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Abstract
In this paper, the problem of best subset selection in logistic regression is addressed. 
In particular, we take into account formulations of the problem resulting from the 
adoption of information criteria, such as AIC or BIC, as goodness-of-fit measures. 
There exist various methods to tackle this problem. Heuristic methods are computa-
tionally cheap, but are usually only able to find low quality solutions. Methods based 
on local optimization suffer from similar limitations as heuristic ones. On the other 
hand, methods based on mixed integer reformulations of the problem are much more 
effective, at the cost of higher computational requirements, that become unsustaina-
ble when the problem size grows. We thus propose a new approach, which combines 
mixed-integer programming and decomposition techniques in order to overcome 
the aforementioned scalability issues. We provide a theoretical characterization of 
the proposed algorithm properties. The results of a vast numerical experiment, per-
formed on widely available datasets, show that the proposed method achieves the 
goal of outperforming state-of-the-art techniques.

Keywords  Logistic regression · Information criterion · Best subset selection · Sparse 
optimization · Block coordinate descent

1  Introduction

In statistics and machine learning, binary classification is one of the most recurring 
and relevant tasks. This problem consists of identifying a model, selected from a 
hypothesis space, able to separate samples characterized by a well-defined set of 
numerical features and belonging to two different classes. The fitting process is 
based on a finite set of samples, the training set, but the aim is to get a model which 
correctly labels unseen data.
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Among the various existing models to perform binary classification, such as 
k-nearest-neighbors, SVM, neural networks or decision trees (for a review of clas-
sification models see, e.g., the books of [9, 22] or [24]), we consider the logistic 
regression model. Logistic regression belongs to the class of Generalized Linear 
Models and possesses a number of useful properties: it is relatively simple; it is 
readily interpretable (since the weights are linearly associated to the features); out-
puts are particularly informative, as they have a probabilistic interpretation; statisti-
cal confidence measures can quickly be obtained; the model can be updated by sim-
ple gradient descent steps if new data are available; moreover, in practice it often has 
good predictive performance, especially when the size of train data is too limited to 
exploit more complex models.

In this work, we are interested in the problem of best features subset selection 
in logistic regression. This variant of standard logistic regression requires to find 
a model that, in addition to accurately fitting the data, exploits a limited number of 
features. In this way, the obtained model only employs the most relevant features, 
with benefits in terms of both performance and interpretation.

In order to compare the quality of models that exploit different features, i.e., mod-
els with different complexity, goodness-of-fit (GOF) measures have been proposed. 
These measures allow to evaluate the trade-off between accuracy of fit and com-
plexity associated with a given model. Among the many GOF measures that have 
been proposed in the literature, those based on information criteria (IC) such as AIC 
[1], BIC [39] or HQIC [21] are some of the most popular [23]. Models based upon 
these Information Criteria are very popular in the statistics literature. Of course 
it is evident that no model is perfect and different models might had been consid-
ered. However, as nicely reported by [13], a reasonable model should be comput-
able from data as well as based on a general statistical inference framework. This 
means that “model selection is justified and operates within either a likelihood or 
Bayesian framework or within both frameworks”. So, although many alternative 
models can be proposed and successfully employed, like, e.g., those described in 
[6, 8, 26], in this paper we prefer to remain on the classical ground of Information 
Criteria like the AIC, which is an asymptotically unbiased estimator of the expected 
Kullback–Leibler information loss, or the BIC, which is an easy to compute good 
approximation of the Bayes factor.

In case the selection of the model is based on one of the aforementioned IC, the 
underlying optimization problem consists of minimizing a function which is the sum 
of a convex part (the negative log-likelihood) and a penalty term, proportional to the 
number of employed variables; it is thus a sparse optimization problem.

Problems of this kind are often solved by heuristic procedures [17] o by �1-regu-
larization [27, 29, 45]. In fact, specific optimization algorithms exist to directly han-
dle the zero pseudo-norm [4, 31, 32]. However, none of the aforementioned methods 
is guaranteed to find the best possible subset of features under a given GOF measure.

With problems where the convex part of the objective is simple, such as least 
squares linear regression, approaches based on mixed-integer formulations allow to 
obtain certified optima, and have thus had an increased popularity in recent years [7, 
14, 19, 34, 35]. Logistic likelihood, although convex, cannot however be inserted in 
a standard MIQP model. Still, [38] showed that, by means of a cutting-planes based 
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approximation, a good surrogate MILP problem can be defined and solved, at least for 
moderate problem sizes, providing a high quality classification model.

The aim of this paper is to introduce a novel technique that, exploiting mixed-inte-
ger modeling, is able to produce good solutions to the best subset selection in logistic 
regression problem, being at the same time reasonably scalable w.r.t. problem size. To 
reach this goal, we make use of a decomposition strategy.

The main contributions of the paper consist in:

•	 the definition of a strong necessary optimality condition for optimization problems 
with an �0 penalty term;

•	 the definition of a decomposition scheme, with a suitable variable selection rule, 
allowing to improve the scalability of the method from [38], with convergence 
guarantees to points satisfying the aforementioned condition;

•	 practical suggestions to improve the performance of the proposed algorithm;
•	 a thorough computational study comparing various solvers from the literature on 

best subset selection problems in logistic regression.

The rest of the manuscript is organized as follows: in Sect. 2, we formally introduce 
the problem of best subset selection in logistic regression, state optimality conditions 
and provide a brief review of a related approach. In Sect. 3, we present our proposed 
method, explaining in detail the key contributions and carrying out a theoretical analy-
sis of the procedure. Then, we describe and report in Sect. 4 the results of a thorough 
experimental comparison on a benchmark of real-world classification problems; these 
results highlight the effectiveness of the proposed approach with respect to state-of-
the-art methods. We finally give some concluding remarks and suggest possible future 
research in Sect. 5. In Appendix we also provide a detailed review of the algorithms 
considered in the computational experiments.

2 � Best subset selection in logistic regression

Let X ∈ ℝ
N×n be a dataset of N examples with n real features and Y ∈ {−1, 1}N a set of 

N binary labels. The logistic regression model [22] for binary classification defines the 
probability for an example x of belonging to class y = 1 as

Substantially, a sigmoid nonlinearity is applied to the output of a linear regression 
model. Note that the intercept term is not explicitly present in the linear part of the 
model; in fact, it can be implicitly added, by considering it as a feature which is 
equal to 1 in all examples; we did so in the experimental part of this work. It is easy 
to see that

ℙ(y = 1 ∣ x) =
1

1 + exp(−w⊤x)
.

ℙ(y = −1 ∣ x) = 1 − ℙ(y = 1 ∣ x) =
1

1 + exp(w⊤x)
.
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Hence, the logistic regression model can be expressed by the single equation here 
below:

Under the hypothesis that the distribution of (y ∣ x) follows a Bernoulli distribution, 
we get that model (1) is associated with the following log-likelihood function:

A function f (v) = log(1 + exp(−v)) is referred to as logistic loss function and is 
a convex function. The maximum likelihood estimation of (1), which requires the 
maximization of �(w) , is thus a convex continuous optimization problem.

Identifying a subset of features that provides a good trade-off between fit quality 
and model sparsity is a recurrent task in applications. Indeed, a sparse model might 
offer a better explanation of the underlying generating model; moreover, sparsity 
is statistically proved to improve the generalization capabilities of the model [44]; 
finally, a sparse model will be computationally more efficient.

Many different approaches have been proposed in the literature for the best sub-
set selection problem which, we recall, is a specific form of model selection. Every 
model selection procedure has advantages and disadvantages as it is difficult to think 
that there might exist a single, correct, model for a specific application. Among the 
many different proposals, those which base subset selection on information crite-
ria [12, 13, 28] stand out as the most frequently used, both for their computational 
appeal as well as for their deep statistical theoretical support. Information criteria 
are statistical tools to compare the quality of different models in terms of quality of 
fit and sparsity simultaneously. The two currently most popular information criteria 
are:

•	 the Akaike Information Criterion (AIC) [1, 2, 11]: 

 Comparing a set of candidate models, the one with smallest AIC is considered 
closer to the truth than the others. Since the log-likelihood, at its maximum 
point, is a biased upward estimator of the model selection target [12], the penalty 
term 2‖w‖0 , i.e., the total number of parameters involved in the model, allows to 
correct this bias;

•	 the Bayesian Information Criterion (BIC) [39]: 

 It has been shown [12, 28] that given a set of candidate models, the one which 
minimizes the BIC is optimal for the data, in the sense that it is the one that max-
imizes the marginal likelihood of the data under the Bayesian assumption that all 
candidate models have equal prior probabilities.

(1)ℙ(y ∣ x) =
1

1 + exp(−yw⊤x)
.

(2)�(w) = −

N∑

i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
.

AIC(w) = −2�(w) + 2‖w‖0;

BIC(w) = −2�(w) + log(N)‖w‖0;
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Although other models can be proposed for model selection, those based on the 
AIC and BIC, or their variant, are extremely popular thanks to their solid statistical 
properties.

In summary, when referred to logistic regression models, the problem of best 
subset selection based on information criteria like AIC or BIC has the form of the 
following optimization problem:

where L ∶ ℝ
n
→ ℝ is twice the negative log-likelihood of the logistic regression 

model ( L(w) = −2�(w) ), which is a continuously differentiable convex function, 
𝜆 > 0 is a constant depending on the choice of the information criterion and ‖ ⋅ ‖0 
denotes the �0 semi-norm of a vector. Given a solution w̄ , we will denote the set 
of its nonzero variables, also referred to as support, by S(w̄) ⊆ {1,… , n} , while 
S̄(w̄) = {1,… , n}⧵S(w̄) , denotes its complementary. In the following, we will also 
refer to the objective function as F(w) = L(w) + �‖w‖0.

Because of the discontinuous nature of the �0 semi-norm, solving problems of the 
form (3) is not an easy task. In fact, problems like (3) are well-known to be NP-hard,  
hence, finding global minima is intrinsically difficult.

Lu and Zhang  [32] have established necessary first-order optimality conditions 
for problem (3); in fact, they consider a more general, constrained version of the 
problem. In the unconstrained case we are interested in, such conditions reduce to 
the following.

Definition 1  A point w⋆ ∈ ℝ
n satisfies Lu–Zhang first order optimality conditions 

for problem (3) if ∇jL(w
⋆) = 0 for all j ∈ {1,… , n} such that w⋆

j
≠ 0.

As proved by [32], if L(w) is a convex function, as in the case of logistic regres-
sion log-likelihood, there is an equivalence relation between Lu–Zhang optimal-
ity and local optimality, meaning there exists a neighborhood V of w⋆ such that 
F(w⋆) ≤ F(w) for all w ∈ V .

Proposition 1  Let w⋆ ∈ ℝ
n . Then, w⋆ is a local minimizer for Problem (3) if and 

only if it satisfies Lu–Zhang first order optimality conditions.

This may appear surprising at first glance. However, after a more careful think-
ing, it should be evident. Being L convex, a Lu–Zhang point is globally optimal 
w.r.t. the nonzero variables. As for the zero variables, since L is continuous, there 
exists a neighborhood such that the decrease in L is bounded by � , which is the pen-
alty term that is added to the overall objective function as soon as one of the zero 
variables is moved.

Unfortunately, the number of Lu–Zhang local minima is in the order of 2n . 
Indeed, for any subset of variables, minimizing w.r.t. those components, while 
keeping fixed the others to zero, allows to obtain a point which satisfies Lu–Zhang 
conditions. Hence, satisfying the necessary and sufficient conditions of local opti-
mality is indeed a quite weak feature in practice. On the other hand, being the 

(3)min
w∈ℝn

L(w) + �‖w‖0,
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search of an optimal subset of variables a well-known NP-hard problem, requir-
ing theoretical guarantees of global optimality is unreasonable. In conclusion, 
it should be clear that the evaluation and comparison of algorithms designed to 
deal with problem (3) have to be based on the quality of the solutions empirically 
obtained in experiments.

However, we can further characterize candidates for optimality by means of 
the following notion, which adapts the concept of CW-optimality for cardinality 
constrained problems defined by [4]. To this aim, we introduce the notation w≠i to 
denote all the components of w except the i-th.

Definition 2  A point w⋆ ∈ ℝ
n is a CW-minimum for Problem (3) if

for all i = 1,… , n.

Equivalently, (4) could be expressed as

CW-optimality is a stronger property than Lu–Zhang stationarity. We outline this 
fact in the following proposition.

Proposition 2  Consider Problem (3) and let w⋆ ∈ ℝ
n . The following statements 

hold: 

1.	 If w⋆ is a CW-minimum for (3), then w⋆ satisfies Lu–Zhang optimality conditions, 
i.e., w⋆ is a local minimizer for w⋆.

2.	 If w⋆ is a global minimizer for (3), then w⋆ is a CW-minimum for (3).

Proof  We prove the statements one at a time. 

1.	 Let w⋆ be a CW-minimum, i.e., 

 for all i = 1,… , n . Assume by contradiction that w⋆ does not satisfy Lu–Zhang 
conditions; then, there exists h ∈ {1,… , n} such that w⋆

h
≠ 0 and ∇hL(w

⋆) > 0 . 
Hence, −∇hL(w

⋆) is a descent direction for L(wh;w
⋆
h≠j

) at w⋆
h
≠ 0 , which contra-

dicts (6).

(4)w⋆
i
∈ argmin

wi

F(wi;w
⋆
≠i
)

(5)
w⋆ ∈ argmin

w

F(w)

s.t. ‖w − w⋆‖0 ≤ 1

(6)w⋆
i
∈ argmin

wi

F(wi;w
⋆
≠i
)
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2.	 Let w⋆ be a globally optimal point for (3). Assume by contradiction that w⋆ is not 
a CW-minimum, i.e., there exists h ∈ {1.… , n} such that there exists ŵh such that 
F(ŵh;w

⋆
h≠j

) < F(w⋆) . This clearly contradicts that w⋆ is a global optimum.

	�  ◻

Note that CW-optimality is a sufficient, yet not necessary, condition for local 
optimality. Indeed, Lu–Zhang conditions, and hence local optimality, certify that 
an improvement cannot be achieved without changing the set of nonzero variables. 
CW-optimality allows to also take into account possible changes in the support, 
although limited to one variable. We show this in the following examples, where, for 
the sake of simplicity, we consider a simpler convex function than L.

Example 1  Consider the problem

It is easy to see that Lu–Zhang conditions are satisfied by the points wa = (0, 0) , 
wb = (1, 2) , wc = (0, 2) and wd = (1, 0) . We have �(wa) = 5 , �(wb) = 4 , �(wc) = 3 , 
�(wd) = 4 . We can then observe that wc and wd are CW-minima, as their objective 
value cannot be improved by changing only one of their components, while wa and 
wb are not CW-optima, as the solutions can be improved by zeroing a component or 
setting the first component to 1, respectively.

We can conclude by remarking that searching through the CW-points allows to 
filter out a number of local minima that are certainly not globally optimal.

2.1 � The MILO approach

Many approaches have been proposed to tackle cardinality-penalized problems in 
general and for problem (3) specifically. We provide a detailed review of many of 
these methods in Appendix. Here, we focus on a particular approach that is relevant 
for the rest of the paper.

Sato et al. [38] proposed a mixed integer linear (MILO) reformulation for prob-
lem (3), which is, to the best of our knowledge, the top performing one, as long as 
the dimensions of the underlying classification problem are not exceedingly large. 
Such approach has two core ideas. The first one consists of the replacement of the �0 
term by the sum of binary indicator variables.

The second key element is the approximation of the nonlinearity in L , i.e., the 
logistic loss function, by a piecewise linear function, so that the resulting reformu-
lated problem is a MILP problem. The approximating piecewise linear function is 
defined by the pointwise maximum of a family of tangent lines, that is,

min
w∈ℝ2

�(w) = (w1 − 1)2 + (w2 − 2)2 + 2‖w‖0.

f (v) = log(1 + exp(−v)) ≈ f̂ (v) = max{f �(vk)(v − vk) + f (vk) ∣ k = 1, 2,… ,K}

= min{t ∣ t ≥ f �(vk)(v − vk) + f (vk), k = 1,… ,K}
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for some discrete set of points {v1,… , vK} . The function f̂  is a linear underestima-
tor to the true loss logistic function. The final MILP reformulation of problem (3) is 
given by

where M is a large enough positive constant.
The choice of the tangent lines is clearly crucial for this method. For large values 

of K, problem (7) becomes hard to solve. On the other hand, if the number of lines 
is small, the quality of the approximation will reasonably be low. Hence, points vk 
should be selected carefully. Sato et al. [38] suggest to adopt a greedy algorithm that 
adds one tangent line at a time, minimizing the area of gap between the exact logis-
tic loss and the linear piece-wise approximation. In their work, Sato et al. [38] show 
that the greedy algorithm provides, depending on the desired set size, the following 
sets of interpolation points:

As problem (7) employs an approximation of L , the optimal solution ŵ obtained by 
solving it is not necessarily optimal for (3). However, since the objective of (7) is an 
underestimator of the original objective function, it is possible to make a posteriori 
accuracy evaluations. In particular, letting w⋆ be the optimal solution and

we have

Hence, if L(ŵ) − L̂(ŵ) is small, it is guaranteed that the value of the real objective 
function at ŵ is close to the optimum.

3 � The proposed method

The MILO approach from [38] is computationally very effective, but it suffers from 
a main drawback: it scales pretty badly as either the number of examples or the num-
ber of features in the dataset grows. This fact is also highlighted by the experimental 
results reported in the original MILO paper.

(7)

min
w,z,t

2

N∑

i=1

ti + 𝜆

n∑

i=1

zi

s.t. −Mzi ≤ wi ≤ Mzi ∀ i = 1,… , n,

z ∈ {0, 1}n,

ti ≥ f �(vk)(y(i)(w⊤x(i)) − vk) + f (vk) ∀ k = 1,… ,K, ∀ i = 1,… ,N,

V1 = {0,±1.9,±∞}, V2 = V1 ∪ {±0.89,±3.55},

V3 = V2 ∪ {±0.44,±1.37,±2.63,±5.16}

L̂(w) = 2

N∑

i=1

max
k

f �(vk)(y(i)(w⊤x(i)) − vk) + f (vk),

L̂(ŵ) + 𝜆‖ŵ‖0 ≤ L(w⋆) + ‖w⋆‖0 ≤ L(ŵ) + 𝜆‖ŵ‖0.
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On the other hand, heuristic enumerative-like approaches present the limitation of 
performing moves with a limited horizon. This holds not only for the simple stepwise 
procedures, but also for other possible more complex and structured strategies that one 
may come up with. Indeed, selecting one move among all those involving the addition 
or removal from the current best subset of multiple variables at one time is unsustain-
able except for tiny datasets.

In this work, we propose a new approach that somehow employs the MILO formula-
tion to overcome the limitations of discrete enumeration methods, but also has better 
scalability features than the standard MILO approach itself, in particular w.r.t. the num-
ber of features. The core idea of our proposal consists of the application of a decompo-
sition strategy to problem (3). The classical Block Coordinate Descent (BCD) [5, 42] 
algorithm consists in performing, at each iteration, the optimization w.r.t. one block of 
variables, i.e., the iterations have the form

where B
�
⊂ {1,… , n} is referred to as working set, B̄

�
= {1,… , n}⧵B

�
 . Now, if the 

working set size |B| is reasonably small, the subproblems can be easily handled by 
means of a MILO model analogous to that from [38]. Carrying out such a strategy, 
the subproblems to be solved at each iteration have the form

At the end of each iteration, we can also introduce a minimization step of L w.r.t. 
the current nonzero variables. Since this is a convex minimization step, it allows to 
refine every iterate up to global optimality w.r.t. the support and to Lu–Zhang sta-
tionarity, i.e., local optimality, in terms of the original problem. This operation has 
low computational cost and a great practical utility, since it guarantees, as we will 
show in the following, finite termination of the algorithm.

3.1 � The working set selection rule

Many different strategies could be designed for selecting, at each iteration � , the vari-
ables constituting the working set B

�
 , within the BCD framework. In this work, we 

propose a rule based on the violation of CW-optimality.
Given the current iterate x� , we can define a score function

(8)w�+1
B
�

∈ argmin
wB�

F(wB
�
;w�

B̄
�

),

(9)w�+1

B̄
�

= w�

B̄�

,

(10)

min
wB�

,z,t
2

N∑

i=1

ti + 𝜆
∑

i∈B
�

zi

s.t. −Mzi ≤ wi ≤ Mzi ∀ i ∈ B
�
,

zi ∈ {0, 1} ∀ i ∈ B
�
,

ti ≥ f �(vk)(yi(w
⊤xi) − vk) + f (vk) ∀ k = 1,… ,K, ∀ i = 1,… ,N.

wB̄
�
= w�

B̄
�
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The rational of this score is to estimate what the objective function would become if 
we forced the considered variable wi alone to change its status, entering/leaving the 
support.

We finally select the working set B� , of size b, choosing, in a greedy way, the b 
lowest scoring variables, i.e., by solving the problem

3.2 � The complete procedure

The whole proposed algorithm is formally summarized in Algorithm 1. Basically, 
it is a BCD where subproblems are (approximately) solved by the MILO reformula-
tion and variables are selected by (12).

In addition, there are some technical steps aimed at making the algorithm work 
from both the theoretical and the practical point of view.

In the ideal case where the subproblems are solved exactly, thanks to our selec-
tion rule, we would be guaranteed to do at least as well as a greedy descent step 
along a single variable. However, subproblems are approximated and it happens 
that, solving the MILO, the true objective may sometimes not be decreased, even if 
the simple greedy step would. In such cases, we actually perform the greedy step to 
produce the next iterate.

Moreover, at the end of each iteration we perform the refinement step previously 
discussed. Note that this step cannot increase the value of F  , as we are lowering the 
value of L by only moving nonzero variables.

Last, we make the stopping criterion explicit; the algorithm stops as soon as an 
iteration is not able to produce a decrease in the objective value; we then return the 
point w�.

(11)p(w� , i) =

�
L(0,w�

≠i
) − � + �‖w�‖0 if w�

i
≠ 0,

minwi
L(wi,w

�

≠i
) + � + �‖w�‖0 if w�

i
= 0.

(12)

B� ∈ arg min B

∑

h∈B

p(w� , h)

s.t. B ⊆ {1,… , n},

|B| = b.
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Algorithm 1: MILO-BCD
1 Input: w0 = 0, b < n.
2 for � = 0, 1, . . . do
3 Select the working set B� using rule (12)
4 Compute ν�+1

B� by solving problem (10).

5 Set ν�+1
B̄� = w�

B̄�

6 if F(ν�+1) ≥ F(w�) then
7 Set

ν�+1 ∈ argmin
w

F(w)

s.t. ‖w� − w‖0 ≤ 1

wB̄� = w�
B̄�

8 Set

w�+1 ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(ν�+1)

9 if F(w�+1) = F(w�) then
10 return w�

3.3 � Theoretical analysis

In this section, we provide a theoretical characterization for Algorithm 1.
We begin by stating a nice property of the set of local minima of problem (3).

Lemma 1  Let Γ = {F(w) ∣ w is a local minimum point for problem (3)} . Then 
|Γ| ≤ 2n.

Proof  For each support set S ⊆ {1,… , n} let L⋆
S
 be the optimal value of the problem

Let w⋆ be a local minimizer for problem (3). Then, from Lu–Zhang conditions and 
the convexity of L , it is a global minimizer of

and F(w⋆) = L⋆
S(w⋆)

+ 𝜆|S(w⋆)| . We hence have

and so

min
w∶wS̄=0

L(w).

min
w∶wS̄(w⋆)=0

L(w),

Γ = {L⋆
S(w⋆)

+ 𝜆|S(w⋆)| ∣ w⋆ is a local minimizer for (3)}

⊆ {L⋆
S
+ 𝜆|S| ∣ S ⊆ {1,… , n}}
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	�  ◻

We go on with a statement about the relationship between the objective func-
tion F(w) and the score function p(w, i).

Lemma 2  Let p be the score function defined as in (11) and let w̄ ∈ ℝ
n . Moreover, 

for all h = 1,… , n , let w̄h ∈ argmin wh
F(wh, w̄≠h) . Then the following statements 

hold 

(1)	 If F(w̄h) = F(w̄) then p(w̄, h) ≥ F(w̄);

(2)	 If F(w̄h) < F(w̄) and w̄ satisfies Lu–Zhang conditions, then p(w̄, h) = F(w̄h).

Proof  We prove the two statements one at a time: 

	 (i)	 Let us assume that the thesis is false, i.e., F(w̄h) = F(w̄) and p(w̄, h) < F(w̄) . 
We distinguish two cases: w̄h = 0 and w̄h ≠ 0 . In the former case we have 

 which is absurd. In the latter case, we have 

 which is again a contradiction; hence we get the thesis.
	 (ii)	 We again distinguish two cases: w̄h = 0 and w̄h ≠ 0 . In the first case we have 

 But since we know F(w̄h) < F(w̄) , we can imply that 

|Γ| ≤ |{L⋆
S
+ 𝜆|S| ∣ S ⊆ {1,… , n}}| ≤ |{S ∣ S ⊆ {1,… , n}}| = 2n.

F(w̄) > p(w̄, h) = min
wh

L(wh, w̄≠h) + 𝜆 + 𝜆‖w̄‖0

= min
wh

L(wh, w̄≠h) + 𝜆 + 𝜆‖w̄≠h‖0

≥ min
wh

L(wh, w̄≠h) + 𝜆‖wh‖0 + 𝜆‖w̄≠h‖0

= min
wh

L(wh, w̄≠h) + 𝜆‖(wh, w̄≠h)‖0

= F(w̄h) = F(w̄),

F(w̄) > p(w̄, h) = L(0, w̄≠h) − 𝜆 + 𝜆‖w̄‖0
= L(0, w̄≠h) + 𝜆‖(0, w̄≠h)‖0
≥ F(w̄h) = F(w̄),

F(w̄h) = min
wh

F(wh, w̄≠h)

= min

{
min
wh≠0

F(wh, w̄≠h),F(0, w̄≠h)

}

= min

{
min
wh≠0

F(wh, w̄≠h),F(w̄)

}
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 and we can also write 

 In the second case, since w̄ satisfies Lu–Zhang conditions, we have 
w̄h ∈ arg min wh

L(wh, w̄≠h) . Therefore 

 Since F(w̄h) < F(w̄) = minwh≠0
F(wh, w̄≠h) , we get w̄h = (0, w̄≠h) . We finally 

obtain 

	�  ◻

We are finally able to state finite termination and optimality properties of the 
returned solution of the MILO-BCD procedure.

Proposition 3  Let {w�} be the sequence generated by Algorithm 1. Then {w�} is a 
finite sequence and the last element w̄ is a CW-minimum for problem (3).

Proof  From the instructions of the algorithm, for all � = 1, 2,… , we have that

hence ∇iL(w
�) = 0 for all i ∈ S(w�) , i.e., w� satisfies Lu–Zhang conditions and is 

therefore a local minimum point for problem (3). From Lemma 1, we thus know 
that there exist finite possible values for F(w�) . Moreover, {F(w�)} is a nonin-
creasing sequence. We can conclude that in a finite number of iterations we get 
F(w�) = F(w�+1) , activating the stopping criterion.

min
wh≠0

L(wh, w̄≠h) < L(0, w̄≠h)

F(w̄h) = min
wh≠0

F(wh, w̄≠h)

= min
wh≠0

L(wh, w̄≠h) + 𝜆‖(wh, w̄≠h)‖0

= min
wh≠0

L(wh, w̄≠h) + 𝜆 + 𝜆‖w̄≠h‖0

= min
wh≠0

L(wh, w̄≠h) + 𝜆 + 𝜆‖w̄‖0

= min
wh

L(wh, w̄≠h) + 𝜆 + 𝜆‖w̄‖0

= p(x̄, h).

w̄h ∈ arg min wh≠0
L(wh, w̄≠h) + 𝜆‖(wh, w̄≠h)‖0 = arg min wh≠0

F(wh, w̄≠h).

F(w̄h) = L(w̄h) + 𝜆‖w̄h‖0
= L(0, w̄≠h) + 𝜆‖(0, w̄≠h)‖0
= L(0, w̄≠h) + 𝜆‖w̄≠h‖0
= L(0, w̄≠h) + 𝜆‖w̄‖0 − 𝜆

= p(w̄, h).

w� ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(w�),
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We now prove that the returned point, w̄ = w�̄ for some �̄ ∈ ℕ , is CW-optimal. 
Assume by contradiction that w̄ is not CW-optimal. Then, there exists h ∈ {1,… , n} 
such that minwh

F(wh, w̄≠h) < F(w̄).
We show that this implies that there exists t ∈ {1,… , n} such that t ∈ B�̄ and 

minwt
F(wt, w̄≠t) < F(w̄) . Assume by contradiction that for all j ∈ B�̄ it holds 

minwj
F(wj, w̄≠j) = F(w̄) . Letting i any index in the working set B�̄ and recalling 

Lemma 2, we have

which contradicts the working set selection rule (12).
Now, either F(𝜈�+1) < F(w�̄) after steps 4–5 of the algorithm, or, after step 7, we 

get

Therefore, since step 8 cannot increase the value of F  , we get F(w�̄+1) < F
�̄ , but 

this contradicts the fact that the stopping criterion at line 9 is satisfied at iteration �̄  . 	
� ◻

3.4 � Finding good CW‑optima

We have shown in the previous section that Algorithm 1 always returns a CW-optimal 
solution. Although this allows us to cut off a lot of local minima, there are in practice 
many low-quality CW-minima. For this reason, we introduce in our algorithm an heu-
ristic aimed at leaving bad CW-optima where it may get stuck.

In detail, we do as follows. Instead of stopping the algorithm as soon as the objec-
tive value does not decrease, we try to repeat the iteration with a different working set. 
In doing this, we obviously have to change the working set selection rule. This opera-
tion is repeated up to a maximum number of times. If after testing a suitable amount 
of different working sets a decrease in the objective function cannot be achieved, the 
algorithm stops.

Specifically, we define a modified score function

∑

j∈B�̄

p(w�̄ , j) =
∑

j∈B�̄⧵{i}

p(w�̄ , j) + p(w�̄ , i)

≥
∑

j∈B�̄⧵{i}

p(w�̄ , j) + F(w�̄)

>
∑

j∈B�̄⧵{i}

p(w�̄ , j) + p(w�̄ , h)

=
∑

j∈B�̄∪{h}⧵{i}

p(w�̄ , j),

F(𝜈�+1) ≤ min
wt

F(wt,w
�̄

≠t
) < F(w�̄).

(13)p̂(w� , i) = p(w� , i) + 2ri − 1,
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where ri is the number of times the i-th variable was in the working set in the previ-
ous attempts.

The idea of this working set selection rule is to first try a greedy selection. Then, 
if that first attempt failed, we penalize (exponentially) variables that were tried more 
times and could not provide improvements in the end. This penalty is heuristic. In 
fact, we may end up with repeating the search over the same working set from the 
same starting point. However, we can keep track of the working set used throughout 
the outer iteration, in order to avoid duplicate computations.

Note that such a modification does not alter the theoretical properties of the algo-
rithm; on the other hand, it has a massive impact on the empirical performance.

4 � Computational results

This section is dedicated to a computational comparison between the approach 
proposed in this paper and the state-of-the-art algorithms described in Sect. 2 and 
Appendix. In our experiments we took into account 11 datasets for binary classifi-
cation tasks, listed in Table 1, from the UCI Machine Learning Repository [15]. In 
fact, the digits dataset is inherently for multi-class classification; we followed the 
same binarization strategy as [38], assigning a positive label to the examples from 
the largest class and a negative one to all the others. Moreover, we removed data 
points with missing variables, encoded the categorical variables with a one-hot vec-
tor and normalized the other ones to zero mean and unit variance. In Table 1 we also 
reported the number n of data points and the number p of features of each dataset, 
after the aforementioned preprocessing operations.

These datasets constitute a benchmark to evaluate the performance of the 
algorithms under examination, namely: Forward Selection and Backward Elimi-
nation Stepwise heuristics, LASSO, Penalty Decomposition, Concave approxi-
mation, the Outer Approximation method in its original form, in the adapted 
version for cardinality-penalized problems and also in the variant exploiting the 

Table 1   List of datasets used for the experiments on best subset selection in logistic regression

Dataset n p Abbreviation

Parkinsons 195 22 parkinsons

Heart (statlog) 270 25 heart

Breast cancer wisconsin (prognostic) 194 33 breast

QSAR biodegradation 1055 41 biodeg

SPECTF heart 267 44 spectf

Spambase 4601 57 spam

Optical recognition of handwritten digits 3823 62 digits

Libras movement 360 90 libras

a2a 2265 123 a2a

w2a 2470 300 w2a

Madelon 2000 500 madelon
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approximated dual problems, MILO and our proposed method MILO-BCD. All 
of these algorithms are described in Appendix and Sect. 2.

All the experiments described in this section were performed on a machine 
with Ubuntu Server 18.04 LTS OS, Intel Xeon E5-2430 v2 @ 2.50 GHz CPU 
and 16GB RAM. The algorithms were implemented in Python 3.7.4, exploiting 
Gurobi 9.0.0 [20] for the outer approximation method, MILO and MILO-BCD. 
The scipy [43] implementation of the L-BFGS algorithm defined in [30] was 
employed for local optimization steps of all methods. A time limit of 10,000  s 
was set for each method.

Both the stepwise methods (forward and backward) exploit L-BFGS [30] as inter-
nal optimizer. The forward selection version uses L-BFGS to optimize the logistic 
with respect to one variable, whereas backward elimination defines his starting point 
exploiting L-BFGS to optimize the model w.r.t. all the variables.

Concerning LASSO, we solved Problem (14) using the scikit-learn imple-
mentation [36], with LIBLINEAR library [18] as internal optimizer, for each value 
of the hyperparameter � . Each � value was chosen so that two different hyperparam-
eters, �1 ≠ �2 , would not produce the same level of sparsity and to avoid the zero 
solution. More specifically, we defined our set of hyperparameters by computing 
the LASSO path, exploiting to the scikit-learn function l1_min_c. All the 
obtained solutions were refined by further optimizing w.r.t. the nonzero components 
only by means of L-BFGS. At the end of this grid search we selected the solution, 
among these one, providing the best information criterion value.

Penalty Decomposition requires to set a large number of hyperparameters: in our 
experiments we set � = 10−1 , � = 10−3 and �� = 1 for all the datasets. We ran the 
algorithm multiple times for values of � and �� taken from a small grid. L-BFGS 
was again used as internal solver. The best solution obtained, in terms of informa-
tion criterion, was retained at the end of the process.

Concave approximation, theoretically, requires the solution of a sequence of 
problem. However, as outlined in Appendix, a single problem with fixed approxima-
tion hyperparameter � can be solved in practice [37]. In our experiments, Problem 
(17) was solved by using L-BFGS. Again, we retain as optimal solution the one that, 
after an L-BFGS refining step w.r.t. the nonzero variables, minimizes the informa-
tion criterion among a set of resulting points obtained for different values of �.

It is important to highlight that the refining optimization step is crucial for meth-
ods like the Concave Approximation or LASSO; as a matter of fact, without this 
precaution, the computed solutions don’t even necessarily satisfy the Lu–Zhang 
conditions.

All variants of the Outer Approximation method expoit Gurobi to handle the 
MILP subproblems and L-BFGS for the continuous ones. As suggested by [8], a sin-
gle branch and bound tree is constructed to solve all the MILP subproblems, adding 
cutting-type constraints dynamically as lazy constraints. Moreover, the starting cut 
is decided by means of the first-order heuristic described in the referenced work. For 
the cardinality-constrained version of the algorithm, we set a time limit of 1000 s 
for the solution of any individual problem of the form (18) with a fixed value of s. 
As for the dual formulation, we set � = 104 to make the considered problem as close 
as possible to the formulation tackled by all other algorithms. The approximated 
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version of the dual problem, which is quadratic, is efficiently solved with Gurobi 
instead of L-BFGS.

As concerns MILO and MILO-BCD, we employed the V2 set of interpolation 
points for both methods, in order to have a good trade-off between accuracy and 
computational burden. Moreover, for MILO-BCD we set the cardinality of the 
working set b to 20 for all the problems. We report in Sect. 4.1 the results of prelimi-
nar computational experiments that appear to support our choice. All the subprob-
lems were solved with Gurobi. For MILO-BCD we employ the heuristic discussed 
in Sect. 3.4. For each problem, the maximum number of consecutive attempts with 
no improvement, before stopping the algorithm, is set to n. Note that, in order to 
improve the algorithm efficiency, we instantiate a single MILP problem with n vari-
ables and dynamically change the box constraints based on the current working set. 
The continuous optimization steps needed to perform steps 7 and 8 of Algorithm 1 
are performed by using L-BFGS.

In Tables  2, 3, 4 and 5 the computational results of minimizing AIC and BIC 
respectively on the 11 datasets are shown. For each algorithm and problem, we can 
see the information criterion value at the returned solution, its zero norm and the 
total runtime. We can observe the effectiveness of the MILO-BCD approach w.r.t. 
the other methods. In particular in 8 out of 11 test problems MILO-BCD found the 
best AIC value, while in the remaining three cases it attains a very close second-
best result. The results of minimizing BIC are very similar: for 9 out of 11 datasets 
MILO-BCD returns the best solution and in the remaining two it ranks at the second 
place. We can also note that, in cases where p is large such as spam, digits, a2a, 
w2a and madelon datasets, our method, within the established time limit, is able 
to find a much better quality solution with respect to the other algorithms (with the 
only exception of spam for the AIC), and in particular compared to MILO.

As for the efficiency, Tables 2, 3, 4 and 5 also allow to evaluate the computational 
burden of MILO-BCD. As expected, our method is slower than the approaches that 
are not based on Mixed Integer Optimization, which on the other hand provide lower 
quality solutions. However, compared to standard MILO, we can see a considera-
ble improvement in terms of computational time with both the small and the large 
datasets.

In Fig. 1 we plot the cumulative distribution of absolute distance from the opti-
mum attained by each solver, computed upon the 22 subset selection problems. The 
x-axis values represent the difference in absolute value between the information cri-
terion obtained and the best one found, while y-axis reports the fraction of solved 
problems within a certain distance from the best. As it is possible to see, MILO-
BCD clearly outperforms the other methods. As a matter of fact, MILO-BCD always 
found a solution that is distant less than 15 from the optimal one and in around the 
80% of the problems it attained the optimal solution. We can also see that for all 
the other methods there is a number of bad cases where the obtained value is very 
far from the optimal one. Note that we consider the absolute distance from the best, 
instead of a relative distance, since it is usually the difference in IC values which is 
considered in practice to assess the quality of a model w.r.t. another one [12].

Finally, we highlight that MILO-BCD manages to greatly increase the perfor-
mance of MILO, without making its interface more complex. As a matter of fact, 
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Table 2   Results of AIC minimization in logistic regression with different optimization methods on small 
datasets (best result for each dataset in bold)

Dataset Method AIC �
0

Time (s)

parkinsons Forward stepwise 129.2567 5 0.280
Backward stepwise 126.6948 17 0.172
LASSO 129.7412 16 6.290
Penalty decomposition 134.1499 2 22.486
Concave approximation 129.6589 17 2.899
Outer approximation CC 115.8998 9 ≥ 10,000
Outer approximation CP 120.6478 11 ≥ 10,000
Outer approximation dual 128.1812 17 3.278
MILO 113.5371 8 12.531
MILO-BCD 113.5005 8 93.708

heart Forward stepwise 197.6972 11 0.577
Backward stepwise 216.6682 23 0.038
LASSO 202.4335 15 2.282
Penalty decomposition 226.1013 4 49.500
Concave approximation 206.4321 17 1.384
Outer approximation CC 206.8911 12 ≥ 10,000
Outer approximation CP 263.2117 5 ≥ 10,000
Outer approximation dual 207.2493 19 4.087
MILO 195.7757 11 41.593
MILO-BCD 195.6242 11 95.399

breast Forward stepwise 180.4932 6 0.470
Backward stepwise 163.2610 33 0.413
LASSO 156.6797 24 21.321
Penalty decomposition 189.2942 2 8.044
Concave approximation 158.11729 24 3.398
Outer approximation CC 166.1055 34 ≥ 10,000
Outer approximation CP 202.8904 9 ≥ 10,000
Outer approximation dual 161.6405 31 6.675
MILO 147.5119 19 86.250
MILO-BCD 147.6781 17 236.126

biodeg Forward stepwise 703.9588 20 3.582
Backward stepwise 661.6047 32 0.417
LASSO 665.1640 32 65.344
Penalty decomposition 671.8854 18 232.120
Concave approximation 663.5171 24 5.789
Outer approximation CC 678.4316 42 ≥ 10,000
Outer approximation CP 1263.0706 6 ≥ 10,000
Outer approximation dual 681.6687 31 29.329
MILO 653.4768 23 6885.277
MILO-BCD 654.4053 25 707.356
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we have only added a hyperparameter that controls the cardinality of the working 
set and experimentally appears to be extremely easy to tune. Indeed, note that all the 
experiments were carried out using the same working set size for each dataset and, 
despite this choice, MILO-BCD shown impressive performances in all the consid-
ered datasets.

4.1 � Varying the working set size

The value of the working set size b may greatly affect the performance of the MILO-
BCD procedure, in terms of both quality of solutions and running time. For this rea-
son, we performed a study to evaluate the behavior of the algorithm as the value of 
b changes. We ran MILO-BCD on the problems obtained from datasets at different 
scales: heart, breast, spectf, and a2a. AIC is used as GOF measure.

The results are reported in Table  6 and Fig.  2. We can see that a working set 
size of 20, as employed in the experiments of the previous section, provides a 
good trade-off. Indeed, the running time seems to grow in general with the work-
ing set size, whereas the optimal solution is approached only when large working 

Table 2   (continued)

Dataset Method AIC �
0

Time (s)

spectf Forward stepwise 178.9840 6 0.797

Backward stepwise 180.0595 28 0.214

LASSO 181.4678 13 8.966

Penalty decomposition 222.8672 2 55.287

Concave approximation 181.8271 17 3.788

Outer approximation CC 178.8349 12 ≥ 10,000

Outer approximation CP 222.3555 5 ≥ 10,000

Outer approximation dual 206.1484 38 10.766

MILO 168.5162 15 1293.650

MILO-BCD 168.3443 15 205.6255
libras Forward stepwise 53.3215 11 2.558

Backward stepwise 152.0723 76 0.470
LASSO 28.0720 14 5.413
Penalty decomposition 142.4580 2 530.951
Concave approximation 70.0072 35 12.532
Outer approximation CC 33.4904 11 ≥ 10,000
Outer approximation CP 72.4350 6 ≥ 10,000
Outer approximation dual 64.0018 32 58.061
MILO 14.2040 7 ≥ 10,000
MILO-BCD 14.1557 7 654.227
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Table 3   Results of AIC 
minimization in logistic 
regression with different 
optimization methods on large 
datasets (best result for each 
dataset in bold)

Dataset Method AIC �
0

Time (s)

spam Forward stepwise 1906.5143 45 36.136
Backward stepwise 1901.9650 46 1.468
LASSO 1892.6580 53 1209.108
Penalty decomposition 5244.4292 3 ≥ 10,000
Concave approximation 1916.1159 51 13.654
Outer approximation CC 1963.0467 52 ≥ 10,000
Outer approximation CP 2138.2306 36 ≥ 10,000
Outer approximation dual 1931.7670 58 161.062
MILO 1909.0709 44 ≥ 10,000
MILO-BCD 1904.2989 44 8442.004

digits Forward stepwise 378.6893 25 13.139
Backward stepwise 341.8344 42 1.894
LASSO 346.9967 43 2154.283
Penalty decomposition 7168.3316 1 ≥ 10,000
Concave approximation 338.1436 31 24.398
Outer approximation CC 386.4583 64 ≥ 10,000
Outer approximation CP 686.1014 12 ≥ 10,000
Outer approximation dual 372.3541 44 125.282
MILO 323.6231 26 ≥ 10000
MILO-BCD 322.7531 25 6557.441

a2a Forward stepwise 1605.9851 34 20.864
Backward stepwise 1659.0279 87 4.038
LASSO 1615.6245 60 394.008
Penalty decomposition 1676.8714 16 605.042
Concave approximation 1647.3086 84 17.422
Outer approximation CC 1710.0609 120 ≥ 10,000
Outer approximation CP 2581.0224 2 ≥ 10,000
Outer approximation dual 1663.0632 53 ≥ 10,000
MILO 1607.3254 52 ≥ 10,000
MILO-BCD 1589.5884 37 8553.430

w2a Forward stepwise 395.0422 51 283.327
Backward stepwise 479.2162 169 137.361
LASSO 721.0487 294 ≥ 10,000
Penalty decomposition 1973.6854 1 ≥ 10,000
Concave approximation 534.2647 166 144.470
Outer approximation CC 760.3417 301 ≥ 10,000
Outer approximation CP 833.2059 7 ≥ 10,000
Outer approximation dual 722.9003 294 207.279
MILO 358.5662 82 ≥ 10,000
MILO-BCD 339.7765 55 ≥ 10,000
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sets are employed. We can see that in some cases a slightly larger value of b allows 
to retrieve even better solutions than those obtained in the experiments of Sect. 4, 
but the computational cost significantly increases. In the end, as can be observed in 
Sect. 4, the choice b = 20 experimentally led to excellent results on the entirety of 
our benchmark.

5 � Conclusions

In this paper, we considered the problem of best subset selection in logistic regres-
sion, with particular emphasis on the IC-based formulation. We introduced an algo-
rithm combining mixed-integer programming models and decomposition techniques 
like the block coordinate descent. The aim of the algorithm is to find high quality 
solutions even on larger scale problems, where other existing MIP-based methods 
are unreasonably expensive, while heuristic and local-optimization-based methods 
produce very poor solutions.

We theoretically characterized the features and the behavior of the proposed 
method. Then, we showed the results of wide computational experiments, prov-
ing that the proposed approach indeed is able to find, in a reasonable running time, 
much better solutions than a set of other state-of-the-art solvers; this fact appears 
particularly evident on the problems with higher dimensions.

Future research will be focused on the definition of possibly more effective and 
efficient working set selection rules for our algorithm. Upcoming work may also 
be aimed at adapting the proposed algorithm to deal with different or more general 
problems.

In particular, the case of multi-class classification is of great interest. How-
ever, the problem is challenging. Specifically, the complexity in directly extending 
our approach to the multinomial case lies in the definition of the piece-wise lin-
ear approximation of the objective function. Indeed, in the multi-class scenario, 

Table 3   (continued) Dataset Method AIC �
0

Time (s)

madelon Forward stepwise 2506.9165 91 461.957

Backward stepwise 2528.5802 156 431.609

LASSO 2523.0742 103 1795.424

Penalty decomposition 2638.5021 4 833.624

Concave approximation 2769.9642 340 47.042

Outer approximation CC 2652.4555 9 ≥ 10,000

Outer approximation CP 2765.2852 2 ≥ 10,000

Outer approximation dual 2657.4810 15 ≥ 10,000

MILO 2616.5531 16 ≥ 10,000

MILO-BCD 2504.0655 102 ≥ 10,000
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Table 4   Results of BIC minimization in logistic regression with different optimization methods on small 
datasets (best result for each dataset in bold)

Dataset Method BIC �
0

Time (s)

parkinsons Forward stepwise 142.4486 3 0.198
Backward stepwise 166.7417 12 0.165
LASSO 140.6959 2 6.391
Penalty decomposition 277.1788 1 25.056
Concave approximation 147.2337 4 2.922
Outer approximation CC 139.1962 6 ≥ 10,000
Outer approximation CP 139.1962 6 5533.104
Outer approximation dual 145.6313 3 3.412
MILO 137.6446 6 16.276
MILO-BCD 137.6011 6 93.572

heart Forward stepwise 225.7059 5 0.337
Backward stepwise 279.0788 19 0.065
LASSO 227.2449 5 2.350
Penalty decomposition 317.3171 1 61.155
Concave approximation 251.8435 12 2.156
Outer approximation CC 236.8324 3 ≥ 10,000
Outer approximation CP 288.0285 5 ≥ 10,000
Outer approximation dual 234.3866 7 4.045
MILO 223.7984 6 22.865
MILO-BCD 223.6797 6 116.618

breast Forward stepwise 195.8299 2 0.216
Backward stepwise 265.9623 32 0.354
LASSO 195.8299 2 21.225
Penalty decomposition 195.8299 2 7.972
Concave approximation 203.5140 6 3.201
Outer approximation CC 194.2193 4 ≥ 10,000
Outer approximation CP 231.7141 8 ≥ 10,000
Outer approximation dual 195.8300 2 6.664
MILO 192.4211 10 653.077
MILO-BCD 193.5695 5 124.760

biodeg Forward stepwise 782.2522 13 2.560
Backward stepwise 792.7384 26 0.400
LASSO 785.1660 22 65.498
Penalty decomposition 950.2008 4 420.761
Concave approximation 772.6349 22 6.917
Outer approximation CC 880.5540 12 ≥ 10,000
Outer approximation CP 1154.3736 5 ≥ 10,000
Outer approximation dual 835.4689 31 29.016
MILO 746.8531 14 ≥ 10,000
MILO-BCD 745.1778 13 2305.093
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the number of weights is n × m , being m the number of classes, and N × m pieces 
of the objective function need to be approximated. This results in an increasingly 
high number of variables and constraints to be handled, which might become rap-
idly unmanageable even exploiting our decomposition approach. Hence, future work 
might be focused on devising alternative decomposition approaches specifically 
designed to tackle the multinomial case.

Appendix: Review of related algorithms

A number of techniques has been proposed and considered in the literature to tackle 
problem (3). If the number of variables n in not exceedingly large, especially in 
the case of convex L , heuristic and even exhaustive approaches are a viable way of 
proceeding.

The exhaustive approach consists of finding the global minimum for L for all 
possible combinations of non-zero variables. All the retrieved solutions are then 
compared, adding to L the penalty term on the �0-norm, to identify the optimal 

Table 4   (continued)

Dataset Method BIC �
0

Time (s)

spectf Forward stepwise 203.9442 4 0.573

Backward stepwise 237.7547 17 0.252

LASSO 208.8296 7 8.949

Penalty decomposition 277.1788 1 25.056

Concave approximation 228.256224 12 3.867

Outer approximation CC 214.4389 3 ≥ 10,000

Outer approximation CP 224.2627 5 ≥ 10,000

Outer approximation dual 251.6325 7 10.649

MILO 196.8356 5 231.938

MILO-BCD 196.8238 5 115.597
libras Forward stepwise 101.5028 4 1.145

Backward stepwise 270.8327 46 0.970
LASSO 71.4674 9 5.453
Penalty decomposition 182.2357 1 42.429
Concave approximation 131.7340 17 14.591
Outer approximation CC 75.3065 9 ≥ 10,000
Outer approximation CP 153.6910 5 ≥ 10,000
Outer approximation dual 132.1737 10 58.047
MILO 41.3979 7 ≥ 10,000
MILO-BCD 53.0895 9 642.618
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Table 5   Results of BIC minimization in logistic regression with different optimization methods on large 
datasets (best result for each dataset in bold)

Dataset Method BIC �
0

Time (s)

spam Forward stepwise 2361.1337 27 28.446
Backward stepwise 2140.7302 32 2.0124
LASSO 2177.5219 40 1214.969
Penalty decomposition 6184.8715 1 ≥ 10,000
Concave approximation 2196.5090 38 16.464
Outer approximation CC 2336.2203 58 ≥ 10,000
Outer approximation CP 3894.7351 10 ≥ 10,000
Outer approximation dual 2275.2687 51 157.805
MILO 2150.2450 30 ≥ 10,000
MILO-BCD 2137.9834 31 ≥ 10,000

digits Forward stepwise 552.1658 13 8.110
Backward stepwise 468.9395 20 2.615
LASSO 529.0165 24 2160.987
Penalty decomposition 5299.8033 0 ≥ 10,000
Concave approximation 516.442699 28 32.288
Outer approximation CC 640.2697 10 ≥ 10,000
Outer approximation CP 1696.2871 5 ≥ 10,000
Outer approximation dual 596.1621 28 128.011
MILO 448.3050 14 ≥ 10,000
MILO-BCD 441.0145 15 9949.433

a2a Forward stepwise 1741.3958 15 10.727
Backward stepwise 2016.2528 64 5.798
LASSO 1764.5871 15 397.503
Penalty decomposition 1860.2444 5 607.869
Concave approximation 1873.3706 44 21.709
Outer approximation CC 2028.2982 11 ≥ 10,000
Outer approximation CP 2268.7472 4 ≥ 10,,000
Outer approximation dual 1829.5696 14 ≥ 10,000
MILO 1754.9999 16 ≥ 10,000
MILO-BCD 1733.8513 17 2933.3452

w2a Forward stepwise 614.3182 18 107.705
Backward stepwise 1320.8765 143 147.459
LASSO 2524.0133 293 ≥ 10,000
Penalty decomposition 1979.8373 1 ≥ 10,000
Concave approximation 919.0693 70 166.238
Outer approximation CC 879.0359 2 ≥ 10,000
Outer approximation CP 931.5931 3 ≥ 10,000
Outer approximation dual 2531.5618 294 205.223
MILO 671.9868 20 ≥ 10,000
MILO-BCD 579.0229 26 8842.6791
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solution to the original problem. This approach is however clearly computationally 
intractable.

In applications, an heuristic relaxation of the exhaustive search is employed: the 
greedy step-wise approach, with both its variants, the forward selection strategy and 
the backward elimination strategy [17]. This method consists of adding (or remov-
ing, respectively) a variable to the support, in such a way that the variation of the 
objective function obtained by only changing that variable is optimal; the proce-
dure typically stops as soon as the addition (removal) of a variable is not enough to 
improve the quality of the solution. This technique is clearly much cheaper, at the 
cost of a lower quality of the final solution retrieved.

Table 5   (continued)

Dataset Method BIC �
0

Time (s)

madelon Forward stepwise 2660.6283 3 24.179

Backward stepwise 2732.3224 15 488.801

LASSO 2661.9344 6 1852.270

Penalty decomposition 2772.5887 0 75.713

Concave approximation 3030.0118 86 152.799

Outer approximation CC 2677.8156 4 ≥ 10,000

Outer approximation CP 2781.6611 2 ≥ 10,000

Outer approximation dual 2689.3907 2 ≥ 10,000

MILO 2681.9310 1 ≥ 10000

MILO-BCD 2660.6283 3 ≥ 10,000
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One of the most prominent approaches (arguably the most popular one) to 
induce sparsity in model estimation problems is Lasso [41]. Lasso consists of 
approximating the �0 penalty term by a continuous, convex surrogate, the �1-
norm. When applied to (3), the resulting optimization problem is the widely used 
�1-regularized formulation of logistic regression [27, 29, 45]:

The �1-norm is well known to be sparsity-inducing [3]. Lasso often produces good 
solutions with a reasonable computational effort and is particularly suited for large 
scale problems, where methods directly tackling the �0 formulation are too expen-
sive to be employed. However, equivalence relationships between problems (3) and 
(14) do not exist. Thus, problem (14) usually has to be solved for many different 
values of � in order to find a satisfying solution of (14). Still, the solution is typically 
suboptimal for problem (3) and poor from the statistical point of view [33, 40, 46].

Lu and Zhang  [32] proposed a Penalty Decomposition (PD) approach to 
solve problem (3). The classical variable splitting technique [25] can be applied 
to problem (3), duplicating the variables, adding a linear equality constraint 

(14)min
w∈ℝn

L(w) + �‖w‖1.

Table 6   Results obtained by the 
MILO-BCD procedure on the 
best subset selection problem 
based on AIC with four datasets 
for different values of working 
set size b 

Dataset b AIC �
0

Time (s)

heart 2 198.7826 11 8.326
8 195.7715 10 35.240
14 195.7715 10 42.222
20 195.6242 11 95.399
26 – – –
32 – – –

breast 2 176.3391 7 10.079
8 158.0725 13 36.012
14 154.6846 17 72.4643
20 147.6781 17 236.126
26 147.0381 19 435.3751
32 147.0381 19 2077.4473

spectf 2 171.9253 12 19.333
8 175.4713 7 43.999
14 169.4771 18 118.313
20 168.3443 15 205.6255
26 168.3443 15 485.486
32 168.3443 15 1245.422

a2a 2 1591.7767 35 430.714
8 1595.2172 37 1333.7368
14 1590.7749 35 1984.113
20 1589.5884 37 8553.430
26 1586.7499 39 ≥ 10,000
32 1592.8824 37 ≥ 10,000
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and separating the two parts of the objective function, obtaining the following 
problem:

Problem (15) can then be solved by an alternate exact minimization of the quadratic 
penalty function

where the penalty parameter � is increased every time a (approximate) stationary 
point, w.r.t. the w block of variables, of the current q� is attained. The algorithm is 
summarized in Algorithm 2.

(15)
min
w,z∈ℝn

L(w) + �‖z‖0

s.t. w − z = 0.

(16)q�(w, z) = L(w) + �‖z‖0 +
�

2
‖w − z‖2

2
,

(a) (b)

(c) (d)

Fig. 2   Trade-off between runtime and solution quality for different values of the working set size in 
MILO-BCD, on the best subset selection problem based on AIC for the four considered problems
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Algorithm 2: Penalty Decomposition
1 Input: τ > 0, στ > 1, w0, z0 ∈ Rn, ε > 0, η > 0, σε ∈ (0, 1).
2 k = 0
3 while ‖wk − zk‖ > η do
4 Set

wk+1 = argmin
w

L(w) +
τ

2
||w − zk||2

5 Set

zk+1 = argmin
z

τ

2
||wk+1 − z||2 + λ||z||0

6 if ‖∇wqτ (wk, zk)‖ ≤ ε then
7 Set τ = στ τ
8 Set ε = σε ε

9 k = k + 1

10 return zk

The z-update step can in fact be carried out in closed form by the following rule:

The algorithm is proved to asymptotically converge to Lu–Zhang stationary points, 
i.e., to local minima. The solution retrieved by the algorithm strongly depends on 
the choice of the initial value of the penalty parameter � and of the increase factor 
�� . Therefore, in order to find good quality solutions, the algorithm may be run in 
practice several times with different hyperparameters configurations.

A different approach exploits the fact that the �0 semi-norm can be approximated by 
the sum of a finite sum of scalar terms, each one being a surrogate for the step function. 
In particular, the scalar step function can be approximated, for t > 0 , by the continu-
ously differentiable concave function s(t) = 1 − e−�t , as done by [37] or [31]. Problem 
(3) can hence be reformulated as

A sequence of problems of the form (17), for increasing values of � , can then be 
solved, producing a sequence of solutions that are increasingly good approximations 
of those of the original problem. In fact, in the computational practice, problem (17) 
is solved for a suitable, fixed value of �.

In recent years, very effective algorithms have been proposed in the literature to 
tackle the sparse logistic regression in its cardinality-constrained formulation, i.e., to 
solve the problem

zk+1
i

=

{
0 if

𝜏

2
(wk

i
)2 < 𝜆,

wk+1
i

otherwise.

(17)min
w∈ℝn

L(w) + �

n∑

i=1

(1 − e−�|wi|).

(18)
min
w∈ℝn

L(w)

s.t. ‖w‖0 ≤ s,
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for fixed s < n . Among these methods, the most remarkable one is arguably the 
Outer Approximation method [10, 16], which was proposed to be used for problem 
(18) by [8]. The algorithm, which is briefly reported in Algorithm 3, works in an 
alternating minimization fashion. First, it exactly solves, through a mixed-integer 
solver, a cutting-plane based approximation of the problem; then, it finds the exact 
global minimum w.r.t. the support of the newly obtained solution. If the objec-
tive function of the MIP problem is within some pre-specified tolerance � of the 
true objective function at the new iterate, then the algorithm stops, otherwise the 
obtained point is used to perform a new cut.

Algorithm 3: Outer Approximation Method
1 Input: M � 0, w0 ∈ Rn, ν0 = −∞, ε > 0.
2 k = 0
3 while νk − L(wk) < ε do
4 Set

β̂, νk+1 ∈ argmin
β,w

β

s.t. −Mzi ≤ wi ≤ Mzi ∀ i = 1, . . . , n,

z ∈ {0, 1}n,
n∑

i=1

zi ≤ s,

β ≥ L(w�) +∇L(w�)T (w − w�) ∀ � = 0, . . . , k,

5 Set

w�+1 ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(νk+1)

6 k = k + 1

7 return zk

Algorithm 3 can be employed to solve problem (3), by running it for every possible 
value of s = 1,… , n and choosing, among the n retrieved solutions, the one with low-
est IC value.

In fact, the algorithm can straightforwardly be adapted to directly handle problem 
(3). To this aim it is sufficient to remove from the MIP subproblem the cardinality con-
straint and add it as a penalty term in the objective function.

Recently, Kamiya et al. [26] proposed an alternative way of using the outer approxi-
mation method, which is however based on the �2-regularized formulation of the logis-
tic regression problem with cardinality constraints

min
w∈ℝn

L(w) +
1

2�
‖w‖2

2

s.t. ‖w‖0 ≤ s.
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Applying duality theory, the optimal value obtainable for a fixed configuration z of 
nonzero variables, c(z), can be computed by solving the problem

whereas cuts for the cutting-planes approximation can be added as

where

They also show that the left hand side of the objective function in the dual prob-
lem can be approximated by a properly defined parabola, which makes the problem 
quadratic and thus much more efficiently solvable:

This approximation, seen back in the primal space, is a good quadratic piecewise 
approximation of the logistic loss which should be more accurate than the piece-
wise linear employed by [38].
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