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Abstract  

The purpose of this review is to summarize the present knowledge on the interplay among the 

cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of 

Rapamycin (mTOR) pathways in the development of short and long term memories during 

the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The 

step-down inhibitory avoidance is a form of associative learning that is acquired in a 

relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends 

on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed 

at different times after acquisition, thus allowing for the study of both short and long term 

memory. Among the many neurotransmitter systems involved, the cholinergic neurons that 

originate in the basal forebrain and project to the hippocampus are of crucial importance in 

inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during 

acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine 

receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed 

by downstream activation of intracellular pathway (ERK, among others) that create conditions 

favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, 

but also in the molecular mechanisms underlying short term memory formation in the 

hippocampus. Since ERK can function as a biochemical coincidence detector in response to 

extracellular signals in neurons, the activation of ERK-dependent downstream effectors is 

determined, in part, by the duration of ERK phosphorylation itself. Long term memories 

require protein synthesis, that in the synapto-dendritic compartment represents a direct 

mechanism that can produce rapid changes in protein content in response to synaptic activity. 

mTOR in the brain regulates protein translation in response to neuronal activity, thereby 

modulating synaptic plasticity and long term memory formation. Some studies demonstrate a 

complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-

activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the 

conversion of short term to long term synaptic plasticity through an ERK- and mTOR-

dependent mechanism which requires translation initiation. It seems therefore that the 

complex interplay among the cholinergic system, ERK and mTOR is crucial in the 

development of new inhibitory avoidance memories in the hippocampus. 

 

Keywords: Memory, hippocampus, acetylcholine, ERK, mTOR, Inhibitory avoidance 
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Abbreviations  

 

4E-BPs: 4E binding proteins 

ACh: Acetylcholine 

AD: Alzheimer‟s disease 

APP: Amyloid precursor protein 

CaMKII: Ca2+/calmodulin-dependent protein kinase II 

CREB: cAMP response element-binding protein 

DG: Dentate gyrus 

eEF1A: eukaryotic Elongation Factor 1A 

eEF2: eukaryotic Elongation Factor 2 

ERK: Extracellular signal-regulated kinase 

GABA: gamma-aminobutyric acid 

GPCRs: G protein–coupled receptors 

IA: Inhibitory avoidance 

ICV: intracerebroventricular 

IP: intraperitoneal 

JNK: c-Jun N-terminal kinase 

LTM: Long Term Memory 

LTP: Long term potentiation 

mAChRs: Muscarinic acetylcholine receptors 

M1,...,M5: Muscarinic receptor 1,...,5 

MAP: Microtubule-associated
 
proteins  

MAPK: Mitogen activated protein kinase 

MEK: Mitogen-activated protein kinase kinase 

mTOR: Mammalian Target of Rapamycin 

mTORC1: mTOR Complex1 

nAChRs: Nicotinic acetylcholine receptors 

NBM: nucleus basalis magnocellularis 

NMDA: N-methyl-D-aspartate 

p38MAPK: p38 Mitogen Activated Protein Kinase 

p70S6K: p70 ribosomal subunit S6 Kinase 

PKA: Protein Kinase A 

PKC: Protein Kinase C 

STM: Short Term Memory 

TgCRND8: Transgenic Centre for Research in Neurodegenerative Diseases 8 

wt: wild type 

  

http://en.wikipedia.org/wiki/Cyclic_adenosine_monophosphate
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1. Introduction 

As St. Augustine wrote in the “Confessions” in the IVth Century a.d. “And I come to the 

fields and spacious palaces of my memory, where are the treasures of innumerable images, 

brought into it from things of all sorts perceived by the senses. … Nor yet do the things 

themselves enter in; only the images of the things perceived are there in readiness, for 

thought to recall. Which images, how they are formed, who can tell, though it doth plainly 

appear by which sense each hath been brought in and stored up?.” (St.Augustine, 398). The 

purpose of this review is to try to answer to the question that already fascinated St. Augustine 

on how memories are formed, by summarizing some of the present knowledge on the 

mechanisms that underlie memory development in our brain. 

The formation of memories is the result of cellular and molecular mechanisms activated 

in different structures of the brain. The ability of an animal to adapt its behaviour in response 

to environmental stimuli depends on the structural and functional plasticity of several brain 

regions. Therefore, it is of the utmost importance to understand how and where in the brain 

experiences are encoded into lasting memories. 

A single learning experience starts a cascade of events, which can lead to different forms 

of memory: short-term memory (STM) that lasts minutes to hours and long term memory 

(LTM) that lasts days, weeks, and even a lifetime (McGaugh, 1966). A major question of 

memory neurobiology is whether these two forms are related or independent phenomena. 

Some cellular mechanisms that underlie the development of STM overlap with those of LTM, 

but other mechanisms are independent (Izquierdo et al., 1998a; Izquierdo, Medina, Vianna, 

Izquierdo, & Barros, 1999; Izquierdo et al., 2002). A unique characteristic of LTM is the need 

for a consolidation period during which synaptic, structural, and functional modifications 

occur (Igaz, Vianna, Medina, & Izquierdo, 2002). The most important is protein synthesis on 

which LTM, but not STM, depends (Davis & Squire, 1984; Freeman, Rose, & Scholey, 1995; 

Tiunova, Anokhin, Rose, & Mileusnic, 1996; Bourtchouladze et al., 1998; Schafe, Nadel, 

Sullivan, Harris, & LeDoux, 1999; Quevedo et al., 1999). 

Memory is not a unitary function. Memory depends on the integrated activity of various 

brain structures and neurotransmitter systems and involves multiple receptors, postsynaptic 

mechanisms, and signal transduction pathways (Izquierdo et al., 1998a). Among the various 

brain structures implicated in memory formation, the CA1 region of the hippocampus plays a 

major role in memory encoding (Squire, 1992; Hasselmo, Wyble, & Wallenstein, 1996; 

Vinogradova, 2001; Eichenbaum, 2001; Lisman & Grace, 2005).  
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Step-down inhibitory avoidance memory 

The step-down inhibitory avoidance (IA) is a form of associative learning that is 

acquired in one trial through several sensory inputs. IA memory depends on the integrated 

activity of CA1, entorhinal and posterior parietal cortex, and is modulated by the amygdala 

and by the basal forebrain cholinergic neurons of the medial septum and indirectly by stress 

hormones (Izquierdo, 1989; Izquierdo & Medina, 1997; Cammarota, Bevilaqua, Medina, & 

Izquierdo, 2007). The step-down IA is a widely used task in memory studies (McGaugh, 

1966; Gold, 1986; McGaugh & Izquierdo, 2000; Izquierdo et al., 2007) and relies upon the 

natural tendency of an animal to explore a novel environment. In the IA acquisition task, the 

animal is placed on an elevated platform by one wall of an arena, steps down to explore the 

arena and learns to associate exploration with a punishment (a foot shock delivered through 

the floor grid). On a subsequent exposure to the same environment (recall task), the animal 

increases the latency to step down onto the floor grid, or avoids stepping on the grid. The 

natural exploratory behaviour is repressed after the punishment is given, without affecting the 

exploratory behaviour while on the safe, non-aversive part of the training apparatus. IA is an 

emotionally-arousing paradigm (Izquierdo et al., 1997; Maren, 2001), that involves: 

i) an explicit, associative component to the context, 

ii) an operant-like conditioning component to the shock, since the animal may avoid the 

aversive stimulus (Wilensky, Schafe, & LeDoux, 2000), 

iii) a spatial memory component, since the animal remembers the location where the noxious 

stimulus was given during acquisition (Cammarota, Bevilaqua, Medina, & Izquierdo, 2007).  

In the IA, the environment is arranged so that the animal can avoid a painful stimulus; i.e., the 

“escape” or avoidance is an option available to an animal that could learn and perform it. 

From an experimental view point, IA is a relatively simple test since it is acquired in a one-

trial session. Recall can be performed at different times after acquisition, thus allowing to 

study both STM (Izquierdo et al., 1998a; Izquierdo et al., 1998b) and LTM mechanisms 

(Izquierdo et al., 2002).  

IA depends upon the activation of the cholinergic system, since its acquisition is impaired 

by pre-training (Izquierdo et al., 1998b; Giovannini, Bartolini, Bacciottini, Greco, & 

Blandina, 1999) or post-training peripheral administration of mAChRs antagonists (Table 1) 

(Izquierdo et al., 1998b; Giovannini, Bartolini, Bacciottini, Greco, & Blandina, 1999; 

McGaugh & Izquierdo, 2000), and is facilitated by mAChRs agonists (Baratti, Huygens, 

Mino, Merlo, & Gardella, 1979; Barros, Pereira, Medina, & Izquierdo, 2002). 
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Short term and long term memory mechanisms: open questions 

All types of novel stimuli induce the activation of the forebrain cholinergic system (Pepeu 

and Giovannini, 2006). In this review we shall examine how the cholinergic system 

participates in the formation of STM and LTM in CA1 during the acquisition and 

performance of the step-down inhibitory avoidance task in the rat. A key question that still 

remains unanswered is whether STM represents a step toward LTM only or the formation of 

the two memory types reflects separate processes. 

According to current hypotheses, STM and LTM formation imply biochemical processes that 

act in parallel and on different time scales (Izquierdo et al., 1998a; Izquierdo, Medina, 

Vianna, Izquierdo, & Barros, 1999; Izquierdo et al., 2002). Nevertheless, to better answer to 

this question, it is necessary to demonstrate that STM can be suppressed without affecting 

LTM. The pharmacology and molecular bases of IA have been studied by us (Giovannini et 

al., 2005; Lana et al., 2013) and Izquierdo‟s group, particularly in the CA1 region (Igaz, 

Bekinschtein, Izquierdo, & Medina, 2004; Marti, Ramirez, Dos Reis, & Izquierdo, 2004). 

Moreover, for the reasons mentioned above, unlike multitrial learning tasks, IA offers the 

possibility to neuroscientists to distinguish the processes involved in STM and LTM by the 

simple modulation of time parameters after the acquisition task. In particular we shall try to 

shed light on the complex interplay among the cholinergic system, ERK and mTOR in IA 

memory formation. Among the several actors downstream of the cholinergic activation 

implicated in STM and LTM formation, this review will focus particularly on ERK and 

mTOR since they can modulate both early processes such as phosphorylation of protein 

substrates, implicated in STM, and later processes like immediate or de novo proteosynthesis 

in neurons, implicated in LTM formation (Davis & Squire, 1984; Freeman, Rose, & Scholey, 

1995; Tiunova, Anokhin, Rose, & Mileusnic, 1996; Atkins, Selcher, Petraitis, Trzaskos, & 

Sweatt, 1998; Bourtchouladze et al., 1998; Quevedo et al., 1999; Schafe, Nadel, Sullivan, 

Harris, & LeDoux, 1999; Cammarota et al., 2000; Alonso, Viola, Izquierdo, & Medina, 2002; 

Tsokas, Ma, Iyengar, Landau, & Blitzer, 2007Myskiw et al., 2008).  

 

2. The hippocampal cholinergic system in learning and memory  

Among the many neurotransmitter systems, the cholinergic fibres that originate in the 

basal forebrain and project to the hippocampus are of crucial importance in learning and 

memory processes (Zola-Morgan & Squire, 1993;Muir, Everitt, & Robbins, 1996;Everitt & 

Robbins, 1997;Sarter & Bruno, 1997a;Sarter & Bruno, 2000). The hippocampus receives a 

large cholinergic input (Frotscher & Leranth, 1985) from neurons located in the medial 
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septum and the vertical limb of the diagonal band of Broca, denominated by Mesulam 

Cholinergic sector 1 (Ch1) and Cholinergic sector 2 (Ch2) (Mesulam, Mufson, Vainer, & 

Levey, 1983). These neuronal clusters are parts of the forebrain cholinergic system, formed 

by an aggregate of discontinuous islands of multipolar cells with extensive dendritic trees. An 

analysis of the targets of the cholinergic fibers shows that pyramidal cells, granule cells, and 

non-pyramidal neurons of the hippocampus receive cholinergic input (Frotscher & Leranth, 

1985). ACh, released from the cholinergic terminals, impinges on hippocampal muscarinic 

and nicotinic ACh receptors. As described later in the chapter, ACh receptors modify 

neuronal activity, through multiple signalling cascades characterized by different spatial 

location and time course (Teles-Grilo Ruivo LM & Mellor JR, 2013). 

 

Muscarinic ACh receptors 

The muscarinic ACh receptors (mAChRs) are members of the class of heptahelical G 

protein–coupled receptors (GPCRs). Five main subtypes of muscarinic receptors (M1–M5) 

have been identified. Their localization in the hippocampal formation was investigated using 

subtype-specific antibodies (Levey, Edmunds, Hersch, Wiley, & Heilman, 1995). Each 

receptor subtype, differentially localized in the hippocampal areas, modulates a variety of 

processes, including long term synaptic plasticity (Origlia et al., 2006). M1 receptors are 

widely expressed on the somata and dendrites of the pyramidal neurons of CA1-CA3 areas 

and on granule cells of the dentate gyrus. Some M3 receptors are located on pyramidal 

neurons, on the neuropil of the stratum lacunosum molecularis and the outer third of the 

molecular layer of dentate gyrus; M2 and M4 subtypes are located presynaptically in several 

bands of fibers, and postsynaptically in non-pyramidal neurons and in the inner layer of the 

molecular layer. As a consequence of their pre- and postsynaptic location, mAChRs have 

different impacts on neuronal activity. Presynaptic mAChRs (M2, M4) are coupled to Gi/o and 

inhibit voltage-gated Ca
2+

 channels, decrease cAMP-mediated signaling and inhibit 

neurotransmitter release at cholinergic (Vannucchi & Pepeu, 1995; Vannucchi, Scali, Kopf, 

Pepeu, & Casamenti, 1997; Zhang et al., 2002), GABAergic and glutamatergic terminals 

(Russo, Marchi, Andrioli, Cavazzani, & Raiteri, 1993; Gonzales, Pare, Wichmann, & Smith, 

2013; Szabo, Holderith, Gulyas, Freund,& Hajos, 2010; Dasari & Gulledge, 2011). 

Postsynaptic mAChRs (M1, M3, M5) are coupled to Gq/11 and potentiate NMDA currents 

(Markram & Segal, 1990c; Marino, Rouse, Levey, Potter, & Conn, 1998; Fernandez De 

Sevilla, Nunez, Borde, Malinow, & Buno, 2008), modulate voltage-dependent Ca
2+

 currents 

(Toselli, Lang, Costa, & Lux, 1989) and activate phopholipase C, inositol trisphosphate and 

http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B230
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B192
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B42
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B134
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B130
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B52
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B52
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B198
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increase of intracellular Ca
2+

 concentration (Power & Sah, 2002; Gulledge & Kawaguchi, 

2007). Furthermore, mAChRs coupled to Gq/11 inhibit K
+
 conductances, causing membrane 

depolarization and increasing input resistance (Brown & Adams, 1980; Halliwell & Adams, 

1982; Cole & Nicoll, 1984; Madison, Lancaster,& Nicoll, 1987; Buchanan, Petrovic, 

Chamberlain, Marrion, & Mellor, 2010; Giessel and Sabatini, 2010). 

The literature on the disruptive effect of muscarinic antagonists, namely scopolamine and 

atropine, on cognitive processes is extensive and has been largely reviewed (Izquierdo, 1989; 

Klinkenberg & Blokland, 2010; Brown, 2010; Graef, Schoknecht, Sabri, & Hegerl, 2011). We 

shall only focus on some examples taken from the literature that corroborate the role of the 

basal forebrain cholinergic neurons innervating the hippocampus on IA memory formation 

(Table 1). In several IA studies (Wiener and Messer, 1973; Rush, 1988; Quirarte et al., 1994; 

Nomura, Nishiyama, Saito, & Matsuki, 1994, Eidi, Zarrindast, Eidi, Oryan & Parivar, 2003; 

Giovannini et al., 2005; Lana et al., 2013) it has been demonstrated that systemic, 

intracerebral or intrahippocampal administration of scopolamine before training is effective in 

impairing recall at 1 h or 24 h after training (Table 1). Nevertheless, the level of shock 

intensity interferes with the effect of scopolamine on passive avoidance retention, as shown 

by Quirarte et al. (1994). A dose of 8 mg/kg, IP caused amnesia using low foot shock 

conditions, but it was not effective when high level of foot shock was employed. Furthermore, 

intra-hippocampal administration of the muscarinic agonist oxotremorine or of the muscarinic 

toxin MT2, a highly selective agonist for M1 receptors from the venom of the snake 

Dendroaspis angusticeps, enhances retention of an inhibitory avoidance (Izquierdo et al. 

1992; Jeruzalinsky, Cervenansky, Walz, Bianchin, & Izquierdo, 1993). These effects can be 

antagonized by scopolamine (Jeruzalinsky, Cervenansky, Walz, Bianchin, & Izquierdo, 

1993), and led the authors to postulate that the m1 receptor of the dorsal hippocampus is 

directly involved memory formation of this task (Jerusalinsky et al., 1993). 

 

Nicotinic ACh receptors 

The nicotinic ACh receptors (nAChRs) are a family of ACh-gated ion channels formed 

by different subtypes, each with specific anatomical distribution as well as different 

pharmacology and physiology. Twelve neuronal subunits have been described including 9 α 

(α2-α10) and 3 β (β2-β4) subunits. Only the α subunits contain the binding site for ACh 

(Alkondon & Albuquerque, 1993). The combination of these subunits defines the function 

and affinity of the receptor for specific ligands (Sudweeks & Yakel, 2000). In the 

hippocampus, α7, α4β2 and α3β4 nAChRs have been detected (Teles-Grilo Ruivo LM & 

http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B162
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B75
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B75
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B22
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B82
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B82
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B37
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B122
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B24
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B24
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B64
http://www.sciencedirect.com/science/article/pii/S0149763410000837#bib356
http://www.sciencedirect.com/science/article/pii/S0149763410000837#bib273
http://www.sciencedirect.com/science/article/pii/S0149763410000837#bib226
http://www.ncbi.nlm.nih.gov/pubmed?term=Eidi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12650837
http://www.ncbi.nlm.nih.gov/pubmed?term=Zarrindast%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=12650837
http://www.ncbi.nlm.nih.gov/pubmed?term=Eidi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12650837
http://www.ncbi.nlm.nih.gov/pubmed?term=Oryan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12650837
http://www.ncbi.nlm.nih.gov/pubmed?term=Parivar%20K%5BAuthor%5D&cauthor=true&cauthor_uid=12650837
http://www.sciencedirect.com/science/article/pii/S0149763410000837#bib252
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Mellor JR, 2013). The α4β2 subtype is present on the somata of excitatory neurons and 

presynaptically on GABAergic terminals. The α3β4 subtype was found on glutamatergic and 

GABAergic terminals. The α7 receptors are located presynaptically and postsynaptically at 

both glutamatergic and GABAergic synapses and postsynaptically at cholinergic synapses (Ji 

& Dani, 2000; Alkondon & Albuquerque, 2004). The α7 nAChR, in addition to its ionotropic 

activity, is associated with metabotropic activity coupled to Ca
2+

-regulated second messenger 

signalling (Berg & Conroy, 2002). Activation of nAChRs results in direct Ca
2+ 

influx through 

the channel pore and rapid membrane depolarization. The precise Ca
2+

 permeability of 

receptors depends on the subunit composition with α7 being the most permeable. Ca
2+

 

accumulation in presynaptic terminals facilitates neurotransmitter release (Lena, Changeux, & 

Mulle, 1993; McGehee, Heath, Gelber, Devay, & Role, 1995; Wonnacott, 1997; Fu, Liou, & 

Chen, 1998; Tang et al., 2011). Postsynaptically, cations flux through nAChRs mediates fast 

excitatory synaptic responses (Frazier et al., 1998; McQuiston & Madison, 1999; Ji & Dani, 

2000; Alkondon & Albuquerque, 2001; Kawai, Zago & Berg, 2002; Wanaverbecq, 

Semyanov, Pavlov, Walker, & Kullmann, 2007; Bell, Shim, Chen, & McQuiston, 2011; Gu & 

Yakel, 2011; Tang et al., 2011). Fast membrane depolarization triggers activation of voltage-

gated Ca
2+ 

channels, increase of second messenger cAMP (Margiotta, Berg, & Dionne, 1987; 

Sargent, 1993) and Ca
2+

 release from intracellular stores (Vijayaraghavan, Pugh, Zhang, 

Rathouz, & Berg, 1992; Sharma & Vijayaraghavan, 2003). Ca
2+

 influx through nAChRs 

activates Ca
2+

-dependent Cl
- 

conductances (Mulle, Choquet, Korn, & Changeux, 1992; 

Vernino, Amador, Luetje, Patrick, & Dani, 1992), which oppose the depolarization caused by 

nAChR opening. nAChRs differentially modulate neuronal excitability, depending on the 

target cell, and the strength and timing of the cholinergic input (Frazier et al., 1998; Ji & 

Dani, 2000; Alkondon & Albuquerque, 2004). 

Intrahippocampal administration of the nAChR agonist nicotine facilitates working 

memory (Felix & Levin, 1997; Levin, McClernon, & Rezvani, 2006), while intrahippocampal 

administration of the nAChR antagonists dihydro-b-erythroidine, methyllycaconitine (Felix & 

Levin, 1997; Levin, Bradley, Addy, & Sigurani, 2002) or mecamylamine (Ohno, Yamamoto, 

& Watanabe, 1993) impairs working memory. Nicotinic receptors in the CA1 region of the 

hippocampus have been involved in both STM and LTM formation, and in retrieval processes 

of an IA response in rats, suggesting that nAChRs have a modulatory role in different types 

and phases of memory (Marti, Ramirez, Dos Reis, & Izquierdo, 2004). Systemic nicotine 

administration 15 min prior to a retrieval test ameliorates IA memory. This effect is opposed 

by the centrally acting antagonist mecamylamine but not by the peripherally acting antagonist 

http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B112
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B112
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B140
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B220
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B60
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B60
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B195
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B57
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B143
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B96
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B96
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B3
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B104
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B209
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B209
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B16
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B74
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B74
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B195
http://journal.frontiersin.org/Journal/10.3389/fnsyn.2013.00002/full#B129
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hexamethonium or the muscarinic antagonist atropine all given IP (Zarrindast, Sadegh, & 

Shafaghi, 1996). Post-training intracerebroventricular infusions of ACh or nicotine have been 

shown to enhance inhibitory avoidance. This effect is reduced by coinfusion of scopolamine 

(Eidi, Zarrindast, Eidi, Oryan, & Parivar, 2003). 

Using microdialysis in freely moving rats, it was shown that hippocampal memory 

processes are associated with a marked increase in ACh release (Ragozzino, Pal, Unick, 

Stefani, & Gold, 1998; Stancampiano, Cocco, Cugusi, Sarais, & Fadda, 1999; Giovannini et 

al., 2001b; Giovannini et al., 2005; Bianchi et al., 2003). Behavioural conditions that induce 

arousal, require attention and lead to information acquisition and memory formation, are 

associated and supported by activation of the forebrain cholinergic system (Demeter & Sarter, 

2013). 

Disruption of the hippocampal cholinergic input in animals further demonstrates the 

importance of this structure in cognitive processes. Inhibition of ACh synthesis induced by 

hemicholinium-3 ICV administration, a selective inhibitor of high-affinity choline uptake 

(Gardiner, 1961) leads to memory consolidation impairment in the IA task in mice (Boccia, 

Acosta, Blake, & Baratti, 2004). Power &McGaugh (2002), using the nonselective 

cholinergic excitotoxin phthalic acid injected in the NBM, found that phthalic acid-lesioned 

animals showed a significant reduction of inhibitory avoidance learning. This impairment 

could be rescued by ipsilateral infusions of the muscarinic agonist oxotremorine or the 

acetylcholinesterase inhibitor physostigmine. Furthermore, intra-hippocampal injection of the 

muscarinic receptor antagonist scopolamine impairs memory acquisition in a IA task 

(Giovannini et al., 2005) and spatial discrimination learning in the Morris water maze 

(Blokland, Honig, & Raaijmakers, 1992). IP administration of atropine, a central muscarinic 

antagonist, completely prevents the facilitatory effects of the central β2-adrenoreceptor 

agonist, clenbuterol also given IP (Introini-Collison & Baratti, 1992), suggesting an 

interaction between central adrenergic and cholinergic mechanisms in the IA response in 

mice. Furthermore, selective lesion of the medial septal and diagonal band cholinergic 

neurons resulted in deficits in spatial strategies used to locate a spatial goal in the Morris 

water maze (Janis, Glasier, Fulop, & Stein, 1998). Lesions of the cholinergic and/or 

GABAergic neurons in the medial septum and diagonal band showed that GABAergic and 

cholinergic septohippocampal neurons both contribute to memory stabilization (Lecourtier et 

al., 2011) whereby GABAergic processes could be engaged at an earlier stage than 

cholinergic ones during system consolidation of a spatial memory. Disruption of the 

GABAergic neurons of the medial septum and diagonal band impairs ACh efflux and 



 11 

working memory under the heavy memory load of a delayed non matching to position task, 

but does not alter hippocampal ACh efflux and easier memory tasks (Roland et al., 2014). 

The toxin 192 IgG-saporin at present is the most convenient tool to induce selective 

cholinergic denervation (Waite & Thal, 1996; Wiley, Oeltmann & Lappi 1991). 192 IgG-

saporin is constituted of the monoclonal antibody 192 IgG which has a low affinity to nerve 

growth factor (NGF) receptor p75 present on cholinergic neurons and saporin, a ribosome 

inactivating toxin. The 192 IgG-saporin binds to the p75 NGF receptors, is internalized and 

retrogradely transported to the soma, where it is cleaved. Saporin disrupts the ribosomal 

function, thus leading to cell death (Wiley, Oeltmann & Lappi 1991). 

The intracerebral injection of this toxin to disrupt cholinergic neurons has given 

controversial results. Although 192 IgG-saporin brings about selective and significant 

cholinergic damage of the NBM, only modest deficits in mnemonic tasks have been reported 

(Torres et al., 1994; Baxter et al., 1996). For instance, 192 IgG-saporin lesions had no effect 

on inhibitory avoidance learning (Power, Thal & McGaugh, 2002). Some of the authors 

explained the unexpectedly modest effect of immunotoxin lesions on memory paradigms with 

the possible existence of compensatory mechanisms after the lesions (Lacroix, White & 

Feldon, 2002; de Bruin, Ellenbroek, van Luijtelaar, Cools & Stevens, 2001), or with the 

immunotoxin selective effect on cortical projections and comparative lack of effect on 

amygdalopetal cholinergic projections (Power, Thal & McGaugh, 2002). More recently it has 

been shown that only ICV lesions, but not NBM lesions using 192 IgG-saporin lead to 

memory impairments in passive avoidance and Morris water maze tasks (Garcia-Alloza et al, 

2006). Also, rats with immunotoxic lesions of cholinergic neurons in the MS/VDB, are 

unimpaired in a test of „„episodic-like‟‟ memory (Easton, Fitchett, Eacott & Baxter, 2011). On 

the other hand, very recently it has been demonstrated that 192 IgG-saporin impairs spatial 

learning (Rastogi, Unni, Sharma, Rao Laxmi & Kutty, 2014). Others demonstrated that 192 

IgG-saporin causes basal forebrain cholinergic depletion and impairs working memory, 

spatial discrimination, social novelty preference (Cutuli et al., 2013), and these effects are 

prevented by administration of donepezil, an indirect cholinomimetic drug. The different 

types of behavioural tests used and memories studied as well as the participation of other 

neutroansmitter systems in learning and memory mechanisms may explain the contrasting 

effects of 192 IgG-saporin lesions described in the literature.  

 

3. The cholinergic system and ERK transduction pathway in memory formation  
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ACh, released in the proximity of depolarized neurons, brings about a long-lasting 

potentiation of the postsynaptic membrane (Tremblay, Warren, & Dykes, 1990; Metherate, 

1998). Stimulation of muscarinic/nicotinic receptors subtypes present on neurons 

(Rosenblum, Futter, Jones, Hulme, & Bliss, 2000; Dineley et al., 2001; Berkeley et al., 2001; 

Giovannini et al., 2008) may create conditions favourable for neuronal plasticity, initiating a 

network of signals that activate several intracellular transduction pathways including the ERK 

pathway (Gutkind, 1998). ERK is also activated by glutamate through metabotropic (Peavy & 

Conn, 1998) or ionotropic glutamate receptors (Zhu, Qin, Zhao, Van Aelst, & Malinow, 2002; 

Krapivinsky et al., 2003), by noradrenaline through β-adrenergic receptors (Williams, Zhong, 

& Minneman, 1998; Winder et al., 1999; Watabe, Zaki, & O'Dell, 2000), by other 

neurotransmitters (Drutel et al., 2001; Giovannini et al., 2003), and growth factors (Castillo & 

Escobar, 2011) and by the sex steroid hormones 17beta-estradiol and progesterone 

(Harburger, Saadi, & Frick, 2009; Orr, Rubin, Fan, Kent, & Frick, 2012).  

It has been demonstrated that combined stimulation of mAChR and β-adrenergic 

receptors synergistically activate ERK which can act as a coincidence detector (to decode the 

simultaneous engagement of different receptors) and as a signal integrator (that encodes this 

information in a spatially and temporally distinct biological signals) (Watabe, Zaki, & O'Dell, 

2000; Sweatt, 2001; Geetha et al., 2011), thus activating a cascade of intracellular processes 

that lead to synaptic plasticity and learning. Indeed, ERKs are placed at a strategic position 

allowing crosstalk between different arrays of signals and signal transduction pathways.  

ERK is localized in the soma and dendritic trees of neurons in the neocortex, 

hippocampus, striatum, and cerebellum (Fiore et al., 1993). Phosphorylation of ERK by its 

upstream kinase MEK is necessary for the formation of different types of learning and 

memory (Atkins, Selcher, Petraitis, Trzaskos, & Sweatt, 1998; Blum, Moore, Adams, & 

Dash, 1999; Kaminska, Kaczmarek, Zangenehpour, & Chaudhuri, 1999; Walz et al., 2000; 

Cammarota et al., 2000). The first direct evidence that ERK is involved in memory processes 

in vivo was reported in a seminal paper published by Sweatts‟ group (Atkins, Selcher, 

Petraitis, Trzaskos, & Sweatt, 1998). These findings (Atkins, Selcher, Petraitis, Trzaskos, & 

Sweatt, 1998) were confirmed and expanded using inhibitors of ERK activation in the rat 

(PD098059 or U0126 injected intracerebrally) (Schafe, Nadel, Sullivan, Harris, & LeDoux, 

1999; Schafe et al., 2000). Later studies showed that activation of the ERK hippocampal 

pathway is required for long-term fear memory (Giovannini et al., 2003; Apergis-Schoute, 

Debiec, Doyere, LeDoux, & Schafe, 2005). 
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Downstream effectors of ERK activation  

Within minutes from activation, a fraction of phospho-ERK translocates to the nucleus 

(Davis, Vanhoutte, Pages, Caboche, & Laroche, 2000), where it can modify gene expression 

by transcriptional control (Xia, Dudek, Miranti, & Greenberg, 1996; Impey et al., 1998). It is 

likely that ERK participates in different forms of neuronal plasticity by virtue of its ability to 

regulate both transcription at the nuclear level (for a review, see Impey et al., 1998; Chang & 

Karin, 2001) and translation in the dendrites (Chen, Rojas-Soto, Oguni, & Kennedy, 1998; 

Kim, Liao, Lau, & Huganir, 1998; Flood et al., 1998). The former effect is consistent with the 

participation of ERK in memory formation through protein synthesis (Chwang, Arthur, 

Schumacher, & Sweatt, 2007) whereas the translational effects occur through phosphorylation 

and changes in local synaptic mechanisms (English & Sweatt, 1996; English & Sweatt, 1997; 

Impey et al., 1998; Giovannini et al., 2001a). Thus, it seems plausible that ERK participates in 

both forms of memory, by modifying the existing proteins that determine synaptic behavior, 

and/or by regulating the expression of proteins necessary for the long-term maintenance of 

synaptic changes. Some of these latter effects are thought to reflect ERK-dependent activation 

of transcription factors such as CREB and Elk-1 (Treisman, 1995; Treisman, 1996; for review 

see Sweatt, 2001). 

After activation, the fraction of ERK that remains in the dendrites is extensively 

phosphorylated (Impey et al., 1998; Winder et al., 1999; Giovannini et al., 2005) pointing to 

an involvement of ERK in the activation of downstream cytoplasmic proteins such as mTOR 

(Tsokas, Ma, Iyengar, Landau, & Blitzer, 2007), ribosomal S6 kinase2, RSK2 (Poteet-Smith, 

Smith, Lannigan, Freed, & Sturgill, 1999), that regulate translational efficiency (Grewal, 

York, & Stork, 1999). Other extranuclear substrates for ERK include components of the 

postsynaptic signalling network such as phospholipase A2 (Xu et al., 2002), SynGAP 

(Muthalif, Benter, Uddin, & Malik, 1996; Chen, Rojas-Soto, Oguni, & Kennedy, 1998; Kim, 

Liao, Lau, & Huganir, 1998), and several microtubule-associated proteins (MAP), such as 

MAP-1, MAP-2, MAP-4, and Tau (Seger & Krebs, 1995). Furthermore, the postsynaptic 

density, a subsynaptic complex in which much of the postsynaptic signalling occurs , includes 

ERK2, MEK, and the phosphatase (MKP2) (Husi, Ward, Choudhary, Blackstock, & Grant, 

2000). Furthermore, dendritic phospho-ERK appears to play an important role in regulating 

K
+
 channels, particularly in the phosphorylation of the pore-forming α subunit of Kv4.2 

channels. Likely, this role contributes to dendritic information processing and increasing 

membrane excitability (Yuan, Adams, Swank, Sweatt, & Johnston, 2002; Watanabe, 

Hoffman, Migliore, & Johnston, 2002; Morozov et al., 2003; Sweatt, 2004).  
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Adding an even higher level of complexity to the involvement of ERK in memory 

mechanisms, it has been shown that the ERK cascade is involved in epigenetic mechanisms 

(Berger, Kouzarides, Shiekhattar, & Shilatifard, 2009) in the hippocampus, such as 

downstream histone H3 acetylation and phosphorylation via nuclear kinases (Levenson et al., 

2004; Chwang, O'Riordan, Levenson, & Sweatt, 2006; Chwang, Arthur, Schumacher, & 

Sweatt, 2007). Stimulation of ERK signalling (Levenson et al., 2004) produces gene- and 

histone-specific changes in post translational modifications, indicating that distinct signalling 

cascades may establish precise histone codes that correspond to particular types of memory 

(Graff, Kim, Dobbin, & Tsai, 2011). Together, these findings support the possibility that ERK 

may play a role in memory both through nuclear and local synaptic mechanisms dependently 

and/or independently on gene transcription. 

 

Role of ERK1 and ERK2 

Two isoforms of ERK are present in cells, ERK1 (p44MAPK) and ERK2 (p42MAPK), 

which have similar distribution in the brain, although the amount of ERK1 in neurons of rat 

hippocampus appears to be considerably lower than that of ERK2 (Kanterewicz et al., 2000; 

Giovannini et al., 2001a). The two isoforms share about 90% homology (Boulton et al., 1990) 

and have the same substrate specificity in vitro, but their role in vivo remains to be elucidated. 

It is still not fully understood whether both isoforms are equally involved in learning and 

memory mechanisms. Several groups have found that in neurons ERK1 and ERK2 are 

selectively regulated by different stimuli (Bading & Greenberg, 1991; Fiore, Murphy, 

Sanghera, Pelech, & Baraban, 1993; English & Sweatt, 1996; Giovannini et al., 2001a), and it 

has been suggested that only ERK2 plays a key role in synaptic plasticity and memory 

consolidation (Sweatt, 2001). Knockout (KO) mice for ERK1 and ERK2 have been generated 

and, whereas ERK1 KO mice are viable and appear to be neurologically normal (Selcher, 

Nekrasova, Paylor, Landreth, & Sweatt, 2001), ERK2 KO mice are embryonic lethal at day 

6.5 (Yao et al., 2003; Saba-El-Leil et al., 2003). Therefore the two isoforms must have some 

important different function, at least early in mouse embryonic development (Saba-El-Leil et 

al., 2003). Selcher and coworkers demonstrated in KO mice that ERK1 is not required for 

emotional learning whereas ERK2 has a predominant role in synaptic plasticity underlying 

learning and memory processes (Selcher, Nekrasova, Paylor, Landreth, & Sweatt, 2001). It 

has also been shown (Mazzucchelli et al., 2002) that in ERK1 KO mice, STM is retained but 

there is a marked enhancement of LTM in a one-trial IA task. The view that the ERK2 

isoform exerts a pivotal role in LTM modulation is supported also by the results of a 

http://www.ncbi.nlm.nih.gov/pubmed?term=Berger%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=19339683
http://www.ncbi.nlm.nih.gov/pubmed?term=Kouzarides%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19339683
http://www.ncbi.nlm.nih.gov/pubmed?term=Shiekhattar%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19339683
http://www.ncbi.nlm.nih.gov/pubmed?term=Shilatifard%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19339683
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reconsolidation study (Cestari, Costanzi, Castellano, & Rossi-Arnaud, 2006) in which 

administration of SL327, an inhibitor of ERK activation, impaired memory reconsolidation 

not only in wt mice, but also in ERK1 KO mice. Altogether, these results clearly show a 

central role for ERK2 activation in memory reconsolidation processes in mice (Cestari, 

Costanzi, Castellano, & Rossi-Arnaud, 2006). It has also been suggested that ERK1 has a 

physiological inhibitory role on MEK (Mazzucchelli et al., 2002), thus limiting ERK1/2 

activation. Some possible explanations for the selective activation of ERK2 in learning and 

memory mechanisms are its specific activation by upstream kinases, compartmentalization, 

differences in the brain structures involved, and binding to scaffolding proteins through 

highly specific docking sites (Sharrocks, Yang, & Galanis, 2000; Enslen & Davis, 2001), but 

so far there is no compelling evidence for any of these.  

 

ERK activation in IA memory 

As already mentioned, activation of the basal forebrain cholinergic pathway during 

memory acquisition, and the subsequent release of ACh, leads to stimulation of mAChRs that 

in turn trigger ERK activation either via PKC (Yasoshima & Yamamoto, 1997) or PYK2 (Lev 

et al., 1995). More recently, it has been demonstrated that nicotine may enhance 

hippocampus-dependent learning, most likely by impinging on α4β2 nAChRs and activating 

intracellular PKA and ERK pathways. Indeed, administration of the PKA inhibitor PKI 14-22 

amide in the dorsal hippocampus (Gould et al., 2014) or an ERK inhibitor (SL327, 

administered IP) (Raybuck & Gould, 2007), at doses too low to impair learning per se, blocks 

learning facilitation elicited by nicotine. This suggests that nicotine administration during 

learning increases PKA and ERK activation and, if this increase is blocked, learning is 

impaired (Gould & Leach, 2014). Nicotine administered IP prior to learning increases CREB 

phosphorylation at the Jnk1 promoter region (Kenney, Poole, Adoff, Logue, & Gould, 2012) 

and Jnk1 expression in the hippocampus (Kenney, Florian, Portugal, Abel, & Gould, 2010). 

Thus, the ability of nicotine to modify cell signalling cascades involved in learning and to 

express additional signalling cascades may explain why nicotine administration is associated 

with the formation of a strong drug-context memory contributing to the drug seeking 

behaviour (Walters, Cleck, Kuo, & Blendy, 2005; Wilkinson & Bevins, 2008; Portugal & 

Gould, 2009; Gould & Leach, 2014). 

Few investigations exist which directly correlate the increase in ACh release to 

performance of an IA task in the rat. We demonstrated (Giovannini et al., 2005) that IA 

acquisition initiates a cascade of events that activates hippocampally-projecting cholinergic 
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neurons. This is revealed by an increase in ACh release during and immediately after 

acquisition (Giovannini et al., 2005), by the activation of ERK in CA1 hippocampal neurons 

and memory formation. We showed (Giovannini et al., 2005) that administration of the 

mAChRs antagonist scopolamine (IP, or locally into the hippocampus) prior to training, and 

of ERK inhibitors U0126 and PD98059 (locally into the hippocampus), cause both inhibition 

of ERK activation and amnesia, demonstrating that both ACh release and ERK activation are 

necessary for IA STM formation. These results indicate that an increase in ACh release acting 

on postsynaptic mAChRs triggers an intracellular signalling cascade that activates ERK and 

further downstream effectors leading to memory encoding. 

A time-window for ERK activation to be efficacious must exist, since it has been 

demonstrated that, at least in spatial memory, delayed infusion of MEK inhibitors U0126 and 

PD98059 does not interfere with long term spatial memory retention (Blum, Moore, Adams, 

& Dash, 1999). Since the neuronal ERK cascade can function as a biochemical coincidence 

detector, being activated simultaneously by β-adrenergic receptors and mAChRs in the 

hippocampus (Watabe, Zaki, & O'Dell, 2000), it is feasible that neurotransmitter systems 

other than the cholinergic may be concomitantly activated during acquisition. It is also 

possible that blocking one of the converging pathways is sufficient to inhibit the entire ERK 

cascade and the encoding of the IA memory. These findings show that an aversive experience 

such as the exposure to a single footshock initiates a cascade of events that, through the 

activation of hippocampally-projecting cholinergic neurons, promotes the activation of the 

ERK pathway and leads to the formation of STM of that event.  

Izquierdo‟s group (Cammarota et al., 2000) demonstrated that learning of IA is associated 

with a similar, NMDA dependent, activation of both ERK1 and ERK2 in the rat 

hippocampus. In a further series of papers (Walz et al., 1999; Walz et al., 2000) the authors 

found that inhibition of ERK activation by PD 098059 in the CA1 region, entorhinal cortex, 

parietal cortex or amygdala impaired retention of the IA when tested up to 6 h after training, 

with a differential time course in the different brain regions. The authors thus concluded that 

the ERK pathway is involved in the IA post-training memory consolidation, with a different 

time-course in the hippocampus, amygdala, entorhinal cortex or parietal cortex of rats (Walz 

et al., 2000). It seems that activation of ERK correlates mostly with the aversive, emotional, 

component of IA acquisition since it was previously found that ERK is activated by mild 

electric footshocks similar in intensity and length to that employed as an aversive stimulus 

during IA training (Bevilaqua et al., 2006), but not by exposure to the training box in the 

absence of the footshock (Alonso, Viola, Izquierdo, & Medina, 2002). More recently, 
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experiments from the same group (Igaz, Bekinschtein, Izquierdo, & Medina, 2004) 

demonstrated that single trial step-down IA causes an increase of total ERK mRNA 3 h, and 

ERK2 protein upregulation 24 h after training. These results are interesting in that they reveal 

that ERK activity can possibly be modulated in different behavioural tasks not only by 

activation, but also by increased protein expression.  

 

ERK activation in STM and LTM formation 

Although some authors showed that ERK activation participates in LTM but not STM 

(Atkins, Selcher, Petraitis, Trzaskos, & Sweatt, 1998; Berman, Hazvi, Rosenblum, Seger, & 

Dudai, 1998; Blum, Moore, Adams, & Dash, 1999), data from our and other laboratories 

indicate that a rapid and transient activation of ERK participates in the molecular mechanisms 

underlying IA STM formation (Giovannini et al., 2005; Walz et al., 1999; Izquierdo et al., 

2000; Alonso, Viola, Izquierdo, & Medina, 2002). The effects of inhibitors of ERK activation 

injected immediately post training into CA1 or entorhinal cortex on STM and LTM show an 

interesting mirror image. In CA1, the role of ERK appears to be restricted mainly to STM 

formation. Simultaneously, in the entorhinal cortex the activation of this pathway impairs 

STM formation but is necessary for LTM formation. Studies with the MEK inhibitor 

PD98059, injected intracortically at different times after training, point to a role of ERK in 

LTM consolidation (Walz et al., 1999; Walz et al., 2000). These data suggest that the ERK 

pathway plays a complex regulatory role in synaptic plasticity. It is linked at different levels 

with the PKC, CaMKII, and PKA cascades (Bhalla & Iyengar, 1999; Lisman & Fallon, 1999) 

which are all crucial for LTM and, depending on brain structure and post training time, also 

for STM (Cammarota, Bevilaqua, Medina, & Izquierdo, 2007). 

In agreement with the literature (Walz et al., 1999; Walz et al., 2000; Alonso, Viola, 

Izquierdo, & Medina, 2002), the duration of ERK activation is limited to a restricted time 

window after training, indicating that acquisition of aversive experiences is associated with a 

rapid and short lasting activation of ERK. According to these data, it seems that an inherent 

signal termination process limits the duration of ERK activation (Pouyssegur, Volmat, & 

Lenormand, 2002), which depends upon a balance between the activity of kinases and 

phosphatases (Kwak, Hakes, Martell, & Dixon, 1994; Misra-Press, Rim, Yao, Roberson, & 

Stork, 1995; Muda et al., 1996; Boschert, Dickinson, Muda, Camps, & Arkinstall, 1998). 

Many of these latter proteins are induced by stimuli that also activate ERK and participate in a 

negative feedback control of ERK activity (Paul, Nairn, Wang, & Lombroso, 2003) in which 

ERK itself determines the duration of its own activation by in turn activating phosphatases 
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(Pouyssegur, Volmat, & Lenormand, 2002). Since ERK can function as a biochemical signal 

integrator in response to extracellular signals in neurons (Watabe, Zaki, & O'Dell, 2000), the 

ramifications of ERK-dependent signalling are determined, in part, by the duration of ERK 

phosphorylation itself and it may not be surprising to find that the duration of its activation is 

tightly regulated. Indeed, short-term activation of ERK triggers cell differentiation in PC12 

cells, while prolonged activation results in cell proliferation (Traverse, Gomez, Paterson, 

Marshall, & Cohen, 1992). Repeated depolarizations, rather than a single depolarization, 

cause sustained ERK activation, which is essential for new spine formation in neuron culture, 

since MEK inhibition with PD98059 prevents both ERK activation and spine formation 

events (Wu, Deisseroth, & Tsien, 2001).  

Baseline ERK activation decreases in basal conditions in the hippocampus of TgCRND8 

mice, an early-onset transgenic mouse model of Alzheimer‟s Disease (AD) (Chishti et al., 

2001;Bellucci et al., 2006). Cholinergic stimulation ex vivo strongly increases ERK activation 

in the cell bodies of CA1 pyramidal neurons and of DG granule cells of wild type (wt) mice, 

showing that activation of ERK in these neurons is downstream of cholinergic activation 

(Bellucci et al., 2006). This effect is significantly smaller in the hippocampus of transgenic 

mice, indicating a possible mechanism responsible for the memory deficits present in 

TgCRND8 mice (Bellucci et al., 2006). Most interestingly, the cholinergic agonist carbachol 

induced a much lower activation of ERK in TgCRND8 mice hippocampal slices in vitro than 

in slices from wt littermates (Giovannini et al., 2008). This effect may be ascribed to 

modifications upstream of ERK, such as a decrease in the number of mAChRs which are 

significantly reduced in TgCRND8 mice (Bellucci et al., 2006). Thus, these findings offer a 

molecular basis for memory disruption in AD, since memory requires proper functioning of 

the basal forebrain cholinergic neurons (Sarter & Bruno, 1997b), and ERK2 activation 

(Atkins, Selcher, Petraitis, Trzaskos, & Sweatt, 1998; Blum, Moore, Adams, & Dash, 1999; 

Kaminska, Kaczmarek, Zangenehpour, & Chaudhuri, 1999; Walz et al., 2000; Cammarota et 

al., 2000; Adams & Sweatt, 2002). 

As mentioned above, it appears (Pouyssegur, Volmat, & Lenormand, 2002) that the 

kinetics and duration of ERK activation may play an important role in influencing its effect 

on cell fate. Obviously, differential durations of ERK activation are regulated by different 

molecular players (York et al., 1998; Corbit, Foster, & Rosner, 1999) and can elicit unique 

gene expression profiles, and/or protein translation which consequently result in different 

cellular functions (Marshall, 1995) and final cellular outcomes. The possibility that sustained 

ERK can activate death programs independent of caspases in neurons (Subramaniam et al., 
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2004) suggests that ERK activation is involved in non-apoptotic modes of neuronal death. On 

the contrary, activation of ERK and Akt has been found to confer neuroprotection in several 

models of apoptosis (Hetman, Kanning, Cavanaugh, & Xia, 1999). Similarly, both Akt and 

ERK have been reported to play a role in regulating hippocampal neurogenesis (Aberg et al., 

2003).  

 

4. The Cholinergic system and mTOR pathway in memory formation  

LTM formation require protein synthesis, and direct translation in the synapto-dendritic 

compartment represents a mechanism that can produce rapid changes in protein content in 

response to synaptic activity (Bailey, Kandel, & Si, 2004; Kelleher, III, Govindarajan, Jung, 

Kang, & Tonegawa, 2004; Hoeffer & Klann, 2010).  

The Mammalian Target of Rapamycin (mTOR), is an evolutionary conserved high 

molecular weight serine-threonine protein kinase that regulates cell growth, proliferation and 

survival (Martin & Hall, 2005) by increasing protein translation. In the brain, mTOR regulates 

protein translation in response to neuronal activity, thereby modulating synaptic plasticity and 

LTM formation (Kelleher, III, Govindarajan, Jung, Kang, & Tonegawa, 2004). Downstream 

targets of mTOR include p70S6K, and eukaryotic Elongation Factor 1A and 2 (eEF1A and 

eEF2), which are mostly involved in ribosome recruitment to mRNA, the eukaryotic initiation 

factor 4E binding proteins (4E-BPs), which regulate both the initiation and elongation phases 

of translation (Hay & Sonenberg, 2004).  

Activation of mTOR by growth factors is well documented (Hay & Sonenberg, 2004; 

Slipczuk et al., 2009). It has also been demonstrated that mTOR can be activated by GPCRs 

(Wang & Proud, 2002; Arvisais, Romanelli, Hou, & Davis, 2006) and in particular it was 

demonstrated in a neuroblastoma cell line in vitro that the mTOR pathway is activated by 

mAChRs (Slack & Blusztajn, 2008). Furthermore, mTOR activation is downstream of 

nAChRs in cultured non–small-cell lung carcinoma cells (Zheng, Ritzenthaler, Roman, & 

Han, 2007). The above results indicate that mTOR can be downstream of cholinergic 

receptors. 

The mTOR pathway was first implicated in synaptic plasticity when it was shown that 

rapamycin, a selective inhibitor of mTOR Complex1 (mTORC1) activity (Casadio et al., 

1999; Takei, Kawamura, Hara, Yonezawa, & Nawa, 2001; Hay & Sonenberg, 2004; Takei et 

al., 2004) blocks long-term facilitation in Aplysia (Casadio et al., 1999) In addition, mTOR-

dependent activation of dendritic ribosomal protein kinase (p70S6K) was shown to be 
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necessary for the induction phase of protein-synthesis-dependent synaptic plasticity 

(Cammalleri et al., 2003). 

Whereas several studies have examined the effects of mTOR inhibition on synaptic 

plasticity in vitro (Tsokas, Ma, Iyengar, Landau, & Blitzer, 2007), few have examined the role 

of mTOR in learning and memory in vivo (Parsons, Gafford, & Helmstetter, 2006; 

Bekinschtein et al., 2007). The latter authors were the first to demonstrate that acquisition or 

consolidation of fear memories in the hippocampus or amygdala require mTOR activity 

(Parsons, Gafford, & Helmstetter, 2006; Bekinschtein et al., 2007). Furthermore, central 

administration of rapamycin in vivo disrupts the formation of different types of memories 

(Tischmeyer et al., 2003; Parsons, Gafford, & Helmstetter, 2006; Dash, Orsi, & Moore, 2006; 

Schicknick et al., 2008; Sui, Wang, & Li, 2008; Belelovsky, Kaphzan, Elkobi, & Rosenblum, 

2009).  

Interestingly, it was reported that in cultured neurons and hippocampal slices from AD 

transgenic mice and in hippocampal slices from wt mice, exposed to exogenous Aβ1-42, the 

mTOR signalling pathway is inhibited (Ma et al., 2010). The mTOR dysregulation correlates 

with impairment in synaptic plasticity. On the contrary, upregulation of mTOR signalling by 

both pharmacological and genetic methods prevents Aβ-induced synaptic impairment, 

indicating that dysregulation of the mTOR pathway could play a role in the synaptic 

dysfunction that characterizes AD (Ma et al., 2010). As mentioned above, the effects of ACh 

on learning and memory in the hippocampus appear to be mediated mainly by mAChRs 

(Izquierdo et al., 1998b; Barros, Pereira, Medina, & Izquierdo, 2002; Giovannini et al., 

2005), although there is evidence indicating that nAChRs have an important modulatory role 

(Decker, Brioni, Bannon, & Arneric, 1995; Marti, Ramirez, Dos Reis, & Izquierdo, 2004; 

Mitsushima, Sano, & Takahashi, 2013). Some years ago, it was demonstrated (Feig & 

Lipton, 1993) that activation of mAChRs
 
stimulates new protein

 
synthesis in hippocampal 

CA1 dendrites. Since then little progress has been made in understanding the
 
role of local 

protein synthesis in mAChR-dependent synaptic
 
plasticity. Recent results that demonstrated 

that the mTOR pathway is downstream of mAChRs and nAChRs (Zheng, Ritzenthaler, 

Roman, & Han, 2007;Slack & Blusztajn, 2008), link the cholinergic system to mTOR 

activation and to local protein synthesis via multiple MAPK- and/or PKC-dependent 

mechanisms. Specifically, M2 receptors utilize a MAPK-dependent mechanism to activate 

this pathway, whereas M3 receptors utilize either MAPK dependent or independent 

mechanisms, depending on cellular context (Slack & Blusztajn, 2008). Furthermore, in a 
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recent paper the authors demonstrate a fine regulation of mTOR and p70S6K by the 

muscarinic M4 receptor in PC12 cells (Chan, Wu, & Wong, 2009). 

In a recent study from our laboratory, rapamycin (injected ICV) was used as a 

pharmacological tool to dissect the intracellular translational machinery activated by 

upstream signals in the acquisition and retrieval of an IA memory (Lana et al., 2013). We 

showed that mTOR and its downstream effector p70S6K are massively activated in most of 

CA1 pyramidal neurons at early times after acquisition of an IA memory (Lana et al., 2013). 

A fairly rapid and transient inactivation of mTORC1 and, consequently, of p70S6K by 

rapamycin impairs formation of LTM with no effect on STM, demonstrating that mTORC1 

activation is necessary for LTM. These data are consistent with those reported by Hoeffer 

who demonstrated that rapamycin disrupts fear associated LTM formation 24 h, but not 3 h, 

after acquisition (Hoeffer et al., 2008).  

 An intriguing result (Lana et al., 2013) is the observation that 1 h after administration 

of the mAChR antagonist scopolamine, activation of mTOR and p70S6K is increased. 

Presynaptic M2/M4 mAChRs, located on septo-hippocampal cholinergic terminals (Quirion 

et al., 1995), act as inhibitory autoreceptors (Raiteri, Leardi, & Marchi, 1984; Douglas, 

Baghdoyan, & Lydic, 2002; Zhang et al., 2002) and their blockade by scopolamine (Figure 1) 

massively increases ACh release (Scali, Vannucchi, Pepeu, & Casamenti, 1995), which, in the 

presence of the non-selective muscarinic antagonist scopolamine, only binds to postsynaptic 

nAChRs leading to activation of the mTOR pathway. The link of nAChR to the mTOR 

pathway has been demonstrated in other systems (Zheng, Ritzenthaler, Roman, & Han, 2007; 

Sun et al., 2009) and, as reported above, the involvement of nAChR to mediate ACh 

postsynaptic responses in the hippocampus is substantiated by several studies (Marti, Ramirez, 

Dos Reis, & Izquierdo, 2004; Bell, Shim, Chen, & McQuiston, 2011; Gu & Yakel, 2011). An 

alternative explanation of the increase in mTOR activation following scopolamine may be 

that the large and long-lasting increase of ACh release evoked by scopolamine (Scali, 

Vannucchi, Pepeu, & Casamenti, 1995) may in time overcome the postsynaptic antagonistic 

effect of the muscarinic competitive antagonist, with the ensuing activation of intracellular 

pathways and consequent increase of the mTOR intracellular signalling. This may trigger 

protein translation, presumably responsible for LTM formation (Bekinschtein et al., 2010). In 

a recent study (Mitsushima, Sano, & Takahashi, 2013), it was found that ACh mediates 

learning-induced strengthening at excitatory and inhibitory synapses through distinct sets of 

AChRs. Activation of mAChRs mediates the IA learning through the incorporation of 

AMPA-type glutamate receptors into hippocampal CA3-CA1 synapses. IA learning also 
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strengthens inhibitory hippocampal synapses through the activation of nAChRs but not 

mAChRs. These data reveal novel molecular and cellular mechanisms of learning-dependent 

synaptic plasticity. Thus, ACh balances the excitatory and inhibitory synaptic inputs onto 

CA1 pyramidal neurons in IA learning through the activation of distinct sets of AChRs 

(Mitsushima, Sano, & Takahashi, 2013). Therefore, ACh function on any given circuit and 

intracellular pathways may depend on the specific expression of postsynaptic mAChRs versus 

nAChRs and upon the temporal dynamics of ACh levels in the synaptic cleft.  

In Figure 1 the contribution of the cholinergic system and the downstream effectors ERK 

and mTOR in the formation of inibitory avoidance (IA) short term and long term memories 

(STM, LTM) is shown. ACh released by presynaptic terminal activates both muscarinic and 

nicotinic postsynaptic receptors (mAChRs, nAChRs). Postsynaptic mAChRs and nAChRs 

indirectly activate the intracellular pathways of ERK and mTOR, responsible, with different 

contribution, and different downstream effectors, for IA STM and LTM formation. Inhibitory 

mAChRs presynaptic receptors, blocked by muscarinic antagonists scopolamine and atropine, 

lead to massive increase of ACh release.  

As shown in Figure 1, administration of muscarinic plus nicotinic antagonists in vivo 

blocks the scopolamine-induced increase of mTOR activation 1 h after administration (Lana 

et al., 2013). However, although mTOR is activated only at a later time (4 h) after 

administration of the drugs, LTM is still maintained (Lana et al., 2013). It is therefore 

possible that activation of mTOR at later times is sufficient to activate downstream effectors 

leading to LTM formation. The apparent discrepancy between the effect of muscarinic plus 

nicotinic antagonists on LTM formation and the decreased activation of mTOR and p70S6K 

may also be explained considering that several other neurotransmitter systems (Izquierdo et 

al., 1998c; Slipczuk et al., 2009) and other intracellular signalling pathways are involved in 

IA LTM formation (Khakpai, Nasehi, Haeri-Rohani, Eidi, & Zarrindast, 2012). A further 

explanation for this apparent discrepancy may come from data that demonstrate that in some 

instances mTORC1 activity regulates only a small component of total protein synthesis 

(Yanow, Manseau, Hislop, Castellucci, & Sossin, 1998; Choo, Yoon, Kim, Roux, & Blenis, 

2008) and additional mTORC1-independent regulatory signals are required to induce memory 

since stimulation of mTORC1 probably generates a set of proteins important, but not 

sufficient for neuronal plasticity or memory (Graber, McCamphill, & Sossin, 2013).  

A further demonstration that mTOR is downstream of mAChR activation derives from in 

vitro experiments on rat hippocampal slices. Carbachol significantly increases mTOR and 

p70S6K activation in CA1 pyramidal neurons in vitro. This effect is antagonized by the 
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mAChRs antagonist scopolamine (IP) and the nAChRs antagonist mecamylamine (ICV) 

administered together before carbachol (Lana et al., 2013). 

Although at variance from data reported by some investigators (Marti, Ramirez, Dos 

Reis, & Izquierdo, 2004), these results (Lana et al., 2013) support the idea that scopolamine 

predominantly affects STM processes (Givens & Olton, 1995;Stanhope, McLenachan, & 

Dourish, 1995; Savage, Faust, Lambert, & Moerschbaecher, 1996;Estape & Steckler, 2002). 

These data are in accordance with data demonstrating that blockade of mAChRs by 

scopolamine given IP to animals is followed by an impairment of working memory and the 

disruption of recently acquired tasks, resembling the impairment of recent memory in 

humans, with no effect on spatial reference memory (Bartolini, Risaliti, & Pepeu, 1992) or 

maze performance in overtrained animals (Pazzagli & Pepeu, 1964). 

A further refinement of the effect of mTOR activation on protein translation may come 

from the effects of downstream effectors of mTORC1, such as 4E-BP1, on protein translation. 

These effects are not limited simply to switching „off ‟ or „on‟ protein synthesis; they can also 

alter the range and the type of nascent proteins by mediating a switch between cap-dependent 

and cap-independent translation (Bove, Martinez-Vicente, & Vila, 2011). 

Finally, recent reports indicate that LTM deficits can be associated with hyperactivation 

of the mTOR signalling pathway and an imbalance in protein synthesis (Bolduc, Bell, Cox, 

Broadie, & Tully, 2008). Puighermanal et al (2009) demonstrated that activation of the 

Cannabinoid receptor type 1 in the mouse hippocampus in vivo modulates the mTOR 

pathway, activating p70S6K and increasing protein translation. Contrary to what may be 

expected, in this case, an increase in protein translation seems to be responsible for the 

memory impairments caused by cannabinoid consumption (Puighermanal et al., 2009). In the 

same direction lead the findings showing that, although basal mTOR activity seems to be 

necessary for memory consolidation, an increase in mTOR signalling can disrupt memory 

processing. In patients with tuberous sclerosis and in animal models of this genetic disease, 

mutations that cause a reduction in Tuberous Sclerosis Complex1–Tuberous Sclerosis 

Complex2 activation and an increase in mTORC1 activity are associated with memory 

deficits (Ehninger et al., 2008).  

 

Interplay between ACh and the ERK and mTOR pathways in IA memory encoding  

A mechanistic model that may help explaining the integrated role of cholinergic 

activation and the downstream effectors ERK and mTOR in the formation of hippocampal 

inhibitory avoidance short term and long term memories is shown in Figure 1. The 
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cholinergic septo-hippocampal pathway is activated during acquisition of an IA memory 

(Giovannini et al., 2005) and ACh, released by presynaptic terminals, impinges on and 

activates both muscarinic and nicotinic postsynaptic receptors. Postsynaptic mAChRs 

indirectly activate the intracellular pathways of ERK and mTOR (dotted arrows), responsible, 

with different contributions and different downstream effectors, for IA STM and LTM 

formation (Giovannini et al., 2005; Lana et al., 2013). Inhibitory muscarinic presynaptic 

receptors, blocked by muscarinic antagonists, lead to massive increase of ACh release (Scali 

et al., 1995) that impinges on postsynaptic nAChRs, not blocked by muscarinic antagonists. 

Activation of postsynaptic nAChRs indirectly leads to activation of mTOR and formation of 

the mTORC1 complex that increases, through p70S6K activation, local protein synthesis that 

is necessary for IA LTM memory (Lana et al., 2013). A crosstalk between ERK and mTOR at 

different levels of the signalling flow is shown. Indeed, the mitogen-activated protein kinases 

have also been shown to regulate mTORC1. ERK was found to phosphorylate and inhibit the 

function of TSC2, albeit through different mechanisms and at different phosphorylation sites 

(Corradetti & Guan, 2006). For instance, a recent study (Tsokas, Ma, Iyengar, Landau, & 

Blitzer, 2007) showed an interesting interplay between ERK and mTOR pathways at CA3–

CA1 synapses: ERK is required for the high frequency stimulation-induced activation of the 

mTOR pathway in the hippocampus. Further studies demonstrate a complex interplay among 

the cholinergic system, ERK and mTOR. For instance, mTOR is known to phosphorylate 

p70S6K at the site Thr389, while ERK is able to phosphorylate p70S6K at the site 

Thr421/Ser424 (Lafay-Chebassier et al., 2006). It was shown that the mAChRs agonist 

oxotremorine given IP induces phosphorylation of p70S6K at Thr389, which is not dependent 

upon activation of mTOR but possibly upon the ERK pathway activation (Deguil et al., 

2008). Indeed, in a previous study, it was shown that mTOR could phosphorylate p70S6K at 

Thr421/Ser424, a specific site of ERK and inversely, ERK could phosphorylate p70S6K at 

Thr389 controlled by mTOR signalling (Lafay-Chebassier et al., 2006), making the story even 

more complex. It is also currently accepted that ERK and mTORC1 synergistically regulate 

Eukaryotic translation initiation factor 4E (eIF4E) and translation initiation in LTM and 

synaptic plasticity (Panja et al., 2009; Gal-Ben-Ari & Rosenblum, 2012).  

It seems therefore that independent/concurrent/synergistic recruitment and activation of 

ERK and mTOR signalling cascades may be a conserved mechanism for the precise 

regulation of translation downstream of various neuromodulatory receptors.  

 

5. Conclusions 
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The fascinating question on how and where memories are formed in our brain is the focus of 

intense investigations, and although a few answers are now available, we are still far from 

having a complete understanding of the process. In this review we summarized the present 

knowledge on the complex involvement of ACh, ERK and mTOR in the hippocampal 

mechanisms of IA memory. However, it must be kept in mind that other neurotransmitter 

systems and other signalling pathways are involved in the formation of IA memories. It 

should also be pointed out that the hippocampal structure is more complex than originally 

thought. Indeed, it has been demonstrated that the dorsal hippocampus has different functions 

from the ventral hippocampus in memory formation (Kheirbek et al., 2013). Furthermore, it is 

still a matter of investigation whether STM and LTM proceed in series, or in parallel. It has 

been described in rodent models that de novo protein synthesis is required to stabilize a STM 

into a LTM (Abel & Lattal, 2001), whereas others (Marti, Ramirez, Dos Reis, & Izquierdo, 

2004) claim that STM and LTM are not processed by separate mechanisms. Nonetheless, the 

present view is that different molecular mechanisms may be needed to form STM and LTM 

(Lana et al., 2013), whereas some mechanisms are involved in both (Izquierdo et al., 1998a). 

Indeed, the demonstration that STM and LTM, acquired in a one-trial IA task, are 

independent phenomena, is given by the findings that pharmacological treatments block STM 

independently from LTM (Izquierdo et al., 1998a; Izquierdo, Medina, Vianna, Izquierdo, & 

Barros, 1999; Vianna, Izquierdo, Barros, Medina, & Izquierdo, 1999; Vianna et al., 2000; 

Izquierdo et al., 2002; Lana et al., 2013). Finally, with Tranel and Damasio (1995) we could 

conclude that “we have barely begun to unravel some of the mysteries of how our brains sub 

serve memory”. 

 

5. Legend to Figures 

Figure 1. A schematic overview, based upon the literature and our own published work, 

of the intracellular pathways activated by mAChR and nAChR leading to STM and LTM IA 

encoding. In this scheme are also indicated the sites of action of the principal pharmacological 

tools used in the researches reviewed in this paper. Direct activation is represented by 

continuous arrows, indirect activation by dotted arrows. Black arrows indicate activation, T-

shaped arrows indicate inhibition; open arrow indicates ACh release. IA: inhibitory avoidance  

STM: short term memory; LTM: long term memory. 
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Figure 1



Table 1. Effect of systemic or local administration of scopolamine on IA in rats and mice 

Inhibitory 

Avoidance 

Species Scopolamine 

Effective Doses  

Route and time of administration Effect References 

Step-through  Wistar Rats  8.0 mg, 16 mg IP, posttraining Impaired Recall at 24 h (1) 

Step-through  Wistar Rats  0.2 mg IP, 30 min before training Impaired Recall at 24 h (2) 

Step-through  Wistar Rats 1.0 mg IP, 20 min before training Impaired Recall at 24 h (3) 

Step-through Wistar Rats  8.0 mg, 12 mg IP, 5 min before training, Low footshock intensity Impaired Recall (4) 

   IP, both 5 min before training and 5 min before 

recall, High footshok intensity 

Recall not changed (state-

dependency) 

 

Step-through Wistar Rats  8.0 mg IP, 5 min after training, Low footshock intensity Impaired Recall at 24 h (5) 

Step-through Mice (Std-ddY) 1.0 mg, 2.0 mg IP, 30 min before training Impaired Recall at 24 h (6) 

   IP, immediately after training Recall at 24not changed  

   IP, 30 min before recall trial Recall at 24not changed  

Step through Wistar Rats 0.2  mg SC, 30 min before training Impaired recall (24h) (7) 

Step down Wistar Rats 1.5 mg IP, 30 min before training Impaired recall (1 h) (8) 

  1.5 mg IP, 30 min before recall No effect (1 h)  

  3 µg in 1µl  Intrahippocampus (bilaterally) Impaired recall (1 h)  

Step-down Mice (Std-ddY) 0.5 mg, 1.0 mg IP, 30 min before training Impaired Recall at 24 h (6) 

  2.0 mg IP, immediately after training Recall at 24not changed  

   IP, 30 min before trecall trial Recall at 24not changed  

Step-through Mice (NMRI) 0.3 mg, 3.0 mg IP, 5 min before training Impaired Recall at 24 h (9) 

   IP, immediately after training Recall at 24 h not changed  

  30 mg IP, immediately after training Impaired Recall at 24 h  

Step down Wistar Rats 0.095 mg in 3 

μl/side 

Intrahippocampus (bilaterally) Impaired Recall 5, 7 or 10 days 

but not 1 or 3 days after training 

(10) 

Step through Wistar Rats 5-20 µg/rat ICV, after training Impaired Recall at 24 h (11) 

 

References: (1) Roldán, Bolaños-Badillo, González-Sánchez, Quirarte, & Prado-Alcalá (1997); (2) Vannucchi, Scali, Kopf, Pepeu, & Casamenti 

(1997); (3) Ohno, & Watanabe (1996); (4) Quirarte et al. (1994); (5) Cruz-Morales, Duran-Arevalo, Diaz Del Guante, Quirarte, & Prado-Alcalá, 

(1992); (6) Nomura, Nishiyama, Saito, & Matsuki (1994); (7) Giovannini, Bartolini, Bacciottini, Greco, & Blandina (1999); (8) Giovannini et al., 

(2005); (9) Rush (1988); (10) Wiener & Messer (1973); (11) Eidi, Zarrindast, Eidi, Oryan, & Parivar (2003) 
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