-MF algorithms achieve similar

control performance, whereas the estimation yielded by the SCF-MF-2DOF

method allows for an altitude profile much closer to the desired setpoint

py = 0. To clearly quantify the performance of the algorithms, in the follow-

ing table we provide the corrected sample standard deviation sε of the error

ε computed as the difference between the estimated drone position and the
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Figure 4.13: Comparison between the on-board and off-board estimations of

the vision system data. In the upper panel, the estimation of the on-board

altitude (blue solid line) is plotted together with the values (red solid line)

measured by the fixed camera mounted on a tripod externally to the drone.

Instead, the trend of the difference between the two estimates is reported in

the lower panel. The mean deviation of such a difference is about 4.2 mm,

while the maximum error value is around 1 cm.

desired trajectory within the time interval under investigation. The sample

standard deviation is defined as

sε ≡

√√√√ 1

N − 1

N∑
k=1

(ε− ε)2 (4.22)

where N = 50 is the number of performed experimental tests and ε ≡∑N
k=1 ε/N .
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Figure 4.14: Comparison between the algorithms FCF-CF, FCF-MF and

SCF-MF-2DOF for the estimation of the drone position along the altitude

axis py. It can be observed that, if the SCF-MF-2DOF algorithm is used,

the difference between the altitude estimates and the desired altitude profile

(py = 0) is of an order of magnitude smaller than the other two analyzed

methods.

Algorithm Standard deviation (along y)

FCF-CF 5.35 cm

FCF-MF 4.01 cm

SCF-2DOF 1.77 cm

As shown in the table, the performance of the algorithm SCF-MF-2DOF are

much better than the ones of the first two proposed estimation methods and,

quantitatively, the sample standard deviations sε of the error are halved.

In Figure 4.15 it is reported, for a similar experiment, the comparison

between the estimation algorithms SCF-MF-2DOF and SCF-MF-3DOF tak-

ing this time into account the horizontal position px. Indeed, in this latter

case the camera yaw angle is now stabilized by the use of the 3-DOF gimbal

suspension and is always pointing at the same direction. In terms of tracking

precision, the performance of the SCF-MF-3DOF algorithm has to be mainly
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Figure 4.15: Comparison between the algorithms SCF-MF-2DOF (with 2-

DOF gimbal) and SCF-MF-3DOF that uses a 3-DOF gimbal suspension for

the stabilization of the yaw angle. In this case, the comparison is made

between the estimates obtained along the horizontal axis x.

evaluated along the horizontal axis x, being unchanged for the other axes.

The sample standard deviation sε of the estimation errors for the algorithms

SCF-MF-2DOF and SCF-MF-3DOF have been computed again by repeat-

ing N = 30 times the same experiments with fixed working conditions. The

values of the error standard deviations are provided in the following table:

Algorithm Standard deviation (along x)

SCF-2DOF 3.42 cm

SCF-3DOF 2.54 cm

From the table, the error along the horizontal axis turns out larger than the

one along the vertical axis. Nevertheless, the standard deviation of the error

is about 2.5 cm, thus proving overall a few centimeter precision in controlling

the position of the Dart drone prototype when exploiting the SCF-MF-3DOF

on-board navigation system.
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Figure 4.16: Drone position vs time: the blue solid curves represent the

3D-position of the drone in an experimental test with a specific straight

trajectory having a triangular velocity profile (black dashed lines) starting

at t = 50 s. The estimated positions of the drone are obtained on-board

applying the implemented SCF-MF-3DOF algorithm to the data from the

IMU and the camera during the flight.

4.6.3 Autonomous flight test

In Figure 4.16, we show the time-behaviour of the drone position (blue solid

lines for the elements px, py, pz) while the drone is in the autonomous flight

mode, during the tracking of a preset rectilinear trajectory. The measured

position of the drone is also compared with the desired trajectory (black

dashed lines) that has to be tracked. In both the three panels in Figure

4.16, one can observe a transient regime (approximately in the time interval

[0, 25] seconds in which the drone is aligned to the marker. During the time

evolution in the interval [25, 50] seconds, the autonomous hovering mode is
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enabled, which results in having an almost constant value of py (the distance

between the drone and the ground). Instead, from t = 50 seconds until the

end of the test, the autonomous flight mode was enabled, so as to allow

for the tracking of a straight trajectory with a triangular velocity profile.

In the test, the maximum value of the velocity is 0.1 m/s. This implies a

variation of the desired trajectory (blue curve) along z. The mission ends

when the drone reaches a distance of 1.5 meters away from the marker. At

that distance, the drone automatically returns to the autonomous hovering

mode and stops moving.

Both the hovering and autonomous modes mainly use the data stream

from the computer vision system and from the IMU. Although signals from

the sensors are filtered from external noise sources and fused together, we are

able to achieve a correct tracking of the trajectory along the three axes but

with a self-sustained oscillation perceptible on px and py. Such oscillations

are originated by a delay of around 0.2 seconds in the video acquisition

process (due to data buffer) and affects the performance of the navigation

control system. This aspect, that has been already partially discussed in

Ref. [55].

4.7 The latency problem in computer vision

algorithms

As seen in the previous paragraphs, navigation techniques based on com-

puter vision can guarantee high precision and the possibility of repeating

the same trajectories with a deviation of a few centimeters. However, one

of the biggest problems facing odometric systems based on computer vision

algorithms is latency. Through experimental tests it has been determined

that the computer vision algorithm implemented on board the Raspberry has

a delay of about 200ms. Figure 4.17 shows the acceleration signal coming

from the IMU and the altitude estimated by the computer vision. As it can

easily be observed, there is a delay in the signal processed by the computer

vision algorithm.

To achieve high performance this delay is not negligible, therefore a sec-

ond order complementary filter has been designed to solve this problem [27].

The logic of the complementary filter is simple and foresees the use of a low

pass and a high pass filter, suitably designed so that the sum has unity gain.

To recover the delay affecting the signal produced by the computer vision,
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Figure 4.17: The figure shows the acceleration trend on the altitude axis,

which comes from the IMU (red line). Instead, the blue line shows the

trend of the altitude estimate produced by the vision algorithm. As can be

seen, the position estimation coming from the computer vision algorithm is

delayed with respect to the signal coming from the inertial sensor.

the idea is to reconstruct this signal with the acceleration coming from the

IMU. In fact, the latter has negligible latency and has information content

at high frequencies (unlike the signal coming from vision which has high

precision at low frequencies). Figure 4.18 shows the block diagram of this

filter.

Hp(s) and Lp(s) are the two transfer functions that implement the high

pass and low pass filters respectively. Equations 4.23 and 4.24 define the two

transfer functions in the Laplace domain.

Hp(s) =
s2

s2 + as+ b
(4.23)

Lp(s) =
as+ b

s2 + as+ b
(4.24)

The order of the filter is imposed by the type of signals to be merged, in

fact the acceleration must be integrated twice before it can be used. In the
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Figure 4.18: The figure shows the block diagram of the second order com-

plementary filter designed to recover the delay of the estimate produced by

the computer vision algorithm.

block diagram of Figure 4.18, af is the acceleration vector in fixed frame,

obtainable from the acceleration vector in body frame by equation 4.25.

af = q ⊗ ab ⊗ q∗ (4.25)

Where q is the quaternion of attitude estimated through the Madgwick

filter, q∗ represents its conjugate and ab is the acceleration vector in body

frame (sensor frame). The product between quaternions is denoted by ⊗,

which can be done through the Hamilton rule. Instead, QfV and Q̂f re-

spectively represent the position vector coming from the computer vision

algorithm and the estimate produced by the second order complementary

filter. Note that the gravity component must be subtracted from the vector

af (in order to avoid an uncontrolled drift of the altitude estimate). In the

block diagram of Figure 4.18, the gravity vector is called ag and is defined

by equation 4.26.

ag = [0, 0, 1]T (4.26)

The filter was initially implemented on Simulink, inserting the vertical

acceleration and altitude estimation signals logged during the experimental

tests at its inputs.These signals were acquired by means of fast high-low
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movements, this was done to be able to clearly see the acceleration peaks,

in order to understand if the filter is able to eliminate the delay. As can

Figure 4.19: The figure shows the behavior of the filter (green line) during

the simulation made with Simulink. The orange and blue lines respectively

show the acceleration trend and the position estimated by the computer

vision, which were acquired during experimental tests.

be seen from figure 2.19, the reconstructed signal (green line) has a trend

very similar to that produced by the vision process, but it appears to be

anticipated by a time value approximately equivalent to the vision delay.

From the tests carried out using Simulink it has been seen that the value of

the cutoff frequency that minimizes the delay and the distortion of the signal

is equal to 0.1 Hz. From the value of the cut-off frequency it was possible

to determine the coefficients of the continuous time transfer functions used

for the simulation. These values are shown in the following table.

Coefficient Value

a 0.8796

b 0.3948
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4.7.1 Code implementation and testing

To carry out the software implementation of the filter explained above, first of

all it is necessary to establish in which environment it will run. In this regard,

it was decided to implement it within the IMU thread of the multi-task

architecture. This information is indispensable for converting the transfer

functions from the frequency to the time domain. Through Tustin’s method,

by setting a sampling frequency of 200 Hz (which is the sampling frequency

of the IMU thread), the two time-discrete transfer functions 4.27, 4.28 were

obtained.

Lp(z) =
Y0(z)

X1(z)
=
a0z

2 + b0z + c0
a1z2 + b1z + c1

(4.27)

Hp(z) =
Y2(z)

X3(z)
=
a2z

2 + b2z + c2
a3z2 + b3z + c3

(4.28)

Solving the equations with respect to the output, we obtain the relations

to be implemented in code, which are shown in 4.29 and 4.30.

y0t = −b1y0t−1 − c1y0t−2 + a0x
1
t + b0x

1
t−1 + c0x

1
t−2 (4.29)

y2t = −b3y2t−1 − c3y2t−2 + a2x
3
t + b2x

3
t−1 + c2x

3
t−2 (4.30)

The numerical values of the coefficients calculated in order to respect the

constraints of the cutoff frequency and the sampling frequency of the thread

are shown in the following table.
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Coefficient Value

a0 0.002197

b0 4.924 ∗ 10−6

c0 −0.002192

a1 1

b1 −1.996

c1 0.9956

a2 6.236 ∗ 10−6

b2 1.247 ∗ 10−5

c2 6.236 ∗ 10−6

a3 1

b3 −1.996

c3 0.9956

Obviously, given the low cut-off frequency used, in order to have a behav-

ior faithful to that obtained on Simulink and not to make the filter diverge,

it is necessary to take the greatest possible number of decimal figures. For

this purpose, these coefficients have been saved in the software in DOUBLE

variables (double precision). In addition, the actual implementation of the

filter must take into account very accurately the value of ag. In fact, this

vector not only depends on the calibration (which can be done only one

time), but it can also vary over time due to physical changes of the same.

Since the performance of the filter, due to the double integrator and the

cut-off frequency (which gives a lot of weight to the inertial quantities) are

greatly affected by the value assumed by ag, in the software implementation

it was decided to write an initialization routine, which provides an auto-

calibration of the sensor, based on the real-time acquisition of a sample of

1400 values. Once this additional piece of code was written (made available in

the software in the form of a library), it was decided to carry out experimental

autonomous flight tests. To evaluate the effective performance of the filter

during autonomous flight, it was decided to reuse the same method shown

in subsection 4.6.1. That is, the fixed camera and the Kinovea software were

used to obtain an off-board reference of the position of the drone.

As can be seen from figure 4.20, the reference position provided by the

Kinovea software is very close (in some moments in time it perfectly overlaps)

to the estimate provided by the computer vision algorithm. However, from

this experiment we see that the estimate given by the complementary filter
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eliminates the delay problem but introduces the distortion problem. In fact,

the trend of the filtered signal shown in figure 4.20 denotes a greater error

than the starting signal. The presence of this distortion is mainly due to the

cut-off frequency of 0.1Hz, which is necessary to eliminate the delay. Such a

low frequency in fact gives too much weight to the information coming from

the accelerometer. Which, during flight is subjected to many vibrations,

just think of the moving propellers on the multirotor. Although this method

works, it does not present improvements that justify its use.

This experiment showed the hardware limitations of the technology, since,

in order to reduce the latency problem produced by computer vision while

maintaining the same level of precision, sensor fusion algorithms are not

enough and it is necessary to change the type of technology. For this reason

the DART-2.0 and DART-2.1 platforms (discussed in the next chapter) make

use of the Intel Realsense stereoscopic camera. Which exploits a completely

different concept, implementing an FPGA card on board. In this way it is

able to process both the SLAM algorithm (which provides the odometric

data) and the video stream on board, reducing the latency of the output

data by two orders of magnitude.

4.8 Conclusions

This chapter presented the software architectures and algorithms developed

for the DART-1.0, DART-1.1 and DART-1.2 hardware platforms. These

prototype versions feature only mass market inexpensive components, which

have been suitably optimized to achieve high accuracy in position and at-

titude estimation. The navigation system is based on “virtual sensing” ob-

tained by fusing the data from a IMU and an on-board computer vision

system. The resulting information is exploited by a simple control logic

which makes the navigation system act as a “cyber-pilot” that overrides the

human commands when it is in autonomous mode.

Experiments suggest that low-cost technologies, such as those used to

implement these UAVs, are very close to enable the sought passage from

meter- to centimeter-scale precision in autonomous maneuvering of multi-

rotor drones that would represent a noteworthy generation change in their

application range. Moreover, both hardware and software architectures are

modular and they can easily be extended and enhanced, for instance, by

replacing more refined algorithms into the programs, or by substituting a
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Figure 4.20: The figure shows the trend of the height estimate provided

by the computer vision module (blue line) and the estimate provided by

the filter (purple line). These two signals were compared with the vertical

position provided by the Kinovea software (purple line). The results show

that the filter is significantly affected by the noise coming from the IMU

during the flight phase.

device with a better performing one. Such a feature is crucial for the main-

tenance of the project. In fact, the next chapter will show the software

architectures and algorithms based on the use to novel devices, which have

recently win over the mass market.
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Chapter 5

Complex autonomous missions

with unknown path

This chapter shows the algorithms and software architectures

developed for the DART-2.0 and DART-2.1 platforms. Since the

technology implemented on board is significantly different from

the platforms discussed in the previous chapter, the threads and

functions of the software are also different. The goal of this chap-

ter is to carry out complex missions in autonomous flight mode.

These missions are based on the detection of n gates present in

the environment and on the automatic planning of the route in

real-time. Subsequently, the problem of managing a map contain-

ing the endpoints calculated during the execution of the mission

and the need for a mission supervisor able to make choices will be

discussed. Finally, the problem of simulation will be addressed,

in particular a hardware in the loop technique will be presented to

test the software algorithms in a synthetic environment, facilitat-

ing the development of new software for autonomous navigation.

5.1 Introduction

With the use of the Intel Realsense camera, it is no longer necessary to base

the odometry system on the vision of one or more markers. The camera

itself acts as an odometric system, through on-board SLAM techniques [75].

The performances achieved by these cameras are currently not achievable

81
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by any SLAM technique based on parallel programming [78] (programming

techniques based on the use of hardware acceleration provided by the GPU).

In fact, the biggest bottleneck currently present in the most advanced SLAM

techniques is given by latency. Since, in traditional architectures, the images

must first be preprocessed by the camera, then sent to the CPU and only

subsequently copied to the GPU memory, which will have to perform any

calculations. Intel has engineered the SLAM techniques by integrating them

on FPGA boards [76,77], so all these pre-processing and data copying steps

are eliminated, this has led to a reduction in latencies to about 5-6 ms. Such

a low latency value makes it the ideal tool on which to base autonomous

navigation techniques and on which to close high-level control loops.

5.2 Desired autonomous mission

Specifically, the mission that the drone must carry out in autonomous flight

mode involves the detection of n gates present in the environment with

unknown positions and the determination of the trajectory necessary to cross

them [89]. As we will see in paragraph 5.6 in order to carry out a mission of

this type, it is necessary to create and manage a dynamic map, containing

the position of the gates detected in the environment. Furthermore, even

the orientation of the gates is unknown, for this purpose the control system

proposed in chapter 4 must be extended, as it must also be able to operate

with non-zero heading angles.

Each gate has an ID determined by a reference marker [66, 67], so a

computer vision system similar to the one shown in chapter 4 is used. The

new implementation of the computer vision algorithm (which has the task of

detecting the gates) also has considerable latency, however in this configura-

tion this latency is irrelevant. Because the control loop is closed through the

state vector provided by the Intel stereoscopic camera, which has negligible

latency. In this scenario the only variables known by the drone are repre-

sented by the desired sequence of gates to cross. Which is identified by a

vector containing a sequence of IDs, each of which corresponds to a specific

gate.
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5.3 Computer vision algorithm

The new implementation of the computer vision algorithm which has the task

of recognizing the markers, is no longer based on the VISP libraries [82], in

fact it has been rewritten using the OpenCv libraries. In particular, the

Aruco module was used, which allows greater flexibility in the parameter

tuning phase. The OpenCv libraries currently represent the state of the art

for writing computer vision algorithms, in addition some functions support

CUDA acceleration, which on Nvidia Jetson board is an advantage.

Figure 5.1: The experiment in the figure shows the latency between the alti-

tude estimate provided by the Intel camera (blue line) and the OpenCv based

computer vision algorithm (red dotted line). The trend of the acceleration

signal (purple dotted line) from the IMU is also shown as a reference.

As mentioned in paragraph 5.2, the latency of this algorithm in the

present architecture is not important, since the control loop is closed on

the state provided by the Realsense camera. However, it is interesting to

observe the latencies involved, for this purpose in figure 5.1 the trend of
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the altitude estimated by the Realsense camera and the vision algorithm is

shown, as a reference the acceleration trend is reported. The graph shows

the delay generated by the computer vision algorithm, which (as expected)

is not present in the estimate provided by the Realsense camera.

However, from the tests made it emerged that in the OpenCv implemen-

tation the delay was reduced to a value of 100ms, against 200ms of the

old algorithm. This improvement, is not completely given by the OpenCv

libraries, as it may also depend on the higher performance of the Nvidia

Jetson card. The video stream of the experiment in figure 5.1 was acquired

by one of the two fisheye lenses of the Realsense camera. The same exper-

iment was then repeated using the video stream coming from a Raspicam

camera, obtaining an average latency of 150ms. This showed that standard

CSI cameras have an inherent latency of at least 50ms.

5.4 Extended control system

The high control module shown in chapter 4 limits the set of possible drone

maneuvers to those with zero orientation angle. This is due to the asso-

ciation made between the environment coordinates and the attitude angles

of the drone. However, there are missions where it is convenient to vary

the orientation of the drone, for this purpose the control module has been

extended.

To generalize the high-level control module, it is necessary to avoid asso-

ciating the PID’s that controls the x-axis and the z-axis respectively to the

generation of a roll angle and pitch angle setpoints. To do this it is necessary

to consider the angle of the body heading ψfb to mixing the input error of

the PID’s Cx and Cz. For this purpose it is possible to use a rotation matrix

to rotate the error vector around the y-axis by a ψfb angle. That is, doing

a reverse rotation of the ψfb angle, necessary to consider the orientation of

the drone with respect to the fixed frame. The error vector of the control

module shown in chapter 4 can be considered referred to the fixed frame, as

it does not consider the orientation of the drone.

~eb = Ry(ψfb )−1~ef (5.1)

In Eq. 5.1, the Ry(ψfb )−1 defines the reverse rotation matrix that rotates

the angle of ψfb around the y-axis (altitude axis), ~ef is the error vector

referred to the fixed frame and the ~eb is the error vector that takes into
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account the orientation of the drone. The reverse rotation matrix is defined

in Eq. 5.2

Ry(ψfb )−1 =

 c(ψfb ) 0 s(ψfb )

0 1 0

−s(ψfb ) 0 c(ψfb )

 (5.2)

Hence, from Eq. 5.1 and Eq. 5.2 it is possible to obtain the mixed error

vector which considers how the drone is oriented with respect to the fixed

frame.

~eb =

 efx cos (ψfb ) + efz sin (ψfb )

efy
efz cos (ψfb )− efx sin (ψfb )

 (5.3)

Then it is possible to obtain the generalized control module shown in

Fig. 5.3.

Flight controller 
internal control 
system attitude

Manual control

Drone state

Navigation control system

STATE

Figure 5.2: The figure shows the extension of the control module introduced

in chapter 4. In the new architecture the orientation of the drone with

respect to the fixed frame is considered by mixing the error vector.
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Where the notations ~ef → ~eb is the Eq. 5.3. The new control architecture

is able to follow endpoints with generic orientations. With the new control

architecture, any desired ψfb can be used as input.

5.4.1 Software implementation

The implementation of the code part that manages the control routine has

been made more modular than the previous one (the old implementation is

present on the DART-1.0, DART-1.1 and DART-1.2 platforms). As can be

seen from Figure 5.3, there are 3 nested classes within the control thread:

the controlRoutine() class calls the pid3D() class, which in turn calls the

pid() class.

The higher level controlRoutine() class is able to manage the initialization

phases of the control algorithm, avoiding the wind-up effect of the PIDs.

In fact, PIDs can suffer from this problem if they are not managed and

initialized correctly. The class controlRoutine() calls the object pid3D() by

passing it the error vector in input and receiving the command signals in

output. The pid3D() class has the task of iteratively creating the ”simple”

pid objects, which allow to generate the complete control algorithm.

This architecture allows to abstract more and more the control algorithm,

starting from the low level, up to an increasingly higher level in which it is

sufficient to pass the state of the drone to receive the ”command” vector.

Besides making high-level code easier, this approach allows to easily replace

low-level modules in case of wanting to implement control methods other

than PIDs.

In fact, supposing to replace the PID-based control algorithm with an-

other one, it is sufficient to replace the software abstraction levels 2 and 3,

leaving the code of the levels 0 and 1 unchanged. Therefore, the current

software implementation guarantees a high degree flexibility, useful for the

development of the platform.

5.5 Crossing gate method with generic orien-

tation

To crossing of a gate by rectilinear paths, one possible approach is to identify

two points defined as endpoints. The first endpoint is fixed before the gate

and the second after, at a distance that can be defined a-priori. We define
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Control thread(){                                          LEVEL 0
….
}

class controlRoutine(){                                             LEVEL 1
….
}

class pid3D(){                                    LEVEL 2
….
}

class pid(){                             LEVEL 3
….
}

State

Setpoints

Sample time

Switch status

Command vector

Figure 5.3: The figure shows the 3 levels of code abstraction within the

control thread. The input signals to the thread are divided into 4 categories:

(i) state vector; (ii) vector of set-points; (iii) status of the remote control

switches (which define the flight modes) (iv) sampling time. It is important

to note that the state of the switches is managed at a high level through the

controlRoutine() class.

the heading of the drone in fixed frame as ψfb , the gate heading in camera

frame as ψcg and the desired heading that the drone must have when passing

through the gate as ψfd , defined in fixed frame. The ψfd is defined by the

following Eq. (5.4)

ψfd = ψfb + ψcg (5.4)

As an implementation note it is important to observe that the sum must

be made only between pairs of data obtained at the same iteration, otherwise

the relationship is invalid. Indeed, the ψcg defines only the orientation that

exists between the camera and the gate. To obtain the ψfd it is necessary to

add to the ψcg the ψfb that defines the orientation of the drone with respect

to the fixed frame. Although it may seem obvious there is to consider that

the ψfb is always available (because it comes from an inertial estimate) while

the ψcg is not (since it depends on the vision process). In fact, as it will be

explained in section 5.6, the ψcg must be present in the mission map, where

all the endpoints generated frame by frame by the vision algorithm are saved
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Figure 5.4: Generation of straight paths and endpoints to crossing gate with

generic orientation. Where r0 and r1 are respectively the gate approach line

and the crossing line.

and updated. Pid, E1 and E2 represents respectively the position of the gate

marker, the first endpoint and the second endpoint. The two endpoints are

calculated starting from the gate position defined by the AprilTag marker

(introduced in chapter 4). In this regard we consider two constant offset vec-

tors ~Of1 and ~Of2 defined in fixed frame. These vectors are shown in Eq. (5.5)

and in Eq. (5.6).
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~Of1 =

 xf1
yf1
zf1

 (5.5)

~Of2 =

 xf2
yf2
zf2

 (5.6)

The ~Of1 and ~Of2 are used to calculated the coordinates of the two end-

points. Since it is assumed that the gates are all in vertical position but

with unknown orientation, to obtain the offsets in the camera frame it is

sufficient to rotate around the altitude axis. The rotation must be equal to

the angle ψcg , which is the orientation angle between the camera and the

gate frame. Since rotation must transform ~Of1 and ~Of2 vectors from fixed

frame to camera frame, it must be a reverse rotation. The reverse rotation

matrix shown in Eq. (5.7) is used for this purpose.

Ry(ψcg)
−1 =

 c(ψcg) 0 s(ψcg)

0 1 0

−s(ψcg) 0 c(ψcg)

 (5.7)

Multiplying the reverse rotation matrix with the two offset vectors defined

in Eq. (5.5) and (5.6), it is possible to obtain the coordinates of the two

constant offset vectors defined in camera frame.

~Oc1 = ~Of1Ry(ψcg)
−1 (5.8)

~Oc2 = ~Of2Ry(ψcg)
−1 (5.9)

At this point it is possible to calculate the coordinates of the two end-

points by adding ~Oc1 and ~Oc2 to ~P cid, which defines the position of the gate in

camera frame. {
~Ec1 = ~P cid + ~Oc1
~Ec2 = ~P cid + ~Oc2

(5.10)
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In the Eq. (5.10) the ~Ec1 and ~Ec2 are the endpoints defined in camera

frame. The feedback of the control system receives the status of the drone

in fixed frame coordinates, so the setpoints must also be defined in the same

reference system. In the Eq. (5.11) the relation that allows to define ~E1

and ~E2 in the gate frame is shown. Where ~Qcb is the constant offset vector

between the camera frame and the body frame, while Rxyz(ψ
f
b , ϕ

f
b , θ

f
b ) is the

xyz rotation matrix that considers the attitude of the body defined in the

Eq. (5.12). {
~Eg1 = ( ~Ec1 + ~Qcb)Rxyz(ψ

f
b , ϕ

f
b , θ

f
b )

~Eg2 = ( ~Ec2 + ~Qcb)Rxyz(ψ
f
b , ϕ

f
b , θ

f
b )

(5.11)

Rxyz(ψ
f
b , ϕ

f
b , θ

f
b ) = cϕcψ cϕsψsθ + sϕcθ −cϕsψcθ + sϕsθ

−sϕcψ −sϕsψsθ + cϕcθ sϕsψcθ + cϕsθ
sψ −cψsθ cψcθ

 (5.12)

Finally, to obtain the coordinates of ~E1 and ~E2 in a fixed frame, it is

necessary to perform the translation shown in the Eq. (5.13). Where ~P fb is

the position of the body defined in fixed frame.{
~Ef1 = ~P fb − ~Eg1
~Ef2 = ~P fb − ~Eg2

(5.13)

In Eq. (5.14) shows in compact form the complete equation that allows to

obtain the endpoints to be used for the generation of the setpoints necessary

for the control system.

{
~Ef1 = ~P fb − {[(~P cid + ~Of1Ry(ψcg)

−1) + ~Qcb]Rxyz(ψ
f
b , ϕ

f
b , θ

f
b )}

~Ef2 = ~P fb − {[(~P cid + ~Of2Ry(ψcg)
−1) + ~Qcb]Rxyz(ψ

f
b , ϕ

f
b , θ

f
b )}

(5.14)

5.6 Mission map management

The mission map is managed by a new thread called planner(). To explain

the management of the mission map, it is necessary to explain how the

input data is generated. The vision thread takes care of detecting frame
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by frame all gates present in the images and updating two dynamic array

of data structures at each cycle. This dynamic array of data structures are

called gateContainer, one defines the position and the attitude of each gate

in camera frame and the other in fixed frame. Both arrays are dynamic,

their size varies with each cycle and depends from the number of the gates

detected within the current frame.

Vision Thread
20 Hz

Slam Thread
200 Hz / 30

Communication 
Thread
200 Hz

Planner Thread
20 Hz

Shared Variables:
● Gate container fixed frame
● Gate container body frame

Shared Variables:
● Body position (fixed frame) - 200 Hz
● Body attitude - 200 Hz
● Frames - 30 Hz

Shared Variables:
● Remote controller switch 

state

Shared Variables:
● Setpoints

writerwriter writer

reader

reader

reader reader

writer

Figure 5.5: The figure shows how the Planner thread is interconnected in

the software environment. In particular, it shows which threads it needs to

communicate with (according to the synchronization method explained in

chapter 4).

the transformation of the coordinates from the camera frame to the fixed

frame is carried out as shown in the previous paragraph. The planner thread

receive in input the two dynamic data structures defined previously and cre-

ate a map. In particular the function that take care of create the map is

called updateMap(). When it is called, it compares the elements of the map

with the elements of gateContainer, which are relative only to the current
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frame (so they do not consider the past). The elements not present are

inserted, instead the elements present are compared with the updated el-

ements. If the gap between the two elements exceeds the threshold value,

they are replaced, otherwise the old elements are kept in the map. This is

done to avoid recalculating the trajectory at each cycle, generating a noise

effect on the desired trajectory.

Current frame

Vector{
   gateContainer 0
   gateContainer 1
            .
            .
   gateContainer n
}

Vision Thread: Planner Thread:

Is the map 
empty? yesno

Insert all the 
elements of 
the vector in 

the map

<Vector>{
   gateContainer 0
   
   gateContainer 1
            .
            .
            .
            .
   gateContainer n
}

<Map>{
   gateContainer 0
   
   missing element
   
    gateContainer 2
            .
            . 
   gateContainer n
}

Insert it

check the threshold

check the threshold

check the threshold

Compare:

class Planner(){
        updateMap(){  \\ member function:

    }
…...CODE…….
}

Figure 5.6: The figure shows the algorithm for creating and updating the

mission map starting from the structures received by the vision task, whose

information refers only to the current frame.

This way the trajectory is only recalculated when the endpoint is updated

in the map. Finally, if the map is empty, the updateMap() function proceeds

to insert all the structures present in gateContainer. The Eq. 5.15 defines

the method used to decide if the element in the map should be updated or

not.

~d = |~pcurrent − ~pold| < ~η (5.15)

Where ~d is the difference between the current position and the old posi-
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tion saved in the map. If ~d is less than ~η the map is not updated, otherwise

the map is updated with the new position present in gateContainer.

To create and manage the mission map we used the std::map class, which

is part of the standard C++ libraries. The std::map element is a key-value

associative container, i.e. the search is done on the basis of the key of interest.

In particular, the ID of the gate (defined by the marker associated with the

gate) is entered in the key field, while the coordinates of the endpoints of the

associated gate are entered in the value field. The search in the mission map

takes place using the ID of the gate to which the relative coordinates are

associated. This approach guarantees a low computational cost (thanks to

the use of the standard C++ library) and an easy management and updating

of the mission map.

5.6.1 Operating logic of the mission supervisor

In this chapter, the drone’s objective is to complete a complex mission based

on the detection of n gates present in the environment. Since the drone does

not know the position of the gates, the control tasks, estimate and generating

setpoints are no longer sufficient for autonomous navigation. In fact, it is

necessary a task able to supervise the autonomous flight phase during the

execution of the mission, making appropriate choices.

For this purpose, the plannerCore() function was written (from now on

it will be called supervisor), which in addition to calling the updateMap()

function (introduced in the previous paragraph and responsible for creating

and updating the mission map), supervises the generation of endpoints [90].

In particular, in the event that the drone is in autonomous hovering mode, it

is limited to generating a fixed endpoint. On the other hand, if the mission

is enabled, the function receives in input the desired sequence of gates to

be crossed, (defined by the ID of the markers), supplying the two endpoints

related to the first gate to be crossed in output. Once the current gate has

been traversed the supervisor updates the endpoints with those relative to

the next gate, this process is iterated until the mission is completed.

In the event that the coordinates of the next gate are not present in the

mission map, the function makes the drone enter the hovering mode, waiting

to detect the position of the gate of interest. Figure 5.7 shows the sequence

of calls made by supervisor to complete the mission. In particular, after

searching for endpoints (through calls to searchGateInMap() and getEle-

mentByMap()), the supervisor communicates them to the updateEndpoint()
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plannerCore(){
….
….
if (current gate crossed) 
   update the gate ID
….
….
}

updateMap(){
….
}

                                    1

searchGateInMap(){
….
}        

                              2

getElementByMap()
{
….
}     

                              3

updateEndPoint()
{
….
}    

                         4

goToPoint()
{
….
setpoint 
generator
}

                                  

5

MISSION MAP

CURRENT 
ENDPOINT

Desired gate ID sequence

class planner(){
….
}

Setpoints vector

Update threshold

ID

 ID              Endpoints

Endpoints
True \
False

GateContainer vector

Figure 5.7: The figure shows the order of function calls made by the super-

visor to complete the mission. These calls are iterative and repeat as each

gate passes. Note that the supervisor sends the searchGateInMap() function

the current gate ID [66, 67], which returns a Boolean. If the value assumed

by the boolean is true, the supervisor proceeds to make subsequent calls.

Otherwise it puts the drone into hovering mode, waiting for the current gate

coordinates to be entered in the mission map.

function, which updates the current endpoints. Immediately afterwards it

makes a call to the goToPoint() function, which has the task of generating

the reference trajectories to be sent outside the planner() class.
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5.7 Display thread

In addition to the thread for the data log, which has been present since the

first software implementations, in this latest version a new thread called dis-

play() has been added. This thread is separate from the vision algorithm and

during bench tests is able to show the video streaming preprocessed by the

vision algorithm (within the vision thread). In addition, it can superimpose

telemetry with the most interesting data on the frames.

In some cases, in addition to the numerical data saved in a text file

through the logging thread, it may be useful to also have the video of the

mission (which can be used for data postprocessing). For this purpose, if

required, the display() thread is able to save the video stream coming from

the vision thread in real-time and overlay the telemetry data. This approach

was very useful during experimental tests, as it made it easier to resolve

some anomalous behaviors. Figure 5.8 shows a frame relating to a mission

consisting of the identification of 3 gates, where only the markers have been

used for simplicity.

The frame was captured through the use of the display() thread, in ad-

dition to the telemetry it shows the two current endpoints to be reached to

pass the first gate. At the top left is visible the current gate ID, which in

this case corresponds to code 0. Below the target ID there are the coordi-

nates in the fixed frame of the drone, while the error vector is shown at the

top right: about 2.5cm for position and 1.5 degrees for orientation. At the

bottom right it is possible to see the attitude vector of the drone and on the

left the flight mode.

5.8 Experimental tests

The first experiment done with the new DART-2.0 platform was to repeat

the straight trajectory shown in chapter 4 (with the same speed) in order to

make a comparison between the two technologies. The following table shows

the standard deviations on the individual degrees of freedom.

Axis Standard deviation

horizontal (along x) 2.334 cm

altitude (along y) 1.129 cm

distance (along z) 3.694 cm
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Figure 5.8: The figure shows a frame captured by the thread display() show-

ing the view of the drone during the autonomous mission.

The results of these tests show how the performances obtained with the

DART-2.0 platform (under the same conditions and with the same control

technique used in the experimental tests of section 4.6) are better than those

obtained with the DART-1.2 platform. Therefore, the reduction in latency

on the new platform positively impacted the performance of the UAV. Above

all, in the precision of the altitude control, where the problem of delay is most

felt. Subsequently, the attitude estimate provided by the Intel stereoscopic

camera was compared with the estimate produced through the use of the

IMU used in the old DART platforms. This comparison was made by keeping

the drone hovering for about 1 minute. Figure 5.9 shows the trend of the

estimates produced by the two different sensors.
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Figure 5.9: The graph shows a comparison of the attitude estimate produced

by the Intel camera, with the estimate obtained by the old system based on

the IMU Pololu-2739 AltIMU-10 v5. The new sensor in addition to being less

noisy, significantly decreases the drift of Yaw’s estimate. This is because the

new estimate not only uses the gyroscope, but also uses the vision process

to reduce the problem of drift.

Both the pitch and roll angles coming from the estimate made with the

old IMU (Pololu-2739 AltIMU-10 v5) have a higher noise content than those

coming from the Intel camera (which can clearly distinguish even lower at-

titude variations to the degree). This is mainly due to the higher quality of

Intel hardware, which also has an order of magnitude higher cost. As for the

yaw estimate, it is possible to observe that after a few tens of seconds there

is a divergence between the two measures. Since static measurements were

made with the Intel camera, where no yaw drift was found, it can reason-
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ably be said that the drift during hovering is attributable to the old IMU.

In fact, the estimate of yaw produced by the Intel camera does not use only

the gyroscope (which as known is naturally subject to drift), but also uses

the visual information (coming from the two onboard cameras) to cancel the

drift of the gyroscope. Furthermore, once the additional supervisor code was

written, flight tests were carried out to validate the developed algorithms,

demonstrating that the drone is indeed able to complete the complex mis-

sion introduced in section 5.2. With reference to figure 5.8, graph 5.10 shows

the 3D trajectory made by the drone during the complex mission and the

relative setpoint.

Figure 5.10: The graph shows a 3D view of the autonomous mission made

by the drone. In red it is possible to see the desired trajectory generated in

real-time and which depends on the detection of the gates. Instead in blue

it is possible to observe the trajectory tracking.

As can be seen, the supervisor was able to correctly manage all phases

of the mission. By revealing the position of all gates and generating the

trajectories necessary for the termination of the mission. Given the short

length of the mission, the experiment was conducted at a speed of 0.1 m
s .

To better appreciate the tracking of trajectories, figure 5.11 also shows the

trend of the individual axes. The trend on the individual degrees of freedom

highlights the high performance achievable by this technology based on com-

puter vision. In fact, the trajectory tracking turns out to be very faithful.
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Figure 5.11: The figure shows the progress of the path following on the

individual axes. The last graph below shows the trend of the yaw angle (in

degrees), which is very faithful to the setpoint.

Axis Standard deviation

horizontal (along x) 2.996 cm

altitude (along y) 1.253 cm

distance (along z) 4.364 cm

yaw 0.6427 deg

The table below shows the average standard deviations obtained on multiple

runs of the same mission. As can be observed, the standard deviations of

the error vector are slightly higher than those obtained during the following
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tests of the straight trajectory. This is mainly due to two factors: (i) in this

mission all the degrees of freedom of the drone are involved, ie the heading

angle of the drone varies over time according to the orientation of the gates;

(ii) in the current implementation, the trajectories that are generated do

not take into account the acceleration and this can lead to discontinuous

transients, which can then generate small overshoots on the true trajectory

traveled by the drone. The last row of the table shows the standard deviation

of the yaw error, which is just over 0.5 degrees. In fact, as can be seen from

graph 5.11, the trend of the yaw angle is perfectly superimposed on the

setpoint.

Finally, the mission was repeated at a higher speed of 0.8 m
s . Indeed, this

speed represents a limiting case considering the short path under considera-

tion, the trajectories to be followed and the little margin of error available.

From this experiment, repeated on several tests, the mean standard devia-

tions shown in the following table were then obtained.

Axis Standard deviation

horizontal (along x) 4.144 cm

altitude (along y) 1.944 cm

distance (along z) 4.319 cm

yaw 2.217 deg

From these results it is evident that the degree of freedom that undergoes

the greatest decline in performance is the horizontal axis. This behavior is

logical, since the greatest variations on the setpoints occur on this degree of

freedom. The average standard deviation of the error on the angle of yaw

is quadrupled compared to the tests performed at a lower speed. However,

this behavior is not due to the high level controller, but to the low level

controller, which (as it is programmed) does not allow yaw variations higher

than a certain speed.

5.9 Hardware in the loop

One of the most important problems for those who research in the avionics

sector with real autonomous UAVs is the difficulty in testing the software

developed for these systems. In fact, UAVs are naturally unstable systems

and in the case of software bugs they can easily be damaged or pose a
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danger to things or people. For this purpose, a graphic flight simulator has

been developed [91, 92], which through a hardware in the loop technique

is able to test all the high-level software that runs on the Nvidia Jetson

Nano board. The flight simulator runs on a remote workstation, where

Figure 5.12: A frame of the synthetic environment developed through Unreal

Engine, where the simulated drone is remotely controlled by the high-level

software running on the Jetson Nano board.

a synthetic environment has been recreated through the Unreal graphics

engine. Figure 5.12 shows a frame of the synthetic environment developed

through Unreal engine, where you can see the simulated UAV controlled by

the high-level software running on the real UAV remotely. The simulator is

divided into two parts: (i) synthetic environment (graphic part using Unreal

Engine); (ii) dynamics simulator, which contains the mathematical model

part. To ensure that the dynamics simulator is not tied to the frame refresh

rate of the synthetic environment, it runs in a separate program at a much

higher rate. The dynamics simulator currently implemented makes use of

the AirSim API [93,94] (open source project developed by Microsoft), which

is able to communicate the state of the drone to the synthetic environment.

To close the hardware in the loop ring, a special library called dart sim

utils has been written, which uses the UDP protocol (the TCP protocol was
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discarded because it is less suitable for real time applications). The library

is installed both on the workstation and on the DART-2.0/1 platform, this

allows the dynamics simulator to send (through an Ethernet cable connected

to the Jetson Nano board) the simulated frames and state of the UAV (a

simulated frame is shown in figure 5.13). These data are processed by the

Figure 5.13: A simulated frame received by the DART-2.0/1 platform and

processed by the vision algorithm (in fact, the telemetry showing the mission

data is distinguished). In the frame it is possible to observe the synthetic

environment and the gates identified by the AprilTag markers.

high-level software that runs on board the drone, which (through the dart

sim utils client libraries) is able to send the autonomous commands to the

remote workstation (instead of sending them to the low-level controller).

This approach allows you to simulate autonomous missions by testing all

the software developed, allowing you to reveal the presence of any bugs in
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safety. By optimizing the software through the hardware acceleration of

the Jetson nano board, a latency of the simulated frames of about 5 ms was

obtained. This value being comparable with the latency declared by Intel for

their stereoscopic camera, makes the simulation very realistic. Figure 5.14

shows the block diagram of the software layers present on the workstation

and on the DART-2.0/1 platform necessary to close the hardware in the loop

ring.

5.9.1 Simulated experimental tests

Once the simulator was finished and interfaced with the DART-2.0 / 1 plat-

form, the same mission carried out in the real world was repeated in the

synthetic environment, in order to demonstrate the realism of the simula-

tion.

In fact, the process of receiving (trough the UDP channel) and unpack-

ing the simulated video stream is not obvious, as the main difficulty is to

keep the time delay equivalent to that of the real video stream. If this con-

dition is not respected the resulting simulation will be not very faithful to

the real behavior of the software algorithm. In fact, in the literature the

papers that investigate the development of hardware in the loop techniques

for UAVs do not contemplate sending a simulated video stream(due to the

great implementation difficulty of these systems, depending on the technol-

ogy currently available). Figure 5.15 shows the complete trajectory made by

the drone while crossing the gates in the synthetic environment. As can be

seen, all the algorithms mentioned in this chapter worked correctly also in

the synthetic environment, demonstrating the quality of the simulation.

The trajectory in blue is generated by the supervisor (as in the real case),

which aims to cross all the gates present in the desired sequence set a priori.

The speed set for the simulated mission is 0.8 m
s and is equivalent to that

set for the real tests. The standard deviations of the error vector are shown

in the following table.

Axis Simulated standard deviation

horizontal (along x) 5.155 cm

altitude (along y) 6.857 cm

distance (along z) 6.811 cm

yaw 4.501 deg
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AirSim

DART sim utils

Synthetic environment

Unreal engine

Dart simulator

DART sim utils

DART Enviroment

High level software

Frames & state 
simulated

Attitude 
setpoints

UDP

UAV

Workstation

Figure 5.14: The block diagram shows the software layers present on the

DART-2.0/1 platform and the remote workstation, required to perform a

hardware in the loop simulation. The communication between the dynamics

simulator and the UAV uses the dart sim utils API, through which it is pos-

sible to send state and frames of the simulated drone. The UAV through the

same API is able to communicate autonomous commands to the dynamics

simulator by closing the loop.

The decrease in performance observed in the table is solely due to the math-

ematical model used to simulate the dynamics of the drone. As currently

the mathematical model used in the flight simulator is a generic model pre-

existing in the AirSim libraries [95]. In the next implementation of the flight
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Figure 5.15: The graph shows the simulated mission, where in blue it is

possible to see the desired trajectory generated by the supervisor and in

purple the trajectory of the UAV. The scale is in meters and the total length

of the mission is about 20 meters.

simulator, the generic model will be replaced with the mathematical model

of the DART-2.0/1 platform. In this way, the calibration of the control mod-

ule obtained in the real world will guarantee equivalent performance even in

the synthetic environment.

5.10 Complete software architecture

In this section we show the overall architecture of the high-level software and

its operating logic. The software features are dynamic and can be managed

from the command line by inserting appropriate strings from the terminal.

The following list shows the commands and related functions currently im-

plemented.

• −−displaySampleTime : Shows active threads, expected and real

sample rates.

• −−windows : Shows the images processed by the vision algorithm

inside a window.
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• −−plot : Makes the real time plot of the variables of interest inside a

window (it also needs the –windows command).

• −−log : Save all shared variables in a .txt file, usable for data post

processing.

• −−rec : Records the video stream processed by the vision algorithm

and superimposes the telemetry obtained in real time.

• −−tagSize : Defines a marker size other than the default one.

• −−sim : Enable hardware-in-the-loop mode.

• −−ssh : If enabled, it eliminates the OpenGL optimization of the

windows which are rendered on the remote PC.

Features management through appropriate input commands avoids re-

compiling the software at each experimental test. in addition it guarantees

the dynamic management of the threads that must go into execution. For

instance, if the −−windows and −−rec commands are not executed, the dis-

play thread is not initialized as it is not necessary. This approach optimizes

software by avoiding unnecessary computational waste. Figure 5.16 shows

the overall software architecture, where it is interesting to observe how the

real and simulated flight modes are managed.

If the −−sim option is not passed, the part of the code that manages

the data stream coming from the stereoscopic camera is activated in the

slam thread (thread 1). Furthermore, in the communication thread (thread

5) the sender part is activated, which is responsible for the communication

with the mixer board (mid-level hardware). Vice versa, if the −−sim option

is inserted in the slam thread, the part of the code that manages the data flow

from the Realsense camera is deactivated. In its place another piece of code

is activated that simulates the management of Realsense data (responsible

for receiving the video stream and the simulated state sent by the simulator,

which runs on the remote workstation).

Furthermore, in the communication thread there is a substitution be-

tween the sender part that manages the communication with the mixer (nec-

essary for the real flight mode) and the sender part that manages the sending

of command signals to the workstation (necessary for closing the hardware

loop in the loop during simulated flight mode). Threads 6, 7 and 8 are op-

tional and can only be activated if required. These threads are useful during
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Figure 5.16: The figure shows the complete block diagram of the software

architecture that runs on the Nvidia Jetson Nano card. It is important to

observe how the yellow dotted blocks within threads 1 and 5 are mutually

exclusive and depend on the activation of the real or simulated flight mode.
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the experimental phases, as they allow to acquire data for the post process-

ing phases and for the debugging phases. This group, made up of 3 threads,

is able to receive all the shared variables within the software environment.

Very useful feature during the debugging phase, which may require in-depth

analysis on the evolution of the state of the variables. It should be noted

that thread 1 has a double sampling frequency, equal to 200Hz and 30Hz.

This derives from the fact that it has a double routine, the first at higher

frequency manages the Slam data containing the state of the drone, and a

second slower routine that manages the video stream of the Realsense camera

lenses. The vision thread, if required, is also able to receive the video stream

coming from the Raspicam camera, useful in case you want to increase the

depth of field (as it has a longer focal length than the lenses used by the

Realsense camera). Finally, as for thread sample rates, they are specified

within individual blocks of figure 5.16.

5.11 Conclusion

In this chapter we have shown the approaches and software entities necessary

to make a UAV capable of performing autonomous missions with unknown

trajectories. An important aspect, which will play a fundamental role in

the near future, will be that of making these systems increasingly capable

of making choices according to different scenarios. The performances that

these autonomous UAVs can achieve are of the order of centimeter, this

will make them able to carry out increasingly complex activities currently

unimaginable. The only brake on the development of technology in the

UAV sector is represented by the difficulty of testing the algorithms that are

developed in the academic field and by the stringent regulations that limit

their flight in open environments. For this purpose, the proposed hardware

in the loop technique has shown a solution to the problem, demonstrating

that it is possible to test all algorithms safely and faithfully to reality.
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Conclusion

In the previous chapters all the technological difficulties to obtain autonomous

UAVs that use on-board VBN techniques have been highlighted. One of the

biggest challenges was the drop in performance due to the inevitable presence

of vision noise, given that the cameras (unlike off-board VBN techniques)

were mounted on board the UAV itself. In fact, the problem of vision noise

would not have existed if off-board VBN techniques had been adopted. An-

other significant difficulty was the latency due to the image processing times

(depending of the computer vision module) and the intrinsic delay of the

frames sent by the camera.

As shown in the previous chapters, this problem is closely linked to the

type of technology used and is difficult to solve by using sole sensor fu-

sion techniques. It is important to reiterate the enormous advantages that

the techniques developed in this PhD work can guarantee in terms of flex-

ibility and usability. Furthermore, by optimizing the artificial vision and

control process, laboratory tests have shown that the accuracies obtainable

from these UAV prototypes are of the order of a centimeter (very close to

the performance of the systems based on off-board techniques). An equally

important aspect was the study and design of multi-board communication

protocols, which allowed the separation of tasks in different hardware levels.

Thanks to the study of the state of the art, it was possible to identify the

best electronics for the project.

All this work has permitted the creation of a development platform for

autonomous UAVs, called DART, completely open and modular, which al-

lows the replacement of individual components in a simple and efficient way.
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This made possible to use a smaller autopilot board (compared to the Pix-

Hawk), allowing the creation of very small drones that can be easily tested

in indoor environments.

One of the greatest advantages of the DART platform is that it is low

cost, especially when compared with platforms often used for research pur-

poses that use mocap systems. However, the real killer application of the

DART platform is the hardware-in-the-loop simulation capabilities that have

allowed the high-level software to be tested in safety. In fact, the hardware-

in-the-loop technique proposed in section 5.9 is currently very innovative, as

it is possible to simulate the on-board VBN techniques themselves with high

fidelity. At the following link there is a video showing some of the develop-

ment phases and experiments that have been carried out during this PhD

activity: https://www.youtube.com/watch?v=6OgawvmNleM .

6.1 Directions for future work

In the latest versions of the DART platform (2.0 / 2.1) the hardware has

improved significantly, making it much more flexible than its previous ver-

sions. This aspect will lead, in the near future, to continue development by

adding new software modules and substituting others. The modular nature

of the software will allow to test new control techniques, different from the

classical ones based on PID, for example geometric control techniques such

as those proposed by Mellinger [96]. Another interesting research branches

could focus on: (i) the replacement of the computer vision module with

others that do not use environmental markers; (ii) the introduction of the

exploration algorithms based on artificial intelligence [97, 98] and (iii) the

improvement of the path planning module [99]. It is worth underlining that

the project aims to become a Spin-off of the University of Florence, thanks

to the peculiar characteristics of the DART platform.

https://www.youtube.com/watch?v=6OgawvmNleM
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International Journals

1. Luca Bigazzi, Stefano Gherardini, Giacomo Innocenti and Michele Basso

“Development of non expensive technologies for precise maneuvering of com-

pletely autonomous unmanned aerial vehicles”, Sensors, vol. 21, no. 2: 391,

2021.

International Conferences

1. Michele Basso, Luca Bigazzi, Giacomo Innocenti. “DART Project: A High

Precision UAV Prototype Exploiting On-board Visual Sensing”, in The Fif-

teenth International Conference on Autonomic and Autonomous Systems

(ICAS 2019), 5, June 2-6, 2019, Athens, Greece, ISBN 978-1-61208-712-2.

2. Accepted for publication: Luca Bigazzi, Michele Basso, Stefano Gherar-

dini and Giacomo Innocenti. “Mitigating latency problems in vision-based

autonomous UAVs”, in The 29th Mediterranean Conference on Control and

Automation (MED 2021), June 22-25, Bari, Puglia.
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