
24 September 2024

Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long
term memory / Lana, D.; Di Russo, J.; Mello, T.; Wenk, G.L.; Giovannini, M.G. - In: NEUROBIOLOGY OF
LEARNING AND MEMORY. - ISSN 1074-7427. - ELETTRONICO. - 137:(2017), pp. 15-26.
[10.1016/j.nlm.2016.11.006]

Original Citation:

Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the
hippocampus of the rat and impairs long term memory

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1016/j.nlm.2016.11.006

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1080906 since: 2017-05-10T12:40:20Z

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Rapamycin inhibits mTOR/p70S6K activation in CA3 region of 
the hippocampus of the rat and impairs long term memory

D. Lana1, J. Di Russo2, T. Mello3, G.L. Wenk4, and M.G. Giovannini1

1Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of 
Florence, Florence, Italy

2Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of 
Excellence, University of Muenster, Muenster, Germany

3Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, 
Italy

4Department of Psychology, The Ohio State University, Ohio, USA

Abstract

The present study was aimed at establishing whether the mTOR pathway and its downstream 

effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to 

trigger the formation of long term memories, similar to what we demonstrated in CA1 

hippocampus. We performed in vivo behavioral experiments using the step down inhibitory 

avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We 

examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic 

receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term 

memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30 

min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after 

acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were 

involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of 

p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) 

scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K 

activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-

administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced 

increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment 

did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 

activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/

p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term 

memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus 
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is involved in memory mechanisms based on rapid, one-trial object–place learning and recall. 

Furthermore, our results are in accordance with previous reports that selective molecular 

mechanisms underlie either short term memory, long term memory, or both. Furthermore, our 

discovery that administration of rapamycin increased the activation of mTORC2 in microglial cells 

supports a reappraisal of the beneficial/adverse effects of rapamycin administration.

Keywords

acetylcholine; long term memory; scopolamine; mecamylamine; muscarinic receptor; nicotinic 
receptor

1. INTRODUCTION

The hippocampus is critical for learning and memory. Age related decline in hippocampal 

function may underlie impaired memory abilities in about half of the population over 60 

years of age (Hedden & Gabrieli, 2004; Small, Tsai, DeLaPaz, Mayeux, & Stern 2002). The 

hippocampal regions CA1, CA3 and dentate gyrus, although interconnected via the 

trisynaptic pathway, display striking anatomical differences (Amaral & Witter, 1989) and 

show distinct functions, contributing to specific types of information processing such as 

novelty detection, encoding, short-term memory, intermediate-term memory and retrieval. In 

particular, CA3 and CA1 pyramidal neurons perform distinct, yet complementary, functions 

in the processing of spatial and contextual information (Vazdarjanova & Guzowski, 2004). 

The CA3 hippocampus supports processes associated with the rapid formation of spatial or 

contextual memory (Kesner, Lee, & Gilbert, 2004; Lee & Kesner, 2002; Lee & Kesner, 

2003; Nakazawa et al., 2003). However, CA3 lesions, or experimentally-induced 

dysfunctions of CA3, also impair spatial memory (Lee & Kesner, 2004; Nakazawa et al., 

2003) and object-place associations (Hunsaker & Kesner, 2008; Langston, Stevenson, 

Wilson, Saunders, & Wood, 2010). Intrahippocampal CA3 information processing is also 

important for memory-based behavior and can modulate activity in the CA1 (O'Reilly, 

Alarcon, & Ferbinteanu, 2014). The relative contribution of CA3 and CA1 regions to 

memory is not completely understood. A recent review of the learning and memory 

literature suggested (Stokes, Kile, & Ekstrom, 2015) that CA3/DG and CA1 have distinct 

and separate roles in the representation of a spatial context during the formation of 

memories.

Long term memory requires protein synthesis; mTOR signalling is of crucial importance in 

this process, especially at the level of neuronal synaptodendritic compartment (Giovannini & 

Lana, 2016). Activation of mTOR/p70S6K pathway in CA1 hippocampal pyramidal neurons 

is instrumental to the process of formation of a long term inhibitory avoidance (IA) memory, 

and the cholinergic input through muscarinic and nicotinic receptor blockade impairs short 

term, but not long term IA memory (Lana et al., 2013).

IA is an emotionally-arousing paradigm (Giovannini et al., 2005, 2008; Izquierdo et al., 

1997a; Lana et al., 2013; Maren, 2001) that involves a spatial memory component as the 

animal remembers the location where the noxious stimulus was given during acquisition 

(Cammarota, Bevilaqua, Medina, & Izquierdo, 2007), an explicit, associative component to 
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the context, and an operant-like conditioning component to the shock as the animal may 

avoid the aversive stimulus (Wilensky, Schafe, & LeDoux, 2000). The IA response is a 

learning task that depends upon the activation of the hippocampal cholinergic system 

(Giovannini et al., 2005), as shown by the impairment by pre-training (Giovannini, Bartolini, 

Bacciottini, Greco, & Blandina, 1999; Izquierdo et al., 1998a) or post-training 

administration of muscarinic receptor antagonists (Giovannini, Bartolini, Bacciottini, Greco, 

& Blandina, 1999; Izquierdo et al., 1998b; McGaugh & Izquierdo, 2000). The recall test, 

performed at different times after acquisition, offers insight into the mechanisms involved in 

short term (Izquierdo et al., 1998a; Izquierdo et al., 1998b) and long term memory 

(Izquierdo et al., 2002). The step-down IA is acquired in one trial by activation of different 

brain structures by sensorial stimuli, including spatial and visual perceptions, pain, and fear 

(Izquierdo, 1989; Izquierdo and Medina, 1997b).

In this paper we will extend our analysis on mTOR pathway dynamics in the CA3 region of 

the hippocampus during the formation of an IA memory. By comparing the similarities and 

differences between CA1 and CA3 we will be better able to define the relative contribution 

of these two hippocampal regions in the encoding of an IA memory. Furthermore, we will 

define whether in CA3 pyramidal neurons the mTOR pathway is modulated by the 

cholinergic input and whether activation of this pathway triggers the encoding of long term 

memories in a similar manner to what we had demonstrated in CA1 hippocampus (Lana et 

al., 2013).

2. METHODS

2.1. Animals

Male adult (3 months old) Wistar rats, weighing 200-225 g, were (Harlan Nossan, Milano, 

Italy) housed in macrolon cages until experiment with ad libitum food and water and 

maintained on a 16h light – 8h dark cycle with light at 7:00 am. The room temperature was 

23 ± 1°C. All rats were kept for at least 1 week in the animal house facility of the University 

of Florence before initiating the experiment and were frequently handled. All animal 

manipulations were carried out according to the European Community guidelines for animal 

care. All efforts were made to minimize animal sufferings and to use only the number of 

animals necessary to produce reliable scientific data. No alternatives to in vivo techniques 

are available for this type of experiments.

2.2. Surgery

For the intracerebroventricular (i.c.v.) injection of rapamycin or mecamylamine, rats were 

deeply anaesthethized with Zoletyl 100, i.p. and placed in a stereotaxic frame (Stellar, 

Stoelting Co., Wood Dale, IL, USA) for surgery. A stainless steel cannula was implanted in 

the right lateral ventricle (coordinates from bregma: AP:-1.5; L: -1.5; H: 4.0 mm). 

Coordinates were taken from (Paxinos & Watson, 1982) and are relative to bregma and dural 

surface. The cannula was secured to the parietal bone with acrylic dental cement and the 

skin sutured closed. After surgery the rats were treated with Amplital 5 mg/rat s.c.. Injection 

of rapamycin or mecamylamine was performed i.c.v. 7 days after surgery.
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2.3. Drug treatments

Rapamycin (Calbiochem, EMD Biosciences, La Jolla, CA, USA), an inhibitor of mTORC1, 

was dissolved in a H2O/DMSO solution (50% H2O, 50% DMSO) and administered i.c.v. 

(1.5 nmol/5 μl of vehicle, 5.49 μg/kg) to rats 30 min before acquisition of the step down IA 

test. Control animals received injection of vehicle alone (H2O/DMSO solution, 5 μl). The 

amount of rapamycin was chosen in order to obtain a tissue concentration ranging between 

2-3 μM assuming the drug distributes evenly throughout the brain (1-1.5 g total). 

Scopolamine hydrochloride (SIGMA, St. Louis, MO, USA), a non-selective antagonist of 

cholinergic muscarinic receptors, was dissolved in saline and administered i.p. (1.5 mg/kg) 

30 min before the acquisition trial of the step down IA test. Mecamylamine (SIGMA, St. 

Louis, MO, USA), a non-selective antagonist of cholinergic nicotinic receptors, was 

dissolved in saline and administered i.c.v (15 nmol/5 μl of saline, 10.04 μg/kg) 40 min 

before acquisition of the step down IA test.

For i.c.v. injection a micro syringe was connected to the cannula and rapamycin or 

mecamylamine was injected over a 2 min period. The syringe was then left in place for one 

additional min to avoid back diffusion of the solution.

2.4. Step down inhibitory avoidance test

In the step down IA test the rats, put on an elevated platform placed by one wall of an arena, 

learn to associate exploration of the adjacent compartment with a foot shock delivered 

through the floor grid. On a subsequent exposure to the same environment, the animal will 

avoid to step down onto the floor grid or will increase the latency before stepping down. We 

used a standard step down apparatus placed in a soundproof room. Rats were handled and 

habituated to the experimenter and to the handling procedure the day before the acquisition 

trial. Rats were positioned on an elevated platform placed in a dark compartment facing an 

open arena equipped with an electrified floor grid. The time spent to step down onto the grid 

where the aversive stimulus (10 electric shocks, 20 ms/0.5 mA/5Hz) was delivered was 

recorded (Acquisition Latency). After the aversive stimulus, rats were immediately removed 

from the arena and placed in their home cage for consolidation (encoding). Recall trial, 

performed 1h, 4h or 24h after the acquisition trial, was identical to the acquisition trial, 

except that the foot shock was omitted. In the recall trial the time spent in the dark 

compartment before stepping down onto the arena was also recorded (“Recall Latency”). All 

naïve and vehicle-treated rats acquired the behaviour. As previously published (Lana et al., 

2013) a 300 s cutoff time was imposed on recall test latencies.

2.5. Experimental groups

Rats were randomly subdivided into different experimental groups. Rats in the first group 

received i.c.v. injection of rapamycin 30 min before the acquisition trial, those in the second 

group received i.p. injection of scopolamine 30 min before the acquisition trial, those in the 

third group received i.c.v. injection of mecamylamine plus an i.p. injection of scopolamine 

40 min and 30 min, respectively, before the acquisition trial, those in the fourth group were 

control rats that received the vehicle (CTR). Within these experimental groups rats were 

further subdivided into subgroups: 1) rats that did not undergo the recall trial (ACQ); 2) rats 
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that underwent the recall trial 1h after acquisition; 3) 4h after acquisition; 4) 24h after 

acquisition. Each experimental group consisted of at least 3 animals.

2.6. Immunohistochemistry

Immediately after testing, rats allocated in any experimental group were deeply anesthetized 

and perfused with ice-cold paraformaldehyde (4% in phosphate-buffered saline, pH 7.4) 

through the ascending aorta. The brains were post-fixed in paraformaldehyde O/N at 4 °C 

and cryoprotected in 18% sucrose/PBS solution for at least 48h. Coronal sections (40 μm-

thick) were cut with a cryostat, placed in 1 ml of anti-freezer solution and stored at −20 °C 

until immunohistochemistry. Phospho-mTOR (P-mTOR) and phospho-p70S6K (P-p70S6K) 

immunohistochemistry was performed on brain coronal slices with the free-floating method 

(Giovannini et al., 2001; Giovannini et al., 2003).

Day 1. Coronal brain sections were placed in 24-wells plates and were washed (3 times, 5 

min) in PBS-0.3% Triton X-100 (PBS-TX), incubated for 15 min in PBS-TX containing 

0.75% H2O2 and blocked with 1.5% normal goat serum and 0.05% NaN3 in PBS-TX 

(Blocking Buffer) for 1h. Sections were then incubated overnight (O/N) at 4°C with 

polyclonal rabbit primary antibody against phospho-(Ser2448)-mTOR (Abcam, Cambridge, 

UK) 1:100 in Blocking Buffer or with polyclonal rabbit primary antibody against phospho-

(Thr389)-p70S6K (Cell Signaling, Danvers, MA, USA) 1:100 in Blocking Buffer. These 

antibody are specific for the phosphorylated moiety of the enzymes, and therefore recognize 

activated mTOR and activated p70S6K. Day 2. Slices were washed (3 times, 5 min) and then 

incubated in biotinylated goat anti-rabbit secondary antibody (Vector Laboratories, 

Burlingame, CA), diluted 1:300 in Blocking Buffer for 2h at room temperature, then for 90 

min in avidin-biotin-peroxidase complex (Vectastain ABC complex, Vector Laboratories) 

diluted 1:100 in Blocking Buffer and staining was developed using 3,3'-diaminobenzidine 

(DAB) staining kit (Vector Laboratories) 2-3 min with NiCl as an enhancer. After extensive 

washings slices were mounted onto gelatine-coated slides and examined using an Olympus 

BX40 microscope equipped with an Olympus DP 50 (Olympus, Milan, Italy) digital camera. 

In order to verify the integrity of the cytoarchitecture of the structures under investigation 

some of the slices were counterstained using standard Nissl staining methods. Proper 

immunohistochemical controls were performed omitting the primary antibodies and 

developing the slices as above using anti-rabbit secondary antibodies only. No signal due to 

nonspecific labelling from the secondary antibodies used was ever detected.

2.7. Quantitative analysis and statistics

All quantification analyses were performed blind by two different experimenters and the 

results were averaged. Three coronal slices (spaced by 150 μm, starting at about −2.8 mm 

from bregma) containing the dorsal hippocampus were immunostained. The region of 

interest (ROI) in CA3, containing Str. Pyramidalis and Str. Radiatum, was consistently 

captured at 20x magnification using an Olympus digital camera. Phospho-mTOR and 

phospho-p70S6K immunoreactive neurons were counted in pyramidal CA3 using Image J 

choosing the same area in all slices and counts were expressed as number of cells/mm2. Data 

were then analyzed using GraphPad Prism 5.0 (GraphPad Software, Inc. S. Diego, CA, 

USA).
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Step down test latencies were expressed in seconds (sec) and were presented as mean ± 

SEM and the effect of drugs administration on step down acquisition or recall latencies at 

1h, 4h or 24h after acquisition was evaluated using two-way ANOVA followed by 

Bonferroni post test. The effect of drugs on phosphorylation of mTOR or p70S6K in CA3 

pyramidal neurons was evaluated on the means ± SEM using two-way ANOVA followed by 

Bonferroni post test or one-way ANOVA followed by Newman Keuls post hoc test, as 

appropriate. Statistical significance was set at P<0.05.

3. RESULTS

This investigation determined whether the mTOR/p70S6K cascade was activated in the CA3 

region of the hippocampus by the acquisition of short and long term IA memory.

3.1 Rapamycin administration impairs long term memory

We performed preliminary experiments in naïve rats and in rats implanted with an i.c.v. 

cannula to verify whether the surgical operation might affect the animal's behavior in the 

step down inhibitory avoidance test. As previously demonstrated (Giovannini et al., 2005; 

Lana et al., 2013), acquisition and recall latencies did not differ significantly between naïve 

and cannula-implanted, but not infused, control rats (data not shown). Control rats injected 

with vehicle (5 μl) through the i.c.v. cannula acquired the short and long term IA memory at 

all time points tested, as shown by the significantly longer recall latencies at 1h, 4h and 24h 

after acquisition (One-way ANOVA, F(3,37)=76.78, P<0.001; ***P<0.001, CTR 1h, CTR 4h, 

and CTR 24h vs CTR ACQ, Newman-Keuls multiple comparison test; Figure 1, white 

columns). Recall latencies measured in control rats at 1h (299 ± 1 sec), 4h (260 ± 39.7 sec) 

and 24h (297 ± 1.4 sec) after acquisition did not differ significantly one another (One way 

ANOVA, n.s.). Rapamycin (RAPA, 1.5 nmol/5 μl, i.c.v., 30 min before acquisition) did not 

affect mobility and exploratory behavior during acquisition of the task, as shown by the 

similar acquisition latencies in controls (CTR ACQ; 41.5 ± 7.9 sec; Figure 1) and in 

rapamycin treated rats (RAPA ACQ; 36.9 ± 5.6 sec; t(27) = 0.49, P=0.6275, n.s., Student's t 

test). The time course of the effect of rapamycin on memory encoding was evaluated 

performing the recall test at 1h, 4h and 24h after acquisition in different groups of animals, 

with a cutoff time of 300 sec. As already demonstrated (Lana et al., 2013), we confirmed 

here that administration of rapamycin significantly impaired long term IA memory 

formation at 24h (−65% vs CTR 24h), but not at 1h (−19% vs CTR 1h) or 4h (−19% vs CTR 

4h) after acquisition test (Figure 1, black columns). Indeed, the one-way ANOVA 

demonstrated that in rapamycin treated rats 1h and 4h recall latencies were significantly 

higher than acquisition latency (One-way ANOVA, F(3,43)=16.71, P<0.001; ***P<0.001, 

RAPA 1h, RAPA 4h vs RAPA ACQ, Newman-Keuls multiple comparison test, Figure 1, 

black columns). Rapamycin administration significantly impaired recall of the task at 24h 

after acquisition. Statistical analysis carried out by two-way ANOVA with Treatment and 

Recall Time as the two variables, revealed that there was a significant main effect for 

Treatment (Treatment, F(1,74)=17.55, P<0.001), Time (F(3,74)=41.32, P<0.001), and a 

significant Interaction Treatment × Time (F(3,74)=6.828, P<0.001). Most importantly, 

Bonferroni post test showed that in rats treated with rapamycin, recall latency at 24h after 

acquisition (RAPA 24h, 104.9 ± 38.9 sec) was significantly lower than in control animals at 
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24h (CTR 24h, 297 ± 1.4 sec, ***P<0.001, Figure 1). However, it is possible to hypothesize 

that, increasing the cutoff time to 10 min, differences between rapamycin treated animals 

and controls might have emerged on short term IA memory formation.

3.2 Activation of mTOR-p70S6K in CA3 pyramidal neurons during memory encoding. Effect 
of rapamycin

Activation of mTOR was detected by immunohistochemistry using a specific antibody 

against phospho-(Ser2448)-mTOR (Figure 2A-2C). The quantity of phospho-mTOR 

immunopositive CA3 pyramidal neurons immediately after the acquisition of the IA memory 

(Figure 2A, ACQ) did not differ between the controls and the rapamycin treated animals 

(CTR ACQ; 107.0 ± 9.07 sec RAPA ACQ; 127.7 ± 9.135 sec; P=0.1774, n.s., Student's t 

test, Figure 2D); this was taken as an indication of basal mTOR activation. Four h after 

acquisition, mTOR was significantly activated both in the cell body and apical dendrites of 

CA3 pyramidal neurons (Figure 2B, CTR 4h) in comparison to basal levels (Figure 2A, 

ACQ). The activation of mTOR was completely blocked by the administration of rapamycin 

(Figure 2C, RAPA 4h). Quantitative analysis of the time course of mTOR activation was 

carried out by counting phospho-mTOR immunopositive neurons in CA3 Str. Pyramidalis at 

acquisition and at 1h, 4h and 24h after acquisition, in the absence (Figure 2D, CTR, white 

columns) and presence of rapamycin (Figure 2D, RAPA, black columns). Statistical analysis 

(shown in detail in Table 1) of the time course of mTOR activation demonstrated that 

phospho-mTOR positive CA3 pyramidal neurons in control rats were not significantly more 

numerous at 1h after acquisition (+ 23%, n.s., CTR ACQ vs CTR 1h), increased significantly 

at 4h (+ 78%, *P<0.05, CTR ACQ vs CTR 4h) and then returned to basal levels at 24h 

(+ 12%, n.s., CTR ACQ vs CTR 24h).

We hypothesized that mTOR activation found at 4h may be the consequence of the process 

of IA memory encoding triggered by the acquisition trial of the test. In order to verify this 

hypothesis we treated the rats with rapamycin 30 min before acquisition. We had previously 

demonstrated that rapamycin, by this time point, has already fully diffused from the 

injection point to the hippocampus (Lana et al., 2013). In rapamycin treated rats, long term 

IA memory was impaired and mTOR activation in CA3 pyramidal neurons was inhibited, 

particularly at 4h after the acquisition trial (as shown in Figure 2C, RAPA 4h).

Statistical analysis (shown in detail in Table 1) carried out by two-way ANOVA with 

Treatment and Recall time as the two independent variables, followed by Bonferroni post 

test, showed that activation of mTOR 4h after acquisition was significantly blocked by 

rapamycin (−85%, ###P<0.001, RAPA 4h vs h CTR 4h, Figure 2D and Table 1). It is 

interesting to note that in rapamycin treated rats activation of mTOR 4h after acquisition was 

also significantly lower than at acquisition (−77%,***P<0.001 RAPA 4h vs RAPA ACQ, 

Figure 2D and Table 1). At 24h time point, mTOR activation returned to basal levels (Figure 

2D and Table 1).

We also evaluated the effect of IA acquisition and encoding on p70S6K activation in CA3 

Str. Pyramidalis immediately after acquisition and at 1h, 4h or 24h. Activation of p70S6K 

was detected by immunohistochemistry using a specific antibody against phospho-(Thr389)-

p70S6K immediately after acquisition in control rats, as an indication of p70S6K activation 
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in basal conditions, and in rats administered with rapamycin (Figure 2E-2G). No differences 

were observed in p70S6K activation between control rats and rats injected with vehicle 

immediately after acquisition (not shown). Figure 2E-2G show examples of phospho-

p70S6K in CA3 pyramidal neurons at acquisition (Figure 2E, ACQ), recall at 4h (Figure 2F, 

CTR 4h) and recall at 4h after rapamycin administration (Figure 2G, RAPA 4h). It is evident 

from the images, and from the statistical analysis (shown in detail in Table 2), that p70S6K 

was significantly activated 1h (+87%, **P<0.01, CTR 1h vs CTR ACQ), 4h (+100%, 

**P<0.01, CTR 4h vs CTR ACQ) and 24h (+118%, **P<0.01, CTR 24h vs CTR ACQ) after 

acquisition in most of CA3 pyramidal neurons (Figure 2H, white columns, CTR).

Statistical analysis (shown in detail in Table 2) demonstrated that in rapamycin treated rats 

(Figure 2H, black columns) activation of p70S6K was significantly increased at 1h (+87%, 

***P<0.001, RAPA 1h vs RAPA ACQ) and 24h (+87%, **P<0.01, RAPA 1h vs RAPA 

ACQ) in comparison to basal levels. On the contrary, 4h after acquisition rapamycin blocked 

the activation of p70S6K, as shown in Figure 2G (RAPA 4h). Statistical analysis carried out 

by two-way ANOVA with Treatment and Recall time as the two independent variables 

showed that 4h after acquisition p70S6K activation was significantly lower not only in 

comparison to control rats (−82%, ###P<0.001, RAPA 4h vs CTR 4h, see also Table 2) but 

also in comparison to basal levels (−66%, **P<0.01, RAPA 4h vs RAPA ACQ).

3.3 Activation of mTOR-p70S6K in CA3 pyramidal neurons during memory encoding. Effect 
of cholinergic blockade by muscarinic and nicotinic receptors antagonists

We had previously demonstrated in CA1 pyramidal neurons (Lana et al., 2013) that 

activation of intracellular pathways and the consequent increase of mTOR-p70S6K signaling 

which triggers long term memory formation is downstream of cholinergic muscarinic and/or 

nicotinic acetylcholine receptors. In order to understand whether this mechanism may have a 

functional role also in CA3 pyramidal neurons we administered scopolamine alone, or with 

mecamylamine, to rats before acquisition and then performed the step down IA recall test at 

1h, 4h and 24h after acquisition. We investigated the activation of the mTOR-p70S6K 

pathway in CA3 pyramidal neurons during encoding of the inhibitory avoidance memory 

and after treatment with the cholinergic antagonists. We confirmed that administration of 

scopolamine alone (1.5 mg/kg, i.p., 30 min before acquisition), or together with 

mecamylamine (15 nmol/5 μl of saline, administered i.c.v. 40 min before acquisition), 

significantly impaired short term memory recall 1h and 4h after acquisition (Figure 3A, 

white columns: Two-way ANOVA with Treatment and Recall time as the two variables; 

Treatment, F(2,75)=19.27, P<0.001, Time, F(3,75)=47.75, P<0.001, Interaction Treatment × 

Time, F(6,75)=6.525, P<0.001; ***P<0.001, SCOP 1h vs CTR 1h, MEC+SCOP 1h vs CTR 

1h, MEC+SCOP 4h vs CTR 4h; **P<0.01, SCOP 4h vs CTR 4h, Bonferroni post test). Long 

term memory encoding was not affected by scopolamine alone (Figure 3A, grey columns; 

One-way ANOVA, F(3,24)=7.674, P<0.01; ***P<0.001, SCOP 24h vs SCOP ACQ, 

Newman-Keuls multiple comparison test) or by scopolamine plus mecamylamine (Figure 

3A, black columns; One-way ANOVA, F(3,23)=14.27, P<0.001; ***P<0.001, MEC+SCOP 

24h vs MEC+SCOP ACQ, Newman-Keuls multiple comparison test).
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The effect of scopolamine alone (SCOP 1h) or together with mecamylamine (MEC+SCOP 

1h) on mTOR activation in CA3 pyramidal neurons 1h after acquisition, in comparison to 

basal levels of mTOR (ACQ), is shown in Figure 3B-E. Panels 3B-3D represent the 

immunostaining of phospho-mTOR in CA3 under the three experimental conditions: CTR, 

SCOP 1h and MEC + SCOP 1h. A quantitative analysis of the time course of the effect of 

cholinergic receptor antagonists on mTOR activation in CA3 pyramidal neurons is shown in 

Figure 3E (CTR, white columns; scopolamine alone, grey columns; scopolamine plus 

mecamylamine, black columns).

Statistical analysis (shown in detail in Table 3) demonstrated that scopolamine 

administration significantly increased mTOR activation in CA3 pyramidal neurons at 1h 

after acquisition in comparison to basal levels (Figure 3E, +45%, *P<0.05, SCOP 1h vs 

SCOP ACQ). The effect of scopolamine on mTOR activation at 1h after acquisition was 

significantly blocked by mecamylamine (−73%, $$$P<0.001 MEC+SCOP 1h vs SCOP 1h), 

which significantly decreased phospho-mTOR to levels below basal levels (−61%, *P<0,05, 

MEC+SCOP 1h vs MEC+SCOP ACQ). Statistical analysis demonstrated that treatment with 

scopolamine plus mecamylamine significantly blocked mTOR activation, as compared to 

controls at 4h (−32%, ##P<0.01, MEC+SCOP 4h vs CTR 4h).

The effect of scopolamine alone (SCOP 1h) or with mecamylamine (MEC+SCOP 1h) on 

p70S6K activation in CA3 pyramidal neurons is shown in Figure 3F-I. Panels 3F-3H 

represent the immunostaining of phospho-p70S6K in CA3 under the three experimental 

conditions, CTR, SCOP 1h and MEC + SCOP 1h. The quantitative analysis of the time 

course of the effect of cholinergic receptor antagonists on p70S6K activation in CA3 

pyramidal neurons is shown in Figure 3I (CTR, white columns; SCOP alone, grey columns; 

SCOP plus mecamylamine, black columns). Administration of scopolamine (1.5 mg/kg, i.p., 

30 min before acquisition) significantly increased activation of p70S6K in CA3 neurons 1h 

(+154%, **P<0.01, SCOP 1h vs SCOP ACQ, Figure 3I and Table 4), 4h (+108%, *P<0.05, 

SCOP 4h vs SCOP ACQ, Figure 3I and Table 4), and 24h (+91%, *P<0.05, SCOP 24h vs 

SCOP ACQ, Figure 3I and Table 4) after acquisition. Interestingly, at 1h after acquisition, 

activation of p70S6K was significantly higher than in control rats at the same time point 

(+36%, #P<0.05 SCOP 1h vs CTR 1h). We also found that administration of scopolamine 

plus mecamylamine significantly reduced p70S6K activation in CA3 neurons at 1h and 4h 

after acquisition in comparison to control rats and to rats treated with scopolamine alone. 

Statistical analysis (shown in detail in the legend of Table 4) demonstrated that 

mecamylamine significantly blocked p70S6K activation at 1h after acquisition 

(−44%, ##P<0.01, MEC+SCOP 1h vs CTR 1h, and −59%, ***P<0.001 MEC+SCOP 1h vs 

SCOP 1h) and 4h after acquisition (−38%, ##P<0.01, MEC+SCOP 4h vs CTR 4h, and 

−41%, $$P<0.01 MEC+SCOP 4h vs SCOP 4h).

3.4 Administration of rapamycin increases activation of mTOR in microglia

A serendipitous, unexpected effect evoked by administration of rapamycin was the 

significant activation of mTOR in cells located mainly in the Str. Radiatum of CA3 (Figure 

4C-4C1). Panels 4A-4C show phospho-mTOR immunostaining in area CA3 under the three 

experimental conditions, CTR ACQ, CTR 4h and RAPA 4h, and panels A1-C1 are 
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magnifications of the framed areas in the above images. Quantitative analysis of these 

phospho-mTOR positive cells in the Str. Radiatum of CA3 (Figure 4D) shows that mTOR 

activation had a time-dependent increase starting already at 1h (1h 30 min after rapamycin 

administration, +83%, RAPA 1h vs CTR 1h, n.s.). The effect reached statistical significance 

at 4h (4 h 30 min after administration of rapamycin, +408%, RAPA 4h vs CTR 4h), and 

returned towards basal levels at 24h (+161%, RAPA 24h vs CTR 24h, n.s.; 24.30 h after 

administration of rapamycin). Statistical analysis was performed by Two-way ANOVA with 

Treatment and Recall time as the two variables: Treatment, F(1,18)=9.584, P<0.001, Time, 

F(3,18)=1.372, n.s., Interaction Treatment × Time, F(3,18)=1.687, n.s. (#P<0.05, RAPA 4h vs 

CTR 4h, Bonferroni post test). No activation of p70S6K was found at any of the times tested 

(data not shown, but see also Figure 2G).

From the morphology and localization of the mTOR immunopositive cells (Figure 4C1) it 

was possible to determine that these immunopositive cells were not neurons but rather glial 

cells. Indeed, double labelling confocal microscopy immunohistochemistry of phospho-

mTOR (Figure 4E, arrows), and neurons (labelled with anti-NeuN antibody, Figure 4F, open 

arrows), unambiguously demonstrated that phospho-mTOR-positive cells found in the Str. 

Radiatum of CA3 after administration of rapamycin were not neurons (Figure 4G).

Therefore, to unambiguously define whether mTOR activation caused by rapamycin 

administration occurred in microglia or astrocytes, we set up a double immunolabelling of 

phospho-mTOR and GFAP to label astrocytes. Double labelling confocal microscopy of 

activated mTOR (Figure 4H, red) and GFAP (Figure 4I, green) showed that phospho-mTOR 

did not colocalize with GFAP (Figure 4J, and inset J1), demonstrating unambiguously that 

mTOR-positive cells were not astrocytes. Using double labelling confocal microscopy for 

phospho-mTOR (Figure 4K) and OX6, a marker of activated microglia (Figure 4L, green), 

we found colocalization of phospho-mTOR (Figure 4K, red) in OX6-positive cells (Figure 

4M, merge, yellow-orange). As shown in Figure 4N, mTOR was activated in many cells 

with large pleomorphic bi-or tri-polar cell body, or in spindle or rod-shaped cells with 

modification in cellular structure that included de-ramification, shortening and twisting of 

cellular processes, not positive for OX6. In accordance to the literature (Herber et al., 2006; 

Miller & Streit, 2007; Nelson, Soma, & Lavi, 2002; Rezaie, Trillo-Pazos, Greenwood, 

Everall, & Male, 2002; Stence, Waite, & Dailey, 2001) these cells can be defined as reactive 

microglial cells. It is possible that the majority of phospho-mTOR positive cells are 

microglia in a precocious state of activation, not yet positive for OX6. A similar activation of 

mTOR in microglia was also found in CA1 Str. Radiatum (Supplementary material 1).

4. Discussion

The current study compared the dynamics of mTOR/p70S6K activation in the CA1 and CA3 

regions of the hippocampus during the formation of IA memory with the goal of 

determining the differential contribution of these two hippocampal regions in the encoding 

of an IA memory. We discovered that the mTOR/p70S6K pathway in CA3 pyramidal 

neurons is activated by cholinergic input in order to trigger the formation of long term 

memory. Taken together with our previous study (Lana et al., 2013) this report confirmed the 

importance of both hippocampal areas in the encoding of IA memories.
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Only long term memory was impaired following an almost complete blockade of mTOR and 

p70S6K activation by rapamycin. The first experiments that demonstrated the participation 

of mTOR in memory development in vivo were those of Parsons and coworkers (Parsons, 

Gafford, & Helmstetter, 2006) and Bekinschtein and coworkers (Bekinschtein et al., 2007), 

who showed that bilateral injection of rapamycin into the amygdala or the hippocampus 

impaired acquisition or consolidation of long-term fear memories. Rapamycin injection 

disrupts memory performance 24 h, but not 3 h, after training (Hoeffer et al., 2008), 

demonstrating that the animal can form the fear-associated STM.

The almost complete blockade of mTOR/p70S6K activation, present in CA3 pyramidal 

neurons but not in CA1 neurons (Lana et al., 2013) 4h after administration of rapamycin, is a 

phenomenon that distinguishes the dynamics of mTOR/p70S6K pathway activation/

deactivation in the two regions of the hippocampus. This differential effect may be due to 

region-specific differences in the modulation of kinases and phosphatases after 

administration of rapamycin. Indeed, it has been previously demonstrated that the shifts 

between kinases and phosphatases activities in CA1 and CA3 pyramidal cells are 

differentially modulated (Gee et al., 2006), with phosphatases being more active in CA3 

than in CA1 (Gee et al., 2006). We thus suggest that blockade of mTOR activation by 

rapamycin may have unmasked the higher activity of phosphatases that physiologically 

dephosphorylate mTOR. This effect seems to be more evident in CA3 than in CA1 (Gee et 

al., 2006). Our hypothesis is that the very low level of p70S6K phosphorylation at 4h is the 

direct consequence of two contrasting mechanisms: the inhibition of mTOR activation and 

of the higher activity of phosphatases. These two combined effects (inhibition of mTOR 

activation by rapamycin and high dephosphorylation activity) may be responsible for the 

almost complete inhibition of mTOR activation, and consequently of p70S6K activation, at 

the time 4h. The higher phosphatase activity in CA3 in comparison to CA1 (Gee et al., 

2006) may underlie the maintenance of cellular homeostasis in CA3 neurons. Indeed, CA3 

neurons, which receive many inputs not only from the dentate gyrus granule cells, but 

especially from collaterals of neighbouring CA3 neurons, may need to rapidly deactivate the 

mTOR/p70S6K pathway in order to avoid alterations in synaptic protein expression and 

synaptic strength due to recurrent collateral hyperactivation. This might explain why mice 

with hyperactivation of mTOR in mature CA3 neurons and dentate granule cells develop 

spontaneous seizures (Kwon et al., 2006). Hyperactivation of mTOR signaling has been also 

demonstrated in models of acute seizures in the rat (Zhang & Wong, 2012), in status 

epilepticus (Okamoto et al., 2010; Macias et al., 2013), and in in vitro models of epilepsy 

(Berdichevsky et al., 2013). Indeed, CA3 hippocampal neurons receive a dense network of 

recurrent glutamatergic collaterals whose stimulation-induced firing generates synchronized 

activity that may result in status epilepticus, leading to the activation of mTOR signaling 

(Zeng, Rensing, & Wong, 2009). The presence of high phosphatase activity in CA3 neurons 

may be responsible for interrupting the development of seizures.

Precise control of mTOR activity is necessary for proper memory encoding (Puighermanal, 

Busquets-Garcia, Maldonado, & Ozaita, 2012), since not only reduced but also enhanced 

activation of the mTOR signalling cascade impair memory (Troca-Marín, Alves-Sampaio, & 

Montesinos, 2012). Indeed, transgenic mice with constant activation of the hippocampal 

mTOR pathway (Ehninger et al., 2008; Goorden, van Woerden, van der Weerd, Cheadle, & 
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Elgersma, 2007), and patients with tuberous sclerosis who have increase of mTORC1 

activity, show memory deficits (Ehninger et al., 2008; Goorden, van Woerden, van der 

Weerd, Cheadle, & Elgersma, 2007). In this study we also demonstrated that short term 

memory encoding was not impaired by rapamycin administration, demonstrating that this 

type of memory is not influenced by the blockade of the mTORC1 activation and local 

protein synthesis inhibition.

Nevertheless, despite the large number of studies on mTOR, little is known on how 

intracellular mechanisms of feedback and/or feedforward activation of mTOR/p70S6K may 

act under physiological or pathological conditions in different, although strictly related and 

interconnected regions of the hippocampus to develop memory. To investigate whether the 

process of inhibitory avoidance memory formation might be triggered by the cholinergic 

system that activates the dynamics of mTOR signalling in CA3 pyramidal neurons, we 

correlated the results of the behavioural test with immunohistochemical analysis of mTOR/

p70S6K activation at the different time points under the following experimental condition: 

blockade of the cholinergic signalling with scopolamine, a muscarinic AChRs antagonist, 

alone or together with mecamylamine, a nicotinic AChRs antagonist. We confirmed here 

that scopolamine, alone or with mecamylamine, induced an amnesic effect on short term 

memory at 1h and 4h after acquisition (Lana et al., 2013) but did not influence long term 

memory at 24h. Interestingly, we found increased activation of mTOR in hippocampal CA3 

pyramidal neurons of scopolamine treated rats in comparison to control rats, a phenomenon 

also demonstrated in CA1 pyramidal neurons (Lana et al., 2013). A mechanistic explanation 

for this effect is that scopolamine, blocking the presynaptic inhibitory M2 mAChR, 

increases release of ACh in the synaptic cleft (Scali, Vannucchi, Pepeu, & Casamenti, 1995) 

which then impinges and activates the nAChR on the postsynaptic terminal, possibly causing 

downstream stimulation of the mTOR pathway. Scopolamine administration also induced a 

significant activation of p70S6K at 1h, 4h and 24h. Prolonged activation of p70S6K may be 

triggered by mTOR activation at 1h and may be responsible for long term memory 

formation in the presence of scopolamine. On the other hand, it is also possible that non-

cholinergic neurotransmitter systems known to be involved in inhibitory avoidance memory 

formation (Izquierdo, Furini, & Myskiw, 2016), may be involved in an mTOR-independent 

regulation of p70S6K phosphorylation that may involve other intracellular signalling 

cascades such as PKC and ERK/p90RSK, (Gangarossa & Valjent, 2012).

The administration of scopolamine plus mecamylamine induced a profound short term 

memory impairment that was associated with a very strong inhibition of mTOR activation at 

1h. p70S6K activation was not increased at 1h and 4h, but at 24h the levels of phospho-

p70S6K were significantly higher than basal and did not differ from controls. We postulate 

that the residual activation of mTOR at 4h may be responsible for p70S6K activation 

between 4h and 24h and for the formation of the long term memory at 24h, or again that 

other, mTOR independent pathways, may be responsible for p70S6K activation (Gangarossa 

& Valjent, 2012). These results confirm the activation of the mTOR pathway via the 

cholinergic system input to CA3 neurons during the encoding of an inhibitory avoidance 

memory.
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We demonstrated here that activation of mTOR/p70S6K pathway can be triggered by the 

stimulation of both mAChRs and nAChRs activated by ACh. We also demonstrated that in 

CA3 hippocampal neurons the mTOR/p70S6K wave of activation reached its maximum 

between 1h and 4h after the stimulation of the cholinergic system and exerted its role on the 

formation of long term memory. Taken together these results confirm the new concept that 

short term and long term memory formation are two processes that start together in the 

moment a new mnemonic stimulus is given to the animal and then proceed independently 

with distinct biochemical signalling pathway (Izquierdo et al., 1998a).

Furthermore, our data shed light on the common involvement not only of CA1, but also of 

CA3 pyramidal neurons in the formation of new inhibitory avoidance memories. The 

hippocampal area CA3 is central in the trisynaptic pathway through which the hippocampus 

is activated, being strictly interconnected to the other areas of the hippocampus by 

projections that derive from DG and project to CA1. This activation is at the basis of many 

types of memories such as the IA memory (Whitlock, Heynen, Shuler, & Bear, 2006), 

contextual fear conditioning (Ryan, Roy, Pignatelli, Arons, & Tonegawa, 2015), trace 

eyeblink conditioning (Gruart, Muñoz, & Delgado-García, 2006), and possibly object 

recognition memory (Clarke, Cammarota, Gruart, Izquierdo, & Delgado-García, 2010). The 

CA3 supports memory based on rapid, one-trial object–place, learning and recall. CA3 

lesions produce chance performance on a one-trial object–place recall task (Kesner, 

Hunsaker, & Warthen, 2008) and other object–spatial tasks (Kesner & Rolls, 2015; Rolls & 

Kesner, 2006). Nevertheless, understanding what roles the different subfields of the 

hippocampus play remains critical in advancing our understanding of the neural basis of 

memory. Here we have demonstrated that the mTOR/p70S6K pathway in CA3 pyramidal 

neurons is activated during the encoding of an inhibitory avoidance memory, confirming the 

hypothesis that CA3 is especially needed in rapid one trial place memory (Rolls, 2016). It 

seems therefore that CA3 and CA1 show distinct but complementary roles in representation 

of spatial context during the formation of memories (Stokes, Kyle, & Ekstrom, 2015).

An unexpected, very interesting result obtained after the administration of rapamycin, was 

the activation of mTOR in cells located in the Str. Radiatum of CA3 as well as CA1 

hippocampal regions. From the location and shape of these mTOR-positive cells, visualized 

by double labelling confocal microscopy, we demonstrated that they are microglial cells. 

Whilst activation of mTOR was evident in microglial cells at all times tested after 

administration of rapamycin, with a peak of activation at 4 h, no activation of p70S6K was 

ever found, at any of the times investigated. Rapamycin is a rather selective mTORC1 

inhibitor and, according to the literature, at the concentration we used, rapamycin inhibits 

the activation of mTORC1, but does not significantly influence the activation of mTORC2 

(Foster & Toschi, 2009). Indeed, mTORC2 responds only to prolonged and chronic 

rapamycin treatment, in part because rapamycin does not directly interfere with existing 

mTORC2 complex, but rather blocks the assembly of mTORC2 from newly synthesized 

Rictor and mTOR (Sarbassov et al., 2006). Therefore these data, taken together with the lack 

of p70S6K activation, indicate that administration of rapamycin increases activation of the 

mTORC2 complex in microglia cells.
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The role of mTORC2 in cells and the cross link between the two mTOR complexes in the 

cells is not yet completely understood. It is well known that the evolutionarily conserved 

mTORC1 and mTORC2 are activated by different stimuli, have different composition and 

different downstream effectors (Gaubitz, Prouteau, Kusmider, & Loewith, 2016). 

Dysregulation of mTORC1 and mTORC2 signaling appears to have a crucial role in 

memory disorders. In recent papers it has been demonstrated that a negative feedback 

between mTORC1 and mTORC2 exists, and that potent activation of mTORC1 inhibits 

mTORC2 via a negative-feedback mechanism involving S6K1 (Harrington et al., 2004; 

Julien, Carriere, Moreau, & Roux, 2010). This negative feedback mechanism accounts for 

the increased mTORC2 signaling demonstrated following embryonic deletion of Rheb1 in 

neural progenitor cells, which abolishes mTORC1 signaling in developing brain (Zou et al., 

2011). Interestingly, Liu and colleagues recently showed that in freshly isolated splenic B 

cells, rapamycin significantly increases Akt phosphorylation, a typical hallmark of mTORC2 

activation. Similar results were also observed in mouse liver lysates: systemic rapamycin 

administration led to increased Akt-S473 phosphorylation (Liu, Guo, Gan, & Wei, 2014). 

We hypothesize here that in the hippocampus a similar negative feedback between mTORC1 

and mTORC2 may take place, and the administration of rapamycin, by blocking mTORC1 

formation, may consequently induce a similar overactivation of mTORC2.

Since mTOR is an ubiquitous protein, present not only in neurons, but also in astrocytes and 

microglia (Dello Russo, Lisi, Feinstein, & Navarra, 2013), the question that still remains to 

be addressed is why in our samples the overactivation of mTORC2 after rapamycin was 

present only in microglial cells. The two mTOR complexes have an ubiquitous cellular 

expression but no systematic study of their differential function, and of the regulation of 

their activity in specific brain areas or cells has so far been performed. The data on 

mTORC2 localization and role in cellular mechanisms are still sparse. It has been 

demonstrated that mTORC2 regulates a number of cellular processes such as cell 

proliferation, apoptosis and longevity (Bockaert & Marin, 2015), and it has also a key role in 

actin polymerization and lamellipodia formation (Hernandez-Negrete et al., 2007). In line 

with its ability to regulate actin cytoskeleton, mTORC2 has been involved in neutrophil 

chemotaxis (Liu & Parent, 2011). The specific activation of mTOR in microglial cells after 

rapamycin administration is in agreement with all these results, since it accounts for the 

negative feedback between mTORC1 and mTORC2 and also for the localization of 

mTORC2 in microglial cells that express lamellipodia and actin cytoskeleton activity having 

a specific function of movement in the nervous system. The questions still open are i) what 

may be the physiological significance of the feedback activation of mTORC2 when 

mTORC1 is inhibited and ii) may mTORC2 activation by rapamycin in microglia account 

for the therapeutic effects of the drug or iii) can this effect be considered as a new 

therapeutic target of rapamycin.

Conclusions

In this paper we have demonstrated that in the CA3 region of the hippocampus, activation of 

the mTOR pathway is necessary for the formation of a long term inhibitory avoidance 

memory. A serendipitous, possibly important finding was that after administration of 
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rapamycin the activation of mTORC2 increases in microglial cells, poses the basis for a 

reappraisal of the beneficial/adverse effects of rapamycin administration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ACQ acquisition

ACh acetylcholine

DMSO dimethyl sulfoxide

IA inhibitory avoidance

i.c.v. intracerebroventricular

i.p. intraperitoneal

mTOR mammalian Target of Rapamycin

mAChR muscarinic acetylcholine receptors

mTORC1,2 mammalian Target of Rapamycin Complex1,2

MEC mecamylamine

nAChR nicotinic acetylcholine receptors

p70S6K p70S6Kinase

P-mTOR phospho-mTOR

P-p70S6K phospho-p70S6K

RAPA rapamycin

SCOP scopolamine

SEM standard error of the mean
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Highlights

mTOR/p70S6K activation in area CA3 are involved in long term memory formation

rapamycin inhibited mTOR/p70S6K activation at 4h and impaired long term memory at 

24h

scopolamine activated mTOR/p70S6K at 1h and impaired short but not long term 

memory

mecamylamine reduced the scopolamine-induced increase of mTOR/p70S6K activation 

at 1h

rapamycin increased mTORC2 activation in microglial cells in Stratum Radiatum
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Figure 1. 
Step down inhibitory avoidance test of control rats (CTR, white columns) and rapamycin 

treated rats (RAPA, black columns): acquisition (ACQ) and recall latencies at 1h, 4h and 24h 

are reported in seconds (300 s cut-off time of was applied). Control rats acquired short term 

and long term inhibitory avoidance memory, as demonstrated by the significantly longer 

latencies in the recall trial at 1h, 4h and 24h (***P<0.001, CTR ACQ vs CTR 1h, CTR 4h 

and CTR 24h). Rapamycin treated rats acquired short term inhibitory avoidance memory at 

1h and 4h (***P<0.001, RAPA ACQ vs RAPA 1h and RAPA 4h). Administration of 

rapamycin significantly impaired long term IA memory formation at 24h (###P<0.001, 

RAPA 24h vs RAPA ACQ). CTR: ACQ n=12; 1h n=8; 4h n=7; 24h n=11; RAPA: ACQ 

n=17; 1h n=7; 4h n=11; 24h n=9.
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Figure 2. 
A-C: Phospho-mTOR immunostaining in CA3 hippocampal region of control and 

rapamycin treated rats: basal activation of mTOR at acquisition in a control rats (A), 

activation of mTOR 4h after acquisition in a control rats (B) and in a rapamycin treated rats 

(C). There was a consistent activation of mTOR in CA3 pyramidal neurons of control rats 4h 

after acquisition (arrow in panel B). This activation was strongly reduced in rapamycin 

treated rats at the same time point (C). Scale bar: 100 μm. D: Density of phospho-mTOR 

positive neurons (cells/mm2) in CA3 Str. Pyramidalis of control and rapamycin treated rats. 

In control rats there was a significant activation of mTOR at 4h after acquisition (*P<0.05, 

CTR 4h vs CTR ACQ, Newman-Keuls Multiple Comparison Test). Rapamycin 

administration significantly impaired this activation at 4h (###P<0.001, RAPA 4h vs CTR 4h, 

Bonferroni post test). CTR: ACQ n=4; 1h n=4; 4h n=6; 24h n=9; RAPA: ACQ n=3; 1h n=3; 

4h n=5; 24h n=7. E-G: Phospho-p70S6K immunostaining in CA3 hippocampal region of 

control and rapamycin treated rats: basal activation of p70S6K at the time of acquisition in a 

control rat (E), activation of p70S6K 4h after acquisition in a control rat (arrow, F) and in a 

rapamycin treated rat (G). Activation of p70S6K in control rats 4h after acquisition was 
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strongly reduced in rapamycin treated rats at the same time point. Scale bar: 100 μm. H: 
Density of phospho-p70S6K positive neurons (cells/mm2) in CA3 Str. Pyramidalis of control 

and rapamycin treated rats. In control rats there was a significant activation of p70S6K at 1h, 

4h and 24h after acquisition (**P<0.01, CTR 1h, 4h and 24h vs CTR ACQ, Newman-Keuls 

Multiple Comparison Test). Rapamycin administration significantly reduced p70S6K 

activation at 4h (###P<0.001, RAPA 4h vs CTR 4h, Bonferroni post test). CTR: ACQ n=3; 

1h n=5; 4h n=4; 24h n=3; RAPA: ACQ n=2; 1h n=4; 4h n=5; 24h n=4.
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Figure 3. 
A: Step down inhibitory avoidance test of control rats (CTR, white columns), scopolamine 

treated rats (SCOP, grey columns) and scopolamine plus mecamylamine treated rats (MEC

+SCOP, black columns). As previously reported control rats acquired short term (1h, 4h) and 

long term (24h) inhibitory avoidance memory (see Figure 1). Scopolamine treated rats and 

MEC+SCOP treated rats acquired long term inhibitory avoidance memory at 24h 

(***P<0.001, SCOP 24h vs SCOP ACQ, MEC+SCOP 24h vs MEC+SCOP ACQ, Newman-

Keuls Multiple Comparison test). Administration of scopolamine alone or scopolamine plus 
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mecamylamine significantly impaired short term IA memory formation at 1h and 4h 

(###P<0.001, SCOP 1h vs CTR 1h, MEC+SCOP 1h vs CTR 1h, MEC+SCOP 4h vs CTR 

4h, ##P<0.01 SCOP 4h vs CTR 4h, Bonferroni post test). CTR: ACQ n=12; 1h n=8; 4h n=7; 

24h n=11; SCOP: ACQ n=6; 1h n=7; 4h n=7; 24h n=5; MEC+SCOP: ACQ n=7; 1h n=5; 4h 

n=8; 24h n=4. B-D: Phospho-mTOR immunostaining in area CA3 of CTR, SCOP and MEC

+SCOP rats. B: basal activation of mTOR at acquisition in a CTR rat; C: activation of 

mTOR at 1h after acquisition in a SCOP rat and in a MEC+SCOP rat (D). Scale bar: 100 

μm. E: Density of phospho-mTOR positive neurons (cells/mm2) in CA3 hippocampal region 

of CTR, SCOP and MEC+SCOP rats. A significant activation of mTOR at 4h after 

acquisition in CTR rats was evident (*P<0.05, CTR 4h vs CTR ACQ, Newman-Keuls 

Multiple Comparison Test). The administration of scopolamine plus mecamylamine 

significantly impaired this activation (##P<0.01, MEC+SCOP 4h vs CTR 4h, Bonferroni 

post test). The administration of scopolamine alone caused a significant increment of mTOR 

activation at 1h in comparison to CTR rats (#P<0.05, SCOP 1h vs CTR 1h, Bonferroni post 

test) and the administration of scopolamine plus mecamylamine significantly impaired this 

over-activation ($$$P<0.001, MEC+SCOP 1h vs SCOP 1h, Bonferroni post test). The 

activation of mTOR at 1h in MEC+SCOP rats was lower than in CTR rats (##P<0.01, MEC

+SCOP 1h vs CTR 1h). CTR: ACQ n=4; 1h n=4; 4h n=6; 24h n=9; SCOP: ACQ n=3; 1h 

n=5; 4h n=7; 24h n=4; MEC+SCOP: ACQ n=3; 1h n=5; 4h n=6; 24h n=3. F-H: Phospho-

p70S6K immunostaining in area CA3 of CTR, SCOP and MEC+SCOP rats. F: basal 

activation of p70S6K at acquisition in a CTR rat; G: activation of p70S6K at 1h after 

acquisition in a SCOP rat and in a MEC+SCOP rat (H). Scale bar: 100 μm. I: Density of 

phospho-p70S6K positive neurons (cells/mm2) in area CA3 of CTR, SCOP and MEC

+SCOP rats. In CTR rats there was a significant activation of p70S6K at 1h, 4h and 24h after 

acquisition (**P<0.01, CTR 1h, CTR 4h and CTR 24h vs CTR ACQ, Newman-Keuls 

Multiple Comparison Test). The administration of scopolamine plus mecamylamine 

significantly impaired this activation at 1h and 4h (##P<0.01, MEC+SCOP 1h vs CTR 1h 

and MEC+SCOP 4h vs CTR 4h, Bonferroni post test). The administration of scopolamine 

alone increased significantly p70S6K activation at 1h in comparison to CTR rats (#P<0.05, 

SCOP 1h vs CTR 1h, Bonferroni post test) and the administration of scopolamine plus 

mecamylamine significantly impaired this over-activation ($$$P<0.0015, MEC+SCOP 1h vs 

SCOP 1h, Bonferroni post test). CTR: ACQ n=3; 1h n=5; 4h n=4; 24h n=3; SCOP: ACQ 

n=3; 1h n=6; 4h n=6; 24h n=3; MEC+SCOP: ACQ n=3; 1h n=5; 4h n=5; 24h n=3.
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Figure 4. 
A-C: Phospho-mTOR immunostaining in CA3 hippocampal region of control and 

rapamycin treated rats: phospho-mTOR positive cells in CA3 Str. Radiatum at acquisition 

time in a control rat (A), at 4h after acquisition in a control rat (B) and at 4h after acquisition 

in a rapamycin treated rat (C). Enlargement of framed areas in panels A-C are shown in 

panels A1-C1. In rapamycin treated rats at 4h after acquisition (C, C1) phospho-mTOR 

positive cells in CA3 Str. Radiatum appear more numerous than in control rats at the 

acquisition time (A, A1) and in control rats at 4h after acquisition (B, B1). Scale bars: 100 
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μm (A-C), 30 μm (A1-C1). D: Phospho-mTOR positive cells density (cells/mm2) in CA3 

Str. Radiatum of control and rapamycin treated rats. At 4h after acquisition there is a 

significative increment of phospho-mTOR positive cells in rapamycin treated rats in 

comparison with control rats (#P<0.05, RAPA 4h vs CTR 4h, Bonferroni post test). CTR: 

ACQ n=3; 1h n=4; 4h n=3; 24h n=3; RAPA: ACQ n=3; 1h n=3; 4h n=3; 24h n=4. E-G: 
Representative confocal microscopy images of double fluorescent immunostaining for 

phospho-mTOR (red) and NeuN (green) in a rapamycin treated rat 4h after acquisition. 

Open arrows indicate neurons, arrows indicate mTOR positive cells. Scale bar: 50 μm. H-
J1: Representative confocal microscopy images of double fluorescent immunostaining for 

phospho-mTOR (red) and GFAP (green) in a rapamycin treated rat 4h after acquisition. 

Enlargement of framed areas in panels H-J are shown in panels H1-J1. Phospho-mTOR 

immunostaining did not colocalize with GFAP immunostaining. Scale bars: 50 μm (H-J), 15 

μm (H1-J1). K-N: Representative confocal microscopy images of double fluorescent 

immunostaining for phospho-mTOR (red) and OX6 (green) in a rapamycin treated rat 4h 

after acquisition. In some cells as the one shown in panels K-M complete colocalization 

between phospho-mTOR and OX6 immunostaining was present. In other cells like those in 

panel N there was no colocalization between the two markers. Scale bars: 20 μm (K-M), 50 

μm (N).
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