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Lipid and metabolite correlation networks specific
to clinical and biochemical covariate show differences
associated with sexual dimorphism in a cohort
of nonagenarians
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Abstract This study defines and estimates the
metabolite-lipidic component association networks con-
structed from an array of 20 metabolites and 114 lipids
identified and quantified via NMR spectroscopy in the
serum of a cohort of 355 Italian nonagenarians and ultra-
nonagenarian. Metabolite-lipid association networks
were built for men and women and related to an array
of 101 clinical and biochemical parameters, including
the presence of diseases, bio-humoral parameters, famil-
iarity diseases, drugs treatments, and risk factors. Dif-
ferent connectivity patterns were observed in lipids,
branched chains amino acids, alanine, and ketone bod-
ies, suggesting their association with the sex-related and

sex-clinical condition-related intrinsic metabolic chang-
es. Furthermore, our results demonstrate, using a holistic
system biology approach, that the characterization of
metabolic structures and their dynamic inter-
connections is a promising tool to shed light on the
dimorphic pathophysiological mechanisms of aging at
the molecular level.

Keywords Aging . Differential network analysis .

Lipidomics . Metabolomics . Network inference .

Nuclear magnetic resonance . Sexual dimorphism

GeroScience
https://doi.org/10.1007/s11357-021-00404-3

F. Di Cesare : L. Tenori : C. Luchinat
Magnetic Resonance Center (CERM), University of Florence, Sesto
Fiorentino, Italy

L. Tenori : C. Luchinat
Department of Chemistry “Ugo Schiff”, University of Florence,
Sesto Fiorentino, Italy

G. Meoni
Giotto Biotech srl, Florence, Italy

A. M. Gori : R. Marcucci :B. Giusti : C. Macchi
Department of Experimental and Clinical Medicine, University of
Florence, Florence, Italy

A. M. Gori : R. Marcucci :B. Giusti
Atherothrombotic Unit, Careggi University Hospital, Florence,
Italy

R. Molino-Lova : C. Macchi : S. Pancani
IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy

C. Luchinat
Consorzio Interuniversitario Risonanze Magnetiche di Metallo
Proteine (CIRMMP), Sesto Fiorentino, Italy

E. Saccenti (*)
Laboratory of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen, the Netherlands
e-mail: edoardo.saccenti@wur.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-021-00404-3&domain=pdf
https://orcid.org/0000-0002-0752-9236
https://orcid.org/0000-0001-6438-059X
https://orcid.org/0000-0002-8608-4641
https://orcid.org/0000-0002-1100-1960
https://orcid.org/0000-0001-9549-7176
https://orcid.org/0000-0002-8708-9444
https://orcid.org/0000-0001-9835-9262
https://orcid.org/0000-0003-2265-3216
https://orcid.org/0000-0003-1595-8492
https://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0001-8284-4829


Introduction

Nonagenarian and centenarian people represent a con-
siderable increasing fraction of the world population,
concentrated, above all, in economically developed
countries [1, 2]. In Europe, Italy and France hold the
record for the number of living centenarians. According
to a 2019 statistic, in Italy, 1% of the population is 90
years older or more, and between 2000 and 2019 the
number of centenarians (85% women) increased from
11000 to more than 14456, and the number of ultra-
centenarians (>105 years, 94% women) increased
136%, from 472 to 1112 [3].

Aging is associated with irreversible variations in bio-
logical, pathophysiological, and psychological dynamics
[4–8]: these age-related changes result in a decline of
cognitive, motor, and sensory functions and in an increase
of susceptibility to disease and disease frequency, a poor
quality of life, and increased mortality [9, 10], defining a
clinically and biologically heterogeneous population.

Many different fundamental biological processes,
such as inflammation, cellular and immune senescence,
mitochondrial dysfunction, and reduced resistance to
oxidative stress are the main mechanisms at the basis
of the aging process [10]. The progressive decline of
physiological functions reflects changes happening at
the molecular, organelle, cell, tissue, and, finally, the
whole organism level [11, 12]. Although individually
these biochemical and molecular alterations underlying
these processes may have only a modest effect on aging,
taken together they involve a complex network of bio-
molecular mechanisms acting across multiple organs
and at different molecular levels [13].

Accumulation ofmolecular damage has been proposed
to be among the mechanisms driving aging [14–16], and
this may include not only oxidative stress and DNA
mutations, but also errors in protein synthesis and by-
products of enzymatic reactions [17]. In this light, the
use of high-throughput omics techniques, like genomics,
transcriptomics, proteomics, and metabolomics, offers a
great promise for the understanding of the mechanisms
that underlie aging [11, 18, 19]. In particular, the analysis
of metabolic signatures associated with age and the com-
prehensive characterizing and understanding of the struc-
tures, functions, and interactions between metabolites and
lipidic components, can shed light on the potential mech-
anism that could influence aging and longevity.

Nuclear magnetic resonance (NMR)-based metabo-
lomics offers the possibility to quantify and investigate

hundreds of various metabolites, lipid fractions and sub-
fractions [20–23], detectable in biofluids, providing a
global image of the complex metabolic, biological and
biophysical processes associated with health [10, 22,
24] and disease [23, 25–27].

Integrative analysis of NMR-based metabolomics
data using systems biology approaches focusing on the
interactions and relationships among biochemical mol-
ecules like protein and metabolites can offer a holistic
representation of the metabolic structures, indispensable
for the understanding of the molecular mechanism un-
derlying aging [28, 29].

Networks and network analysis of blood metabolites,
lipid fractions and sub-fractions association networks
are fundamental tools to extract information on the
status of a biological system since correlation among
metabolites and lipids concentration profiles can be used
to model and to infer, at least partially, the structure of
the underlying biological network [30]. In addition,
these network models can be linked to clinical informa-
tion such as biochemical parameters, risk factors, co-
morbidities, allowing the analysis of the relationships
existing between different network structures and pa-
tient clinical characteristics.

In this work, we take an integrative approach to
investigate the associations between metabolite and
lipoprotein/lipid networks and the range of clinical,
biochemical, environmental, socio-demographic pa-
rameters collected on a cohort of 355 nonagenar-
ians from the Italian Mugello study [31]. The goal
of the present analysis is twofold: first, we wanted
to understand the association between different net-
works’ structures and sex, because of its relevance
for gender medicine of aging [32, 33]; second, we
wanted to explore the complex web of relationship
existing between clinical parameters, risk factors,
and comorbidities and blood metabolites and lipids
association patterns.

Material and methods

Study description

Samples were collected from the participants in the
Mugello study, an epidemiological survey conducted
from January 2010 to December 2011 in the Mugello
area (north-eastward of Florence, Tuscany, Italy, see Fig.
1) [31]. The original study comprised 356 subjects—of
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which 96 men (27%) and 260 women (73%), with an age
range of 84–103 years and of 88–105 years and with
mean age 92.6 (± 3.4) and 93.2 (± 3.2) years, respectively.
All participants, at the time of the cross-sectional survey,
were subjected, by a trained physician, to a series of
home-based structured interviews and medical examina-
tions regarding clinically relevant geriatric conditions.
Blood samples were also collected to perform routine
laboratory tests. We refer the reader to the original publi-
cation for more details on the study design and the proto-
cols that have been followed [31].

Overview of clinical variables

For the analysis presented in this article, we selected a
sub-set of M=101 clinical covariates which were
grouped into 5 categories:

1. Diseases (m=20, dichotomous variables: 0-1): de-
scribing the existence of a specific medical condi-
tion, i.e., myocardial infarction, congestive heart
failure, peripheral vascular disease, hemiplegia, hy-
pertension, dyslipidemia, dementia, cerebrovascular
disease, diabetes (with and without organ damage),

cancer, leukemia, disability, elderly depression
(evaluated using the 15-item Geriatric Depression
Scale screening questionnaire validated for the ge-
riatric population [34]), cognitive impairment (eval-
uated using the Mini-Mental State Examination val-
idated questionnaire [35]) and motor impairment
(evaluated using Short Physical Performance Bat-
tery and Time up and go questionnaires [36, 37]).

2. Familiarity diseases (m=5, dichotomous variables:
0-1): describing the existence of familiarity for car-
diovascular, respiratory, and cerebrovascular dis-
eases, dementia, and cancer.

3. Drugs treatments (m=13, dichotomous variables: 0-
1): indicating the presence of ongoing pharmaco-
logical treatment for diseases described above.

4. Risk factors (m=12, continuous and dichotomous
variables) including socio-demographic variables
(age, education, sleep alertness, civil status, living
with and smoke habit) and physical parameters
(Body Mass Index [38–40], Windsor index or sys-
tolic ankle pressure measured using Ankle-brachial
index [41, 42], Physical activity scale for elderly
score [43], Handrig index [44], Mediterranean Diet
Score [45, 46]).

Fig. 1 Graphical overview of the study and the data analysis
strategy used in this study. Bio-humoral parameters refer to bio-
chemical information such as blood count, mean cell volume,

mean cell hemoglobin, thyroid hormones; see Table 1 for more
details. Data are from the Mugello study [31]
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5. Bio-humoral parameters (m=51: continuous and di-
chotomous) including, i.e., complete blood count,
mean cell volume, mean cell hemoglobin, thyroid
hormones, cholesterol, HDL, LDL, and glycemia.

The variables considered and associated statistics are
listed in Table 1.

Ethical considerations

The Mugello study [31] was conducted in agreement
with the principles of the Helsinki Declaration on Clin-
ical Research involving human beings (1964) and was
approved by the Don Carlo Gnocchi Foundation Ethics
Committee. Informed written consent was obtained
from all participants or from their delegates before their
inclusion in the original study.

Experimental methods

Sample collection

Blood samples were collected after overnight fasting,
centrifuged at 2000g for 10 min at 4°C, and stored in
aliquots at −80° until analyses, following standardized
operating procedure as described in Bernini et al. [47].

NMR experiments

Serum samples were prepared for NMR analysis as de-
scribed by Bernini et al. [47] and acquired using a Bruker
600MHz spectrometer (Bruker BioSpin s.r.l., Germany).
NOESY 1D presat (one-dimensional NOESY) experi-
ments were used to measure selectively low and high
molecular weight molecules. Metabolites, lipoproteins,
lipid fractions and sub-fractions were assigned, identified,
and quantified using the AVANCE IVDr (Clinical
Screening and In Vitro Diagnostics (IVD) research with
B.I. Methods, Bruker BioSpin) [48], and the principal
metabolites and main lipid fractions considered in this
study are listed as follow: alanine, creatine, glutamic acid,
glutamine, glycine, histidine, isoleucine, leucine, lysine,
phenylalanine, proline, threonine, tyrosine, valine, acetic
acid, citric acid, lactic acid, acetoacetic acid, pyruvic acid,
glucose, main parameter (MP) triglycerides, main param-
eter (MP) cholesterol, main parameter (MP) LDL, main
parameter (MP) HDL, main parameter (MP) Apo A1,
main parameter (MP) Apo A2, and main parameter (MP)
Apo B100.

A complete list of all lipid fractions and sub-fractions
is presented in Supplementary Table S1.

Statistical methods

Data pre-processing

Only covariates with less than 25% missing data were
considered; missing data were imputed using a Random
Forest approach as implemented in R package
missForest [49]; default parameters were used. All var-
iables were log-transformed before analysis. One sam-
ple (“F_C_138”) was excluded after a check of the
spectra due to low quality shimming and remove from
all subsequent analyses: the actual number of samples
used in the present investigation is n=355.

Extraction of metabolic information related to clinical
variables

For each blood metabolite and lipid fraction, we extract-
ed the variation coming from a given clinical covariate,
i.e., one of theM=101 covariates (see Table 1) recorded,
using the method proposed by Bartzis et al. [50]. This
approach extracts, from eachmetabolite/lipid, the part of
concentration that is associated with a given covariate,
thus implicitly adjusting for the remaining M-1 covari-
ates. The rationale is that different metabolites/lipids
sharing similar correlation/association with the same
clinical covariable tend to be close to each other in the
network, thus providing a better representation of the
underlying biological phenomena [50].

Briefly, be Y(p) the (n × 1) vector of concentrations of
the p-th metabolite or lipid component (with p = 1,2, ...,
P) measured on n=355 subjects and be X the (n × M)
matrix containing the M=101 clinical parameters
(covariates) recorded on the n subjects. Let be Xmthe n
× 1 vector containing the values for m-th clinical vari-
ables and X(−m) = {X1, X2,…, XM − 1} the remaining M

−1 clinical variables. The information bY pð Þ
of a metabo-

lite or lipid component p associated with a specific
clinical covariate m was estimated by regressing Y(p)

on X and retaining only the main effects and first-order
interactions of covariate Xm:

bY pð Þ
¼ bβ pð Þ

Xm þ ∑δ∈Δbη pð Þ
δ Xm∘∏M−1

j¼1 X
δ j
j ð1Þ
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Table 1 Descriptive statistics of clinical variables, divided into
five separated categories, stratified by sex. For continuous vari-
ables the mean ± SD (standard deviation) is reported. GDS geriat-
ric depression scale, MMSE Mini-Mental State Examination,
SPPB short physical performance battery,MCVmean corpuscular
volume, MCH mean corpuscular hemoglobin, MCHC mean cor-
puscular hemoglobin concentration, RDWCV red blood cells dis-
tribution width coefficient of variation, RDWSD red blood cells

distribution width standard deviation, PDW platelet distribution
width, MPV mean platelet volume, PLCR platelet large cell ratio,
GOT-AST aspartate aminotransferase, GPT-ALT alanine transam-
inase, γ-GT gamma-glutamyl transferase, TSH thyroid-stimulating
hormone, WBCs white blood cells, RBCs red blood cells, HCT
hematocrit, HbA1C hemoglobin A1c, CRP C-reactive protein,
ACE Angiotensin-converting enzyme, ABI Ankle-Brachial Index,
BMI Body Mass Index, and MDS myelodysplastic syndromes

women (n = 259, 73.0 %) men (n = 96, 27.0 %)

Diseases Myocardial infarction (%) 15.4 12.5

Congestive heart failure (%) 23.2 15.6

Peripheral vascular diseases (%) 22.4 11.5

Hypertension (%) 55.9 58.3

Dyslipidemia (%) 12.4 6.3

Dementia (%) 13.5 13.5

Diabetes (%) 12.7 15.6

Diabetes without organ damage (%) 7.3 13.5

Diabetes with organ damage (%) 5.8 2.1

Cancer (%) 13.9 9.4

Leukemia (%) 0.4 0.0

Disability (%) 62.6 88.5

Motor impairment code 9.0 ± 6.7 7.5 ± 7.4

GDS code 0.6 ± 0.5 1.8 ± 0.8

Depression (%) 58.7 77.1

MMSE (%) 56.4 50.0

SPPB (%) 63.3 64.6

Time up and go (%) 58.7 64.6

Hemiplegia (%) 0.8 1.0

Cerebrovascular diseases (%) 21.8 20.8

Bio-humoral parameters MCV (FL) 90.4 ± 5.3 90.3 ± 6.2

MCH (pg.) 29.7 ± 2.9 29.7 ± 2. 6

MCHC (g/dL) 33.0 ± 1.0 33.0 ± 1.1

RDWCV (fL) 14.7 ± 1.3 14.8 ± 1.4

RDWSD (fL) 47.3 ± 4.1 47.5 ± 5.8

PDW (fL) 13.3 ± 2.2 13.9 ± 2.5

MPV (fL) 10.6 ± 1.0 10.9 ± 1.0

PLCR 29.6 ± 6.9 31.3 ± 6.5

GOT-AST (IU/L) 20.2 ± 9.4 20.1 ± 5.9

GPT-ALT (IU/L) 15.0 ± 9.4 14.2 ± 5.2

γ-GT (IU/L) 25.2 ± 27.6 15.6 ± 4.1

Neutrophil (x103/μL) 4.0 ± 2.7 4.1 ± 1.7

Lymphocyte (x103/μL) 1.8 ± 0.9 1.8 ± 0.7

Monocyte (×103/μL) 0.5 ± 0.2 0.5 ± 0.2

Eosinophil (x103/μL) 0.2 ± 0.1 0.2 ± 0.1

Basophil (x103/μL) 0.02 ± 0.02 0.03 ± 0.03

Neutrophyl – formula 59.7 ± 9.5 60.7 ± 9.7

Lymphocyte – formula 28.9 ± 8.8 27.7 ± 8.5

Monocyte – formula 7.7 ± 2.3 7.9 ± 2.4
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Table 1 (continued)

women (n = 259, 73.0 %) men (n = 96, 27.0 %)

Eosinophil – formula 3.2 ± 2.1 3.4 ± 2.0

Basophil – formula 0.4 ± 0.4 0.4 ± 0.3

Creatinine (mg/dL) 1.0 ± 0.5 1.1 ± 0.7

Neutrophyl/lymphocyte 0.5 ± 0.3 0.5 ± 0.3

Platelets (x103/μL) 219.6 ± 93.9 206.5 ± 64.0

Na+ (mE/ql) 138.9 ± 3.0 138.6 ± 2.9

K+ (mEql) 4.3 ± 0.5 4.4 ± 0.5

Cl- (mEql) 101.7 ± 7.8 102.0 ± 4.0

Total proteins (g/dL) 6.4 ± 0.6 6.5 ± 0.7

Albumin (g/dL) 56.2 ± 4.6 56.1 ± 4.8

α1-G (g/dL) 3.9 ± 1.3 4.0 ± 1.5

α2-G (g/dL) 12.0 ± 2.0 12.0 ± 1.8

β-G (g/dL) 12.2 ± 1.7 12.3 ± 1.9

γ-G (g/dL) 15.6 ± 3.7 15.6 ± 4.1

A/G 1.3 ± 0.3 1.3 ± 0.3

T3 (pg/mL) 2.8 ± 0.5 2.9 ± 0.6

T4 (ng/dL) 0.9 ± 0.2 0.9 ± 0.3

TSH (μUI/mL) 2.3 ± 6.3 2.1 ± 4.0

WBCs (x103/(μL) 6.3 ± 1.9 6.7 ± 2.1

RBCs (x106/(μL) 4.3 ± 0.6 4.4 ± 0.6

Hemoglobin (g/dL) 12.9 ± 1.5 12.9 ± 1.7

HCT (%) 38.9 ± 4.8 39.0 ± 4.8

glycemia (mg/dL) 94.6 ± 26.7 93.3 ± 22.7

HbA1C (g/Hb) 5.6 ± 0.8 5.6 ± 0.8

Total cholesterol (mg/dL) 190.5 ± 42.0 192.9 ± 41.2

Cholesterol (mg/dL) 0.4 ± 0.5 0.4 ± 0.5

HDL (mg/dL) 57.4 ± 16.4 59.0 ± 18.7

LDL (mg/dL) 110.3 ± 33.7 111.0 ± 32.8

Triglycerides (mg/dL) 113.9 ± 47.5 115.1 ± 55.1

CRP (mg/L) 0.9 ± 2.1 1.2 ± 2.8

CRP (%) 54.4 64.6

Inflammatory protein (mg/L) 9.2 ± 20.6 11.9 ± 27.5

Benzodiazepine (%) 15.4 18.8

Drug treatment Antidepressant (%) 18.5 19.8

Diuretics (%) 52.5 44.8

Beta-blockers (%) 10.4 15.6

Ca++ channel blockers (%) 19.7 16.7

ACE inhibitors (%) 39.0 35.4

Vasodilators nitrates (%) 24.3 21.9

Oral anticoagulant (%) 6.2 5.2

Heparin (%) 11.6 9.4

Antiplatelet (%) 40.0 35.4

Antihyperlipidemic (%) 9.3 5.2

Insulin (%) 4.6 3.1
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where ∑δ∈Δbη pð Þ
δ Xm∘∏M−1

j¼1 X
δ j
j models all main ef-

fects and high-order interactions in terms of clinical
variables.

For each clinical parameter m the procedure is re-
peated for all P metabolites and lipid component to
obtain M = 101 n × P data sets Ym = {Y(1),Y(2), …,
Y(p)} containing the part of the measured metabolite
and lipid concentrations associated with each one of the
101 clinical parameters.

Network analysis

Network concepts

Webriefly review here some network concepts. A network
is a graphical representation of the relationships between
objects, called nodes [51]. In a biological network, the
nodes are molecular components, like genes, proteins, or,
like in this study, metabolites and lipid components. The
(existence of a) relationship between two nodes (molecular
components) is represented by an edge connecting the two
nodes. The type of association among the molecular fea-
tures can be diverse in nature: in a protein-protein interac-
tion network, edges represent the existence of physical
interaction between proteins; in a metabolite-metabolite
association network in which two metabolites are connect-
ed if their concentration levels are correlated.

Mathematically, a network can be represented as an
adjacency (also called connectivity) matrix A: the rows
and columns of the A represent the nodes whereas the

entries aij represent edges. A network is said to be
unweighted if the edges aij describing the association
between node i and j are either 1 or 0:

aij ¼
1 if i; jð Þ are associated
0 otherwise

�
ð2Þ

If the strength or magnitude of the relationship can be
quantified, a weight can be given to the edge; then, the
network is said to beweighted: in this case, the elements
of a weighted adjacency matrix A are real numbers
indicating the strength of the interaction, and can vary,
for instance, in the [−1, 1] range if the correlation is used
as an index for the association.

Reconstruction of metabolite and lipid association
networks

The Probabilistic Context Likelihood of Relatedness
(PCLRC) [52] algorithm was used to build metabolite
and lipid association networks using Spearman correla-
tion as a measure of association [53]. The algorithm
allows robust estimation of correlation employing a re-
sampling strategy in combination with a modified version
of the Context Likelihood of Relatedness (CLR) [54] to
remove non-significant background correlations. The al-
gorithm returns a probability matrix P with values be-
tween 0 and 1 that was used to filter significant correlation
rij between pairs of metabolites /lipids. In particular

Table 1 (continued)

women (n = 259, 73.0 %) men (n = 96, 27.0 %)

Oral antidiabetics (%) 9.3 12.5

Age (years) 93.2 ± 3.2 92.6 ± 3.4

Risk factors Civil status (% of married person) 95.8 97.9

Living with (number of person) 2.8 ± 1.2 2.6 ± 1.2

Education (years) 4.2 ± 2.6 4.3 ± 2.6

Tobacco exposure (%) 13.9 72.9

Winsor index 1.0 ± 0.3 1.1 ± 0.3

ABI code > 1 (%) 23.6 36.5

Handrig index (kg) 14.3 ± 6.9 15.8 ± 7.

Pase score (%) 38.6 52.1

Sleep-alertness (%) 4.3 4.2

BMI (kg/m2) 24.8 ± 4.7 25.1 ± 3.4

MDS index 34.0 ± 3.9 34.5 ± 3.3
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rij ¼ rij if pij ≥ 0:90
0 if pij < 0:90

�
ð3Þ

We built a metabolite/lipids association network for
each of the 101 n1 × P (for women) and n2 × P (for men)
data sets Ym={Y(1),Y(2), ..., Y(p)} containing the part of
the measured metabolite and lipid concentrations asso-
ciated with each one of the 101 clinical parameters. We
analyzed data for males and females separately,
obtaining a total of 202 metabolite/lipids association
networks that were divided into 5 categories (S= dis-
eases, bio-humoral parameters, familiarity diseases, risk
factors, and drug treatments).

Network differential connectivity analysis

Each node in a network can be characterized using
measures that can be derived from the patterns of its
association. A very commonmeasure is the node degree
or connectivity [55, 56], that is the number of its con-
nection. For a p×p network A, the connectivity of the
node i is given by:

χi ¼ ∑
j>i

jaijj ð4Þ

Given a network A, the connectivity χA
i for

metabolite/lipid i is defined as

χA
i ¼ ∑ J

j¼1 rij
�� ��� �

−1 ð5Þ

If the network is unweighted, it holds 0<χi<p−1. If
the network is weighted, the range of the connectivity
depends on the nature of the association measure. If the
absolute value of the correlation is used, like in this
study, χi still ranges between 0 and p−1, in which case,
it means that the molecular feature represented by node
ai is perfectly correlated with all other nodes in the
network.

Two networks A and B associated with two different
conditions or groups (such as those built from men and
women samples, or from samples from case-control
patients) can be compared, implementing a so-called
differential network analysis [28, 57].

The differential connectivity (ΔA;B
i ) of a metabolite/

lipid i between two networks A and B is defined as

Fig. 2 Graphical illustration of the concept of node connectivity
and differential connectivity used in this study. Each node repre-
sents a molecular feature (metabolite, lipid). The edge connecting
two nodes represent the esistence of an association between two

nodes, in this case expressed by correlation; the weight of the edge
is given by the (absolute value) of the correlation. Figure adapted
from [53]
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ΔA;B
i ¼ χA

i −χ
B
i ð6Þ

The concept of differential connectivity is exempli-
fied in Fig. 2.

Estimation of the statistical significance of differential
network connectivity

The statistical significance of the differential connectiv-

ity (ΔA;B
i;k ), was assessed by means of a permutation-test.

Briefly, the columns of every Ym matrix are indepen-
dently permuted to obtain a permutated matrix
X(k)whose column mean and variance are unchanged
but the association between the elements of different
columns is destroyed.

For each metabolite/lipid the differential connectivity
was calculated for networks a and b built from the
permuted data:

ΔA;B
i;k ¼ χA

i;k−χ
B
i;k ð7Þ

and the overall procedure was repeated k=100 times
to create a null distribution Di of permutated differential
connectivity values. The significance of a given differ-

ential connectivity value ΔA;B
i (calculated on the original

data) was calculated as a P-value using the following
formula (#() indicates the number of elements):

P−value ¼
1þ # Dij j > ΔA;B

i

�� ��� �
k

ð8Þ

Multivariate analysis of association networks

Covariance simultaneous component analysis
(COVSCA) [58] was performed to analyze simulta-
neously the (dis)similarities of the sets of K=101 me-
tabolite and lipid association networks. The K associa-
tion matrices are modeled as the number of low-
dimensional prototypes (L << K):

Sk≅∑L
l¼1cklZlZ

T
l ð9Þ

where ckl≥ 0 (l = 1, 2, …, L) are weight coefficients
and ZlZT

l are the prototypical covariance matrices that
characterize the loadings set Z of dimension J × Rl that
hold together for all Ck.

The COVSCA model was fitted separately for both
women's and men's data with 3 rank-1 prototype

matrices (R=3) as the best compromise between the
goodness-of-fit (82.7%) and model complexity.

In COVSCA, each network becomes a point in an R
dimensional space and thus the method provides a
methodology to represent and visualize a large number
of networks in a way akin to standard principal compo-
nent analysis: points (i.e., metabolite-lipid association
networks) close in the R-dimensional space share simi-
lar characteristics, i.e., similar patterns of correlation
among lipids and metabolites. The relative importance
of each metabolite/lipid in shaping the observed net-
work differences is given by the loadings that can also
be interpreted in a PCA fashion.

Clustering

T-distributed stochastic neighbor embedding (t-SNE)
[59] was applied on the 3-dimensional COVSCA scores
to visualize detectable similarities and clusters among
the networks.

Software

Calculations were performed using MATLAB (version
2018b R 9.5.0.9) an R (version 3.3.2). The R code for the
PCLRC algorithm and the code to perform differential
connectivity analysis are available at the link: www.
semantics.systemsbiology.nl under the SOFTWARE tab.

Results and discussion

Sex-specific differences of metabolite-lipid association
networks

Metabolites and lipidic components take part in many
metabolic processes; association networks, that quantify
and visualize the interrelationships between molecular
features, are representations of the complex web of
biochemical reactions and pathways underlying the
functioning of an organism: changes in the network
structure can be considered to mirror alterations or re-
modulation of the underlying network of metabolic
reactions [28]. The sex-specific serum metabolite-lipid
component association networks were built using sepa-
rately samples from nonagenarian women (n1=259) and
men (n2=96), to avoid confounding due to sex. Previous
results obtained on this study cohort have observed sex-
associated differences between men and women
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characteristics [60, 61]. However, although the interplay
between sex differences and age-related differences has
not been explored fully, accumulating evidence of sex
dimorphism in the disease susceptibility [62, 63] aging
and longevity phenotypes [64, 65] suggests the necessi-
ty of analyzing separately men and women data.

The women- and men-specific networks have
markedly different topology. The women-specific
network (Fig. 3A) is more densely connected, for
what concern metabolite-metabolite associations,
with respect to the men-specific one (Fig. 3B). In
both networks, lipidic components (lipoproteins,
lipid fractions, and sub-fractions) have a strongly
inter-connected structure although different lipid
species are involved. We quantified and assessed
the statistical differences of the metabolite-lipid as-
sociation networks specific to men and women using
node connectivity which quantifies the number and
the strength of metabolite-lipid associations, thus
representing the importance of given metabolite/
lipid in the network.

Differential network analysis results are given in Fig.
4. Seven out of 20 metabolites and 67 out of 114
lipoproteins and lipid fractions and sub-fractions have
different connectivity patterns between men and women
networks (adjusted P-value ≤ 0.05). Among metabo-
lites, only alanine, isoleucine, leucine, lysine, citric acid,
acetoacetic acid, acetic acid, showed altered

connectivity, indicating re-modulation of amino
acids and ketone bodies’ metabolism, a result con-
sistent with other studies focusing on the network-
based analysis of the sex-specific difference in me-
tabolite profiles in men and women [66–68]. In
elderly women, re-modulation of amino acid metab-
olism results in a decreased level of branched amino
acids (BCAAs) with respect to men [69, 70], and
this phenomenon is associated with larger muscle
mass loss, depending not only on a reduction in
physical activity but also on a reduction of hormone
activity, on an inadequate diet, and on the presence
chronic diseases [69, 70]. Consistently with these
observations, we found disruption of the association
between alanine and leucine (present in women but
not in the men network): leucine stimulates muscle
protein synthesis [70–72] but is an important nitro-
gen donor for alanine biosynthesis [73].

Disruption of acetoacetic acid and acetic acid
connectivity patterns suggests a re-modulation of
ketone bodies’ metabolism: acetic acid levels asso-
ciate with prolonged fasting and diabetic ketosis,
potentially frequent in elderly people with metabol-
ic diseases [74], and, in women, with post-
menopausal downregulation of gonadotropin which
induces glycolytic dysregulation, resulting in a shift
from physiological aerobic metabolism to a keto-
genic phenotype [75, 76].

Fig. 3 Metabolite-lipid association networks for women (A) and
men (B). Nodes are colored according to compounds’ classifica-
tion groups, light blue for lipid main parameters (MP) and calcu-
lated figures (CF), and light green for metabolites. Edges represent

correlation with |r| ≥ 0.6 and their width depends on the likelihood
of the connections (see Eq. (3)). For sake of simplicity only
metabolites, lipid main parameters, and calculated figures are
shown
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Similarities and dissimilarities in different sex-related
clinical variables-specific networks

We explored in a comprehensive way the relationships
between metabolite-lipid association networks and the
different 101 clinical covariates describing, for each
subject, either the presence of a specific pathophysio-
logical condition, familiarity diseases, pharmacological
treatments, risk factors or the levels of 51 bio-humoral
parameters (such as complete blood count, mean cell

volume, hemoglobin, thyroid hormones. A complete list
is reported in Table 1). For each of the 20 metabolites
and 114 lipid fractions and sub-fractions, we first ex-
tracted the part of the observed variation of the concen-
tration associated with a given clinical covariate (see Eq.
(1)), and then we built association networks using only
this fraction of the concentration, obtaining 101
(women) + 101 (men) different metabolite-lipid associ-
ation networks. The rationale is that metabolites/lipids
sharing similar relationships with a given covariate tend

Fig. 4 Differential connectivity (Eq. (6); see Fig. 2 for an overview) from the differential network analysis of sex-related networks (men vs
women) given in Fig. 3. For each metabolite and lipid component, adjusted P-values (Benjamini-Hochberg) are given.
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to be close to each other in the network, and this can
provide a clearer representation of the underlying bio-
logical phenomena.

Since is not practically possible to compare all 202
networks individually, we used a multivariate compo-
nent method (COVSCA, see Methods) to model and
visualize the (dis)similarity and the relationships among
the networks in combination with clustering; results are
shown for women in Fig. 5A and for men in Fig. 5B,
where each dot represents a metabolite-lipid association
network specific to a given covariate.

For both women and men, networks specific to bio-
humoral parameters separate from the networks specific
to disease-related networks, indicating that the patterns
of association among metabolites and lipid fractions and
sub-fractions with these covariates are markedly differ-
ent from those associated with comorbidity. Given a
(clinical/biochemical) covariate, the statistical proce-
dure employed can be seen as a correction procedure
for confounders: in this light, the bio-humoral associated
networks can be seen as representing metabolite/lipid
relationship in a healthy condition. Networks associated
with diseases tend to cluster with the networks related to
ongoing pharmacological treatment of the same diseases
suggesting the existence of oh shared information
among these two groups of networks. Networks associ-
ated with risk factors (like age, smoking habits, and
BMI) are scattered, indicating great heterogeneity and
possibly reflecting that many risk scores are composite
indexes summarizing both clinical and molecular
features.

The relative importance of metabolites and lipidic
components to explain the network clustering shown
in Fig. 5A and B are given in Fig. 6A, B, and C for
women and in Fig. 6D, E, F for men and can be
interpreted as in standard principal component analysis
(PCA). For both men and women, the first two compo-
nents of the COVSCA model, explaining the variability
within bio-humoral associated networks, are dominated
LDL and VLDL lipid sub-fractions, while the third
component, explaining the variability within disease-
associated networks, is dominated by LDL and HDL.
Our results show that different patterns of association
between LDL and HDL fractions or interaction thereof
are associated with comorbidity in this study cohort:
LDL and HDL are not only associated with cardiovas-
cular disease [77, 78], type II diabetes [79, 80], periph-
eral vascular disease [81, 82] and hypertension [83, 84]
but also with dementia [85, 86] and cancer [87, 88]: the
strong lipidic signature, suggest a potential different
manifestation and response to health diseases in the
elderly population [89, 90].

Overall, metabolites do not seem to play a signif-
icant role in shaping the observed difference among
networks: only acetic acid, alanine, glutamine, and,
less strongly, pyruvic acid have a relevant contribu-
tion to the model. Glucogenic amino acids (gluta-
mine and alanine) have been associated with the
regulation of aging and aging-related diseases [69]:
in particular, altered levels of glutamine have been
associated with higher intima-media thickness of ca-
rotid artery and, consequently, with coronary artery

Fig. 5 Multivariate analysis of the metabolite-lipid association
networks associated with the 101 clinical covariates (see
Table 1) for women (A) and (B). The 101 + 101 networks are
analyzed using Covariance Simultaneous Component Analysis
(see the “Multivariate analysis of association networks” section).
Each sphere corresponds to a network and is coloured according to

the clinical variable-specific set: green colour corresponding to
diseases, blue colour to bio-humoral parameters, red colour to
drugs treatments, light brown colour to familiarity diseases and
light violet colour to risk factors. Clustering is performed on the
COVSCA score using t-SNE. Metabolite and lipid importance are
given in Fig. 6
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atherosclerosis, causing cardio-vascular syndromes
[91, 92], and could be responsible for the increase
of the activity of the osteoclasts resulting in a reduc-
tion of the bone mineral density [93]. Alanine and
acetic acids are correlated with protein-energy mal-
nutrition in aged people [94], metabolic syndromes
[95], and, in post-menopausal women, are correlated
with a cellular ketogenic phenotypic change [75, 76].

Differential clinical networks analysis in nonagenar-
ian women and men

Starting from the observation that the metabolite/lipids
association networks associated with the same type of

covariate (bio-humoral parameters, diseases, drugs
treatments, risk factors, and familiarity diseases) tend to
share similar but not identical correlation patterns (see
Fig. 7), we performed a pairwise comparison among the
networks related to similar covariates. For each compar-
ison, we recorded the significantly differentially connect-
ed metabolites (P-value adjusted ≤ 0.05) and lipoproteins/
lipid fractions and sub-fractions (see Eq. (8)) for each
comparison. We retained for further investigation only
those molecular features that were found to be significant
in more than 70% of the comparisons. Results are shown
in Fig. 7. For both men and women bio-humoral

Fig. 6 Multivariate analysis of the metabolite-lipid association
networks associated with the 101 clinical covariates (see
Table 1) for women (A) and (B). The loadings give the importance
of the metabolite and lipids to explain the patterns of network

(dis)similarity observed in Fig. 6. Panel A–C: loadings for the
analysis of women networks (Fig. 5A); Panel D–F: loadings for
the analysis of men networks (Fig. 5B)
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Fig. 7 Results of pairwise comparison of the 101 + 101 networks
associated with clinical the covariates. The percentage of time that
a metabolite or lipid is found to be significantly differentially
connected (adjusted P-value < 0.05) between any two networks

belonging to the clinical covariate of the same type is shown. The
(overlapping) red bars correspond to the women-related clinical
variable-specific networks and blue bars correspond to the men-
related clinical variable-specific networks

GeroScience



parameter networks, we observe that very fewmetabolites
and lipid features show different connectivity among
different networks, indicating the similarity of these
networks.

The comparison of disease-associated networks shows
that for both men and women the full spectrum of
(measured) lipids is associated with the differences among
networks, suggesting their central role in pathophysiolog-
ical mechanisms and in their resolutions; lipids are not
only engaged in inter- and intra-cellular signaling regula-
tion pathways but are also able to orchestrate inflammation

processes and to restore the homeostasis [96], which may
explain also the strong lipid signature observed also in
drug-treatment associated networks. In women risk factor-
networks lipid components, in particular, VLDL, plays a
major role: in post-menopausal women, VLDL is nega-
tively associatedwith estrogens [97–99], and this is related
to increased risk of cardiovascular diseases [100, 101],
myocardial infarction [102], and hyperlipidemia [103]: its
association with diverse risk factors is worthy of mention
since VLDL is actually being reconsidered as a potential
biomarker [78, 104, 105].

Fig. 8 Metabolite-lipid networks associated with peripheral vas-
cular disease (A: women, B: men) and Diabetes (C: women, D:
men). Nodes are colored according to compounds’ classification
groups, light blue color for lipid main parameters (MP) and calcu-
lated figures (CF), and light green color for metabolites. Edges

represent correlation with |r| ≥ 0.6 and their width depends on the
likelihood of the connections. For sake of simplicity only metab-
olites, lipid main parameters (MP), and calculated figures (CF) are
shown
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The role of metabolites in explaining network differ-
ences is more nuanced, and this probably reflects the
large biochemical diversity of these molecules [106]. In
diseases-specific networks, key differentiating metabo-
lites are ketone bodies, BCAAs, threonine, and tyrosine
(in women networks only), and alanine: this can reflect
the association with particular diseases, such as type 1
and 2 diabetes mellitus [91, 107–110], sarcopenia [69,
71, 72, 111] and cognitive impairment [112, 113]. Glu-
tamine, glucose, proline, and BCAAs, increasing their
metabolic activity, could be biomarkers to predict the
emergence of neurodegenerative diseases [114], type 2
diabetes mellitus, and obesity conditions [91, 108, 109],
and sarcopenia [69, 71, 72].

As an example, we show the networks associated with
peripheral vascular disease and diabetes in both women
and men (Fig. 8) which are two of the most common
comorbidities among the subjects in this study (see
Table 1).

When comparing the peripheral vascular disease as-
sociation networks of women (Fig. 8A) and men (Fig.
8B), differential connectivity of leucine with lipidic
components and among lipids component: while the
latter has a strong association with peripheral vascular
disease [82, 115], the remodulation of association be-
tween leucine and lipids suggests the existence an inter-
play between amino acids and lipids.

The difference in lipid correlation observed in diabetes-
specific women (Fig. 8C) and men networks (Fig. 8D)
further points to sex-specific differences in lipid metabo-
lism [116, 117]. In particular, in women we observe a
disruption of the correlation between acetic acids and
glucose; it is known that acetic acid can lower glucose
level, and can improve insulin resistance and metabolic
abnormalities in the atherogenic prediabetic state [118]:
the mechanism are not yet fully understood [119] and, as
shown here, may be differentially regulated in men and
women.

Conclusions

In this study, we presented a differential network analysis
approach to highlight sex-related metabolic differences in
cohort of nonagenarian subjects. Comparing the networks
of nonagenarian women and men, we observed that
lipids, branched chains amino acids, alanine, and ketone
bodies show significant differences in connectivity in the
two groups. In particular, we observed that lipids not only

play a central role in the structural robustness of the
network but also are directly associated with the intrinsic
dynamic metabolic sex-related changes. The same ap-
proach was also applied to identify, in the disease-associ-
ated networks built in nonagenarian women and men,
significantly differentially connected metabolites and
lipoproteins/lipid fractions and sub-fractions. Our results
show the importance of the lipid components in diseases,
drug treatments, and familiarity disease, indicating their
ability to participate in many pathophysiological mecha-
nisms in nonagenarians; in the women's disease-specific
networks, the rewiring of metabolic activity involves
ketone bodies, branched chains amino acids, threonine,
and tyrosine. In conclusion, this study provides informa-
tion about the structure of sex-related networks in nona-
genarians, contributing to elucidate the impact of gender
on human physiology and pathophysiology in the elderly
population and showcases how network analysis may
provide a valuable tool in gender medicine.
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