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1 Introduction

Throughout this note G will be a finite group and cd(G) will be the set of degrees of irreducible
characters of G. A theorem of Thompson says that if every degree in cd(G) − {1} is divisible by
some prime p, then G has a normal p-complement (see Corollary 12.2 of [5] or Theorem 23.3 of
[4]). In [2], Berkovich showed that more can be said in this situation. In particular, he proved
that if p divides every degree in cd(G)− {1}, then G is solvable. In this paper, we will generalize
Berkovich’s result.

We define Γ(G) to be the graph whose vertex set is cd(G) − {1}. There is an edge between a
and b if (a, b) > 1. This is the common-divisor character degree graph. If p divides every degree
in cd(G) − {1}, then Γ(G) is a complete graph. We will show that Berkovich’s conclusion can be
obtained by assuming only that Γ(G) is a complete graph.

Main Theorem. If Γ(G) is a complete graph, then G is a solvable group.

This result illustrates one difference between the character degree sets of solvable and nonsolv-
able groups since there do exist solvable groups G with Γ(G) a complete graph. First, if G is a
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p-group, then Γ(G) is a complete graph. Let p, q, and r be distinct primes. In Theorem B of [12],
Turull constructs for every p-group A of order pl, a finite {q, r}-group H and an action of A on H so
that CH(A) = 1 and the Fitting height of H is l. Taking G to be the resulting semi-direct product,
it follows from Glauberman correspondence, Theorem 13.1 of [5] or Theorem 18.15 of [4], that the
principal character of H is the only G-invariant character in Irr(H), and it follows that p divides
every degree in cd(G). Finally, the third author along with Moretó and Wolf has constructed in [7]
for every pair of odd primes (p, q) where p is congruent to 1 modulo 3 and q divides p+ 1 a solvable
group G with cd(G) = {1, 3q, p2q, 3p3}. Taking direct products of G with itself we can get groups
with many character degrees that have Γ(G) a complete graph, but no prime divides every degree.

To understand the situation when Γ(G) is a complete graph and G is a solvable group there
seem to be two cases that need to be studied. The first is the case where some prime p divides
every degree in cd(G) − {1}, and the second is the case where no such prime p exists. We have
seen that if G is a group from the first case, then there is no bound on either the derived length
or the Fitting height of G. On the other hand, Berkovich does obtain some additional information
regarding the structure of G in [2]. In the case where there is no prime p dividing all the degrees
in cd(G)− {1}, we have little information since we have few examples.

When looking at the literature, there have been few results about the graph Γ(G), and the only
result we know of regarding Γ(G) when G is nonsolvable is due to McVey. In [9], he proves that
if G is a nonsolvable group, and Γ(G) is connected, then Γ(G) has diameter at most 3. Notice
that our result says in this situation that Γ(G) has diameter at least 2. Examples show that both
diameters occur among nonsolvable groups.

In the literature, usually another graph ∆(G) has been attached to cd(G). This graph takes
the primes dividing degrees in cd(G) to be its vertices, and there is an edge between p and q if pq
divides some degree a ∈ cd(G). It is not surprising that these two graphs are closely related. It is
not difficult to show that one is connected if and only if the other is, and in this case that their
diameters differ by at most 1 (see [8]). Recently, it has been shown that ∆(G) is a complete graph
for most simple groups (see [13], [14], and [15]), which perhaps makes it surprising that Γ(G) is
never a complete graph for a nonsolvable group G.

Using tensor-induction the theorem is reduced to the case where G is almost simple. If G is a
group of Lie-type, the Steinberg character has prime power degree. With the Steinberg character
in hand, Thompson’s result implies the theorem. The alternating and sporadic cases are handled
by explicitly listing two characters of relatively prime degree.

2 Results

Before we actually prove the Main Theorem, we gather some facts. Our proof will be based on the
classification of finite simple groups. The main point of the classification is that if S is a nonabelian
simple group, then S is either a simple group of Lie type, an alternating group, one of 26 sporadic
simple groups, or the Tits group. We gather information on each of these types of simple groups.

We begin with the simple groups of Lie type. For these groups, we look at a particular character
called the Steinberg character. The Steinberg character and its properties can be found in many
places, we will use Chapter 6 of [3] for our reference. For us, the important property of the Steinberg
character is that its degree is a prime power, which is the following result found as Theorem 6.4.7
of [3].
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Theorem 1. Let G be a nonabelian simple group of Lie type with defining characteristic p. If χ is
the Steinberg character for G, then χ(1) = |G|p.

We also need the following result regarding the Steinberg character which was proved in [10]
and [11].

Theorem 2 (Schmid). Let N be a normal subgroup of a group G, and suppose that N is isomorphic
to a finite simple group of Lie type. If θ is the Steinberg character for N , then θ extends to G.

We next consider the alternating groups. We make the observation that (n − 1)(n − 2)/2 =
(n2 − 3n + 2)/2 = (n2 − 3n)/2 + 2/2 = n(n − 3)/2 + 1, and so, the numbers n(n − 3)/2 and
(n− 1)(n− 2)/2 are relatively prime.

Theorem 3. If n ≥ 6, then Irr(Alt(n)) contains characters of degree n(n−3)/2 and (n−1)(n−2)/2
that extend to Sym(n).

Proof. Taking into account that Alt(n) is 4-transitive for n greater than 5, we can define two
irreducible characters σ and τ for Alt(n), of degree n(n− 3)/2 and (n− 1)(n− 2)/2 respectively, as
in Theorem 11.9 of [4]. It is clear by the definition that both these characters allow an extension
to Sym(n).

For the sporadic groups, the following fact can be found in the atlas, [1]. Often the Tits group,
which we denote by 2F2(4)′, is lumped in with the groups of Lie type, and the arguments we use for
the groups of Lie type could be adapted for the Tits group. Since the Tits group is in the atlas, it
is easier to include it with the sporadic groups. Table 1 will list the atlas characters that we need.

Theorem 4. Let S be a sporadic simple group or the Tits group, and let A be the automorphism
group of S. Then there exist nonlinear characters χm, χn ∈ Irr(S) so that (χm(1), χn(1)) = 1 and
both χm and χn extend to A.

For the last of the preliminary facts, we will need tensor induction of characters. There are
several sources for tensor induction. We will be using [6]. Let H be a subgroup of a group G, and
let T be a right transversal for H in G. If g ∈ G and t ∈ T , then define t · g to be the element of
T that lies in Htg. This defines an action of G on T . Take T0 to be a set of orbit representatives
for the action of 〈g〉 on T via ·, and let s(t) denote the size of the 〈g〉-orbit containing t. If θ is a
character of H, we define θ⊗G as a function of G by θ⊗G(g) =

∏
t∈T0

θ(tgs(t)t−1). It is proved in

[6] that θ⊗G is a character. In addition, if N is a normal subgroup of G so that N ⊆ H, then it is
proved in Lemma 4.1 of [6] for n ∈ N that θ⊗G(n) =

∏
t∈T θ(tnt

−1). We note that tensor induction
is also described in Theorem 25.3 of [4].

Using tensor induction, we prove the following lemma. This lemma should be compared with
Lemma 25.5 of [4].

Lemma 5. Let N be a minimal normal subgroup of G so that N = S1 × · · · × St, where Si ∼= S, a
nonabelian simple group. Let A be the automorphism group of S. If σ ∈ Irr(S) extends to A, then
σ × · · · × σ ∈ Irr(N) extends to G.

Proof. Let H = NG(S1) and C = CG(S1). We know that G acts transitively on {S1, . . . , St}, so
|G : H| = t. Take T to be a right transversal for H in G, and label the elements in T = {x1, . . . , xt}
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so that Sxi
1 = Si. Let σi ∈ Irr(N) be the character whose ith component is σ, and the other

components are 1S . Observe that σxi
1 = σi. Also,

∏t
i=1 σi = σ × · · · × σ ∈ Irr(N).

We know that H/C is isomorphic to a subgroup of the automorphism group of S1, and so, H/C
is isomorphic to a subgroup of A. Also, we know that S1 ∩C = Z(S1) = 1, so S1C = S1 ×C ⊆ H.
Observe that N ∩C = S2×· · ·×St, so σ1 extends to σ×1C ∈ Irr(S1C). Now, we know that σ×1C
viewed as a character of S1C/C ∼= S1 extends to the automorphism group of S1, so σ× 1C extends
to θ ∈ Irr(H/C). We let χ = θ⊗G.

We will show that χ is an extension of σ × · · · × σ. Given an element n ∈ N , we have

χ(n) = θ⊗G(n) =
t∏

i=1

θ(xinx
−1
i ) =

t∏
i=1

σ1(xinx
−1
i ) =

t∏
i=1

σxi
1 (n) =

t∏
i=1

σi(n) = (σ × · · · × σ)(n).

It follows that χN = σ × · · · × σ as desired.

We now are ready to prove the main theorem.

Proof of Main Theorem. We will prove the contrapositive. In other words, we assume that G is
not solvable, and we show that Γ(G) is not a complete graph. Since G is not solvable, we can find
normal subgroups M and N in G so that N/M is a nonabelian chief factor for G. Given elements
a, b ∈ cd(G/M), it is easy to see that a and b are adjacent in Γ(G/M) if and only if they are
adjacent in Γ(G). Thus, it suffices to show that Γ(G/M) is not a complete graph, and so, we may
assume that M = 1.

Now, N is a nonabelian minimal normal subgroup of G, so N = S1 × · · · × St where Si ∼= S
for some nonabelian simple group S. First, suppose that S is simple group of Lie type with
characteristic p for some prime p. Take σ to be the Steinberg character of S so σ(1) is a power of
p. In light of Theorem 2, we can use Lemma 5 to see that (σ(1))t lies in cd(G). Since G does not
have a normal p-complement, we can use Thompson’s theorem (Corollary 12.2 of [5]) to see that
cd(G) − {1} must have a degree a that is not divisible by p. Hence, (σ(1))t and a are relatively
prime, so Γ(G) is not a complete graph.

Suppose that S is an alternating group on n items with n ≥ 7 or S is a sporadic simple group
or the Tits group. (Note that Alt(5) ∼= PSL2(4) ∼= PSL2(5) and Alt(6) ∼= PSL2(9), so these two
cases have already been handled.) For n ≥ 7, we know that the automorphism group of Alt(n) is
Sym(n). Let A be the automorphism group of S. We use Theorem 3 or Theorem 4 to find nonlinear
characters σ, τ ∈ Irr(S) so that (σ(1), τ(1)) = 1 and σ and τ both extend to A. Thus, we may use
Lemma 5 to see that (σ(1))t and (τ(1))t both lie in cd(G). Obviously, these degrees are relatively
prime, so Γ(G) is not a complete graph.
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Table 1: Degrees of Sporadic Groups and the Tits Group

Group Chars. Degrees

M11 χ2 10 = 2 · 5
χ5 11

M12 χ7 54 = 2 · 33
χ8 55 = 5 · 11

J1 χ4 76 = 22 · 19
χ6 77 = 7 · 11

M22 χ2 21 = 3 · 7
χ5 55 = 5 · 11

J2 χ6 36 = 22 · 32
χ13 175 = 52 · 7

M23 χ2 22 = 2 · 11
χ3 45 = 32 · 5

2F4(2)′ χ4 27 = 33

χ8 325 = 52 · 13

HS χ2 22 = 2 · 11
χ7 175 = 52 · 7

J3 χ6 324 = 23 · 34
χ13 1615 = 5 · 17 · 19

M24 χ2 23
χ3 45 = 32 · 5

M cL χ2 22 = 2 · 11
χ14 5103 = 36 · 7

He χ9 1275 = 3 · 52 · 17
χ15 6272 = 27 · 72

Ru χ5 783 = 33 · 29
χ20 45500 = 22 · 53 · 7 · 13

Suz χ2 143 = 11 · 13
χ43 248832 = 210 · 35

Group Chars. Degrees

O′N χ2 10944 = 26 · 32 · 19
χ19 116963 = 73 · 11 · 31

Co3 χ2 23
χ5 275 = 52 · 11

Co2 χ2 23
χ4 275 = 52 · 11

Fi22 χ56 1441792 = 217 · 11
χ57 1791153 = 39 · 7 · 13

HN χ10 16929 = 34 · 11 · 19
χ45 3200000 = 210 · 55

Ly χ7 120064 = 28 · 7 · 67
χ50 53765625 = 3 · 56 · 31 · 37

Th χ2 248 = 23 · 31
χ7 30875 = 53 · 13 · 19

Fi23 χ4 5083 = 13 · 17 · 23
χ94 504627200 = 218 · 52 · 7 · 11

Co1 χ3 299 = 13 · 23
χ17 673750 = 2 · 54 · 72 · 11

J4 χ2 1333 = 31 · 43
χ11 1776888 = 23 · 32 · 23 · 29 · 37

Fi′24 χ2 8671 = 23 · 29 · 13
χ6 1603525 = 52 · 73 · 11 · 17

B χ2 4371 = 3 · 31 · 47
χ119 2642676197359616 = 239 · 11 · 19 · 23

M χ2 196883 = 59 · 71 · 47
χ16 8980616927734375 = 59 · 76 · 112 · 17 · 19
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[7] M. L. Lewis, A. Moretó, and T. R. Wolf, Non-divisibility among character degrees, J.
Group Theory 8 (2005), 561-588.

[8] M. L. Lewis, An overview of graphs associated with character degrees and conjugacy class
sizes in finite groups, to appear in Rocky Mountain J. Math.

[9] J. K. McVey, Bounding graph diameters of nonsolvable groups, J. Algebra 282 (2004), 260-
277.

[10] P. Schmid, Rational matrix groups of a special type, Linear Algebra Appl. 71 (1985), 289-293.

[11] P. Schmid, Extending the Steinberg representation, J. Algebra 150 (1992), 254-256.

[12] A. Turull, Generic fixed point free action of arbitrary finite groups, Math. Z. 187 (1984),
491-503.

[13] D. L. White, Degree graphs of simple groups of exceptional Lie type, Comm. Algebra 32
(2004), 3641–3649.

[14] D. L. White, Degree Graphs of Simple Linear and Unitary Groups, to appear in Comm.
Algebra.

[15] D. L. White, Degree Graphs of Simple Orthogonal and Symplectic Groups, to appear in J.
Algebra.

6


