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Regularized quadratic penalty methods for
shape from shading

Stefania Bellavia, Lapo Governi, Alessandra Papini and Luca
Puggelli

Abstract. Shape from shading (SFS) denotes the problem of recon-
structing a 3D surface, starting from a single shaded image which rep-
resents the surface itself. Minimization techniques are commonly used
for solving the SFS problem, where the objective function is a weighted
combination of the brightness error, plus one or more terms aiming
to obtain a valid solution. We present a regularized quadratic penalty
method where quadratic penalization is used to adaptively adjust the
smoothing weights, and regularization improves the robustness and re-
liability of the procedure. A nonmonotone Barzilai-Borwein method is
employed to efficiently solve the arising subproblems. Numerical results
are provided showing the reliability of the proposed approach.

Keywords. Shape from shading, quadratic penalty methods, quadratic
regularization, Barzilai-Borwein method.

AMS Subject Classification: 65C20; 65K05

1. Introduction
Shape from shading is a well known method for surface retrieval put for-
ward in [15] which, as the name itself suggests, bases the reconstruction of
the surface on the shading analysis of a single 2D image. Due to minimal
available data, shape from shading is an intrinsically difficult and ill-posed
problem, whose solution is based on the relationship linking surface normals,
light direction and brightness at each point of the image. If the surface is
Lambertian with constant albedo (i.e. the fraction of light that is reflected
by the surface, with values between 0 and 1), the light source is sufficiently
far from the scene as to consider the light beams as parallel, and the scene is
not affected by distortions caused by optics, the following equation subsists
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at any image point (x, y):

LT N(x, y) =
1

ρ
E(x, y) (1)

where: L = [lx, ly, lz]
T is the unit-vector opposed to light direction, N(x, y) =

[nx(x, y), ny(x, y), nz(x, y)]
T is the unknown outward normal to the surface,

ρ is the albedo, and E(x, y) the brightness, that is the normalized grey-level
(between 0 and 1) of the given 2D image. This equation, named irradiance
equation, has infinite valid solutions. In fact, (1) merely implies that the
surface normal N lies on the lateral surface of the cone whose axis is parallel
to L and whose semi-aperture θ depends on the brightness of the pixel itself
as follows:

θ(x, y) = arccos(E(x, y)/ρ).
Hence SFS is a challenging inverse problem which by adding suitable con-
straints aims to retrieve a specific surface that both satisfies (1) and best
reproduces the expected one.

SFS has been extensively studied in literature, as it is shown by the
long list of references in [30, 7, 27], but still of actual interest as it arises in
a number of applications. The approaches proposed so far to solve the SFS
problem can be divided into two main classes where research is still active
[4, 7, 30]: methods based on resolution of PDE and variational methods.

The first approach attempts to directly solve the nonlinear partial dif-
ferential equation obtained by rewriting equation (1) in terms of the unknown
surface gradient. Let z = u(x, y) denote the surface to be reconstructed, and

∇u(x, u) = [
∂u(x, y)

∂x
,
∂u(x, y)

∂y
]T ≡ [p(x, y), q(x, y)]T

its gradient. Recall that N(x, y) can be expressed in terms of [p(x, y), q(x, y)]
as follows:

N(x, y) =
[−p(x, y),−q(x, y), 1]T√
1 + p(x, y)2 + q(x, y)2

; (2)

then using (2) in (1) we obtain the PDE
E(x, y)

ρ

√
1 + p(x, y)2 + q(x, y)2 = lz − lxp(x, y)− lyq(x, y).

A number of papers appeared starting from works by Horn [15, 16]. Here we
only mention [2, 10, 16, 20, 23, 25], referring to the two surveys [7, 30] for a
comprehensive list.

Variational (or minimization) methods (see e.g. [4, 12, 14, 18, 19, 26, 29])
are instead based on the hypothesis that the expected surface minimizes an
appositely designed functional. The main strength of this approach is its
high robustness. In particular, minimization methods do not require perfectly
shaded images, or exact settings (such as light direction), but allow in both
cases some approximations. We refer to the review paper [7] for a thorough
presentation of the two approaches; here we consider the variational one. The
functional to be minimized is usually expressed in terms of surface normals
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or surface gradients, since attempts to minimize directly with respect to the
height may exhibit problems of convergence or slowness (see e.g. [7]). Then,
a second step is needed to retrieve the height u(x, y) corresponding to the
computed surface normals or gradients. Though interesting by itself, this issue
is out of the scope of this work, and we refer to [8, 12, 28] for a discussion on
efficient methods performing this task. In our experiments we adopted the
geometrical approach proposed in [28].

Several models have been proposed to solve the SFS problem via vari-
ational methods, for example:

min
p,q

B(p, q) + λSS(p, q), (3)

min
p,q

B(p, q) + λII(p, q), (4)

or a combination of the previous two:
min
p,q

B(p, q) + λSS(p, q) + λII(p, q), (5)

where
B(p, q) =

∫
Ω

[E(x, y)− ρLT N(p(x, y), q(x, y))]2dxdy,

S(p, q) =
∫
Ω

[||∇p(x, y)||22 + ||∇q(x, y)||22]dxdy,

I(p, q) =
∫
Ω

(
∂p(x, y)

∂y
− ∂q(x, y)

∂x

)2

dxdy.

B(p, q) is the brightness term, which forces the obtained normal map (or
surface gradient) of the retrieved surface to satisfy equation (1) on the re-
construction domain Ω, that is to generate an image as close as possible to
the input one, under the same lighting condition; S(p, q) is the smoothness
term, that forces the retrieved surface slope to change gradually, and conse-
quently to generate the smoothest surface possible; I(p, q) is the integrability
term, used to generate integrable normal maps, i.e. normal maps relative to
geometrically feasible surfaces. λS and λI are non-negative weights, called
smoothness factor and integrability factor, respectively. Problems (3-5) are
usually discretized and then solved by a number of algorithms, going from
heuristic techniques to more complex gradient-based methods [7].

Each of the above models may render valid solutions provided λS and
λI are suitably chosen. However, though crucial for the quality of the re-
constructed surface, the choice of the parameters λS and λI has rarely been
rigorously discussed, and is often left to heuristic/experimental considera-
tions. Here, by using a penalty quadratic minimization approach [22], we
devise a procedure for the solution of the (discretized) model (3) where an
a-priori choice of the smoothing parameter λS is not needed anymore, since
λS is adaptively adjusted.

Another known criticality of the variational approach is that the true
solution may not exactly solve the model problem; indeed, the smoothness
and integrability terms are in fact constraints to overcome the indefinitness
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of the irradiance equation by imposing additional regularity to the solution.
As a consequence confirmed by experiments, the iterative methods used to
solve an SFS minimization problem may in some cases walk away from the
sought solution, even if this is given as initial guess (see e.g. [17]). In order
to address this criticality of the variational approach, we propose a new reg-
ularized quadratic penalty method for shape from shading problems, where
a suitable regularization term is added to the objective function at each step
of the quadratic penalty approach. The convergence behaviour of the result-
ing approach is analyzed from a theoretical point of view. The procedure we
present here is new in the context of SFS. We are only aware of the paper [21],
where a continuation method is employed to adaptive choose the parameter
λS . However in [21] minimization problems are solved directly with respect
to surface height and the regularization term is not employed.

As a further contribution, we investigate on the application of the non-
monotone Barzilai-Borwein method [24] for solving the minimization prob-
lems which arise in our regularized quadratic penalty procedure. Barzilai-
Borwein is a globally convergent method of gradient-type endowed with a
nonmonotone line-search technique. This choice is motivated by the follow-
ing considerations. Gradient-type methods are particularly well-suited for this
class of problems since functions and gradients evaluation can be performed at
a low computational cost. Moreover, among other gradient-type algorithms,
we focused on the Barzilai-Borwein one because of its faster practical con-
vergence. This behaviour is due to the choice of the steplength, used in the
line-search to update the iterate, which is somehow related to the spectrum of
the Hessian [1, 3, 24]; indeed, the idea that such a steplength strategy speeds
up the convergence of gradient methods has gained widespread acceptance
in the last years [1, 5, 6].

Experiments performed so far, confirm the efficiency and reliability of
the proposed procedure.

The paper is organized as follows. In Section 2 we introduce the dis-
cretized SFS problem. In Section 3 our regularized quadratic penalization
approach is presented and analyzed. Algorithmic details are discussed in Sec-
tion 4, while numerical results are reported in Section 5. Final remarks are
given in Section 6.

2. Discretized SFS model
Let E ∈ Rm×n denote the given input image discretized by an m × n grid
of pixels, Ni,j = [Nx,ij , Ny,ij , Nz,ij ]

T the unit normal at pixel (i, j), and
[pi,j , qi,j ] the value of the vector [p, q] at pixel (i, j). Then the discretized
brightness functional takes the form:

B(N) =

m∑
i=1

n∑
j=1

[
Ei,j − ρLT Ni,j

]2
, (6)
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where
N = (Nx,11, Nx,21, . . . , Nx,mn, Ny,11, Ny,21, . . . , Ny,mn,

Nz,11, Nz,21, . . . , Nz,mn)
T .

Further, using classical forward finite differences to replace gradients and
partial derivatives of p and q, the smoothness and integrability terms are
given by

S(ν) =

m−1∑
i=1

n−1∑
j=1

[
(pi,j − pi,j+1)

2 + (pi,j − pi+1,j)
2

+(qi,j − qi,j+1)
2 + (qi,j − qi+1,j)

2
]
, (7)

I(ν) =

m−1∑
i=1

n−1∑
j=1

(pi,j+1 − pi,j − qi+1,j + qi,j)
2
, (8)

with
ν = (p11, p21, . . . , pn1, p12, . . . , pmn,

q11, q21, . . . , qn1, q12, . . . , qmn)
T .

Recalling (2), we denote by N = N (ν) the nonlinear function of ν such that

Ni,j = Ni,j(νi,j) =
1√

1 + p2i,j + q2i,j

[−pi,j ,−qi,j , 1]
T ;

hence B = B(N (ν)) is a nonquadratic function of ν, which in the following
will be simply denoted by B(ν).

In practice, the size of the unknown vector ν is reduced by removing
background pixels from the discretized reconstruction domain, ΩD. To this
aim we used the interactive procedure proposed in [13], which allows to im-
pose a set of suitable conditions on surface normals not only at background
pixels, but also at singular points like white pixels (where normals are equal
to the light direction L). This helps to overcome the concave/convex ambi-
guity and to drive the resolution towards the expected result. In the rest of
the paper we will denote by ν ∈ R2M the unknown vector, with M < nm.
Discretized version of problems (3)-(5) are then easily derived using (6)-(8).

Here we change point of view and consider the following formulation of
the SFS problem, alternative to (3):

minS(p, q)
B(p, q) = 0 ,

(9)

and its discretization, which does not depend on the smoothing parameter
λS :

minS(ν)
bi,j(ν) = 0 , (i, j) ∈ ΩD ,

(10)

where bi,j(ν) = Ei,j − ρLT Ni,j(νi,j). Observe that the global minimizer of
(9) is the smoothest surface which satisfies the brightness constraint. In the
next section we will see how, by using a penalty quadratic minimization
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approach [22], the solution of the constrained problem (10) can be reduced
to the solution of a sequence of unconstrained minimization problems of form

min
ν∈R2M

f(ν) = B(ν) + λSS(ν), (11)

which is in fact the discretization of problem (3); but thanks to the penaliza-
tion approach the smoothing parameter λS is adaptively adjusted and does
not need to be fixed in advance.

3. Regularized quadratic penalization
Quadratic penalization is a well known approach to constrained optimization
[22], where constraints are embedded in the objective function by adding a
suitable quadratic penalty term. In the case of our model problem (10), the
new objective function, named quadratic penalty function, takes the form

Q(ν, µ) = S(ν) + µ
∑

(i,j)∈ΩD

b2i,j(ν) = S(ν) + µB(ν).

The scalar µ > 0 is called penalization parameter; by driving it to infinity
the constraints violation is penalized with increasing severity, and given a
sequence of values {µr}∞r=1 such that µr → ∞, the solution of (10) is reduced
to the following sequence of unconstrained problems:

min
ν

Q(ν, µr), r = 1, 2, . . . , with µr → ∞. (12)

This approach is theoretically motivated by the following Theorem.
Theorem 3.1. [22, Theorem 17.1]
Given a sequence {µr}∞r=1 such that µr → ∞ for r → ∞, let ν̄r be a global
minimizer of Q(ν, µr) = S(ν) + µr B(ν). Then any limit point ν̄ of {ν̄r}∞r=1

is a global solution of (10).
The next result concernes the convergence behaviour of the smoothing

term. It shows that, starting from the value S(ν̄1), attained at the global
minimizer of Q(ν, µ1), the value of the smoothing term increases through
the iterations. In other words, the surface computed at each iteration r of
the penalization process is driven to a surface progressively less smooth but
closer to satisfy the irradiance equation.
Proposition 3.1. Given an increasing sequence {µr}∞r=1 such that µr → ∞
for r → ∞, let ν̄r be a global minimizer of Q(ν, µr) = S(ν) + µr B(ν). Then
S(ν̄r) ≥ S(ν̄r−1) and B(ν̄r) ≤ B(ν̄r−1).

Proof Using the fact that ν̄r is a global minimizer of Q(ν, µr) we get
S(ν̄r) + µrB(ν̄r) ≤ S(ν̄r−1) + µrB(ν̄r−1) (13)

S(ν̄r−1) + µr−1B(ν̄r−1) ≤ S(ν̄r) + µr−1B(ν̄r). (14)
Then, dividing (13) by µr, (14) by µr−1, and taking sums, we have

(
1

µr
− 1

µr−1
)(S(ν̄r)− S(ν̄r−1)) ≤ 0,
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Algorithm 3.1: Regularized Quadratic Penalty Method for SFS

Given a starting point ν0, λ1 > 0, a sequence of tolerances {ϵr}∞r=1 → 0
and a positive sequence {cr}∞r=1 → c ≥ 0
1. For r = 1, 2, 3, . . .

1.1 Find an approximate minimizer νr of Qr(ν, λr) by applying
a method for unconstrained minimization problems, with νr−1

as initial guess and ϵr as stopping criterion tolerance
1.2 If a convergence test is satisfied then return the approximate

solution νr and stop
1.3 Choose a new penalty parameter λr+1 < λr

that is S(ν̄r) ≥ S(ν̄r−1) as µr > µr−1. Moreover, from (13) it follows
µr(B(ν̄r)−B(ν̄r−1)) ≤ S(ν̄r−1)− S(ν̄r) ≤ 0,

which yields
B(ν̄r) ≤ B(ν̄r−1).

�
Note that µr in (12) plays the same role of 1/λS so that (12) is equivalent
to a sequence of unconstrained problems of form (11) obtained by driving to
zero the smoothing parameter.

Despite theoretical results, as shown in Section 5 we often observed good
iterates going undetected as well as some iterate walking away from the sought
solution with subsequent iterations unable to drive back towards it. Similar
difficulties, which are typical of inverse problems, are mainly due to the fact
that the sought solution may not solve (10), in particular when noise and/or
discretization errors are present. Here we propose to cope with this well known
problem of the variational approach to SFS by adding some regularization. In
particular, we add the term cr∥ν − νr−1∥22 to the quadratic penalty function
Q(ν, µr), where {cr}∞r=1 is a sequence of positive terms converging to a value
c ≥ 0. Letting λr = 1/µr, for each r we finally solve

min
ν

Qr(ν, λr) =
1

λr
B(ν) + S(ν) + cr∥ν − νr−1∥22. (15)

Theoretical results (i.e. Theorem 3.1 and subsequent Theorem 3.2) re-
quire to compute the global minimizer of (12) at each iteration r. In order to
obtain a less expensive process it is common practice to compute a sequence
of approximate minimizers, obtained by minimizing (12) with increasing ac-
curacy for r → ∞. This is justified by Theorem 17.2 in [22] for the case
cr = 0, r = 1, 2, . . .,. The overall procedure, is sketched in Algorithm 3.1.

A few general comments are in order, while detailed algorithmic issues
and choices are discussed in the next section. The outer iteration starting at
Step 1 is in fact a continuation procedure on the smoothing parameter λS . At
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each continuation step, the approximate solution νr can be obtained by any
solver for unconstrained minimization (inner iteration). Note that, by driving
to zero the sequence of tolerances {ϵr}, the unconstrained problems (15) are
solved with increasing accuracy. This allows to avoid oversolving when high
accuracy is not needed, that is when λr is not small enough and we are still
far from the sought solution. Further, the previous computed iterate νr−1

is an available good initial guess for the inner iterative solver at Step 1.1.
This way a very efficient overall procedure is obtained, as confirmed by the
experiments shown in Section 4.

Remark 3.1. The role of the term cr∥ν−νr−1∥22 is to avoid abrupt changes in
the sequence {νr}∞r=1, as at each iteration the minimizer of (15) is penalized
to go far away from the initial guess νr−1. Note that despite this is a Tikhonov
regularization [9] here it plays also a different role. Tikhonov regularization
is widely used in the solution of inverse problems under the assumption that
the initial guess contains information on the true solution: the idea is to
penalize large steps in order to remain close to it. In our context, however,
at the beginning of the penalty process the initial guess does not contain any
information on the sought solution and is generally far away from it. In this
phase, drasting changes from one iteration to the next one must be avoided
because they may cause undesired and/or unrecoverable irregularities in the
reconstructed surfaces.

Next Proposition shows that the introduction of the quadratic regular-
ization term yields to a minimizer νr of (15) which is closer to νr−1 than the
minimizer of the unregularized function.

Proposition 3.2. Let νr be a global minimizer of (15) and ν̄r be a global
minimizer of the unregularized penalty function Q(ν, µr) = S(ν) + µr B(ν).
Then

∥νr − νr−1∥2 ≤ ∥ν̄r − νr−1∥2.

Proof The thesis follows easily, with µr = 1/λr, from the fact that νr
and ν̄r are global minimizers of (15) and Q(ν, µr) respectively, so that

1

λr
B(νr) + S(νr) + cr∥νr − νr−1∥22

≤ 1

λr
B(ν̄r) + S(ν̄r) + cr∥ν̄r − νr−1∥22

≤ 1

λr
B(νr) + S(νr) + cr∥ν̄r − νr−1∥22.

�
Finally, it can be shown that the sequence generated by the above framework
is driven to a surface that satisfies the irradiance equation. The value of the
corresponding smoothness term depends on c. In case c = 0 convergence to
a solution of (10) is recovered; otherwise, the introduction of the regulariza-
tion term allows to relax the request of finding the smoothest surface which
satisfies the irradiance equation.
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Theorem 3.2. Given two positive sequences {λr}∞r=1 and {cr}∞r=1, with λr → 0
and cr → c ≥ 0 for r → ∞, let νr be a global minimizer of (15) such that
∥νr∥2 ≤ M , for some M > 0 and r = 1, 2. . . . ,∞. Then, any limit point ν∗

of {νr}∞r=1 satisfies the irradiance equation and

S(ν̄) ≤ S(ν∗) ≤ S(ν̄) + c(∥ν̄∥2 +M)2, (16)

where ν̄ is a global minimizer of (10). Moreover, if the sequence {νr} converges
to ν∗, then

S(ν̄) ≤ S(ν∗) ≤ S(ν̄) + c∥ν̄ − ν∗∥22. (17)
Finally, in case c = 0, any limit point of {νr} is a global minimizer of (10).

Proof Being νr and ν̄ minimizers respectively of (15) and (10), Qr(νr, λr) ≤
Qr(ν̄, λr) and B(ν̄) = 0 hold, that is

1

λr
B(νr) + S(νr) + cr∥νr − νr−1∥22 ≤ S(ν̄) + cr∥ν̄ − νr−1∥22, (18)

which recalling the nonnegativity of B(ν) implies

0 ≤ B(νr) ≤ λr

(
S(ν̄)− S(νr) + cr∥ν̄ − νr−1∥22

)
.

The right hand side of this inequality goes to zero for r → ∞, since the
sequence {νr}∞r=1 is bounded, S is quadratic in ν, and λr → 0; then for any
limit point ν∗ of {νr}∞r=1 it follows that B(ν∗) = 0, and this implies that ν∗

satisfies the irradiance equation. Moreover, left inequalities in (16) and (17)
follow because S(ν̄) ≤ S(ν) for any ν such that B(ν) = 0.

>From (18) and the bound on ∥νr∥2 we also have that

S(νr) ≤ S(ν̄) + cr∥ν̄ − νr−1∥22 (19)
≤ S(ν̄) + cr(∥ν̄∥2 +M)2.

Then (16) holds for any limit point of {νr}∞r=1. Further, if the sequence
{νr}∞r=1 converges to ν∗, taking the limit for r that goes to ∞ in (19) yields
the right inequality in (17). Finally, if c = 0, from (16) it follows that

S(ν∗) ≤ S(ν̄).

Since B(ν∗) = 0 and ν̄ is a global minimizer of (10), then ν∗ is a global
minimizer of (10), too. �

4. Implementation issues
We give here a detailed description of the implemented procedure. At each
outer iteration of Algorithm 3.1 the computation of an approximate mini-
mizer of Qr(ν, λr) is carried out by the Barzilai-Borwein method embedded
in the nonmonotone line-search strategy given in [24]. This is a gradient
type method that starting from an initial guess ν(0), generates a sequence
{ν(k)}∞k=0 where

ν(k+1) = ν(k) − αk∇νQr(ν
(k), λr).
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In order to obtain a globally convergent procedure1 the steplength αk is
selected by a back-tracking strategy that enforces the following nonmonotone
decrease condition:

∥∇νQr(ν
(k+1), λr)∥2 ≤ QMAX − γ αk∥∇νQr(ν

(k), λr)∥22, (20)
where γ ∈ (0, 1) and QMAX is defined as follows:

QMAX = max {Qr(ν(j), λr), j = max(0, k −K), ..., k}
with K ≥ 0. The choice of the first α-value distinguishes the Barzilai-Borwein
approach among other gradient-type procedures. Letting

sk−1 = ν(k) − ν(k−1)

yk−1 = ∇νQr(ν
(k), λr)−∇νQr(ν

(k−1), λr),

for k ≥ 1, the first α-value that is tempted in the back-tracking strategy is
given by

ᾱk =
∥sk−1∥22
sTk−1yk−1

,

provided that sTk−1yk−1 > 0. This way, the steplength αk = ᾱk is always
taken whenever possible, i.e when it is positive and satisfies (20).

Observe that, unlike classical monotone back-tracking strategy, condi-
tion (20) does not force a decrease of the objective function at each iteration,
but ensures a reduction within K iterations. The importance of adopting
a nonmonotone strategy is stressed in [11, 24], where it is pointed out that
Barzilai-Borwein methods which do not permit non-monotonic steps may suf-
fer of slow convergence; we will show the benefit of the non-monotonic rule in
Section 5.2. Recently it has been shown that the effectiveness of the Barzilai-
Borwein approach relies on the fact that the steplength ᾱk implicitely con-
tains spectral information on the Hessian of the objective function. We refer
to [1] for the analysis of the connection between gradient methods behaviour
and spectral properties of the Hessian matrix.

In our implementation we used γ = 10−4, K = 10, α0 = 1 and stopped
the Barzilai-Borwein procedure (inner iterations) whenever one of the follow-
ing conditions is met: ∥ν(k+1) − ν(k)∥2 ≤ ϵr ∥ν(k+1)∥2 or

∥∇νQr(ν
(k), λr)∥2 ≤ ϵr or

k > kmax.
(21)

Then we set νr equal to the last computed iterate ν(k). In our runs we set
kmax = 1000 and

ϵr = max{10−2 × λr, 10
−4}.

Regarding the choice of the sequence {λr}∞r=1, given λ1 > 0, we adopt the
following rule:

λr+1 = λr/θ r = 1, 2, . . .

1We say that a method is globally convergent whenever the convergence of the generated
sequence does not depend on the closeness of the initial guess to the solution of the problem.
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Algorithm 4.1: Implemented algorithm

Given a starting point ν0, λ1 > 0, a maximum number of iterations
rmax > 0 a nonnegative sequence c1, . . . , crmax

, and a stopping tolerance
toll > 0.
1. For r = 1, 2, 3, . . . , rmax

1.1 Set ϵr = max{10−2 × λr, 10
−4}.

1.2 Apply the nonmonotone Barzilai-Borwein method to problem (15)
with starting guess νr−1 and stopping criterion (21).

1.3 Set νr equal to the last iterate computed at Step 1.2.
1.4 If the outer stopping criterion (22) is satisfied then return the

approximate solution νr and stop.
1.5 Set λr+1 = λr/1.5.

2. Failure of the procedure is declared.

where θ is set to 1.5. Typical values for λ1 are 10−2, 10−1, 1. Numerical ex-
periments showed that these choices are not critical.

Outer iterations are stopped by checking the variation in the brightness
term. In other words, letting toll > 0 be a given tolerance, the continuation
procedure is halted whenever the following condition

|B(νr)−B(νr−1)| ≤ toll |B(νr)| (22)
is met. Failure is declared if condition (22) is not met within rmax outer
iterations. The procedure described so far is summarized in Algorithm 4.1.

We underline that Algorithm 4.1 requires only the evaluation of the
objective function Qr(ν, λr) and its gradient. Recall that functional S is qua-
dratic in ν, while functional B is quadratic in χ(ν), which is nonlinear in ν
(see (2)). Then Qr(ν, λr) takes the form

Qr(ν, λr) =
1

λr
χ(ν)TABχ(ν) + νTASν + cr∥ν − νr−1∥22 + dTBχ(ν) + dTSν,

where AB ∈ R3M×3M and AS ∈ R2M×2M are sparse matrices, dB ∈ R3M ,
dS ∈ R2M . The structure of AB and AS is inherited from the structure of S
and B, and they result to have only five nonzero diagonals. Then, the num-
ber of nonzero entries is at most five times the matrix dimension. Since the
evaluation of Qr and its gradient requires only two matrix-vector products,
involving AB and AS , this task can be carried out in a very efficient way.

5. Numerical results
In this section we will present the reconstructions computed for two given
shapes, starting from synthetic images of different sizes under different light
conditions:
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• donut: 75 x 75 pixels; L = (0.3015, 0.3015, 0.9045)T (oblique lighting);
number of unknowns: 7112; AB density: 2.8 10−4; AS density: 6.9 10−4;

• face: 503 x 447 pixels; frontal lighting; number of unknowns: 233472;
AB density: 9.5 10−7; AS density: 2.1 10−5;

the density of a matrix is the number of nonzero entries divided by the total
number of entries. As it is known, case studies with oblique light direction
give rise to more difficult problems and more expensive resolution processes
than in the case of frontal light. Indeed, functional B has a simpler form
when L = [0, 0, 1]T . We report on test problems arising in synthetic surfaces
reconstruction in order to properly evaluate obtained result and errors that
have been committed during the reconstruction process. Runs have been per-
formed with a 1.60 GHz Intel Core(TM) i5 machine, 4GB RAM, using Matlab
2013b. Results have been obtained by using Algorithm 4.1with cr = 10, for
any r ≥ 1. This choice is mainly motivated by the fact that it provides good
reconstructions in the more challenging cases (e.g. with complicated shapes,
or oblique light direction). Tolerance toll and maximum number of iterations
rmax were set to 10−5 and 30, respectively. Finally, the starting vector ν0,
needed to start the Barzilai-Borwein procedure at the first outer iteration,
corresponds to the uniform normal map parallel to the light direction, hence
far from the sought surface, in any of the used test. The choice of an ex-
tremely smooth initial guess is motivated by Proposition 3.1 that shows how
quadratic penalization progressively reduces the smoothness term in favour
of the brightness term.

The first set of experiments is focused on the first shape, a donut-like
surface. We use this test problem to compare the Regularized Quadratic
Penalization method (RQP) with its unregularized version (UQP, Unregularized
Quadratic Penalization) obtained by dropping in (15) the regularization term
cr∥ν−νr−1∥22, and with the classical SFS method based on the unconstrained
minimization of functional (11) (UNC). In this third case, we used the Barzilai-
Borwein method to solve problem (11) with stopping criteria (21), tolerance
ϵr = 10−4 and kmax = 1000. We also report on numerical tests performed
to show the sensitivity of our approach to the weight cr in the regularization
term, as well as to the presence of Gaussian noise in the input image.

In the second set of experiments we show the behaviour of the proposed
approach in terms of computational cost and accuracy of reconstruction. Re-
sults are shown in tables where we report the initial value of the continuation
parameter (λ1), the number of performed outer iterations (r̄), the last value of
the continuation parameter used for the final reconstruction (λr̄), the overall
number of performed Barzilai-Borwein iterations (#It-BB), the overall num-
ber of Qr-evaluations, the time in seconds needed to reconstruct the surface
(time(s)), the norm of the relative error (err) between the normal map of
the true surface and the normal map of the reconstructed surface. To be
more precise, denoting by N̄ = χ(νr̄) the computed normal map, we report
the following measure of the error:
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err =

∑
(i,j)∈ΩD

||N̄i,j −Ni,j ||2
M

. (23)

Finally, for each reconstructed shape we plot the computed surface (we re-
covered it from the normal map by using the approach proposed in [28]), and
the image of the error matrix ERR defined as follows. Let C be the matrix
whose (i, j)-entry is given by Ci,j = ||N̄i,j − Ni,j ||2, Cm = mini,j Ci,j , and
CM = maxi,j(Ci,j −Cm). Then, ERRi,j = (Ci,j −Cm)/CM . In the following
we will refer to such an image as error image. Errors are rescaled with respect
to Cm and CM in order to obtain a grayscale digital image with 0 ≤ Ci,j ≤ 1.

5.1. Donut
In Figure 1 we report the input image and the corresponding surface. In Fig-
ures 2-4, for each used method we plot the reconstructed surface and the cor-
responding error image. We set λS = 0.1 for the UNC method, and λ1 = 0.1 for
RQP and UQP methods. Similar results are obtained with λS = 10−2, 0.5 10−2

and λ1 = 0.01, 1, in either cases. As we can see from the pictures, the regu-
larization term is crucial to obtain a good reconstruction, as both UNC and
UQP methods do not properly reconstruct the hole of the donut. We underline
that the value of the error err given by (23) is about 1.64 10−1 when the
RQP method is used, while it increases to 3.84 10−1 and 3.88 10−1 when UQP
and UNC are applied, respectively. UNC is less expensive than UQP and RQP
in terms of objective function evaluations, as it requires 345 Qr-evaluations
versus 517 and 675 required by RQP and UQP, respectively. This is expected
as it performs only one unconstrained minimization. However, it provides an
unreliable reconstruction and higher error than RQP. On the contrary, UQP is
slightly more expensive than RQP, confirming that the presence of the reg-
ularization term does not affect the computational cost of the continuation
process.

Figure 1. Donut: true surface (left); synthetic image (right)

More insight into the behaviour of RQP versus UQP method can be
obtained using as initial guess ν0 the vector corresponding to the normal
map of the true solution. Starting with λ1 = 0.1, in Figure 6 we show
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Figure 2. Donut, UNC method: reconstructed surface (left);
error image (right)

Figure 3. Donut, UQP method: reconstructed surface (left);
error image (right)

Figure 4. Donut, RQP method: reconstructed surface (left);
error image (right)

the surface reconstructed from ν1, i.e. after one outer iteration of Algo-
rithm 4.1. As we can see, the minimizer of the first unregularized functional
Q(ν, λ1) = B(ν)+λ1 S(ν) is far from the initial guess. Despite the used initial
guess ν0 corresponds to the searched solution, after one iteration the method
goes away from the true surface and in subsequent iterations is unable to



Regularized quadratic penalty methods for shape from shading 15

Figure 5. Donut, RQP method: Error versus cr, with λ1 = 0.1

Figure 6. Donut, reconstructions obtained starting from
the normal map of the true solution, after one iteration of
UQP method (left), RQP method (right)

λ1 λr̄ r̄ #It-BB #Q-eval time(s) err

0.01 7.71e− 05 13 411 468 4.45 2.76e− 01
0.1 6.77e− 05 19 456 517 5.04 1.64e− 01
1 5.94e− 05 25 418 497 4.70 1.54e− 01

Table 1. Donut: L = [1, 1, 3]T , number of unknowns 7112

come back towards it. On the other hand, thanks to the presence of the term
10∥ν − ν0∥22, the regularized approach remains close to the true surface.

We performed also runs by varying the weight of the regularization term.
Namely, we used c∥ν − ν0∥22 with c in the interval [0.01, 100]. In figure 5 we
plot the error err versus c. We can observe that large and small values of
c should be avoided as we are regularizing too much or not enough. Values
around 10 seem to be realiable.

In Table 1 we can observe that the overall number of Barzilai-Borwein
iterations is reasonable and corresponds to the cost of solving a single uncon-
strained minimization problem. This behaviour is due both to the adaptive
choice of the stop tolerance ϵr and to the good initial guesses used to ini-
tialize the Barzilai-Borwein procedure. Indeed, minimization problems are
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Figure 7. Donut: RQP method with λ1 = 0.1, noise level
0.1: noisy image (left); reconstructed surface (right)

solved with low accuracy at the beginning of the continuation process, while
accuracy requirements are increased with r. Moreover, at a generic iteration
r > 1, the approximation νr−1 computed at the previous outer iteration
results to be a good approximation of the minimizer of Qr(ν, λr). As a conse-
quence, the average number of Barzilai-Borwein iterations performed at each
outer iteration is about 30. We also observe that the overall computational
time is very short, since functions and gradients can be computed at a low
computational cost. As a final comment, the choice λ1 = 0.01 seems to pro-
vide a less accurate result. This can be ascribed to the fact that this initial
value is too small, and confirms the effectiveness of the continuation process
to gradually drive the sequence towards the sought solution. A further evi-
dence of the benefit of the continuation process is given by the behaviour of
UNC method with λS = λr̄, that is when λS is set equal to the final value
λr̄ provided by the RQP method. Indeed, starting from scratch with this λ
value, UNC yields a completely innacurate reconstruction. This is due to the
fact that the continuation process provides an accurate initial guess νr̄−1 for
minimizing Qr̄(ν, λr̄). On the contrary, UNC is initialized by ν0, which is far
from the sought surface corresponding to the small smoothing parameter λr̄.

In order to get an estimate of the sensitivity to noise, Gaussian noise has
been added to the input image. The noisy image, with noise level 10−1 and
the corresponding surface reconstructed by RQP are shown in Figure 7. We
performed also runs varying the noise level; statistics are reported in Table
2. We note that the error err is only slightly amplified by noise (see Table 1)
confirming the stability of our method with respect to noise.

We finally underline that the main difficulty in this case study lies in
the oblique lighting. Indeed, the reconstruction of the Donut surface starting
from a synthetic image (75 x 75 pixels in size), generated with frontal light, is
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noise level λr̄ r̄ #It-BB #Q-eval time(s) err

0.01 6.77e− 05 19 495 564 6.59 1.66e− 01
0.05 6.77e− 05 19 481 554 6.91 1.90e− 01
0.1 6.77e− 05 19 523 604 6.68 2.33e− 01

Table 2. Donut: L = [1, 1, 3]T , noisy image, RQP method
with λ1 = 0.1

Figure 8. Donut with frontal light, RQP method: recon-
structed surface (left); error image (right)

very accurate as it is shown in Figure 8, where λ1 = 0.1 is used. The computed
error in this case is about 5.71 10−2, and lies entirely on the boundary of the
reconstruction domain.

5.2. Face
The second treated synthetic image represents the face of a man frontally
illuminated (see Figure 9). The surface is not smooth and very detailed;
further this is a large test, with 233472 free variables to be determined. The
results obtained with the RQP method and λ1 = 1 are plotted in Figure 10. We
can observe that, except for a small inversion of concavity/convexity in the
forehead, the reconstruction is acceptable and most of the details are correctly
identified. Statistics of the runs are reported in Table 3. We can observe that
the number of Barzilai-Borwein iterations is still acceptable. Obvioulsy the
execution time is higher than in the Donut test due to the large dimension of
the problem. All the statistics we provided so far have been obtained using the
Barzilai-Borwein approach with nonmonotone decrease condition (K = 10 in
(20)). We performed also runs with the monotonic rule (K = 0 in (20)) and
we observed that the nonmonotonic approach allowed us to save about 10% of
Barzilai-Borwein iterations and about 30% of function evaluations compared
to the monotonic one.



18 Stefania Bellavia, Lapo Governi, Alessandra Papini and Luca Puggelli

Figure 9. Face: true surface (left); synthetic image (right).

Figure 10. Face, RQP method: reconstructed surface (left);
error image (right).

λ1 λr̄ r̄ #It-BB #Q-eval time(s) err

0.01 1.16e− 04 12 578 666 205 1.63e− 01
0.1 1.01e− 04 18 736 816 222 1.69e− 01
1 8.91e− 05 24 730 826 214 1.68e− 01

Table 3. Face: L = [0, 0, 1]T , number of unknowns 233472

6. Conclusions
This work proposes a novel strategy to improve the numerical solution of
the SFS problem via the variational approach. Classical methods are based
on the unconstrained minimization of a suitable model, typically depending
on a given smoothing parameter which markedly affects the quality of the
reconstruction, and therefore the reliability of the procedure. In order to
free the user from choosing a-priori the smoothing weight, here we take a
different point of view and consider a constrained minimization problem.
This problem is then solved by a Quadratic Penalization procedure, which
in fact allows to adaptively adjust the smoothing parameter. Moreover, a
quadratic regularization term is added in order to improve the robustness of
the overall method.
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The numerical behaviour of the proposed procedure has been tested
with both frontal and oblique illuminated images. In all the reported cases,
the advantage given by the use of such procedure is evident. The relative error
between the original normal maps and the retrieved ones is of order 10−2,
and the obtained results do not depend on any problem-dependent choice of
parameters. The overall computational cost, even in presence of large images,
is low thanks to an efficient evaluation of objective functions and gradients.
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