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ON HUPPERT’S RHO-SIGMA CONJECTURE

ZEINAB AKHLAGHI, SILVIO DOLFI, AND EMANUELE PACIFICI

Abstract. For an irreducible complex character χ of the finite group G, let π(χ) denote the set of

prime divisors of the degree χ(1) of χ. Denote then by ρ(G) the union of all the sets π(χ) and by

σ(G) the largest value of |π(χ)|, as χ runs in Irr(G). The ρ-σ conjecture, formulated by Bertram

Huppert in the 80’s, predicts that |ρ(G)| ≤ 3σ(G) always holds, whereas |ρ(G)| ≤ 2σ(G) holds if G is

solvable; moreover, O. Manz and T.R. Wolf proposed a “strengthened” form of the conjecture in the

general case, asking whether |ρ(G)| ≤ 2σ(G) + 1 is true for every finite group G. In this paper we

study the strengthened ρ-σ conjecture for the class of finite groups having a trivial Fitting subgroup:

in this context, we prove that the conjecture is true provided σ(G) ≤ 5, but it is false in general if

σ(G) ≥ 6. Instead, we establish that |ρ(G)| ≤ 3σ(G) − 4 holds for every finite group with a trivial

Fitting subgroup and with σ(G) ≥ 6 (this being the right, best possible bound). Also, we improve

the up-to-date best bound for the solvable case, showing that we have |ρ(G)| ≤ 3σ(G) whenever G

belongs to one particular class including all the finite solvable groups, and we improve the up-to-date

best bound obtained in [18] for the the general case.

1. Introduction

The set cd(G) = {χ(1) | χ ∈ Irr(G)} consisting of the degrees of the irreducible complex characters

of a finite group G has been an object of considerable interest since the second part of the 20th century,

and the study of the arithmetical structure of this set is a particularly intriguing aspect of Character

Theory of finite groups (see for instance [17]). A remarkable question in this research area was posed by

Bertram Huppert in the 80’s: is it true that at least one of the character degrees is divisible by a “large”

portion of the entire set of primes that appear as divisors of some character degree? More precisely,

denoting by π(n) the set of prime divisors of an integer n, and writing for short π(χ) instead of π(χ(1))

when χ ∈ Irr(G), one defines

ρ(G) =
⋃

χ∈Irr(G)

π(χ)

and

σ(G) = max{|π(χ)| | χ ∈ Irr(G)} ;

Huppert’s ρ-σ conjecture predicts that |ρ(G)| ≤ 3σ(G) holds for every finite group G, and that |ρ(G)| ≤
2σ(G) if G is solvable. It is worth noting that the bounds are in some sense best possible, as they are

attained for the groups A5 and S4, respectively.

During the last four decades, several contributions have been given toward the proof of this conjecture.

For solvable groups, the first results were obtained by I.M. Isaacs in [16], later improved by D. Gluck

and O. Manz in [11]; moreover, the conjecture was proved true by Gluck ([10]) for σ(G) ≤ 2, and also in

the case that all degrees in cd(G) are square-free numbers. The best bound known till now was obtained

by O. Manz and T.R. Wolf; they proved in [20] that, if G is solvable, then |ρ(G)| ≤ 3σ(G) + 2.
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2 Z. AKHLAGHI ET AL.

As for the non-solvable case, the ρ-σ conjecture was proved true for all finite non-abelian simple

groups by D.L. Alvis and M. Barry ([1]), whereas the first general result is due to A. Moretó in [22]:

a quadratic bound of |ρ(G)| in terms of σ(G). The linear bound |ρ(G)| ≤ 7σ(G) was obtained by C.

Casolo and the second author in [4]; this was then improved to |ρ(G)| ≤ 6σ(G) + 1 by Y. Liu and Z. Lu

(see [18, Theorem 1]).

One might wonder whether the factor 3 is the right one for non-solvable groups, or one should instead

keep the factor 2 and add a suitable constant for getting a tighter bound. In a recent paper ([24]), H.

Tong-Viet studies the so-called strengthened ρ-σ conjecture proposed by Manz and Wolf in [20], that is

|ρ(G)| ≤ 2σ(G) + 1 for every finite group G. The strengthened ρ-σ conjecture is verified in [24] for all

finite almost-simple groups and also for the groups G such that σ(G) ≤ 2.

In this paper we start by considering finite groups with trivial Fitting subgroup and, for these groups,

we establish the strengthened ρ-σ conjecture whenever σ(G) ≤ 5. But we remark that the strengthened

ρ-σ conjecture is false in general: in fact Example 1.1 of [2], that is recalled below as Example 1.1,

provides a sequence of finite groups G (with trivial Fitting subgroup) such that the ratio |ρ(G)|/σ(G)

tends to 3. The first main result of this paper also establishes the right bound in this setting for the

case σ(G) ≥ 6.

Theorem A. Let G be a finite group with trivial Fitting subgroup. Then the following conclusions

hold.

(a) If σ(G) ≤ 5, then |ρ(G)| ≤ 2σ(G) + 1.

(b) If σ(G) ≥ 6, then |ρ(G)| ≤ 3σ(G)− 4.

The groups in Example 1.1 show that the bounds in the above theorem are sharp. We note that

Theorem A is an improvement of Corollary 3.1 in [18], where the authors show that |ρ(G)| ≤ 3σ(G)

holds for every finite group G having a trivial Fitting subgroup.

On the other hand, the problem of determining whether the restriction about the Fitting subgroup

is really needed in Theorem A is left for future investigation (we are not aware of any counterexample):

the above statement without that restriction may be thought as a new form of Huppert’s ρ-σ conjecture.

We also note that Theorem A has a clear (formal) analogy with Theorem A of [2], where the role

of σ(G) is played by another invariant of the group, denoted by ω(G). This is the largest size of a

complete subgraph of the character degree graph ∆(G) of G (recall that ∆(G) is the simple undirected

graph whose vertex set is ρ(G), two vertices p and q being adjacent if and only if there exists a degree in

cd(G) that is divisible by pq). Obviously we have σ(G) ≤ ω(G) for every finite group G, and therefore

Theorem A immediately implies Theorem A of [2] for groups with trivial Fitting subgroup. At any rate,

the tools used when dealing with σ(G) are rather different, and the analysis more complicated than that

concerning ω(G).

In the second part of the paper we focus on solvable groups and, using a variation of the arguments

in [20], we obtain the following improvement of Manz and Wolf’s theorem. (We were informed that,

after this paper was submitted, another proof of Theorem B appeared in [19]; we are grateful to the

referee for pointing this out.)

Theorem B. Let G be a finite group. If G is solvable, then |ρ(G)| ≤ 3σ(G).

Actually we can extend the bound given in Theorem B to a wider class of groups. We recall that the

generalized Fitting subgroup F∗(G) of the finite group G is the central product of the Fitting subgroup

F(G) and the layer subgroup E(G), which is the group generated by all the components of G (see

Section 3). It is well known that CG(F∗(G)) ≤ F∗(G). Hence, CG(F∗(G)) = Z(F(G)) and, when
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F(G) = 1, CG(F∗(G)) = CG(E(G)) = 1. We consider, as a generalization of this setting, the case when

the centralizer CG(E(G)) of the layer subgroup of G is solvable. The corresponding family of groups

hence contains both the family of the groups with trivial Fitting subgroup and the family of the solvable

groups.

Theorem C. Let G be a finite group such that CG(E(G)) is solvable. Then

|ρ(G)| ≤ 3σ(G) .

Finally, as a consequence of Theorem A and Theorem B, we also get the following improvement of

Theorem 1 in [18]. Corollary D is then the best general result concerning Huppert’s ρ-σ-conjecture up

to date.

Corollary D. Let G be a finite group. Then |ρ(G)| ≤ 5σ(G) + 1 if σ(G) < 6, and |ρ(G)| ≤ 6σ(G)− 4

otherwise.

For the convenience of the reader, and also because the point of view of the present context is not the

same as that of [2], we close this introductory section by recalling Example 1.1 of [2] and some related

comments.

Example 1.1. Let Π = {pf11 , ..., p
fn
n } be a set of prime powers where every prime pi is larger than

5. Assume that, for every i ∈ {1, ..., n}, we have |π(pfii − 1) \ {2, 3}| = |π(pfii + 1) \ {2, 3}| = 1, and

assume further that, for distinct r and s in {1, ..., n}, the intersection of the sets {pr} ∪ π(p2fr
r − 1) and

{ps}∪π(p2fs
s − 1) is {2, 3}. Now, setting GΠ = PSL2(pf11 )× · · ·×PSL2(pfnn ) (note that F(GΠ) = 1) and

taking into account that, for p > 5 and f ≥ 1, we have

cd(PSL2(pf )) = {1, pf − 1, pf , pf + 1,
1

2
(pf + ε)} where ε = (−1)

pf−1
2

(see for instance [25, Theorem 3.2]), it is easy to see that |ρ(GΠ)| = 3n + 2 and σ(GΠ) = n + 2, thus

|ρ(GΠ)| = 3σ(GΠ) − 4. As a consequence, if n ≥ 4, the strengthened ρ-σ conjecture as formulated by

Manz and Wolf does not hold for the group GΠ.

Note that Π = {29, 67, 157, 227} is a set of four prime powers (in fact, of four primes) satisfying the

above conditions. This provides a counterexample to the strengthened ρ-σ conjecture in which the size

of ρ(GΠ) is 14, whereas σ(GΠ) is 6.

Let Πn be one particular set of given size n as in Example 1.1. Assuming that such a set exists for

arbitrarily large n ∈ N, we see that the ratio |ρ(GΠn
)|/σ(GΠn

) converges to 3 as n tends to infinity

(actually, machine computation with prime numbers up to 106 enables us to construct a group GΠ as

in Example 1.1 for which |ρ(GΠ)|/σ(GΠ) > 2.999); this leads us to conjecture that, for every positive

real number ε, there exists a group G (with trivial Fitting subgroup and) with |ρ(G)|/σ(G) > 3− ε. In

fact, in [9] the authors estimate the asymptotic density of one particular set of primes, whose infinitude

yields the existence of a set Πn as above for every n ∈ N. This set is actually infinite, if a generalized

form of the Hardy-Littlewood conjecture is assumed ([9, Theorem 2.3]).

Every group considered throughout the following discussion is tacitly assumed to be a finite group.

2. Preliminaries

If a group G acts on a set Ω, and ∆ ⊆ Ω, we denote by G∆ = {g ∈ G | ∆g = ∆} the stabilizer of

∆ in G. Also, if n, m are non-negative integers, we denote by π≥m(n) the set of all prime divisors of n

which are greater than or equal to m, whereas Pm will denote the set of all primes in N that are smaller

than or equal to m. We write π(G) and π≥m(G) for π(|G|) and π≥m(|G|), respectively. Similarly, if H
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is a subgroup of the group G, we use the notation π(G : H) and π≥m(G : H). Finally, for χ ∈ Irr(G),

as already mentioned we will write π(χ) in place of π(χ(1)).

For a group G, we define m(G) to be the largest integer m ≥ 5 such that G has a section isomorphic

to the alternating group Am (that is, such that there are subgroups K �H ≤ G with H/K ∼= Am), and

we set m(G) = 0 if there is no such section in G; note that Pm(G) is contained in π(G), since it is in fact

contained in π(Am). We prove next a straightforward property of m(G).

Lemma 2.1. Let G be a group, and N a normal subgroup of G. Then, setting m = m(G), m1 = m(N)

and m2 = m(G/N), we have m = max{m1,m2}.

Proof. If m = 0, then clearly m1 and m2 are both 0 as well, and it is also clear that m ≥ max{m1,m2}
holds for positive values of m as well. Assume now m ≥ 5, consider a section H/K of G such that

H/K ∼= Am, and set G = G/N . Then the section H/K of G is isomorphic either to Am or to the trivial

group, and we have m = m2 in the former case, whereas m = m1 in the latter case.

The following proposition concerning permutation groups turns out to be very useful in our arguments.

Proposition 2.2. Let G be a permutation group on the finite set Ω and m = m(G). Then there exist

Γ, ∆ ⊆ Ω such that Γ ∩∆ = ∅ and

(a) π≥m(G) = π≥m(G : GΓ ∩G∆),

(b) |Pm| ≤ 2|π(G : GΓ ∩G∆) ∩ Pm|.

Proof. Observe that, under the additional assumption that the action of G on Ω is transitive, our

statement is precisely Proposition 1 of [4].

So, let Ω1, . . . ,Ωt be the orbits of the action of G on Ω and, for i ∈ {1, . . . t}, denote by Ki the kernel

of the action of G on Ωi; also, set mi = m(G/Ki). An application of [4, Proposition 1] to the (transitive)

action of G/Ki on the set Ωi yields that there exist disjoint subsets Γi, ∆i of Ωi such that

(i) π≥mi(G/Ki) = π≥mi(G : GΓi ∩G∆i),

(ii) |Pmi | ≤ 2|π(G : GΓi ∩G∆i) ∩ Pmi |,
for i ∈ {1, . . . , t}.

Next, define

Γ =

t⋃
i=1

Γi, and ∆ =

t⋃
i=1

∆i,

so that Γ and ∆ are clearly disjoint subsets of Ω; it is also immediate to see that GΓ =
⋂t
i=1GΓi

and

G∆ =
⋂t
i=1G∆i

. Now, taking into account that
⋂t
i=1Ki = 1, we get m = max{m1, . . . ,mt} and

π≥m(G) ⊆
t⋃
i=1

π≥m(G/Ki) =

t⋃
i=1

π≥m(G : GΓi ∩G∆i) ⊆ π≥m(G :

t⋂
i=1

(GΓi ∩G∆i)) =

= π≥m(G : (

t⋂
i=1

GΓi
) ∩ (

t⋂
i=1

G∆i
)) = π≥m(G : GΓ ∩G∆),

and (a) follows. As for (b), observe that (we may assume m 6= 0 and) there exists i ∈ {1, . . . ,m} such

that G/Ki has a section isomorphic to Am; clearly mi is then equal to m, and our claim easily follows

by (ii) observing that |G : GΓi
∩G∆i

| is a divisor of |G : GΓ ∩G∆|.

Note that, in the previous proposition, we can choose the two subsets Γ and ∆ of Ω to be both

non-empty unless G is the trivial group. In fact, assume that ∆ is empty; then, G being non-trivial, Γ

is neither empty nor the whole Ω, and we can replace ∆ with Ω \ Γ.
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Next, we sketch the proof of a result concerning almost-simple groups that can be essentially deduced

from the proofs of Lemma 2.2 and Theorem 2.3 in [24] (we refer the reader to that paper for the full

details).

Denote by L(p) the class of simple groups of Lie type in characteristic p; also, if q is a prime power,

denote by `n(q) a primitive prime divisor of qn − 1 (that is a prime divisor of qn − 1, which does not

divide qk−1 for 1 ≤ k < n), if it exists. By Zsigmondy’s theorem ([21, Theorem 6.2]), a primitive prime

divisor of qn − 1 always exists unless n = 2, or q = 2 and n = 6.

Proposition 2.3. Let G be an almost-simple group with socle S. Then there exist two irreducible

characters χ1, χ2 ∈ Irr(S) such that the following conclusions hold.

(a) If S is either a sporadic simple group, S 6∼= J1, or S ∼= Am for m > 5, or S is the Tits group,

then π(S) = π(G) = π(χ1) ∪ π(χ2); if S ∼= J1, then π(G)− (π(χ1) ∪ π(χ2)) = {11}.
(b) If S ∈ L(p), then π(S) − (π(χ1) ∪ π(χ2)) ⊆ {p}. Moreover, π(G) − π(S) is contained in both

π(|G : IG(χ1)|) and π(|G : IG(χ2)|).

Proof. If S is either a sporadic simple group, or an alternating group, or the Tits group, then we have

π(S) = π(G) and claim (a) follows from [1, Theorem B(i), Theorem C] and by [6] (actually, by [3] there

exists χ ∈ Irr(Am) such that π(Am) = π(χ) for m ≥ 15). We remark that for A5 claim (a) does not

hold, but this group can be treated as a simple group of Lie type (both in characteristic 2 and 5) and,

as such, it satisfies claim (b).

Let now S ∈ L(p) (excluding the Tits group). The case S ∼= PSL2(2f ) (for f ≥ 2) is treated as Case 1

in [24, proof of Theorem 2.3], so we will henceforth assume that S is not of this kind.

Next, assume that at least one among the primitive prime divisors `1, `2 indicated in Table 1 (which

summarizes [24, Table 1] and [23, Lemma 2.3]) does not exist; then, it can be seen that S is isomorphic

to a group of the kind PSL2(q), PSL3(q), PSU3(q) or PSp4(q) for some specific values of q = pf , or S

belongs to a finite set of groups (see [24, List C, page 3]). Also, π(G) turns out to coincide with π(S)

in this situation. The four infinite families above are discussed in [24, Cases 1–3, proof of Lemma 2.2],

whereas the remaining finite set of groups can be treated via [6].

As regards the cases that are left (for which both `1 and `2 exist) we introduce the following setup.

Let G be a simply connected simple algebraic group defined over a field of order q in characteristic

p, and let F be a suitable Frobenius map such that S ∼= G F /Z(G F ). Suppose the pair (G ∗, F ∗) is

dual to (G , F ). Setting L = G F and L∗ = (G ∗)F
∗
, the irreducible characters of L are partitioned

into rational series E (L, (s)) which are indexed by (L∗)-conjugacy classes (s) of semisimple elements

s ∈ L∗, by Lusztig theory. Furthermore, if gcd(|s|, |Z(L)|) = 1, then every χ ∈ E (L, (s)) is trivial

at Z(L), thus χ ∈ Irr(S). Observe that χ(1) is divisible by |L∗ : CL∗(s)|p′ . Now, let si ∈ L∗ be a

semisimple element of order `i for i ∈ {1, 2}: then CL∗(si) = Ti (see Table 1) is a maximal torus of L∗.

Note that we have gcd(`i, |Z(L)|) = 1 and also π(gcd(|T1|, |T2|)) ⊆ π(|L∗ : T1|p′) ∪ π(|L∗ : T2|p′). Let

χi ∈ E (L, (si)) for i ∈ {1, 2}, so that χi ∈ Irr(S) and χi(1) is divisible by |L∗ : Ti|p′ for i ∈ {1, 2}. Then

π(S) = π(χ1) ∪ π(χ2) ∪ {p}. If π(G) = π(S), then we get the desired conclusion. For the case when

π = π(G)− π(S) is nonempty, we refer to the discussion in [24, Subcase 3b, proof of Theorem 2.3]).

As the last preliminary result we recall the statement of Theorem A in [24], that proves the strength-

ened ρ-σ conjecture for almost-simple groups.

Theorem 2.4. Let G be an almost-simple group. Then |π(G)| ≤ 2σ(G) unless G ∼= PSL2(2f ) with

f ≥ 2 and |π(2f − 1)| = |π(2f + 1)|. For the exceptions, we have |π(G)| ≤ 2σ(G) + 1.
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Table 1. Two tori for groups of Lie type in characteristic p

G = G(q), q = pf |T1| |T2| `1 `2
An(q) (qn+1 − 1)/(q − 1) qn − 1 `n+1(q) `n(q)

2An(q), n ≡ 0(4) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n(q)
2An(q), n ≡ 1(4) (qn+1 − 1)/(q + 1) qn + 1 `(n+1)/2(q) `2n(q)
2An(q), n ≡ 2(4) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n/2(q)
2An(q), n ≡ 3(4) (qn+1 − 1)/(q + 1) qn + 1 `n+1(q) `2n(q)

Bn(q), Cn(q), n ≥ 3 odd qn + 1 qn − 1 `2n(q) `n(q)

Bn(q), Cn(q), n ≥ 2 even qn + 1 (qn−1 + 1)(q + 1) `2n(q) `2n−2(q)

Dn(q), n ≥ 5 odd (qn−1 + 1)(q + 1) qn − 1 `2n−2(q) `n(q)

Dn(q), n ≥ 4 even (qn−1 + 1)(q + 1) (qn−1 − 1)(q − 1) `2n−2(q) `n−1(q)
2Dn(q) qn + 1 (qn−1 + 1)(q − 1) `2n(q) `2n−2(q)
2B2(q) q ±

√
2q + 1 q − 1 `4(q) `1(q)

2G2(q) q ±
√

3q + 1 q − 1 `6(q) `1(q)
2F4(q) q2 + q + 1± (

√
3q +

√
2q) q2 − q + 1 `12(q) `6(q)

3D4(q) q4 − q2 + 1 (q3 + 1)(q + 1) `12(q) `6(q)

G2(q) Φ6(q) Φ3(q) `6(q) `3(q)

F4(q) Φ12(q) Φ8(q) `12(q) `8(q)

E8(q) Φ30(q) Φ24(q) `30(q) `24(q)

E6(q) Φ9(q) Φ12(q)Φ3(q) `9(q) `12(q)
2E6(q) Φ18(q) Φ12(q)Φ6(q) `18(q) `12(q)

E7(q) Φ18(q)Φ2(q) Φ14(q)Φ2(q) `18(q) `14(q)

3. The ρ-σ conjecture for groups with trivial Fitting subgroup

In this section we present a proof of Theorem A, that was stated in the Introduction. The result is

obtained by combining Theorem 3.3 and Theorem 3.4, which provide the bounds in the case σ(G) ≤ 5

and σ(G) ≥ 6 respectively.

Recall that a component of a group G is a non-trivial subnormal subgroup of G which is quasi-simple

(i.e., a perfect group whose factor group over its centre is simple). Denoting by E(G) the subgroup

generated by all the components of G, the generalized Fitting subgroup F∗(G) of G is then defined as

the product F(G)E(G). In the proof of Theorem 3.1 it will be useful to take into account that, if F(G)

is trivial, then F∗(G) is the product of all the minimal normal subgroups of G (see for instance [12,

6.5.5(b)]), and also that distinct components of G centralize each other ([12, 6.5.3]). The following result

should be compared with [4, Proposition 4] and [18, Proposition 3.2].

Theorem 3.1. Let G be a group with F(G) = 1, and assume that G does not have any simple char-

acteristic subgroup. Then there exist ψ1, ψ2 ∈ Irr(F∗(G)) (not necessarily distinct) such that, setting

m = m(G/F∗(G)), the following conclusions hold.

(a) π≥m(G) ⊆
⋃2
i=1

(
π(ψi) ∪ π(G : IG(ψi))

)
;

(b) |Pm| ≤ 2|π(G : IG(ψi)) ∩ Pm| for i = 1, 2.

Proof. We argue by induction on |G|. Let M be a minimal characteristic subgroup of G, and define

N = CG(M) (note that N is a characteristic subgroup of G as well). Then F(G/N) = 1 and F∗(G/N) =

MN/N , so the factor group of G/N over its generalized Fitting subgroup is isomorphic to G/MN ; also,

it is easy to see that G/N does not contain any simple characteristic subgroup. Assume first that N 6= 1,

and set m1 = m(G/MN). By induction, there exist λ1, λ2 ∈ Irr(MN/N) such that
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π≥m1
(G/N) ⊆

2⋃
i=1

(
π(λi) ∪ π(G/N : IG/N (λi))

)
,

and also, |Pm1 | ≤ 2|π(G/N : IG/N (λi)) ∩ Pm1 | for i ∈ {1, 2}. Regarding λi as a character of MN by

inflation, let λi ∈ Irr(M) be such that λi × 1N = λi. Then clearly IG(λi)/N = IG/N (λi).

Observe now that F(N) = 1. Moreover, taking into account the paragraph preceding this theorem,

we have F∗(G) = M × F∗(N). Note also that, obviously, N does not contain any simple characteristic

subgroup. Let m2 = m(N/F∗(N)). By induction, there exist µ1 and µ2 ∈ Irr(F∗(N)), such that

π≥m2(N) ⊆
2⋃
i=1

(
π(µi) ∪ π(N : IN (µi))

)
and |Pm2

| ≤ 2|π(N : IN (µi)) ∩ Pm2
|, for i ∈ {1, 2}.

Take now ψ1 = λ1 × µ1 and ψ2 = λ2 × µ2 in Irr(F∗(G)). Since G/F∗(G) is an extension of

MN/F∗(G) ∼= N/F∗(N), by G/MN , we have m = max{m1,m2} by Lemma 2.1. As IG(ψi) =

IG(λi) ∩ IG(µi), we conclude that π(G : IG(λi)) ∪ π(N : IN (µi)) ⊆ π(G : IG(ψi)), and so (a) holds.

Moreover, since Pm coincides either with Pm1
or with Pm2

, claim (b) follows as well.

Hence we may assume N = 1, so M = F∗(G) is the socle of G. Now, M is the direct product of a set

Ω of subgroups that are all isomorphic to a suitable non-abelian simple group S, and that are permuted

by conjugation by G. Denoting by K the kernel of this action, we remark that the permutation group

G/K on Ω is non-trivial because M is not a simple group. Note also that K is a characteristic subgroup

of G, and that Aut(G) transitively permutes the set {CK(S) | S ∈ Ω}; as a consequence, the factor

groups K/CK(S) are pairwise isomorphic when S ranges over Ω.

Noting that K/M is solvable, since it is a subgroup of a direct product of copies of Out(S), we see

that m(G/K) = m(G/M) = m. By Proposition 2.2, there exist two disjoint subsets Γ,∆ ⊆ Ω such that

π≥m(G/K) = π≥m(G : GΓ ∩G∆)

and

|Pm| ≤ 2|π(G : GΓ ∩G∆) ∩ Pm|;
as observed in the paragraph following Proposition 2.2, we can assume that both Γ and ∆ are non-empty.

Now, take S ∈ Ω and define C = CK(S). An application of Proposition 2.3 to the almost-simple

group K/C (of socle SC/C ' S) yields the existence of χ1, χ2, ξ in Irr(S) such that π(χ1) ∪ π(χ2)

contains all the primes in π(S), except possibly a single prime p that is recovered as an element of π(ξ),

and both |K : IK(χ1)|, |K : IK(χ2)| contain all the primes in π(K/C)−π(S). Writing Ω = {S1, . . . Sk},
we choose χ

(i)
1 , χ

(i)
2 , ξ(i) ∈ Irr(Si) in this way; since the groups K/CK(Si) are pairwise isomorphic, we

can assume χ
(i)
1 (1) = χ

(j)
1 (1) and χ

(i)
2 (1) = χ

(j)
2 (1) for all i, j ∈ {1, . . . , k}.

Next, we define ψ1 ∈ Irr(M) as follows. For Si belonging to Γ we take the character χ
(i)
1 , for Sj

in ∆ we take χ
(j)
2 , and for St in Ω − (Γ ∪ ∆) we take the trivial character; then, we set ψ1 to be the

direct product of all these characters. Similarly we define ψ2 ∈ Irr(M), just replacing χ
(j)
2 with ξ(j)

for all Sj ∈ ∆, so we clearly have π(M) ⊆ π(ψ1) ∪ π(ψ2). Moreover, as IK(ψ1) and IK(ψ2) both lie

in
⋂k
i=1 IK(χ

(i)
1 ), we see that π(G : IG(ψ1)) and π(G : IG(ψ2)) (which clearly contain π(K : IK(ψ1))

and π(K : IK(ψ2)), respectively) both contain
⋃k
i=1 π(K/CK(Si)) − π(S). In view of the fact that⋂k

i=1 CK(Si) is trivial, so that K embeds in the direct product of the groups K/CK(Si), we conclude

that
⋃2
i=1 π(ψi) ∪ π(G : IG(ψi)) contains (π(K)− π(M)) ∪ π(M) = π(K).
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Moreover, assuming that the degrees of χ1,χ2 are distinct (and swapping the role of χ1, χ2 if χ1(1) =

ξ(1)), it is easy to see that both IG(ψ1) and IG(ψ2) lie in GΓ ∩ G∆, therefore π(G : IG(ψ1)) and

π(G : IG(ψ2)) contain π≥m(G/K). Thus claim (a) is proved, and also claim (b) follows immediately.

If χ1(1) = χ2(1) 6= ξ(1), then one character (namely ψ2) is enough to obtain the desired conclusions.

If, finally, we have χ1(1) = χ2(1) = ξ(1), then the argument needs a small adjustment: namey, in

the definition of ψ1, for the groups Sj belonging to ∆ we choose any non-linear irreducible character

whose degree is different from χ1(1) in place of χ
(j)
2 , and ψ1 so modified is enough to obtain the desired

conclusions.

Corollary 3.2. If G is a group such that F(G) = 1 and G does not have any simple characteristic

subgroup, then |π(G)| ≤ 2σ(G).

Proof. Let ψ1, ψ2 be the characters in Irr(F∗(G)) provided by Theorem 3.1 and, for i ∈ {1, 2}, take

χi ∈ Irr(G|ψi). By Clifford Theory we have π(ψi) ∪ π(G : IG(ψi)) ⊆ π(χi), whence, for some i ∈ {1, 2},
we get 2|π(χi)| ≥ |π(G)| by Theorem 3.1.

We remark that the argument of Theorem 3.1 can be easily adapted to prove the following statement.

Let G be a group with F(G) = 1, and assume that G does not have any simple characteristic subgroup.

Assume further that |G| is not divisible by 3. Then there exist ψ ∈ Irr(F∗(G)) such that π(G) =

π(ψ) ∪ π(G : IG(ψ)).

To this end, one should take into account that the assumption of |G| not being a multiple of 3 yields

m(G) = 0; moreover, the same assumption yields that every simple subnormal subgroup S of G is a

Suzuki group, and so it is possible to find χ1, χ2 in Irr(S) such that π(χ1)∪π(χ2) = π(S) (see [14, Page

182]).

As a consequence it is immediate to see that, under the same hypotheses, we have |π(G)| = σ(G).

We omit the full proofs of these facts because they amount to a straightforward modification of what

already seen in Theorem 3.1 and Corollary 3.2, and also because these results are not essential for the

rest of this paper.

We are now in a position to prove the two theorems that together constitute Theorem A.

Theorem 3.3. Let G be a group with trivial Fitting subgroup. If σ(G) ≤ 5, then we have |π(G)| ≤
2σ(G) + 1.

Proof. Let G be a counterexample of minimal order to the statement. We start by observing that, by

Corollary 3.2, the set of simple normal subgroups of G is non-empty. So, let us consider any simple

normal subgroup S of G, and set C = CG(S); note that C cannot be trivial, as otherwise G would

be an almost-simple group and, in view of Theorem 2.4, it would not be a counterexample. Moreover,

C clearly satisfies our assumptions and, being strictly smaller than G, it also satisfies the conclusion

|π(C)| ≤ 2σ(C) + 1.

Let us fix the following convention. If the simple group S is in L(p), then we call p the associated

prime of S (in the cases when S has multiple characteristic, we choose p to be the smallest among

them) and, if S ∼= J1, then we set 11 to be the associated prime of S; for any other isomorphism type

of S, we say that S has no associated prime. Now we apply Proposition 2.3 to the almost-simple group

G/C, whose socle is isomorphic to S: there exist χ1 and χ2 in Irr(S) such that π(S) = π(χ1) ∪ π(χ2)

unless S has an associated prime p, in which case we have π(S) − (π(χ1) ∪ π(χ2)) ⊆ {p}. Moreover,

defining π0 = π(G/C) − π(S), we have π0 ⊆ π(|G : IG(χi)|) for i ∈ {1, 2}. If we set π1 = π(χ1) ∪ π0,
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π2 = π(χ2)∪ π0, and π3 to be either {p} or ∅ according on whether S has an associated prime p or not,

we can write π(G) = π(C) ∪
⋃3
i=1(πi − π(C)), and therefore

(1) |π(G)| ≤ |π(C)|+
3∑
i=1

|πi − π(C)|.

(Note that |π3 − π(C)| ≤ 1.) If S has an associated prime p, then we take χ3 ∈ Irr(S) whose degree is

divisible by p; otherwise we just take χ3 = 1S . Let δ ∈ Irr(C) such that |π(δ)| = σ(C), for i ∈ {1, 2, 3}
we can consider irreducible characters of G lying above δ × χi, and we deduce that

(2) σ(G) ≥ σ(C) + max
i∈{1,2,3}

{|πi − π(C)|}.

As the next step, we will prove a number of claims.

(i) For i 6= j ∈ {1, 2}, π(χi)−π(C) is not contained in πj ∪π3, and π3−π(C) is not contained in π1∪π2;

in particular, π(χ1) − π(C), π(χ2) − π(C), π3 − π(C) are non-empty, and π(S) contains at least two

primes (one in π(χ1)− π(χ2) and the other in π(χ2)− π(χ1)) that are not in π(C) ∪ π0 ∪ π3.

For a proof by contradiction, assume that π(χ1) − π(C) is contained in π2 ∪ π3; then, taking into

account that π0 lies in π2, we get π(G) = π(C) ∪
⋃3
i=2(πi − π(C)), and Inequality (1) gives

|π(G)| ≤ |π(C)|+ 2 max
i∈{2,3}

{|πi − π(C)|}.

Recalling that |π(C)| ≤ 2σ(C) + 1, we obtain

|π(G)| ≤ 2(σ(C) + max
i∈{2,3}

{|πi − π(C)|}) + 1

and therefore, in view of Inequality (2), we get the contradiction |π(G)| ≤ 2σ(G) + 1. The same

argument of course works for the other inclusions as well, and the remaining parts of the claim can be

easily deduced.

The fact that π3 − π(C) is non-empty yields, on one hand, that σ(G) is strictly larger than σ(C)

(taking into account Inequality (2)). On the other hand, S must have an associated prime which does

not lie in π(C):

(ii) S is either of Lie type in odd characteristic, or S ∼= J1. In particular, |S| is divisible by 3.

Here, the only thing to observe is that S cannot lie in L(2) because C has even order, as C 6= 1 and

F(C) = 1.

Since two (distinct) simple normal subgroups of G centralize each other, we also deduce the following:

(iii) The associated primes of the simple normal subgroups of G are pairwise distinct.

Some other remarks concerning the centralizer C of a simple normal subgroup S of G:

(iv) |π(C)| = 2σ(C) + 1. In addition, C has a simple characteristic subgroup and |C| is divisible by 3;

furthermore, C is not an almost-simple group.

In fact, we know that |π(C)| ≤ 2σ(C)+1, so, if the claim is false, then we have |π(C)| ≤ 2σ(C). Now,

using again inequalities (1) and (2) as in (i) and recalling that |π3−π(C)| = 1, we get |π(G)| ≤ 2σ(G)+1,

which is not the case. Given that, C must have a simple characteristic subgroup by Corollary 3.2 and,

as this subgroup is a simple normal subgroup of G, by (ii) its order is divisible by 3. Finally, if C is an

almost-simple group, its socle (which is a simple normal subgroup of G) in this situation must be then

isomorphic to a projective special linear group in characteristic 2 by Theorem 2.4, and this is against

claim (ii).

Since we have seen that 3 divides |C|, claim (i) (namely, π3 − π(C) 6= ∅) yields also:
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(v) S 6∈ L(3).

Next,

(vi) Both σ(S) and σ(C) lie in {3, 4}.
To the end of showing σ(S) ≥ 3, by Lemma 2.4 in [24] we only have to rule out the case S ∼= PSL2(q)

(where q is a p-power with p > 3) and |π(q ± 1)| ≤ 2; but in this situation the degree of (say) χ1, as

defined in the second paragraph of this proof, is divisible only by 2 and 3, so π(χ1) − π(C) is empty,

against (i). As for σ(C) ≤ 4, this follows at once by the fact that, as observed, we have σ(C) < σ(G);

the remaining conclusions also follow easily, taking into account that (by (iv)) C contains a simple

normal subgroup of G.

Consider now the set K = {S1, S2, . . . , Sk} of all the simple normal subgroups of G. As our last

preliminary claim, we show the following:

(vii) G = (S1 × S2 × · · · × Sk)× U , where |π(U)| ≤ 2σ(U).

Let S ∈ K. Recalling that (by (vi)) we have σ(C) ∈ {3, 4}, assume first σ(C) = 3 (which implies

|π(C)| = 2 · 3 + 1 = 7) and σ(G) = 5: then Inequality (2) yields |πi − π(C)| ≤ 2 for i ∈ {1, 2, 3}. Now,

π1−π(C) cannot contain any element u of π0, as otherwise u would lie in π2−π(C) as well, and the set

X = (π1−π(C))∪ (π2−π(C)) would contain at most three elements. As a consequence of the fact that

π(G) is covered by π(C)∪X ∪ (π3 − π(C)) we would then obtain |π(G)| ≤ 7 + 3 + 1 = 11 = 2σ(G) + 1,

against our assumption. We conclude that π(G) = π(SC) in this case.

But the same holds also whenever σ(G) − σ(C) = 1 (which covers all the remaining possibilities):

in fact, in the latter situation, πi − π(C) is a singleton and (by (i)) it must be contained in π(χi) for

i ∈ {1, 2}.
Now, if SC is strictly contained in G, our minimality assumption leads again to the contradiction

|π(G)| = |π(SC)| ≤ 2σ(SC) + 1 ≤ 2σ(G) + 1. Thus we have G = SC and, since this holds for all the

elements in K, we easily deduce that G = (S1 × S2 × · · · × Sk) × U where U =
⋂k
i=1 CG(Si). Finally,

observe that either U is trivial, or it is a group with trivial Fitting subgroup and no simple characteristic

subgroups. Therefore, by Corollary 3.2, the desired conclusion follows.

We observed in (iv) that, for S ∈ K, there is an element of K lying in CG(S), thus |K| 6= 1. We work

next to exclude also |K| > 1, thus obtaining a contradiction.

Note that, if Si is in K, then the two characters χ
(i)
1 , χ

(i)
2 ∈ Irr(Si) given by Proposition 2.3 “cover”

together all the prime divisors of |Si| except possibly the associated prime pi of Si, as explained in

the second paragraph of this proof (recall that, by (ii) and (v), we have pi 6∈ {2, 3}); in particular,

taking into account that π(χ
(i)
1 ) − π(CG(Si)) and π(χ

(i)
2 ) − π(CG(Si)) are non-empty by (i), we see

that one among χ
(i)
1 , χ

(i)
2 has a degree divisible by 2ri, and another (possibly the same) has a degree

divisible by 3si, where ri and si are (possibly equal) primes not dividing |CG(Si)|. Note that hence,

clearly, {ri, si} ∩ {rj , sj} = ∅ for i 6= j. Given that, assume |K| ≥ 4 and take four distinct elements Si,

i ∈ {1, . . . , 4}, in K: considering irreducible characters ξi of Si such that {2, r1} ⊆ π(ξ1), {3, s2} ⊆ π(ξ2),

p3 ∈ π(ξ3) and p4 ∈ π(ξ4), we see that |π(ξ1 × · · · × ξ4)| ≥ 6, against the assumption σ(G) ≤ 5. Our

conclusion so far is that |K| ≤ 3.

Assume then K = {S1, S2, S3}, and observe that in this case we have σ(Si) = 3 for every i ∈ {1, 2, 3}:
in fact, if (say) S1 has an irreducible character ξ1 with |π(ξ1)| ≥ 4 then, considering ξi ∈ Irr(Si) with

pi ∈ π(ξi) for i ∈ {2, 3}, by (iii) we get |π(ξ1×ξ2×ξ3)| ≥ 6, again a contradiction. Furthermore, assume

that an element S of K is not a 2-dimensional projective special linear group; then, we claim that there

exists an irreducible character ξ of S whose degree is divisible by p and by a prime t 6∈ {2, 3}. Once this
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will be established, setting S3 = S, we can choose ξ3 = ξ ∈ Irr(S3), and ξ1 ∈ Irr(S1), ξ2 ∈ Irr(S2) as in

the paragraph above, getting the contradiction |π(ξ1 × ξ2 × ξ3)| ≥ 6. So, we work to prove this claim.

According to Theorem 6.3 of [17] and recalling that, by (i), π(S) contains at least two primes r, s other

than 2, 3 and p, the only cases that must be treated are when either S ∼= PSL3(pf ) or S ∼= PSU3(pf )

for some positive integer f . In the former case, looking at Theorem 3.2 of [25], our claim is true unless

(setting q = pf ) we have π((q + 1)(q2 + q + 1)) ⊆ {2, 3}; this forces the odd number q2 + q + 1 to

be a power of 3, and the primes r, s to lie in π(q − 1); but S has an irreducible character ψ of degree

(q−1)(q2+q+1), which implies π(ψ) ⊇ {2, 3, r, s} and contradicts σ(S) = 3. The case S ∼= PSU3(pf ) can

be treated similarly, referring to [25, Theorem 3.4]. This establishes the claim in the above paragraph.

In order to rule out the case K = {S1, S2, S3}, it remains then to treat the situation when Si is

a 2-dimensional projective special linear group (in characteristic larger than 3) for every i ∈ {1, 2, 3}.
The set of character degrees of PSL2(q), where q > 5 is a prime power (note that PSL2(5) ∼= PSL2(4)

does not show up here by (ii)), is well known (see Example 1.1). In our situation, taking into account

(i) and the fact that σ(Si) = 3 for all i ∈ {1, 2, 3}, each Si has two irreducible characters χ
(i)
1 , χ

(i)
2

such that π(χ
(i)
1 ) ⊇ {2, 3, ri} and π(χ

(i)
2 ) ⊇ {2, si} ∪ Ti, where ri, si are primes not lying in |CG(Si)|

and Ti is either empty or a singleton {ti}. But every Ti must be in fact empty: if (say) t1 ∈ T1, then

χ
(1)
2 × χ

(2)
1 ∈ Irr(S1 × S2) has a degree divisible by 2, 3, s1, t1, r2, and choosing an irreducible character

of S3 whose degree is divisible by p3 we get the contradiction σ(S1 × S2 × S3) ≥ 6.

Recall that G = (S1 × S2 × S3)× U , where U =
⋂3
i=1 CG(Si); but, as σ(S1 × S2 × S3) = 5 = σ(G),

clearly the set π(U) − π(S1 × S2 × S3) must be empty, and again by minimality we conclude that

G = S1 × S2 × S3. At this stage, we see that |π(G)| is 11, so it equals 2σ(G) + 1, and this is the

contradiction which excludes |K| = 3.

Finally, assume K = {S1, S2} and write G = S1×S2×U . Denoting by χ
(1)
1 , χ

(1)
2 the characters of S1

given by Proposition 2.3 (as in the second paragraph of this proof) and, similarly, by χ
(2)
1 , χ

(2)
2 those of

S2, we consider the irreducible characters χ1 = χ
(1)
1 × χ

(2)
1 and χ2 = χ

(1)
2 × χ

(2)
2 of S1 × S2. Note that,

up to swapping χ
(2)
1 and χ

(2)
2 , we may assume {2, 3} ⊆ π(χ1). In this setting, we have

(3) π(G) = π(U) ∪ (π(χ1)− π(U)) ∪ (π(χ2)− π(U)) ∪ {p1, p2},

and σ(G) ≥ σ(U) + |π(χi)− π(U)| for both i = 1 and i = 2.

Let us consider first the case U 6= 1. Since F(U) = 1, any minimal normal subgroup of U is a direct

product of isomorphic non-abelian simple groups, and the number of factors in this product has to be

larger than 1; in fact, U being a direct factor of G, a normal subgroup of U is also normal in G, thus a

simple normal subgroup of U would be an element of K, clearly a contradiction. As a consequence, we

have σ(U) ≥ 2; on the other hand σ(U) ≤ 3, as otherwise, taking δ ∈ Irr(U) such that π(δ) = σ(U) and

ψ ∈ Irr(S1 × S2) with π(ψ) ⊇ {p1, p2}, we would get |π(ψ × δ)| ≥ 6.

If σ(U) = 2, by (vii) we have |π(U)| ≤ 4, and therefore Equation (3) yields that both |π(χ1)− π(U)|
and |π(χ2) − π(U)| must be 3 (otherwise we would get the contradiction |π(G)| < 12). In particular

there exist primes r, s, t, all lying outside π(U), such that π(χ1) ⊇ {2, 3, r, s, t}. Now, as usual, we can

produce an irreducible character of G whose degree is divisible by six primes taking the product of χ1

and ξ ∈ Irr(U) with ξ(1) divisible by an odd prime different from 3.

Assume finally σ(U) = 3, so |π(U)| ≤ 6. By Equation (3), we see that |π(U)| must be 6 and

|π(χi) − π(U)| is 2 for i ∈ {1, 2}. Now, there exist primes r, s, both outside π(U), such that π(χ1) ⊇
{2, 3, r, s}; moreover, by the main result of [23], we can find an irreducible character of U whose degree

is divisible by two primes in π(U)−{2, 3} (because this set contains four elements). Taking the product

of this character with χ1 we reach again the contradiction σ(G) ≥ 6.
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To rule out the case |K| = 2 and finish the proof, it remains to consider the case U = 1, so, G = S1×S2.

In this situation, CG(S1) = S2 is (almost-)simple, against what observed in (iv); thus also in this last

case we reached a contradiction, and our minimal counterexample G does not exist.

Theorem 3.4. Let G be a group with trivial Fitting subgroup. If σ(G) > 5, then we have |π(G)| ≤
3σ(G)− 4.

Proof. As in the proof of Theorem 3.3, we assume the existence of a counterexample to the statement,

and we take G of minimal order among these counterexamples. By Corollary 3.2 and Theorem 2.4

(taking also into account that 2σ(G)+1 is smaller than 3σ(G)−4 whenever σ(G) > 5), the set of simple

normal subgroups of G is non-empty and G is not an almost-simple group. So, let us consider a simple

normal subgroup S of G, and set C = CG(S) (note that C 6= 1, because G is not almost-simple). We

see that C has a trivial Fitting subgroup and clearly it is a proper subgroup of G.

Recall the second paragraph in the proof of Theorem 3.3: an application of Proposition 2.3 to the

almost-simple group G/C yields that there exist χ1 and χ2 in Irr(S) such that π(S) = π(χ1) ∪ π(χ2)

unless S has an associated prime p, in which case we have π(S) − (π(χ1) ∪ π(χ2)) ⊆ {p}. Defining

π0 = π(G/C)− π(S), π1 = π(χ1) ∪ π0, π2 = π(χ2) ∪ π0, and π3 = {p} or π3 = ∅ according to whether

S has an associated prime or not, we have π(G) = π(C) ∪
⋃3
i=1(πi − π(C)), and therefore

|π(G)| ≤ |π(C)|+
3∑
i=1

|πi − π(C)| ≤ |π(C)|+ 3 max
i∈{1,2,3}

{|πi − π(C)|}.

(Note that |π3 − π(C)| ≤ 1.) Moreover, as seen in the previous theorem,

σ(G) ≥ σ(C) +m,

where m = maxi∈{1,2,3}{|πi − π(C)|}.
Now, if σ(C) > 5, then C satisfies our assumptions and, by minimality, we get |π(C)| ≤ 3σ(C) − 4.

Thus |π(G)| ≤ (3σ(C)− 4) + 3m = 3(σ(C) +m)− 4 ≤ 3σ(G)− 4, and G is not a counterexample.

Therefore we have σ(C) ≤ 5. In this case, by Theorem 3.3, we have |π(C)| ≤ 2σ(C) + 1, hence

|π(G)| ≤ (2σ(C) + 1) + 2m + 1 ≤ 2(σ(C) + m) + 2. If σ(C) + m ≤ 5, then we also get σ(C) + m ≤
σ(G) − 1, whence |π(G)| ≤ 2σ(G), which is impossible. On the other hand, σ(C) + m ≥ 6 implies

2(σ(C) +m) + 2 ≤ 3(σ(C) +m)− 4 ≤ 3σ(G)− 4, the final contradiction that completes the proof.

4. The solvable case: a proof of Theorem B

We begin now our discussion concerning the ρ-σ conjecture for solvable groups. After two general

preliminary statements, we will prove a proposition on solvable permutation groups that will be a key

step.

Lemma 4.1 ([4, Lemma 3]). Let K ≤ L ≤ H be groups with K E H. Then, for every S ≤ H, we have

π(H : S)− π(H/K) = π(L : L ∩ S)− π(H/K) .

Lemma 4.2. Let K be a group such that K/F(K) is nilpotent. Then there exists θ ∈ Irr(K) such that

π(K/F(K))) ⊆ π(θ).

Proof. This follows from [21, Proposition 17.3].

Proposition 4.3. Let H be a solvable permutation group on a finite non-empty set Ω. Then there exists

a non-empty subset ∆ ⊆ Ω such that

(a) π(H) ⊆ π(H : H∆) ∪ {p}, for a suitable p ∈ {2, 3};
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(b) π(H) = π(H : H∆) if |H| is odd.

Proof. Part (b) is part (b) of [21, Corollary 5.7].

In order to prove part (a), assume first that the action of H on Ω is primitive. In this case we prove

that there are two non-empty subsets ∆1,∆2 ⊆ Ω of distinct sizes such that both set-stabilizers H∆i

verify claim (a) in the statement, for the same prime p.

Clearly, if there exists a subset ∆ of Ω such that H∆ = 1 and |∆| 6= |Ω|/2, then we set ∆1 = ∆ and

∆2 = Ω −∆. If no such ∆ exists (in the terminology of [21], this amounts to saying that there are no

strongly regular orbits in the action of H on the power set of Ω), then by [21, Theorem 5.6] we are in

one of the following cases.

(a): |Ω| = 2: then we take any subset of size 1 as ∆1 and ∆2 = Ω.

(b): |Ω| = 3, H ∼= S3: take |∆1| = 1, |∆2| = 2.

(c): |Ω| = 4, H ∼= A4 or S4; take |∆1| = 1, |∆2| = 3.

(d): |Ω| = 5: H is a Frobenius group of order 10 or 20; take |∆1| = 3, |∆2| = 4.

(e): |Ω| = 7: H is a Frobenius group of order 42; take |∆1| = 2, |∆2| = 5.

(f): |Ω| = 8: H ∼= AΓ(23); take |∆1| = 2, |∆2| = 6.

(g): |Ω| = 9 and H is a subgroup of the semidirect product of GL2(3) with its natural module V ;

here we take |∆1| = 1, |∆2| = 8 (note that H is a {2, 3}-group and that V is a regular normal

subgroup).

Next, we assume that H is transitive but imprimitive on Ω. Let Ω = Σ1 ∪ Σ2 ∪ · · · ∪ Σm be an

imprimitive decomposition of Ω, with minimal |Σi| 6= 1. Let Σ = Σ1 and write Σi = Σxi for suitable

elements x1 = 1, x2, . . . , xm ∈ H. Let L = HΣ be the stabilizer of Σ in H and let K =
⋂m
i=1 L

xi be

the kernel of the action of H on the set Ω = {Σ1, . . . ,Σm}. So H = H/K is a solvable (transitive)

permutation group on Ω, and by [7, Corollary 3] (or by Proposition 2.2) there exist two disjoint subsets

Γ1,Γ2 of Ω such that HΓ1
∩HΓ2

contains no Sylow subgroup of H. Let C be the kernel of the action of

L on Σ; so L/C is a primitive permutation group on Σ (by the minimality of |Σ|) and there exist two

non-empty subsets ∆1,∆2 ⊆ Σ such that |∆1| 6= |∆2| and π(L : L∆i
) ⊇ π(L/C) − {p}, i = 1, 2, with

p ∈ {2, 3}. We can also assume that Σ1 ∈ Γ1.

Define now

∆ =
⋃

Σxi∈Γ1

∆xi
1 ∪

⋃
Σxi∈Γ2

∆xi
2 .

Since |∆1| 6= |∆2|, it follows that H∆K/K = H∆ ≤ HΓ1
∩ HΓ2

. Hence π(H/K) ⊆ π(H : H∆).

Moreover, by Lemma 4.1, π(H : H∆)− π(H/K) = π(L : L∆)− π(H/K). As L∆ is a subgroup of L∆1

(since Σ1 ∈ Γ1) and π(K) ⊆ π(L/C) (because K is isomorphic to a subgroup of a direct product of

groups isomorphic to L/C), we deduce that π(H) = π(K) ∪ π(H/K) ⊆ π(H : H∆) ∪ {p}.
Finally, we assume that H is not transitive on Ω; let Ω1,Ω2, . . . ,Ωk, k ≥ 2, be the orbits of H on Ω

and let Ki be the kernel of the action of H on Ωi, for i = 1, 2, . . . , k. By what we have proved till now,

for each i there exists a non-empty ∆i ⊆ Ωi and a prime pi ∈ {2, 3} such that π(H/Ki) ⊆ π(H/Ki :

(H/Ki)∆i) ∪ {pi} = π(H : H∆i) ∪ {pi}. By part (b), if 2 6∈ π(H/Ki), then we can choose ∆i ⊆ Ωi such

that π(H/Ki) = π(H : H∆i).

As
⋂
iKi = 1, we have π(H) =

⋃
i π(H/Ki). Hence, setting ∆ =

⋃
i ∆i, we conclude that π(H) ⊆

π(H : H∆) ∪ {p}, where p = 2 if pi = 2 for each i and p = 3 if pi = 3 for some i.

Next, we introduce some terminology. If H is a group and V is an irreducible H-module, then it is

possible to find a pair (L,W ), where L is a subgroup of H and W is a primitive L-module, such that

we have V = WH (here L = NH(W )); if V is primitive, then L = H. We say that a faithful irreducible
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H-module V is of type 1 if there exists a pair (L,W ) of this kind, such that the normal core LH of L

in H is metabelian.

In the situation described in the previous paragraph, setting R = L/CL(W ), we have F(R) = EZ

where Z = Z(F(R)) is cyclic, E E R and E is a direct product of extraspecial groups. Then one sets

eW =
√
|E/Z(E)| ([26, Definition 2.1]). We remark that eW = 1 if and only if F(R) is cyclic and R

acts as a group of semilinear maps on W . Hence, if eW = 1, then LH is metabelian (because it embeds

in the direct product of groups isomorphic to the metabelian group L/CL(W )) and V is of type 1.

Proposition 4.4. Let G be a solvable group whose Frattini subgroup Φ(G) is trivial. Then there exist

χ, ψ ∈ Irr(G) and a prime p ∈ {2, 3} such that ρ(G) ⊆ π(χ) ∪ π(ψ) ∪ {p}. Furthermore, if |G/F(G)| is

odd, then there exist χ, ψ ∈ Irr(G) such that ρ(G) = π(χ) ∪ π(ψ).

Proof. As Φ(G) is trivial, F = F(G) is a direct product of minimal normal subgroups of G and it has a

complement H in G (see [13, III.4.4 and III.4.5]). Write F = M1× · · · ×Mn, where the Mi are minimal

normal subgroups of G, and let Vi be the dual group M̂i for i ∈ {1, . . . , n}. So Vi is an irreducible

H-module, and V = F̂ = V1 × · · · × Vn is a completely reducible and faithful H-module. We will work

by induction on |G|.

We start by assuming that V = V1 is an irreducible H-module (of course faithful), and we write

V = WH , where W is a primitive L-module for L = NH(W ). Let K = LH be the normal core of

L in H; then H = H/K is a transitive permutation group on the set Ω = {W x1 , . . . ,W xm}, where

{x1 = 1, . . . , xm} is a right transversal of L in H. By Proposition 4.3, there exists a non-empty subset

∆ of Ω and a prime p ∈ {2, 3} such that π(H : H∆) ⊇ π(H)−{p}. Moreover, we can assume that either

π(H : H∆) = π(H) or 2 ∈ π(H), and there is no loss of generality in assuming W = W1 ∈ ∆.

Now, take any set {µ1, . . . , µm} where µi lies in W xi for i ∈ {1, . . . ,m} and µi is non-trivial if and only

if W xi ∈ ∆. Define then λ = µ1 × · · · × µm ∈ V . Taking into account the imprimitivity decomposition

of V and the choice of the µi, setting I = CH(λ) we see that I = IK/K is contained in the stabilizer

H∆, whence π(H : I) ⊇ π(H/K)− {p}.
Consider first the case when V is an H-module of type 1, so (for a suitable choice of the pair (L,W ))

K is metabelian, and let λ ∈ V be as above. Since λ is not the trivial character of F (because ∆ 6= ∅),
we claim that π(H : I) ⊇ π(F(K)) as well. In fact, if q ∈ π(F(K)) and Q is a Sylow q-subgroup of F(K),

then 1 6= Q E H and hence (by Clifford Theorem) VQ has no trivial irreducible constituent; in particular,

〈λ〉 can not be a trivial Q-module, hence Q does not lie in I. Thus, for any χ ∈ Irr(G|λ), we deduce

that π(χ) ⊇ (π(H/K) ∪ π(F(K))) − {p}. Moreover, by Lemma 4.2 there exists θ ∈ Irr(K) such that

π(K/F(K))) ⊆ π(θ). So, taking a character ψ ∈ Irr(H|θ) and viewing ψ as an irreducible character of G

by inflation, we get ρ(G) = π(H) ⊆ π(χ)∪π(ψ)∪{p}, where p ∈ {2, 3} and ρ(G) = π(H) = π(χ)∪π(ψ)

if |H| is odd.

Assume next that V is irreducible and not of type 1 as an H-module, thus e = eW ≥ 2. Here we aim to

prove a stronger property: there exists λ ∈ V such that, for all χ ∈ Irr(G|λ), we have ρ(G) = π(χ)∪{p}
where p ∈ {2, 3}.

By Theorem 3.1 of [26] and Theorem 3.1 of [27], either R = L/CL(W ) has a regular orbit on W or e

belongs to the set {1, 2, 3, 4, 8, 9, 16}. In the latter case, we see that the center Z(E) of E is a non-trivial

q-group where q ∈ {2, 3}, and Z(E) acts fixed-point freely on W . Moreover, by Theorem 11.3 of [21]

there exists a (non-trivial) µ ∈ W such that π(R : CR(µ)) ⊇ π(R) − {2, 3}. As Z(E) does not fix µ,

we conclude that π(R : CR(µ)) ⊇ π(R) − {p0} for a suitable p0 ∈ {2, 3}. In fact we remark that, if

π(R : CR(µ)) does not contain π(R) − {2}, then 3 does not divide |Z(E)| and so F(R) is a central

product of an extraspecial 2-group and a cyclic group. Finally, if 2 6∈ π(R) then by [8, Theorem 2.2] we
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can assume that π(R : CR(µ)) = π(R). Note that the last equality clearly holds also if R does have a

regular orbit on W , provided µ is chosen in such an orbit.

Define λ = ν1 × · · · × νm ∈ V , where νi = µxi if W xi ∈ ∆ and νi is trivial otherwise. Set also

I = CH(λ), as above. Then we already know that π(H : I) ⊇ π(H/K)−{p}. On the other hand, since

L ∩ I = CL(λ) ≤ CL(µ), and since we have π(R) ⊇ π(K) because K embeds in the direct product of

groups isomorphic to R, Lemma 4.1 yields

π(H : I)− π(H/K) = π(L : L ∩ I)− π(H/K) ⊇ π(R)− (π(H/K) ∪ {p0}) ⊇ π(K)− (π(H/K) ∪ {p0}) .

Let now χ be in Irr(G|λ), and observe first that if p0 = p, then we clearly have ρ(G) ⊆ π(χ) ∪ {p0}.
Assume then p0 = 2 and p = 3. If ∆ can be chosen so that π(H : I) ⊇ π(H/K), then we get

ρ(G) ⊆ π(χ) ∪ {2}; on the other hand, if such a ∆ does not exist, then 2 lies in π(H/K) and we have

ρ(G) ⊆ π(χ)∪{3}. The only case that still needs to be treated is when 3 divides |K| but not |R : CR(µ)|
(so, p0 = 3 and p = 2). In this setting, π(R : CR(µ)) does not contain π(R) − {2}, and therefore (as

observed in the paragraph above) the 2-complement of F(R) is cyclic; we claim that such a situation

forces 2 to lie in π(K). In fact, assuming the contrary and setting C = CL(W ), we see that F(KC/C)

is contained in the 2-complement of F(R) and it is therefore cyclic. It follows that the factor group of

KC/C over its Fitting subgroup (which embeds in the automorphism group of a cyclic group of odd

order) is cyclic as well, so that KC/C is metabelian. But this contradicts the fact that V is not of type

1, because K now embeds in the direct product of groups isomorphic to KC/C and it is then metabelian

as well. This contradiction yields 2 ∈ π(H : I), hence we have ρ(G) = π(χ) ∪ {3} for any χ ∈ Irr(G|λ).

Finally, if |H| is odd, then π(H : H∆) = π(H) and π(R : CR(µ)) = π(R), so we get ρ(G) = π(χ) for

any χ ∈ Irr(G|λ).

It remains to consider the case when V is not irreducible, so, we assume n ≥ 2. Suppose first that

one of the modules Vi, say V1, is not of type 1 as an H/CH(V1)-module. Let L be a complement of V1

in G and C = CL(V1) E G. Write U = F(C) = F(G) ∩ C. Applying to the L/C-module V1 (not of

type 1) the discussion carried out above in the irreducible case, we can find λ0 ∈ V1 such that, for all

θ ∈ Irr(G|λ0 × 1C), we have π(L/C) ⊆ π(θ) ∪ {p0} for a suitable p0 ∈ {2, 3}. Furthermore, if |L/C| is

odd, then π(L/C) = π(θ).

Since Φ(C) = 1, by inductive hypothesis there exist α, β ∈ Irr(C) such that π(C/U) = ρ(C) ⊆
π(α) ∪ π(β) ∪ {p1}, for a suitable p1 ∈ {2, 3}; and π(C/U) = π(α) ∪ π(β) if |C/U | is odd. Let

now χ ∈ Irr(G|λ0 × α) and ψ ∈ Irr(G|λ0 × β). Observe that ρ(G) = π(L/C) ∪ π(C/U), that if

π(L/C) − π(θ) = {3} then 2 ∈ π(L/C) and if π(C/U) − (π(α) ∪ π(β)) = {3} then 2 ∈ π(C/U).

Hence, setting p = max{p0, p1}, we have ρ(G) ⊆ π(χ) ∪ π(ψ) ∪ {p} with p ∈ {2, 3}. Moreover, if

|G/F(G)| = |L/U | is odd, then ρ(G) ⊆ π(χ) ∪ π(ψ).

Therefore, we can assume that each of the Vi is an irreducible H/CH(Vi)-module of type 1. Write

Vi = (Wi)
H , where Wi is a primitive Li-module for a subgroup Li of H and, setting Ki = (Li)H , the

factor group Ki/CH(Vi) is metabelian. Let K =
⋂
iKi. Then H = H/K is a permutation group on the

set Ω =
⋃
i Ωi, where Ωi is the set consisting of the conjugates of the module Wi by the action of H (so

the sets Ωi are the orbits of H on Ω). By Proposition 4.3, we can choose a (non-empty) subset ∆ ⊆ Ω,

such that π(H) ⊆ π(H : H∆) ∪ {p}, where p ∈ {2, 3}, and π(H) ⊆ π(H : H∆), if |H| is odd. We can

also clearly assume that ∆ a has non-empty intersection with every orbit Ωi.

For every W ∈ Ω, we now choose a µW ∈ W such that µW 6= 1W if and only if W ∈ ∆. We define

λ =
∏
W∈Ω µW ∈ V and I = CH(λ). Arguing as in the irreducible case of type 1, we conclude that, for

every χ ∈ Irr(G|λ), π(χ) ⊇ (π(H/K)∪π(F(K)))−{p}, and π(χ) ⊇ (π(H/K)∪π(F(K))) if |H/K| is odd.

Since K is metabelian (as every group Ki/CH(Vi) is metabelian and
⋂
i CH(Vi) = 1), by Lemma 4.2
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there exists θ ∈ Irr(K) such that π(K/F(K))) ⊆ π(θ). So, taking a character ψ ∈ Irr(H|θ) and viewing

ψ as an irreducible character of G by inflation, we get that ρ(G) = π(H) ⊆ π(χ) ∪ π(ψ) ∪ {p}, where

p ∈ {2, 3}, and that ρ(G) = π(χ) ∪ π(ψ) if |H| is odd.

We are ready to prove a result that will imply Theorem B.

Theorem 4.5. If G is a solvable group, then there exist β1, β2, β3 ∈ Irr(G) such that

|ρ(G)| ≤ |π(β1)|+ |π(β2)|+ |π(β3)|

and

ρ(G) = π(β1) ∪ π(β2) ∪ π(β3) ∪ {p}
for a suitable p ∈ {2, 3}.

Proof. Set G = G/Φ(G); by Proposition 4.4 there exist (by inflation) β1, β2 ∈ Irr(G) and a suitable

p ∈ {2, 3} such that, setting πi = π(βi) for i = 1, 2, we have π(G/F(G)) = ρ(G) ⊆ π1 ∪ π2 ∪ {p}.
Define also ν as the set of primes in π(G) for which G has a normal non-abelian Sylow subgroup, so

that ρ(G) = ν ∪ ρ(G), and let N be a Hall ν-subgroup of G. Now, N is a normal subgroup of G and

there exists ϕ ∈ Irr(N) such that π(ϕ) = ν. Clearly |π1|, |π2|, |ν| ≤ σ(G) and

ρ(G) = ν ∪ ρ(G) ⊆ ν ∪ π1 ∪ π2 ∪ {p} .

If |π1 ∩ π2| ≥ 1, then |π1 ∪ π2 ∪ {p}| ≤ |π1 ∪ π2|+ 1 ≤ |π1|+ |π2| and hence

|ρ(G)| ≤ |ν|+ |π1|+ |π2| ≤ 3 max{|ν|, |π1|, |π2|} ≤ 3σ(G) .

Hence we can assume that π1 and π2 are disjoint sets. By a similar argument, we can assume ν ∩ (π1 ∪
π2 ∪ {p}) = ∅.

Assume now that, for every χ ∈ Irr(G|ϕ) (so, ν ⊆ π(χ)), we have π(χ) = ν. Since (|N |, |G/N |) = 1,

we have that ϕ is G-invariant (by Clifford correspondence) and there exists an extension θ ∈ Irr(G) of

ϕ. Thus Gallagher theorem yields that G/N is abelian and result easily follows by Lemma 4.2.

Therefore we can assume that there exists β3 ∈ Irr(G|ϕ) such that ν is a proper subset of π(β3).

Hence, π(β3) ∩ (π1 ∪ π2 ∪ {p}) 6= ∅ and then, arguing along the same line as above, we conclude that

|ρ(G)| ≤ |π(β1)|+ |π(β2)|+ |π(β3)|.

From the first inequality Theorem 4.5 we hence deduce the following corollary, which is Theorem B

of the Introduction.

Corollary 4.6. If G is solvable group, then |ρ(G)| ≤ 3σ(G).

5. A generalization of the solvable case

We conclude our discussion by proving Theorem C, which extends the inequality ρ(G) ≤ 3σ(G) to

all groups G such that CG(E(G)) is solvable. As mentioned in the Introduction, this class of groups

includes both the solvable groups and the groups with trivial Fitting subgroup.

First, we need an application of Theorem 3.1 which takes also into account Proposition 2.3. As

Theorem 3.1, also the following result is clearly related to [4, Proposition 4] and [18, Proposition 3.2].

Theorem 5.1. Let G be a group with F(G) = 1. Then there exist α1, α2, α3 ∈ Irr(F∗(G)) (not neces-

sarily distinct) such that, setting m = m(G/F∗(G)), the following conclusions hold.

(a) π≥m(G) ⊆
⋃2
i=1

(
π(αi) ∪ π(G : IG(αi))

)
∪ π(α3).

(b) |Pm| ≤ 2|π(G : IG(αi)) ∩ Pm| for i = 1, 2.
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Proof. Let us denote by M the subgroup generated by all the simple characteristic subgroups of G,

so that M = S1 × · · · × St where the Sj are non-abelian simple groups, and set C = CG(M). Since

F(C) = 1 and clearly C does not have any simple characteristic subgroup, we can apply Theorem 3.1

to the group C: defining m0 = m(C/F∗(C)), there exist two irreducible characters ψ1, ψ2 ∈ Irr(F∗(C))

such that

π≥m0
(C) ⊆

2⋃
i=1

π(ψi) ∪ π(C : IC(ψi)) and |Pm0
| ≤ 2|π(C : IC(ψi)) ∩ Pm0

|

for i = 1, 2.

Next we use Proposition 2.3 to get, for all j ∈ {1, . . . , t}, three irreducible characters χ
(j)
1 , χ

(j)
2 , ξ(j)

of Sj such that

π(Sj) ⊆ π(χ
(j)
1 ) ∪ π(χ

(j)
2 ) ∪ π(ξ(j)) and π(G/CG(Sj))− π(Sj) ⊆ π(G : IG(χ

(j)
i )), i = 1, 2.

Consider now the irreducible characters χi = χ
(1)
i × · · · × χ

(t)
i (i ∈ {1, 2}) and ξ = ξ(1) × · · · × ξ(t)

of M ; then, observing that F∗(G) = M × F∗(C), define α1 = χ1 × ψ1, α2 = χ2 × ψ2, α3 = ξ × 1F∗(C).

It is routine to check that α1, α2, α3 ∈ Irr(F∗(G)) satisfy (a); moreover, taking into account that either

m = m0 or Pm0
is contained in π(G/MC), the characters α1 and α2 are easily verified to satisfy (b) as

well.

Finally, we prove Theorem C.

Theorem C. Let G be a group such that CG(E(G)) is solvable. Then |ρ(G)| ≤ 3σ(G).

Proof. Set E = E(G) and F = F(G). We know (see [12, 6.5.2] ) that every solvable normal subgroup

of G centralizes E. Hence, by assumption we have CG(E) = R, where R is the solvable radical (i.e. the

largest solvable normal subgroup) of G. Let Z = E ∩ F = Z(E).

Our first claim is that ρ(G/Z) = ρ(G). So, take p ∈ ρ(G) and denote by P a Sylow p-subgroup of G.

We have Z ≤ Z(E) ∩ E′ ≤ Φ(E), so Z ≤ Φ(G) and hence F/Z = F(G/Z); it follows that if P is not

normal in G, then PZ/Z is not normal in G/Z and hence p lies in ρ(G/Z). On the other hand, if P is

normal in G (and non-abelian), then E ∩P is contained in E ∩F = Z, whence p does not divide |E/Z|.
As a consequence, p does not divide the order of the Schur multiplier M of E/Z and, in particular,

p - |Z| (in fact, note that E is a central extension of E/Z whose kernel Z lies in E′, so Z embeds in M

by [15, Corollary 11.20(b)]). We conclude that PZ/Z ' P is non-abelian, so p ∈ ρ(G/Z).

Furthermore, by Lemma 3.2 of [5] we have E/Z ⊆ E(G/Z) (it can be easily checked that actu-

ally equality holds) and CG/Z(E/Z) = R/Z; it follows that CG/Z(E(G/Z)) ⊆ R/Z is solvable. Our

conclusion after the last two paragraphs is that we can assume Z = 1.

Note that now Z = E ∩R = 1, so ER = E ×R. An application of Theorem 5.1 to the factor group

G/R (whose Fitting subgroup is clearly trivial, and whose generalized Fitting subgroup is ER/R) yields

the existence of α1, α2, α3 ∈ Irr(E) such that, setting πi = π(αi) ∪ π(G : IG(αi)) for i ∈ {1, 2} and

π3 = π(α3), we have

π≥m(G/R) ⊆ π1 ∪ π2 ∪ π3 and |Pm| ≤ 2|π(G : IG(αi)) ∩ Pm| for i = 1, 2

where m = m(G/ER). Observe that, in general, the sets π1, π2 and π3 do not cover together the whole

π(G/R), but they clearly do so in the case m = 0; at any rate, it is not difficult to see that the two

displayed formulas above imply |π(G/R)| ≤ |π1|+ |π2|+ |π3|.
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Also, consider the characters β1, β2, β3 ∈ Irr(R) provided by an application of Theorem 4.5 to R,

such that

ρ(R) ⊆ π(β1) ∪ π(β2) ∪ π(β3) ∪ {p} and |ρ(R)| ≤ |π(β1)|+ |π(β2)|+ |π(β3)|.

Note that p lies in Pm if m 6= 0, as then m ≥ 5.

We are now ready to finish our proof. If m 6= 0, we take α = αi such that |πi| = maxj=1,2,3{|πj |},
and β = βi such that |π(β)− π(G/R)| = maxj=1,2,3{|π(βj)− π(G/R)|}. If m = 0, we take β = βi such

that |π(β)| = maxj=1,2,3{|π(βj)|} and α = αi such that |πi − π(R)| = maxj=1,2,3{|πj − π(R)|}. One

easily sees that, for any χ ∈ Irr(G|α× β), in both cases we have |ρ(G)| ≤ 3π(χ) ≤ 3σ(G).

We conclude with a proof of Corollary D, stating it again for convenience.

Corollary D. Let G be a group. Then |ρ(G)| ≤ 5σ(G) + 1 if σ(G) < 6, and |ρ(G)| ≤ 6σ(G) − 4

otherwise.

Proof. Let R be the solvable radical of G. Observe that we have ρ(G/R) = π(G/R), and ρ(G) =

ρ(R) ∪ ρ(G/R); also, we have max{σ(R), σ(G/R)} ≤ σ(G). Since F(G/R) = 1, the result follows at

once by Theorem A and Theorem B.
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