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Abstract: For decades antibiotics have been used in poultry rearing to support high levels of produc-
tion. Nevertheless, several problems have arisen because of the misuse of antibiotics (i.e., antibiotic
resistance, residues in animal products, environmental pollution). Thus, the European Union (EU)
as well as the European Food Safety Authority (EFSA) promote action plans to diminish the use
of antibiotics in animal production. Alternatives to antibiotics have been studied. Polyphenols
(PPs) or organic acids (OAs) seem to be two accredited solutions. Phenolic compounds, such as
phenols, flavonoids, and tannins exert their antimicrobial effect with specific mechanisms. In contrast,
short chain fatty acids (SCFAs) and medium chain fatty acids (MCFAs), the OAs mainly used as
antibiotics alternative, act on the pathogens depending on the pKa value. This review aims to collect
the literature reporting the effects of these substances applied as antimicrobial molecules or growth
promoter in poultry feeding (both for broilers and laying hens). Organic acids and PPs can be used
individually or in blends, exploiting the properties of each component. Collected data highlighted
that further research needs to focus on OAs in laying hens’ feeding and also determine the right
combination in blends with PPs.

Keywords: phenolic compounds; fatty acids; broiler; laying hens; antibacterial; anticoccidial;
growth promoter

1. Introduction

The use of antibiotics in conventional farming has been the main strategy to protect
animals from the insurgence of infections and to prevent epidemic diseases, increasing
performance and promoting growth. This massive employment of drugs in animal produc-
tion has led to the development of microorganism antibiotic resistance [1–3]. To overcome
the selection of resistant bacteria, the European Union (EU) banned their use as growth
promoter in 2006 [4], and since 2013 has developed an action plan to fight antibiotic re-
sistance [5]. This plan advises the application of good animal management practices,
monitoring the Member States’ drug employment, and supports the researcher community
to find affordable alternatives to antibiotics

Alternatives to conventional antibiotics have been studied [6–9], and these substances
are used in feeds as preventive or therapeutic measures [10,11]. Among them, literature
reports that the use of plant secondary metabolites (i.e., polyphenols (PPs) and essential
oils) and organic acids (OAs, i.e., short-chain fatty acids (SCFAs) and medium chain fatty
acids (MCFAs)) may be valid solutions [7,12,13]. However, all medicated feeds will face
more restrictive legislation, because in 2018 the EU released another group of regulations
that will become functional in 2022. This new statement completely forbids the preventive
use of antibiotics, except if appropriate alternatives are not available [10,11].

Polyphenols are naturally synthetized in different plant organs to protect against
pathogens, thanks to their antibacterial and antifungal properties [14]. Hence, they could
exert an antibiotic-like action in animal management [15,16]. For instance, plant-based
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herbal additives were studied as anticoccidials in poultry management [17]. Even though
the observed effect was not comparable with that obtained with antibiotics, data high-
lighted positive effects on animal performance and intestinal lesion score for broilers fed
with the natural products. Furthermore, an anti-inflammatory action was observed in the
liver of broilers fed with a diet containing polyphenolic sources, such as milk thistle seeds,
rich in silymarin [18]. Organic acids have been proven to have an antibiotic-like action and
were recognized as safe for animal feeding by the EU [19]. They exert an antimicrobial
activity on gut microorganisms [20] and improve protein digestibility and amino acids’
absorption [21].

Poultry is the most diffuse form of animal production in the world providing a protein
source at a low cost, obtained in a very short production process; moreover, the small
animal size allows for the management of a huge number of chickens close together. To
keep supporting these high levels of production, antimicrobials are extremely important in
poultry rearing [22]. Thus, they are usually employed to prevent the easy disease spread,
considering the birds’ typical gregarious behavior and their habit of pecking at the ground.
Consequently, this review recovered literature about PP-rich sources and OAs that exert an
antibiotic-like action for poultry as antimicrobials.

2. Polyphenols
2.1. Chemical Characteristics

Plants synthesize secondary metabolites with antimicrobial properties to protect their
organs from microbial infections or herbivorous grazing [23]. Generally, they are produced
in special circumstances (i.e., after wounds or microbial infections) or in specific locations
that demand more protection. Polyphenols constitute one of the most numerous and
widely distributed groups of these natural products. More than 8000 phenolic compounds
have been discovered and partially studied [24]. The classification of PPs was carried out
over the course of several years, and they can be categorized in several ways [25]. The most
accredited form of classification is to consider their chemical structure and properties [24].
All PPs feature from an aromatic ring plus one or more hydroxyl groups [26].

Three main groups can be identified: phenolic acids, flavonoids, and stilbenes (Figure 1).
In addition, there are other PPs out of this classification that have a simple structure and
are water-soluble. Phenolic acids are formed by a simple benzene ring (i.e., gallic acid or
caffeic acid) and are rarely found in a free form but, usually, they are bound in plant cell
walls or lignin [27,28]. The flavonoid group involves the greater number of PPs, nearly
5000 different molecules; all flavonoids are characterized by two aromatic rings linked by
a 3-carbon bridge [29]. Moreover, they can be further classified into several subgroups:
neoflavonoids, isoflavonoids, flavones, flavanols, flavanones, and anthocyanidins [30].
Stilbenes are constituted by two aromatic rings without a carbon bridge [31].

Tannins belong to the polyphenol class. They are distinguished into hydrolysable
tannins (HT) and condensed tannins (CT). The first ones phenolic acids esterified to
hydroxyl-groups, while the latter are flavan-3-ol polymers, each with different chemical
activities [30].

2.2. Antimicrobial Activity

In general, phenols exert their toxicity inhibiting enzymes because their oxidized
compounds interact with sulfhydryl groups or with proteins, without a specific mechanism.
Flavonoids can bind extracellular and soluble proteins (i.e., hydro-lases, oxidoreductases,
DNA synthetases, RNA polymerases, phosphatases, protein phosphokinases, oxygenase,
and amino acid oxidases [32]) or bacterial cell-walls, and the lipophilic one can destroy
membrane [33]. In addition, they can inhibit DNA replication, either in Gram+ or Gram−
bacteria [34]. Tannins act as antimicrobials since they deactivate microbial adhesins, en-
zymes, cell envelope transport proteins, and complexing with polysaccharides [33]. Partic-
ularly, CT can penetrate bacterial protein efficiently because of its lower molecular weight
than HT [35] (Figure 2).
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2.3. Poultry Feeding Application

Polyphenols have been already used in broilers and laying hens’ feeding with similar
purposes: to improve bird health and performance, which are related [36,37]. However,
since they are synthesized by plants also against grazing predation [13], they may have an
anti-nutritional effect, limiting nutrient exploitation. From a chemical standpoint, PPs de-
crease feed intake and digestibility by binding dietary proteins and digestive enzymes [38].
To overcome this problem and to exploit the positive effects at the same time, the kind of
PPs, the right level of inclusion, the eventual processing and synergic interaction with other
additives are fundamental to know [7]. In fact, each kind of polyphenol can exert its effects
in different ways (Table 1). For instance, HT and CT act differently against Clostridium
perfringens. Literature reports that HT extract has a bactericidal activity while CT extract
shows a bacteriostatic effect instead [39].
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Table 1. Example of polyphenols studied as antimicrobials.

Poliphenols Quantity Effects References

Hydrolizable tannins n.a Bactericidial against Clostridium perfringens Redondo et al., 2015 [39]
Condensed tannins n.a. Bacteriostatic against Clostridium perfringens Redondo et al., 2015 [39]

Flavonoids <0.2 g/kg Antimicrobial against Salmonella spp. and
Escherichia coli Dos Santos et al., 2020 [40]

Andrographolide flavonoid
and tannins 0.3% Antibacterial against Escherichia coli Hidanah et al., 2020 [41]

Magnolol 200 mg/kg Antimicrobial against Escherichia coli Chen et al., 2020 [42]
Flavonoids 30 g/kg Antimicrobial against Escherichia coli Balenović et al., 2018 [43]

Thymol and carvacrol 8% and 4.9% Antimicrobial Ramirez et al., 2021 [44]

Tannins, flavonoids and phenols 0.45 g/L Anticoccidial against Eimeria
oocyst antimicrobial Oyeleke et al., 2021 [45]

Polyphenols 0.263 g/kg; 0.556 g/kg Antimicrobial against Campylobacter spp. Branciari et al., 2016 [46]
Curcumin, thymol,

cinnamaldehyde and carvacrol 50 mg/kg and 100 mg/kg Anticoccidial against Eimeria oocyst and
antibacterial against Escherichia coli Galli et al., 2020a [47]

Curcumin, resveratrol, yuccaloids 100 mg/kg and 250 mg/kg Antimicrobial and anticoccidial against Eimeria Galli et al., 2020b [48]
Curcumin, thymol,

cinnamaldehyde and carvacrol 50 mg/kg and 100 mg/kg Anticoccidial against Eimeria oocyst and
antibacterial against Escherichia coli Galli et al., 2020a [47]

A common issue in using antibiotics in laying hens’ management is the transfer of
chemical residues into the eggs. Nevertheless, in the USA they are still used to improve egg
quality and quantity, particularly at the end of the deposition curve when production is less
efficient. Thus, polyphenol sources seem to be a well-fitting solution because they have an
antibiotic-like action and are residual-free [49]. For instance, strawberry guava leaf extract
(a flavonoid source) used as feed additive can exert a double effect: an antimicrobial activity
on the animal and an antioxidant activity on the eggs’ shelf-life [40]. Escherichia coli infection
is a critical aspect of poultry rearing, because it decreases the production and increases
the animal mortality [50]. Flavonoids and tannins, contained in crude extract of sambiloto
(Andrographis paniculate) leaves, improve performance, even during the infection [41]. In
fact, the challenged birds fed the integrated diet reduced their food consumption compared
with the control, because the infection progression was inhibited, and feed digestion was
more efficient. In addition, the andrographolide flavonoid from sambiloto increased the egg
production due to its antibacterial effect. The diet inclusion of sambiloto crude extract as a
polyphenol source led to lower food consumption with higher performance, ameliorating
the feed conversion [41].

Magnolol is the main polyphenol extract from Magnolia L. root and stem bark, which
exerts anti-inflammatory, antibacterial, anti-tumoral, and antioxidant activities [29,51–53].
In laying hens, a diet with a 200 mg/kg concentration of magnolol extract, administered
in the late period, can improve hepatic lipid metabolism and intestinal mucosa barrier
function, acting on the enteric tissue morphology (diet inclusion levels of 100 mg/kg,
200 mg/kg, and 300 mg/kg) [42]. In addition, quality of fresh and stored eggs and laying
performance were ameliorated. Additionally, dandelion and marigold flowers, dried
calendula, and basil leaves in hens were tested as sources of PPs, with two different levels
of inclusion in the diet (10 g/kg and 30 g/kg) [43]. According to the literature, all these
matrices reported positive responses as antimicrobial and anti-inflammatory agents due
to their flavonoid content, and the effect against Escherichia coli counts was successfully
exerted with the highest concentrations (30 g/kg).

Oregano essential oil, extracted from Lippia origonoides, was tested as an antimicrobial
in laying hens because it is rich in thymol (8%) and carvacrol (4.9%), which act on the
pathogen cell wall proteins [49]. The following conditions were tested: control without
bacteriocin or PPs; 50 ppm zinc bacteriocin additive; 80 ppm oregano essential oil; and
150 ppm oregano essential oil. The feed treatment with 150 ppm oregano essential oil,
without chemical additions, had the best bird feed intake and egg production, with the
lowest mortality. Moreover, this treatment did not change egg nutritional quality [44].

Based on positive results from using Petiveria alliacea to improve bird growth and
performances, the extract of its leaf and root were tested in growing pullets [45]. The
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anticoccidial and antimicrobial effects were exerted by different bioactive compounds
(saponins, alkaloids, sulphur compounds, PPs) and the efficiency was higher with root
extract than leaf extract. In fact, these matrices can act on Eimeria replication in feces, and
on the total bacteria count in gut. Specifically, as anticoccidials, tannins, flavonoids, and
phenols mitigated the parasitic infectious intensity thanks to their antioxidant activity.
Instead, as natural antimicrobials they destroy microbial cell structure [45].

The advantage in using PPs as additives is related not only to animal health, but also
to human health, reducing meat contamination. Human campylobacteriosis is associated
with contaminated chicken meat consumption in the 50–80% of cases [54]. In fact, Campy-
lobacter, which is present in chicken gut, could infect meat during slaughtering and carcass
processing. Several authors tested polyphenol-rich matrices, such as polyphenolic extract
from spray-dried olive mill wastewater [55], chestnut inner shell extract [56], or grape seed
extract [57], as antimicrobials on the meat to lower the microbial count of Campylobacter.
Thus, the effect of olive mill wastewater polyphenol extract and dehydrated olive cake
on Campylobacter was evaluated in growing broilers (49 days of trial) [46]. Fecal samples
were collected at different times during the experimental period. However, only after the
28th day of administration was the antimicrobial effect observed with both treatments.
The olive mill wastewater extract, which had the higher polyphenol content, was more
efficient in comparison to the olive cake. Moreover, unlike other olive by-products, both
olive mill wastewater extract and dehydrated olive cake significantly improved animal
performance [46].

Among the PPs extracted from vegetal matrices, one of the most common is cur-
cumin, which exerts antioxidant, anti-inflammatory, antimicrobial, and gastroprotective
activities [58] and a coccidiostat effect [59]. Using a combination of curcumin and a com-
mercial microencapsulated phytogenic product (based on thymol, cinnamaldehyde and
carvacrol), the broiler performance was increased through improving the positive intestinal
flora. Hence, gut mucosa was protected from coccidia and bacteria (e.g., Eimeria and
Escherichia spp.) proliferation. In addition, an increase in polyunsaturated fatty acids (FAs)
with a lipid peroxidation decrease in meat was observed, improving meat quality [47].
Similarly, curcumin with yucca (Yucca schidigera) extract, a resveratrol and yuccaloid source,
were tested with the intention of enhancing the antimicrobial effect [48]. Similar to the
previous case, curcumin exerted an antimicrobial effect, inhibiting bacterial reproduction
and exerting an anti-inflammatory action, improving animal performance. The yucca
anticoccidial effect was exerted by the presence of saponins, due to their ability to bind
with pathogen membrane cholesterol. Furthermore, quality and shelf-life of meat were
improved. Particularly, curcumin was principally involved in producing a high content
of polyunsaturated FAs, because it improved the efficiency of desaturase enzymes and
reduced lipid peroxidation, thanks to its antioxidant properties. In addition, yuccaloids de-
creased saturated FA concentration, affecting the lipogenic enzyme ∆9-desaturase activity
that converts saturated FAs into monounsaturated FAs, such as low-density lipoprotein
(LDL) that is involved in cardiovascular disease risk [48].

3. Organic Acids
3.1. Chemical Characteristics

Organic acids are organic carboxylic acids with a general structure R-COOH. They
are classified on the basis of chain length (Figure 3). Particularly, for monogastrics, there
are several OAs defined as “essential” because they cannot be synthetized by the gut
microbiota. Short-chain fatty acids (C1–C7, i.e., formic, acetic, propionic, and butyric acids)
are produced in the gut tract during feed fermentation [60], whilst MCFAs (C8–C12, i.e.,
caproic, caprylic, capric, and lauric acids) and long chain FAs (LCFA; C13–C32, i.e., linolenic
and linoleic acids) need to be taken with the diet. In nature, most OAs are esterified with
glycerol to form triglycerides and phosphoglycerides or their derivates. One molecule of
glycerol can bind up to three molecules of FA, one for each hydroxyl attach site (position
SN1, SN2 and SN3 on the glycerol carbon chain), forming a triacylglycerol. The SN1 and
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SN3 positions are chemically equivalent. Once ingested, triglycerides undergo lipolysis
in the intestine, leading to the formation of diglycerides, monoglycerides, free FAs and
free glycerol.
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3.2. Antimicrobial Action

Short-chain fatty acids (i.e., propionic (C3) and butyric (C4)) are principally related
to antimicrobial activity, as well as to productive performance improvement [21,61]. In
particular, the antimicrobial effect is associated with an acid dissociation constant (pKa)
between 3 and 5. When OAs reach the gut, they alter the environment by decreasing pH.
This acidification inhibits bacteria in nutrients recovery, which are preserved for the host.
Moreover, a lower pH breaks down cholesterol and levels up calcium, phosphorus, and
magnesium in serum due to an enhanced absorption [62]. Even MCFAs (C8–C12) are
involved in antimicrobial activity, but their mechanism of action is different. Their pKa
is about 4.9 [63] and those with a lower molecular weight are more efficient. They can
easily penetrate semipermeable peptidoglycan (Gram+ bacteria) or phospholipid (Gram−
bacteria) membrane in the undissociated form, then the dissociation in proton and anion
carries out into the cytoplasm, lowering pH to induce the cell to collapse [64,65] (Figure 4).
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3.3. Poultry Feeding Application

In poultry feeding, OA supplementation has been studied with positive effects
(Table 2). However, the OA administration form is a common problem that the feed
industry needs to solve to improve OA nutritional availability. The use of OA salts (with
sodium, potassium, or calcium) is the first solution, because it provides OAs in a solid form
with a better smell [20,66]. Microencapsulation is another solution [67,68], because the
undegradable film that envelopes the OA particles allows a more effective release of these
substances. Thus, the beneficial action is promoted along the entire gut tract. Organic acid
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efficiency is affected by molecular weight, pKa value, form (undissociated or dissociated)
and the specific antimicrobial activity (targeted microorganism) [65,69].

Table 2. Examples of organic acids studied as antimicrobials.

Organic Acid Quantity Effects References

Glycerol-monolaurate 300 mg/kg Antimicrobial against Escherichia coli and
anticoccidial against Eimeria oocyst Fortuoso et al., 2019 [70]

Short and medium fatty acids 3 g/kg Antimicrobial against Salmonella enterica Aljumaah et al., 2020 [69]
Short and medium fatty acids 0.20% Antibacterial against Enteroccocus Dauksiene et al., 2021 [71]

Fatty acids produced by wheat
bran fermentation 1% with 280 µm particle size Antimicrobial against Salmonella Vermeulen et al., 2017 [72]

Long-chain fatty acids by
cranberry pomace fermentation

αlinolenic acid 21% and
linoleic acid 39.7%

Improvement of immunologic response
against infectious bursal disease virus

(IBDV) and Newcastle disease virus (NDV)
Islam et al., 2020 [73]

For decades, OAs have been used in poultry production to improve meat quality
and conservation [71,74]. In recent years, the addition of these substances in feeding has
also been increasingly applied as an alternative to antibiotics. An example is glycerol-
monolaurate that has been successfully used in poultry feeding and on meat to improve the
nutritional quality. Thus, a 300 mg/kg content of glycerol-monolaurate can exert a growth-
promotion action similar to antibiotics (levels of inclusion of 100 mg/kg, 200 mg/kg,
and 300 mg/kg) [70]. In fact, this monoglyceride affected Escherichia coli abundance and
Eimeria spp. oocyst abundance and proliferation.

A combination of OAs can also be used. For instance, a blend of SCFAs and MCFAs
and a low dose of ß1-4 mannobiose against Salmonella enterica serovar Typhimurium was
evaluated in broilers [69]. However, the dose of 3 g/kg improved the performances only
minimally, with a stable activity of the probiotic flora. The authors concluded that the
concentration of OAs was too low to show an effect on the microbiota [69]. Elsewhere,
an evident antibacterial effect was observed already in the first days of the experimental
period using a blend of OAs with a 0.2% level of inclusion [71]. Particularly, SCFAs
decreased the abundance of Enterococcus spp., which typically infect one-day-old birds.
Likewise, these were more efficient in reducing Faecalibacterium in adults, compared with
MCFAs. In addition, Lactobacillus and Bifidobacterium genera were found to be more
abundant, improving immunity-response and, subsequently, meat quality. Nevertheless,
Lactobacillus crispatus and Lactobacillus salivarius were the most abundant species in both
treatment groups, exerting different beneficial effects (antibacterial, growth promoter and
healthy) [71].

Among the most recent strategies to enrich diets with OAs, the literature reported
how the dietary fermentable fiber fraction can be exploited to produce bioactive FAs in the
animal gut, exerting an antimicrobial effect [75]. Wheat bran, a by-product of wheat milling,
was added to feed (1%) to evaluate the effect against Salmonella [72]. Previously, the particle-
size antimicrobial effect was tested in vitro. Then, a wheat bran with a 280 µm particle
size was evaluated in vivo on broilers. The chosen wheat bran granulometry led to a fast
fermentation that produced butyric acid. This OA is involved in the downregulation of the
genes of the Salmonella pathogenicity island I (SPI-1) [76] that eases Salmonella propagation
in the animal gut, exerting an antimicrobial effect. In addition, this strategy improved
animal performance, in accordance with other similar studies [77,78]. Elsewhere, the
antimicrobial action exerted by the LCFAs produced from cranberry pomace fermentation
highlighted a double positive effect [73]. The high α-linolenic acid (21.0%) and linoleic
acid (39.7%) pomace concentrations hindered encephalomalacia onset and promoted a
better immunologic response against infectious bursal disease virus (IBDV) and Newcastle
disease virus (NDV). Moreover, its fiber content favored Ruminococcus caecal bacterium
presence, involved in the plant cell wall breakdown. Lastly, this kind of FA levels up the
meat’s nutritional quality [73].
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4. Blends of Polyphenols and Organic Acids

The use of different kinds of substances added to animal feed as a blend could exert
interesting effects, enhancing the activity of each component (Table 3).

Table 3. Examples of blends of polyphenols and organic acids studied as antimicrobials.

Blends of Polyphenols
and Organic Acids Quantity Effects References

Chestnut tannin extract and SN1
monoglycerides (a mix of organic acids

from C4:0 to C12:0)

2 g/kg and 1 g/kg; 1 g/kg
and 2 g/kg

Antimicrobial against Clostridium
perfringens, Salmonella

typhymurium, Escherichia coli and
Campylobacter jejuni

Mannelli et al., 2019 [67]

Glycerol-monolaurate with curcumin
and cinnamaldehyde

297 mg/kg, 276 mg/kg,
and 156 mg/kg Against Eimeria oocysts viability Galli et al., 2021 [68]

Thymol and sodium butyrate 50 mg/kg and 1 g/kg Against Salmonella counts Cerisuelo et al., 2014 [79]

Commercial blend n.a. Antimicrobial against
Campylobacter Guyard-Nicodème et al., 2016 [54]

Citric, fumaric, sorbic, and malic acids 250 mg/kg, 500 mg/kg,
and 1000 mg/kg

Antimicrobial Eimeria and
Escherichia coli Armanini et al., 2021 [36]

Chestnut tannin blended with SN1 monoglycerides affects the gut with an antimicro-
bial action, providing energy to enterocytes, increasing villi growth and then, mitigating
the negative effect of tannins [80–82]. Similarly, diet palatability, weight gain or feed effi-
ciency were not compromised, despite the tannin’s astringent action [67]. Instead, a blend
of glycerol monolaurate (monoglyceride of lauric acid), curcumin and cinnamaldehyde
(polyphenol compounds) was evaluated as feed additive for broiler diet, substituting con-
ventional growth promoters [68]. Specially during the starter diet period, the authors found
that the tested levels of inclusion (276 mg of curcuminoids/kg, 156 mg cinnamaldehyde/kg,
297 mg glycerol-monolaurate/kg) exerted a toxic effect on the animal, resulting in a growth
reduction. In contrast, despite its low efficiency as growth promoter, the blend seemed to
be optimal as an antimicrobial or anticoccidial additive, since curcumin decreased bacterial
reproduction, cinnamaldehyde undermined Eimeria oocyst viability, and glycerol monolau-
rate interfered with pathogen activity. A similar situation was observed when studying a
blend of cinnamaldehyde and thymol (from essential oils) with or without sodium butyrate
at different levels of inclusion (only essential oil addition of 50 mg/kg and 100 mg/kg;
or their combination with 1 g/kg of sodium-butyrate) [79]. Compared with the control,
performances did not improve in any treated group. However, other beneficial effects were
detected within the tested conditions. The most efficient treatments were the ones with a
low phenolic compound content (50 mg essential oil blend/kg) and 1 g/kg of OA inclusion.
In fact, Salmonella contamination was lowered in both caeca and fecal samples. Probably,
other doses need to be tested to observe an antimicrobial effect together with growth
promotion. In addition, the carcass was not contaminated with pathogens, reducing the
chance of infectious transmission to humans, according to the original employment of OAs
as a food additive for preservation [71,74]. In the same way, to avoid meat contamination
during slaughtering, several plant-based or OA-based commercial feed additives were
tested in vivo to evaluate their efficiency during the livestock period until slaughtering [54].
However, no antimicrobial activity was confirmed until the period immediately before
slaughtering. The authors concluded that the OAs or the other bioactive compounds were
probably previously absorbed or metabolized in a gut tract different to the caeca [54].

A blend of OAs (citric, fumaric, sorbic, and malic acids) with tannins, curcumin, and
essential oils at different levels of feed inclusion (250 mg/kg, 500 mg/kg, and 1000 mg/kg)
was tested [36]. In each treated group, performances were not comparable with the control
including antibiotics. On the 22nd day of life animals were challenged with aflatoxin,
simulating a feed contamination. In litter feces, lower counts of heterophiles, lymphocytes,
and monocytes, and a lower bacteria cell count were observed, and in breast meat a lower
lipid peroxidation was found. Despite displaying no higher growth performances, both
intestine health and meat shelf-life were improved by the blend of OA and vegetal bioactive
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molecules, confirming the antimicrobial effect of SCFAs and the antioxidant activity of
phenolic compounds. In contrast with the previous papers reported, a blend of SCFAs and
MCFAs with thymol, cinnamaldehyde and essential oil of eucalyptus can exert a synergic
effect as antimicrobials and as growth promoters [83].

5. Conclusions

Either PPs or OAs can be successfully applied in poultry feeding as a preventive
alternative to antibiotics, and as growth promoters. In accordance with the newest EU reg-
ulation [10,11], more research is needed to exploit these alternatives to antibiotics together
with a therapeutic purpose. Generally, PPs’ and OAs’ antimicrobial action is exerted on the
intestinal microbiota. These lead to an energy saving that the host metabolism can employ
in muscle production instead of in an anti-inflammatory reaction. Moreover, a gut health
improvement evidences better and higher nutrient absorption.

Other uses of these substances in blends show different effects, depending on the
molecule kind, the level of inclusion, and the interaction between PPs and OAs. In fact,
blends exert an antimicrobial effect, but auxin action is not always observed. Thus, further
investigations about the mechanism of action could be interesting to understand how
to properly exploit each product for a specific purpose or in different areas of livestock
management.

From our knowledge, even though PPs are also used in laying hen rearing, there is a
lack of investigation about the employment of OAs in this sector. In addition, an interesting
application, not explored in this paper, would be the employment of PPs and OAs as food
preservatives.

The use of PPs or OAs in poultry feeding is beneficial not only as an alternative to
antibiotics for animal welfare and environment preservation but also for the product (e.g.,
egg or meat) quality, improving food nutritional profile, safety, and shelf-life.
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