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Abstract

The aim of this dissertation is to present novel approaches to estimate causal effects

of interventions in time series settings under the Rubin Causal Model (RCM), which is

a framework to define causal estimands, discuss assumptions and develop methods for

the computation of causal effects. The dissertation is structured in three main sections

describing different time series settings: (i) a panel situation where multiple time series are

subject to a simultaneous intervention; (ii) a panel study where the time series interact

with one another; (iii) a multi-intervention setting with a single time series subject to

several interventions. Each section is connected to a research paper: (i) and (iii) are joint

works with Fabrizio Cipollini (University of Florence) and Fabrizia Mealli (University of

Florence); (ii) is a joint work with Iavor Bojinov (Harvard Business School) and it was

developed during my visiting period at Harvard University.
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1 Introduction & relevant literature

One of the first lessons learned by students in any undergraduate course in Statistics is that

“association is not causation” or, as a teacher with a good sense of humor might say “ice-cream

sales do not cause summer droughts and the weather forecasters are definitely not responsible

for the approaching hurricane”. Clearly, some relations are easier to understand than others;

for example, a good statistician would not include ice-cream sales in a predictive model for

droughts. However, what if we are asked to evaluate whether a promotion was successful in

increasing daily sales? How can we detect and measure the effect of market news on the next

two-week returns? These and other similar causal questions involving a temporal component

are typically more challenging, due to added complications arising from serial dependence and

seasonality.

The aim of this research is to provide an understanding of the methodologies that can be

adopted to estimate causal effects of interventions (e.g., promotions or market news) in some

common time series settings: i) a panel situation where multiple time series are subject to a

simultaneous intervention; ii) a slightly more complex case where the time series show inter-

actions with one another; iii) a multi-intervention setting with a single time series subject to

several interventions. This research aims at providing both methodological and empirical con-

tributions. In particular, we develop two novel approaches, C-ARIMA and CausalMBSTS, for

the estimation of causal effects in the first two settings; we then extend C-ARIMA to uncover

causal effects when multiple interventions take place. Furthermore, we illustrate the benefits

of the proposed approaches by performing empirical analyses involving real sales data from

a supermarket chain in Italy and, in our last application, Bitcoin volatility. In each of the

three settings, we introduce specific causal estimands, framing them in a common theoretical

background based on potential outcomes.

The potential outcomes approach to causal inference is a framework that allows to define the

causal effect of a treatment (or “intervention”) as a contrast of potential outcomes, to discuss

assumptions enabling to identify such causal effects from available data, as well as to develop

methods for estimating causal effects under these assumptions (Rubin, 1974, 1975, 1978; Imbens

and Rubin, 2015). Following Holland (1986) we refer to this framework as the Rubin Causal

Model (RCM). Under the RCM, the causal effect of a treatment is defined as a contrast of

potential outcomes, only one of which will be observed while the others will be missing and

become counterfactuals once the treatment is assigned.

Having its roots in the context of randomized experiments, several methods have been developed

to define and estimate causal effects under the RCM for network data structures (VanderWeele,

2010; Forastiere et al., 2020; Noirjean et al., 2020), time series (Robins, 1986; Robins et al., 1999;

Bojinov and Shephard, 2019) and panel data (Rambachan and Shephard, 2019; Bojinov et al.,

2020). Unlike randomized experiments, however, in an observational study the researcher has no
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knowledge of, or no control on, the assignment mechanism, i.e., the process that determines the

units receiving treatment and those under control. Thus, observational studies pose additional

challenges to the definition and the estimation of causal effects, especially in a time series

setting.

A different approach extensively used in the econometric literature to assess the impact of

shocks occurring on a time series is intervention analysis (Box and Tiao, 1975, 1976). The

effect is generally estimated by comparing observed data post-intervention with forecasts based

on pre-intervention data; if the forecast deviates from the observed time series, an intervention

component is included in the pre-intervention model, which is then re-estimated on the full

series. In this way, however, rather than a properly defined “causal” effect, the estimated

coefficient of the intervention variable describes an association between the outcome and the

intervention component. Indeed, the definition of the effect and its estimation typically overlap,

making this method prone to errors. Despite this drawback, intervention analysis is still among

the most used methodologies to assess the effect of an intervention on a time series.

Closing the gap between causal inference under the RCM and intervention analysis, in Section 3

we propose the “Causal-ARIMA” (C-ARIMA) approach to estimate the effect of interventions

in observational time series settings under the RCM. Laying its foundation in the potential

outcomes framework, the proposed approach can successfully be used to estimate properly

defined causal effects, whilst making use of ARIMA-type models that are so familiar to the

intervention analysis literature. Our work is motivated by an analysis of the effectiveness

of a new price policy introduced by an Italian supermarket chain. In particular, the main

goal is to assess the effect of a permanent price reduction on a selected subset of store brands.

Furthermore, since the supermarket chain sells competitor brands with the same characteristics

as their store brand equivalent, to assess the overall effectiveness of the new policy we also

investigate its impact on those products.

We need however point out that the C-ARIMA approach is suitable to assess the causal effect

of an intervention only on a single time series at a time; hence, it may suffer from some

limitations when the time series interact with one another. For example, in our application

store and competitor brands are interconnected; thus, an intervention applied to a store brand

is likely to produce an effect on its direct competitor. In the causal inference literature this

situation is known as “interference”.

Therefore, in Section 4 we present “CausalMBSTS”, a novel approach to estimate the effects

of interventions in panel settings with interference. Extending the univariate version of the

popular method introduced by Brodersen et al. (2015), the proposed approach employ Mul-

tivariate Bayesian Structural Time Series (MBSTS) models to build a counterfactual from

pre-intervention data. In the presence of cross-unit interactions, the proposed approach allows

us to model the interference between the units by explicitly modeling their dependence struc-
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ture. Furthermore, MBSTS models are flexible and can successfully estimate the effect that an

intervention produces on each unit (the so-called “heterogeneous effect”).

Finally, in the last part of the dissertation we consider the situation where multiple interventions

take place on the same time series. To estimate the heterogeneous effect of each intervention in

such settings, in Section 5 we present an extension of the C-ARIMA approach. The motivating

example is the estimation of the impact produced by the introduction of the first two regulated

Bitcoin futures on Bitcoin volatility.

Our work bridges together several fields of research including Causal Inference, Econometrics

and Finance. For each of them we now review the contributions that are closely related to our

own.

The RCM was introduced by Rubin in a series of papers (Rubin, 1974, 1975, 1978, 2005;

Imbens and Rubin, 2015). This approach defines the effect of an intervention by comparing

the potential outcomes arising under different treatment allocations. Among these outcomes,

only one is observed whereas all the others are “missing”, meaning that, once the treatment

is assigned, they become counterfactual outcomes. For example, in a study investigating the

effectiveness of a new statin, the cholesterol level of a patient assigned to treatment would be

the observed outcome, whereas the level that the same patient would have had under a placebo

drug is the counterfactual outcome. In particular, for a binary treatment (as in the case of the

new statin and the placebo drug) there is only one counterfactual outcome.

This approach has recently been extended to a time series setting where an intervention is

randomly allocated at any point in time (Bojinov and Shephard, 2019; Bojinov et al., 2020;

Rambachan and Shephard, 2019). However, unlike randomized experiments where the ran-

domization contributes to eliminate the differences between treated and control units, in an

observational study the researcher has no knowledge of, or no control on, the assignment mech-

anism, i.e., the process that determines the units receiving treatment and those under control.

Thus, such designs pose additional challenges to the definition and the estimation of causal

effects. Furthermore, in a panel setting (multiple units observed over time) the temporal com-

ponent brings added complications due to serial dependence and seasonality.

A method that has been extensively used to evaluate the effect of interventions in the absence

of experimental data is the Difference-in-Difference (DiD) estimator (see e.g.,Card and Krueger

(1993); Meyer et al. (1995); Garvey and Hanka (1999); Angrist and Pischke (2008); Anger et al.

(2011)). In its simplest formulation, this method requires to observe a treated and a control

group at a single point in time before and after the intervention; the effect is then estimated by

contrasting the change in the average outcome for the treated group with that of the control

group. However, by focusing on a few time points, DiD is not able to also exploit information

on the temporal dynamics. Furthermore, it relies on the often troubled assumption that, in

the absence of treatment, the outcomes of the treated and control units would have followed
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parallel paths (Abadie, 2005; Ryan et al., 2015; O’Neill et al., 2016).

Another popular method to infer the causal effect of an intervention from panel data under the

RCM is constructing a synthetic control from a set of time series that are not directly impacted

by the treatment and have pre-treatment variables matching those of the treated unit (Abadie

and Gardeazabal, 2003; Abadie et al., 2010, 2015). For example, in a study investigating the

impact of a new legislation to reduce pollution levels, a suitable set of control series could be

the evolution of carbon emissions in neighboring states that did not activate the new regulation

but with the same pre-intervention characteristics as the treated state (e.g., population density,

number of industries). Unlike DiD, synthetic control methods measure the effect at each point

in time after the intervention and rely on the less stringent assumption that the expected out-

comes of the treated and control groups are the same in the absence of treatment, conditionally

on past outcomes and covariates. Therefore, since their introduction, synthetic control methods

have been successfully applied in a wide range of research areas, including healthcare (Kreif

et al., 2016; Papadogeorgou et al., 2018; Viviano and Bradic, 2019), economics (Billmeier and

Nannicini, 2013; Abadie et al., 2015; Dube and Zipperer, 2015; Gobillon and Magnac, 2016;

Ben-Michael et al., 2018), marketing and online advertising (Brodersen et al., 2015; Li, 2019).

Nevertheless, both the DiD estimator and the synthetic control method have one main draw-

back: in the impossibility to observe at least one suitable control unit none of them can be

applied.

A recent approach overcoming this limitation is proposed by Brodersen et al. (2015). Their

methodology share several features with DiD and synthetic control methods but, instead of

using control units or external characteristics, it only requires to learn the dynamics of the

treated unit prior to the intervention. In other words, it builds a synthetic control by forecasting

the counterfactual series in the absence of intervention based on a model estimated on the pre-

intervention data. In particular, the authors employ Bayesian Structural Time Series models

(West and Harrison, 2006; Harvey, 1989) since they allow to add the components (e.g., trend,

seasonality, cycle) that better describe the characteristics of the time series, whilst incorporating

prior knowledge in the estimation process. Borrowing the name from the associated R package,

from now on we refer to their method as “CausalImpact”.

Our work is closely related to synthetic control methods and to the methodology proposed by

Brodersen et al. (2015). In the same vein as CausalImpact, we propose C-ARIMA as a novel

approach to build a synthetic control for a time series subject to an intervention by learning

its time dynamics in the pre-intervention period and then forecasting the series in the absence

of intervention. Unlike CausalImpact, however, our methodology is based on ARIMA models

and thus can be used as an alternative by researchers and practitioners in a wide range of fields

that are not familiar to (or are not willing to adopt) Bayesian inference.

Synthetic control methods often assume that the statistical units do not interact with one
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another; the opposite situation, called “interference”, occurs when the treatment assigned to

a unit affects the potential outcomes of other units. Even though the absence of interference

assumption is a fundamental one under the RCM (Cox, 1958; Rubin, 1980), in many empirical

applications it is violated (e.g., Hudgens and Halloran (2008), Tchetgen and VanderWeele

(2012), Basse et al. (2019)). For example, in a study on the effectiveness of a vaccine, the

treatment clearly affects the probability of the untreated population of getting the infection.

However, if the patients receiving the vaccine and those taking the placebo drug live in two

remote cities, the researcher can still compare the incidence of the disease between them.

Indeed, whether the patients are treated or not affects the other citizens but has no impact

across the two cities. This assumption, known as “partial interference” (Sobel, 2006), has been

extensively studied in the cross-sectional literature (Rosenbaum, 2007; Hudgens and Halloran,

2008; Forastiere et al., 2020). Conversely, in a panel setting with multiple interfering units

observed over time it has received relatively less attention (Cao and Dowd, 2019; Grossi et al.,

2020).

We propose to address the interference issue by deriving the multivariate version of CausalImpact,

which we denote as “CausalMBSTS”. Indeed, if we are able to group the units so that inter-

ference occurs within the group but not across them, we can rely on the partial interference

assumption and estimate a multivariate model on each group. This allows to take into account

the interference between units in the same group by explicitly modeling their dependence struc-

ture. Like CausalImpact and C-ARIMA, our proposed approach can be successfully employed

to infer the heterogeneous causal effect on each unit in the group by constructing a synthetic

control based on the dynamics learned in the pre-intervention period.

A different approach to uncover causal effects in time series settings is “Granger-Sims causality”

(Granger, 1969; Sims, 1972). Formally, a variable X Granger-causes another variable Y if the

prediction of Y based on its past values and past values of X is better than the prediction

based on past values of Y alone. Similarly, Sims advocates that if causality runs from X to Y

only, future values of X should have zero coefficients when Y is regressed on past and future

values of X. Granger causality implies Sims causality while the other way around is generally

not true (Sims, 1972; Chamberlain, 1982); however, starting from general definitions stated

in terms of conditional distributions rather than linear predictors, Chamberlain (1982) shows

that a stronger Sims causality conditioning also on past values of Y is equivalent to Granger

causality. Thus, they are commonly denoted with the single name “Granger-Sims causality”.

From an empirical perspective, X and Y are often continuous economic variables; hence, as-

sessing the presence of Granger-Sims causality amounts to testing whether the coefficients of

future values of X in the regression of Y (and those of future values of Y in the regression of

X) are statistically different from zero.

It should be clear by now that there is a fundamental difference between the RCM and Granger-

9



Sims approach: Granger-Sims view causality in terms of the predictive ability of a variable X

toward Y and they also agree that a cause must precede any effect of it; conversely, under the

RCM, X takes the form of a treatment (often a binary variable) and the effect measures what

happens on Y when we switch the treatment from X to X ′.

Nonetheless, some connections exist between the two approaches. Indeed, a fundamental as-

sumption allowing the identification of causal effects in time series settings under the RCM is

that the treatment is non-anticipating, i.e., the present assignment to treatment is not influ-

enced by future outcomes, conditioning on past treatments. In Granger-Sims terminology, this

amounts to saying that future outcomes do not Granger-cause the present treatment (Bojinov

and Shephard, 2019; Rambachan and Shephard, 2019). Furthermore, Rambachan and Shep-

hard (2019) establish a connection between their potential outcome time series framework and

several common methods in econometrics, such as local projections and vector autoregressions.

More precisely, they clarify the assumptions that are needed for those methods to have a causal

content in the potential outcome framework.

Nonetheless, without the additional assumption that the treatment is non-anticipating, Granger-

Sims causality does not imply causality under the RCM (Chamberlain, 1982). Moreover, in his

overview of causation and causal inference, Holland (1986) points out that the result arising

from an analysis based on Granger-Sims causality is temporary, since when new information is

gathered and introduced in the predictive model, what was a causal effect might become a “spu-

rious” association. Instead, the RCM is not subject to this drawback, since the identification

and estimation steps are separated.

Another approach that has been extensively used in the econometric literature is intervention

analysis, introduced by Box and Tiao (1975, 1976) to estimate the effect of an intervention on

a time series. Since then, it has successfully been applied to uncover the effect of interven-

tions in many fields, including economics (Larcker et al., 1980; Balke and Fomby, 1994), social

science (Bhattacharyya and Layton, 1979; Murry et al., 1993) and terrorism (Cauley and Im,

1988; Enders and Sandler, 1993). Intuitively, the effect is estimated by comparing observed

data post-intervention with forecasts based on pre-intervention data; if the forecast deviates

from the observed time series, the pre-intervention model is modified to include an intervention

component, whose structure is modeled based on the pattern followed by the resulting devi-

ation (e.g., level shift, slope change and similar). Under this approach, the coefficient of the

intervention component gives the size of the “effect”.

However, rather than a properly defined “causal” effect, such coefficient describes the asso-

ciation (sometimes spurious) between the response variable and the intervention component.

For example, while investigating the impact of a new legislation to reduce carbon emissions, a

positive association between the intervention component and the incidence of lung cancer does

not clearly indicate that the new law caused lung cancer; conversely, this result suggests that
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some confounders, such as record levels of air pollution, have not been included in the analysis.

Hence, asserting that the uncovered effect is due to a specific intervention can only be done

after an attentive causal analysis, which takes into account all possible confounders and lay out

the assumptions underneath the identification and the attribution of causal effects.

A variant of this approach consists in testing the estimated deviation between the observed

time series post-intervention with the forecasted series based on pre-intervention data (Box

and Tiao, 1976). Even in this case, without a thorough discussion of the assumptions, the

uncovered effect can not be attributed to the intervention.

Our work is closely related to intervention analysis, especially to the variant proposed in Box and

Tiao (1976). Nonetheless, C-ARIMA overcomes the theoretical underpinnings of intervention

analysis regarding the identification of causal effects, since it is based on a causal framework

developed under the RCM. In other words, after an empirical analysis with C-ARIMA we are

able to state that the uncovered effect is due to the intervention under the assumptions that

we have explicitly stated.

In our last empirical analysis we extend C-ARIMA to a time series setting where multiple

interventions occur. In particular, we want to determine whether the introduction of Bitcoin

futures has affected the volatility of Bitcoin prices. The first two regulated Bitcoin futures were

launched by the Chigago Board of Exchange (CBOE) and the Chicago Mercantile Exchange

(CME) on, respectively, December 10 and December 18, 2017. Before that time, Bitcoin deriva-

tives were only traded over-the-counter on unregulated exchanges; since their introduction in

2017, there has been a growing number of studies seeking to investigate the impact of regulated

futures on Bitcoin volatility. Focusing on the first contract introduced by CBOE, Shi (2017)

finds a significant decrease in the spot volatility, whereas later studies including CME future

find that Bitcoin volatility increased right after the launch of the new contract (Kim et al.,

2020) as well as around its announcement date (Corbet et al., 2018). Interestingly, the peak

reached by Bitcoin price on December 16, 2017 matched the launch of the CME future and

prices have experienced a sharp decline since then. This suggests that the newly introduced

derivative instruments allowed the entrance of “pessimistic” traders willing to bet for a price

drop but unable to do so until the creation of a derivative market (Hale et al., 2018); the

downward pressure generated by the new traders might contribute to explain the short term

increase in Bitcoin price volatility.

Albeit there are relatively few studies on the effect of Bitcoin futures, the impact of derivatives

trading on the underlying spot volatility has been thoroughly investigated for instruments such

as stocks and financial indexes. In particular, there are two conflicting theories about the ef-

fect of futures on the underlying spot markets and empirical evidence is mixed: some studies

warn that speculative behaviors and information asymmetries brought by futures markets may

increase volatility and jeopardize the value formation process in the spot market (Stein, 1987;
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Figlewski, 1981; Antoniou and Holmes, 1995; Harris, 1989); other studies argue that futures

trading enhances information flows and price discovery, thereby reducing volatility and stabi-

lizing the underlying spot market prices (Danthine, 1978; Moriarty and Tosini, 1985; Edwards,

1988; Bessembinder and Seguin, 1992; Antoniou et al., 1998; Jochum and Kodres, 1998). Re-

cent works on individual stock futures (McKenzie et al., 2001) and emerging economies (Baklaci

and Tutek, 2006; Chen et al., 2013; Bohl et al., 2015) support the idea that futures trading

acts as a stabilizing force. Among the aforementioned studies, only Kim et al. (2020) employ a

causal approach — Difference-in-Difference (DiD)— in the attempt to attribute the uncovered

effect to the introduction of futures. Nonetheless, as detailed before, DiD is impractical in all

situations where, as in our case, there is no reliable control group available or the parallel trend

assumption is troubled. We instead generalize the C-ARIMA approach to a multi-intervention

setting: unlike intervention analysis, this method enables the computation of properly defined

causal effects and, in contrast to DiD, it allows to estimate the effects when suitable controls

are unavailable.

The reminder of the dissertation is organized as follows: Section 2 presents a common theoretical

background; Section 3 illustrates the proposed C-ARIMA approach to estimate the causal effect

of an intervention on multiple non-interfering time series; Section 4 describes the CausalMBSTS

approach to infer the effect of an intervention on multiple interfering series; Section 5 extends

C-ARIMA to a multi-intervention setting; Section 6 concludes.

2 Common theoretical background

2.1 Assumptions

For a generic statistical unit, let Wt ∈ W denote the treatment assignment at time t ∈
{1, . . . , T}. Although multiple treatments are possible, in this research we focus on binary

treatments, so that Wt ∈ {0, 1} where Wt = 1 indicates that a treatment (or “intervention”)

has taken place and Wt = 0 denotes control, i.e., absence of treatment or an alternative form of

treatment. Then, W1:T = (W1, . . . ,WT ) is the sequence of treatments received by the statistical

unit over time.

In a study where N statistical units are present, let Wi,t ∈ {0, 1} be the treatment status of

unit i at time t, with i ∈ {1, . . . , N}. Then, W1:N,1:T = (W1,1:T , . . . ,WN,1:T ) is the treatment

assigned to all units over time, sometimes denoted as “treatment panel” (Bojinov et al., 2020).

A realization of Wi,t is denoted with the lower case letter wi,t.

Now assume that the N statistical units can be divided in J equally sized groups with different

characteristics and let d denote the group size.1 Thus, W
(d)
j,t ∈ {0, 1} with j ∈ {1, . . . , J} is the

1By denoting with dj the size of the j-th group, our causal framework can easily accommodate groups of
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treatment assignment of the d-th unit inside group j at time t; Wj,t = (W
(1)
j,t , . . . ,W

(d)
j,t ) ∈ {0, 1}d

indicates the treatment allocation inside the group j at time t and, finally, the treatment panel

indicating the assignments of all groups throughout the study is W1:J,1:T = (W1,1:T , . . . ,WJ,1:T ).

For example, in a simple study design where the units are grouped in pairs, the treatment

allocation inside a generic group j at time t is Wj,t = (W
(1)
j,t ,W

(2)
j,t ). Realization of random

variables are indicated with the lower case letter, i.e., wj,t is a realization of Wj,t.

Notice that the above notation fully describes the three empirical applications included in the

dissertation. In Section 3 we deal with multiple units (i.e., the products sold by the supermarket

chain) therefore we use Wi,t to indicate their treatment assignment. In Section 4 we handle the

interference issue by dividing the units in pairs, each assigned to one of four possible treatments

Wj,t: no permanent price reduction Wj,t = (0; 0), both receive a permanent price reduction

Wj,t = (1; 1), store brand receive a permanent price reduction only Wj,t = (1; 0), or competitor

brand receive a permanent reduction only Wj,t = (0; 1). Finally, in Section 5 we have a single

statistical unit (Bitcoin cryptocurrency) and thus we can use the simplified notation Wt for the

treatment assignment.2

In principle, the treatment can be administered at any point in time, as in the case of a

randomized experiment where the execution of market orders is repeatedly assigned to one

of two alternative methods (Bojinov and Shephard, 2019). However, it is not uncommon to

observe a single persistent intervention, as in the case of a new law introduced by the government

(Papadogeorgou et al., 2018) or an online advertising campaign run for several weeks in a row

(Brodersen et al., 2015).

Assumption 1 (Single persistent intervention) We say group j received a single inter-

vention, if there exists a t∗j ∈ {1, . . . , T} such that for all t ≤ t∗j we have Wj,t = (0, . . . , 0) and

for all t, t′ > t∗j we have Wj,t = Wj,t′. If all groups receive a single intervention, then we say

the study is single intervention panel study. If the intervention happens simultaneously on all

groups, that is, t∗j = t∗j′ = t∗ we say the study is a simultaneous intervention panel study.

In general, the groups may receive the intervention at different times, that is, t∗j 6= t∗j′ for

all j, j′ ∈ {1, . . . , J}, a situation commonly referred to as “staggered adoption” (Athey and

Imbens, 2018; Ben-Michael et al., 2019). Instead, in our empirical applications the treatments

are assigned simultaneously and thus Assumption 1 means that there is a single treatment

administered at time t∗ producing its effects on all groups starting from time t∗ + 1.

Notice that Assumption 1 can be stated even in a setting where the N units form a single

group; in this case the notation simplifies to Wi,t = Wi,t′ for all i ∈ {1, . . . , N} and, in the

special situation N = 1 we write Wt = Wt′ .

different sizes.
2Notice that the subscripts of the treatment indicator Wi,t denote the unit of analysis and the time of the

treatment. Thus, when the units are grouped according to their characteristics, the notation Wj,t makes clear
that the unit of analysis is the entire group.
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The same persistent intervention may occur several times during the analysis period. For

example, supermarket managers often schedule temporary promotions on selected goods at

regular intervals during the year; every time this happens, the price is lowered for some weeks

and then it bounces back at the previous level. Furthermore, a persistent intervention may

occur even while the previous one is still in place. In financial markets, for instance, future

contracts have pre-specified expiration dates; thus, it may happen that a future is issued before

a previous one expires on the same underlying asset.

Assumption 2 (M persistent interventions) Indicating with Λ = {t1, . . . , tM} the subset

of time points at which the interventions take place, we say group j received M persistent

interventions, if for all t < t1 we have Wj,t = (0, . . . , 0) and for all t, t′ ∈ {tm, . . . , tm+1−1} we

have Wj,t = Wj,t′. If the set Λ is the same for all groups, we say this study is a simultaneous

intervention panel study.

Under Assumption 2, we allow the m-th intervention assigned at time tm to produce a contem-

poraneous effect at the same time tm. This is a convenient choice, since in the last empirical

analysis we deal with interventions that are able to produce instantaneous effects.3 Again,

Assumption 2 can be stated in a setting where the N units form a single group, in which case

the notation simplifies to Wi,t = Wi,t′ for all i ∈ {1, . . . , N}, while in the limiting case N = 1

we have Wt = Wt′ .

Those described by Assumptions 1 and 2 are special situations where a single intervention

or few persistent interventions occur. In the remainder of this section we present additional

assumptions on the potential outcomes, covariates and the assignment mechanism that should

hold irrespective of the number of treatments. Thus, they are given for a general panel setting

where the intervention may occur at any point in time. If needed, the limiting case with a

single unit can be recovered easily; then, in Section 2.2 we discuss the special cases where also

Assumptions 1 and 2 hold.

2.1.1 Potential outcomes

Whether a unit is assigned to treatment or control may impact its outcome. For example, if

the units are products subject to a promotion, a product will likely sell more under a 50% price

discount compared to a situation where it is not discounted. Under the RCM the sales under

these two alternative scenarios are known as “potential outcomes”.

3If needed, a notation in line with Assumption 1 where the intervention produces an effect starting from
time t∗ + 1 can be easily recovered by writing Wj,t = Wj,t′ for all t, t′ ∈ {tm + 1, . . . , tm+1}. We advocate
that the choice between the two notations should be based on the empirical application, namely, it depends on
whether the researcher wants to allow or exclude a contemporaneous effect.
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Typically, the potential outcomes of a unit i at time t depend the full treatment panel, i.e.

Yi,t(w1:N,1:T ) (Bojinov et al., 2020). However, in many applications we are able to restrict this

dependence structure by focusing on non-anticipating potential outcomes.

Assumption 3 (Non-anticipating potential outcomes) For all t ∈ {1, . . . , T} and all i ∈
{1, . . . , N}, for any two alternative treatment paths w1:N,t+1:T ,w

′
1:N,t+1:T the outcome of unit i

at time t is independent of future treatments

Yi,t(w1:N,1:t; w1:N,t+1:T ) = Yi,t(w1:N,1:t; w′1:N,t+1:T ).

In words, present outcomes can be function of present and past treatments but they are not

impacted by future treatment assignments.

Under Assumption 3 we can write Yi,t(w1:N,1:t) but we can further restrict the set of potential

outcomes by ruling out any form of interference between the statistical units.

Assumption 4 (Temporal no-interference) For all t ∈ {1, . . . , T} and all i ∈ {1, . . . , N},
we assume that for any w1:N,t,w

′
1:N,t such that wi,t = w′i,t,

Yi,t(w1:N,t) = Yi,t(w
′
1:N,t).

It means that the treatments assigned to the other units do not affect unit i’s potential outcomes

at the same time. This assumption, which is also known as Temporal Stable Unit Treatment

Value Assumption or TSUTVA (Bojinov and Shephard, 2019; Bojinov et al., 2020), is the time

series equivalent of the cross-sectional SUTVA (Rubin, 1974) and contributes to reduce the

number of potential outcomes. As a result, if both Assumption 3 and 4 hold we can write

Yi,t(wi,1:t), indicating that the potential outcomes of the i-th unit at time t only depend on its

treatment path up to time t.

Nevertheless, there are many applications in which the statistical units interfere with one an-

other, meaning that the treatment has an impact also on the units assigned to the control

group (Hudgens and Halloran, 2008; Tchetgen and VanderWeele, 2012; Basse et al., 2019) . In

a panel setting where multiple units are observed over time, this is the case, for example, of

a new light rail line that impacts the sales of both the shops facing the construction sites and

those located in the neighboring streets (Grossi et al., 2020); in the same vein, a promotion

on selected goods is likely to influence the sales of their direct substitutes. In such situations,

Assumption 4 is clearly violated, but we might be able to group the statistical units so that

the groups do not interfere with one another.

Assumption 5 (Partial temporal no-interference) For all t ∈ {1, . . . , T} and all j ∈
{1, . . . , J}, we assume that for any w1:J,t,w

′
1:J,t such that wj,t = w′j,t,

Yj,t(w1:J,t) = Yj,t(w
′
1:J,t).
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In words, we are ruling out any form of interference between the groups whilst allowing cross-

unit interactions within them. In the above example, we may re-define our statistical unit to

be the group formed by the discounted good and its direct substitute.

Partial interference (Sobel, 2006) has been extensively studied within the cross-sectional lit-

erature (e.g., Rosenbaum (2007), Hudgens and Halloran (2008), Forastiere et al. (2020)) and

Assumption 5 constitutes its extension to the panel setting.

2.1.2 Covariates

In many applications, the potential outcomes of a unit are likely influenced by many variables.

Including covariates in the estimation process can improve the accuracy of the estimated causal

effect or, conversely, can produce biased estimates if the covariates are influenced by the treat-

ment. Therefore, we should select a set of covariates for which the following assumption is

plausible.

Assumption 6 (Covariates-treatment independence) Let Xi,t be a vector of covariates

that are predictive of the outcome of unit i; for all t ∈ {1, . . . , T}, all i ∈ {1, . . . , N} and for any

two alternative treatment paths wi,1:t,w
′
i,1:t such covariates are not affected by the interventions

Xi,t(wi,1:t) = Xi,t(w
′
i,1:t).

As a result, we can use the known covariates values post-treatment to improve the prediction

of the outcome in the absence of intervention.

2.1.3 Assignment mechanism

A final assumption in our causal framework regards the assignment mechanism. To understand

the importance of such an assumption, consider as an example a research on a new drug where

doctors are asked to select the participants among their patients. If doctors assign to treatment

only those patients they believe have better chance to complete the treatment successfully and

without side effects, contrasting treated and controls would provide biased evidence of the true

effect of the treatment. Thus, we need to ensure that the treatment assigned to a unit only

depends on its past outcomes and covariates; in addition, it should be independent of the

treatment assigned to the other units.

Assumption 7 (Non-anticipating treatment) The assignment mechanism at time t + 1
for the i-th unit depends solely on past outcomes and past covariates.

Pr(W1:N,t+1 = w1:N,t+1 |W1:N,1:t,Y1:N,1:T (w1:N,1:T ),X1:N,1:T ) =

N∏
i=1

Pr(Wi,t+1 = wi,t+1 |Yi,1:t(wi,1:t),Xi,1:t).
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A non-anticipating treatment in a time series setting is the analogous of the unconfounded

assignment mechanism in the cross-sectional setting (Imbens and Rubin, 2015). Whilst a

classical randomized experiment is unconfounded by design, we focus on observational studies

where we have no control on the assignment mechanism. Thus, the non-anticipating treatment

assumption is essential to ensure that any difference in the potential outcomes is due to the

treatment.

2.2 Potential outcome time series

Above assumptions, although playing a partially different role, are crucial to estimate properly

defined causal effects: Assumptions 4 and 5 restrict the set of potential outcomes; Assumption

6 allows to include covariates to improve the estimation accuracy; finally, Assumptions 3 and

7 ensure that the effect is identifiable, meaning that the uncovered effect can be attributed to

the treatment. Even so, notice that the number of potential outcomes may still be very large

and, among them, only one is actually observed whereas the others are commonly referred as

“missing”.

Let wobs
i,1:t and wmis

i,1:t denote, respectively, the observed treatment path and the missing treatment

path of unit i up to time t. Then, under the above assumptions, the observed and missing

potential outcome time series can be denoted as Yi,1:t(w
obs
i,1:t) and Yi,1:t(w

mis
i,1:t). Figure 1 provides

an illustration of the observed and missing outcome time series in a simple multi-intervention

setting with two treatments. Instead, in a special setting where also Assumption 1 holds, there

are only two possible treatment paths for each unit i,

wi,1:T = (0, . . . , 0︸ ︷︷ ︸
t∈{1,...,t∗}

, 1, . . . , 1︸ ︷︷ ︸
t∈{t∗+1,...,T}

) ; w′i,1:T = (0, . . . , 0︸ ︷︷ ︸
t∈{1,...,t∗}

, 0, . . . , 0︸ ︷︷ ︸
t∈{t∗+1,...,T}

)

where wi,1:T indicates that the unit receives the persistent treatment starting from t∗ + 1,

whereas under the alternative path w′i,1:T the unit gets the persistent control. Thus, focusing

on the time periods following the intervention, the observed potential outcome time series

is Yi,t∗+1:T (wi,t∗+1:T ), whereas Yi,t∗+1:T (w′i,t∗+1:T ) is denoted as the missing or counterfactual

potential outcome time series.

Under Assumption 2 the same applies in any time interval between two subsequent interven-

tions. Indeed, if Assumption 7 holds, we can condition on past treatments, so that in the time

interval between two subsequent interventions we only have two possible paths,

wi,1:t = ( 0, . . . , 0︸ ︷︷ ︸
t∈{1,...,tm−1}

, 1, . . . , 1︸ ︷︷ ︸
t∈{tm,...,tm+1−1}

) ; w′i,1:t = ( 0, . . . , 0︸ ︷︷ ︸
t∈{1,...,tm−1}

, 0, . . . , 0︸ ︷︷ ︸
t∈{tm,...,tm+1−1}

)

where wi,1:t denotes that, holding fixed past treatment paths, before tm the unit does not
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experience the m-th persistent intervention, whereas w′i,1:t indicates that the unit never receives

the m-th intervention. Figure 2 illustrates the potential outcome series in a simple case with a

single persistent intervention and Figure 3 depicts a situation with M persistent interventions.

Figure 1: Potential outcome time series of a generic statistical unit when T = 3. The chart shows
two treatments producing their effects at times t = 1 and t = 3. The solid line represents the observed
series while the dashed line depicts the missing potential outcome series.

Y

Y1(0)

Y2(0, 0)
Y3(0, 0, 0)

Y3(0, 0, 1)

Y2(0, 1)
Y3(0, 1, 0)

Y3(0, 1, 1)

Y1(1)

Y2(1, 0)
Y3(1, 0, 0)

Y3(1, 0, 1)

Y2(1, 1)
Y3(1, 1, 0)

Y3(1, 1, 1)

Figure 2: Potential outcome time series of a generic statistical unit in case of a persistent intervention
producing its effects starting from time t = 3. The solid line represents the observed series while the
dashed line depicts the missing potential outcome series.

Y Y1(0) Y2(0, 0)

Y3(0, 0, 0) Y4(0, 0, 0, 0)

Y3(0, 0, 1) Y4(0, 0, 1, 1)

Figure 3: Potential outcome time series of a generic statistical unit for the m-th persistent interven-
tions, conditioning on previous treatment paths and potential outcomes, Y1:tm−1(w

obs
1:tm−1).

... Ytm−2(0, . . . , 0) Ytm−1(0, . . . , 0)

Ytm(0, . . . , 0, 0) Ytm+1(0, . . . , 0, 0, 0)
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3 Causal effect of an intervention on multiple non-interfering

time series

In this section we describe a novel approach, C-ARIMA, to estimate the causal effect of an

intervention in a panel setting under the assumption of temporal no-interference. This approach

is motivated by the analysis of a new price policy introduced by an Italian supermarket chain

on a selected subset of store brands. Without loss of generality, this method can also be used in

simple settings where only one time series is present, thereby constituting a valid alternative to

CausalImpact. Indeed, building over the same models used by standard intervention analysis,

C-ARIMA has the advantage to be accessible to a wide range of practitioners and researchers

in many fields, whilst allowing the estimation of causal effects under the RCM.

The remainder of this section is organized as follows: Section 3.1 introduces the background

of the empirical analysis and discusses the assumptions needed to define and estimate causal

effects; Sections 3.2 and 3.3 illustrate the causal estimands and the proposed C-ARIMA ap-

proach; Section 3.4 presents a simulation study on the ability of C-ARIMA to uncover causal

effects as compared to standard intervention analysis; finally, Section 3.5 presents the results

of the empirical analysis.

3.1 Background

On October 4, 2018 the Florence branch of an Italian supermarket chain introduced a new

price policy that permanently lowered the price of 707 store brands. In particular, we focus

on the goods belonging to the “cookies” category and the main goal is to estimate the causal

effect of the price reduction on the sales of store brands cookies. Furthermore, the supermarket

chain also sells competitor brand cookies with the same characteristics (e.g., ingredients, flavor,

shape) as their store brand equivalent; these products might be influenced by the price policy as

well, since consumers may perceive non-discounted goods as more expensive and modify their

consumption habits accordingly. Therefore, to assess the overall impact of the price policy, we

perform separate analyses on two subgroups of products: the store and the competitor brand

cookies.

Among the Assumptions presented in Section 2.1 we now recall those that are needed to es-

timate causal effects and we discuss whether they are reliable in the context of our empirical

application.

Assumption 1 The single persistent intervention is the permanent price reduction introduced

on October 4, 2018 and the statistical units included in the analysis are the store brand cookies

and their direct substitutes, i.e., competitor brand cookies with the same characteristics (e.g.,

ingredients, flavor, shape) as their store brand equivalent.
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Assumption 3 Since the permanent price discount is a persistent intervention, the future

treatment path is known and has no bearing on present outcomes (this intervention was ad-

vertised as a permanent price reduction, so we can exclude the possibility that the customers

perceived it as a transitory change). Conversely, before the new policy became effective, this

assumption would be violated if the knowledge of the upcoming price reduction changed present

sales. For instance, consumers could have postponed their purchases leading to a decrease in

sales before the intervention, but we can safely exclude this, since in our empirical setting the

supermarket chain did not advertise the price reduction in advance.

Assumption 4 In our empirical setting, the store-brand cookies selected for the permanent

price reduction differ on many characteristics, thus we can safely assume that they appeal to

different customers. Therefore, the temporal no-interference assumption is plausible within

the subgroup of store brands and the same applies within the subgroup of competitor brands.

Then, to handle the between-group interference we perform two separate analyses under two

different definitions of treatment: the permanent price reduction for the store brands; the

relative price increase for competitor brands resulting inevitably from having discounted the

corresponding store brand. In this way, we account for any possible interference arising from

store to competitor brands when the former get a price reduction, since we consider competitor

cookies to be under active treatment as well.

Assumption 6 The sales of supermarket goods are likely influenced by many variables. More

specifically, our set of covariates includes a holiday dummy, some day-of-the-week dummies

and the price per unit. While it is quite obvious that all the dummies are unaffected by the

intervention, things get trickier for price. In the analysis on competitor brands we use their

absolute price, since it is not directly affected by the intervention that is defined on the relative

price; conversely, in the analysis on store brands we consider a “modified” price that, starting

from the intervention date, assumes a constant value equal to the price of the day before the

intervention, which is the most likely price that the item would have had in the absence of

treatment.4

Assumption 7 We assume that the decision of lowering the price of a product is informed

only by its past sales performances and past covariates or, at most, by general beliefs on the

sales evolution under active treatment. Instead, the assumption would be violated, for example,

if prices are lowered to discourage the opening of a competing supermarket chain store in the

4The supermarket chain sometimes run temporary promotions reducing the price of selected goods for a
limited period of time. The time interval after the permanent price discount spans from October 4, 2018 to
April 30, 2019 and in the corresponding period of the year before the intervention (October 4, 2017 - April 30,
2018) there were no temporary promotions on the store brands that are part of this analysis.
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neighborhood: in this case we would be uncertain if a positive effect on sales was due to the

price reduction or to the deferred market entrance of the competitor.

3.2 Causal estimands

We now introduce one class of causal estimands that we denote as “pointwise effects”. This

class consists of three related estimands: the point effect (an instantaneous effect at each point

in time after the intervention), the cumulative effect (a partial sum of the point effects) and

the temporal average effect (the average of the point effects in a given time period).

Assumption 1 allows us to drop the t subscript from the treatment assignment and to write

Wi,t = wi,t = 0 for t ≤ t∗ and Wi,t = Wi, wi,t = wi for t > t∗. Furthermore, throughout this

section we make the assumption that the units do not interfere with one another (Assumption

4); thus, we can also drop the i subscript from both the assignment indicator and the potential

outcomes.

Definition 1 (Pointwise effects) For the two treatment paths w and w′, the point effect at

time t > t∗ is,

τt(w; w′) = Yt(w)− Yt(w
′) (1)

then, the cumulative effect at time t is the pointwise sum of the effects up to time t,

∆t(w; w′) =
t∑

s=t∗+1

τs(w; w′) (2)

and, finally, the temporal average effect at time t is,

τ̄t(w; w′) =
1

t− t∗
t∑

s=t∗+1

τs =
∆t(w; w′)

t− t∗
. (3)

Example 1 Assume that the single treatment occurring at time t∗ = 2 in Figure 2 is a persis-

tent price reduction on a cookie brand. The two point effects are τ3(1; 0) = Y3(0, 0, 1)−Y3(0, 0, 0)

and τ4((1, 1); (0, 0)) = Y4(0, 0, 1, 1)−Y4(0, 0, 0, 0), indicating the additional sales due to the price

reduction at time t = 3 and t = 4, respectively. Then, the cumulative effect at time t = 4 is given

by ∆4((1, 1); (0, 0)) = τ3(1; 0) + τ4((1, 1); (0, 0)) and it is the total number of cookies sold due

to the intervention. Finally, the temporal average effect is τ̄4((1, 1); (0, 0)) = 1
2
∆4((1, 1); (0, 0)),

denoting the number of cookies sold daily, on average, due to the permanent price reduction.

In words, the point effect measures the causal effect at a specific point in time and can be

defined at every t ∈ {t∗+1, . . . , T}, thereby originating a vector of effects. The cumulative and

temporal average effects are obtained by summing or averaging the point effects in a given time
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period. Notice that the pointwise effects are analogous to the general causal effects defined in

Bojinov and Shephard (2019), with the only difference that this class of effects is re-defined for

a special setting were the units are subject to a single persistent treatment occurring at time

t∗.

3.3 C-ARIMA

We propose a causal version of the widely used ARIMA model, which we indicate as C-ARIMA.

We first introduce a simplified version of this model for stationary data generating processes;

then, we relax the stationarity assumption and we extend the model to encompass seasonality

and external regressors. Finally, we provide a theoretical comparison of the proposed approach

with a standard ARIMA model with no causal connotation, from now on denoted as REG-

ARIMA.

3.3.1 Simplified framework

We start with a simplified model for stationary data generating processes: this allows us to

illustrate the building blocks of our approach with a clear and easy-to-follow notation. So, let

us assume {Yt} evolving as

Yt(w) = c+
θq(L)

φp(L)
εt + τt1{w=1} (4)

where φp(L) and θq(L) are lag polynomials with φp(L) having all roots outside the unit circle;

c is a constant term; τt = 0 ∀t ≤ t∗ and 1{w=1} is an indicator function which is one if w = 1.

As a result, τt can be interpreted as the point causal effect at time t > t∗, since it is defined as

a contrast of potential outcomes,

τt(w = 1; w = 0) = Yt(w = 1)− Yt(w = 0) = τt.

Notice that under the Assumptions introduced in Section 2, τt is a properly defined causal

effect in the RCM and, as such, it should not be confused with additive outliers or any other

kind of intervention component typically used in the econometric literature (e.g., Box and Tiao

(1975), Chen and Liu (1993)). Indeed, we can show that Equation (4) encompasses all types of

interventions. For example, consider the following model specification (innovation-type effect),

Yt(w) = c+
θq(L)

φp(L)
(εt + τt1{w=1})

and define τ †t = θq(L)

φp(L)
τt. Then, we have
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Yt(w) = c+
θq(L)

φp(L)
εt + τ †t 1{w=1}

where τ †t (1; 0) = Yt(1) − Yt(0) = τ †t is the point causal effect at time t. As it will be clear

in Section 3.3.4, our model is estimated on the pre-intervention data, thus in the C-ARIMA

approach we do not need to find the structure that better represents the effect of the intervention

(e.g., additive outlier, transient change, innovation outlier); conversely, such effect emerges as

a contrast of potential outcomes in the post-intervention period. In other words, the proposed

approach allows us to estimate τ †t (whatever structure it has).

To improve readability of the model equations, from now on we use Yt to indicate Yt(w); the

usual notation is resumed in Section 3.3.4. Thus, Equation (4) can be written as,

Yt = c+
θq(L)

φp(L)
εt + τt. (5)

Setting

zt =
θq(L)

φp(L)
εt, (6)

Equation (5) becomes,

Yt = c+ zt + τt.

Assuming perfect knowledge of the parameters ruling {zt}, indicating with It∗ the information

up to time t∗ and denoting with H0 the situation where the intervention has no effect (namely,

τt = 0 for all t > t∗) we have that for a positive integer k, the k-step ahead forecast of Yt under

H0 conditionally on It∗ is

Ŷt∗+k = E [Yt∗+k |It∗ , H0] = c+ ẑt∗+k|t∗ (7)

where ẑt∗+k|t∗ = E[zt∗+k|It∗ , H0]. Thus, ẑt∗+k|t∗ represents our estimate of the missing potential

outcomes in the absence of intervention, i.e., Ŷt∗+k(0) = ẑt∗+k|t∗ .

3.3.2 General framework

We now generalize the above framework to a setting where {Yt} is non-stationary and possibly

includes seasonality as well as external regressors.

Let {Yt} follow a regression model with ARIMA errors and the addition of the point effect τt,

(1− Ls)D(1− L)d Yt =
ΘQ(Ls)θq(L)

ΦP (Ls)φp(L)
εt + (1− Ls)D(1− L)d X′t β + τt (8)
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where ΘQ(Ls), ΦP (Ls) are the lag polynomials of the seasonal part of the model with ΦP (Ls)

having roots all outside the unit circle; Xt is a set of external regressors; (1−Ls)D and (1−L)d

are contributions of the differencing operators to ensure stationarity, and s is the seasonal

period. Notice that the intercept defined in model (5) is now included in the set of regressors.

To ease notation, defining

zt =
ΘQ(Ls)θq(L)

ΦP (Ls)φp(L)
εt

and indicating with T (·) the transformation of Yt needed to achieve stationarity, i.e. T (Yt) =

(1− Ls)D(1− L)d Yt, model (8) becomes

St = T (Yt)− T (Xt)
′β = zt + τt,

where T (Xt)
′ = (1− Ls)D(1− L)d X′t indicates that the same transformation is applied to the

vector of regressors. Thus, the k-step ahead forecast of St under H0, given the information up

to time t∗ is

Ŝt∗+k = E[St∗+k|It∗ , H0] = E[T (Yt∗+k)− T (Xt∗+k)
′β|It∗ , H0] = ẑt∗+k|t∗ .

3.3.3 Comparison with REG-ARIMA

To measure the effect of an intervention on an outcome repeatedly observed over time, a widely

used approach is fitting a linear regression with ARIMA errors (REG-ARIMA). In particular,

this method uses the entire time series and a dummy variable activating after the intervention;

then, SARIMA-type errors are added to the model to account for autocorrelation and possible

seasonality. In its simplest formulation, such a model can be written as,

Yt = c+Dtβ0 + zt

zt =
θq(L)

φp(L)
εt

where zt is a stationary ARMA(p, q); Dt is a dummy variable taking value 1 after the inter-

vention and 0 otherwise and β0 is the regression coefficient. Generalizing to a non-stationary

ARIMA(p, d, q), above model can be re-written as,

Yt = X′t β + zt (9)

zt =
θq(L)ΘQ(Ls)

(1− L)d(1− Ls)Dφp(L)ΦP (Ls)
εt
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where Xt is a set of regressors, including the intercept and the dummy variable and β is a vector

of regression coefficients.

Essentially, REG-ARIMA is a standard intervention analysis approach that is used when the

intervention is supposed to have produced a level shift on the outcome, i.e. a fixed change in the

level of the outcome during the post-intervention period. Thus, there are two main differences

between C-ARIMA and REG-ARIMA. First, without a critical discussion of the fundamental

assumptions, the effect grasped by β0 can not be attributed with certainty to the intervention.

For example, it might be driven by an undetected confounder, biased by the inclusion of a

regressor linked to the treatment, or even be the anticipated result of a future intervention.

Second, the size of the effect is given by the estimated coefficient of a dummy variable activating

after the intervention, so that REG-ARIMA can only capture effects in the form of level shifts.

Conversely, C-ARIMA assumes no structure on τt and, as such, it can capture any form of

effects (level shift, slope change and even irregular time-varying effects). Furthermore, the

estimation of the effect is done in a very natural way under C-ARIMA. Indeed, intervention

analysis requires the estimation of two models: the first learns the structure of the effect and

the second measures its size; by letting the intervention component free to vary, C-ARIMA can

instead estimate any form of effect in only one step.

In Section 3.4 we report a simulation study where we compare the empirical performance of

both approaches (C-ARIMA and REG-ARIMA) in inferring causal effects.

3.3.4 Causal effect estimation

We now derive estimators for the causal effects defined in Section 3.2 based on the C-ARIMA

model and we discuss their properties.

Definition 2 (Pointwise effects estimators) For any integer k, let St∗+k(w) be the observed

potential outcome time series and let Ŝt∗+k(w
′) = ẑt∗+k|t∗(w

′) be the corresponding estimate of

the missing potential outcomes under model (8). Then, estimators of the point, cumulative and

temporal average effects are, respectively,

τ̂t∗+k(w; w′) = St∗+k(w)− Ŝt∗+k(w′) = St∗+k(w)− ẑt∗+k|t∗(w′)

∆̂t∗+k(w; w′) =
k∑

h=1

τ̂t∗+h(w; w′)

ˆ̄τt∗+k(w; w′) =
1

k

k∑
h=1

τ̂t∗+h(w; w′) =
∆̂t∗+k(w; w′)

k
.

Considering this setup we can show that
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τ̂t∗+k(w; w′) ∼

[
τt∗+k(w; w′), σ2

ε

k−1∑
i=0

ψ2
i

]
(10)

∆̂t∗+k(w; w′) ∼

∆t∗+k(w; w′), σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2
 (11)

ˆ̄τt∗+k(w; w′) ∼

τ̄t∗+k(w; w′),
1

k2
σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2
 (12)

where, the ψi’s are the coefficients of a moving average of order k − 1 whose values are func-

tions of the ARMA parameters ruling zt (as defined in Equation (6)). Indeed, starting from

the MA(∞) representation of the stationary component zt∗+k, we can show that τ̂t∗+k(w; w′)

is MA(k − 1).5 Equations (10), (11), (12) can be used to derive confidence intervals for the

corresponding causal estimands.

Summarizing, in order to estimate the causal effects (1), (2) and (3) we need to follow a four-

step process: i) split the analysis period in two time intervals: the pre-intervention and post-

intervention periods, respectively {1, . . . , t∗} and {t∗+1, . . . , T} ; ii) estimate the ARIMA model

only in the pre-intervention period, so as to learn the dynamics of the dependent variable and

the links with the covariates without being influenced by the treatment; iii) based on the process

learned in the pre-intervention period, perform a prediction step and obtain the counterfactual

outcome during the post-intervention period in the absence of intervention; iv) by comparing

the observations with the corresponding forecasts at any time point after the intervention,

evaluate the resulting differences, which represent the estimated point causal effects.

Conversely, REG-ARIMA model is fitted to the full time series (pre- and post-intervention)

and the estimated coefficient for the dummy variable Dt gives a measure of the association

between the intervention (in the form of a level shift) and the outcome.

The C-ARIMA shares many features with the approach described in Box and Tiao (1976),

where the authors suggest to compare the observed data after an intervention with the fore-

casts from a model fitted to the pre-intervention period. However, the interpretation of the

resulting difference as a causal effect must follow from a thorough discussion of the assumptions

underneath such attribution: this is the main building block of C-ARIMA, making it different

from other popular approaches based on ARIMA models, like REG-ARIMA and intervention

analysis.

5Proof and additional details on how to recover the effect on the untrasformed variable Yt are given in
Appendix B.1 and B.2.
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3.4 Simulation study

We perform a simulation study to check the ability of the C-ARIMA approach to uncover

causal effects. Furthermore, in order to show its merits over a more standard approach, we also

assess the performance of REG-ARIMA. We remark, however, that the comparison is purely

methodological, since the theoretical limitations of REG-ARIMA do not allow the attribution of

such effects to the intervention. Sections 3.4.1 and 3.4.2 illustrate, respectively, the simulations

design and the results.

3.4.1 Design

We generate 1000 replications from the following ARIMA(1, 0, 1)(1, 0, 1)7 model,

Yt = β1 X1,t +β2 X2,t +zt

zt =
θq(L)ΘQ(Ls)

φp(L)ΦP (Ls)
εt.

The two covariates of the regression equation are generated as X1,t = α1t + u1,t and X2,t =

sin(α2t) +u2,t, with α1 = α2 = 0.01, u1,t ∼ N(0, 0.02), u2,t ∼ N(0, 0.5) and coefficients β1 = 0.7

and β2 = 2, respectively; regarding the ARIMA parameters, they are set to φ1 = 0.7, Φ1 = 0.6,

θ1 = 0.6 and Θ1 = 0.5. Finally, εt ∼ N(0, σ) with σ = 5. Figure 4 shows the evolution of the

generated covariates and their linear combination according to the above model.

We assume that each generated time series starts on January 1, 2017 and ends on December

31, 2019 and that a fictional intervention takes place on June 30, 2019. In particular, we

tested two types of intervention: i) a level shift with 5 different magnitudes, i.e., +1%, +10%,

+25%, +50%, +100% ; ii) an intervention producing an immediate shock of +10% followed by

a steady increase up to +40%, a regular decline afterwards and a second increase near the end

of the analysis period. As an example, Figure 5 provides a graphical representation of the two

interventions for one of the simulated time series.

The estimation of the causal effect is performed under two different models: the proposed

C-ARIMA approach and REG-ARIMA, i.e, a linear regression with ARIMA errors and the

addition of a dummy variable, as in Equation (9). Recall from previous Section 3.3.4 that

the C-ARIMA approach requires that the model is estimated on the pre-intervention data

and the effect is given by direct comparison of the observed series and the corresponding

forecasts post-intervention. Conversely, REG-ARIMA is fitted on the full time series and the

estimated coefficient of the dummy variable provides a measure of the impact of the intervention.

In addition, we estimate two versions of each model: a correctly specified model, denoted

respectively with C-ARIMATRUE and REG-ARIMATRUE, and the best fitting model selected
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by BIC minimization, denoted with C-ARIMABIC and REG-ARIMABIC . Finally, in order

to evaluate the performance of both approaches in uncovering causal effects at longer time

horizons, we perform predictions at 1 month, 3 months and 6 months from the intervention.

As a result, the total number of estimated models in the pre-intervention period is 4000 and

the total number of estimated causal effects is 72, 000 (one for each time series, model, tested

intervention and time horizon).

We measure the performance of the four models in terms of three indicators:

1. the length of the confidence interval around the true temporal average effect τ̄t for

C-ARIMATRUE and C-ARIMABIC and around β0 for REG-ARIMATRUE and REG-

ARIMABIC ;

2. the absolute percentage error, defined for each model and intervention type as,

ai,th =
|ˆ̄τi,h − τ̄i,h|

τ̄i,h
; a′i,h =

|β̂0,i,h − τ̄i,h|
τ̄i,h

i = 1, . . . , 1000;

where, ˆ̄τi,h and β̂0,i,h denote, respectively, the estimated causal effect and the estimated

coefficient of the intervention dummy for the i-th simulated time series at time horizon

h, where h = {1, 2, 3} indicate the months after the intervention; instead, τ̄i,t denotes the

true temporal average effect (always positive);

3. the interval coverage, computed for the REG-ARIMA as the proportion of true effects

in the estimated 95% confidence intervals over the 1000 simulated series, whereas for the

C-ARIMA it is obtained as the proportion of the true point effects within the estimated

confidence intervals, which is then averaged over the simulated series.

Figure 4: Evolution of the generated covariates, X1,t and X2,t and their combination according to
the simulated model, β1 X1,t +β2 X2,t.
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Figure 5: For the same simulated time series (denoted as “control”) the plots display two different
types of effect: on the left, a level shift of 25%; on the right, the time series under treatment follows
an irregular pattern.

3.4.2 Results

Table 1 shows the simulation results in terms of the length of the 95% confidence intervals

around τt(1; 0) and β0, respectively. As expected, for the C-ARIMA models the interval length

is independent of the impact; we can also notice that it reduces as the time horizon increases,

whereas the interval length estimated under REG-ARIMA is stable over time. Finally, we can

observe that REG-ARIMA yields shorter confidence intervals than C-ARIMA.

Table 2 reports the absolute percentage errors resulting from the simulations. When the in-

tervention takes the form of a level shift, the error decreases with the size of the effect and,

unsurprisingly, REG-ARIMA yields slightly better results than C-ARIMA. Indeed, the former

model is especially suited for interventions in the form of level shifts. However, when we con-

sider a level shift > +50% or an irregular intervention, the estimation errors of REG-ARIMA

are 2 to 4 times higher than those coming from C-ARIMA.

The interval coverage is reported in Table 3. Again, the coverage of the C-ARIMA approach

does not vary with the impact size and it is very close to the nominal 95% level. Instead, the

coverage of REG-ARIMA decreases with the impact size and, with the only exception of the

first two impacts, the results are quite far from the nominal 95% level. This can be explained

by the short confidence intervals achieved by REG-ARIMA, suggesting that even though the

estimation error is small, the confidence intervals are not wide enough to contain the true effect.

More importantly, when the effect is irregular, the estimated confidence intervals never contain

the true effect.

Concluding, REG-ARIMA approach fails to detect irregular interventions and most of the times

it does not achieve the desired interval coverage. As expected, REG-ARIMA model is suited

only when there is reason to believe that the intervention produced a fixed change in the outcome

level. Otherwise, should the researcher fail to identify the structure of the effect, using REG-

ARIMA on irregular patterns produces biased estimates. Conversely, the C-ARIMA approach

does a reasonably good job in detecting both type of interventions. Moreover, C-ARIMA does
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not require an investigation of the effect type prior to the estimation step; in addition, when

the intervention is in the form of a level shift, the reliability of the estimates increases with

the impact size. Finally, we can observe that the results of the models selected through BIC

minimization are very similar to those of the correct model specifications (indeed, the BIC

criterion correctly identifies 74% of the models).

Table 1: Length of the 95% confidence intervals around the estimated intervention effect τt(1; 0) (for
C-ARIMA) and β0 (for REG-ARIMA). The different impact sizes ranging from +1% to +100% in
the rows denote estimated effects in the form of level shifts, whereas NS stands for “no structure”,
thereby indicating the irregular effect. For each generated time series, impact size and time horizon
(1, 3 and 6 months), the estimates are performed under two model specifications: the true model and
the best fitting model based on BIC, denoted, respectively, with the superscripts TRUE and BIC.

C-ARIMABIC REG-ARIMABIC

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 42.029 34.479 26.330 10.620 10.458 10.340
+10% 42.029 34.479 26.330 10.656 10.555 10.511
+25% 42.029 34.479 26.330 10.734 10.751 10.849
+50% 42.029 34.479 26.330 10.916 11.164 11.528
+100% 42.029 34.479 26.330 11.454 12.259 13.233
NS 42.027 34.474 26.325 10.709 10.931 10.891

C-ARIMATRUE REG-ARIMATRUE

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 42.055 34.536 26.381 10.604 10.451 10.334
+10% 42.055 34.536 26.381 10.639 10.548 10.506
+25% 42.055 34.536 26.381 10.716 10.743 10.842
+50% 42.055 34.536 26.381 10.895 11.152 11.520
+100% 42.055 34.536 26.381 11.424 12.240 13.225
NS 42.058 34.533 26.377 10.691 10.913 10.876
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Table 2: Absolute percentage error for the estimated intervention effect τt(1; 0) (for C-ARIMA) and
β0 (for REG-ARIMA). The different impact sizes ranging from +1% to +100% in the rows denote
estimated effects in the form of level shifts, whereas NS stands for “no structure”, thereby indicating
the irregular effect. For each generated time series, impact size and time horizon (1, 3 and 6 months),
the estimates are performed under two model specifications: the true model and the best fitting model
based on BIC, denoted, respectively, with the superscripts TRUE and BIC.

C-ARIMABIC REG-ARIMABIC

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 4.185 3.783 3.405 0.970 0.955 0.950
+10% 0.418 0.378 0.340 0.116 0.118 0.117
+25% 0.167 0.151 0.136 0.074 0.080 0.078
+50% 0.084 0.076 0.068 0.065 0.072 0.071
+100% 0.042 0.038 0.034 0.062 0.070 0.069
NS 0.237 0.138 0.173 0.423 0.610 0.463

C-ARIMATRUE REG-ARIMATRUE

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 4.182 3.775 3.398 0.963 0.946 0.943
+10% 0.418 0.378 0.340 0.115 0.118 0.116
+25% 0.167 0.151 0.136 0.074 0.079 0.078
+50% 0.084 0.076 0.068 0.065 0.072 0.071
+100% 0.042 0.038 0.034 0.062 0.070 0.068
NS 0.237 0.137 0.172 0.424 0.610 0.463

Table 3: Interval coverage in percentage of the true effects within the estimated intervals around
τt(1; 0) (for C-ARIMA) and β0 (for REG-ARIMA). The different impact sizes ranging from +1% to
+100% in the rows denote estimated effects in the form of level shifts, whereas NS stands for “no
structure”, thereby indicating the irregular effect. For each generated time series, impact size and
time horizon (1, 3 and 6 months), the estimates are performed under two model specifications: the
true model and the best fitting model based on BIC, denoted, respectively, with the superscripts
TRUE and BIC.

C-ARIMABIC REG-ARIMABIC

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 94.25 93.68 93.15 95.20 94.78 95.62
+10% 94.25 93.68 93.15 90.74 90.40 91.25
+25% 94.25 93.68 93.15 71.89 68.01 69.44
+50% 94.25 93.68 93.15 45.62 40.66 42.59
+100% 94.25 93.68 93.15 24.83 23.91 27.02
NS 94.21 93.66 93.16 0.17 0.00 0.00

C-ARIMATRUE REG-ARIMATRUE

τt(1; 0) 1 month 3 months 6 months 1 month 3 months 6 months

+1% 94.27 93.70 93.19 95.12 94.95 95.71
+10% 94.27 93.70 93.19 90.99 90.40 91.67
+25% 94.27 93.70 93.19 71.89 67.93 69.70
+50% 94.27 93.70 93.19 45.62 40.74 43.10
+100% 94.27 93.70 93.19 24.92 23.99 27.02
NS 94.23 93.69 93.20 0.17 0.00 0.00

31



3.5 Empirical analysis

In this section we describe the results of our empirical application; the goal is estimating the

impact of the permanent price reduction performed by an Italian supermarket chain.

3.5.1 Data & methodology

Data consists of daily sales counts of 11 store brands and their corresponding competitor brand

cookies in the period September 1, 2017, April 30, 2019.6 The permanent price reduction on

the store brand cookies was introduced by the supermarket chain on October 4, 2018.

As an example, Figure 6 shows the time series of units sold, the evolution of price per unit

and the autocorrelation function of one store brand and its direct competitor. The plots for

the remaining store-brand and competitor-brand cookies are provided in Appendix A.2. The

occasional price drops before the intervention date indicate temporary promotions run regularly

by the supermarket chain. The products exhibit a clear weekly seasonal pattern, illustrated

by the spikes in the autocorrelation functions. In the panel referred to the direct competitor

brand, we can also observe the evolution of the relative price per unit (the ratio between the

prices of the competitor brand and the corresponding store brand). Unsurprisingly, despite the

occasional drops due to the usual promotions, the price of the competitor brand relative to the

corresponding store brand has increased after the intervention.

Figure 6: Time series of unit sold daily, price per unit and autocorrelation function for two selected
items (i.e., store brand 6 and the corresponding competitor brand). For the competitor, the relative
price plot shows the ratio between its unit price and the price of the store brand.

Store

Competitor

To determine the causal effect of the permanent price discount on the sales of store-brands

cookies we follow the approach outlined in Section 3.3. In particular, under Assumption 4,

we analyze each cookie separately, thereby fitting 11 independent models. In order to improve

model diagnostics, the dependent variable is the natural log of the daily sales count. This also

means that we are postulating the existence of a multiplicative effect of the new price policy on

6We excluded the last competitor brand because 62% of observations were missing. Thus, we analyzed 11
store and 10 competitor brands.
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the sales of cookies. Since in terms of the original variable the cumulative sum of daily effects

is equivalent to their product, we focused our attention on estimating the temporal average

causal effect, which can still be interpreted as an average multiplicative effect. Furthermore,

we included covariates to improve prediction of the missing potential outcomes in the absence

of intervention. In particular, to take care of the seasonality we included six dummy variables

corresponding to the day of the week and one dummy denoting December Sundays.7 Indeed,

the policy of the supermarket chain implies that all shops are closed on Sunday afternoon except

during Christmas holidays. Thus, we may have two opposite “Sunday effects”: a positive effect

in December, when the shops are open all the day; a negative effect during the rest of the

year, since all shops are closed in the afternoon. We also included a holiday dummy taking

value 1 before and after a national holiday and 0 otherwise. This is to account for consumers’

tendency to increase purchases before and after a closure day.8 Finally, we included a modified

version of the unit price, that after the intervention day and during all the post-period is taken

equal to the last price before the permanent discount. As explained in discussing Assumption

6, this is the most likely price that the unit would have had in the absence of intervention. In

addition, to estimate the average causal effect of the intervention on store brands, we are also

interested in evaluating how this effect evolves with time. Thus, we repeated the analysis by

making predictions at three different time horizons: 1 month, 3 months and 6 months after the

intervention.

The same methodology is applied to the competitor brands, with a slight modification on the

set of covariates. Indeed, this time the unit price is not directly influenced by the intervention;

so, to forecast competitor sales in the absence of intervention we directly used the actual price.

Again, to illustrate the merits of our causal approach, the results obtained from C-ARIMA are

then compared to those of REG-ARIMA, as described by Equation (9). More specifically, we

fitted independent linear regressions with ARIMA errors for each of the 11 store brands and

their competitors.

3.5.2 Results

Table 4 shows the results of the C-ARIMA and the REG-ARIMA approaches applied to the

store brands. Figure 7 illustrates the causal effect, the observed time series and the forecasted

series in the absence of intervention for one selected item.9 At the 1-month time horizon, the

causal effect is significantly positive for 8 out of 11 items; three months after the intervention, the

causal effect is significantly positive for 10 items; after six months, the effect is significant and

7In principle, we may also have a monthly seasonal pattern on top of the weekly cycle but the reduced length
of the pre-intervention time series (398 observations) does not allow us to assess whether a double seasonality
is present.

8To be precise, on the day of a national holiday we have a missing value (so there is no holiday effect), whereas
the dummy variable should capture the effect of additional purchases before and after the closure day(s).

9The same plots for the remaining store-brand and competitor-brand cookies are provided in Appendix A.2.
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positive for all items. Conversely, REG-ARIMA fails to detect some of the effects: compared

to the C-ARIMA results, the effect on items 4 and 11 at the first time horizon, on item 11 at

the second horizon and on items 5 and 11 at the third horizon are not significant.

Table 5 reports the results for the competitor brands and Figure 8 plots the causal effect, the

observed series and the forecasted series for one selected item. Again, the causal effect seems

to strengthen as we proceed far away from the intervention. At 1-month horizon no significant

effect is observed; three months after the intervention, we find a significant and negative effect

on item 10; at 6-month horizon we find significant negative effects on items 8 and 10 and a

significant positive effect on item 5. A negative effect suggests that following the permanent

price discount, consumers have changed their behavior by privileging the cheaper store brand.

Instead, a positive effect might indicate that the price policy has determined an increase in the

customer base, i.e. new clients have entered the shop and eventually bought the items at full

price. Again, REG-ARIMA model leads to partially different results: at 6-month horizon, a

positive effect is found on item 6 and no effect is detected on item 8.

Summarizing, the intervention seems to have produced a significant and positive effect on the

sales of store brand cookies. Conversely, we do not find considerable evidence of a detrimental

effect on competitor cookies (the only exceptions being items 8 and 10). This indicates that,

even though each store-competitor pair is formed by perfect substitutes, price might not be

the only factor driving sales. For example, unobserved factors such as individual preferences or

brand faithfulness may have a role as well.

34



Table 4: Causal effect estimates of the permanent price rebate on sales of store-brand cookies after one month,
three months and six months from the intervention. In this table, ˆ̄τt is the estimated temporal average effect (ˆ̄τt = 0
implies no effect), while β̂0 is the coefficient estimate of the intervention dummy according to REG-ARIMA (β̂0 = 0
implies absence of association).

Time horizon:

1 month 3 months 6 months

Item ˆ̄τt β̂0 ˆ̄τt β̂0 ˆ̄τt β̂0

1
0.14 0.14 0.15. 0.12. 0.18∗∗∗ 0.16∗∗

(0.12) (0.09) (0.08) (0.07) (0.06) (0.06)

2
0.14 0.10 0.13. 0.12. 0.14∗∗ 0.13∗∗

(0.12) (0.14) (0.08) (0.07) (0.05) (0.05)

3
0.19. 0.15. 0.21∗∗ 0.15∗ 0.25∗∗∗ 0.24∗∗∗

(0.11) (0.08) (0.07) (0.07) (0.05) (0.04)

4
0.49∗∗∗ 0.00 0.30∗∗∗ 0.19∗ 0.32∗∗∗ 0.28∗∗∗

(0.09) (0.13) (0.06) (0.08) (0.04) (0.05)

5
−0.02 −0.06 0.07 −0.07 0.11. −0.06
(0.12) (0.12) (0.08) (0.11) (0.06) (0.10)

6
0.24∗ 0.26. 0.34∗∗∗ 0.24∗ 0.37∗∗∗ 0.23∗

(0.12) (0.14) (0.08) (0.12) (0.06) (0.11)

7
0.55∗∗∗ 0.75∗∗∗ 0.34∗∗∗ 0.70∗∗∗ 0.30∗∗∗ 0.77∗∗∗

(0.10) (0.11) (0.07) (0.10) (0.05) (0.11)

8
0.26∗∗∗ 0.29∗∗ 0.25∗∗∗ 0.29∗∗ 0.14∗∗ 0.28∗∗

(0.08) (0.09) (0.07) (0.10) (0.05) (0.09)

9
0.47∗∗∗ 0.70∗∗∗ 0.20∗∗∗ 0.29∗∗∗ 0.21∗∗∗ 0.26∗∗∗

(0.06) (0.10) (0.04) (0.09) (0.03) (0.06)

10
0.66∗∗∗ 0.85∗∗∗ 0.57∗∗∗ 0.82∗∗∗ 0.33∗∗∗ 0.85∗∗∗

(0.11) (0.14) (0.08) (0.15) (0.06) (0.15)

11
0.12∗ 0.02 0.16∗∗ 0.04 0.14∗∗∗ 0.08

(0.06) (0.11) (0.05) (0.11) (0.04) (0.13)

Note: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Figure 7: First row: observed sales (gray) and forecasted sales (blue) of store brand 4 at 1 month (horizon 1),
3 months (horizon 2) and 6 months (horizon 3) from the intervention; the vertical bar indicates the intervention
date. Second row: pointwise causal effect, computed as the difference between observed and forecasted sales, with
its 95% confidence interval.

35



Table 5: Causal effect estimates of the permanent price rebate on sales of competitor-brand cookies after one
month, three months and six months from the intervention. In this table, ˆ̄τt is the estimated temporal average
effect (ˆ̄τt = 0 implies no effect), while β̂0 is the coefficient estimate of the intervention dummy according to
REG-ARIMA (β̂0 = 0 implies absence of association).

Time horizon:

1 month 3 months 6 months

Item ˆ̄τt β̂0 ˆ̄τt β̂0 ˆ̄τt β̂0

1
−0.03 0.02 0.02 −0.16 0.04 −0.12
(0.55) (0.19) (0.46) (0.25) (0.34) (0.22)

2
−0.13 −0.18 −0.07 −0.13 −0.15 −0.13
(0.50) (0.22) (0.47) (0.20) (0.36) (0.19)

3
0.04 −0.06 0.09 −0.03 0.17 0.03

(0.38) (0.22) (0.23) (0.20) (0.11) (0.17)

4
0.00 0.08 −0.13 0.02 −0.04 0.01

(0.29) (0.21) (0.21) (0.22) (0.14) (0.13)

5
−0.03 −0.01 0.05 0.06 0.12∗∗ 0.12∗

(0.10) (0.10) (0.06) (0.06) (0.04) (0.05)

6
−0.05 −0.01 0.03 0.06 0.09 0.10∗

(0.12) (0.10) (0.09) (0.06) (0.07) (0.05)

7
0.04 −0.11 0.11 −0.05 0.40. 0.02

(0.54) (0.29) (0.33) (0.26) (0.23) (0.23)

8
−0.09 −0.02 −0.06 −0.10 −0.08∗ −0.12
(0.07) (0.07) (0.05) (0.10) (0.04) (0.10)

9
−0.09 −0.08 −0.11 −0.11 −0.10 −0.09
(0.13) (0.13) (0.09) (0.08) (0.06) (0.06)

10
−0.03 −0.02 −0.12∗∗ −0.09∗ −0.11∗∗∗ −0.08∗

(0.06) (0.05) (0.04) (0.04) (0.03) (0.04)

Note: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Figure 8: First row: observed sales (grey) and forecasted sales (blue) of competitor brand 10 at 1 month (horizon
1), 3 months (horizon 2) and 6 months (horizon 3) from the intervention; the vertical bar indicates the intervention
date. Second row: pointwise causal effect, computed as the difference between observed and forecasted sales, with
its 95% confidence interval.
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3.6 Discussion

In this section, we presented C-ARIMA, a novel approach to estimate the effect of interventions

in a time series setting under the RCM. We reported a detailed discussion of the assumptions

underneath the causal framework, we defined three related estimands and we introduced a

methodology to perform inference. To measure the performance of C-ARIMA in uncovering

causal effects, we detailed a simulation study showing that this approach performs well in

comparison with a standard intervention analysis approach when the true effect is in the form

of a level shift; it also outperforms the latter in case of irregular, time-varying effects.

We believe that C-ARIMA can successfully be used as an alternative to CausalImpact to esti-

mate the effect of an intervention on a single time series as well as in the context of multiple

non-interfering series. Indeed, our methodology is accessible to all those researchers and practi-

tioners that are not accustomed to (or are not willing to adopt) the Bayesian framework, at the

same time providing several improvements over the standard intervention analysis approach.

In our empirical application, we estimated the causal effect of a new price policy introduced by

an Italian supermarket chain, which addressed a selected subset of store brands by permanently

lowering their price. Furthermore, we also assessed the indirect effect on competitor-brand

products only differing in the brand name. To do that, we handled between-group interference

by considering the competitors to be treated as well and defining the treatment in terms of

the relative price increase. In this way we can rule out any interference originating from the

permanent price reduction and spilling over from store to competitor brands.

Nevertheless, when used in our empirical context, this approach suffers from some limitations.

Indeed, we are not able to control for possible interactions beyond those stemming from price or

going the other way round. For example, if consumers can collect coupons to buy a competitor

brand cookie, we reasonably expect a negative impact on the sales of the corresponding store

brand. However, aside from their price, we do not have information on individual cookies and

we are not able to include in the analysis our general belief that the two goods are perfect

substitutes.

In the next section we overcome these limitations by developing a novel approach to deal with

multiple interfering time series and we use it to re-analyze our data.
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4 Causal effect of an intervention on multiple interfering

time series

This section presents a novel approach to estimate the causal effect of an intervention in panel

settings where the statistical units interfere with one another. Motivated by the analysis of

the price policy change introduced by the Italian supermarket chain, we now treat jointly the

pair formed by the store brand and the corresponding competitor brand, allowing interactions

within the pairs but not between them and thereby relaxing, at least partially, the temporal

no-interference assumption.

After presenting three new classes of causal estimands in the potential outcomes causal frame-

work, we derive the multivariate extension of the popular Bayesian structural time series model

for causal inference introduced by Brodersen et al. (2015). Like its univariate counterpart,

MBSTS model is flexible due to its ability to incorporate trends and seasonality effects and the

underlying distributional assumptions can be tested in very natural way by posterior predictive

checks. In addition, our methodology allows to model the interference between units in the

same group by explicitly modeling their dependence structure.

The proposed approach is implemented in the CausalMBSTS R package.

The remainder of this section is organized as follows: we begin by discussing the assumptions

that are needed to estimate causal effects in this setting; Sections 4.2 and 4.3 illustrate the causal

estimands and the proposed approach; in Section 4.4 we detail a simulation study to investigate

the performance of our method; finally, Section 4.5 presents the results of the empirical analysis.

4.1 Background

Recalling our empirical application from previous Section 3, among the 284 items in the “cook-

ies” category, there are 28 store brands, of which 11 were selected for a permanent price reduc-

tion ranging from −3.5% to −23.2%. For each store brand, the supermarket chain identified

a direct competitor brand, thereby defining 11 pairs of cookies. Those in the same pair are

almost identical except for their brand name.

We now review the set of assumptions for a causal framework where multiple units are grouped

based on shared characteristics and we discuss them in the context of our application.

Assumption 1 The single persistent intervention is the permanent price reduction introduced

by the supermarket chain and the groups are the store-competitor pairs formed by one store

brand and its direct competitor.

Assumption 3 Since in our empirical setting the supermarket chain did not advertise the

price reduction in advance and the treatment is a persistent intervention, this is a solid as-
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sumption.

Assumption 5 In our empirical application, the products within each pair are alike and only

differ on their brand name and packaging; whereas, brands in different pairs differ on many

characteristics (e.g., ingredients, flavor, or weight). Therefore, we assume that a price reduction

of one brand will only directly impact its sales and its direct competitor’s sales. Essentially, in

our empirical context this is an assumption about consumer behavior; since each pair represents

a different type of cookie (e.g., chocolate, whole grain, cream cookie), we are assuming that

consumers’ choice of one pair or the other is not driven by price, but rather by individual

preferences.10

Assumption 6 Our set of covariates for each pair includes: i) weekend and holiday dummies;

ii) daily sales of products that are in categories that did not receive the price reduction; iii)

the prices of both goods before the intervention, as they are good predictors of sales. For all of

these covariates, the assumption is likely to be satisfied. Indeed, we modify the price of store

brands to remain constant after the intervention date. Note that the inclusion of the actual

daily price after the reduction would have violated this assumption.

Assumption 7 We assume that the assignment is individualistic — the treatment allocation

of each pair has no bearing on others — and informed only by past sales performances and past

covariates or, at most, by general beliefs on the sales evolution under active treatment.

4.2 Causal estimands

In a panel setting, the number of causal estimands increases substantially, as any contrast of

potential outcomes has a causal interpretation. In this section, we develop three classes of

causal effects; for each, we can define a point effect (i.e., an instantaneous effect at each time

point after the intervention), a cumulative effect (i.e., a partial sum of the contemporaneous

effect), and a temporal average effect (i.e., a normalization of the cumulative effect). Our

primary objective is to obtain an estimate for each group. Under Assumption 5 we can drop

the subscript j that identifies the group and focus on analyzing each multivariate time series

separately. Even though the goal of the empirical analysis is to estimate the heterogeneous

effect on each pair of products, the definitions below are given for a general multivariate case

where units define groups of size d > 2. Furthermore, under Assumption 1 we can restrict to

t > t∗ and drop the subscript t from the treatment assignment.

10Also, every store brand has its own specific direct competitor, thus the possibility that the same good
belongs to more than one pair is ruled out.
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Definition 3 (General effects) For w,w′ ∈ {0, 1}d, the general causal effect of an assign-

ment w compared to an alternative assignment w′ at a given time point is

τ t(w; w′) = (τ
(1)
t (w; w′), . . . , τ

(d)
t (w; w′)) (13)

= (Y
(1)
t (w)−Y

(1)
t (w′), . . . ,Y

(d)
t (w)−Y

(d)
t (w′)) = (Yt(w)−Yt(w

′)).

The cumulative general causal effect at time point t > t∗ is

∆t(w; w′) =
t∑

s=t∗

τ s(w; w′). (14)

The temporal average general causal effect at time point t is

τ̄ t(w; w′) =
1

t− t∗
t∑

s=t∗+1

τ s(w; w′) =
∆t(w; w′)

t− t∗
. (15)

Example 2 In our empirical application we have a bivariate outcome, with d = 2, and {0, 1}2 =

{(0, 0), (0, 1), (1, 1), (1, 0)}. Then, τ t((1, 0); (0, 0)) = Yt(1, 0) −Yt(0, 0) is the change in units

sold when only the store brand gets a discount compared to the alternative scenario where none

of them receive a discount.

The general effects can be viewed as the multivariate versions of the pointwise effects defined

in Section 3.2. We can combine the general causal effects to define the marginal causal effect

that captures the impact of changing a single unit within a group across all possible treatment

combinations the group could have received.

Definition 4 (Marginal effects) Let Ai ⊂ {0, 1}d be the subset of all treatment paths w such

that w(i) = 1 and Bi ⊂ {0, 1}d be the subset of all treatment paths w′ such that w(i) = 0. The

marginal causal effect on the ith series at a given time point is the sum of the ith elements of

τ t(w; w′) computed across all the possible realizations in Ai × Bi,

τt(i) =
∑

(w,w′)∈A×B

τ
(i)
t (w; w′). (16)

The cumulative marginal causal effect at time point t > t∗ is

∆t(i) =
t∑

s=t∗+1

τs(i). (17)

The temporal average marginal causal effect at time point t is
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τ̄t(i) =
1

t− t∗
t∑

s=t∗+1

τs(i) =
1

t− t∗
∆t(i). (18)

Now, let NAi×Bi denote the total number of possible assignments in Ai×Bi; the mean marginal

causal effect can be defined as,

τt(i, NAi×Bi) =
1

NAi×Bi

∑
(w,w′)∈Ai×Bi

τ
(i)
t (w; w′). (19)

The cumulative and temporal average mean marginal effects can be then derived as in equations

(17) and (18).

The marginal causal effect captures the impact of assigning the ith unit to treatment, aver-

aged over all possible interventions that could have been applied to the other units. Thus,

the marginal effect can be considered an extension to the time series setting of the average

distributional shift effect in Sävje et al. (2020), with one main difference: the average distri-

butional shift effect is averaged across units whereas the marginal effect is individual-specific

and, in its temporal average version, it is averaged across times. We could make this effect

slightly more general by introducing non-stochastic weights in the summation to up-weight or

down-weight particular treatment combinations. However, this makes the notation somewhat

more cumbersome without adding new insights.

Example 3 Suppose that we are interested in estimating the marginal effect of the active

treatment on the store brand, then A = {(1, 0), (1, 1)}, B = {(0, 0), (0, 1)}, and A × B =

{(1, 0)(0, 0); (1, 0)(0, 1); (1, 1)(0, 0); (1, 1)(0, 1)}. Furthermore, denoting the store and competi-

tor brand with i = s and i = c, τ t(w; w′) = (τ
(s)
t (w; w′), τ

(c)
t (w; w′)) and hence,

τt(s) = τ
(s)
t ((1, 0); (0, 0)) + τ

(s)
t ((1, 0); (0, 1)) + τ

(s)
t ((1, 1); (0, 0)) + τ

(s)
t ((1, 1); (0, 1)). Finally, the

mean marginal effect of the active treatment on the store brand is τt(s, 4) = 1/4 · τt(s).

A special case of the general causal effect is the conditional causal effect that fixes the treatments

for all units within the group except for the ith unit.

Definition 5 (Conditional effects) For w ∈ {0, 1}d−1, the conditional causal effect at a

given time point is the effect of assigning the ith series to treatment as opposed to control, fixing

the treatments of the other series to equal w

τ †t(i,w) = Yt((w1, . . . ,wi−1, 1,wi, . . . ,wd−1))−Yt((w1, . . . ,wi−1, 0,wi, . . . ,wd−1)). (20)

Similar to the marginal and mean marginal causal effects, we can define the cumulative and

temporal average conditional causal effect at time point t > t∗.
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The conditional effect can also be seen as the generalization to the time-series setting of the

assignment-conditional unit-level treatment effect in Sävje et al. (2020).

Example 4 The general effect defined in Example 2 is already a conditional effect, since it

measures the impact of the permanent reduction on the store brand given that the competitor is

always assigned to control. However, we may also be interested in the conditional effect of the

permanent price reduction on the store brand when the competitor brand is discounted as well,

that is, w = (1, 1), w′ = (0, 1) and τ †t(s, (1, 1)) = Yt(1, 1)−Yt(0, 1).

4.3 Multivariate Bayesian Structural Time Series

We now outline our approach for estimation and inference of the causal effects defined in

Section 4.2. We begin by deriving the multivariate Bayesian structural time series models

(MBSTS), which are the multivariate extensions of the models used by Brodersen et al. (2015)

and Papadogeorgou et al. (2018). Like their univariate versions, MBSTS models are flexible

and allow for a transparent way to deal with uncertainty. Flexibility comes from our ability to

add sub-components (e.g., trend, seasonality, and cycle) that encapsulate the characteristics of

a data set. Uncertainty is quantified through the posterior distribution, which we derive and

provide a sampling algorithm.

Estimation in this approach has two steps: first, we estimate an MBSTS model for each pair

in the period up to the intervention, t ∈ {1, . . . , t∗}; then, we estimate the target causal effects

by forecasting the unobserved potential outcomes in the period following the intervention,

t ∈ {t∗ + 1, . . . , T}. This section mirrors the two steps by first describing the model priors and

posterior inference followed by the forecast and inference step.

Throughout this section, we employ random matrices to simplify the notation and subsequent

posterior inference by allowing us to avoid matrix vectorization. Recalling the notation in-

troduced by Dawid (1981), let Z be an (n × d) matrix with standard normal entries, then Z

follows a standard matrix Normal distribution, written Z ∼ N (In, Id), where In and Id are

(n× n) and (d× d) identity matrices (the entries of Z are, therefore, independent). Through-

out this section, Y ∼ N (M,Λ,Σ) indicates that Y follows a matrix normal distribution with

mean M, row variance-covariance matrix Λ and column variance-covariance matrix Σ. Finally,

a d-dimensional vector (n = 1) following a multivariate standard Normal distribution will be

indicated as Z ∼ Nd(0, Id) and IW(ν,S) will denote an Inverse-Wishart distribution with ν

degrees of freedom and scale matrix S.

To improve readability of the model equations, we use Yt to indicate Yt(w). We resume the

usual notation in Section 4.3.5.
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4.3.1 The model

Two equations define the MBSTS model. The first one is the “observation equation” that

links the observed data Yt to the state vector αt that models the different components in the

data (such as, trend, seasonal, or cycle). We also allow for covariates’ presence to increase the

counterfactual series’ prediction accuracy in the absence of intervention. The second one is the

“state equation” that determines the state vector’s evolution across time.

Yt︸︷︷︸
1×d

= Zt︸︷︷︸
1×m

αt︸︷︷︸
m×d

+ Xt︸︷︷︸
1×P

β︸︷︷︸
P×d

+ εt︸︷︷︸
1×d

, εt ∼ Nd(0, HtΣ)

αt+1︸︷︷︸
m×d

= Tt︸︷︷︸
m×m

αt︸︷︷︸
m×d

+ Rt︸︷︷︸
m×r

ηt︸︷︷︸
r×d

, ηt ∼ N (0,Ct,Σ), α1 ∼ N (a1,P 1,Σ) (21)

Where, for all t ≤ t∗, αt is matrix of the m states of the d different time series and α1 is the

starting value; Zt is a vector selecting the states entering the observation equation; Xt is a vector

of regressors;11 β is matrix of regression coefficients; and εt is a vector of observation errors.

For the state equation, ηt is a matrix of the r state errors (if all states have an error term, then

r = m); Tt is a matrix defining the equation of the states components (e.g. in a simple local

level model Tt = 1); and Rt is a matrix selecting the rows of the state equation with non-zero

error terms. Under our specification, we assume that εt and ηt are mutually independent and

independent of α1. We denote variance-covariance matrix of the dependencies between the

time series by

Σ =


σ2
1 σ12 · · · σ1d

σ21 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d

 .
Ht is the variance of the observation error at time t; to simplify notation we can also define

Σε = HtΣ. Finally, Ct is an (r×r) matrix of dependencies between the states disturbances and

since we are assuming that different states are independent, Ct is a diagonal matrix. Indeed,

we can also write ηt ∼ Nd(0,Qt) where Qt is the Kronecker product of Ct and Σ, denoted by

Qt = Ct ⊗ Σ. Furthermore, different values in the diagonal elements of Ct allows each state

disturbance to have its own (d× d) variance-covariance matrix Σr.
12 In short,

11Notice that this parametrization assumes the same set of regressors for each time series but still ensures
that the coefficients are different across the d time series.

12The notation HtΣ and crΣ allows to understand that the dependence structure between the d series is the
same for both εt and ηt; furthermore, when Ht and Ct are known, the posterior distribution of αt is available
in closed form (West and Harrison, 2006). Instead, we employ a simulation smoothing algorithm to sample from
the posterior of the states and in Section 4.3.3 we derive posterior distributions for Σε and Σr in the general
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Q = Ct ⊗Σε =


c1Σ 0 · · · 0

0 c2Σ · · · 0
...

...
. . .

...

0 0 · · · crΣ

 =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · Σr

 .
To build intuition for the different components of the MBSTS model, we find it is useful to

consider an example of a simple local level model.

Example 5 The multivariate local level model is characterized by a trend component evolving

according to a simple random walk, no seasonal is present, and both the disturbance terms are

assumed to be Normally distributed.

Yt = µt + εt εt ∼ Nd(0, HtΣ) (22)

µt+1 = µt + ηt,µ ηt,µ ∼ Nd(0, c1Σ)

We can recover the general formulation outlined in (21) by setting αt = µt and Zt = Tt =

Rt = 1. Figure 9, provides a graphical representation of what a sample from this model would

look like when d = 2.

Figure 9: The plot shows 200 observations (e.g., number of units sold of a specific item) sampled
from a multivariate local level model with d = 2.

case of unknown Ht and Ct.
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4.3.2 Prior elicitation

The unknown parameters of Model (21) are the variance-covariance matrices of the error terms

and the matrix of regression coefficients β. Since we assume that both the observation and state

errors are normally distributed, for their variance-covariance matrices, we choose the conjugate

Inverse-Wishart distributions.

Generally, the MBSTS model can handle dynamic covariate coefficients. However, in our em-

pirical application we believe that the relationship between covariate and the outcome is stable

over time, and so we use a matrix normal prior, β ∼ N (b0,H,Σε).

In many applications, we have a large pool of possible controls but believe that only a small

subset is useful. We can incorporate such a sparsity assumption by setting b0 = 0 and intro-

ducing a selection vector % = (%1, . . . , %P )′ such that %p ∈ {0, 1}, p ∈ {1, . . . , P}. Then, βp = 0

when %p = 0, meaning that the corresponding row of β is set to zero and that we are eliminat-

ing regressor Xp from our model. When %p = 1 then βp 6= 0, meaning that we are including

regressor Xp in our model. This is known as Spike-and-Slab prior and it can be written as

Pr(β,Σε,%) = Pr(β%|Σε,%) Pr(Σε|%) Pr(%).

We assume each element in % to be an independent Bernoulli distributed random variable with

parameter π.

Indicating with θ = (νε, νr,Sε,Sr,X1:t∗) the vector of known parameters and matrices and

denoting with X% and H% the selected regressors and the variance-covariance matrix of the

corresponding rows of β, the full set of prior distributions at time t ≤ t∗ is,

%|θ ∼
P∏
p=1

%p(1− π)1−%p ,

Σε|%,θ ∼ IW(νε,Sε),

β%|Σε,%,θ ∼ N (0,H%,Σε),

αt|Y1:t−1,Σε,Σr,θ ∼ N (at,P t,Σ),

Σr|θ ∼ IW(νr,Sr).

For the elicitation of prior hyperparameters, Brown et al. (1998) suggest setting νε = d + 2,

which is the smallest integer value such that the expectation of Σε exists. We use a similar

strategy for νr. As for the scale matrices of the Inverse-Wishart distributions, in our empirical

analysis we set
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Sε = Sr =

[
s21 s1s2ρ

s1s2ρ s22

]
,

where, s21,s
2
2 are the sample variances of the store and the competitor brand respectively and ρ is

a correlation coefficient that can be elicited by incorporating our prior belief on the dependence

structure of the two series. Finally we set H% = (X′%X%), which is the Zellner’s g-prior (Zellner

and Siow, 1980).

4.3.3 Posterior Inference

Let Ỹ1:t∗ = Y1:t∗ − Z1:t∗α1:t∗ indicate the observations up to time t∗ with the time series

component subtracted out. We can derive the following full conditional distributions as,

β%|Ỹ1:t∗ ,Σε,%,θ ∼ N (M,W,Σε), (23)

Σε|Ỹ1:t∗ ,%,θ ∼ IW(νε + t∗,SSε), (24)

Σr|η(r)
1:t∗ ,θ ∼ IW(νr + t∗,SSr), (25)

where M = (X′%X%+H−1% )−1X′%Ỹ1:t∗ , W = (X′%X%+H−1% )−1, SSε = Sε+Ỹ′1:t∗Ỹ1:t∗−M′W−1M,

SSr = Sr + η
′(r)
1:t∗η

(r)
1:t∗ and η

(r)
1:t∗ indicates the disturbances up to time t∗ of the r-th state. Full

proof of relations (23),(24) and (25) is given in Appendix B.3.

To sample from the joint posterior distribution of the states and model parameters we employ

a Gibbs sampler in which we alternate sampling from the distribution of the states given the

parameters and sampling from the distribution of the parameters given the states (see Algorithm

1 in Appendix B.3).

4.3.4 Prediction and estimation of causal effects

Given the draws from the joint posterior distribution of states and model parameters, we can use

them to make in-sample and out-of-sample forecasts by drawing from the posterior predictive

distribution. This process is particularly straightforward for in-sample forecasts.

Let ϑ = (α1:t∗ ,β%,Σε,Σr,%) be the vector of states and model parameters. To sample a new

vector of observations Ynew
1:t∗ given the observed data Y1:t∗ , we note that,

Pr(Ynew
1:t∗ |Y1:t∗) =

∫
Pr(Ynew

1:t∗ ,ϑ|Y1:t∗)dϑ =

∫
Pr(Ynew

1:t∗ |Y1:t∗ ,ϑ) Pr(ϑ|Y1:t∗)dϑ (26)

=

∫
Pr(Ynew

1:t∗ |ϑ) Pr(ϑ|Y1:t∗)dϑ (27)
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where the last equality follows because Ynew
1:t∗ is independent of Y1:t∗ conditional on ϑ. We

can, therefore, obtain in-sample forecasts from the posterior predictive distribution by using

the draws from Pr(ϑ|Y1:t∗) that were obtained through the Gibbs sampler and substitute them

in the model equations (21). We typically use in-sample forecasting for performing model

checking.

To predict the counterfactual time series in the absence of an intervention, we need out-of-

sample forecasts. Drawing from the predictive posterior distribution is still relative straightfor-

ward, except the new samples are no longer independent of Y1:t∗ given ϑ. To see this, consider

the vector ϑ′ = (αt∗+k, . . . ,αt∗+1,ϑ). Then,

Pr(Yt∗+k|Y1:t∗) =

∫
Pr(Yt∗+k,ϑ

′|Y1:t∗)dϑ
′ =

∫
Pr(Yt∗+k,αt∗+k, . . . ,αt∗+1,ϑ|Y1:t∗)dϑ

′ =

=

∫
Pr(Yt∗+k|αt∗+k, . . . ,αt∗+1,ϑ,Y1:t∗) Pr(αt∗+k|αt∗+k−1, . . . ,αt∗+1,ϑ,Y1:t∗) · · ·

· · ·Pr(αt∗+1|Y1:t∗ ,ϑ) Pr(ϑ|Y1:t∗)dϑ
′.

To make out-of-samples forecasts, respecting the dependence structure highlighted above, we

substitute the existing draws from Pr(ϑ|Y1:t∗), obtained by the Gibbs sampler, into the model

equations (21), thereby updating the states and sampling the new sequence Yt∗+1, . . . ,Yt∗+k.

4.3.5 Causal effect estimation

We can now estimate the causal effects defined in Section 4.2 by using the MBSTS models to

predict the missing potential outcomes. In particular, we derive the posterior distribution of

the general causal effect given in equation (13) ; the other two effects are simply functions or

special cases of the general causal effect.

Let Pr(Yt(w)|Yt∗(w)) and Pr(Yt(w
′)|Yt∗(w

′)) with t > t∗ be the out-of-samples draws from

the posterior predictive distribution of the outcome under the treatment assignments w,w′ ∈
{0, 1}d. Then,

Pr(τ t(w; w′)|Y1:t∗(w),Y1:t∗(w
′)) = Pr(Yt(w)|Y1:t∗(w))− Pr(Yt(w

′)|Y1:t∗(w
′)) (28)

is the posterior distribution of the general causal effect τ t(w; w′) and it is the difference between

the posterior predictive distributions of the outcome under the two alternative treatment paths.

Then, the posterior distributions of the cumulative general effect and the temporal average

general effect at t > t∗ can be derived from (28) as follows:

Pr(∆t(w; w′)|Y1:t∗(w),Y1:t∗(w
′)) =

t∑
s=t∗+1

Pr(τ s(w; w′)|Y1:t∗(w),Y1:t∗(w
′)), (29)
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Pr(τ̄ t(w; w′)|Yt∗(w),Yt∗(w
′)) =

1

t− t∗
Pr(∆t(w; w′)|Yt∗(w),Yt∗(w

′)). (30)

Having the posterior distributions of the causal effects, we can easily compute posterior means

and 95% credible intervals.

Notice that 28 - 30 do not require Yt(w) or Yt(w
′) to be observed. However, estimation of un-

observed potential outcomes other than Yt(0, . . . , 0) requires a strong set of model assumptions,

and as such is often less reliable. In our application, we are mostly interested in estimating the

general effect τ̂ t((1, 0); (0, 0)) = Yt(1, 0) − Yt(0, 0), where Yt(1, 0) is the observed outcome.

The marginal and the conditional effects are of secondary importance and are included in the

latter part of the analysis.

In practice, to obtain reliable estimates of the causal effects, the assumed model has to ade-

quately describe the data. We therefore recommend to check model adequacy through the use

of posterior predictive checks (Rubin, 1981, 1984; Gelman et al., 2013). Under our setup, we can

also show that the above procedure yields unbiased estimates of the general causal effect, and,

in turn, of the marginal and conditional effects. A detailed description of posterior predictive

checks and the discussion of the frequentist properties of our estimators are given, respectively,

in Appendix B.5 and B.4.

4.3.6 Combining results

Even though the main goal of the empirical analysis is estimating the heterogeneous effect on

each cookie pair, it is possible to combine the results of all pairs and estimate an average effect.

One way to accomplish this goal is through the use of meta-analysis. Indeed, as the number of

time series increases, the estimation of a multivariate Bayesian model becomes computationally

inefficient.

Meta-analysis is the statistical synthesis of the results obtained from multiple scientific studies

and is often applied in the setting of a single study with multiple independent subgroups

(Borenstein et al., 2011). For example, in a study investigating the effect of a drug, the

researcher may divide the participants in different groups according to the stage of the disease;

in our application, the subgroups are the cookie pairs. We then treat each pair as an independent

study and follow the standard steps in a meta-analysis, described below.

One basic meta-analysis approach is computing the summary effect as a weighted average of

point estimates (i.e., the results of the individual studies) with weights based on the estimated

standard errors. The main caveat of this approach is the inherent dependence on the sample

size: a small number of studies would result in a loss of precision of the estimated between-

study variance. In such case, we can resort to a fully Bayesian meta-analysis (Smith et al., 1995;

Sutton and Abrams, 2001; Sutton and Higgins, 2008). This approach is based on hierarchical

Bayesian models that assume a distribution on the true effect and place suitable priors on its
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hyperparameters.

The above described methodologies can be used to combine point estimates of multiple inde-

pendent studies. However, by following the estimation process described in this section, we

obtain a posterior distribution of the general causal effect for each analyzed cookie pair. As a

result, combining the estimates of the individual pairs is a lot more intuitive.

For example, let τ̄ j,t(w; w′) be the temporal average causal effect on the j-th cookie pair and

assume we estimated a posterior distribution for each j as in (30). Then, we can define the

summary temporal average effect across all j pairs and its posterior distribution as,

¯̄τ t(w; w′) =
1

J

J∑
j=1

τ̄ j,t(w; w′), (31)

Pr(¯̄τ t(w; w′)|Y1:t∗(w),Y1:t∗(w
′)) =

1

J

J∑
j=1

Pr(τ̄ j,t(w; w′)|Y1:t∗(w),Y1:t∗(w
′)). (32)

In words, to combine the estimated temporal average effect of the individual cookie pairs we

can directly average across their posterior distributions.

4.4 Simulation study

We now describe a simulation study exploring the frequentist properties of our proposed ap-

proach for correctly specified models and a misspecified model.

4.4.1 Design

We generate simulated data according to the following MBSTS model:

Yt = µt + γt + Xtβ + εt εt ∼ Nd(0, HtΣ) (33)

µt+1 = µt + ηt,µ ηt,µ ∼ Nd(0, c1Σ)

γt+1 = −
S−2∑
s=0

γt−s + ηt,γ ηt,γ ∼ Nd(0, c2Σ)

Where Yt = (Y1,Y2) is a bivariate time series, µt is a trend component evolving according

a random walk and γt is a seasonal component with period S = 7. We further set Ht = 1,

c1 = 3, c2 = 2 and Σ =

[
1 −0.3

−0.3 1

]
. We then assume a regression component formed by

two covariates, X1,t = 1 − γ1t + u1,t, where γ1 = 0.01, u1,t ∼ N(0, 0.5), and X2,t = u2,t, where

u2,t ∼ N(2, 0.3) while β is sampled from a matrix-normal distribution with mean b0 = 0 and

H = IP .
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To estimate the causal effect, we use two different models for inference: a correctly specified

model with both trend and seasonal components (M1) and a misspecified model with only

the seasonal part (M2). For both models we choose the following set of hyperparameters:

νε = νr = 4; Sε = Sr = 0.2

[
s21 s1s2ρ

s1s2ρ s22

]
, where s21 and s22 are the sample variances of,

respectively, Y1 and Y2 and ρ = −0.8 is a correlation coefficient reflecting our prior belief of

their dependence structure; and Zellner’s g-prior for the variance-covariance matrix of β.

To make our simulation close to our empirical application, we generated 1, 000 data sets in

a fictional time period starting January 1, 2018 and ending June 30, 2019. We model the

intervention as taking place on January 2, 2019, and assume a fixed persistent contemporaneous

effect; for example, the series goes up by +10% and stays at this level throughout. To study the

empirical power and coverage, we tried 5 different impact sizes ranging from +1% to +100%

on Y1 and from −1% to −90% on Y2. After generating the data, we estimated the effects

using both M1 and M2, for a total of 2, 000 estimated models in the pre-intervention period

(one for each data set and model type), each having 1, 000 draws from the resulting posterior

distribution. Finally, we predicted the counterfactual series in the absence of intervention for

three-time horizons, namely, after 1 month, 3 months, and 6 months from the intervention, for

a total of 30, 000 estimated effects (one for each data set, model type, impact size and time

horizon).

We evaluate the performance of the models in terms of:

1. length of the credible intervals around the temporal average general effect τ̄t((1, 0); (0, 0));

2. absolute percentage estimation error, computed as

|ˆ̄τt((1, 0); (0, 0))− τ̄t((1, 0); (0, 0))|
τ̄t((1, 0); (0, 0))

;

3. interval coverage, namely, the proportion of the true pointwise effects covered by the

estimated 95% credible intervals.

We focus on the percentage estimation error because without normalizing the bias different ef-

fect sizes are not immediately comparable. To see this, consider that a small bias for estimating

a substantial effect is better than that same bias when trying to estimate a small effect.

4.4.2 Results

Tables 6 reports the average interval length under M1 and M2 for all effect sizes and time

horizons. As expected, the length of credible intervals estimated under M1 increases with

the time horizon. In contrast, for M2, the interval length is stable across time as the model

lacks a trend component and assumes a certain level of stability. Figure 10 shows the absolute
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percentage errors for the first time horizon. We see, unsurprisingly, that it decreases as the

effect size increases. This suggests that small effects are more difficult to detect. To confirm this

claim, in Figure 11, we report the percentage of times we detect a causal effect over the 1, 000

simulated data sets. Under M1 for the two smallest effect sizes—which exhibit the highest

estimation errors—we rarely correctly conclude that a causal effect is present. However, when

the effect size increases we can detect the presence of a causal effect at a much higher rate.

The results under M2 are somewhat counterintuitive as, even though the model is misspecified,

smaller effects are more easily detected. This phenomenon occurs primarily because of the

smaller credible intervals; that is, for small effect sizes, our results are biased with low variance,

which means we often conclude there is an effect.

Finally, Table 7 reports the average interval coverage under M1 and M2. The coverage under M2

ranges from 82.0% to 88.6%, which is lower than the desired 95%. In contrast, the frequentists

coverage under M1 is at the nominal 95% for both Y1 and Y2.

Overall, the simulation results suggest that when the model is correctly specified, the proposed

approach performs well in estimating the causal effect of an intervention. Conversely, when the

model is misspecified, the estimation error increases and the credible intervals do not achieve

the required coverage. Although the results are likely to still provide practitioners with useful

insights.

In practice, we recommend testing the adequacy of our model before performing substantive

analysis by using posterior predictive checks. Figures 12 and 13 provide examples results

obtained under M1 and Figures 14 and 15 show the posterior predictive checks under both M1

and M2. From their observation we can immediately see that M1 yields a better approximation

of the empirical density of the simulated data and lower residual autocorrelation than M2.

Table 6: Length of credible intervals around the temporal average general effect, τ̄ t((1, 0); (0, 0))
estimated under M1 and M2 for each effect size and time horizon.

1 month 3 months 6 months

τ̄ t((1, 0); (0, 0)) Y1 Y2 Y1 Y2 Y1 Y2

M1

(+1%,−1%) 20.93 21.10 27.62 27.80 46.58 46.28
(+10%,−10%) 21.34 21.37 28.09 28.15 46.98 46.89
(+25%,−25%) 21.33 21.30 28.18 28.09 47.11 46.97
(+50%,−50%) 21.30 21.31 28.11 28.11 47.02 46.91
(+100%,−99%) 21.38 21.25 28.24 28.06 47.12 46.90

M2

(+1%,−1%) 30.39 30.39 30.40 30.41 30.48 30.47
(+10%,−10%) 30.48 30.48 30.50 30.50 30.57 30.58
(+25%,−25%) 30.48 30.46 30.51 30.49 30.60 30.58
(+50%,−50%) 30.45 30.43 30.47 30.46 30.55 30.54
(+100%,−99%) 30.49 30.49 30.52 30.51 30.60 30.57
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Figure 10: Average absolute percentage error (± 2 s.e.m) at the first time horizon under M1 (blue)
and M2 (orange) for the impact sizes ≥ 10% (Y1) and ≤ −10% (Y2).

Figure 11: Average proportion of credible intervals excluding zero (± 2 s.e.m) at the first time
horizon under M1 (blue) and M2 (orange) for all impact sizes.

Table 7: Interval coverage under M1 and M2 for each effect size and time horizon.

1 month 3 months 6 months

τ̄ t((1, 0); (0, 0)) Y1 Y2 Y1 Y2 Y1 Y2

M1

(+1%,−1%) 96.0 95.0 96.1 95.3 96.0 96.3
(+10%,−10%) 95.9 94.9 96.0 95.2 95.9 96.3
(+25%,−25%) 96.0 95.0 96.0 95.3 96.0 96.2
(+50%,−50%) 96.1 94.9 96.1 95.2 96.1 96.2
(+100%,−99%) 95.9 95.0 96.1 95.3 96.0 96.3

M2

(+1%,−1%) 86.8 88.4 85.5 87.2 82.0 84.6
(+10%,−10%) 87.0 88.5 85.7 87.3 82.1 84.7
(+25%,−25%) 87.0 88.6 85.7 87.3 82.1 84.7
(+50%,−50%) 86.9 88.6 85.6 87.3 82.0 84.7
(+100%,−99%) 86.9 88.6 85.7 87.3 82.1 84.6
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Figure 12: For one of the simulated data sets at 6-month horizon, the figure plots: (a) simulated
time series assuming an effect size of +50% (orange) vs true counterfactual series generated under
model (33) (blue); (b) true counterfactual vs predicted counterfactual series under M1; (c) true effect
(black dashed line) vs the inferred effect under M1.

Figure 13: For one of the simulated data sets at 6-month horizon, the figure plots: (a) simulated
time series assuming an effect size of −50% (orange) vs true counterfactual series generated under
model (33) (blue); (b) true counterfactual vs predicted counterfactual series under M1; (c) true effect
(black dashed line) vs the inferred effect under M1.

Figure 14: Posterior predictive checks under M1 for Y1 (first row) and Y2 (second row) for one of
the simulated data sets. Starting from the left: i) density of observed data (black) plotted against the
posterior predictive mean (blue); ii) observed maximum compared to the distribution of the maximum
from the posterior draws; iii) Normal QQ-Plot of standardized residuals; iv) autocorrelation function
of standardized residuals.
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Figure 15: Posterior predictive checks under M2 for Y1 (first row) and Y2 (second row) for one
of the simulated data sets. Starting from the left: i) density of observed data plotted against the
posterior predictive mean; ii) observed maximum compared to the distribution of the maximum from
the posterior draws; iii) Normal QQ-Plot of standardized residuals; iv) autocorrelation function of
standardized residuals.

4.5 Empirical analysis

We now describe the results of our empirical application where we analyze a marketing cam-

paign run by an Italian supermarket chain in its Florence’s stores. The campaign consisted of

introducing a permanent price reduction on a selected subset of store brands. The main goal

of the policy change was to increase the customer base and sales. The policy change affected

707 products in several categories; below, we provide the details for the “cookies” category.

4.5.1 Data & methodology

Our data consists of daily sales data for all cookies from September 1, 2017, until April 30,

2019. Our outcome variable is the average units sold per hour—computed as the number of

units sold daily divided by the number of hours that the stores stay open. Unlike the empirical

application in Section 3.5, to further reduce Sundays’ effects, this time we focus on hourly

average sales.

As an example, Figure 24 shows the time series of the average number units sold per hour by one

pair of cookies, their price, and the autocorrelation function. The plots show a strong weekly

seasonal pattern13. The occasional drops in the price series are from temporary promotions

run regularly by the supermarket chain. In our data, the competitor brands are subject to

several promotions during the analysis period. However, those differ from the permanent price

13The same plots for all the remaining store and competitor brands are provided in Appendix A.2.
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reduction on their temporary nature and the regular frequency. As our goal is to evaluate the

effectiveness of the store’s policy change–—a permanent price reduction–—we will not consider

temporary promotions as interventions. There is also considerable visual evidence from the

data that the intervention on the store brands has influenced the competitor cookies’ prices

policy. Indeed, all competitor brands (with the exception of brand 10) received a temporary

promotion matching the time of the intervention, suggesting that competitors may have reacted

to the new policy.14

Under partial temporal no-interference, we fit an MBSTS model for each pair; we also use

covariates to improve the prediction of the counterfactual series. In particular, the set of

regressors include: two dummies taking value 1 on Saturday and Sunday, the former being the

most profitable day of the week, whereas on the latter stores operate reduced hours; a holiday

dummy taking value 1 on the day before and after a national holiday, accounting for consumers’

tendency to shop more before and after a closure day; a set of synthetic controls selected among

one category that did not receive active treatment (e.g., wine sales). Including covariates should

increase prediction accuracy in the absence of intervention, but suitable covariates must respect

two conditions: they should be good predictors of the outcome before the intervention, and

they must satisfy Assumption 6. As a result, the unit prices can not be part of our models;

nevertheless, they are important drivers of sales, especially during promotions (Neslin et al.,

1985; Blattberg et al., 1995; Pauwels et al., 2002). We solved this issue by using a modified

price, which is equal to the actual price up to the intervention, and then it is set equal to the

last price before intervention (which is the most reliable estimate of what would have happened

in the absence of intervention).

Finally, to speed up computations, the set of synthetic controls is selected in two steps: first, we

select the best ten matches among the 260 possible control series in the “wines” category by dy-

namic time warping;15 then, we group them with the other predictors and perform multivariate

Bayesian variable selection.

Each model is estimated in the period before the intervention; then, as described in Section

4.3.4, we predicted the counterfactual series in the absence of intervention by performing out-

of-sample forecasts. Next, we estimate the intervention’s causal effect at three different time

horizons: one month, three months, and six months from the treatment day. This allows us to

determine whether the effect persists over time or quickly disappears.

14See Figure 33 in Appendix A.2.
15Dynamic time warping (DTW) is a technique for finding the optimal alignment between two time series.

Instead of minimizing the Euclidean distance between the two sequences, it finds the minimum-distance warping
path, i.e., given a matrix of distances between each point of the first series with each point of the second series,
contiguous set of matrix elements satisfying some conditions. For further details see Keogh and Ratanamahatana
(2005); Salvador and Chan (2007). Implementation of DTW has been done with the R package MarketMatching
(Larsen, 2019).
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Figure 16: Time series of unit sold daily, price per unit and autocorrelation function for the 6th

pair of cookies (i.e., store brand 6 and the corresponding competitor brand). For the competitor, the
relative price plot shows the ratio between its unit price and the price of the store brand.

4.5.2 Results

We now present the results for the best MBSTS model with both a trend and seasonality

component. Our posterior predictive checks selected this model, see Appendix A.2 for the

details and for a description of the other models tried. Convergence diagnostics are provided

in Appendix B.7.

The estimates of the temporal average general effect are reported in Table 8, which reveals the

presence of three significant causal effects — where the 95% credible intervals do not include

0 — on the store brands belonging to pairs 4,7 and 10 at the first time horizon. Interestingly,

we do not find a significant effect on the competitor brands in the same pairs, most likely

because, during the intervention period, competitor brands were subject to multiple temporary

promotions that might have reduced the negative impact of the permanent discount on store

brands. Furthermore, Italian supermarket chains have introduced store brands products only

in recent years; so, despite the price reduction on store brand cookies, some consumers may

still prefer the competitor cookie because of subjective factors, such as brand loyalty. Another

important result is that after the initial surge in sales, we cannot detect a significant effect

for longer time horizons. Figure 17 plots the general effect τ̂ t((1, 0); (0, 0)) for the fourth pair

at each time horizon, that is, the difference between the observed series and the predicted

counterfactual computed at every time point. See Appendix A.2 for additional plots.

Overall, these results suggest that the policy change had a minor impact on the store brands’

sales. Furthermore, since we do not detect an effect after the first month, it seems that this

intervention failed to significantly and permanently impact sales. Of course, as we showed in

the simulation study, there could have been a small effect that our model was unable to detect.

However, since the company needed a significant boost in sales to make up for the loss in profits

due to the price reduction, we can conclude that this policy was not effective. This result is

robust to different prior assumptions, see Appendix B.6 for a detailed sensitivity analysis. In
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particular, we obtain similar results when, instead of using the individual prices, we include

among the predictors the difference in price or the price ratio between the store and competitor

brand (see Tables 17 and 18 in Appendix A.1).

As discussed in the introduction, we could have analyzed the data by aggregating the sales

of store and competitor brands and treating each aggregate as a univariate time series. This

procedure, however, leads to a loss of information, providing misleading results that could drive

the analyst to make the wrong decision. To show that, we estimated the causal effect using

the univariate BSTS models on a range of different aggregated sales. We report the results for

three: the average sales of the brands in the same pair, the average sales of all store brands,

and the average sales of all store and competitor brands. The average is computed as the

total number of units sold daily by all products in the aggregate divided by the opening hours.

Notice that we did not consider the aggregate of the competitor brands alone. This is because

it would have required the prediction of the counterfactual series under treatment.

Like the multivariate analysis, for each aggregate, we used a model that contained a trend and

seasonality component as well as a set of covariates. The covariates included the three dummies

(described earlier), aggregate sales of all wines, and the prior price—computed by averaging the

prior prices of all cookies in each aggregate. Table 9 shows the results of the univariate analysis.

We find evidence of a positive effect on the tenth pair at the first and second-time horizons and

a positive effect on the eighth pair at the first horizon. In addition, the estimated effects on

the store brands aggregate and the store-competitor aggregate are both positive and significant

for the first time horizon. To provide a comparison with these last two aggregates, Table 9

reports the summary temporal average effect on all cookie pairs obtained by combining the

individual estimates with a meta-analysis, as described in Section 4.3.6. The summary effect

on the store brands is positive and significant at the first time horizon and, interestingly, it is

in line with the estimated effect on the store brands aggregate from the univariate analysis.

However, with a univariate analysis we are not able to isolate the effect on the competitor

brands and we would have erroneously concluded that the new policy had a positive impact on

the store-competitor aggregate, whereas the meta-analysis shows that the effect on competitor

brands is not significant. Overall, despite a similar result for the tenth pair, however, we would

have reached wrong conclusions for pairs 4,7 and 8, and we would have reported the misleading

finding of an overall positive impact on the sales of store-competitor aggregate.

To further illustrate all the different types of effects that it is possible to estimate in a multivari-

ate setting, we estimated the mean marginal effect and the conditional effect ˆ̄τ t((1, 1); (0, 1)).

Ultimately, we found three significant marginal effect on the sales of store brands but there is

no evidence that the new price policy has had an effect in a scenario where both cookies in

pairs are treated compared to the scenario where only the competitor brand is treated. The

results are given in Table 15 and Table 16 in Appendix A.1.
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Figure 17: General causal effect of the permanent price reduction on the fourth store-competitor
pair at 1 month, 3 months and 6 months after the intervention.

Table 8: Posterior mean and 95% credible intervals of the temporal average general causal effects of
the new price policy on the ten store (s) - competitor (c) pairs computed at three time horizon. In
this table, ˆ̄τ t stands for the general effect ˆ̄τ t((1, 0), (0, 0)). There is evidence of a causal effect when
the credible intervals do not include zero.

Time horizon:

1 month 3 months 6 months
Pair ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 6.97 −24.25 38.47 4.68 −44.00 53.61 6.99 −65.91 79.55
c 24.89 −101.30 153.64 17.49 −193.06 219.08 5.09 −307.48 309.00

(2)
s 7.02 −14.79 28.90 4.92 −30.20 38.56 6.56 −44.17 58.01
c 14.71 −62.26 99.44 8.92 −119.33 144.72 0.92 −205.51 201.82

(3)
s 7.94 −14.08 32.26 5.30 −31.95 41.38 7.82 −48.46 62.50
c 15.42 −62.17 90.81 11.06 −113.64 132.60 4.84 −189.44 197.55

(4)
s 47.84 4.71 96.82 22.65 −52.13 96.38 23.73 −88.10 131.67
c 28.86 −77.93 135.93 20.91 −151.05 190.01 11.20 −256.88 279.74

(5)
s 4.11 −46.65 54.64 7.57 −76.37 91.02 11.75 −111.67 136.65
c 45.47 −63.13 154.24 16.68 −156.03 188.67 9.42 −263.47 280.16

(6)
s 9.53 −14.45 33.68 11.76 −28.33 51.70 13.58 −45.97 74.20
c 25.64 −37.88 93.36 6.71 −104.80 113.12 4.13 −163.82 164.96

(7)
s 78.19 0.15 154.08 34.45 −82.11 151.65 29.48 −149.12 206.10
c 182.70 −221.16 600.08 102.61 −581.90 769.52 80.62 −951.26 1069.94

(8)
s 25.23 −28.60 78.16 23.34 −67.87 109.37 17.07 −115.20 145.12
c 15.91 −15.15 47.53 6.03 −44.60 60.30 3.82 −73.60 82.80

(9)
s 40.29 −9.84 90.38 15.37 −64.38 97.76 12.07 −108.11 136.44
c 17.17 −30.76 68.56 1.20 −79.88 84.48 2.81 −118.55 127.05

(10)
s 12.43 1.35 23.64 9.64 −8.07 27.98 5.30 −22.02 32.67
c 0.04 −9.36 9.79 1.92 −13.22 17.72 4.00 −18.33 27.03
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Table 9: Univariate temporal average causal effect (ˆ̄τt) at three time horizons of the new price policy
on: i) aggregated sales (pairs 1-10); ii) the store brands aggregate (SA); iii) the store - competitor ag-
gregate (SCA). The last two lines show, separately for the store brands (META-S) and the competitor
brands (META-C), the summary temporal average effect combined with a meta-analysis. There is
evidence of a causal effect when the credible intervals do not include zero.

Time horizon:

1 month 3 months 6 months
ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5%

pair 1 16.65 −36.89 64.97 12.46 −73.66 93.47 6.97 −115.80 130.39
pair 2 9.85 −25.50 42.76 4.56 −54.77 62.29 −0.24 −85.55 85.37
pair 3 11.20 −29.89 48.21 8.66 −58.13 73.73 6.25 −90.95 107.34
pair 4 36.86 −4.18 75.70 22.78 −46.31 87.32 18.50 −76.66 119.12
pair 5 29.05 −40.13 88.51 11.51 −102.42 121.54 10.70 −158.37 186.19
pair 6 16.86 −14.59 44.80 4.09 −50.47 57.12 5.40 −74.01 88.53
pair 7 120.86 −129.59 352.65 75.54 −272.11 393.52 57.87 −568.82 687.77
pair 8 20.06 4.95 34.39 12.59 −11.39 36.03 8.91 −25.75 42.42
pair 9 28.58 −0.03 55.95 8.51 −38.36 54.54 9.53 −56.66 78.61
pair 10 7.29 4.19 10.00 6.63 1.64 10.94 5.75 −1.49 12.17

SA 25.01 10.08 39.04 15.04 −8.80 37.56 15.52 −19.30 49.19
SCA 34.56 8.55 58.78 19.98 −20.53 58.62 16.16 −44.40 78.19

META-S 23.95 3.62 45.32 13.97 −18.39 47.89 13.43 −34.05 67.37
META-C 37.08 −34.98 106.39 19.35 −100.10 133.78 12.68 −163.61 184.61

4.6 Discussion

In this section we presented the novel approach CausalMBSTS to estimate causal effects in

panel settings with interference and multiple treated units.

Our approach starts from the discussion of the assumptions, where we addressed the issue

of interference between units by relying on the partial temporal no-interference assumption.

Then, we introduced three classes of estimands focusing on the heterogeneous causal effect and

proposed to estimate them by using Multivariate Bayesian Structural Time Series to forecast the

group outcome in the absence of intervention. Finally, we tested our approach on a simulation

study, and then we used it to re-analyze the permanent price reduction run by the Italian

supermarket chain.

We believe that our approach brings several contributions to the nascent stream of literature

on synthetic control methods in panel settings with interference. First, we derived a wide class

of new causal estimands. Second, MBSTS allows us to model the interference between units in

the same group by explicitly modeling their dependence structure and, simultaneously, ensuring

a transparent way to deal with the surrounding uncertainty. Finally, the approach is flexible,

it allows variable selection (via the addition of a spike-and-slab prior) and the underlying

distributional assumptions can be tested in a very natural way by posterior inference.
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5 Causal effect of multiple interventions

The estimation of causal effects in time series settings under the RCM is notoriously a challeng-

ing task, due to added complications arising from serial dependence and seasonality. Further-

more, it becomes even more complex in the context of observational studies where the analyst

has no control on the assignment mechanism, since the tools commonly used in randomization-

based inference are not available. To complicate things even further, we might be asked to

evaluate the effect of an intervention occurring on multiple units (panel setting) or the effect

of multiple interventions (multi-intervention setting).

In previous Sections 3 and 4 we addressed the issue of an intervention occurring in a panel

setting. First, we conducted inference with a novel approach, C-ARIMA, to estimate the

heterogeneous effect on each statistical unit under the temporal no-interference assumption;

then, we grouped the units on the basis of shared characteristics and modeled their dependence

structure with MBSTS models, thereby explicitly accounting for the interference within each

group.

We now address the multi-intervention setting: to the best of our knowledge, this is the first

attempt to estimate the heterogeneous casual effect of multiple interventions occurring on a

time series in the context of observational studies.

We begin by introducing new classes of causal estimands. Then, to perform inference, we use

the methodology derived in Section 3.3, thereby extending C-ARIMA to estimate causal effects

in a multi-intervention setting. This work is motivated by the analysis of the first two regulated

Bitcoin futures launched in December 2017 with the aim of investigating their possible impact

on Bitcoin volatility.

This section is structured as follows: in Section 5.1 we present the background of the empir-

ical application; the new causal estimands and their estimators are described, respectively, in

Sections 5.2 and 5.3; finally, Section 5.4 illustrates the results of our empirical study.

5.1 Background

Bitcoin is a peer-to-peer payment system created in 2009 under the pseudonym of Satoshi

Nakamoto (Nakamoto, 2008). In contrast to fiat money relying on central banks and inter-

mediaries, Bitcoin is decentralized, meaning that its value is not backed by any central bank.

In short, transaction data are recorded in blocks, each containing a reference (the hash) to

the previous ones, thereby forming a chain know as the blockchain. Transactions are validated

through the so-called mining process, which requires to find the hash by solving a time consum-

ing cryptographic problem. Every time this happens, the new validated block is added to the

chain and miners are rewarded with new Bitcoins. Thus, essentially the blockchain constitutes

an electronic public ledger of validated transactions, which is stored and updated on miner’s
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computers (the network nodes) to avoid double spending problems and frauds. Mining is the

only way new Bitcoins are introduced in the system and their supply is limited by design to

a maximum of 21 million units that will be reached by 2140. More specifically, an algorithm

adjusts the difficulty of the numerical problem based on the network performance, so that new

blocks are generated every 10 minutes; in addition, the number of generated Bitcoins is halved

by design every 210,000 blocks (approximately 4 years). Thus, it can be estimated that by 2140

miners’ reward will be roughly zero.

Bitcoins are traded on multiple exchanges, the top A-rated ones by daily volume being Binance,

Coinbase and Liquid (CryptoCompare, 2020b).16 At the time of writing (December 2020,

timestamp 1608940800) Bitcoin is trading at $25, 503 beating its record-high of $19, 345 reached

on December 16, 2017 (in 2010 1BTC was valued $0.05).

During this time of extreme price fluctuations, a major event that affected the Bitcoin network

is the failure of Mt. Gox, the leading Bitcoin exchange until February 28, 2014 when it filed

for bankruptcy protection after announcing a theft of about 850,000 BTC (the equivalent of

$21.7B as of today price) following a security breach (McLannahan, 2014; Cermak, 2017).

Nonetheless, in 2017 Bitcoin started to rally and it is now breaking all previous records. The

growing interest from investors toward cryptocurrencies, probably contributed to the decision

by two major derivative exchanges of starting a regulated derivative market for Bitcoin futures.

Specifically, on August 2, 2017 CBOE announced its partnership with Gemini Trust Company

to use Gemini’s Bitcoin market data in the creation of derivatives products for trading; the

future was then released on December 10. Meanwhile, CME announced the launch of their

contract becoming effective starting from December 18. Since then, having seen its market

share quickly eroded by the new future (Baydakova, 2019), CBOE has stopped listing additional

Bitcoin futures for trading and after nine months from the release of the first contract, also the

Intercontinental Exchange (ICE) started offering Bitcoin derivatives. Table 10 summarizes the

major events occurring in Bitcoin futures’ history up to December 2017.

In our empirical analysis we focus on the first two contracts launched by CBOE and CME

with the aim of estimating their effect on Bitcoin volatility before expiration.17 Moreover, they

are sufficiently close in time so that we can safely rely in the assumed model specification.

Conversely, if two or more interventions are distant in time, some variables originally unrelated

to the outcome might become relevant after the first intervention and the model would not fit

well to the new observations. Thus, including independent variables can improve the fit and

16In their most recent Exchange Benchmark Report released in July 2020, CryptoCompare rated 165 ex-
changes according to 68 qualitative and quantitative metrics. They show that existing metrics such as volume
or liquidity can be easily manipulated (e.g. volumes can be inflated through strategies such as trading com-
petitions, airdrops and transaction fee mining) and thus are inadequate to reflect the reliability of the trading
venue. For further details regarding these strategies and the rating methodology see CryptoCompare (2020a)

17The first CBOE contract expired on January 17, 2018, while the first CME contract expired on January
26, 2018. Further details in Zuckerman (2018).
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the predictive performance of the assumed model, provided that they are linked to the outcome

and not influenced by the intervention.

In our empirical analysis the outcome variable is Bitcoin volatility; more specifically, based on

available data, we used the Garman-Klass volatility proxy, which is calculated from intraday

Bitcoin prices. Thus, to select suitable covariates, we follow the existing literature on Bitcoin

price drivers. Early works evidence association between Bitcoin price and variables such as

the exchange-trade ratio (i.e. ratio between trade volume and transaction volume), hash rate,

Google and Wikipedia queries and the Shangai index (Kristoufek, 2013, 2015; Bouoiyour and

Selmi, 2015). In a later study, Li and Wang (2017) find a strong association in the later

market (after Mt. Gox failure) between the BTC-USD rate and key economic fundamentals

(US interest rate, USD money supply, Bitcoin money supply and transaction volume); they also

find that technology factors such as mining difficulty and public recognition influence Bitcoin

price only in the early market (before Mt. Gox failure). Similarly, Ciaian et al. (2016) evidence

that market forces of Bitcoin supply and demand are strongly related to Bitcoin price changes

while proxies of public recognition (i.e. views on Wikipedia, new posts and new members on

Bitcoin forums) are mainly associated with BTC-USD rate in the early market.

Table 10: Major events in Bitcoin futures’ history up to December 2017

Date Event

2017/08/02 CBOE announces launch of Bitcoin futures by 2017-Q4
2017/10/31 CME announces launch of Bitcoin futures by 2017-Q4
2017/12/01 CME announces launch of futures on Dec 18
2017/12/04 CBOE announces launch of futures on Dec 10
2017/12/10 Launch of CBOE Bitcoin futures
2017/12/18 Launch of CME Bitcoin futures

We now review the set of assumptions in the multi-intervention setting and we discuss them in

our empirical context.

Assumption 2 In our application, the statistical unit is Bitcoin cryptocurrency and the main

goal is investigating the effect on volatility generated by the launch of Bitcoin futures by two

major regulated exchanges. Since both exchanges disclosed their plans to develop Bitcoin fu-

tures, we have two types of interventions: i) the announcements made by the exchanges about

the upcoming futures; ii) the actual introduction of the two contracts. The latter qualify as

persistent interventions. Indeed, even though the exchange can withdraw its future from the

market at any time, the future would trade until its expiration date, which is standardized and

set up in advance. Furthermore, since the two contracts have different characteristics (underly-

ing spot price, expiration dates, contract units) the main goal is estimating their heterogeneous

effects on volatility.
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Assumption 3 Today volatility may be impacted by previous announcements and by the

trading activity of existing futures, but we exclude any influence arising from new contracts

and market news that have yet to be announced. In other words, we are ruling out the possibility

that market participants have access to privileged information.

Assumption 6 Bitcoin price might be related to several economic and technology factors

such as USD money supply and mining difficulty. Including them as independent variables in

the analysis may enhance prediction accuracy and, as a result, the reliability of the estimated

causal effect. We select the set of covariates based on a survey of relevant literature and

including only those predictors that we can safely believe to be untouched by the interventions.

Assumption 7 Since we are conditioning on past outcomes and covariates up to the day

of the launch, this assumption ensures that the estimated effect of the second contract is not

confounded by the first future. Another implication of this assumption is that the effect of

the first future is correctly identified up to the launch of the second future. The same applies

to the announcements: conditioning on the past, the effect that we observe (if any) at the

announcement date is due to that specific announcement and not to past or future ones.

5.2 Causal estimands

We can now define the causal estimands of interest. In particular, we provide definitions for

three classes of causal effects: the general, the contemporaneous and the pointwise causal effects.

However, as detailed below, in the context of observational studies the estimation of the general

effect is troubled; thus, in Section 5.3.2 we present estimators for the contemporaneous and the

pointwise effects alone.

Definition 6 (General effects) For the two treatment paths w1:t and w′1:t the general causal

effect at time t is,

τt(w1:t; w′1:t) = Yt(w1:t)− Yt(w
′
1:t). (34)

The cumulative effect of the paths w1:t and w′1:t is the sum of the general causal effects up to

time t,

∆t(w1:t; w′1:t) =
t∑

s=1

τs(w1:s; w′1:s). (35)

The temporal average effect of the paths w1:t and w′1:t at time t is,
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τ̄t(w1:t; w′1:t) =
1

t

t∑
s=1

τs(w1:s; w′1:s) =
∆t(w1:t; w′1:t)

t
. (36)

Example 6 Considering the two paths w1:t = (1, 0) and w′1:t = (0, 1) in Figure 1 and assuming

that they describe the announcements made by the exchanges, the general effect τ1(1; 0) =

Y1(1)− Y1(0) compares the (log) volatility in case of announcement to the one in the absence

of announcement; similarly, τ2((1, 0); (0, 1)) = Y2(1, 0) − Y2(0, 1) measures the effect on (log)

volatility when the announcement is followed by control compared to the opposite scenario.

This class of effects is analogous to the the general effect defined in Section 4.2, with the only

difference that this one is referred to a univariate multi-intervention setting. Notice that if

the treatment was randomly allocated at any point in time, under a sharp null hypothesis of

temporal no interference we could have derived the exact distribution of the cumulative and

temporal average effects (Bojinov and Shephard, 2019). However, since in our application the

treatment is not random, the only effects that we could estimate are τ1(1; 0), τ2((1, 0); (0, 0))

and τ3((1, 0, 1); (0, 0, 0)). Indeed, the remaining effects require the estimation of the outcomes

in presence of active treatment (e.g., Y2(0, 1) in the above example).

To solve this issue, we define a second class of estimands that computes the instant effect of a

treatment conditioning on the observed treatment path up to that time point.

Definition 7 (Contemporaneous effects) Indicating with Λ = {t1, . . . , tM} the subset of

time points at which the active treatment is administered, the contemporaneous causal effect of

the m-th treatment at time tm ∈ Λ conditioning on the observed treatment path wobs
1:tm−1 is,

τ (m)(1; 0) = Ytm(wobs
1:tm−1, 1)− Ytm(wobs

1:tm−1, 0). (37)

Then, the aggregate contemporaneous effect of all interventions is,

∆(1; 0) =
M∑
m=1

τ (m)(1; 0) (38)

and the average contemporaneous effect is,

τ̄(1; 0) =
1

M

M∑
m=1

τ (m)(1; 0) =
∆(1; 0)

M
. (39)

In words, every time an intervention occurs we can estimate its contemporaneous effect by

conditioning on past outcomes and comparing the observed with the counterfactual (missing)

outcome at the same time. Indeed, under Assumption 7 the effect of the m-th intervention

is identifiable and thus we can use the superscript m to denote its effect conditioning on past
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outcomes. The sum of the M effects is the aggregate contemporaneous effect, and dividing it by

the total number of interventions we obtain the average contemporaneous effect. The example

below illustrate the estimands by connecting to our empirical application.

Example 7 Assume that the solid line in Figure 1 represents the observed path of the an-

nouncements, i.e., wobs
1:t = (1, 0, 1). At t1 = 1 the contemporaneous effect matches the general

effect τ (1)(1; 0) = Y1(1) − Y1(0) and at t1 + 1 = 2 we observe control. Then, at t2 = 3

we have a second announcement and by conditioning on the observed path, we can define the

contemporaneous causal effect as τ (2)(1; 0) = Y3(1, 0, 1)− Y3(1, 0, 0). Thus, the aggregate con-

temporaneous effect is ∆(1; 0) = τ (1)(1; 0) + τ (2)(1; 0) and the average contemporaneous effect

is τ̄(1; 0) = 1
2
∆(1; 0).

Finally, we can define a class of causal estimands that measures the heterogeneous effect of the

n-th persistent intervention.

Definition 8 (Pointwise effects) Indicating with Λ = {t1, . . . , tM} the subset of time points

at which M persistent interventions take place, the point effect at time t ∈ {tm, . . . , tm+1 − 1}
of the m-th persistent intervention conditioning on the observed path wobs

1:tm−1 is

τ
(m)
t (w; w′) = Yt(w

obs
1:tm−1,w)− Yt(w

obs
1:tm−1,w

′). (40)

Thus, the cumulative pointwise effect of the m-th intervention up to time t is,

∆
(m)
t (w; w′) =

t∑
s=tm

τ (m)
s (w; w′) (41)

and the temporal average pointwise effect of the m-th intervention is,

τ̄
(m)
t (w; w′) =

∆
(m)
t (w; w′)

t− tm + 1
. (42)

Regarding Equation (40), we recall that, conditioning on previous treatments, there are only two

possible potential paths in the interval {tm, . . . , tm+1−1}: this is why we can ease the notation by

removing the subscript on the treatment assignment, i.e., wtm:t = w and w′tm:t = w′. In addition,

notice that for t = tm, the full class of pointwise effects collapses to the contemporaneous effects

and in case of one single persistent intervention (M = 1) it matches the pointwise effects as

defined in Section 3.2.

Example 8 Assume that CBOE introduces Bitcoin futures at time t1 = 3, as outlined in Figure

2. The point effect at t1 is the contemporaneous effect τ
(1)
t1 (1; 0) = Y3(0, 0, 1) − Y3(0, 0, 0) and

the point effect at time t1 + 1 = 4 is τ
(1)
t1+1((1, 1); (0, 0)) = Y4(0, 0, 1, 1) − Y4(0, 0, 0, 0). Then,

the cumulative and the temporal average pointwise effects are, respectively, ∆
(1)
4 ((1, 1); (0, 0)) =

τ
(1)
t1 (1; 0) + τ

(1)
t1+1((1, 1); (0, 0)) and τ̄

(1)
4 ((1, 1); (0, 0)) = 1

2
∆

(1)
4 ((1, 1); (0, 0)).
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In many practical situations we may be interested in the aggregate cumulative effects. For

example, if a promotion is run twice on the same item, we might want to compute the total

additional sales attributable to that initiative. For this purpose, we can sum the persistent

effects of the M interventions.

Definition 9 (Aggregate effects) For an integer k < min{tm − tm−1}, the aggregate cumu-

lative effect of M interventions is,

∆k(w; w′) =
M∑
m=1

k∑
h=1

τ
(m)
tm−1+h(w; w′) (43)

and the aggregate temporal average effect is,

τ̄k(w; w′) =
∆k(w; w′)

Mk
(44)

Furthermore, by setting k = 1, we can show that the aggregate cumulative and the aggregate

temporal average effects collapse, respectively, to the aggregate contemporaneous effect and the

average contemporaneous effect. Thus, the contemporaneous effect can also be interpreted as

a limiting case of the pointwise effect, namely, the effect of a “pulse” intervention that lasts

only for one time point. As a result, in the next section, the estimators of the contemporaneous

effects will be derived as limiting cases of the pointwise effects.

To give a practical interpretation of the aggregate effects, consider the above example where the

effect is measured in terms of the additional sales due to a promotion run twice on the same

item: the aggregate cumulative effect is the partial sum of sales up to a specific time point

(e.g., total additional sales in the first week); the aggregate temporal average effect gives the

sales that, on average, the promotion produced in all the replicas. Naturally, the interventions

need to be comparable, e.g., if the promotions have different durations, we can still compute

the aggregate cumulative effect but the aggregate temporal average effect is not defined. As

a result, since in our application the effect of the CBOE future can only be computed for one

week, we only estimate the aggregate contemporaneous effect of the announcements.

5.3 Multi-intervention C-ARIMA

In this section, we extend the C-ARIMA model to the multi-intervention setting and we use

it to derive estimators for the causal effects defined in Section 5.2. To ease notation, we drop

the dependence on the treatment path, i.e., we use Yt to indicate Yt(w1:t) and τ
(m)
t to indicate

τ
(m)
t (w,w′). We resume the usual notation in Section 5.3.2.
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5.3.1 The model

Recall from Section 3.3.2 that the general formulation of the C-ARIMA model in a setting with

a single intervention is a linear regression with seasonal ARIMA errors and the addition of an

effect τt,

(1− Ls)D(1− L)d Yt =
ΘQ(Ls)θq(L)

ΦP (Ls)φp(L)
εt + (1− Ls)D(1− L)d X′t β + τt (45)

where (1 − Ls)D and (1 − L)d are the differencing operators; ΘQ(Ls), ΦP (Ls) are the lag

polynomials of the seasonal part of the model with period s and ΦP (Ls) having roots all outside

the unit circle. To ease notation, we can indicate with T (·) the transformation of Yt needed to

achieve stationarity, i.e. T (Yt) = (1−Ls)D(1−L)d Yt. Notice that the same transformation is

also applied to Xt. Then, we can define

zt =
ΘQ(Ls)θq(L)

ΦP (Ls)φp(L)
εt

so that model (45) becomes,

St = T (Yt)− T (Xt)
′β = zt + τt.

Similarly, in a multi-intervention setting where M interventions take place at time points Λ ∈
{t1, . . . , tM}, under Assumption 7 the effect of the m−th intervention is identifiable for any

t ∈ {tm, . . . , tm+1 − 1}. Thus, at time tm − 1 + k < tm+1 we have,

Stm−1+k = ztm−1+k + τ
(m)
tm−1+k. (46)

Now, assume we observe St up to time tm − 1 and indicate with H0 the situation where τt = 0

for all t ∈ {tm, . . . , tm+1 − 1}, namely, the m-th intervention has no effect. Then, the k-step

ahead forecast of St under H0, given all the information up to time tm − 1 is,

Ŝtm−1+k = E[Stm−1+k|Itm−1, H0] = ẑtm−1+k|tm−1. (47)

Notice that Ŝtm−1+k is, by definition, the expectation of the outcome series under the null

hypothesis that the m-th intervention has no effect. Thus, it can be considered an estimate

of the missing potential outcomes at time tm − 1 + k for a persistent intervention occurring

at time tm. Furthermore, the limiting case k = 1 leads to the 1-step ahead forecast Ŝtm ,

which is an estimate of the missing potential outcome in the absence of intervention for the

contemporaneous effect.18

18An alternative formulation for Equation (46) is Stm−1+k = ztm−1+k +
m∑
j=1

τ
(j)
tm−1+k, highlighting that the

outcome at time tm − 1 + k embeds the effect of all previous interventions. This notation still allows the m-
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5.3.2 Causal effect estimation

Based on the C-ARIMA model for the multi-intervention setting, we can now derive estimators

for the pointwise and the contemporaneous causal effects.

Definition 10 (Pointwise effects estimators) Denote with Λ = {t1, . . . , tM} the subset of

time points at which M persistent interventions take place. For a positive integer k ∈ {1, . . . , K},
let Stm−1+k(w) be the observed time series and let Ŝtm−1+k(w

′) be the k-step ahead forecast as

defined in (47). Then, estimators of the point, cumulative and temporal average effects of the

m-th intervention at time tm − 1 + k are, respectively,

τ̂
(m)
tm−1+k(w; w′) = Stm−1+k(w)− Ŝtm−1+k(w′). (48)

∆̂
(m)
tm−1+k(w; w′) =

k∑
h=1

τ̂
(m)
tm−1+k(w; w′) (49)

ˆ̄τ
(m)
tm−1+k(w; w′) =

∆̂
(m)
tm−1+k(w; w′)

k
. (50)

Furthermore, by setting k = 1 in Equation (48) we get an estimator of the contemporaneous

effect of the m-th intervention at time tm,

τ̂ (m)(1; 0) = Stm(1)− Ŝtm(0).

Under the assumption that, conditioning on past information, the interventions are indepen-

dent, we can sum the pointwise estimators of the M interventions to get the estimators of the

aggregate pointwise effects.

Definition 11 (Aggregate effects estimators) An estimator of the aggregate cumulative

effect up to k steps from each intervention is,

∆̂k(w; w′) =
M∑
m=1

k∑
h=1

τ̂
(m)
tm−1+h(w; w′) (51)

and an estimator of the aggregate temporal average effect is,

ˆ̄τk(w; w′) =
∆̂k(w; w′)

Mk
. (52)

th intervention to be identifiable, since the k-step ahead forecast of Stm−1+k under H0 and conditioning on

the past information set is, Stm−1+k − Ŝtm−1+k = ztm−1+k − ẑtm−1+k|tm−1 +
m∑
j=1

τ
(j)
tm−1+k −

m−1∑
j=1

τ
(j)
tm−1+k =

ztm−1+k − ẑtm−1+k|tm−1 + τ
(m)
tm−1+k.
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Notice that by setting k = 1 in Equations (51) and (52) we obtain estimators for the total

contemporaneous effect and the average contemporaneous effect.

Finally, we can show that the pointwise estimators and, by extension, the contemporaneous

and the aggregate effects estimators, are unbiased. Indeed, as previously outlined, they can be

derived from the pointwise estimators.19

τ̂
(m)
tm−1+k(w; w) ∼

[
τ
(m)
tm−1+k(w; w′), σ2

εm

k−1∑
i=0

ψ2
i,m

]
(53)

∆̂
(m)
tm−1+k(w; w′) ∼

∆
(m)
tm−1+k(w; w′), σ2

εm

k∑
h=1

(
k−h∑
i=0

ψi,m

)2
 (54)

ˆ̄τ
(m)
tm−1+k(w; w′) ∼

τ̄ (m)
tm−1+k(w; w′),

1

k
σ2
εm

k∑
h=1

(
k−h∑
i=0

ψi,m

)2
 (55)

where σ2
εm is the variance of the error terms of the C-ARIMA model estimated on the obser-

vations up to time tm − 1 and the ψi,m’s are the coefficients of a MA(k− 1), i.e. the process of

the k-step ahead prediction error. The values of ψi,m are functions of the ARMA parameters

ruling ztm−1. The full derivation of (53), (54) and (55) is given in Appendix B.8.

Thus, the estimation of the pointwise effect is performed in two steps. First, we estimate a

C-ARIMA model up to the day preceding the persistent intervention, i.e., the launch of the

two futures by CBOE and CME. Then, we use the covariates and the estimated coefficients to

forecast the Garman-Klass volatility proxy up to a pre-specified time horizon; for example, we

may be interested in estimating the effect on volatility after few days or few months from the

launch of Bitcoin futures. The difference between the observed and the predicted outcome is

the estimated pointwise effect. Similarly, we can estimate the contemporaneous effects of each

announcement by conditioning to the information set up to the day before the announcement

and forecasting the Garman-Klass proxy one-step ahead. If the announcements or the launch

of futures had an impact on Bitcoin volatility, we would find a significant deviation from the

forecasted outcome.

19See Appendix B.8 for the details and the full derivation of the variances.
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5.4 Empirical analysis

5.4.1 Data & Methodology

Economic data for this analysis have been gathered from Bloomberg, while Bitcoin daily prices

have been collected from CryptoCompare. Notice that since Bitcoin is a (crypto)currency, its

price is recorded in terms of another currency, USD in our case, meaning that the Bitcoin price

is the BTC-USD exchange rate (i.e. number of USD needed to buy 1 BTC). The other Bitcoin

related data (i.e. the hash rate and total number of Bitcoins in circulation) have been gathered

from Blockchain.com.

Since Bitcoins are traded on multiple exchanges, the quotation of the BTC-USD rate is not

unique, i.e. different exchanges trade Bitcoins at different prices. As explained in Cermak

(2017), the price varies across exchanges mainly because of different fee policies and cashout

methods but those divergent standards and the slow verification process make arbitrage oppor-

tunities difficult to exploit.20 Aside from the obvious economic implications, this means that

the source we take our data from matters a lot: exchange-based data providers present their

own quotes, whereas external data providers (e.g. Bloomberg, CryptoCompare) compute their

own index, usually a weighted average of all prices across major exchanges.

The main goal of our analysis is to estimate the effect of futures trading on Bitcoin volatility,

and, since the upcoming futures were announced by several press releases, we also investigate

possible announcements effects. We focus on the first two contracts introduced by CBOE

and CME; the analysis period spans from May 1, 2014 to January 8, 2018. The dependent

variable is the natural logarithm of the BTC-USD daily volatility as proxied by the unbiased

Garman-Klass estimator (Garman and Klass, 1980; Molnár, 2012), computed as,

σ̂2
GK = 0.5(ln(H)− ln(L))2 − (2 ln 2− 1)(ln(C)− ln(O))2

σ̂GK =
√
σ̂2
GK · 1.034

where H,L,C and O indicate, respectively, the high, low, close and open BTC-USD rate for

the day. Figure 18 shows the evolution of the Garman-Klass estimator (in log scale), while

Figure 19 plots the (partial) autocorrelation function and the Normal QQ-Plot.21

20For example, on November 20, 2019 at 4.50 p.m the price for 1 BTC was $8,104.39 on Coinbase and
$8,146.90 on Bitfinex, with a difference of $42.51 (Source: CryptoCompare.com)

21The acf of the Bitcoin Garman-Klass volatility indicator shows a very slow decay, a behavior which is
sometimes labeled as long-memory. To capture this pattern, specific models have been developed, like the HAR
(Heterogeneus Autoregressive) and its log-counterpart, the log-HAR (Corsi, 2009). On the other hand, Cipollini
et al. (2020, Sect. 5.3) demonstrate that some (2,1)-specifications of different ARMA-like models replicate the
ability to approximate the long memory pattern observed in the autocorrelation of realized variances, a feature
which has made the HAR model popular. Such an ability is due to the high estimated persistence and the
presence of a second order parameter, usually significantly negative, in the AR part.
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Figure 18: Evolution of the Garman-Klass volatility estimator in log scale starting from January
2017. The red vertical bars represent the announcement dates, whereas the blue bars represent the
launch of CBOE and CME futures. See Table 10 for the details and the exact dates.

Figure 19: Normal QQ-Plot, autocorrelation and partial autocorrelation functions of the Garman-
Klass volatility proxy in log scale.

As detailed in Section 5.3.2, to estimate the effect on Bitcoin volatility of the two futures

and each related announcement, we need to fit a C-ARIMA model up to the day before each

intervention, which, in our case, leads to the estimation of six different models: based on the

first four, we predict the Garman-Klass proxy 1-step ahead to compute the contemporaneous

effect of each announcement, whereas based on the last two models we can compute the effect

of futures at different time horizons. In particular, since the CME future was launched 1 week

after the CBOE future, for the former we estimate the temporal average pointwise effect at

1-week horizon, whereas for the CME futures we can also consider the 2-week and the 1-month

horizons.

Notice that since the Garman-Klass proxy is in log scale, the difference between the observed

and the predicted volatility is equal to the log of their ratio. This means that we are as-

suming a multiplicative effect on Bitcoin volatility and, as a result, we focus on the average

contemporaneous effect and on the temporal average pointwise effects. Indeed, they both have

a financial interpretation after re-exponentiating, being, respectively, the geometric average of

the contemporaneous effects and of the point effects.

Volatility is typically stationary and non-seasonal, hence, our six independent models are all

built from an ARMA(p, q). The models also include covariates, so as to improve the forecast

of Bitcoin volatility in the absence of intervention. We selected the set of covariates based
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on a survey of relevant literature. In particular: we included the daily log returns and the

Garman-Klass proxies of the EUR-USD exchange rate, the MSCI Emerging Market Index, the

Shanghai Stock Exchange Composite Index and the MSCI World Index; among the economic

factors, we selected the Federal Reserve money supply M1 aggregate, the US montly inflation

rate, the Federal funds Target Rate and the US GDP; technology factors are represented by

the hash rate (estimated number of tera hashes per second the Bitcoin network is performing)

and Bitcoin supply (total number of Bitcoins in circulation). All covariates are in log scale and

have been made stationary in case they are not.22 Finally, since the second Bitcoin halving

took place on July 9, 2016, we also included a dummy variable taking value 1 after the halving.

Table 20 in Appendix A.1 summarizes the correlation between the covariates and the Garman-

Klass volatility. Overall, the Garman-Klass proxy seems to have a small correlation with the

volatility of the EUR-USD exchange rate.

The selection of the six independent models was based on the Bayesian Information Criterion

(BIC). Since the announcement dates are close to each other and to the actual launch of the

futures, the characteristics of the data are in all cases well described by the same C-ARMA(2, 1)

model, i.e.,

Yt = c+ φ1Yt−1 + φ2Yt−2 + θ1εt−1 + εt +X ′tβ + τt.

In order to shed light on the driving forces underneath Bitcoin volatility, we also performed a

further analysis by investigating the impact of Bitcoin futures on the daily transaction volumes.

Indeed, the possible volatility surge (decline) following the launch of the two contracts might

be driven by increased (decreased) volumes. Figure 20 shows the evolution of daily volumes

throughout the analysis period and from the log scale plot we can immediately notice that

Bitcoin transactions experienced a sharp increase during 2014. However, as shown in Figure

21, by focusing on a restricted time period, the time series of daily volumes in log scale becomes

more stable. Thus, we select the logarithmic transform of Bitcoin daily volumes as the outcome

variable and perform the analysis in the period starting from February 2015.

Unlike the Garman-Klass proxy, log-volumes are not stationary (the KPSS test rejects the null

hypothesis of stationarity at the 1% level) and show a weekly seasonal pattern; thus, the model

selected with the BIC criterion is a C-ARIMA(1, 1, 1)(0, 0, 2)7, which is written as follows,

(1− L)Yt =
Θ2(L

7)θ1(L)

φ1(L)
εt +X ′tβ + τt

The next Section reports the result of our empirical analysis on the Garman-Klass volatility

proxy and Bitcoin daily volumes.

22First differences have been taken for m1, midrate, gdp and hash, whereas btcsupply has been differenced
twice.
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Figure 20: Evolution of Bitcoin daily transaction volumes (raw data, log scale) throughout the
analysis period. The red vertical bar indicates the date of first announcement and the blue vertical
bar denoted the launch date of the first future.

Figure 21: Evolution of Bitcoin daily transaction volumes (raw data, log scales), autocorrelation
functions and Normal QQ-Plots for the period spanning from February 2015 to March 2018.
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5.4.2 Results

The parameter estimates of the six C-ARMA(2, 1) models, the estimated contemporaneous

effect of the announcements and the estimated temporal average pointwise effects of the two

futures are reported in Table 11.23 Even though the Garman-Klass volatility proxy is computed

from the intraday prices and could have been related to the main Bitcoin price drivers found

in the literature, our findings do not support this idea: lagged values of the volatility seem to

be sufficient to describe the dynamics of Bitcoin volatility. We find no evidence of significant

contemporaneous effects of the announcements, meaning that the simple news of upcoming

futures was not sufficient to spark investors’ interests in the (crypto)currency. We, however,

observe an interesting result for the actual introduction of the two futures. Indeed, there is no

evidence of a significant effect related to CBOE futures, whereas the effects related to CME

futures are significant at all time horizons. For example, based on the observed volatility up

to 1 week from the launch of CME futures, we find that that the Garman-Klass proxy was

2.18 times higher (on average) than what would have been observed in the absence of futures.

Figure 22 shows the forecasted series and the pointwise causal effects. Additional plots are

given in Appendix A.2.

Having found no evidence of association between the covariates and the Garman-Klass proxy,

as a robustness check to our results we also estimated six alternative models with no regressors.

The estimated causal effects based on the alternative models are in line with the results reported

in this section (see Table 19 in Appendix A.1).

Finally, Table 12 shows the results of the analysis performed on Bitcoin daily transaction

volumes (in log scale). This time we found significant effects for both the CBOE and the CME

futures at all time horizons; again, there is no evidence of a causal effect contemporaneous to

the announcements. Interestingly, the effects of the two futures have opposite sign: transaction

volumes decreased of approximately 16% due to the the launch of the CBOE contract, which

might indicate that for a short period of time investors privileged the derivative over of the

underlying; conversely, the launch of the CME contract increased volumes and this might

have mediated the effect on volatility. In other words, this suggests that, benefiting from the

increased transparency of the market, investors’ interest toward Bitcoin rose, boosting Bitcoin

trading and, in turn, its volatility. Figure 23 provides a graphical representation of these results.

23The log-ARMA used in the dissertation coincides right with the MLOG(2,1) in Cipollini et al. (2020), the
best performing model of that paper. Moreover, the estimated parameters are in line with those reported there
(for example, Table 11, Ann. 1 has α1 = 0.452, α2 = −0.264, β1 = 0.781, to be compared with Figure 1,
LNLS-MLOG(2,1) panel in Cipollini et al. (2020)). Finally, the acf of residuals in Figure 43 evidences clearly
that they are substantially uncorrelated, supporting the idea that memory in the data is well captured from the
model.
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Table 11: Estimated coefficients (standard errors in parentheses) of the C-ARIMA models fitted on Garman-
Klass volatility proxy (in log scale) up to the day before each intervention. In this table, τ̂ (m) indicates the
estimated contemporaneous effect of each announcement; ˆ̄τ is the average contemporaneous effect; ˆ̄τ (CBOE) is the

temporal average pointwise effect of the CBOE future; and, ˆ̄τ
(CME)
t is the temporal average pointwise effect of

the CME futures at 1-week, 2-weeks and 3-weeks horizons (indicated with t = 7, t = 14 and t = 21).

Dependent variable:

Ann.1 Ann.2 Ann.3 Ann.4 CBOE CME

φ1 1.233∗∗∗ 1.220∗∗∗ 1.229∗∗∗ 1.226∗∗∗ 1.232∗∗∗ 1.233∗∗∗

(0.060) (0.058) (0.057) (0.057) (0.056) (0.056)
φ2 −0.264∗∗∗ −0.252∗∗∗ −0.259∗∗∗ −0.256∗∗∗ −0.261∗∗∗ −0.262∗∗∗

(0.051) (0.050) (0.049) (0.049) (0.049) (0.049)
θ1 −0.781∗∗∗ −0.776∗∗∗ −0.783∗∗∗ −0.781∗∗∗ −0.782∗∗∗ −0.784∗∗∗

(0.047) (0.045) (0.044) (0.045) (0.044) (0.044)
c −3.790∗∗∗ −3.777∗∗∗ −3.770∗∗∗ −3.770∗∗∗ −3.765∗∗∗ −3.768∗∗∗

(0.121) (0.122) (0.126) (0.126) (0.132) (0.129)
eurusd vol 0.006 0.004 0.002 0.001 −0.001 −0.001

(0.021) (0.020) (0.020) (0.020) (0.020) (0.020)
mxwo vol 0.008 0.002 0.003 0.005 0.002 0.003

(0.024) (0.023) (0.023) (0.023) (0.023) (0.023)
mxef vol −0.001 0.002 0.003 0.003 0.006 0.006

(0.021) (0.021) (0.020) (0.020) (0.020) (0.020)
shc vol −0.009 −0.018 −0.018 −0.018 −0.015 −0.014

(0.029) (0.028) (0.027) (0.027) (0.027) (0.027)
eurusd 0.222 0.198 0.202 0.200 0.208 0.215

(0.191) (0.184) (0.184) (0.184) (0.184) (0.184)
mxwo −0.075 −0.076 −0.037 −0.046 −0.039 −0.039

(0.239) (0.234) (0.234) (0.234) (0.234) (0.233)
mxef −0.098 −0.068 −0.112 −0.105 −0.104 −0.102

(0.309) (0.300) (0.299) (0.299) (0.298) (0.297)
shc 0.056 0.056 0.071 0.071 0.076 0.081

(0.189) (0.187) (0.187) (0.188) (0.187) (0.187)
m1 −0.240 −0.260 −0.248 −0.249 −0.261 −0.261

(0.363) (0.351) (0.351) (0.351) (0.351) (0.351)
inflation −0.005 −0.018 −0.006 −0.007 −0.009 −0.009

(0.064) (0.063) (0.062) (0.062) (0.062) (0.062)
gdp 0.456 0.285 0.293 0.290 0.300 0.303

(0.467) (0.444) (0.446) (0.446) (0.446) (0.445)
midrate 0.154 0.138 0.137 0.138 0.138 0.154

(0.325) (0.323) (0.324) (0.325) (0.325) (0.320)
hash 0.047 −0.040 −0.039 −0.035 −0.035 −0.029

(0.180) (0.162) (0.159) (0.159) (0.158) (0.158)
tot.btc −0.505 −0.614 −0.715 −0.645 −0.688 −0.688

(2.998) (2.957) (2.963) (2.966) (2.962) (2.953)
halv −0.033 0.024 0.064 0.069 0.096 0.089

(0.193) (0.186) (0.188) (0.188) (0.194) (0.191)

τ̂ (m) −0.54 −0.07 0.41 −0.31
(0.50) (0.50) (0.50) (0.50)

ˆ̄τ −0.13
(0.25)

ˆ̄τ (CBOE) −0.26
(0.38)

ˆ̄τ
(CME)
t=7 0.78∗∗

(0.38)
ˆ̄τ
(CME)
t=14 0.76∗∗

(0.37)
ˆ̄τCME
t=21 0.69∗

(0.37)
Observations 1,153 1,243 1,274 1,277 1,284 1,291
σ2 0.259 0.254 0.257 0.257 0.258 0.257
Akaike Inf. Crit. 1,736.402 1,846.683 1,904.189 1,910.221 1,924.778 1,929.746

Note: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 12: Estimated coefficients (standard errors in parentheses) of the C-ARIMA models fitted on Bitcoin
daily volumes (in log scale) up to the day before each intervention. In this table, τ̂ (m) indicates the estimated
contemporaneous effect of each announcement; ˆ̄τ is the average contemporaneous effect; ˆ̄τ (CBOE) is the temporal

average pointwise effect of the CBOE future; and, ˆ̄τ
(CME)
t is the temporal average pointwise effect of the CME

futures at 1-week, 2-weeks and 3-weeks horizons (indicated with t = 7, t = 14 and t = 21).

Dependent variable:

Ann.1 Ann.2 Ann.3 Ann.4 CBOE CME

φ1 0.454∗∗∗ 0.460∗∗∗ 0.461∗∗∗ 0.460∗∗∗ 0.463∗∗∗ 0.465∗∗∗

(0.044) (0.042) (0.041) (0.041) (0.041) (0.040)
θ1 −0.925∗∗∗ −0.932∗∗∗ −0.931∗∗∗ −0.931∗∗∗ −0.931∗∗∗ −0.933∗∗∗

(0.025) (0.023) (0.024) (0.024) (0.023) (0.023)
Θ1 0.121∗∗∗ 0.122∗∗∗ 0.112∗∗∗ 0.112∗∗∗ 0.118∗∗∗ 0.117∗∗∗

(0.035) (0.034) (0.033) (0.033) (0.033) (0.033)
Θ2 0.122∗∗∗ 0.117∗∗∗ 0.111∗∗∗ 0.111∗∗∗ 0.107∗∗∗ 0.106∗∗∗

(0.034) (0.031) (0.031) (0.031) (0.031) (0.030)
eurusd vol 0.013 0.008 0.003 0.003 0.001 0.001

(0.019) (0.018) (0.018) (0.018) (0.018) (0.018)
mxwo vol 0.008 0.001 0.001 0.0005 −0.001 −0.001

(0.021) (0.021) (0.020) (0.020) (0.020) (0.020)
mxef vol 0.019 0.026 0.028 0.028 0.030. 0.031.

(0.019) (0.018) (0.018) (0.018) (0.018) (0.018)
shc vol 0.004 −0.005 −0.007 −0.006 −0.005 −0.005

(0.024) (0.023) (0.023) (0.023) (0.023) (0.023)
eurusd 0.232 0.226 0.223 0.223 0.224 0.225

(0.156) (0.151) (0.151) (0.150) (0.150) (0.150)
mxwo −0.600∗∗ −0.585∗∗ −0.554∗∗ −0.553∗∗ −0.545∗∗ −0.530∗∗

(0.198) (0.195) (0.194) (0.194) (0.194) (0.193)
mxef 0.403 0.367 0.324 0.322 0.322 0.305

(0.255) (0.249) (0.247) (0.246) (0.245) (0.244)
shc −0.065 −0.048 −0.043 −0.043 −0.042 −0.041

(0.156) (0.155) (0.155) (0.155) (0.155) (0.154)
m1 0.124 0.097 0.100 0.100 0.090 0.091

(0.294) (0.284) (0.283) (0.283) (0.283) (0.282)
inflation 0.033 0.027 0.025 0.025 0.024 0.024

(0.049) (0.048) (0.047) (0.047) (0.047) (0.047)
gdp 0.635 0.529 0.546 0.546 0.548 0.551

(0.477) (0.443) (0.443) (0.443) (0.442) (0.441)
midrate 0.261 0.250 0.262 0.262 0.257 0.259

(0.246) (0.246) (0.246) (0.245) (0.245) (0.242)
hash 0.121 0.064 0.088 0.088 0.083 0.080

(0.155) (0.135) (0.131) (0.131) (0.130) (0.130)
tot.btc 7.241∗ 7.208∗ 7.369∗ 7.400∗ 7.377∗ 7.377∗

(3.565) (3.499) (3.442) (3.439) (3.437) (3.416)
halv −0.383 −0.416 −0.423 −0.423 −0.420 −0.427

(0.279) (0.272) (0.272) (0.272) (0.273) (0.270)

τ̂ (m) −0.41 0.22 −0.07 −0.30
(0.39) (0.39) (0.39) (0.39)

ˆ̄τ −0.14
(0.20)

ˆ̄τ (CBOE) −0.17∗∗

(0.07)
ˆ̄τ
(CME)
t=7 0.42∗∗∗

(0.07)
ˆ̄τ
(CME)
t=14 0.24∗∗∗

(0.04)
ˆ̄τCME
t=21 0.07∗∗∗

(0.03)
Observations 912 1,002 1,033 1,036 1,043 1,050
σ2 0.159 0.159 0.159 0.158 0.159 0.158
Akaike Inf. Crit. 934.949 1,021.979 1,052.144 1,053.061 1,060.798 1,062.398

Note: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Figure 22: Observed (grey) and forecasted (blue) Garman-Klass volatility proxy (in log scale)
at 1-week, 2-weeks and 3-weeks horizons. The vertical red bar indicates the date of CME futures
launch. The right charts show the resulting pointwise effect within its 95% confidence bounds.

Figure 23: Observed (grey) and forecasted (blue) Bitcoin daily volumes (log scale) at 1-week,
2-weeks and 3-weeks horizons. The vertical red bar indicates the date of futures launch. The right
charts show the resulting pointwise effect within its 95% confidence bounds.
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5.5 Discussion

In this section we extended the C-ARIMA approach to estimate the heterogeneous effects of

multiple interventions. First, we formalized the assumptions to estimate the causal effects in a

multi-intervention setting. We then defined and estimated two classes of causal estimands: the

contemporaneous effect (i.e., the instantaneous effect of an intervention conditioning on past

outcomes) and the pointwise effect of a persistent intervention (i.e., the effect at each point in

time between two subsequent persistent interventions).

Our motivating example is the introduction of the first two regulated futures by the CBOE

and CME, two leading derivatives exchanges, with the goal of estimating the effect on Bit-

coin volatility due to the launch of the two contracts. We also investigated the presence of

announcement effects as well as the impact on Bitcoin daily volumes.

Our results indicate that the CME contract produced an increase of Bitcoin volatility. This

effect could have been mediated by the rise in daily transactions, as we found evidence of

a positive causal effect on volumes. Conversely, despite a small negative impact on transac-

tion volumes due to the CBOE contract, we found no evidence that the first regulated future

impacted Bitcoin volatility. Finally, we did not find evidence of announcement effects.
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6 Conclusions

Causal inference in time series settings is a challenging task, partly because a simple associ-

ation may be easily mistaken for a causal nexus and partly due to serial dependence, which

brings additional difficulties during the estimation process. Moreover, in a panel setting where

a treatment assigned to some units affects the others (a situation known as “interference”),

inferring a causal effect is particularly demanding.

Having its roots in the potential outcomes framework, we believe that the RCM can aid the

estimation of causal effects in such settings. Indeed, the RCM allows the construction of “what

if” scenarios and sets the theoretical foundations underneath the attribution of the uncovered

effect to a specific intervention. In particular, in this research we analyzed three situations

that researchers and practitioners commonly encounter in a time series analysis: i) a single

intervention occurring simultaneously on multiple non-interfering series; ii) multiple time series

subject to a simultaneous treatment that, due to cross-unit interactions, may affect other series

that were not intervened on; iii) multiple interventions on a single time series.

We first introduced a common causal framework building the theoretical foundations for a

causal analysis under the RCM; we then defined new classes of causal estimands in each of the

three settings and we proposed to estimate them using two novel methodologies: C-ARIMA and

CausalMBSTS. The C-ARIMA approach can successfully estimate the effect of an intervention

on a single time series as well as on multiple non-interfering series. Indeed, with a simulation

study we showed that it performs well compared to a standard intervention analysis method in

a situation where the effect takes the form of a fixed change in the level of the outcome; it also

outperforms the latter when the effects are irregular and time-varying. Instead, CausalMBSTS

can estimate the heterogeneous causal effect of an intervention in a panel setting where the

time series interact with one another. Based on multivariate Bayesian models, it is a flexible

methodology that allows to model the dependence structure between the time series in a very

natural way, whilst enabling variable selection (via the addition of a spike-and-slab prior)

and validation (by posterior predictive checks). Finally, we showed how to extend the C-

ARIMA approach for the estimation of the heterogeneous causal effects of multiple interventions

occurring on a single time series. We also applied the proposed C-ARIMA and CausalMBSTS

approaches to evaluate the effect of a permanent price reduction introduced by a supermarket

chain in Italy on a selected subset of store brands. Then, we used C-ARIMA in a multi-

intervention setting to investigate the impact of the first two regulated Bitcoin futures on

Bitcoin volatility and daily transaction volumes.

This research brings both methodological and empirical contributions, introducing two novel

approaches to infer causal effects in complex time series settings and showing that the proposed

methodologies can be employed in several fields of research, including marketing and finance.

We also believe that this research provides several advances to the existing inferential methods
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under the RCM. Indeed, recent extensions of the RCM to observational panel studies (i.e.,

synthetic control methods) mostly focus on a situation where the time series do not interact

with one another and they also involve inferential tools that are not usually employed in stan-

dard time series analysis. Conversely, the C-ARIMA approach allows the estimation of causal

effects under the RCM with standard tools that are extensively used by econometricians and

practitioners in many fields. Furthermore, with CausalMBSTS we extended synthetic control

methods to a setting with interference and, to foster the adoption of this method by a broad

range of researchers, we also released an R package that handles both the definition and the

estimation of the multivariate model. By making causal inference tools accessible to a vast

audience, we hope we can facilitate the understanding of causal relationships and, in turn,

decision making based on solid foundations.
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Appendices

A

A.1 Additional tables

Tables 13 and 14 report the results of the estimated C-ARIMA models in the pre-intervention

period for, respectively, store and competitor brands.

Tables 15 and 16 report the estimated marginal effect as defined in (19) and the estimated

conditional effect ˆ̄τ t((1, 1), (0, 1)). Tables 17 and 18 display the results of the trend and seasonal

model estimated using a set of covariates with, respectively, the price difference and the price

ratio.

Table 19 shows the results of alternative C-ARIMA models fitted on the Garman-Klass volatility

proxy without regressors. Finally, Table 20 reports the Pearson’s linear correlation coefficients

and the Spearman’s rho of the covariates included in the Bitcoin application.
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Table 15: Posterior mean and 95% credible intervals of the temporal average mean marginal causal
effect of the new price policy on the ten store brands computed at three time horizons. In this table,
ˆ̄τt stands for the mean marginal effect ˆ̄τt(s, 4). There is evidence of a causal effect when the credible
intervals do not include zero.

Time horizon:

1 month 3 months 6 months
ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5%

1 3.53 −12.27 19.33 2.39 −21.98 26.88 3.55 −32.92 39.98
2 3.55 −7.39 14.51 2.51 −15.09 19.39 3.34 −22.05 29.27
3 4.02 −7.00 16.14 2.71 −15.91 20.70 3.97 −24.13 31.25
4 24.06 2.07 49.43 11.58 −26.51 50.12 12.22 −46.22 68.82
5 1.98 −24.69 28.29 3.73 −40.92 48.08 5.74 −60.05 73.52
6 4.85 −7.97 17.53 5.94 −14.73 26.51 6.78 −24.61 38.53
7 39.19 0.04 77.11 17.33 −40.86 76.01 14.84 −74.46 102.94
8 12.67 −14.32 39.30 11.71 −34.58 54.99 8.63 −57.56 73.01
9 20.46 −9.44 50.67 8.19 −39.87 57.46 6.44 −65.70 82.99
10 6.26 0.52 11.98 4.86 −4.22 14.22 2.72 −11.39 16.84

Table 16: Posterior mean and 95% credible intervals of the temporal average conditional causal
effect of the new price policy on the ten store brands computed at three time horizons. In this table,
ˆ̄τt stands for the conditional effect ˆ̄τ t((1, 1), (0, 1)). There is evidence of a causal effect when the
credible intervals do not include zero.

Time horizon:

1 month 3 months 6 months
ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 0.09 −0.14 0.39 0.11 −0.14 0.38 0.12 −0.12 0.37
c −0.34 −1.68 0.75 −0.63 −1.64 0.78 −0.78 −1.55 0.64

(2)
s 0.08 −0.12 0.30 0.10 −0.14 0.31 0.11 −0.10 0.29
c −0.30 −0.86 0.34 −0.54 −0.93 0.34 −0.65 −0.74 0.24

(3)
s 0.11 −0.15 0.36 0.12 −0.12 0.36 0.11 −0.09 0.35
c −0.22 −0.79 0.67 −0.37 −0.94 0.58 −0.21 −0.74 0.23

(4)
s 0.28 −0.97 1.50 0.50 −0.92 1.62 0.71 −0.47 4.17
c −1.04 −3.92 2.64 −2.13 −4.18 2.36 −3.22 −19.10 1.11

(5)
s −0.15 −2.69 4.01 −0.12 −7.83 1.30 −0.27 −23.15 1.39
c −0.08 −2.48 2.53 −0.08 −2.73 2.67 −0.07 −2.23 3.66

(6)
s 0.17 −0.28 0.57 0.12 −0.31 0.67 −0.02 −0.27 0.55
c −0.34 −1.62 0.84 −0.31 −1.90 0.73 −0.29 −1.50 0.70

(7)
s 0.20 −1.16 1.60 0.21 −1.14 1.62 0.20 −1.15 1.63
c −1.09 −21.89 18.58 −1.46 −21.83 18.40 −1.26 −22.02 18.63

(8)
s 0.12 −2.75 2.79 0.09 −4.46 4.22 0.18 −6.69 7.86
c −0.02 −12.99 14.38 0.15 −19.31 23.83 −0.31 −39.60 32.96

(9)
s 0.64 −42.52 43.54 1.00 −70.38 78.18 0.81 −106.58 119.18
c −0.29 −45.17 44.19 −0.25 −74.86 72.15 0.28 −112.62 115.76

(10)
s 0.09 −2.76 3.08 0.08 −5.16 4.39 0.13 −7.60 7.00
c 0.04 −5.83 6.93 0.07 −8.62 10.90 −0.02 −17.00 16.37
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Table 17: Temporal average general causal effects of the new price policy on the ten store (s) -
competitor (c) pairs computed at three time horizons. In this table, ˆ̄τ t stands for the general effect
ˆ̄τ t((1, 0), (0, 0)) and the results are obtained including in the set of covariates the difference in price
between the store and competitor brand prior to the intervention (in the post-intervention period the
difference in price is computed from the prior price).

1 month 3 months 6 months
ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 7.86 -22.72 39.39 6.01 -44.36 54.53 8.69 -62.66 81.65
c 24.76 -101.23 154.16 18.14 -189.20 223.43 7.94 -299.89 322.01

(2)
s 6.32 -15.06 27.87 4.64 -27.51 36.56 5.78 -43.30 55.55
c 14.36 -65.53 97.56 8.08 -129.50 142.40 -1.55 -206.59 198.41

(3)
s 7.74 -15.37 31.07 5.76 -32.76 40.91 8.98 -45.53 64.71
c 17.60 -60.32 98.08 12.58 -116.06 142.92 6.48 -182.11 198.27

(4)
s 47.39 0.94 96.95 23.29 -49.15 104.14 24.21 -88.64 136.26
c 31.44 -74.80 140.15 23.04 -156.67 205.96 14.52 -259.18 280.48

(5)
s 4.51 -46.29 57.07 8.11 -75.41 91.55 13.40 -108.70 136.45
c 48.56 -55.74 160.97 18.78 -155.55 199.51 11.59 -255.06 276.53

(6)
s 10.05 -14.63 35.36 12.24 -28.79 54.40 14.69 -45.35 76.51
c 25.66 -39.05 92.53 7.03 -101.58 117.02 5.53 -159.96 167.62

(7)
s 80.83 6.45 158.56 38.12 -82.24 154.90 34.47 -137.44 209.06
c 184.75 -216.88 596.71 106.78 -553.29 757.07 92.10 -904.77 1086.75

(8)
s 25.29 -25.76 77.12 23.02 -62.62 103.02 14.70 -111.95 135.90
c 15.27 -14.96 45.95 5.17 -44.71 53.87 3.01 -68.34 73.61

(9)
s 41.09 -8.93 89.23 16.95 -61.21 99.53 13.91 -102.74 132.98
c 18.71 -30.61 71.21 2.68 -77.27 80.47 3.93 -114.88 122.98

(10)
s 12.16 1.06 23.02 9.42 -8.54 26.50 5.12 -21.80 32.30
c -0.21 -8.89 8.87 1.64 -13.12 17.01 3.64 -17.52 24.97

Table 18: Temporal average general causal effects of the new price policy on the ten store (s) -
competitor (c) pairs computed at three time horizons. In this table, ˆ̄τ t stands for the general effect
ˆ̄τ t((1, 0), (0, 0)) and the results are obtained including in the set of covariates the price ratio between
the store and competitor brand prior to the intervention (in the post-intervention period the ratio is
computed from the prior price).

1 month 3 months 6 months
ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 7.86 -23.99 40.25 5.57 -43.61 56.18 7.60 -65.59 81.24
c 24.24 -103.31 149.08 18.24 -190.07 236.58 9.94 -302.70 321.87

(2)
s 6.29 -15.08 27.85 4.58 -28.01 36.62 5.78 -43.58 55.33
c 14.43 -65.19 97.88 8.04 -129.58 142.52 -1.94 -206.72 198.81

(3)
s 7.69 -15.61 31.11 5.69 -33.02 41.00 8.94 -45.58 65.00
c 17.67 -60.31 98.22 12.55 -116.11 142.85 6.40 -182.21 198.30

(4)
s 47.59 -1.43 95.37 23.49 -52.91 99.97 26.11 -85.00 143.55
c 30.86 -76.21 142.37 21.79 -156.22 203.90 12.56 -247.89 285.21

(5)
s 4.93 -45.95 56.46 8.44 -74.91 93.47 13.63 -107.63 138.26
c 48.63 -58.86 160.54 18.78 -161.04 203.72 11.66 -267.79 280.47

(6)
s 9.89 -14.74 34.85 12.05 -29.01 54.04 14.37 -46.42 75.06
c 25.76 -38.76 92.99 7.05 -100.67 117.62 5.59 -155.74 167.47

(7)
s 80.67 1.53 161.11 36.73 -84.22 156.80 31.45 -150.41 207.70
c 183.01 -222.65 583.47 108.84 -559.14 799.66 102.14 -892.35 1113.15

(8)
s 23.54 -28.05 73.80 22.06 -59.32 103.49 14.64 -113.07 140.54
c 14.98 -15.50 44.80 4.46 -44.03 53.53 2.35 -69.75 75.51

(9)
s 41.00 -7.02 87.54 16.93 -64.31 97.09 14.35 -106.63 136.62
c 18.68 -32.60 69.15 2.66 -82.03 83.46 4.81 -113.13 120.65

(10)
s 12.50 1.45 23.71 9.62 -9.64 27.65 5.07 -23.35 31.58
c -0.11 -9.77 9.72 1.72 -13.10 16.31 3.77 -18.52 25.31
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Table 19: Estimated coefficients (standard errors in parentheses) of alternative C-ARIMA models
fitted on Garman-Klass volatility proxy (in log scale) up to the day before each intervention. In
this table, τ̂ (m) indicates the estimated contemporaneous effect of each announcement; ˆ̄τ is the average
contemporaneous effect; ˆ̄τ (CBOE) is the temporal average pointwise effect of the CBOE future; and,
ˆ̄τ
(CME)
t is the temporal average pointwise effect of the CME futures at 1-week, 2-weeks and 3-weeks

horizons (indicated with t = 7, t = 14 and t = 21).

Dependent variable:

Ann.1 Ann.2 Ann.3 Ann.4 CBOE CME

φ1 1.223∗∗∗ 1.214∗∗∗ 1.224∗∗∗ 1.222∗∗∗ 1.223∗∗∗ 1.214∗∗∗

(0.059) (0.057) (0.056) (0.056) (0.059) (0.057)
φ2 −0.256∗∗∗ −0.246∗∗∗ −0.254∗∗∗ −0.252∗∗∗ −0.256∗∗∗ −0.246∗∗∗

(0.051) (0.049) (0.048) (0.049) (0.051) (0.049)
θ1 −0.776∗∗∗ −0.774∗∗∗ −0.783∗∗∗ −0.781∗∗∗ −0.776∗∗∗ −0.774∗∗∗

(0.047) (0.045) (0.044) (0.044) (0.047) (0.045)
c −3.804∗∗∗ −3.769∗∗∗ −3.745∗∗∗ −3.742∗∗∗ −3.804∗∗∗ −3.769∗∗∗

(0.100) (0.099) (0.102) (0.102) (0.100) (0.099)

τ̂ (m) −0.52 −0.05 0.43 −0.32
(0.51) (0.50) (0.50) (0.50)

ˆ̄τ −0.11
(0.25)

ˆ̄τ (CBOE) −0.24
(0.38)

ˆ̄τ
(CME)
t=7 0.80∗∗

(0.38)
ˆ̄τ
(CME)
t=14 0.78∗∗

(0.37)
ˆ̄τCME
t=21 0.71∗

(0.37)
Observations 1,153 1,243 1,274 1,277 1,153 1,243
σ2 0.257 0.252 0.254 0.255 0.257 0.252
Akaike Inf. Crit. 1,710.446 1,820.362 1,877.940 1,883.982 1,710.446 1,820.362

Note: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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A.2 Additional plots

Figures 24 and 25 provide a full illustration of the sales evolution of each store and competitor

brand. Figures 32 and 33 provide the same plots in terms of the average sales per hour.

Figures 26 shows the residual diagnostics of the univariate C-ARIMA models fitted to the store

brands in the pre-intervention period and Figures 27 and 28 depicts, respectively, the resulting

pointwise effects and the forecasted time series in the post-intervention period. Figures 29, 30

and 31 do the same for competitor brands.

Figures 34 to 37 plot the estimated causal effect, the posterior predictive checks and the inclu-

sion probabilities for the selected MBSTS trend-seasonal model, whereas Figures 38 to 40 show

the posterior predictive checks for alternative models.

Figures 41 shows the evolution of the predictors selected for the analysis on Bitcoin volatility.

Figures 43 and 44 provide additional plots for the analysis performed on the Garman-Klass

volatility proxy, whereas Figure 45 plot the residual diagnostics for the analyses performed on

daily transaction volumes.
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Figure 24: Store brands. Time series of unit sold daily, price per unit and autocorrelation function
for the 11 store brands. The red vertical bar indicates the intervention date.
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Figure 25: Competitor brands. Time series of unit sold daily, price per unit and autocorrelation
function for the 10 competitor brands. The red vertical bar indicates the intervention date.
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Figure 26: Store brands. Residual diagnostics (autocorrelation functions and Normal QQ plots)
of the C-ARIMA models fitted to the time series of units sold (in log scale).
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Figure 27: Store brands. Pointwise causal effect of the new price policy on the sales of store-brand
products for each time horizon (1, 3 and 6 months) estimated via C-ARIMA (the dependent variable
is the daily sales counts of each product in log scale).
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Figure 28: Store brands. Observed sales (grey) and forecasted sales (blue) of each store brand and
for each time horizon (1, 3 and 6 months). The red vertical bar indicates the intervention date.
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Figure 29: Competitor brands. Residual diagnostics (autocorrelation functions and Normal QQ
plots) of the C-ARIMA models fitted to the time series of units sold (in log scale).
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Figure 30: Competitor brands. Pointwise causal effect of the new price policy on the sales of
competitor-brand products for each time horizon (1, 3 and 6 months) estimated via C-ARIMA (the
dependent variable is the daily sales counts of each product in log scale).
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Figure 31: Competitor brands. Observed sales (grey) and forecasted sales (blue) of each com-
petitor brand and for each time horizon (1, 3 and 6 months). The red vertical bar indicates the
intervention date.
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Figure 32: Store brands. Evolution of average sales per hour, price per unit and autocorrelation
function for the 10 store brands in the pairs. The red vertical bar indicates the intervention date.
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Figure 33: Competitor brands. Evolution of average sales per hour, price per unit and auto-
correlation function for the 10 competitor brands in the pairs. The red vertical bar indicates the
intervention date.
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Figure 34: Pointwise causal effect of the permanent price reduction on each store-competitor pair at
1 month, 3 months and 6 months after the intervention.
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Figure 35: For each store-competitor pair, observed outcome (in grey) plotted against the counter-
factual outcome in the absence of intervention (in blue) after 1 month, 3 months and 6 months from
the intervention, indicated by the red vertical line.
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Figure 36: Posterior predictive checks for each pair. Starting from the left: i) density of observed data (black)
plotted against the posterior predictive mean (blue); ii) observed maximum compared to the distribution of the
maximum from the posterior draws; iii) Normal QQ-Plot of standardized residuals; iv) autocorrelation function
of standardized residuals.
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Figure 37: Inclusion probabilities above the 0.5 threshold of the regressors included in the MBSTS
models estimated on each store-competitor pair.
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Figure 38: Posterior predictive checks for a seasonal MBSTS model. Starting from the left: i) density of observed
data (black) vs posterior predictive mean (blue); ii) observed maximum vs distribution of the maximum from
the posterior draws; iii) Normal QQ-Plot of standardized residuals; iv) autocorrelation function of standardized
residuals.
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Figure 39: Posterior predictive checks for a trend MBSTS model. Starting from the left: i) density of observed
data (black) plotted against the posterior predictive mean (blue); ii) observed maximum compared to the distribu-
tion of the maximum from the posterior draws; iii) Normal QQ-Plot of standardized residuals; iv) autocorrelation
function of standardized residuals.
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Figure 40: Posterior predictive checks for a trend and seasonal MBSTS model estimated on the daily units sold.
Starting from the left: i) density of observed data (black) plotted against the posterior predictive mean (blue); ii)
observed maximum compared to the distribution of the maximum from the posterior draws; iii) Normal QQ-Plot
of standardized residuals; iv) autocorrelation function of standardized residuals.
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Figure 41: Evolution of the covariates included in the analysis before any transformation

Figure 42: Evolution of the covariates included in the analysis, scaled and made stationary
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Figure 43: Residuals diagnostics (autocorrelation function and Normal QQ Plot) of the six indepen-
dent C-SARIMA models fitted to the Garman-Klass volatility proxy (in log scale) up to the day
preceding each intervention (four announcements and two futures).
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Figure 44: Contemporaneous causal effect of the four announcements, computed as the difference,
at the intervention date, between the observed Garman-Klass volatility proxy (in log scale) (the
gray line after the vertical bar) and the 1-step ahead forecast (the blue line after the bar). The red
vertical bar indicates the day before the intervention.
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Figure 45: Residuals diagnostics (autocorrelation function and Normal QQ Plot) of the six indepen-
dent C-SARIMA models fitted to Bitcoin daily volumes (log scale) up to the day preceding each
intervention (four announcements and two futures).

Announc. 1

Announc. 2

Announc. 3

Announc. 4

CBOE

CME
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B

B.1 Proof of relations (10), (11) and (12)

Considering the setup formalized in Section 3.3, the k-step prediction error becomes

St∗+k(w)−Ŝt∗+k(w′) = zt∗+k(w)+τt∗+k(w; w′)− ẑt∗+k|t∗(w′) =
k−1∑
i=0

ψiεt∗+k−i+τt∗+k(w,w
′), (56)

Where the last expression comes from the well known relationship that the forecasting error at

lag k is a MA(k − 1).Thus, for a single k, (56) implies that

St∗+k(w)− Ŝt∗+k(w′) ∼

[
τt∗+k(w; w′), σ2

ε

k−1∑
i=0

ψ2
i

]
. (57)

Equation (56) allows also to make inference on the cumulative effect and on the temporal

average effect:

k∑
h=1

(
St∗+h(w)− Ŝt∗+h(w′)

)
=

k∑
h=1

h−1∑
i=0

ψiεt∗+h−i +
k∑

h=1

τt∗+h(w; w′)

=
k∑

h=1

εt∗+h

k−h∑
i=0

ψi +
k∑

h=1

τt∗+h(w; w′).

Then

k∑
h=1

(
St∗+h(w)− Ŝt∗+h(w′)

)
∼

∆t∗+k(w; w′), σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2


and

1

k

k∑
h=1

(
St∗+h(w)− Ŝt∗+h(w′)

)
∼

τ̄t∗+k(w; w′),
1

k2
σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2
 .
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B.2 Causal effect estimation on the untransformed variable

So far, we derived estimators for three causal effects defined for the transformed variable

St = T (Yt) − T (Xt)
′β, but with a further step we can also estimate the effect for the orig-

inal (untransformed) variable Yt (to improve readability, we avoid here the dependency on

the treatment paths). For example, if the transformation to achieve stationarity is a seasonal

differencing of period s, we have that,

τ̂t∗+k = St∗+k − E[St∗+k|It∗ , H0] = T (Yt∗+k)− X′t∗+k β − E[T (Yt∗+k)|It∗ , H0] + X′t∗+k β

= T (Yt∗+k)− E[T (Yt∗+k)|It∗ , H0]

= Yt∗+k−E[Yt∗+k |It∗ , H0]− Yt∗+k−s +E[Yt∗+k−s |It∗ , H0]

Thus, the pointwise causal effect on the original variable is,

τ̂Yt∗+k = Yt∗+k−E[Yt∗+k |It∗ , H0] = τ̂t∗+k + δk (58)

where δk = Yt∗+k−s−E[Yt∗+k−s |It∗ , H0] and δk = 0 when k ≤ s. Finally, from (58) estimating

the cumulative and temporal average effects for the original variable it is straightforward,

∆̂Y
t∗+k =

k∑
h=1

τ̂Yt∗+k = ∆̂t∗+k +
k∑

h=1

δh

ˆ̄τYt∗+k =
1

k

k∑
h=1

τ̂Yt∗+k = ˆ̄τt∗+k +
1

k

k∑
h=1

δh
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B.3 Proof of relations (23), (24) and (25)

β has prior density function given by ,

Pr(β%|Σε,%,θ) = (2π)−p%d/2 det (H%)
−d/2 det (Σε)

−p%/2 exp

{
−1

2
tr
[
H−1% β%Σ

−1
ε β

′
%

]}
= (2π)−p%d/2 det (H%)

−d/2 det (Σε)
−p%/2 exp

{
−1

2
tr
[
β′%H

−1
% β%Σ

−1
ε

]}

Where p% is the number of selected regressors. Similarly, the density function Pr(Ỹ1:t∗) can be

written as,

Pr(Ỹ1:t∗ |β%,Σε,%,θ) = (2π)−dt
∗/2 det (Σε)

−t∗/2 exp

{
−1

2

t∗∑
t=1

(Ỹ1:t∗ −X%β)Σ−1ε (Ỹ1:t∗ −X%β)′

}

= (2π)−dt
∗/2 det (Σε)

−t∗/2 exp

{
−1

2
tr
[
(Ỹ1:t∗ −X%β)′(Ỹ1:t∗ −X%β)Σ−1ε

]}

Now we can derive the posterior distribution for the regression coefficients as follows,

Pr(β%|Ỹ1:t∗ ,Σε,%,θ) ∝ Pr(Ỹ1:t∗ |β%,Σε,%,θ) Pr(β%|Σε,%,θ)

∝ exp

{
−1

2
tr
[
(Ỹ1:t∗ −X%β%)

′(Ỹ1:t∗ −X%β%)Σ
−1
ε

]}
exp

{
−1

2
tr
[
β′%H

−1
% β%Σ

−1
ε

]}
∝ exp

{
−1

2
tr
[
β′%X

′
%X%β%Σ

−1
ε − 2β′%X

′
%Ỹ1:t∗Σ

−1
ε + β′%H

−1
% β%Σ

−1
ε

]}
∝ exp

{
−1

2
tr
[
β′%(X

′
%X% + H−1% )β%Σ

−1
ε − 2β′%X

′
%Ỹ1:t∗Σ

−1
ε

]}

Which is the kernel of a matrix-normal distribution N (M,W,Σε), with W = (X′%X%+H−1% )−1

and M = (X′%X% + H−1% )−1X′%Ỹ1:t∗ .

Integration of the above quantity is necessary to derive the posterior distribution of Σε and

yields the inverse of the normalization constant, which is κ = (2π)p%d/2 det (W)d/2 det (Σε)
p%/2.

However, κ simplifies with the constants singled out from the integral, which are

(2π)−p%d/2 det (Σε)
−p%/2 det (H%)

−d/2 and (2π)−dt
∗/2 det (Σε)

−t∗/2, leaving

det (H%)
−d/2 det (W)d/2(2π)−dt

∗/2 det (Σε)
−t∗/2.
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Pr(Σε|Ỹ1:t∗ ,%,θ) ∝ Pr(Ỹ1:t∗ |Σε,%,θ) Pr(Σε|%,θ)

∝ Pr(Σε|%,θ)

∫
Pr(Ỹ1:t∗ |β%,Σε,%,θ) Pr(β|Σε,%,θ)dβ

∝ det (Σε)
−(d+νε+t∗+1)/2 exp

{
−1

2
tr (SεΣ

−1
ε )

}
exp

{
−1

2
tr
[
(Ỹ′1:t∗Ỹ1:t∗ + M′W−1M)Σ−1ε

]}
∝ det (Σε)

−(d+νε+t∗+1)/2 exp

{
−1

2
tr
[
(Sε + Ỹ′1:t∗Ỹ1:t∗ −M′W−1M)Σ−1ε

]}

This is the kernel of an Inverse-Wishart distribution with ν = νε + t∗ degrees of freedom and

scale matrix SSε = (Sε+Ỹ′1:t∗Ỹ1:t∗−M′W−1M). We can also derive the posterior of the latent

vector %,

Pr(%|Ỹ1:t∗ ,θ) =
Pr(Ỹ1:t∗ |%,θ) Pr(%|θ)∑
%

Pr(Ỹ1:t∗|%,θ) Pr(%|θ)

where,

Pr(Ỹ1:t∗ |%,θ) =

∫ ∫
Pr(Ỹ1:t∗ |β%,Σε,%,θ) Pr(β%|Σε,%,θ) Pr(Σε|%,θ)dβdΣε

=

∫ (∫
Pr(Ỹ1:t∗ |β%,Σε,%,θ) Pr(β%|Σε,%,θ)dβ

)
Pr(Σε|%,θ)dΣε

=

∫
det (H%)

−d/2 det (W)d/2(2π)−dt
∗/2 det (Σε)

−t∗/2 exp

{
−1

2
tr
[
(Ỹ′1:t∗Ỹ1:t∗ −M′W−1M)Σ−1ε

]}
det (Sε)

νε/2

2νεd/2Γd(νε/2)
det (Σε)

−(νε+d+1)/2 exp

{
−1

2
tr (SεΣ

−1
ε )

}
dΣε

=
det (H%)

−d/2 det (W)d/2(2π)−dt
∗/2 det (Sε)

νε/2

2νεd/2Γd(νε/2)
· 2(νε+t

∗)d/2Γd(νε + t∗/2)

det (SSε)
νε+t∗/2

=
det (H%)

−d/2 det (W)d/2(π)−dt
∗/2 det (Sε)

νε/2Γd(νε + t∗/2)

Γd(νε/2) det (SSε)
νε+t∗/2

Notice that if we set H% = (X′%X%)
−1, the above expressions simplify to W = 1

2
(X′%X%)

−1,

M = 1
2
(X′%X%)

−1X′%Ỹ1:t∗ and SSε = Sε + Ỹ′1:t∗Ỹ1:t∗ − 1
2
Ỹ′1:t∗(X

′
%X%)

−1X′%Ỹ1:t∗ .

In order to evaluate the posterior distribution Pr(%|Ỹ1:t∗ ,θ) we can resort to the odds and

update the elements of the selection vector one component at a time, while the others are held

fixed. This ensures that at each step only the most likely model is retained, either the one with

Xp in it or the one without. More formally, let %p = 1 and indicate with %−p the vector of all
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the elements in % except %p. The full conditional of %p is given by,

Pr(%p = 1|Ỹ1:t∗ ,%−p,θ) =
Pr(%p = 1|θ) Pr(Ỹ1:t∗ |%p = 1,%−p,θ)

Pr(%p = 1|θ) Pr(Ỹ1:t∗ |%p = 1,%−p,θ) + Pr(%p = 0|θ) Pr(Ỹ1:t∗ |%p = 0,%−p,θ)

(59)

=
1

1 + o−1p

Where, assuming equal prior probabilities Pr(%p = 1|θ) = Pr(%p = 0|θ) we have,

op =
Pr(%p = 1|θ)

Pr(%p = 0|θ)

Pr(Ỹ1:t∗|%p = 1,%−p,θ)

Pr(Ỹ1:t∗|%p = 0,%−p,θ)
=

Pr(Ỹ1:t∗|%p = 1,%−p,θ)

Pr(Ỹ1:t∗|%p = 0,%−p,θ)

Finally, let η
(r)
1:t∗ indicate the disturbances up to time t∗ of the r-th state. Then, η

(r)
1:t∗ is a (t∗×d)

matrix independently drawn from a N (0, It∗ ,Σr). Thus we have,

Pr(Σr|η(r)1:t∗ ,θ) ∝ Pr(η
(r)
1:t∗ |Σr,θ) Pr(Σr|θ)

∝ det (Σr)
−t∗/2 exp

{
−1

2
tr (η

(r)
1:t∗Σ

−1
r η

′(r)
1:t∗)

}
det (Σr)

− νr+d+1
2 exp

{
−1

2
tr (SrΣ

−1
r )

}
∝ det (Σr)

− νr+d+t
∗+1

2 exp

{
−1

2
tr
[
(Sr + η

(r)
1:t∗Σ

−1
r η

(r)
1:t∗)

]}

Which is the kernel of an Inverse-Wishart distribution with νr + t∗ degrees of freedom and scale

matrix Sr + η
′(r)
1:t∗η

(r)
1:t∗ .

To sample from the joint posterior distribution of the states and model parameters we can

employ the following MCMC algorithm.
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Algorithm 1 Gibbs sampler to draw from the joint posterior distribution of the states and
model parameters

Require: Σ(0)
ε , Σ(0)

r , θ, H%, niter
1: for s in 1 : niter do
2: draw α

(s)
t from Pr(αt|Y1:t∗ ,Σ

(s−1)
ε ,Σ(s−1)

r ,θ) using the simulation smoothing by Durbin
and Koopman (2002)24

3: draw Σ(s)
r from Pr(Σr|η(r,s)

1:t∗ ,θ) according to equation (25)

4: compute Ỹ
(s)
1:t∗ and draw %(s) from Pr(%p|Ỹ(s)

1:t∗ ,%
(s)
−p,θ) by changing % one component at a

time and computing its posterior probability (this ensures that every time a component
%p is changed, the most likely model is retained, i.e. either the one with Xp in or the one
without Xp)

5: draw Σ(s)
ε from Pr(Σε|Ỹ(s)

1:t∗ ,%
(s),θ) according to equation (24)

6: draw β(s)
% from Pr(β%|Ỹ

(s)
1:t∗ ,Σ

(s)
ε ,%(s),θ) according to equation (23)

7: end for

B.4 Unbiased causal effects

Theorem 1 For a positive integer k, define Ŷt∗+k(w) = E[Pr(Yt∗+k(w)|Yt∗(w))] and

Ŷt∗+k(w
′) = E[Pr(Yt∗+k(w

′)|Yt∗(w
′))]; under model (21), Ŷt∗+k(w) and Ŷt∗+k(w

′) are the

k-step ahead forecast of Yt∗+k(w) and Yt∗+k(w
′) given the information set up to time t∗, It∗ =

{Y1:t∗ , X1:t∗}. Then, τ̂ t∗+k(w; w′) = Ŷt∗+k(w)−Ŷt∗+k(w
′) is the point estimator of the general

causal effect and, conditionally on It∗ we have,

τ t∗+k(w; w′)− τ̂ t∗+k(w; w′) ∼ N(0,Σw + Σw′) (60)

∆t∗+k(w; w′)− ∆̂t∗+k(w; w′) ∼ N (0,ΣD(w) + ΣD(w′),Σ) (61)

τ̄ t∗+k(w; w′)− ˆ̄τ t∗+k(w; w′) ∼ N
(

0,
1

k2
(ΣD(w) + ΣD(w′)),Σ

)
(62)

where, Σw = V ar
[
Yt∗+k(w)− Ŷt∗+k(w)

∣∣∣ It∗], ΣD(w) = V ar

[∑
k

(Yt∗+k(w)− Ŷt∗+k(w))

∣∣∣∣ It∗]
with w ∈ {w,w′} are defined as follows

Σw = ZtPtZ
′
t + Σε (63)

ΣD(w) =

(
Dt∗+1Pt∗+1D

′
t∗+1 +

∑
k

(
Dt∗+kRt∗+K−1Ct∗+K−1R

′
t∗+K−1D

′
t∗+k

))
+KHt (64)

and
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Dt∗+k = Zt∗+k + Dt∗+k+1Tt∗+k , k = 1, . . . , K − 1

Dt∗+K = Zt∗+K

Proof.

The difference between the general causal effect and its estimator can be written as,

τ t∗+k(w; w′)− τ̂ t∗+k(w; w′) = Yt∗+k(w)−Yt∗+k(w
′)−

[
Ŷt∗+k(w)− Ŷt∗+k(w

′)
]

= Yt∗+k(w)− Ŷt∗+k(w)︸ ︷︷ ︸
A

−
[
Yt∗+k(w

′)− Ŷt∗+k(w
′)
]

︸ ︷︷ ︸
B

Let’s focus our attention on A and define at∗+k = E[αt∗+k|It∗ ] and Pt∗+k = V ar[αt∗+k|It∗ ].
Under model (21) we have,

Yt∗+k(w)− Ŷt∗+k(w) = Zt∗+kαt∗+k + Xt∗+kβ + εt∗+k − E[Yt∗+k(w)|It∗ ]

= Zt∗+kαt∗+k + Xt∗+kβ + εt∗+k − Zt∗+kat∗+k −Xt∗+kβ

= Zt∗+kαt∗+k − Zt∗+kat∗+k + εt∗+k

Then,

E[Yt∗+k(w)− Ŷt∗+k(w)|It∗ ] = 0

V ar[Yt∗+k(w)− Ŷt∗+k(w)|It∗ ] = Zt∗+kPt∗+kZ
′
t∗+k + Σε = Σw

Following the exact same steps for B we can show that Yt∗+k(w
′) − Ŷt∗+k(w

′) ∼ N(0,Σw′).

Since the potential paths are independent of each other, relation (60) follows from the properties

of the difference of two independent multivariate Normal random variables.

Based on the above result, we can easily show that the expectation of the difference between the

cumulative effect and its estimator is zero. In what follows we derive the proof for t′ = t∗ +K

but it could be shown for every k = 1, . . . , K.

E
[
∆t∗+K(w; w′)− ∆̂t∗+K(w; w′)

∣∣∣ It∗] = E

[
K∑
k=1

(
τ t∗+k(w; w′)− τ̂ t∗+k(w; w′)

) ∣∣∣∣∣ It∗
]

=
K∑
k=1

E
[
τ t∗+k(w; w′)− τ̂ t∗+k(w; w′)

∣∣ It∗] = 0
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The derivation of the variance may be somewhat more cumbersome, because the time dependency

also come into play. So we have three dependence structures to take into account: the one

between the d series, the one between times and the one between the states. To address this

issue it is useful to re-define εt ∼ N (0, Ht,Σ); in this way, εt can be seen as a single-row

matrix following a matrix Normal distribution, which is in line with the definition provided in

Section 4.3. Thus, we have

V ar
[
∆t∗+K(w; w′)− ∆̂t∗+K(w; w′)

∣∣∣ It∗] = V ar

[
K∑

k=1

τ t∗+k(w; w′)−
K∑

k=1

τ̂ t∗+k(w; w′)

∣∣∣∣∣ It∗
]

= V ar

[
K∑

k=1

(
Yt∗+k(w)− Ŷt∗+k(w)

)
−

K∑
k=1

(
Yt∗+k(w′)− Ŷt∗+k(w′)

) ∣∣∣∣∣ It∗
]

Focusing on the first term,

V ar

[
K∑
k=1

(
Yt∗+k(w)− Ŷt∗+k(w)

) ∣∣∣∣∣ It∗
]

= V ar

[
K∑
k=1

Zt∗+kαt∗+k −
K∑
k=1

Zt∗+kat∗+k +
K∑
k=1

εt∗+k

∣∣∣∣∣ It∗
]

= V ar

[
K∑
k=1

Zt∗+kαt∗+k

∣∣∣∣∣ It∗
]

+KHt

where,

V ar

[
K∑
k=1

Zt∗+kαt∗+k

∣∣∣∣∣ It∗
]

= V ar [Zt∗+1αt∗+1 + Zt∗+2αt∗+2 + · · ·+ Zt∗+Kαt∗+K |It∗ ]

= V ar
[
Zt∗+1αt∗+1 + Zt∗+2(Tt∗+1αt∗+1 + Rt∗+1ηt∗+1) + · · ·+ Zt∗+Kαt∗+K |It∗

]
= V ar[(Zt∗+1 + Zt∗+2Tt∗+1 + · · ·+ Zt∗+KTt∗+K−1 · · ·Tt∗+1)αt∗+1+

+ (Zt∗+2 + Zt∗+3Tt∗+2 + · · ·+ Zt∗+KTt∗+K−1 · · ·Tt∗+2)Rt∗+1ηt∗+1+

+ · · ·+ Zt∗+KRt∗+K−1ηt∗+K−1|It∗ ]

Then, defining Dt∗+1 = Zt∗+1 + Zt∗+2Tt∗+1 + · · · + Zt∗+KTt∗+K−1 · · ·Tt∗+1 we can notice that

Dt∗+1 = Zt∗+1 + (Zt∗+2 + Zt∗+3Tt∗+2 . . .Zt∗+KTt∗+K−1 · · ·Tt∗+2)Tt∗+1 = Zt∗+1 + Dt∗+2Tt∗+1.

Thus, in general we have
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Dt∗+k = Zt∗+k + Dt∗+k+1Tt∗+k , k = 1, . . . , K − 1

Dt∗+K = Zt∗+K

and

V ar

[
K∑
k=1

Zt∗+kαt∗+k

∣∣∣∣∣ It∗
]

=

(
Dt∗+1Pt∗+1D

′
t∗+1 +

K∑
k=2

(
Dt∗+kRt∗+K−1Ct∗+K−1R

′
t∗+K−1D

′
t∗+k

))

This yields to the final result in equation (64). Repeating these steps for the second term we

obtain equation (61). Finally, applying the usual properties of variance we obtain relation (62)

for the temporal average causal effect,

V ar
[
τ̄ t∗+K(w; w′)− ˆ̄τ t∗+K(w; w′)

∣∣ It∗] = V ar

[
1

K

K∑
k=1

τ t∗+k(w; w′)− 1

K

K∑
k=1

τ̂ t∗+k(w; w′)

∣∣∣∣∣ It∗
]

=
1

K2
V ar

[
∆t∗+K(w; w′)− ∆̂t∗+K(w; w′)

∣∣∣ It∗]
Theorem 1, states that the point estimator of the general causal effect and, by extension, the

marginal and the conditional causal effect estimators are unbiased. From equation (64) we can

infer that the variance of the difference between the cumulative effect and its estimator increases

with the variance of both εt and ηt. Furthermore, the variance is an increasing function of

Dt, therefore, our uncertainty increases with time, reflecting our intuition that we have less

information about potential outcomes that are further from the time of the intervention.

133



B.5 Posterior predictive checks

To produce reliable causal effect estimates from the model-based predictions, the assumed

model has to adequately describe the data. One way to check the quality of the model fit

within a Bayesian framework is to use posterior predictive checks (Rubin, 1981, 1984; Gelman

et al., 2013). Intuitively, this entails generating synthetic data sets from the fitted model and

comparing them to the observed data.

Typically, we generate replicated data by drawing multiple times from the posterior predictive

distribution; then, we compare these draws with the observed data using both numerical and

graphical checks (Gelman et al., 2013). More specifically, let T (Y1:t∗ ,ϑ) be a test quantity that

depends on the data and the unknown model parameters and denote with Ynew
1:t∗ a new vector

of observations sampled from the posterior predictive distribution, as outlined in equation (26).

To describe the degree of the discrepancy, we use the Bayesian p-value, which is the probability

of observing a test quantity at least as extreme as the observed data, T (Ynew
1:t∗ ,ϑ), we denote

this by

pB = Pr(T (Ynew
1:t∗ ,ϑ) ≥ T (Y1:t∗ ,ϑ)|Y1:t∗). (65)

Unlike in frequentist statistics where a p-value near 0 indicates that the corresponding null

hypothesis can be rejected, an extreme Bayesian p-value denotes that the specific feature of

the data captured by the test quantity is inconsistent with the assumed model. For example,

if we suspect that our model may not be able to reproduce the large values observed in the

data, a suitable test quantity could be the observations’ maximum. In this case, a p-value near

0 indicates that, under the assumed model, it is unlikely to encounter a value larger than the

observed maximum; so, if the replicated data were generated under a Normal model, a heavy

tail distribution may actually be more appropriate. A Bayesian p-value can be estimated by

computing the proportion of replicated data sets satisfying (65).

We can also provide a graphical representation by plotting the distribution of the test quantity

against the observed test quantity; as in a classical setting, the Bayesian p-value is the right

tail-area probability. Another graphical check consists of computing the posterior predictive

mean (i.e., the mean of the posterior predictive distribution) and then plotting it against the

distribution of the observed data. Generally, graphical model checks are useful for highlighting

the systematic discrepancies between the observed and the simulated data.

Finally, for both linear and non-linear regression models, we can also assess the goodness of fit

using residual plots. We can think of Bayesian model residuals as a generalization of classical

residuals that accounts for the uncertainty in the model parameters.

In Section 4.5, we extensively used posterior predictive checks to select and validate the model

used for our empirical analysis.

134



B.6 Sensitivity analysis

Model validation performed through posterior predictive checks shows that the structural time

series model with a trend and seasonal component adequately describe the data (see A.2 for the

details). Nonetheless, posterior inference might still be affected by prior assumptions. Thus, to

strengthen our confidence in the assumed model, we performed a sensitivity analysis in order

to evaluate to what extent our inferred causal effect changes to different values of the prior

hyperparameters.

As described in Section 4.3.2, for the unknown scale matrices of the Inverse-Wishart distribu-

tions we chose the following variance-covariance matrix,

Sε = Sr =

[
hs21

√
hks1s2ρ√

hks1s2ρ ks22

]
,

where, s21,s
2
2 are the sample variances, which can be scaled by some positive values h and k,

and ρ is the correlation coefficient. Linking the scale matrix to the sample variances is in line

with an objective Bayesian approach and can ensure a reasonable scale for the prior (Brodersen

et al., 2015). In our empirical analysis, we set h = k = 1 but we could have used different

values. For example, since the sample variance of the competitor brands is, on average, ten

times higher than the sample variance of the store brands, another reasonable scaling can be

obtained by setting h = 0.1, k = 1. Table 21 presents the estimated causal effects under

different assumptions for the scaling factors.

Another parameter that can influence our posterior inference is the linear correlation coefficient.

We set ρ = −0.8 based on our prior belief that the two products in the pair are perfect

substitutes, but the correlation might be smaller than what assumed or even positive. Table

22 shows the estimated causal effects under different combinations of the correlation and the

scaling factors.

Finally, we assumed Sε = Sr but we can also allow the state disturbances to vary more (less)

freely than the observation disturbances. The estimated effects under different assumptions for

Sr are reported in Table 23.

Overall, our estimates seem to be robust to different prior assumptions: even if in some instances

we find only one or two significant effects, this still supports our general conclusion that the

new price policy was not effective.
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Table 21: Temporal average general effect estimates at one month horizon under different prior
assumptions for the scaling factors h and k.

h = 1, k = 0.01 h = 1, k = 0.1 h = 1, k = 1

ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 7.24 -23.37 36.89 7.25 -23.42 37.53 6.97 -24.25 38.47
c 23.55 -126.97 178.70 24.34 -118.60 168.55 24.89 -101.30 153.64

(2)
s 7.41 -13.63 30.46 7.15 -13.80 29.48 7.02 -14.79 28.90
c 12.33 -87.37 114.44 13.33 -77.80 106.46 14.71 -62.26 99.44

(3)
s 7.46 -15.24 29.66 7.68 -15.17 30.33 7.94 -14.08 32.26
c 13.57 -76.17 100.46 14.39 -70.34 95.71 15.42 -62.17 90.81

(4)
s 47.19 0.25 94.40 47.25 1.05 94.28 47.84 4.71 96.82
c 26.28 -101.06 150.07 26.93 -93.87 142.41 28.86 -77.93 135.93

(5)
s 3.60 -44.33 52.00 3.46 -45.09 53.48 4.11 -46.65 54.64
c 41.69 -82.11 159.68 43.67 -72.81 157.08 45.47 -63.13 154.24

(6)
s 9.43 -13.15 33.27 9.48 -13.45 33.57 9.53 -14.45 33.68
c 22.83 -52.50 95.71 23.33 -47.52 92.92 25.64 -37.88 93.36

(7)
s 79.87 12.19 151.16 78.25 5.65 148.78 78.19 0.15 154.08
c 165.50 -313.51 621.07 180.33 -262.04 644.09 182.70 -221.16 600.08

(8)
s 24.79 -25.48 78.87 25.20 -28.56 75.59 25.23 -28.60 78.16
c 14.90 -16.30 47.43 15.83 -15.80 47.50 15.91 -15.15 47.53

(9)
s 40.54 -9.93 91.72 40.34 -10.24 89.36 40.29 -9.84 90.38
c 15.91 -31.49 64.54 16.63 -31.47 66.75 17.17 -30.76 68.56

(10)
s 12.39 0.81 23.67 12.43 1.00 23.82 12.43 1.35 23.64
c 0.06 -9.02 9.56 0.16 -8.78 9.37 0.04 -9.36 9.79

h = 0.1, k = 0.01 h = 0.1, k = 0.1 h = 0.1, k = 1

ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 7.96 -19.49 37.36 7.82 -20.49 38.49 7.56 -21.54 38.87
c 19.89 -122.41 158.93 19.07 -119.11 151.84 20.61 -104.27 142.84

(2)
s 7.13 -11.29 27.24 6.75 -12.31 26.95 6.71 -12.91 26.21
c 13.14 -82.89 111.07 13.44 -80.64 102.26 14.72 -62.25 99.20

(3)
s 7.50 -13.08 27.75 7.60 -13.25 28.14 7.83 -11.88 29.91
c 13.80 -74.26 98.68 14.18 -70.76 92.72 15.30 -61.50 91.00

(4)
s 47.72 2.69 93.21 47.66 2.99 93.63 47.99 4.60 94.78
c 25.65 -98.05 146.90 26.33 -92.66 139.63 29.72 -78.09 135.79

(5)
s 5.15 -49.86 60.98 4.46 -51.98 62.41 5.46 -53.97 66.87
c 46.15 -74.29 174.59 43.95 -69.46 154.96 48.31 -55.84 157.87

(6)
s 8.80 -15.48 34.40 9.04 -17.71 36.31 8.90 -15.72 34.29
c 22.76 -51.75 95.12 23.10 -47.28 91.12 25.19 -37.30 91.33

(7)
s 75.17 -5.10 156.68 77.54 -3.56 160.93 74.41 -9.53 158.00
c 186.83 -289.26 671.61 177.16 -250.44 586.05 190.17 -201.93 593.67

(8)
s 24.07 -32.97 77.91 24.17 -31.64 77.64 24.35 -31.78 78.01
c 15.42 -16.28 46.81 15.61 -15.21 46.83 15.80 -15.42 46.50

(9)
s 38.07 -15.31 92.90 38.30 -14.32 91.26 37.89 -13.39 88.85
c 16.59 -32.28 67.16 16.44 -31.49 64.43 17.27 -30.87 66.77

(10)
s 11.56 -1.61 25.12 11.73 -1.12 24.18 12.00 0.02 23.85
c 0.25 -8.65 9.83 0.30 -8.71 9.68 0.00 -9.46 9.77
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Table 22: Temporal average general effect estimates at one month horizon under different prior
assumptions for the scaling factors h, k and the linear correlation coefficient ρ.

h = 1, k = 0.1, ρ = −0.3 h = 1, k = 1, ρ = −0.3 h = 0.1, k = 1, ρ = +0.3

ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 7.20 -23.85 38.44 7.13 -24.72 39.13 7.88 -21.90 39.20
c 23.73 -116.98 167.21 24.14 -99.19 152.88 20.89 -101.96 144.23

(2)
s 7.24 -14.58 30.35 7.12 -15.19 29.16 6.85 -13.39 28.50
c 13.65 -71.93 110.44 14.63 -61.80 99.32 14.61 -66.66 93.83

(3)
s 7.70 -15.19 30.47 7.94 -13.96 32.43 8.03 -12.18 30.54
c 14.52 -69.13 93.31 15.36 -60.10 91.26 15.07 -60.56 90.46

(4)
s 47.31 0.14 95.55 48.05 4.46 97.81 48.20 3.77 96.39
c 26.54 -92.09 141.12 28.17 -76.13 134.14 27.36 -80.92 133.40

(5)
s 3.92 -42.58 51.27 4.28 -42.17 53.99 5.26 -48.09 59.97
c 44.02 -69.30 152.63 48.36 -54.29 155.36 47.98 -52.36 154.19

(6)
s 9.60 -11.69 32.73 9.55 -12.56 31.58 9.38 -13.30 32.70
c 23.86 -44.24 89.96 25.89 -35.07 89.86 25.68 -35.01 89.41

(7)
s 79.00 6.63 148.42 78.96 1.67 154.79 76.86 -9.14 165.34
c 187.38 -244.11 635.17 190.74 -198.58 596.36 187.56 -202.75 572.28

(8)
s 25.66 -28.03 76.80 25.65 -26.71 79.36 25.04 -35.08 83.11
c 16.24 -15.76 48.84 16.09 -15.54 46.68 16.17 -14.73 48.06

(9)
s 40.33 -10.75 90.49 40.49 -8.66 89.99 38.33 -13.22 90.34
c 17.34 -30.12 65.67 17.64 -31.95 67.90 17.64 -32.55 68.40

(10)
s 12.37 0.88 23.58 12.39 0.71 23.66 11.53 -1.71 24.82
c 0.28 -8.44 9.53 -0.09 -9.77 9.99 0.05 -9.42 9.85

Table 23: Temporal average general effect estimates at one month horizon for h = k = 1, ρ = 1 and
under different prior assumptions for Sr.

Sr = 0.5Sε Sr = 2Sε Sr = 10Sε

ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1)
s 6.90 -23.91 37.77 7.10 -26.11 39.83 7.09 -34.28 46.37
c 23.86 -102.42 152.62 24.79 -101.46 154.68 25.29 -115.70 171.43

(2)
s 6.97 -13.72 27.83 7.06 -16.70 31.65 7.26 -24.02 37.26
c 14.22 -63.03 100.72 14.81 -65.48 97.76 15.80 -72.62 110.79

(3)
s 7.92 -12.94 31.16 7.94 -15.49 34.35 8.05 -22.00 41.74
c 15.09 -63.38 91.06 15.65 -62.26 91.39 15.68 -73.12 103.23

(4)
s 48.08 4.49 95.57 47.62 2.24 98.14 47.59 -8.74 110.51
c 27.52 -78.23 131.69 29.77 -78.38 136.75 29.36 -90.11 152.06

(5)
s 4.08 -45.71 55.58 3.32 -47.07 55.74 5.33 -52.97 67.21
c 45.10 -63.01 152.22 49.28 -58.20 163.80 46.12 -81.66 170.30

(6)
s 9.42 -13.67 32.68 9.60 -14.88 34.67 9.29 -19.14 37.63
c 23.53 -42.49 87.81 25.84 -38.52 94.63 26.15 -47.89 102.64

(7)
s 77.94 0.62 153.30 78.39 -0.28 156.90 82.02 -9.49 180.16
c 184.04 -215.19 594.20 181.14 -233.10 602.97 169.11 -307.08 619.20

(8)
s 24.70 -27.11 75.79 25.79 -30.32 81.06 26.76 -37.56 90.71
c 15.90 -14.53 47.33 16.08 -15.65 49.14 16.38 -21.24 56.59

(9)
s 39.83 -9.11 89.22 41.04 -9.98 92.03 41.00 -20.73 103.17
c 16.81 -31.86 66.30 16.84 -36.00 69.79 17.26 -45.31 79.88

(10)
s 12.42 1.28 23.61 12.61 1.34 24.15 12.71 -0.72 25.90
c 0.09 -9.13 9.35 -0.12 -10.10 10.10 -0.50 -12.44 12.13
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B.7 Convergence diagnostics

To make inference with Markov Chain Monte Carlo (MCMC) methods we need to verify that our

Markov chain has converged to the stationary distribution. Geweke’s diagnostic test (Geweke,

1992) compares the sample means of two non-overlapping quantiles of the chain (for example,

the first 10% and the last 50% of the draws). If the draws are sampled from the same stationary

distribution, the sample means are equal and the test statistic is asympotically Normal.

Table 24 shows the resulting p-value for the two-sided test for every parameter of the bivariate

models estimated on the 10 store-competitor pairs. The Geweke diagnostic fails to detect non-

convergence of the chains to the stationary distribution (at the 5% level, the test fails to reject

the null hypothesis of the equality of means in 81 cases out of 90).

Finally, for a visual inspection of the chain convergence, we also include the trace plots for the

parameters of the first two models (Figures 46 and 47).

Table 24: Geweke’s diagnostics at the lower 10% and upper 50% quantiles. In this table, σ2i , i ∈ {1, 2}
and σ1,2 indicate, respectively, the variances and the covariance of the observation disturbances; σ2µi
and σµ1,2 the variances and the covariance of the trend disturbances; σ2γi and σγ1,2 the variances and
the covariance of the disturbances of the seasonal component.

σ2
1 σ2

2 σ1,2 σ2
µ1

σ2
µ2

σµ1,2 σ2
γ1

σ2
γ2

σγ1,2

1 0.41 0.92 0.75 0.59 0.32 0.71 0.95 0.03 0.03
2 0.94 0.75 0.25 0.71 0.19 0.55 0.88 0.00 0.01
3 0.62 0.99 0.64 0.88 0.52 0.80 0.98 0.01 0.06
4 0.55 0.83 0.96 0.71 0.16 0.67 0.65 0.02 0.07
5 0.59 0.98 0.65 0.97 0.27 0.73 0.88 0.20 0.30
6 0.76 0.83 0.81 0.39 0.17 0.98 0.90 0.17 0.28
7 0.81 0.54 0.16 0.53 0.47 0.04 0.89 0.18 0.10
8 0.29 0.78 0.47 0.40 0.45 0.83 0.30 0.64 0.02
9 0.86 0.65 0.46 0.39 0.24 0.91 0.95 0.87 0.11

10 0.81 0.05 0.91 0.53 0.34 0.79 0.72 0.35 0.04
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Figure 46: Trace plots of the variance-covariance matrices of the model estimated on the first store-
competitor pair.

Figure 47: Trace plots of the variance-covariance matrices of the model estimated on the second
store-competitor pair.
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B.8 Proof of relations (53), (54) and (55)

Under the setup formalized in Section 5.3, the k-step ahead forecast Ŝtm−1+k under H0, condi-

tioning to the information set up to time tm − 1, can be considered an estimate of the missing

potential outcome in the absence of intervention. Thus, an estimator of the point effect is the

k-step ahead prediction error,

Stm−1+k(w)− Ŝtm−1+k(w′) = ztm−1+k(w) + τ
(n)
tm−1+k(w; w′)− ẑtm−1+k|tm−1(w′) (66)

=
k−1∑
i=0

ψi,mεtm−1+k−i + τ
(m)
tm−1+k(w; w′)

Where the last expression comes from the Wold representation of the covariance stationary

process zt. Hence, ∀tm ∈ Λ,

τ̂
(m)
tm−1+k(w; w′) ∼

[
τ
(m)
tm−1+k(w; w′), σ2

εm

k−1∑
i=0

ψ2
i,m

]
where σ2

εm is the variance of the error terms of the C-ARIMA model estimated on the observa-

tions up to time tm. Note that by setting k = 1 we obtain the estimator of the contemporaneous

effect. Furthermore, relation (66) allows us to derive the estimators for the cumulative and the

temporal average pointwise effects,

k∑
h=1

(Stm−1+h(w)− Ŝtm−1+h(w′)) =
k∑

h=1

h−1∑
i=0

ψi,mεtm−1+h−i +
k∑

h=1

τ
(m)
tm−1+h(w; w′)

=
k∑

h=1

εtm−1+h−i

k−h∑
i=0

ψi,m +
k∑

h=1

τ
(m)
tm−1+h(w; w′)

Then,

∆̂
(m)
tm−1+k(w; w′) ∼

∆
(m)
tm−1+k(w; w′), σ2

εm

k∑
h=1

(
k−h∑
i=0

ψi,m

)2


and

ˆ̄τ
(m)
tm−1+k(w; w′) ∼

τ̄ (m)
tm−1+k(w; w′),

1

k2
σ2
εm

k∑
h=1

(
k−h∑
i=0

ψi,m

)2


Finally, to derive the estimators of the aggregate pointwise effects, we need to assume that

the individual effects are independent, which is not a stringent assumption in our framework.

Indeed, every time we want to estimate an effect, by conditioning to the past information set
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we take previous interventions as fixed. In other words, this is an assumption about the effect

that previous interventions have when a new intervention take place and we are assuming that

this effect is the same in both scenarios. Thus, from the above relations we can derive,

∆̂k(w; w′) ∼

[
∆k(w; w′),

M∑
m=1

σ2
εm

k∑
h=1

(
k−h∑
i=0

ψ2
i,m

)]

ˆ̄τk(w; w′) ∼

[
τ̄k(w; w′),

1

(Mk)2

M∑
m=1

σ2
εm

k∑
h=1

(
k−h∑
i=0

ψ2
i,m

)]
By setting k = 1 we also obtain the estimators of the aggregate contemporaneous effect and

the average contemporaneous effect.
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