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Exploiting Unlabeled Data in CNNs by
Self-supervised Learning to Rank

Xialei Liu, Joost van de Weijer, and Andrew D. Bagdanov

Abstract—For many applications the collection of labeled data is expensive laborious. Exploitation of unlabeled data during training is
thus a long pursued objective of machine learning. Self-supervised learning addresses this by positing an auxiliary task (different, but
related to the supervised task) for which data is abundantly available. In this paper, we show how ranking can be used as a proxy task
for some regression problems. As another contribution, we propose an efficient backpropagation technique for Siamese networks
which prevents the redundant computation introduced by the multi-branch network architecture.
We apply our framework to two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both we show how to
automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth
targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results for both
IQA and crowd counting. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure
of informativeness of unlabeled data. This can be used to drive an algorithm for active learning and we show that this reduces labeling
effort by up to 50%.

Index Terms—Learning from rankings, image quality assessment, crowd counting, active learning.

F

1 INTRODUCTION

Training large deep neural networks requires massive
amounts of labeled training data. This fact hampers their
application to domains where training data is scarce and
the process of collecting new datasets is laborious and/or
expensive. Recently, self-supervised learning has received
attention because it offers an alternative to collecting la-
beled datasets. Self-supervised learning is based on the
idea of using an auxiliary task (different, but related to the
original supervised task) for which data is freely available
and no annotation is required. As a consequence, self-
supervised learning can be much more scalable. In [1] the
self-supervised task is estimating the relative location of
patches in images. Training on this task allows the network
to learn features discriminative for semantic concepts. Other
self-supervised tasks include generating color images from
gray scale images and vice versa [2], [3], recovering a whole
patch from the surrounding pixels by inpainting [4], and
learning from equivalence relations [5].

In this paper, we investigate the use of ranking as a
self-supervised auxiliary task. In particular we consider
regression problems in computer vision for which it is easy
to obtain ranked data automatically from unlabeled data. By
ranked data we mean that we know that for some samples the
regression output is known to be larger (or smaller) than for
some others. In these cases the unlabeled data, converted
into ranked subsets of data, can be added in a multi-
task sense during training by minimizing an additional
ranking loss. The main advantage of our approach is that
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it allows adding large amounts of unlabeled data to the
training dataset, and as a results train better deep neural
networks. In addition, we show that the ranked subsets
of images can be exploited to performing active learning
by identifying which images, when labeled, will result in
the largest improvement of performance of the learning
algorithm (here a neural network). We consider two specific
computer vision regression problems to demonstrate the
advantages of learning from ranked data: Image Quality
Assessment (IQA) and crowd counting. In Fig. 1 we give
an overview of the general approach to use labeled and
unlabeled (but ranked) data in a multi-task network.

The first regression problem we consider is No-Reference
Image Quality Assesment (NR-IQA), where the task is to
predict the perceptual quality of images without using the
undistorted image (also called the reference image). This
research field has also seen large improvements in recent
years due to the advent of Convolutional Neural Networks
(CNNs) [6], [7], [8]. The main problems these papers had to
address is the lack of large datasets for IQA. However, the
annotation process for IQA image datasets requires multiple
human annotations for every image, and thus the collection
process is extremely labor-intensive and costly. As a result,
most available IQA datasets are too small to be effective
for training CNNs. We show how to automatically generate
rankings for the task of IQA, and how these rankings can be
used to improve the training of CNNs for NR-IQA.

The second regression problem we consider is crowd
counting. Crowd counting is a daunting problem because
of perspective distortion, clutter, occlusion, non-uniform
distribution of people, complex illumination, scale variation,
and a host of other scene-incidental imaging conditions.
Techniques for crowd counting have also seen improvement
recently due to the use of CNNs. These recent approaches
include scale-aware regression models [9], multi-column
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Fig. 1. Self-supervised learning to rank. Our architecture is based on a shared CNN backbone (in white) to which we add problem-specific layers
(in blue) that end in an output that solves the primary regression task, and layers (also in blue) that end in an output that solves a self-supervised
ranking task (see Section 3). Self supervision is provided by a pair generation module that is able to generate pairs with known relative ranks.

CNNs [10], and switching networks [11]. As with most CNN
architectures, however, these person counting and crowd
density estimation techniques are highly data-driven. Even
modestly deep architectures for visual recognition require
massive amounts of labeled training data for learning. For
person counting, the labeling burden is even more onerous
than usual. Training data for person counting requires that
each individual person be meticulously labeled in training
images. It is for this reason that person counting and crowd
density estimation datasets tend to have only a few hundred
images available for training. As a consequence, the ability
to train these sophisticated CNN-based models suffers. We
show how ranked sets of images can be generated for the
task of crowd counting, and how these can be exploited to
train deep networks.

In this work we study the use of ranking as a self-
supervised proxy task to leverage unlabeled data and im-
prove the training of deep networks for regression prob-
lems. The contributions of the paper are:

• We show that ranking tasks can be used as self-
supervised proxy tasks, and how this can be exploited
to leverage unlabeled data for applications suffering
from a shortage of labeled data.

• We propose a method for fast Siamese backpropagation
which avoids the redundant computation common to
training multi-branch Siamese network architectures.
Similar observations have been made others [12], [13]
concurrently with our original work [14], [15].

• We show that the ranking task on unlabeled data can
be exploited as an active learning strategy to determine
which images should be labeled to improve the perfor-
mance of the network.

• We demonstrate the advantages of the above con-
tributes on two applications: Image Quality Assessment
(IQA) and crowd counting. On both tasks we show
how to effectively leverage unlabeled data and that this
significantly improves performance over the state-of-
the-art.

This paper is an extension of our previous work on
No-reference IQA [15] and crowd counting [16]. Beyond
these previous works, here we propose a general framework
for training from self-supervised rankings. In addition, we
apply the multi-task approach from [16] to the IQA prob-
lem, improving the results of our previous IQA method.
We also include results on two new datasets for crowd
counting, UCSD and WorldExpo’10. Finally, we show that

self-supervised ranking tasks can also be used as a criterion
for active learning. In this case the aim is to select which
images to label from a large pool of unlabeled data. In
experiments we show that this can significantly reduce the
required labeling effort.

This paper is organized as follows. In the next section
we review work from the literature related to our work.
In section 3 we describe our general learning to rank
framework for self-supervised learning. In section 4 we
describe how to automatically generate rankings for image
quality assessment. In section 5 we show how the proposed
framework can be applied to the problem of crowd count-
ing. In sections 6.1 and 6.2 we give extensive experimental
evaluations for IQA and crowd counting, respectively. We
conclude in section 7 with a discussion of our contributions
and some indications of potential future research lines.

2 RELATED WORK

In this section we review work from the literature on learn-
ing from rankings, active learning, image quality assess-
ment, and crowd counting.

2.1 Learning from rankings
Several works have studied how to learn to rank, and they
focus on learning a ranking function from ground-truth
rankings [17], [18]. They learn a ranking function from
ground-truth rankings by minimizing a ranking loss [17].
This function can then be applied to rank test objects.
The authors of [18] adapt the Stochastic Gradient Descent
method to perform pairwise learning to rank. This has
been successfully applied to large datasets. However, these
approaches are very different from ours in which we aim to
learn from rankings.

In a recent paper [5] a method is proposed where the self-
supervised task is to learn to count. The authors propose
two proxy tasks – scaling and tiling – which guide self-
supervised training. The network learn to count visual prim-
itives in image regions. It is self-supervised by the fact that
the number of visual primitives is not expected to change
under scaling, and that the sum of all visual primitives
in individual tiles should equal the total number of visual
primitives in the whole image. Unlike our approach, they
do not consider rankings of regions and their counts are
typically very low (several image primitives). Also, their
final tasks do not involve counting but rather unsupervised
learning of features for object recognition.
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2.2 Active learning

Active learning [19] is a machine learning procedure that
reduces the cost of annotation by actively selecting the best
samples to label among the abundantly available unlabeled
data. Active learning is well-motivated in many modern
machine learning problems where data may be abundant,
but labels are scarce or expensive to obtain. Since massive
amounts of data are required to train deep neural networks,
informative samples are more valuable to annotate instead
of annotating randomly picked samples. Active learning has
been explored in many applications such as image classifica-
tion [20], object detection [21] and image segmentation [22].

There are several ways to approach the active learning
problem. Uncertainty sampling [23] is the simplest and most
commonly used that samples the instance whose prediction
is least confident. Margin sampling [24] aims to correct for
the shortcomings of uncertainty sampling by examining
the difference between second and first most likely labels
for candidate samples. A more general strategy considers
all prediction probabilities using entropy. Expected Model
Change [25] is a metric that measures change in gradient by
calculating the length as an expectation over the possible
labelings. However, these approaches only consider the
uncertainty of instances and ignore the representatives of
the underlying distribution. The method proposed in [26]
addresses this issue by computing the similarity between
the candidate instance and all other samples in the training
set. Note that these active learning approaches are more
about classification problems, while we are primarily inter-
ested in regression.

In this work we show how to apply active learning to
image quality assessment and crowd counting – two tasks
for which image annotation is expensive. Instead of using
the above approaches, we measure the informativeness of
unlabeled instances via mistakes made by the network on
a self-supervised ranking proxy task. Performance on this
proxy task is guaranteed to be consistent with the main
task, and our hypothesis is that the instances with more
mistakes on the proxy task vary more from the training set.
Training on such instances should allows us to increase the
generalizing capacity of neural networks.

2.3 Image Quality Assessment

We briefly review the IQA literature related to our ap-
proach. We focus on recent deep learning based methods
for distortion-generic, No-reference IQA since it is more
generally applicable than the other IQA research lines.

In recent years several works have used deep learning
for NR-IQA [7], [8], [27]. One of the main drawbacks of
deep networks is the need for large labeled datasets, which
are currently not available for NR-IQA research. To address
this problem Kang et al. [7] consider small 32 × 32 patches
rather than images, thereby greatly augmenting the number
of training examples. The authors of [8], [28] follow the same
pipeline. In [8] the authors design a multi-task CNN to learn
the type of distortions and image quality simultaneously.
Bianco at al. [27] propose to use a pre-trained network to
mitigate the lack of training data. They extract features from
a pre-trained model fine-tuned on an IQA dataset. These

features are then used to train an SVR model to map features
to IQA scores.

There are other works which, like us, apply rankings
in the context of NR-IQA. Gao et al. [29] generate pairs
in the dataset itself by using the ground truth scores with
a threshold and combine different hand-crafted features to
represent image pairs from the IQA dataset. Xu et al. [30]
propose training a specific model for each distortion type
in a multi-task learning model. Instead of using the ground
truth in the dataset, they learn a ranking function. The most
relevant work is from Ma et al. [31], which was published
concurrently with our work on NR-IQA [15]. Like us, they
use learning-to-rank to deal with the extremely limited
ground truth data for training. However, they generate pair-
ing data by using other Full-reference IQA methods with a
threshold like in [29], while our approach does not require
other methods and operates in a self-supervised manner.
Another difference is that we use a knowledge transfer
technique for further fine-tuning on the target dataset with
the same network, which can be also learned in a multi-task,
end-to-end way, while they train an independent regression
model based on the feature representations to perform the
prediction. In addition to these differences, we show results
on a larger number of distortion types instead of only
working on the four main distortions [31].

In our paper, we propose a radically different approach
to address the lack of training data: we use a large number of
automatically generated rankings of image quality to train
a deep network. This allows us to train much deeper and
wider networks than other methods in NR-IQA which train
directly on absolute IQA data.

2.4 Crowd counting

We focus on deep learning methods for crowd counting in
still images. For a more complete review of the literature on
crowd counting, including classical approaches, we refer the
reader to [32].

As introduced in the review of [32], CNN-based ap-
proaches can be classified into different categories based on
the properties of the CNN. Basic CNNs incorporate only
basic CNN layers in their networks. The approaches in [33],
[34] use the AlexNet network [35] to map from crowd scene
patches to global number of people by changing the output
of AlexNet from 1000 to 1. The resulting network can be
trained end-to-end. Due to the large variations of density
in different images, recent methods have focused on scale-
awareness. The method proposed in [10] trains a multi-
column based architecture (MCNN) to capture the different
densities by using different sizes of kernels in the network.
Similarly, the authors of [9] propose the Hydra-CNN archi-
tecture that takes different resolutions of patches as inputs
and has multiple output layers (heads) which are combined
in the end. Most recently, in [11] the authors propose a
switching CNN that can select an optimal head instead of
combining the information from all network heads. Finally,
context-aware models are networks that can learn from
the context of images. In [33], [36] the authors propose to
classify images or patches into one of five classes: very high
density, high density, medium density, low density and very
low density. However, the definition of these five classes
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varies across datasets and must be carefully chosen using
knowledge of the statistics of each dataset.

Although CNN-based methods have achieved great suc-
cess in crowd counting, due to lack of labeled data it is
still challenging to train deep CNNs without over-fitting.
The authors of [37] propose to learn density map and
global counting in an alternating sequence to obtain better
local optima. The method in [38] uses side information like
ground-truth camera angle and height to help the network
to learn. However, this side information is expensive to
obtain and is not available in most existing crowd counting
datasets.

There is some interesting recent work on CNNs for
crowd counting. CSRNet [39] consists of two components:
a convolutional neural network as 2D feature extractor
and a dilated CNN for estimating a density map to yield
larger receptive fields and to replace pooling operations.
DecideNet [40] starts by estimating the crowd density using
detection and regression separately. It then assesses the
reliability of these two estimates with an attention module.
Shen et al. [41] propose using a U-net structure to generate
a high quality density map with an adversarial loss. Shi et
al. [42] formulate a single ConvNet as ensemble learning.
Marsden et al. [43] adapt object counting models to new
visual domains like cell counting and penguins counting.
Both works [44], [45] propose generating a high resolution
density map. Ierees et al. [46] propose solving the prob-
lems of counting, density map estimation and localization
simultaneously. Laradji et al. [47] propose a detection-based
method that does not need to estimate the size and shape of
the objects.

In our paper, we show how a large number of unlabeled
crowd data can improve the training of crowd counting
networks. We automatically generate rankings from the un-
labeled images, which are used during the training process
in the self-supervised proxy task.

3 LEARNING FROM RANKINGS

In this section we lay out a general framework for our
approach, then describe how we use a Siamese network
architecture to learn from rankings. In section 3.3 we show
how backpropagation for training Siamese networks from
ranked samples can be made significantly more efficient.
Finally, in section 3.4 we show how the ranking proxy task
can be used as an active learning algorithm to identify which
are the most important images to label first.

3.1 Ranking as a self-supervised proxy task

Regression problems consist of finding a mapping function
between input variables and a continuous output variable.
It is a vital area of research in machine learning, and
many important problems in computer vision are regression
problems. The mapping function is typically learned from a
training dataset of labelled data which consists of pairs of
input and output variables. The complexity of the mapping
function that can be learned is limited by the number of
labeled examples in the training set. In this article, we
are interested in using deep convolutional neural networks
(CNNs) as mapping functions, and images as input data.

For some regression problems it can be easy to obtain a
ranked dataset. Such a dataset contains relative information
between pairs of input examples, describing which of the
two is larger. For image quality assessment (IQA) it is easy
to generate ranked images by applying different levels of
distortions to an image. As an example, given a reference
image we can apply various levels of Gaussian blur. The
set of images which is thus generated can be easily ranked
because we do know that adding Gaussian blur (or any
other distortion) always deteriorates the quality score. Note
that in such a set of ranked images we do not have any
absolute IQA scores for any images – but we do know
for any pair of images which is of higher quality. See Fig. 2
(bottom) for an illustration of this.

For the crowd counting problem, we can obtain ranked
sets of images by comparing parts of the same image which
are contained within each other: an image which is con-
tained by another image will contain the same number or
fewer persons than the larger image. This fact can be used
to generate a large dataset of ranked images from unlabeled
crowd images. See Fig. 4 (bottom) for an illustration of this
process for crowd counting.

In the following sections we will show that ranked data
can be used to train networks for regression problems. We
are especially interested in domains where the ranked data
can be automatically generated from images of the problem
domain without requiring any additional human labeling.
This allows us to create large dataset of ranked data. We
consider regression to be the principal task of the network,
and we refer to the ranking task as a self-supervised proxy task.
It is self-supervised since the ranking task is an additional
task for which data is freely available and no annotation is
required.

3.2 Multi-task regression and ranking

In this section, we formalize the problem of training from
both labeled and ranked data for regression problems. We
consider a regression problem where we have a dataset of
observed data in pairs:

D = {(x1, y1) , (x2, y2) ..., (xn, yn)} , (1)

where xi are images and yi ∈ R. The input images xi
and target variables yi are assumed to be related by some
unknown function f(xi) = yi. The aim is to find a function
f̂(x; θ) with parameters θ that captures (and generalizes) the
relationship between input x and output y. The parameters
θ of the regression function f̂ are usually fit by minimizing
an empirical risk over training examples D, for example the
squared Euclidean loss:

Lreg =
n∑
i=1

(f̂(xi; θ)− yi)2. (2)

In our formulation, f̂ is a deep Convolutional Neural Net-
work (CNN), and minimizing Lreg is done with stochastic
gradient descent (SGD). We refer to the regression task as
the principal task, since the final objective is to accurately
estimate such a regression.

We also assume that we have a function h(·, ϕ) which
we can apply to input images. These functions are special
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in that the parameter space is ordered and that for any
parameters ϕi, ϕj and any image x:

ϕi ≤ ϕj ⇒ f(h(x;ϕi)) ≤ f(h(x;ϕj)). (3)

What this means is that we have a partial order in the
parameter space that induces an ordering in the proxy
task space. An example of a possible function h would be
adding an image distortion parameterized by a single scalar
number: increasing this parameter in h implies decreasing
image quality in h(x, ϕ). For crowd counting we can pa-
rameterize h using rectangular crops: if a rectangle ϕi is
entirely contained in rectangle ϕj , then the number of persons
in h(x;ϕi) is less than or equal to h(x;ϕj). In other words:
f(h(x;ϕi)) ≤ f(h(x;ϕj)).

We can now apply this function h to generate an auxil-
iary dataset E consisting of ranked images. Importantly, the
ordering of the parameter space and the application of h is
independent of any labeling of training data. The dataset E
could contain images xi which are present in dataset D but
in addition it could also contain images not in D and for
which we have no annotations. We can use any input data
xi relevant to the domain in order to generate the dataset
E of ranked images. Since f respects this ranking condition
under application of functions h, we can use the h functions
to generate training data for learning f̂ .

From dataset E we can train a network by minimizing
the ranking hinge loss according to:

Lrank =
∑
z∈E
ϕi≤ϕj

max(0, f̂(h(z;ϕi); θ)− f̂(h(z;ϕj); θ)+ε) (4)

where ε is a margin, and z ∈ E are (potentially unla-
beled) images transformed into ranked images after applying
h(·, ϕi) and h(·, ϕj) for ϕi ≤ ϕj . Training a network with
Eq. (4) yields a network which can rank images, and we will
refer to the task of ranking as the self-supervised proxy task.

The most common approach to minimizing losses like
Lrank uses a Siamese network [48], which is a network with
two identical branches connected to a loss module. The two
branches share weights during training. Pairs of images and
labels are the input of the network, yielding two outputs
which are passed to the loss. The gradients of the loss
function with respect to all model parameters are computed
by backpropagation and updated by the stochastic gradient
method (e.g. SGD). For problems where both labeled data
(like in dataset D) and ranked data (like in dataset E) are
present, we can optimize the network using both sources of
data using a multi-task loss:

L = Lreg + λLrank (5)

where λ is a tradeoff parameter that balances the relative
weight of the losses. It is important to note here that we
consider the same function f̂(·; θ) for the regression and
the ranking loss. In practice this means that the three net-
works, one for regression, and the two networks used in the
Siamese network, have the same architecture and share their
parameters.

One could also consider different ways to combine both
the labeled dataset and the ranking dataset. In earlier work
we investigated using the ranking dataset to train initial
weights of the network, after which we used the labeled

data for fine-tuning [15]. This is the approach which is
used by almost all self-supervised methods in computer
vision [1], [3], [4], [5], [15]. However, in [16] we found this
to be inferior to using the multi-task loss, and in this work
only consider multi-task formulations like in Eq. (5).

3.3 Efficient Siamese backpropagation

One drawback of Siamese networks is redundant compu-
tation. Consider all possible image pairs constructed from
three images. In a standard implementation all three images
are passed twice through the network, because they each
appear in two pairs. Since both branches of the Siamese
network are identical, we are essentially doing twice the
work necessary since any image need only be passed once
through the network. It is exactly this idea that we exploit to
render backpropagation more efficient for Siamese network
training. In fact, nothing prevents us from considering all
possible pairs in a mini-batch, with hardly any additional
computation. We add a new layer to the network that
generates all possible pairs in a mini-batch at the end of the
network right before computing the loss. This eliminates
the problem of pair selection and boosts efficiency. At the
end of this section we discuss how our approach compares
to works [12], [13] published concurrently with ours and
observed similar efficiency gains.

To appreciate the speed-up of efficient Siamese back-
propagation consider the following. If we have one ref-
erence image distorted from which we have generated n
ranked images using h, then for a traditional implemen-
tation of the Siamese network we would have to pass a
total of n2 − n images through the network – which is
twice the number of pairs you can generate with n images.
Instead we propose to pass all images only once and consider
all possible pairs only in the loss computation layer. This
reduces computation to just n images passed through the
network. Therefore, in this case the speed-up is equal to:
n2−n
n = n− 1. In the best scenario n is equal to the number

of images in the mini-batch, and hence the speed-up of this
method would be in the order of the mini-batch size. Due to
the high correlation among the set of all pairs in a mini-
batch, we expect the final speedup in convergence to be
lower.

To simplify notation in the following, assume we have
an image z and two transformation parameters ϕi ≤ ϕj .
Letting ŷi = f̂(h(z, ϕi); θ), the contribution to the ranking
loss Lrank of these two images can be written as:

g(ŷi, ŷj) = max(0, ŷi − ŷj + ε), (6)

The gradient of this term from Lrank with respect to the
model parameters θ is:

∇θg =
∂g(ŷi, ŷj)

∂ŷi
∇θŷi +

∂g(ŷi, ŷj)

∂ŷj
∇θŷj . (7)

This gradient of g above is a sum since the model pa-
rameters are shared between both branches of the Siamese
network and ŷi and ŷj are computed using exactly the same
parameters.



6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Considering all pairs in a mini-batch of size M , the loss
Lrank from Eq. (4) can then be written as:

Lrank =
M∑
i=1

M∑
j>i

g(ŷi, ŷj). (8)

The gradient of the mini-batch loss with respect to parame-
ter θ can then be written as:

∇θLrank =
M∑
i=1

M∑
j>i

∂g(ŷi, ŷj)

∂ŷi
∇θŷi+

∂g(ŷi, ŷj)

∂ŷj
∇θŷj . (9)

We can now express the gradient of the loss function of the
mini-batch in matrix form as:

∇θLrank =
[
∇θŷ1 ∇θŷ2 . . . ∇θŷM

]
P1M , (10)

where 1M is the vector of all ones of length M . For a
standard single-branch network, we would average the
gradients for all batch samples to obtain the gradient of the
mini-batch. This is equivalent to setting P to the identity
matrix in Eq. (10) above. For Siamese networks where we
consider all pairs in the mini-batch we obtain Eq. (9) by
setting P to:

P =


0 ∂g(ŷ1,ŷ2)

∂ŷ1
· · · ∂g(ŷ1,ŷM )

∂ŷ1
∂g(ŷ1,ŷ2)
∂ŷ2

0 · · · ∂g(ŷ2,ŷM )
∂ŷ2

...
...

. . .
...

∂g(ŷ1,ŷM )
∂ŷM

· · · · · · 0

 . (11)

For the ranking hinge loss we can write:

P =


0 a12 · · · a1M
a21 0 · · · a2M

...
...

. . .
...

aM1 · · · aM(M−1) 0

 , (12)

where

aij =

{
0 if lij (ŷi − ŷj) + ε ≤ 0

lij otherwise
(13)

and lij is used to indicate the ordering of the ϕ parameters
used to generate the M images to which f̂ was applied to
derive outputs ŷi and ŷj :

lij =


1 if ϕi ≤ ϕj
−1 if ϕi > ϕj
0 if ϕi and ϕj are not comparable.

(14)

The above analysis works for different parameter settings
ϕ on the same source image. When considering multiple
source images in a mini-batch, only different parameter
settings ϕ on the same image are considered comparable
when defining lij .

Generally, the complexity of training Siamese networks
is ameliorated via different pair sampling techniques.
In [49], the authors propose a hard positive and hard nega-
tive mining strategy to forward propagate a set of pairs and
sample the highest-loss pairs for backpropagation. How-
ever, hard mining comes with a high computational cost
(they report an increase of up to 80% of total computation
cost). In [50] the authors propose semi-hard pair selection,
arguing that selecting hardest pairs can lead to bad local

minima. In [51] the authors take a batch of pairs as input and
choose the four hardest negative samples within the mini-
batch. In parallel with our work on fast backpropagation for
Siamese networks [14], [15] several similar methods have
been developed [12], [13]. To solve for bad local optima,
[12] optimize a smooth upper bound loss function. This is
implemented by considering all possible pairs in a mini-
batch after forwarding the images through the network.
In [13], the N -pair Loss is proposed to compute pairwise
similarity within the batch to construct N − 1 negative
examples instead of one in triplet loss. Hard negative class
mining is applied to improve convergence speed. Both
these works, like ours, prevent the redundant computation
which is introduced by the multiple branches in the Siamese
network.

3.4 Active learning from rankings
The objective of active learning is to reduce the cost of
labeling by prioritizing the most informative samples for
labeling first. Rather than labeling randomly selected exam-
ples from a pool of unlabeled data, active learning methods
analyze unlabeled data with the goal of identifying images
considered difficult and that therefore are more valuable if
labeled. Especially for deep networks, which require many
examples, as well as for applications for which labeling is
very costly, active learning is an important and active area
of research.

We show here how the self-supervised proxy task can be
leveraged for active learning. For this purpose we define a
function C(xi) which estimates the certainty of the current
network on a specific image xi. This estimate allows us to
order the available unlabeled dataset according to certainty.
Labeling the images for which the algorithm is uncertain is
then expected to yield larger improvement in performance
of the network than just randomly adding images.

The certainty function C is defined as:

C(z; θ) =
1

K

∑
ϕi≤ϕj

T (f̂(h(z;ϕi); θ) < f̂(h(z;ϕj); θ)) (15)

where T (s) = 1 if predicate s is true or false otherwise,
and K is the number of sampled parameter pairs (ϕi, ϕj)
applied to each image z. As described in the previous
section, the pairs of parameters ϕi ≤ ϕj can be used to
generate ranked images via the function h. Again, these
pairs can be automatically computed and no annotation is
required.

By design, we know that 0 ≤ C(xi) ≤ 1. Given an
unlabeled dataset and a current state of the trained network
f̂(·, θ̂), we perform the proxy task for a total of K times on
each image and then compute C . We then label images start-
ing from low confidence to high confidence. The process is
detailed in Algorithm 1.

4 IMAGE QUALITY ASSESSMENT BY LEARNING TO
RANK

In this section we apply the framework proposed in the pre-
vious section to the problem of Image Quality Assessment
(IQA) [52]. IQA aims to automatically predict the perceptual
quality of images. IQA estimates should be highly correlated
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Algorithm 1 : Active learning loop.
Input:
D = { (x1, y1) , . . . , (xn, yn) } : labeled samples
E = { z1, . . . , zm } : unlabeled samples

Require:
θ0 : initial network parameters
T : number of active learning cycles
S : number of images added in each cycle

for t = 1 : T
θt ← train(D, θt−1) // Train network on D.
DS ← label(E,S, θt) // Evaluate Eq. (15) for all samples in E,

// and Label S least confident samples.
D ← D

⋃
DS // Update labeled set.

E ← E \DS // Update unlabeled set.

end for
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Fig. 2. Network architecture and ranked pair generation for IQA. Top:
our network for no-reference IQA uses a VGG16 network pretrained on
ImageNet. We decapitate the network and replace the original head with
a new fully-connected layer generating a single output. Bottom: pairs
with known ranking are generated by distorting images with standard,
parametric distortions. Increasing the distortion level guarantees that the
images are of progressively worse quality.

with quality assessments made by a range of very many hu-
man evaluators (commonly referred to as the Mean Opinion
Score (MOS) [53], [54]). We focus here on no-reference IQA
(NR-IQA), which refers to the case where the undistorted
image (called reference image) is not available during the
quality assessment.

The application of CNNs to IQA has resulted in sig-
nificant improvements compared to previous hand-crafted
approaches [6], [7], [8]. These methods had to train their
networks on the small available datasets for IQA. Further
improvements would be expected if larger datasets were
made available. However, the annotation of IQA images
is a labor intensive task, which requires multiple human
annotators for every image. It is therefore an interesting
application field to evaluate our framework, since by adding
ranking as a proxy task, we are able to add unlabeled data
during the training process.

We first discuss existing datasets for IQA and how to
automatically generate IQA rankings. Then we introduce
the network which we train for the IQA task, together with

some application-specific training choices.

4.1 IQA datasets
We perform experiments on two standard IQA datasets:
• LIVE [55]: Consists of 808 images generated from 29

original images by distorting them with five types of
distortion: Gaussian blur (GB), Gaussian noise (GN), JPEG
compression (JPEG), JPEG2000 compression (JP2K) and
fast fading (FF). The ground-truth Mean Opinion Score
for each image is in the range [0, 100] and is estimated
using annotations by 161 human annotators.

• TID2013 [54]: Consists of 25 reference images with 3000
distorted images from 24 different distortion types at
5 degradation levels. Mean Opinion Scores are in the
range [0, 9]. Distortion types include a range of noise,
compression, and transmission artifacts. See the original
publication for the list of specific distortion types.

4.2 Generating ranked image sets for IQA
The IQA datasets LIVE and TID2013 are derived from only
29 and 25 original images, respectively. Deep networks
trained on so few original images will almost certainly have
difficulty generalizing to other images. Here we show how
to automatically generate rankings from arbitrary images
which can be added during the training process (i.e. we
show what function h in Eq. (4) we use to generate IQA
rankings).

Using an arbitrary set of images, we can synthetically
generate deformations of these over a range of distortion in-
tensities. As an example, consider Fig. 2 (bottom) where we
have distorted an image with increasing levels of Gaussian
noise. Although we do not know the absolute IQA score, we
do know that images which are more distorted should have
a lower score than images which are less distorted. This fact
can be used to generate huge datasets of ranked images. We
can use a large variety of images and distortions to construct
the datasets of ranked images.

We use the Waterloo [56] dataset, which consists of
4,744 high quality natural images carefully chosen from the
Internet, to generate a large ranking dataset. To test on the
LIVE database, we generate four types of distortions which
are widely used and common: Gaussian Blur (GB), Gaussian
Noise (GN), JPEG, and JP2K. We apply these distortions at
five levels, resulting in a total of 20 distortions for all images
in the Waterloo dataset. To test on TID2013, we generate 17
out of a total of 24 distortions at five levels, yielding a total of
85 distortions per image (see the Appendix for more details).
There were seven distortions which we could not generate,
however we found that adding the other distortions also
resulted into improvements for the distortions for which we
could not generate rankings.

4.3 IQA network
For the IQA problem we have a training dataset with images
xi and ground truth image quality yi. After generating the
ranked image dataset we can train an IQA network. As a
CNN backbone we use the VGG-16 network, only changing
the last layer to output a single IQA score. With respect to
the basic architecture given in Fig. 1, here we specify the
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architecture we use for IQA estimation as shown in Fig. 2
(top). For the labeled data we use the Euclidean distance
between the prediction of the network ŷi and the ground
truth as the regression loss:

LIQA(yi, ŷi) =
1

N

N∑
i=1

(yi − ŷi)2, (16)

and will optimize this loss jointly with the ranking loss
Lrank as proposed in Eq. (5).

We randomly sample sub-images from the original high
resolution images. We do this instead of scaling to avoid
introducing distortions caused by interpolation or filtering.
The size of sampled images is determined by each network.
However, the large size of the input images is important
since input sub-images should be at least 1/3 of the original
images in order to capture context information. This is a
serious limitation of the patch sampling approach [7], [8]
that samples very small 32 × 32 patches from the original
images. In our experiments, we sample 224 × 224 pixel
images from original images varying from 300 to 700 pixels.

5 CROWD COUNTING BY LEARNING TO RANK

In this section, we adapt the proposed framework to the task
of crowd counting. Perspective distortion, clutter, occlusion,
non-uniform distribution of people, complex illumination,
scale variation, and a host of other scene-incidental imag-
ing conditions render person counting and crowd density
estimation in unconstrained images an daunting problem.

Techniques for crowd counting have been recently im-
proved using Convolutional Neural Networks (CNNs). As
with most CNN architectures, however, these person count-
ing and crowd density estimation techniques are highly
data-driven. For person counting, the labeling burden is
even more onerous than usual. Training data for person
counting requires that each individual person be meticu-
lously labeled in training images. It is for this reason that
person counting and crowd density estimation datasets tend
to have only a few hundred images available for training.
As a consequence, crowd counting networks are expected
to benefit from additional unlabeled data which is used to
train a ranking proxy task.

5.1 Crowd counting datasets
We use two standard benchmark crowd counting datasets:
• UCF CC 50 [57]: This dataset contains 50 annotated im-

ages of different resolutions, illuminations and scenes. The
variation of densities is very large among images from
94 to 4543 persons with an average of 1280 persons per
image.

• ShanghaiTech [10]: Consists of 1198 images with 330,165
annotated heads. This dataset includes two parts: 482
images in Part A which are randomly crawled from the
Internet, and 716 images in Part B which are taken from
busy streets. Both parts are further divided into training
and evaluation sets. The training and test of Part A has
300 and 182 images, respectively, whereas that of Part B
has 400 and 316 images, respectively.

Ground truth annotations for crowd counting typically
consist of a set of coordinates which indicate the ’center’

Algorithm 2 : Algorithm to generate ranked datasets.

Input: A crowd scene image, number of patches k
and scale factor s.

Step 1: Choose an anchor point randomly from the
anchor region. The anchor region is defined
to be 1/r the size of the original image, cen-
tered at the original image center, and with
the same aspect ratio as the original image.

Step 2: Find the largest square patch centered at the
anchor point and contained within the image
boundaries.

Step 3: Crop k − 1 additional square patches, reduc-
ing size iteratively by a scale factor s. Keep
all patches centered at anchor point.

Step 4: Resize all k patches to input size of network.
Output: A list of patches ordered according to the

number of persons in the patch.

(typically head center of a person). To convert this data to
crowd density maps we place a Gaussian with standard
deviation of 15 pixels and sum these for all persons in the
scene to obtain yi. This is a standard procedure and is also
used in [9], [10].

5.2 Generating ranked image sets for counting

Here we show how to automatically generate the rankings
from unlabeled crowd counting images. The main idea is
based on the observation that all patches contained within a
larger patch must have a fewer or equal number of persons
than the larger one (see Fig. 4). This observation allows us to
collect large datasets of crowd images with known relative
ranks. Rather than having to painstakingly annotate each
person we are only required to verify if the image contains
a crowd. Given a crowd image we extract ranked patches
according to Algorithm 2.

To collect a large dataset of crowd images from the
Internet we use two different approaches:
• Keyword query: We collect a crowd scene dataset from

Google Images by using different key words: Crowded,
Demonstration, Train station, Mall, Studio, Beach, all of
which have high likelihood of containing a crowd
scene. Then we delete images not relevant to our
problem by simple visual inspection. In the end, we
collected 1,180 high resolution crowd scene images,
which is about 24x the size of the UCF CC 50 dataset,
2.5x the size of ShanghaiTech Part A, and 2x the size
of ShanghaiTech Part B. Note that no other annotation of
images is performed. Example images from this dataset
are given in Fig. 3 (top row).

• Query-by-example image retrieval: For each annotated
benchmark dataset, we collect an unlabeled dataset
using the training images as queries with the Google
Images visual image search engine. We choose the first
ten similar images and remove irrelevant ones. For
UCF CC 50 we collected 256 images, for ShanghaiTech
Part A 2229 images, and for ShanghaiTech Part B 3819
images. An example of images returned for a specific
query image is given in Fig. 3 (bottom row).
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Fig. 3. Example images from the retrieved crowd scene dataset. (top) Representative images using key words as query. (bottom) Representative
images using training image as query image (the query image is depicted on the left).
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5.3 Crowd density estimation network
We first explain the network architecture which is trained
on available crowd counting datasets with ground truth
annotations (see Fig. 4) . This network regresses to a crowd
density image which indicates the number of persons per
pixel (examples of such maps are given in Fig. 6). A
summation of all values in such a crowd density image
gives an estimate of the number of people in the scene. In
the experimental section we consider this network as the
baseline method to which we compare.

Our baseline network is derived from VGG-16 [58] pre-
trained on ImageNet. VGG-16 consists of 13 convolutional
layers followed by three fully connected layers. We adapt

the network to regress to person density maps by removing
its three fully connected layers and the last max-pooling
layer (pool5) to prevent further reduction of spatial reso-
lution. In their place we add a single convolutional layer (a
3×3×512 filter with stride 1 and zero padding to maintain
same size) which directly regresses to the crowd density
map. As the counting loss Lc we use the Euclidean distance
between the estimated and ground truth density maps, as
given by:

Lc =
1

N

N∑
i=1

(yi − ŷi)2 (17)

where N is the number of images in a training batch, yi is
ground truth person density map of the i-th image in the
batch, and the prediction from the network as ŷi.

To further improve the performance of our baseline net-
work, we introduce multi-scale sampling from the available
labeled datasets during training. Instead of using the whole
image as an input, we randomly sample square patches of
varying size (from 56 to 448 pixels). In the experimental
section we verify that this multi-scale sampling is important
for good performance. Since we are processing patches
rather than images we use ŷi to refer to the estimate of patch
i from now on. The importance of multi-scale processing of
crowd data was also noted in [59].

Finally, we add a summation layer to the network. This
summation layer takes as an input the estimated density
map and sums it to a single number (the estimate of the
number of persons in the image). This output is used to
compute the ranking loss (see Eq. (4)) for the unlabeled
images in the ranked dataset. With respect to the basic
architecture in Fig. 1, we use a sum polling layer as a ranking
specific layer as shown in Fig. 4 (top).

6 EXPERIMENTAL RESULTS

In this section we report on an extensive set of experiments
performed to evaluate the effectiveness of learning from
rankings for Image Quality Assessment in section 6.1 and
crowd counting in section 6.2. We use the Caffe [60] deep
learning framework in all the experiments.
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TABLE 1
Ablation study on the entire TID2013 database.

Method LCC SROCC
Baseline 0.663 0.612
RankIQA 0.566 0.623
RankIQA+FT (Random) 0.775 0.738
RankIQA+FT (Hard) 0.782 0.748
RankIQA+FT (Ours) 0.799 0.780
MT-RankIQA (Random) 0.802 0.770
MT-RankIQA (Hard) 0.810 0.779
MT-RankIQA (Ours) 0.827 0.806

6.1 Image Quality Assessment (IQA)

We performed a range of experiments designed to evaluate
the performance of our approach with respect to baselines
and the state-of-the-art in IQA. These experiments make
use of standard datasets (for benchmark evaluation) and
an additional dataset used for generating ranked distorted
image pairs as explained in section 4.

We use Stochastic Gradient Descent (SGD) with an initial
learning rate of 1e-4 for efficient Siamese network training
and 1e-6 for fine-tuning. Training rates are decreased by
a factor of 0.1 every 10,000 iterations for a total of 50,000
iterations. For both training phases we use `2 weight decay
(weight 5e-4). For multi-task training, we use λ = 1 in
Eq. (5) with a learning rate of 1e-6 on the LIVE dataset
and 1e-5 on TID2013. We found λ = 1 to work well in
initial experiments, but cross validating λ on held-out data
is expected to improve results for specific datasets. During
training we sample a single subimage from each training
image per epoch. When testing, we randomly sample 30
sub-images from the original images, as suggested in [27],
and pass all the trained models. The average of all outputs
of the sub-regions is the final score for each distorted image.

Two evaluation metrics are traditionally used to evaluate
the performance of IQA algorithms: the Linear Correlation
Coefficient (LCC) and the Spearman Rank Order Correlation
Coefficient (SROCC). LCC is a measure of the linear corre-
lation between the ground truth and the predicted quality
scores. Given N distorted images, the ground truth of i-th
image is denoted by yi, and the predicted score from the
network is ŷi. The LCC is computed as:

LCC =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i (yi − y)2
√∑N

i (ŷi − ŷ)2
(18)

where y and ŷ are the means of the ground truth and
predicted quality scores, respectively.

Given N distorted images, the SROCC is computed as:

SROCC = 1− 6
∑N
i=1 (vi − pi)

2

N (N2 − 1)
, (19)

where vi is the rank of the ground-truth IQA score yi in the
ground-truth scores, and pi is the rank of ŷi in the output
scores for all N images. The SROCC measures the mono-
tonic relationship between ground-truth and estimated IQA.

6.1.1 Ablation study
In this experiment, we evaluate the effectiveness of using
rankings to estimate image quality. We compare our multi-

task approach with different baselines: fine-tuning the VGG-
16 network initialized from ImageNet to obtain the map-
ping from images to their predicted scores (which we call
Baseline in our experiments), and two other baselines from
our previous work [15]: VGG-16 (initialized pre-trained Im-
ageNet weights) trained on ranking data (called RankIQA),
and our RankIQA approach fine-tuned on TID2013 after
training using ranked pairs of images (called RankIQA+FT).
In order to evaluate the effectiveness of our sampling
method in the multi-task setting, we also report the accuracy
for multi-task training (called MT-RankIQA) with different
sampling methods: standard random pair sampling, and a
hard-negative mining method similar to [49]. For standard
random pair sampling we randomly choose 36 pairs for
each mini-batch from the training sets. For the hard negative
mining strategy we start from 36 pairs in a mini-batch, and
gradually increase the number of hard pairs every 5000
iterations. For our method we pass 72 images in each mini-
batch. With these settings the computational costs for all
three methods are equal, since at each iteration 72 images
are passed through the network.

We follow the experimental protocol used in HOSA [64].
The entire TID2013 database including all types of distor-
tions is divided into 80% training images and 20% testing
images according to the reference images and their distorted
versions. The results are shown in Table 1, where ALL
means testing all distortions together. All the experiments
are performed 10 times and the average SROCC is reported

From Table 1, we can draw several conclusions. First, it
is hard to obtain good results by training a deep network
directly on IQA data. This is seen in the Baseline results and
is due to the scarcity of training data. Second, competitive
results are obtained using RankIQA without access to the
ground truth of IQA dataset during training the ranking
network, which strongly demonstrates the effectiveness of
training on ranking data. The RankIQA-trained network
alone does not provide accurate IQA scores (since it has
never seen any) but does yield high correlation with the
IQA scores as measured by SROCC. After fine-tuning on the
TID2013 database, we considerably improve performance
for all sampling methods: with random sampling we im-
prove on the baseline by 11%, while our efficient sampling
method further outperforms random sampling by 2.4% in
terms of LCC (similar conclusions can be drawn from the
SROCC results.

Finally, in Table 1 we also compare the three optimiza-
tion methods for multi-task training: random pair sampling,
hard negative mining, and our proposed efficient Siamese
backpropagation. We see that our efficient back-propagation
strategy with multi-task setting obtains the best results,
further improving the accuracy by 2.8% on LCC and 2.6%
on SROCC with respect to RankIQA+FT. This clearly shows
the benefits of the proposed backpropagation scheme. In the
next section, we use MT-RankIQA to refer to our method
trained with the multi-task loss using our efficient Siamese
backpropagation method.

To demonstrate the ability of our approach to generalize
to unseen distortions, we trained our multi-task approach
with different numbers of synthetic distortions as auxiliary
data combined with all labeled data in the TID2013 dataset.
All results are the average of three runs. As shown in
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TABLE 2
Performance evaluation (SROCC) on the entire TID2013 database.

Method #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13
BLIINDS-II [61] 0.714 0.728 0.825 0.358 0.852 0.664 0.780 0.852 0.754 0.808 0.862 0.251 0.755
BRISQUE [62] 0.630 0.424 0.727 0.321 0.775 0.669 0.592 0.845 0.553 0.742 0.799 0.301 0.672

CORNIA-10K [63] 0.341 -0.196 0.689 0.184 0.607 -0.014 0.673 0.896 0.787 0.875 0.911 0.310 0.625
HOSA [64] 0.853 0.625 0.782 0.368 0.905 0.775 0.810 0.892 0.870 0.893 0.932 0.747 0.701

RankIQA [15] 0.891 0.799 0.911 0.644 0.873 0.869 0.910 0.835 0.894 0.902 0.923 0.579 0.431
RankIQA+FT [15] 0.667 0.620 0.821 0.365 0.760 0.736 0.783 0.809 0.767 0.866 0.878 0.704 0.810

MT-RankIQA 0.780 0.658 0.882 0.424 0.839 0.762 0.852 0.861 0.799 0.879 0.909 0.744 0.824
Method #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 ALL

BLIINDS-II [61] 0.081 0.371 0.159 -0.082 0.109 0.699 0.222 0.451 0.815 0.568 0.856 0.550
BRISQUE [62] 0.175 0.184 0.155 0.125 0.032 0.560 0.282 0.680 0.804 0.715 0.800 0.562

CORNIA-10K [63] 0.161 0.096 0.008 0.423 -0.055 0.259 0.606 0.555 0.592 0.759 0.903 0.651
HOSA [64] 0.199 0.327 0.233 0.294 0.119 0.782 0.532 0.835 0.855 0.801 0.905 0.728

RankIQA [15] 0.463 0.693 0.321 0.657 0.622 0.845 0.609 0.891 0.788 0.727 0.768 0.623
RankIQA+FT [15] 0.512 0.622 0.268 0.613 0.662 0.619 0.644 0.800 0.779 0.629 0.859 0.780

MT-RankIQA 0.458 0.658 0.198 0.554 0.669 0.689 0.760 0.882 0.742 0.645 0.900 0.806

TABLE 3
Generalization to unseen distortions. Results of MT-RankIQA with

different numbers of synthetic distortions as auxiliary data combined
with all labeled data in the TID2013 dataset. Results show that also on

the unseen distortions a significant gain in performance is obtained.

Overall LCC accuracy Average gain
Seen distortions Unseen distortions

Baseline 0.687 – –
7 distortions 0.803 +0.102 +0.016
11 distortions 0.817 +0.102 +0.032
15 distortions 0.823 +0.104 +0.067

All 0.829 +0.109 +0.075

Table 3, adding more distortions results in increased overall
performance on the test set. Note also that adding specific
distortions not only consistently improves accuracy on seen
distortions consistently, but also on unseen ones.

6.1.2 Comparison with the state-of-the-art

We compare the performance of our method with state-of-
the-art Full-reference IQA (FR-IQA) and NR-IQA methods
on both TID2013 and LIVE dataset.

Evaluation on TID2013. Table 2 includes results of state-
of-the-art methods. We see that for several very challenging
distortions (14 to 18), where all other methods fail, we obtain
satisfactory results. For individual distortions, there is a
huge gap between RankIQA and other methods on most
distortions. The state-of-the-art method HOSA performs
slightly better than our methods on 6 out of 24 distortions.
For all distortions, RankIQA+FT achieves about 5% higher
than HOSA, and about 3% more is gained by using multi-
task training. Our methods also perform well on distortions
for which were unable to generate rankings. This indicates
that different distortions share some common representation
and training the network jointly on all distortions also
improves results for the distortions for which we did not
generate rankings.

Evaluation on LIVE. As done in [7], [68], we randomly split
the reference images and their distorted version from LIVE
into 80% training and 20% testing sample and compute the
average LCC and SROCC scores on the testing set after
training to convergence. This process is repeated ten times
and the results are averaged. These results are shown in

TABLE 4
LCC (above) and SROCC (below) evaluation on LIVE dataset. We

divide approaches into full-reference (FR-) and no-reference (NR-) IQA.

LCC JP2K JPEG GN GB FF ALL

FR
-I

Q
A PSNR 0.873 0.876 0.926 0.779 0.87 0.856

SSIM [65] 0.921 0.955 0.982 0.893 0.939 0.906
FSIM [66] 0.91 0.985 0.976 0.978 0.912 0.96
DCNN [6] – – – – – 0.977

N
R

-I
Q

A
DIVINE [67] 0.922 0.921 0.988 0.923 0.888 0.917

BLIINDS-II [61] 0.935 0.968 0.98 0.938 0.896 0.93
BRISQUE [62] 0.923 0.973 0.985 0.951 0.903 0.942
CORNIA [63] 0.951 0.965 0.987 0.968 0.917 0.935

CNN [7] 0.953 0.981 0.984 0.953 0.933 0.953
SOM [68] 0.952 0.961 0.991 0.974 0.954 0.962
DNN [28] – – – – – 0.972

MT-RankIQA 0.972 0.978 0.988 0.982 0.971 0.976

SROCC JP2K JPEG GN BLUR FF ALL

FR
-I

Q
A PSNR 0.87 0.885 0.942 0.763 0.874 0.866

SSIM [65] 0.939 0.946 0.964 0.907 0.941 0.913
FSIM [6] 0.97 0.981 0.967 0.972 0.949 0.964

DCNN [6] – – – – – 0.975

N
R

-I
Q

A

DIVINE [67] 0.913 0.91 0.984 0.921 0.863 0.916
BLIINDS-II [61] 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE [62] 0.914 0.965 0.979 0.951 0.887 0.94
CORNIA [63] 0.943 0.955 0.976 0.969 0.906 0.942

CNN [7] 0.952 0.977 0.978 0.962 0.908 0.956
SOM [68] 0.947 0.952 0.984 0.976 0.937 0.964
DNN [28] – – – – – 0.960

MT-RankIQA 0.971 0.978 0.985 0.979 0.969 0.973

Table 4. For fair comparison with the state-of-the-art, we
train our ranking model on four distortions (all but FF),
but we fine-tune our model on all five distortions in the
LIVE dataset to compute ALL. As shown in Table 4 our
approach improves by 0.4% and 1% in LCC and SROCC, re-
spectively, the best NR-IQA results reported on ALL distor-
tions. This indicates that our method outperforms existing
work including the current state-of-the-art NR-IQA method
SOM [68] and DNN [28], and even achieves competitive
results as state-of-the-art FR-IQA method DCNN [6] which,
being a full-reference approach, has the benefit of having
access to the high-quality original reference image.

6.1.3 Active learning for IQA

We demonstrate the effectiveness of active learning on the
IQA problem (see Algorithm 1). As a dataset we consider all
24 distortions for each of 19 reference images from TID2013,
yielding a dataset of 456 image-distortion pairs. Each image
is distorted for each distortion at five distortion levels.
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Fig. 5. Active learning results on TID 2013. We plot LCC as a function
of the percentage of labeled data used from the training set.

During active learning we aim to select which images with
what particular distortion are expected to most improve
performance. We add all five distortion levels of the selected
image with the particular distortion to the labeled pool. The
active learning loop starts with 10% of this data labeled;
hence the labeled samplesD is 10% and the examplesE con-
sist of the remaining 90% of the data without labels. We then
perform T = 9 active learning cycles. In each cycle S = 10%
images with a particular distortion are added incrementally,
using the full training set from the previous iteration to
estimate informativeness for the remaining unlabeled data.
We use K = 100 in the experiment, and compare results
to a baseline of randomly adding 10% additional labeled
samples at each step.

Results for active learning are given in Fig. 5. It is clear
that our active learning algorithm obtains results superior
to random selection. When adding an additional 10% of
data (using a total of 20% labeled data) we achieve similar
accuracy as adding an additional 40% data (using a total of
50% labeled data) with random selection, thereby reducing
the labeling cost by 75% compared to the baseline.

6.2 Crowd counting

Here we report on a range of experiments evaluating our
approach with respect to baselines and the state-of-the-art
methods for crowd counting.

We use SGD with a batch size of 25 for both ranking and
counting, and thus a batch size of 50 for multi-task training.
For the ranking plus fine-tuning method, the learning rate
is 1e-6 for both ranking and fine-tuning. For multi-task
training, we found that λ = 100 yielded good results on
all datasets. Cross validating λ on held-out data is expected
to improve results for specific datasets. Learning rates are
decreased by a factor of 0.1 every 5,000 iterations for a total
of 10K iterations. For both training phases we use `2 weight
decay with a weight of 5e-4. During training we sample one
sub-image from each training image per epoch. We perform
down-sampling of three scales and up-sampling of one scale
on the UCF CC 50 dataset and only up-sampling of one
scale on the ShanghaiTech dataset. The number of ranked

TABLE 5
Ablation study on UCF CC 50 with five-fold cross validation.

Method Split 1 Split 2 Split 3 Split 4 Split 5 Ave MAE
Basic CNN 701.41 394.52 497.57 263.56 415.23 454.45

+ Pre-trained model 570.01 350.63 334.89 184.79 202.41 328.54
+ multi-scale 532.85 307.43 266.75 216.96 216.35 308.06

Ranking+FT 552.68 375.38 241.28 211.66 247.70 325.73
Multi-task (Random) 462.71 345.31 218.71 226.44 210.19 292.67
Multi-task (Hard) 460.35 343.91 208.23 221.75 205.57 287.96
Multi-task (Ours) 443.68 340.31 196.76 218.48 199.54 279.60

crops k = 5, the scale factor s = 0.75, and the anchor region
r = 8 (see Algorithm 2).

Following existing work, we use the mean absolute
error (MAE) and the mean squared error (MSE) to evaluate
different methods. These are defined as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (20)

MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (21)

where N is the number of test images, yi is the ground truth
number of persons in the ith image, and ŷi is number of
persons predicted by the network in the ith image.

6.2.1 Ablation study.
We begin with an ablation study on the UCF CC 50 dataset.
The aim is to evaluate the relative gain of the proposed
improvements and to evaluate the use of a ranking loss
against the baseline. The ranked images in this experiment
are generated from the Keyword dataset. The results are
summarized in Table 5. We can immediately observe the
benefit of using a pre-trained ImageNet model in crowd
counting, with a significant drop in MAE of around 28%
compared to the model trained from scratch. By using
both multi-scale data augmentation and starting from a
pre-trained model, another improvement of around 6% is
obtained.

The Ranking+FT method performs worse than directly
fine-tuning from a pre-trained ImageNet model. This is
probably caused by the poorly-defined nature of the self-
supervised task. To optimize this task the network could
decide to count anything, e.g. ‘hats’, ‘trees’, or ‘people with
red shirts’, or even just ‘edges’ – all of which would satisfy
the ranking constraints that are imposed.

Next, we compare the three sampling strategies for
combining the ranking and counting losses for multi-task
training. When using multi-task training with random pair
sampling, the average MAE is reduced by about 15 points.
Hard mining obtains about 5 points average MAE less than
random sampling. However, our efficient back-propagation
approach reduces the MAE further to 279.6. This shows
that by jointly learning both the self-supervised and crowd
counting tasks, the self-supervised task is forced to focus
on counting persons. Given its superior results, we consider
only the “Multi-task” with efficient back-propagation ap-
proach for the remainder of the experiments.

6.2.2 Comparison with the state-of-the-art

Evaluation on the UCF CC 50 dataset. A five-fold cross-
validation was performed for evaluating the methods. Re-
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Fig. 6. Examples of predicted density maps for the UCF CC 50 (Top row, true count: 3406 prediction: 3052) and ShanghaiTech datasets (Bottom
row, true count: 361 prediction: 365). Left column: crowd image. Middle column: ground truth. Right column: prediction.

TABLE 6
MAE and MSE error on the UCF CC 50 dataset.

Method MAE MSE
Idrees et al. [57] 419.5 541.6

Cross-scene [37] 467.0 498.5
MCNN [10] 377.6 509.1

Onoro et al. [9] 333.7 425.2
Walach et al. [69] 364.4 341.4

Switching-CNN [11] 318.1 439.2
CP-CNN [36] 295.8 320.9
ACSCP [41] 291.0 404.6
CSRNet [39] 266.1 397.5
ic-CNN [44] 260.9 365.5

Multi-task (Query-by-example) 291.5 397.6
Multi-task (Keyword) 279.6 408.1

sults are shown in Table 6. Our multi-task training method
using the unlabeled Keyword Dataset reduces the MAE
from 291.0 to 279.6, which is comparable to ACSCP [41]
which was published at the same time as our original work.
Our approach performs slightly worse than the state-of-the-
art methods CSRNet [39] and ic-CNN [44] (also published
around the same time as our original work), but in general
our model has fewer parameters than CSRNet and a simpler
inference procedure compared to ic-CNN. However, the
MSE of our method on UCF CC 50 dataset is worse than
the state-of-the-art methods [36], [44], [69], but achieves
competitive results compared to [39], [41]. This indicates
that our method and also [41] work better in general
but have more extreme outliers. Compared to training on
the Keyword dataset, learning from the Query-by-example
dataset is slightly worse, which might be because most
images from UCF CC 50 are black and white with low
resolution, which often does not lead to satisfactory query
results. An example of prediction in UCF CC 50 using our
network is shown in Fig. 6.

TABLE 7
MAE and MSE error on ShanghaiTech.

Part A Part B
Method MAE MSE MAE MSE

Cross-scene [37] 181.8 277.7 32.0 49.8
MCNN [10] 110.2 173.2 26.4 41.3

Switching-CNN [11] 90.4 135.0 21.6 33.4
CP-CNN [36] 73.6 106.4 20.1 30.1

ACSCP [41] 75.7 102.7 17.2 27.4
CSRNet [39] 68.2 115.0 10.6 16.0
ic-CNN [44] 68.5 116.2 10.7 16.0

Ours: Multi-task (Query-by-example) 72.0 106.6 14.4 23.8
Ours: Multi-task (Keyword) 73.6 112.0 13.7 21.4

Evaluation on the ShanghaiTech dataset. Looking at
Table 7, we can draw conclusions similar to those on
UCF CC 50. We see here that using the Query-by-example
Dataset further improves by about 2% on ShanghaiTech –
especially for Part A, where our approach surpasses the
state-of-the-art method [36], but is still slightly worse than
CSRNet [39] and ic-CNN [44]. An example of prediction by
our network on ShanghaiTech is given in Fig. 6. For com-
parison, we also provide the results of our baseline method
(including fine-tuning from a pre-trained model and multi-
scale data augmentation) on this dataset: MAE = 77.7
and MSE = 115.9 on Part A, and MAE = 14.7 and
MSE = 24.7 on Part B.

Evaluation on the WorldExpo’10 dataset The World-
Expo’10 dataset [37] consists of 3980 frames of size 576×
720 from 1132 video sequences captured by 108 surveillance
cameras. The dataset is split into training set with 103 scenes
and test set consisting of 5 different scenes. Regions of
interest (ROIs) are provided for the whole dataset, which
are used as a mask during testing. We consider training
directly on the only ground truth labels as a baseline, and
for our multi-task approach, when we test on one specific
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TABLE 8
MAE results on the WorldExpo’10 dataset.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Ave MAE
MCNN [10] 3.4 20.6 12.9 13.0 8.1 11.6

Switching-CNN [11] 4.4 15.7 10.0 11.0 5.9 9.4
CP-CNN [36] 2.9 14.7 10.5 10.4 5.8 8.9

ACSCP [41] 2.8 14.05 9.6 8.1 2.9 7.5
CSRNet [39] 2.9 11.5 8.6 16.6 3.4 8.86
ic-CNN [44] 17.0 12.3 9.2 8.1 4.7 10.3

Baseline 5.0 22.0 14.3 15.7 5.3 12.5
Ours 3.8 17.5 13.8 12.7 5.2 10.5

TABLE 9
MAE and MSE error on the UCSD dataset.

Method MAE MSE
Cross-scene [37] 1.60 3.31

MCNN [10] 1.07 1.35
Switching-CNN [11] 1.62 2.10

ACSCP [41] 1.04 1.35
CSRNet [39] 1.16 1.47

Baseline 1.60 2.13
Ours 1.17 1.55

scene, the rest of scenes in the test set are used to generate
the ranked image set. We compare our multi-task training
to the baseline and other state-of-the-art methods in Table 8.
It is clear that our multi-task training approach outperforms
the baseline in all five cases and achieves comparable results
compared to other methods in terms of MAE.

Evaluation on the UCSD dataset The UCSD dataset [70]
has 2000 frames with a region of interest (ROI) varying
from 11 to 46 persons per image. The resolution of each
frame is fixed and small (238 × 158), so we change the
input of network to 112 × 112 by removing all layers after
pool4 in VGG-16. Thus the output retains the same 1/16
of input size. We follow the same settings as [11], using
frames between 600 and 1400 as training set, and the rest
as test set. In order to train our multi-task approach and
compare fairly to other methods, we generate ranked sets
using the frames from 1 to 600 and test on the frames from
1401 to 2000 (and vice versa). We do not collect additional
unlabeled data since the training and test set are from the
same camera. Results are shown in Table 9. Our baseline
performs similarly to the state-of-the-art methods [11], [39],
but slightly worse than ACSCP [41] and MCNN [10]. Our
multi-task approach reduces the baseline MAE from 1.60 to
1.17. Our multi-task approach works on less dense datasets
like UCSD because, though the baseline might make incor-
rect predictions on patches with the almost same number
of headcounts, our learning-to-rank branch can constrain it
and ensure correct ranking predictions.

Evaluation on the UCF-QNRF dataset. UCF-QNRF [46] is
a very challenging dataset consisting of 1,535 images with
average of 815 people per image. The average resolution of
images is much larger compared to other datasets, with im-
ages up to 6,000×9,000 pixels. We resize all images to have
a maximum dimension of 1024 pixels without changing the
aspect ratio. The Keyword Dataset is used as unlabeled data
to for the multi-task learning. Results are shown in Table 10,
which indicate that our technique consistently improves
counting performance – even on datasets like UCF-QNRF
with significantly more labeled training samples. Compared

TABLE 10
MAE and MSE error on the UCF-QNRF dataset.

Method MAE MSE
MCNN [10] 277 426

Switching-CNN [11] 228 445
CompositionLoss [46] 132 191

Baseline 137 228
Ours 124 196

TABLE 11
Transfer learning across datasets. Models were trained on Part A of

ShanghaiTech and tested on UCF CC 50.

Method MAE MSE
MCNN [10] 397.6 624.1

Counting only 349.5 475.7
Multi-task 337.6 434.3

to our baseline, the MAE is reduced from 137 to 124 and
MSE is down to 196. Our method outperforms all other
methods including CompositionLoss [46] in MAE and per-
forms slightly worse in MSE.
Evaluation on transfer learning. As proposed in [10], to
demonstrate the generalization of the learned model, we
test our method in the transfer learning setting by using
Part A of the ShanghaiTech dataset as the source domain
and using UCF CC 50 dataset as the target domain. The
model trained on Part A of ShanghaiTech is used to predict
the crowd scene images from UCF CC 50 dataset, and the
results can be seen in Table 11. Using only counting infor-
mation improves the MAE by 12% compared to reported
results in [10]. By combining both ranking and counting
datasets, the MAE decreases from 349.5 to 337.6, and MSE
decreases from 475.7 to 434.3. In conclusion, these results
show that our method significantly outperforms the only
other work reporting results on the task of cross-dataset
crowd counting.

6.2.3 Active learning for crowd counting
We use the Shanghai Part A dataset to evaluate our active
learning approach on Crowd counting. We use 10% of
the training set as the initially labeled training samples D
(and E the remaining 90%), and set S to add 10% of the
training images in each of the T = 9 active learning cycles
(see Algorithm 1). We use K = 100 in this experiment
to evaluate ranking certainty. Again we compare to the
baseline of randomly selecting images from E. The result is
shown in Fig. 7. Our approach performs consistently better
than random selection in terms of MAE. We obtain similar
results with 20% of the training data as random approach
does with 40% – reducing the labeling effort by 50%. These
results also show that performance saturates after 60% and
no further improvement is obtained by adding the last
40% images considered least useful by the active learning
algorithm. The results clearly show that our active learning
method correctly identifies the images, which when labeled,
contribute most to an improved crowd counting network.

7 CONCLUSION

In this article we explored ranking as a self-supervised
proxy task for regression problems. For many regression
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Fig. 7. Active learning results on Shanghai A. MAE is plotted as a
function of the percentage of labeled data from the training set.

problems the collection of supervised data is an expensive
and laborious process. We showed, however, that there exist
some problems for which it is easy to obtain ranked image
sets, and that these ranked image sets can be exploited
to improve the training of the network. In addition, we
proposed a method for fast backpropagation for the rank-
ing loss. This method removes the redundant computation
which is introduced by the multiple branches of Siamese
networks, and instead uses a single branch after which all
possible pairs of the minibatch are combined (rather than
just a selection of pairs).

We applied the proposed framework to two regression
problems: Image Quality Assessment and crowd counting.
In the case of Image Quality Assessment, the ranked data
sets are formed by adding increasing levels of distortions
to images. For crowd counting, ranked sets are formed by
comparing image crops which are contained within each
other: a smaller image contained in another larger one will
contain the same number or fewer persons than the larger
image. Experimental results show that for both applications
results improve significantly when adding unlabeled data
for the ranking task. In addition, we have shown that the
best results are obtained when using our efficient backprop-
agation method in a multi-task setting.

We have also shown that the proxy task can be used as an
informativeness measure for unlabeled images. The number
of errors made on the proxy task can be used to drive an
active learning algorithm to select the best images to label
from a pool of unlabeled ones. These images, once added to
the training set, will most improve the performance of the
network. Experimental results show that, for both IQA and
crowd counting, this method can reduce the labeling effort
by a large margin.
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APPENDIX
DISTORTIONS GENERATED FOR TID2013

The TID2013 dataset consists of 25 reference images with
3000 distorted images from 24 different distortion types at 5
degradation levels. Mean Opinion Scores are in the range [0,
9]. Distortion types include a range of noise, compression,
and transmission artifacts. We generate 17 out of the 24
distortions for training our networks. For the distortions
which we could not generate, we apply fine-tuning from
the network trained from the other ones. The generations
details are as follows (distortions in bold are synthetically
generated, while those in normal typeface we do not gener-
ate):

• #01 additive white Gaussian noise: The local variance
of the Gaussian noise added in RGB color space is set
to be [0.001, 0.005, 0.01, 0.05].

• #02 additive noise in color components: The local
variance of the Gaussian noise added in the YCbCr
color space is set to be [0.0140, 0.0198, 0.0343, 0.0524].

• #03 additive Gaussian spatially correlated noise: there
was insufficient detail in the original TID2013 pa-
per [54] about how spatially correlated noise was gen-
erated and added to reference images.

• #04 masked noise: there was insufficient detail in the
original TID2013 paper [54] about how masks were
generated.

• #05 high frequency noise: The local variance of the
Gaussian noise added in the Fourier domain is set to be
[0.001, 0.005, 0.01, 0.05] after which it is multiplied by a
high-pass filter.

• #06 impulse noise: The local variance of “salt & pep-
per” noise added in RGB color space is set to be [0.005,
0.01, 0.05, 0.1].

• #07 quantization noise: The quantization step is set to
be [27, 39, 55, 76].

• #08 Gaussian blur: 2D circularly symmetric Gaussian
blur kernels are applied with standard deviations set to
be [1.2, 2.5, 6.5, 15.2].

• #09 image denoising: The local variance of the Gaus-
sian noise added in RGB color space is [0.001, 0.005,
0.01, 0.05]. Followed by the same denoising process as
in [?].

• #10 JPEG compression: The quality factor that deter-
mines the DCT quantization matrix is set to be [43, 12,
7, 4].

• #11 JPEG2000 compression: The compression ratio is
set to be [52, 150, 343, 600].

• #12 JPEG transmission errors: the precise details of how
JPEG transmission errors were introduced was not clear
and we were unable to reproduce this distortion type.

• #13 JPEG2000 transmission errors: the precise details
of how JPEG2000 transmission errors were introduced
was not clear and we were unable to reproduce this
distortion type.

• #14 non eccentricity pattern noise: Patches of size
15x15 are randomly moved to nearby regions [54]. The
number of patches is set to [30, 70, 150, 300].

• #15 local blockwise distortion of different intensity:
Image patches of 32x32 are replaced by single color
value (color block) [54]. The number of color blocks we

distort is set to be [2, 4, 8, 16].
• #16 mean shift: Mean value shifting generated in both

directions is set to be: [-60,-45,-30,-15] and [15, 30, 45,
60].

• #17 contrast change: Contrast change generated in both
directions is set to be: [0.85, 0.7, 0.55, 0.4] and [1.2, 1.4,
1.6, 1.8].

• #18 change of color saturation: The control factor as in
TID2013 paper [54] is set to be: [0.4, 0, -0.4, -0.8].

• #19 multiplicative Gaussian noise: The local variance
of the Gaussian noise added is set to be [0.05, 0.09,0.13,
0.2].

• #20 comfort noise: the authors of [54] used a proprietary
encoder unavailable to us.

• #21 lossy compression of noisy images: the authors
of [54] used a proprietary encoder unavailable to us.

• #22 image color quantization with dither: The quanti-
zation step is set to be: [64, 32, 16, 8].

• #23 chromatic aberrations: The mutual shifting of in R
and B channels is set to be [2, 6, 10, 14] and [1, 3, 5, 7],
respectively.

• #24 sparse sampling and reconstruction: the authors
of [54] used a proprietary encoder unavailable to us.


