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Abstract Making use of the poroelastic theory for 
hydrated polymeric matrices, the ultrasound (US) propaga-
tion in a gel medium filled by spherical cells is studied. The 
model describes the connection between the poroelastic 
structure of living tissues and the propagation behavior of 
the acoustic waves. The equation of fast compressional 
wave, its phase velocity and its attenuation as a function of 
the elasticity, porosity and concentration of the cells into 
the gel external matrix are investigated. The outcomes of the 
theory agree with the measurements done on Alginic acid 
gel scaffolds inseminated by porcine liver cells at various 
concentrations. The model is promising in the quantitative 
non-invasive estimation of parameters that could assess the 
change in the tissue structure, composition and architecture. 

Keywords ultrasound, non-invasive assessment of bio-
logical tissue, poroelastic model of living tissues, high fre-
quency poroelastic waves in soft tissues

1. Introduction 

Biological tissues can be considered homogeneous gels 
just as a first approximation [1].

Different modes of propagation of elastic waves in such 
media are primarily determined by their bulk and shear 
elastic moduli. The bulk properties are determined by the 
molecular composition of the tissue, while shear properties 
are determined by the tissue organization [1]. Strictly 
speaking, a biological tissue is inelastic [2] and it exhibits 
viscoelastic properties such as hysteresis, stress relaxation, 
and creep [2]. Moreover, it is anisotropic and the stress-
strain relationship is non-linear. 

When all these factors are coupled each others, it 
becomes evident that the problem how describing the 
mechanical properties of a tissue requires a significant 
degree of simplification. Tissue models which include series 
and parallel elastic and viscous components have been 
described [2] assuming the tissue isotropic [3, 4]. 

If we neglect the shear forces, the tissue can be equivalent 
to a polymeric solution [5] where the US propagation is usu-
ally modeled by means of the wave equation of liquids [6]. 
Taking into account the chemical interactions within the 
“polymeric solution” a better fit of the absorbance spectrum 
of acoustic waves at higher frequencies is obtained [5].

Nevertheless, the role played by the structure and organi-
zation of gel matrix is still ignored. The poroelastic theories 
have well shown that the structural arrangement of the gel 
network has important consequences on the of acoustic 
wave propagation [7-13]. The overall picture that comes out 
is that both the chemical and the rheological aspects are 
very important for the propagation of elastic waves. There-
fore, the integration of the liquid-like approach with the 
poroelastic one can bring important advances in refining the 
description of the tissue acoustic behavior. 

So far, the integration of the two models has been hin-
dered by the fact that the poroelastic models are not satisfy-
ing the description of US propagation in hydrogels showing 
important discrepancies with experiments. This can be 
understood by observing that such poroelastic models are 
build up in the geological and engineering fields where find 
their applications to porous rock and others porous solids 
impregnated by fluids.

As far as it concerns hydrogels, recently the authors [14] 
have shown that they cannot be described as systems owing 
a porous solid matrix whose interconnected voids are filled 
by water where the fluid-solid interaction is just a shear vis-
cous one. *E-mail: pchiare@ifc.cnr.it
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The proposed and validated model for US in hydrogels 
[14] shows that the physico-chemical interaction between 
the polymer network and the water molecules becomes 
important in them. The presence of water molecules 
bounded to the polymer chains leads to relevant modifica-
tion of the acoustic waves propagation in hydrogels. One of 
the most noticeable results of the model is that the fre-
quency dependence of the acoustic attenuation in hydrogels 
can have a fractional exponential behavior, in contrast with 
the geological models that strictly have a linear frequency 
dependence. 

In the present work the authors develop the poroelastic 
model for hydrogels with spherical cells dispersed into the 
matrix. The biological cells are designed as poro-elastic 
spheres enclosed into a membrane, endowed by internal and 
superficial elasticity and permeability. In a first simplifying 
assumption cells are assumed to be isotropically dispersed 
in the extra-cellular hydrogel. The model is developed in 
the continuum limit approach for US wavelength much 
bigger than the cells dimension (typically up to about 10 
MHz). 

This paper shows that by using US it is possible to moni-
tor the permeability of the cells and of the ECM. One of 
the short term application of this work can be the detection 
of the liver cirrhosis [15], while the long term ones can be 
the development of non-invasive US methods [16–19] and 
the functional modulation of biological functions in tissues 
and organs.

2. Poro-elastic US wave in soft living tissues

2.1. US wave in highly hydrated gels

The poroelastic wave equations for hydrogels is obtained 
by introducing the appropriate fluid network interaction that 
takes into account for the bounded water presence around 
the polymer chains [14]. Under the assumption that the 
bounded water volume fraction is very small and that the 
“polymer-bounded water aggregate” constitutes the solid 
matrix of the poroelastic mean, it is possible to end with the 
following motion equations [14]
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βe = β – ϕ (2)

where eij is the solid strain tensor, eαα is the trace of the liquid 
strain tensor, e*αα is the trace of the bounded water strain 
tensor; Q, and R are the poroelastic constants of the medium 
that can be measured by means of jacketed and unjacketed 
experiments [20]; β is the water volume fraction of the 

hydrogel, ϕ is the volume fraction of bounded water, βe is 
the effective free water volume fraction, f is the inverse of 
the hydraulic permeability of the matrix [20], and r11, r12 
and r22, are the mass densities parameters defined as: r11+ 
2r12 + r22= r, r11+ r 12= (1- βe)rs, r12 + r22= βe rf; where 
rs and rf represent the solid and the liquid mass densities 
respectively, while r is the total mass density of the 
medium. Moreover, K and h are the elastic constant and the 
friction coefficient describing the polymer-bounded water 
interaction, respectively.

The above equations are derived with the assumption that 
[14] the inertial effect of bounded water can be disregarded 
and that the trace of the strain tensor of the polymer εαα 
approximates that one of the solid aggregate.

Under this assumptions, considering the fast plane wave 
eαα ∝ e–αx ei(kx – ωt) equation (1.c) reads
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where the complex friction coefficient F(ω) of the gel reads
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leading through (1.a) to the characteristic equation
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that split in the real and imaginary part leads to
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is the pure elastic longitudinal US wave velocity, cf = (R/
rf)½ its velocity in the intermolecular fluid (free water) and 
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By solving equation (6,7) in a (i.e., the US attenuation 
coefficient) we obtain
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that for (a/k)2 very small (of order of 10–3 in hydrogels) reads
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Assuming that the polymer-bounded water viscosity η(w) 
follows the frequency behavior [14] 

h (w) = η0 (wg/w)d (13)

where 0 < d ≤ ½ and where wg = 2p η0/rf , it follows that 

limw/wg>>1Re {F –1} @ 1/h(w) (14)

lim w/wg>>1Im {F –1} @ 0 (15)

Thence, equations (6-7) in the high frequency limit read

2 2 2 2 2
0 0(1 / )c c k c    

(16) 

 (16) 

and

2 1
02 / ( / ) ( / ) (1 )g e pfk c c         

(17) 

 (17)

where

spf = 2pr11/rf . (18)

Finally, when the polymer network is not very diluted, 
but has an appreciable polymer concentration, the series 
expansion as a function of the fraction of polymer volume 
(1 - β) can be introduced into equation (8) as follows [14] 
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2.2. US wave equation in a hydrogel with dispersed cells

When we describe a tissue as a hydrogel poroelastic mean 
containing cells, we have to refer to the overall tissue con-
stants βt, Rt, rf t, Ft and so on. By introducing (1.b) into (1.a) 
at lowest order for the tissue we obtain
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where 
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represents the zero order elastic wave equation. Moreover, 
we name the total water volume fraction, the bounded water 
volume fraction and the free water volume fraction for the 
cells, for the ECM and for the tissue by adding the suffixes 
c, g and t, respectively, as in the following

βeg = βg - fg (22)

βec = βc - fc (23)

βet = βt - ft (24)

By defining g as the fractional volume of cells inside the 
tissue as g = total volume of cells / total volume of tissue, 
the mean fractional water content of the tissue βt reads

βt = (1- g) βg + g βc = βg{1 – g (1–βc/βg)} (25)

2.3. US speed in natural tissue 

In order to investigate the US phase velocity in the 
hydrogel-cells syncytium we need to determine the poroe-
lastic parameters concerning the inertial and elastic terms in 
the motion equations. 

As far as it concerns the compressibility modulus Rt and 
the mass density of the fluid (free water) rf of the syncytium 
they are influenced by the chemical (e.g., ionic strength) 
and mass composition of the cells that, generally speaking, 
may differ from that ones of the ECM. As a consequence of 
this, in principle, ct0 = (Rt/rf)½ and the elastic phase velocity 
c0t are function of cell concentration g.

Assuming that the variation of the ratio Rt/rf is small 
compared to that one of the external matrix R/rf , the series 
expansion

ctf = (Rt / rf)½ @ cf
2 {1 + A1γ + A2γ2} (26)

can be assumed for the tissue. 
Moreover, since for a biological tissue at / k << 1, analo-

gously to equations (16,19) we write
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and hence given that
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where cg is given by the identities (16, 19).

2.4. US attenuation in natural tissue 

In this section we derive the complex friction coefficient 
(the inverse of hydraulic conductance of the syncytium) 
that is responsible for the US attenuation. 

We assume in the following the complex hydraulic con-
ductance:

i. Fg (w)
–1 @ ηg

–1 for the extra-cellular hydrogel 

ii. Fc (w)
–1 @ ηc

–1 for the internal jelly cell body 

iii. Fm (w)
–1 for the cells membrane. 
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For sinusoidal inputs of frequency w/2p we also assume 
that 

Fm (w)
–1 = Km + iw b Em

–1 (30)

where the real part Km is the hydraulic permeability of the 
cell membrane and the imaginary one is its superficial com-
pliance proportional to the inverse of Young’s elastic modu-
lus Em. In the case where the cell membrane thickness is 
much smaller than the cell diameter a, b–1 coincides with 
the membrane thickness.

For sinusoidal pressure inputs the overall conductance of 
the tissue[21] reads 

Ft
–1 =  Fg

–1 [2 (1 – g) Fg
–1 + (1 + 2g) Fc

–1] /  
 (31) 
 [(2 + g) Fg

–1 + (1 – g) Fcm
–1]

Where Fcm
–1 is the combined membrane permeability that 

reads

Fcm
–1 = Fc

–1 a Fm
–1 / (Fc

–1 + a Fm
–1) (32)

In order to apply the above model to a biological tissue 
we need to single out the relative magnitude of the hydrau-
lic constants. Since the superficial membrane of the cells 
has a very low hydraulic permeability (it separates the inner 
cell body from the external hydrogel matrix), we expect 
that the frequency wm / 2p = Km b–1Em / 2p is not very high.

Therefore, at high frequencies w >> wm, the compliance 
of the cell membrane prevails on its permeability and it 
follows that

Fm
–1 = Km + iw b Em

–1 @ iw b Em
–1, (33)

and that

Fcm
–1  = Fc

–1 a i w b Em
–1 / (Fc

–1 + a iw b Em
–1)  

 (34) 
= Fc

–1 / (1 + Fc
–1 / a i w b Em

–1)

If we assume Fc to have the typical form of equations (13, 
15) as for gels 

Fc = ηc = η0c (wgc / w)d,  (d < ½) (35)

it follows that 

Fcm  = ηc (1 + ηc
–1 / a i w b Em

–1)  

= η0c (wgc / w)d (1 + i (wc / wgc
d ) wd–1) (36) 

= η0c ((wgc / w)d + i (wc / w))

where 

wc = Em / a b η0c

 (37)
wgc = 2p η0c /rfc  ,

and that the hydraulic admittance of the tissue reads

Ft
–1 =  ηg

–1 [2(1 – g) ηg
–1 + (1 + 2g) ηc

–1] /  
 (38) 
{(2 + g) ηg

–1 + (1 – g) ηc
–1

 (1 + i (wc /wgc
d) wd–1)–1}

Since d < ½, at very high frequencies, w >> (wc / wgc
d) (1/(1–d), 

the imaginary part of Fcm tends to vanish, so that 

Fcm @ ηc (39)

and hence 

Ft
–1 @  ηg

–1
 {[2 (1 – g) ηg

–1 + (1 + 2g) ηc
–1] /  

 (40) 
[(2 + g) ηg

–1 + (1 – g) ηc
–1]}

In Figure 1 the admittance (40) of the tissue is shown as a 
function of g for some values of the ratio ηg / ηc. Given that 
by (17) the US attenuation reads 

2 1
t e ) 11 t/ 1/ 2( / ) (1 )(1 ) { }t f gk c c Re F          

(41) 

 (41)

with the help of (40), the admittance of the tissue can be 
finally obtained.

In Figure 2 the normalized attenuation of the tissue αt(γ) / 
αt(γ=0) = (1 + εγ) Re {Ft

–1} is depicted as a function of g for 
some values of the parameter e, where e represents the nor-
malized difference of the effective water content between 
the cells and the ECM that reads

e = ( βeg - βec) / (1 - βeg) (42)

where it has been assumed fg @ fc @ ft . 

Fig. 1. The theoretical behavior of the normalized soft tissue attenu-
ation αt (γ) / αt (γ=0) as a function of the cell volume fraction g for various 
values of the ratio ηg / ηc being e = 0. 
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Introducing (40) into (41) after simple manipulation it 
follows that

2 1
t0 g gc e
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c g c
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where from (25) it has been used the relation 

1 – βet @ 1 – βeg + g e (1 – βeg) @ (1 + g e) (1 – βeg). (44)

In the case when ηg
–1

 << ηc
–1 it follows that the overall 

friction coefficient (40) reads

F–1 @ ηg
–1 {(1 + 2g) / (1 - g)} (45) 

while for ηg
–1 >> ηc

–1 it reads

F–1 @ ηg
–1

 {(1 – g) / (1 + ½g)}. (46) 

When the cellular volume is a small part of the total vol-
ume of the tissue (g << 1) (40) reads

F–1 @ ηg
–1

 {1 – g (2ηg
–1 – 3ηc

–1) / (2ηg
–1 + ηc

–1)}, (47)

that for ηc
–1

 >> ηg
–1 leads to

F–1 @ ηg
–1

 (1 + 3g), (48)

while for ηg
–1 >> ηc

–1 gives

F–1 @ ηg
–1

 (1 – g). (49)

By comparing formula (48) with (49) we can see that the 
angular coefficient of the g-linear relation from positive 
(+3) for ηc

–1
 >> ηg

–1 changes to negative (–1) for ηg
–1

 >> 
ηc

–1.

3. Experimental

3.1. Materials and methods

Gel samples were prepared by dissolving 0.5 ml of an 
aqueous solution of sodium alginate at a concentration of 
2% by weight (Alginic acid sodium salt from brown algae, 
Sigma A0682-1006) in 0.5 ml of CaCl2 solution (FLUKA 
06991) at a concentration of 0.4% by weight to obtain the 
cross-linking of the polymer matrix.

The gel samples were refrigerated at –20°C for 24 h and 
then lyophilized at –40°C under vacuum for 12 hours. 

The gel samples, in form of disks 0.3 cm thick and with a 
diameter of 1 cm, were inseminated by liver cells (of type 
HepG2, Japanese isolated and immortalized hepatoblas-
tomic line (1997) [22]) at various densities: 0 cells/cm3, 105 

cells/cm3, 2×105 cells/cm3, 5×105 cells/cm3, 106 cells/cm3, 
2.×106 cells/cm3, 5×106 cells/cm3. The hepatocellular liver 
carcinoma cells (HepG2 hepatoyctes) were kindly provided 
by the Laboratory of Molecular Hepatology, Department of 
Clinical and Experimental Medicine, University of Padua. 
This cell line retains most of the endogenous metabolic 
functions of hepatocytes and was used because of its stabil-
ity with respect to primary hepatocytes [23, 24]. HepG2 cells 
were grown in Eagle’s minimal essential medium (EMEM, 
glucose 1 g/L) supplemented with 5% FBS, 1% nonessen-
tial amino acids, 1% EMEM vitamins, 2 mM L-glutamine, 
100 U/mL penicillin and 100 µg/mL streptomycin.

The experimental samples, one for each density value, 
were placed into an incubator at 37°C for 30 minutes and 
then kept in a refrigerator at 4°C. The experiments were 
carried out at room temperature of 20 ± 0.5°C.

The viability of the cells was checked at the end of the 
experiments. They were found alive at a percentage of 
about 85% with hexagonal-like parallelepiped shape. They 
were grouped in small compact clusters having a normal 
metabolism with low rate of replication. 

The ultrasonic pulses were generated by the Panamet-
rics® Pulser model 5052PR coupled with a PVDF piezo-
electric transducer obtained in our laboratory following the 
Naganishi e Ohigashi procedure [25]. The US transducer is 
posed at the fixed wall of the cylindrical experimental cell. 
In front of the transducer there is a movable back-wall with 
a reflecting metal plate that is put in contact with the speci-
men during the US measurements. The transducer is used 
both as the source of the US wave as well as the receiver of 
US echoes. 

The distance between the transducer and the reflecting 
iron layer behind the samples was measured with an accu-
racy of ± 0.01 cm.

The US phase velocity is obtained by the measure of the 
time difference between two consecutive wave reflection.

The US absorption coefficient “a” was deduced by using 

the mathematical relation 0

(2 )

1 ln
2 d

A
d A

   

 

, where A0 and 

Fig. 2. The theoretical behavior of the normalized soft tissue attenu-
ation αt (γ) / αt (γ=0) as a function of the cell volume fraction g calculated 
at various values of e for the ratio ηg / ηc = 1,5. 
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A(2d) represent both the initial and final wave amplitude, 
respectively, and where d is the sample thickness.

The frequency of the ultrasonic wave generated by the 
Panametrics® Pulser model 5052PR used in the experimen-
tal tests were of 1 MHz. 

By using electronic modules made in our laboratory, the 
US frequency of the pulser output was increased up to 1.4 
MHZ for a second set of measurements. 

Echo Signal registration and conditioning data were col-
lected with a routine and carried out with the LabView™ 
software on a computer through a National Instruments® 
DAQ device. 

The water volume fraction of the hydrogel samples β = 
Vw / (Vw + Vp), where Vw and Vp are the volume of water 
and polymer respectively, was obtained by means of the 
respective weight fractions Pw and Pp such as β ≈ Pw / (Pw + 
Pp) since the water and Alginic acid (AA) specific densities 
are very close each other.

The fittings of the experimental results were carried out by 
means of a multiple parameter best fit utilizing the tool “cus-
tom equation” of the “curve fitting” section in MATLAB® 
7.0. Both the experimental US phase velocity and attenuation 
measurements where fitted by a parabolic custom equation. 

3.2. Measurements of ultrasound velocity and attenuation 

Before the US measurements on the HepG2 liver cells 
AA-scaffolds, the system was tested by measuring the US 
speed in distilled water at a temperature of 20°C. The 
results showed a precision of 0.2% with respect to the data 
in literature.

Figures 3 and 4 show the US phase velocity for the AA 
scaffolds with porcine liver cells at various concentrations 
together with the US velocity in the liver tissue (owing the 
value g =0.82) at 1.4 MHz and at 1.0 MHz, respectively. 
The quadratic best-fits have been obtained for the values A1 

Fig. 3. Normalized phase velocity of the US fast wave in natural 
liver tissue (at g = 0.82) compared with the data obtained for the AAG-
liver cells composite as a function of the cell volume fraction g at a 
frequency of 1.4 MHz. 

Fig. 4. Normalized phase velocity of the US fast wave in natural 
liver tissue (at g = 0.82) compared with the data obtained for the AAG-
liver cells composite as a function of the cell volume fraction g at a 
frequency of 1.0 MHz.

Fig. 5. Attenuation of the US fast wave in natural liver tissue (at 
g = 0.82) compared with the data obtained for the AAG-liver cells 
composite as a function of the cell volume fraction g at a frequency of 
1.4 MHz. 

Fig. 6. Attenuation of the US fast wave in natural liver tissue (at 
g = 0.82) compared with the data obtained for the AAG-liver cells 
composite as a function of the cell volume fraction g at a frequency of 
1.0 MHz.
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= –1.4, A2 = 1.7 and A1 = –1.8, A2 = 2.3 at 1.4 MHz and at 
1.0 MHz, respectively.

The US attenuation obtained for the AA scaffolds insemi-
nated by porcine cells together with the attenuation of por-
cine liver are shown in Figure 5 and Figure 6. at 1.4 MHz 
and 1.0 MHz as a function of the cells volume fraction g, 
respectively. The results show that exists a correlation 
between the conduct of the US velocity and attenuation. 
The similarity is due to the speed factor (ct/ct0)2 in the US 
attenuation formula (41). 

Figure 7, for the US at 1.4 MHz, and Figure 8, for the US 
at 1.0, MHz show the peculiar characteristics of the normal-
ized attenuation of the tissue αt(γ) / αt(γ=0) given by (43). 

The outcomes of the best fit procedure show that many 
couples (ηg / ηc, e) of the poroelastic parameters are possible 
with practically the same minimum value of the root mean 
square distance. Therefore for the determination of the ratio 
ηg / ηc, we used the value of e obtained in an independent way.

By introducing the measured values βeg @ 0.84 for the 
AA gel scaffold and βec @ 0.77 for the cells, in the expres-
sion (25) we obtain the value e @ 0.43 for the synthetic 
AAG-cells composite samples.

As far as it concerns for the liver ECM, given the meas-
ured value βeg @ 0.77, we obtain the value e @ 0 for the liver 
tissue. 

By using the experimental value e @ 0, the best-fits in 
Figure 7 and 8 give for the liver tissue (open triangles) the 
value ηg / ηc = 1.38 and ηg / ηc = 1.32 at 1.4 MHz and 1.0 
MHz, respectively. 

By introducing for the gel scaffold the value e @ 0.4, the 
best fit of Figure 7 gives the value ηg / ηc = 2.24 at 1.4 MHz. 

Analogously, for the gel scaffold at 1.0 MHz the best fit 
of Figure 8 gives the value ηg / ηc = 2.73 (e @ 0.4).

The results put in evidence that once the permeability of 
the extra-cellular gel scaffold ηg

–1 is known or measured, 
the US poro-elastic model allows to derive the permeability 
of the cellular bulk ηc

–1 and that one of the ECM. 
In the present experiments, the permeability of the cells 

bulk ηc
–1 results 1.32 times (at 1.0 MHz) and 1.38 times (at 

1.4 MHz) bigger than that one of the ECM ηg
–1 in liver. A 

more relevant difference exists between the cells bulk and 
the AA gel scaffolds permeabilities, where ηc

–1 results 2.73 
and 2.23 times bigger than ηg

–1 at 1.0 MHz and at 1.4 MHz, 
respectively. 

The reproducibility of the measures was sufficiently good 
with the variability of the experimental outputs leading to a 
R-square of the curve fitting of order of 90%.

4. Discussion 

The acoustic poroelastic model for soft living tissues 
describes the US propagation in terms of collective cells 
and ECM characteristics such as: (1) The permeability and 
the elasticity of the cells and of the ECM. (2) The percent-
age of cellular volume of the tissue. (3) The fractional vol-
ume of water of cells and of the ECM. 

As far as it concerns the wave speed, the model, pre-
sented here, it does not make an theoretical derivation of 
the coefficients A1 and A2 as a function of the constituents 
of the cellular syncytium. Thence, the fits of the phase 
velocity data of Figure 3 and Figure 4 alone do not consti-
tute any confirmation of the model. The important outcome 
is the fact that the parabolic behavior of the phase velocity 
appears also in the attenuation data (that are independently 
obtained) confirming the form of equation (41). 

Moreover, subtracting the phase velocity contribution by 
the attenuation one, the normalized attenuation αt(γ) / αt(γ=0) 
of the cellular syncytium of the experiments (given in 
Figure 7 and in Figure 8) comes out with the appropriate 
shape shown by the theoretical one given in Figure 1. It 
must be noted that the different values of the fitted ηg/ηc 
ratio (between Figure 7 and Figure 8 ) comes from the fact 

Fig. 7. Normalized natural liver tissue attenuation  αt (γ) / αt (γ=0) (at g 
= 0.82) compared with the data obtained for the AAG-liver cells com-
posite as a function of the cell volume fraction g at a frequency of 1.4 
MHz. 

Fig. 8. Normalized natural liver tissue attenuation  αt (γ) / αt (γ=0) (at g 
= 0.82) compared with the data obtained for the AAG-liver cells com-
posite as a function of the cell volume fraction g at a frequency of 1.0 
MHz.
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that the permeabilities, ηg and ηc, have a smooth depend-
ence by the US frequency. The correspondence between the 
experimental points and the theoretical behavior gives us a 
preliminary evaluation of the experimental validity of the 
theory.

For sake of completeness, it must be noted that a better 
validation of the model would come from the direct meas-
ure of the poro-elastic constants of the cells and of the ECM 
by independent methods. On the other hand, this possibility 
encounters two major obstacles: 1) The extraction of the 
cellular content by the tissue alters the poroelastic charac-
teristics of both the cells and the ECM, 2) The static poro-
elastic values obtainable by the usual techniques may differ 
from the kinetic ones needed for US acoustic waves. Indeed, 
we tried to measure the elasticity and the permeability of 
the liver ECM alone but the cleavage of the cells resulted in 
changing very much its poroelastic characteristics. 

The results show that on the base of the proposed model, 
it is possible to define an experimental method for the eval-
uation of the permeability of the cells and the ECM, once 
that one of the synthetic scaffold is known. 

Moreover, by the contemporary measurement of US 
phase velocity and attenuation it is possible to evaluate the 
permeability ratio ηg

 /ηc between the liver cells and their 
ECM. Since the cirrhosis alters the elasticity and porosity 
of the ECM (and even of the liver cells) the model can 
potentially allow to detect and measure the advancement of 
the liver disease. This information compared with data from 
a set of liver tissues suffering the cirrhosis can allow the 
evaluation of the state of the illness in a generic patient. 

Generally speaking, on the basis of epidemiological 
comparisons the technique can give information about the 
health state of biological soft tissues other than liver (as a 
sort of eco-biopsy) since, in addition to the elastic charac-
teristics of the tissue, the longitudinal poroelastic waves 
depend also by the permeability of the cells and ECM.

As final remark, it must be noted that even if the model 
outputs agree with the results, the theory owns some subtle 
aspects that need to be considered carefully: The density of 
the bounded water and its volume fraction that cannot be 
directly measured. About the former point we can only 
retain that is approximately close to that of the free water 
(this is well sustainable since fluids are poorly compressi-
ble). As far as it concerns the latter one, the volume fraction 
of the bounded water has been measured in AA gel and is 
resulted to range between 2% and 12% [14], agreeing with 
the hypothesis that is much smaller than that one the free 
water in hydrogels. Nevertheless, even being a small per-
centage, the bounded-water is not ineffective: the US phase 
velocity increase, due to the presence of 6% of bounded 
water, results to be of 136 ms-1 in AA gels [14] with respect 
to that of free water of 1480 ms-1. In addition to that, since 
the bounded-water rheological properties sensibly differs 
from that of pure water (the variation of 136 ms-1 of the 
phase velocity, due to its presence, is quite relevant) we 

have also to expect that it will sensibly influence the tem-
perature dependence of the sound velocity in tissues respect 
to that of pure water possibly furnishing an explanation of 
the remarkable variety of thermal behavior found in soft 
tissues. 

Moreover, the polymer bounded water interaction has 
been considered here to be purely viscous without resonant 
states so that the outcomes of the theory takes into account 
just for the poroelastic structure-related US behavior. On 
the other hand, the water-protein resonances are widely pre-
sent in living tissues. Currently, this is taken into account 
by modeling soft biological media as protein solutions [5]. 
Hence, the improvement of the present soft tissue model 
should necessarily come by the introduction of resonant 
frequencies into the bounded water-polymer interaction.

5. Conclusions

The poroelastic continuum model for US propagation in 
hydrogels has been used to build up the acoustic wave 
equation for a tissue-like syncytium made of spherical cells 
homogeneously immersed in the ECM.

The model shows that the absorption of US is sensitive 
to the cellular content of the tissue as well as to the elastic-
ity and permeability of cells and ECM. 

When these parameters are influenced by the disease of a 
tissue, the model can possibly lead to the monitoring of the 
advancement of the illness by means of epidemiological 
comparisons.

The model preliminarily agrees with the experimental 
measurements done on HepG2 liver cells embedded in the 
AA gel matrix at various concentrations. The experimental 
results put in evidence that the HepG2 liver cells have the 
bulk permeability lower than that one of the AA gel scaffold 
but about equal to that of its natural ECM.

Nomenclature

eij = solid strain tensor -
eαα = trace of the liquid strain tensor -
e*αα = trace of the bounded water strain tensor -
Q = gel poroelastic constant N m–2

R = compressional gel poroelastic constant N m–2

β = gel water volume fraction -
f = gel bounded water volume fraction -
βe = gel effective free water volume fraction -
f = inverse of the hydraulic permeability of the gel N s m–4

r11 = gel mass density parameter Kg m–3

r12 = gel mass density parameter Kg m–3

r22 = gel mass density parameter  Kg m–3

rs = mass density of the gel solid network Kg m–3

rf = mass density of the gel interstitial liquid Kg m–3

r = total gel mass density Kg m–3

K = elastic constant of the polymer-bounded water interaction N m–2

h = friction coefficient of the polymer-bounded water interaction
 N s m–4
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F = complex friction coefficient of the gel N s m–4

c0 = pure elastic longitudinal US wave phase velocity of the gel
 m s–1

cf = phase velocity of the gel intermolecular fluid (free water) m s–1

ctf = phase velocity of the intermolecular fluid of the tissue m s–1

c0t = pure elastic longitudinal US wave phase velocity of the tissue
 m s–1

ct = longitudinal US wave phase velocity of the tissue m s–1

a = US attenuation coefficient m–1

η0 = bounded water viscosity constant N s m–4

η0c = bounded water viscosity constant of the cell body  N s m–4

Rt = compressional poroelastic constant of tissue N m–2

Ft = complex friction coefficient of the tissue N s m–4

βt = water volume fraction of the tissue -
Rg = compressional poroelastic constant of the ECM N m–2

Fg = complex friction coefficient of the ECM N s m–4

βg = water volume fraction of the ECM -
Rc = compressional poroelastic constant of the cell body  N m–2

Fc = complex friction coefficient of the cell body N s m–4

βc = water volume fraction of the cell body  -
fg = bounded-water volume fraction of the ECM -
fc = bounded-water volume fraction of the cell body -
ft = bounded-water volume fraction of the tissue -
g = cells volume fraction of the tissue -
Fm = complex friction coefficient of the cell membrane  N s m–4

Km = hydraulic permeability of the cell membrane N–1s–1 m4

Em = Young’s elastic modulus of the cell membrane N m–2

b–1 = cell membrane thickness m
a = cell diameter m
e = normalized difference of the effective water content between the 
cells and the ECM -
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