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Featured Application: The findings are highly relevant for the design and management of bed-
ded pack barns.

Abstract: Among animal facilities, compost-bedded pack (CBP) barns have attracted a lot of attention
from milk producers and the scientific community. Systematic investigation of the main thermal
properties utilizing sawdust in CBP barns is of environmental and economic relevance. In this paper,
the aim was to (a) develop predictive equations for the thermal conductivity (k) of compost bedding
as a function of moisture content (MC), the degree of compaction (DCo), and particle size (PS); and
(b) investigate the links between k and depth within bedding material. Samples of compost bedding
materials were collected from 42 commercial CBP barns distributed throughout Kentucky (USA).
From these predictive equations, it was possible to understand how the MC, DCo, and PS of the
bedding materials may influence the behavior of k. These results are very useful for solving obstacles
to simulate and predict the variable outcomes of the compost bedding materials process in CBP barns,
allowing for its optimization, consequently reducing the time and energy spent on their optimization
and allowing for simulation and assessment of compost bedding process modifications. The results
of the current study may have important implications in the design and management of bedded
pack barns.

Keywords: bedding material; dairy cow; modeling; prediction; thermal properties

1. Introduction

In the late 1980s, innovative dairy producers in the state of Virginia (USA) introduced
a new loose-housing system for dairy cattle, generally referred to as a compost-bedded
pack (CBP) barn [1]. Since then, CBP barns have been introduced in many other US states,
and in other countries [2]. In CBP barns, cows are provided with an open bedded pack area
where cows can stand, walk, and rest without restriction to areas or postures. Research
showed that CBP barns have the potential to improve animal welfare, but results strictly
depend on pack management, especially pack moisture content [2,3].

CBP barns require periodic bedding addition and a recommended twice daily stirring
with some agricultural implement (roto-tiller or deep-tillage tool) to incorporate and mix
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manure and air into the pack while exposing a greater pack surface area for drying [4–6].
This process promotes microbiological activity, heating and drying the pack and providing
a fresh, dry surface for cattle to lie on [7].

Adequate temperature and moisture content in the pack must be maintained for
effective composting [5]. The recommended internal temperature for CBP at depths of
15–31 cm ranges from 40.0 to 65.0 ◦C and optimum moisture content from 40 to 60% [7].

Depending on climate and composting activity, large quantities of bedding materials
may be needed in CBP to absorb excessive moisture and maintain an optimum moisture
level in the pack [5].

The most common bedding materials used in CBP are wood byproducts including
sawdust, wood shavings, and wood chips [7,8]. In some countries, such as Brazil and
Argentina, some milk producers have used coffee husks, peanut husks, sugar cane bagasse,
and rice straw as bedding material in CBP [6,9,10]. Such materials, especially sawdust, can
be either fresh or dried. Dried sawdust is preferred over fresh sawdust as the latter may
contain high moisture, which reduces water absorption [11].

A CBP barn operating at optimal moisture levels should provide lower rates of
ammonia conversion and minimize nitrous oxide production. Studies indicated that
a high MC of >65% and low C/N ratio resulted in higher N2O emission rates [12,13],
which typically result from using too little bedding, resulting in sub-optimal composting
conditions. This system, coupled with its relatively low operating costs, will provide dairy
farmers with a tool to reduce the emission of greenhouse gases to the atmosphere once
correctly managed. This may, in turn, reduce the impact of this animal production system
on climate change.

Compared to windrow composting, CBP barns have a larger surface area to heat gen-
erating volume, thus more heat losses. Maintaining a high pack temperature is important
in CBP barns [14]. This requires an understanding of the thermal properties and heat
balance in composting pack systems, which can potentially improve CBP management
and design [4,15]. In recent years, considerable effort has gone into developing techniques
to determine the thermal properties of composting materials as they are relevant in many
areas of agriculture engineering, agronomy, and animal science [16,17].

Thermal properties of composting materials affect the temperature and biodegrada-
tion rate during the composting process. Well-determined thermal properties of compost
feedstock will therefore contribute to practical thermodynamic approaches and mathemati-
cal models involving heat and mass transfer [18]. However, it can be very expensive and
physically impractical to obtain many of the parameters. Therefore, feasible simplifications
are to be sought, and various compromises are to be adopted in computational simulation
case studies that emphasize either the model complexity or material data accuracy [19].

Thermal conductivity, specific heat capacity, and thermal diffusivity are the three
most important thermal properties regarding heat transfer analysis [15], and these are
used in engineering design calculations involving the thermal processing of agricultural
products. In agricultural materials, temperature and moisture content greatly influence
the thermal properties due to the relatively high specific heat, thermal conductivity, and
thermal diffusivity of water [20]. These three thermal properties can be measured by
several methods.

Although thermal properties are very important in composting, information of their
values for various compost materials is lacking. In general, it is difficult to determine the
thermal properties of moist materials because forced heating during the measurements
causes internal liquid and/or gas convection. This often results in overestimating the
thermal properties. The thermal probe method is the most attractive method because it uses
relatively simple equipment to determine the thermal properties for moist materials [21].

Thermal conductivity (k) refers to the intrinsic ability of a material to transfer or
conduct heat [22]. Therefore, the k of composting materials affects temperature through
conduction and the rate of biodegradation during the composting process [15]. Stud-
ies have shown that k can assist in the monitoring of the moisture content of compost
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material in different layers with the fundamental requirements for understanding the
composting process [23].

The k can assist in the monitoring of the moisture content of compost bedding material
in different layers with the fundamental requirements in both animal welfare and pack
management.

In this context, the determination of k is extremely important for the calculation of
heat and mass transfer between the bedding material and the animals. Accurate transfer
models will enable: (1) the selection of the most suitable materials for the composting
process, (2) with the dimensioning of ventilation systems that promote surface drying of
the bedded pack, and (3) the ability to infer bed management requirements by predicting,
for example, the amount of heat and moisture produced during the composting process
with the depth of the pack. In the short term, these mathematical models could provide the
research community with an approach to design systems with cleaner exhaust air and lower
impacts on animals as well as those individuals that live or work in the surroundings of
these agricultural facilities. Thus, the thermal properties of bedding materials are used for
designing an ideal agricultural implement to manage the pack and improve the composting
process.

The k depends on several factors, such as texture, organic matter, water content,
compaction degree, and bulk density [23]. Therefore, estimating k values through these
mathematical models can reduce the complexity for those designing CBP barns. These
models circumvent the high costs of experiments to empirically quantify this parameter in
the field.

The development of mathematical models and the application of computer simulations
allow us to reduce the time and costs of development and renovation projects. The k of
composting material varies subject to several factors, including the content of organic
compounds, density (specific weight), porosity [19,24], and moisture content [25]. Those
parameters fluctuate in different phases of the composting process [26].

The objectives of the current study were to: (a) develop predictive equations for the
thermal conductivity (k) of compost bedding as a function of moisture content (MC), the
degree of compaction (DCo), and particle size (PS); and (b) investigate the links between k
and depth within bedding material. These data are of interest in the domains of environ-
mental pollution, biosystems engineers, bioresource technology, and, more generally, heat
transfer in porous media.

2. Materials and Methods
2.1. Sample Collection

Samples of compost bedding materials were collected from 42 commercial CBP barns
distributed throughout the state of Kentucky (USA). At each farm, samples of compost
bedding were collected from the 0–10 cm surface layer in 9 evenly distributed locations
throughout the resting area (Figure 1). Bedding samples were collected using an iron
hoe and soil auger. A 20 L container was filled with incremental quantities of bedding
collected from the 9 locations to obtain a composite sample of each CBP. The bedding
samples were immediately refrigerated upon return to the lab, at 1.0 ◦C. Depending on
the type of material used as bedding, the samples collected were classified as: (a) green
sawdust (GS), (b) kiln-dried wood shavings or sawdust (KD), and (c) a mix of both (MX).
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Figure 1. Nine grid spaces (A1 to A9) of sample collections inside the CBP barns.

2.2. Sample Preparation

Samples of compost material with 3 levels of MC (30%, 45%, and 60%) were produced
and mixed in a concrete mixer for 3 min. The desired levels of MC were achieved by adding
distilled water to the samples during mixing. The amount of distilled water to be added
was calculated based on Maia et al. [27]. If the initial MC was higher than the target MC,
the material was weighed and left to air-dry until reaching the target MC. The range of MC
(30%, 45%, and 60%) was selected to simulate typical conditions found in CBP [2].

As-received bedding samples were allowed to air-dry for 48 h before determination of
the PS distribution. Dried compost was poured in graduated volume cylinders sieved for
3 min in a sieve shaker (Ro-Tap Model B, W. S. Tyler, Inc., Mentor, OH, USA) with sieves
vertically aligned in series in a decreasing mesh screen opening order: 25.00 mm, 8.00 mm,
5.60 mm, 4.75 mm, 2.00 mm, and a pan of the bottom. The amount of compost retained in
each screen was poured in a beaker and its weight determined. Details to determine PS
distribution can be seen in Maia et al. [28].

2.3. Simulation of Material Compaction

To allow the simulation of different DCo, a mechanical pressing device was designed
and constructed at the shop of the Biosystems and Agricultural Engineering at Department
of the University of Kentucky (Lexington, KY, USA). The press device (Figure 2) was
assembled and located in the Agricultural Air Quality Laboratory of the same department.
A fluffy bedding material was weighed, and the PVC cylinder was filled. The PVC cylinder
was then vibrated for 60 s using vibrating jigsaw (Black+Decker, Model JS515, Towson,
MD, USA), and, if necessary, more bedding sample was added to the PVC cylinder until
the total volume was completed.

In this study, PVC was used as the material for the PVC cylinder (sample vessel)
because: (a) it is easy to handle and clean; (b) it can withstand pressure and long-term
loading; and (c) it is resistant to corrosion and relatively light and cost-effective. In addition,
the effects of wall friction in the sample vessel needed to be minimized during compression
for the applied load to be translated into compression of the sample. Thus, the internal
walls of the PVC cylinder have low friction [29].

The sample volume must be large enough to accommodate a representative sample of
bedding material. Therefore, a PVC cylinder of approximately 4.7 L was designed, with a
diameter of 0.15 m and a height of approximately 0.27 m. This PVC cylinder had a series
of three equally spaced holes through the entire height. A detailed drawing of the PVC
cylinder is shown in Figure 2.

The target DCo was achieved by a mechanical pressing device that was developed to
pack the sample down in the PVC container (Figure 2). The compaction level inside of the
PVC cylinder was adjusted using a pneumatic lever valve and analog pressure gauge that
controlled the air pressure inside of the steel cylinder chamber that moved the steel piston.
A moisture drain valve prevented water condensation in the line of air pressure. The
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pressures applied (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) were based on studies conducted by Van
der Tol et al. [30,31], which evaluated the pressure distribution under the bovine claw. The
application of dynamic pressure occurred with the opening and closing of the pneumatic
lever valve 12 times per minute, causing the vertical displacement of the compression valve
to change. This amount was based on observations of the number of average steps per
minute performed by dairy cows. A schematic drawing of the overall system is presented
in Figure 3.
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neumatic lever valve (Up and Down); 8—Analog pressure gauge; 9—Steel cylinder chamber; 10—
Steel piston; 11—PVC cylinder (sample vessel); and 12—Handheld transient heat dissipation device.

Dynamic pressure was expected to produce a different k compared with static pressure.
All of the tests were carried out in two iterations: with static compaction (SC) and with
dynamic compaction (DC).

2.4. Thermal Conductivity Measurement

The experiment was conducted under ambient room temperatures. This temperature
environment is in the thermal range where the heat generated by potential microbial
respiration would be negligible; <10% of peak respiration rate at optimum MC range [32].
The thermal conductivity (k) of composting materials was determined at all possible
combinations of PS levels (0.00 mm < Finer < 2.00 mm; 2.00 mm < PS2 < 4.75 mm; 4.75 mm
< PS3 < 5.60 mm; 5.60 mm < PS4 < 8.00 mm; 8.00 mm < Coarser > 8.00 mm), MC levels (30;
45; and 60%—w.b.), and DCo levels (0.0; 0.1; 0.2; 0.3; and 0.4 MPa).

A handheld transient heat dissipation device (KD2, Decagon, Pullman, WA, USA)
was used to determine k of samples (Figure 3). The sensor was calibrated by factory and
performance verification standards were observed during this study. Measurements were
made by placing the sensor probe into the three holes in the PVC cylinder wall at different
depths (H1 = 7.5 cm, H2 = 15.0 cm, and H3 = 22.5 cm) and recording the measurement after
one minute (Decagon Devices, 2016).

2.5. Statistical Analysis

To truly quantify the several parameters’ impacts on the pack compost process, a
quantitative assessment of each of its components must be performed, and the relevant
physical processes must be included in this assessment. One aspect that has been typically
neglected is the impact that material compaction has on the coupled water and heat fluxes
across the pack layers. In this work, we developed some mathematical models that used
empirical bedding material data to consider how compaction levels and moisture changed
the substrate’s thermal conductivity.

A randomized experimental design with two replicates was analyzed in two different
analyses. The first statistical analysis with each experimental unit consisted of three MC
levels (30%, 45%, and 60%) and five DCo levels (0.0; 0.1; 0.2; 0.3; and 0.4 Mpa) with each
dairy farm assessed as a repetition (42 farms). Therefore, each bedding sample contained
630 observations.

Prior to analysis, the original dataset that consisted of 630 observations was split into
a training set (70% of the data) and a test set (30% of the data). Variable selection and model
fitting were performed on the training set while the test set was used for model validation.

Statistical analysis was performed using the software R version 3.4.1 [33]. Analysis
of variance (ANOVA) was performed considering the factorial scheme with two factors,
to assess the possible dependence between the factors MC and DCo in the description of
the response variable k. This ANOVA was performed using the lm function available on
the basis of the statistical software R (R Core Team, 2019). The ANOVA was performed to
assess the effects of MC and DCo on the k of bedding materials and the possible interaction
between the two factors (MC × DCo).

The ANOVA was performed, using the package stats [33], to assess the effects of MC
and DCo on the k of bedding materials. The fixed effects of MC and DCo, as well as their
interaction (MC × DCo), were included in the models. After this analysis, based on the
significance of the statistical tests for MC, DCo, and their interactions, the appropriate
regression models were chosen to describe k. The selection of models was made, using
the package stats [33], based on backward stepwise procedure starting from a complete
model with all the predictive variables to the quadratic term. Non-significant predictors
were removed from the model based on the relative reduction in sums of squares.

In all analyses, a polynomial model was adjusted taking into account the interaction
between the two explanatory variables (MC and DCo), generating a response surface [34].
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The selection of models was made based on backward stepwise procedure starting from a
complete model with all the predictive variables to the quadratic term. Non-significant
predictors were removed from the model based on the relative reduction in sums of squares.
In view of this, a polynomial model was fitted, taking into account the dependent variables
and the interaction between these variables, as described in Equation (1).

ki = b0 + b1 · MC + b2 · DCo + b3 · SC2 + b4 · MC · DCo (1)

where b0, b1, b2, b3, and b4 are the parameters of the polynomial regression model. The
curve intercept is b0 and b1, b2, b3, and b4 represent the degree of influence of the respective
variable on the thermal conductivity (ki). The b1, b2, b3, and b4 are the linear coefficients, that
is, keeping the others constant and adding a unit of measure in the explanatory variable
associated with one of these coefficients, an increase or decrease in the response is expected.

In order to obtain better precision in the modeling of k, the analyses were evaluated
for the three depths separately (H1, H2, and H3). Separate analyses were also carried out
for SC and DC.

In the second statistical analysis, the mean values of k for each PS level (Finer, PS2, PS3,
PS4, and coarser), three depths (H1, H2, and H3), three MC levels (30%, 45%, and 60%), and
five DCo levels (0.0; 0.1; 0.2; 0.3; and 0.4 MPa) with two replicates from 42 bedding samples,
totalizing 18,900 observations, were analyzed by ANOVA (package stats; R Development
Core Team, 2019). In this case, the statistical analyses were performed separately because
they are different variables. The parameters of the models were estimated using the
least squares method also with the lm function of software R (R CORE TEAM, 2019).
The polynomial regression and Student’s t-test were used. ANOVA (package stats; R
Development Core Team, 2019) was used to evaluate and compare measured versus
simulated k. The R2 values of the polynomial regression indicated how consistently the
measured versus predicted values follow a best-fit line, ranging from 0 (no correlation) to
1.0 (perfect correlation).

The response surface (based on parameter estimates) and data graphs were plotted
using Sigma Plot software version 12.0 (Systat Software Inc., San Jose, CA, USA). The
differences between the group means (MC, SC, DC, compost particle range, and depth)
were tested by the Tukey test (Figures 4, 6, 9–11). For all analyses, significance level was set
at p ≤ 0.05.

3. Results and Discussion
3.1. Thermal Properties of Composts in Different Moisture Contents and Static Compaction
Degrees

The values of k, recorded during the study, are presented graphically as a function of
each percentage (30, 45, and 60%) of the MC evaluated and as a function of the different SCs
(0.0, 0.1, 0.2, 0.3, and 0.4 MPa) of the bedding materials in Figures 4a and 4b, respectively.
These results indicate that the values of k increased as MC and SC increased, likely due to a
reduction in the volumetric fraction of air within the bedding material [35]. The DC0 was
not statistically significant according to the model selection method (backward stepwise),
and depths (H1, H2, and H3) were evaluated separately.

The greatest variation in k values for MC and SC was ± 0.061 W m−1 K−1 and
± 0.060 W m−1 K−1, respectively, where they define desirable levels of accuracy by the
thermal sensor to estimate the thermal conductivity. Considering the physical mechanism
associated with conduction in general, the k of a solid > liquid > gas [36].

Due to the large number of outliers (Figure 4), the discrepancy of the k values, which
are applied in a modeling study, can reduce the accuracy of the model results, as already
observed in other studies [15,19,37]. However, it can be highlighted that even with the
large number of outliers, the mathematical models adjusted in this study presented good
quality of fit, as can be observed in the R2 values (>91%). This behavior can be explained
by the large amount of data (640 values) that was used to fit mathematical models.



Appl. Sci. 2021, 11, 8503 8 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

3.1. Thermal Properties of Composts in Different Moisture Contents and Static Compaction 
Degrees 

The values of k, recorded during the study, are presented graphically as a function of 
each percentage (30, 45, and 60%) of the MC evaluated and as a function of the different 
SCs (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) of the bedding materials in Figure 4a and 4b, respec-
tively. These results indicate that the values of k increased as MC and SC increased, likely 
due to a reduction in the volumetric fraction of air within the bedding material [35]. The 
DC0 was not statistically significant according to the model selection method (backward 
stepwise), and depths (H1, H2, and H3) were evaluated separately. 

 
Figure 4. Variation in thermal conductivity (k) at different degrees of moisture content (a) and (b) static compaction degree 
of compost bedding materials. Values followed by different letters are significantly different (p < 0.05; Tukey). 

The greatest variation in k values for MC and SC was ± 0.061 W m−1 K−1 and ± 0.060 
W m−1 K−1, respectively, where they define desirable levels of accuracy by the thermal sen-
sor to estimate the thermal conductivity. Considering the physical mechanism associated 
with conduction in general, the k of a solid > liquid > gas [36]. 

Due to the large number of outliers (Figure 4), the discrepancy of the k values, which 
are applied in a modeling study, can reduce the accuracy of the model results, as already 
observed in other studies [15,19,37]. However, it can be highlighted that even with the 
large number of outliers, the mathematical models adjusted in this study presented good 
quality of fit, as can be observed in the R2 values (>91%). This behavior can be explained 
by the large amount of data (640 values) that was used to fit mathematical models. 

The analysis of variance showed that for the three depths, there was a significant 
interaction between SC and MC, regarding its effect on k (p < 0.001). Thus, it is verified 
that the levels of SC and MC are not independent to explain the values of k. Then, after 
descriptive analysis of the data, through the dispersion graph, it was found that the be-
havior of the variable MC (30%, 45%, and 60%) is of a linear line, while the behavior of the 
variable SC (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) is a quadratic model. 

The values found for k, in the different compost bedding materials, in relation to the 
levels of MC (30, 45, and 60%) and SC (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) tested for each one 
of the three depths evaluated (H1, H2, and H3) ranged from 0.0141 to 0.768 W m−1 K−1. 

The regression analysis for compost materials showed a polynomial relationship be-
tween the variable of k and the dependent variables MC and SC for each depth evaluated 
in this way: 

kH1 = 0.0022∙MC + 0.1838∙SC − 1.1601∙SC2 + 0.0154∙MC∙SC, R2 = 0.92 (2)

kH2 = 0.0028∙MC + 0.6711∙SC2 + 0.0140∙MC∙SC, R2 = 0.92 (3)

kH3 = 0.0027∙MC + 0.4251∙SC2 + 0.0111∙MC∙SC, R2 = 0.91 (4)

Figure 4. Variation in thermal conductivity (k) at different degrees of moisture content (a) and (b) static compaction degree
of compost bedding materials. Values followed by different letters are significantly different (p < 0.05; Tukey).

The analysis of variance showed that for the three depths, there was a significant
interaction between SC and MC, regarding its effect on k (p < 0.001). Thus, it is verified
that the levels of SC and MC are not independent to explain the values of k. Then, after
descriptive analysis of the data, through the dispersion graph, it was found that the
behavior of the variable MC (30%, 45%, and 60%) is of a linear line, while the behavior of
the variable SC (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) is a quadratic model.

The values found for k, in the different compost bedding materials, in relation to the
levels of MC (30, 45, and 60%) and SC (0.0, 0.1, 0.2, 0.3, and 0.4 MPa) tested for each one of
the three depths evaluated (H1, H2, and H3) ranged from 0.0141 to 0.768 W m−1 K−1.

The regression analysis for compost materials showed a polynomial relationship
between the variable of k and the dependent variables MC and SC for each depth evaluated
in this way:

kH1 = 0.0022·MC + 0.1838·SC − 1.1601·SC2 + 0.0154·MC·SC, R2 = 0.92 (2)

kH2 = 0.0028·MC + 0.6711·SC2 + 0.0140·MC·SC, R2 = 0.92 (3)

kH3 = 0.0027·MC + 0.4251·SC2 + 0.0111·MC·SC, R2 = 0.91 (4)

A significant effect was observed when observing the MC and SC separately and also
when observing the significant influence of the MC × SC interaction, since methodologi-
cally it is already known that the k value of water is greater than that of air
(0.06 W m−1 K−1 > 0.026 W m−1 K−1; Bergman et al. [22]). The thermal conductivity
of air is about 25 times less than that of water; hence, if air is replaced by water in the
pores of a material (i.e., if the water content increases), the bulk thermal conductivity
increases [38].

Therefore, increasing the moisture content, the pores of the bed material were filled
with water, which increased the values of k. In addition, k also increased with the increased
degree of SC due to a reduction in empty space. Generally, the thermal properties of com-
posting materials show specific tendencies related to water content, apparent density, and
particle size [15,35,39,40]. If water content increases, the volume fraction of air decreases,
and the volume fraction of solid increases. Consequently, the bulk thermal conductivity
increases [38]. In other words, if SC and MC increase, solid particles move closer to one
another, and the thermal contact resistance between bed particles decreases, thus raising
the k values.

The highest values of k were observed at depth H1 (0.153 ± 0.047 W m−1 K−1), fol-
lowed by H2 (0.142 ± 0.045 W m−1 K−1) and H3 (0.136 ± 0.041 W m−1 K−1), respectively.
Values of k in several other studies have varied depending on the type of material, com-
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posting time, moisture content, and physical and chemical characteristics, among other
factors. Iwabuchi and Kamide [41] reported that the k of the dry compost (dairy manure
and sawdust mix) was 0.051 W m−1 K−1 and 0.096 W m−1 K−1 with 57% moisture. As
noted by Iwabuchi et al. [21], the values of k of composting material (dairy manure and
sawdust mix), with moisture content ranging from 0 to 44.2%, showed values between 0.05
and 0.202 W m−1 K−1, respectively.

The response surfaces presented in Figure 5 were quadratic due to the adjusted
polynomial regression models, showing good correlation between the adjusted data for the
different depths evaluated (R2 > 91%), and the parameters of the models were significant
(p < 0.05).
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For all compost materials tested (Figure 5), k values increased as MC and SC increased.
The composting material with low moisture content presented low thermal conductivity
due to the presence of a relatively high fraction of air, thereby reducing heat propagation
with uniform temperature distribution across layers of bedding material. Since water, air,
and solid materials have their own specific thermal property values, the thermal properties
of compost materials vary with the proportion of these three materials, changing the
water content, apparent density, and particles [42–45]. Usually, materials that have a low
density also have a low thermal conductivity; consequently, these materials are poor for
heat storage. In other words, the thermal conductivity of a bedding material is generally
characterized by its dependence on particle density, as the void space is reduced, the filler
particles begin to contact each other, and a continuous path is formed through the volume
of the sample, increasing the heat and mass transfer with the environment. This fact can be
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observed in the field, as when stirring the pack in a CBP barn, the fast exchange of heat
and mass is observed between the bedding material and the environment.

In Figure 5, it is also possible to observe that the behavior of k as a function of SC
is slightly different in depth H1 in relation to the other depths tested (H2 and H3). This
difference was shown by the polynomial model when presenting in Equation (2) a linear
term (0.1838·SC) that was not significant in Equations (3) and (4).

According to Zuñiga et al. (2009), the thermal conductivity of porous media shows
a greater significant difference between the degrees of compaction and depths tested.
This could be due to the fact that heat conductivity is controlled by all three phases
(solid/liquid/gas) of the material, thus influencing the k values along the evaluated depth.
In addition, the properties of a porous medium itself such as material texture, the insulating
properties of any organic layers, and material compaction enhancing the decrease in
porosity may endogenously affect material thermal properties [46,47].

3.2. Thermal Properties of Composts in Different Moisture Contents and Dynamic Compaction
Degrees

As can be observed in Figure 6, k presented higher values with a 60% MC and a DC
of 0.4 MPa (0.789 W m−1 K−1). Theoretically, these values of k can be predicted, since
the DC over time has a direct effect due to the increase in the apparent density of the
bedding material, reducing the porosity and resulting in an increase in k values. The
thermal conductivity of leaf compost increased linearly with the increase in water content
and compaction degree, represented by volume fractions of air [35].
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compost bedding materials. Values followed by different letters are significantly different (p < 0.05; Tukey).

The ANOVA indicated that there is a significant correlation (p < 0.05) between the
values of DC and MC along the three depths evaluated (H1, H2, and H3). Thus, in the same
way as with SC, there is a dependence of DC and MC on the values of k, and a polynomial
regression model was adjusted taking into account the interaction between DC and MC for
each evaluated depth (H1, H2, and H3).

The multiple regression analyses for compost materials showed a polynomial relation-
ship between k and the dependent variables MC and DC for each depth evaluated (H1, H2,
and H3), and the selected models were:

kH1 = 0.0029·MC − 0.7641·DC2 + 0.0147·MC·DC, R2 = 0.91 (5)

kH2 = 0.0030·MC − 0.7583·DC2 + 0.0146·MC·DC, R2 = 0.92 (6)

kH3 = 0.0029·MC − 0.4251·DC2 + 0.0137·MC·DC, R2 = 0.91 (7)
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The magnitudes of the respective determination coefficients (R2) in Equations (5)–(7)
confirm the good quality of fit obtained by the polynomial models in the description of k
by the variables DC and MC. Thus, the models are appropriately adjusted based on the
observation of high value F as well as a high coefficient of determination (R2).

As shown in Figure 7, there was an increasing trend in the values of k in the composting
material with increasing MC and DC. The values of k with different MC contents and
degrees of DC varied from 0.010 to 0.789 W m−1 K−1. In this case, the standard deviation
of k was ± 0.015 W m−1 K−1, which is an acceptable precision to estimate the k when using
a transient line heat source sensor (Decagon KD2-Pro, accuracy ± 0.02 W m−1 K−1).
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In Figure 7, contrary to what was observed in the behavior of k as a function of SC
(Figure 5), the influence of DC on the values of k did not vary along the depths tested.
Thus, Equations (5)–(7) have the same components (MC and DC), with only the estimates
of the parameters varying (kH1, kH2, and kH3). This probably occurred because of the
pressure variation applied by the plunger in the bed samples, which may have rearranged
the particles of the materials, reducing the porosity and density over the entire depth
tested. This behavior is consistent with the findings of other investigations [48] and occurs
because as the material is dynamically compacted, there is more physical contact between
the solid particles, which increase thermal conduction [49]. Additionally, the magnitude of
the thermal conductivity is similar to that presented in the literature [48–50].

3.3. Thermal Properties of Composts in Different Particle Sizes

The k of granular materials is known to be affected by the quality of contact between
the particles. The particle contact quality depends on the material density, particle geometry,
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and PS distribution. The effects of these factors on k are evaluated in this study using
air-dried bedding materials and transient line heat source sensors.

The behavior of directly observed k data in relation to PS distribution for bedding
samples in compost barn plants using green sawdust, greenhouse sawdust, or a mixture
of materials is shown in Figure 8. Measurements of k were not carried out on samples of
thicker material whose particle size was larger than 25 mm due to the difficulty in inserting
the sensor thermal probe into the sample.
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As can be observed in Figure 8, the values of k increase with the increase in the PS of
the analyzed materials, which is the reverse of what was expected, as described by Yun and
Santamarina [51] and Ahn et al. [15]. According to Singh et al. [36], the porosity has a great
influence on the thermal properties of the material due to its dependence on the PS, that is,
as the PS increases, the thermal conductivity decreases, since more particles are required for
the same porosity, meaning more thermal resistance between the particles. This behavior
can probably be explained by the higher retention of moisture in larger particles since the
compost bedding materials were air dried for the same period of time and because the
materials had different PSs, so drying did not occur evenly, which probably influenced
the values of the thermal properties. Considering the physical mechanism associated with
conduction in general, the k of a solid is greater than that of a liquid and that of a liquid
is greater than that of a gas [36]. Thus, the effect of PS on the k was more pronounced on
larger PSs. However, a small increase in k for all materials was observed when PS was
less than 4.75 mm. It was also observed that k increased dramatically (>85%) in materials
with a PS greater than 8.00 mm (Figure 8). These changes can be explained considering
the change in porosity filled with fine particles of material. For grain-like materials, for
example, where the pores of the materials are filled with air, generally the k increases as the
PS decreases. However, in materials with large particles, the k presents inverse results [16].

Statistical analysis of the data revealed that there was a significant difference between
the values of k and the different PSs evaluated (Tukey test, p < 0.05). Thus, in Figure 9, the
main effect of PS on k is presented. In general, k values were higher in compost materials
with a PS greater than 8.00 mm.

This means that with a high PS (>8.0 mm), the impact of the MC on k became positive,
in other words, depending on the MC, the k tends to increase when the PS increases. An
explanation for this phenomenon may be that the increased PS created more space between
the pores of the material, increasing the amount of water retention and raising the values
of k. According to Cosenza et al. [25], as with other thermal properties, the k of the material
depends on the MC, but the porosity and k of the solid fraction are also strong determinants.
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Figure 9. Variation in thermal conductivity (W m−1 K−1) and compost particle ranges (mm) for bedding materials. Values
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The average k of the bedding materials tested in the current study was
0.198 W m−1 K−1, varying between 0.088 and 0.608 W m−1 K−1 depending on parti-
cle size. Values of k found in this study agree with some previous studies. Research
performed by Ahn et al. [15] showed that the k ranged from 0.03 to 0.05 W m−1 K−1 for
dry sawdust and 0.03 to 0.06 W m−1 K−1 for dry wood chips.

3.4. Thermal Properties of Composts along the Depths Evaluated

The behavior of the k as a function of the DCo (SC and DC) along the depths evaluated
(H1, H2, and H3) is observed in Figures 10 and 11.
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average values of SC and MC at different depths. Values followed by different letters are significantly
different (p < 0.05; Tukey).
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The values of k increased with SC due to a reduction in void space and an increase
in bulk density (Figure 10). However, statistical analysis revealed that depth alone did
not have a significant impact or interaction with another factor. In general, the values of k
reduced along the evaluated depths, presenting higher values at depth H1. This upward
trend was contrary to the study by Huet et al. [52], where it was found that depth alone
did not have a significant impact or interaction with other evaluated factors (MC and PS)
in thermal conductivity values.

However, when applying DC to the bedding material (Figure 11), it is observed that
there is no significant difference in the values of k along the depths evaluated (Tukey test,
p > 0.05). The variation in DC may have influenced the bulk density of the material along
any PVC cylinder. According to Lam et al. [53], the apparent density has a significant effect
on the handling and storage of materials and depends on the composition of the material,
PS, MC, and applied pressure, among others. The apparent biomass density increases
during transportation, handling, and storage, which may be caused by compaction due to
normal vibration, buoyancy, or loading [54].

3.5. Prediction of Bed Compost Thermal Conductivity

Figure 12 shows a comparison of the predicted k from Equations (2)–(4) and the
experimental data when applying SC for each depth evaluated (H1, H2, and H3).
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Through a preliminary statistical analysis, it was found that there is no statistically sig-
nificant difference between the estimated thermal conductivity (kest) and (kmea) measured
(t test, p > 0.05). The adjusted expressions are statistically significant (F test, p < 0.0001),
providing mean errors of 0.065, 0.077, and 0.077, respectively (Figure 12).

When comparing the k of bed compost materials applying SC values kest with the kmea
values by Equations (2)–(4), the proposed models were found to be precise in predicting
the k (Figure 12). The adjustment equations between the models and the data for each
depth (H1, H2, and H3) were:

kest H1 = 0.9444·kmea H1 + 0.0199, R2 = 0.87 (8)

kest H2 = 0.9604·kmea H2 + 0.0072, R2 = 0.89 (9)

kest H3 = 0.9936·kmea H2 + 0.0032, R2 = 0.94 (10)

According to Savegnago et al. [55], the coefficient of determination (R2) is an indicator
of the goodness-of-fit between the model and the data. Comparing R2 values of the three
test models showed that the third model (Figure 12c) outperformed the others (0.879, 0.895,
and 0.940, respectively). These results indicate that the k values predicted by the models
(Equations (2)–(4)) were similar to values experimentally observed (Equations (8)–(10)) [56].

Figure 13 shows a comparison of the predicted thermal conductivities (kest, W m−1 K−1)
from Equations (5)–(7) and the experimental data (kmea, W m−1 K−1) when applying dy-
namic pressure (DC) for each depth evaluated (H1, H2, and H3). The adjustment equations
between the models and the data for each depth (H1, H2, and H3) were:

kest H1 = 0.8715·kmea H1 + 0.0101, R2 = 0.79 (11)

kest H2 = 0.9684·kmea H2 + 0.0013, R2 = 0.83 (12)

kest H3 = 0.9475·kmea H3 + 0.0072, R2 = 0.86 (13)

Based on Figure 13a–c, it is possible to observe that the estimated thermal conductivity
of bed compost materials when applying DC for each depth evaluated in comparison with
the observed values showed good results too. The adjusted expressions are statistically
significant (F test, p < 0.0001), showing an R2 of 0.794, 0.831, and 0.867, respectively, where
the linear and angular coefficients are significant (t test, p > 0.05). The average and standard
deviations of the simulated and observed k at the three depths tested were 0.210 ± 0.08,
0.214 ± 0.09, and 0.209 ± 0.09, respectively, resulting in an average absolute deviation
of 0.072, 0.078, and 0.074, respectively, and an average error of 0.037, 0.037, and 0.036,
respectively. The model to predict the k for H3 showed better results in comparison with
H1 and H2.
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Figure 13. Estimated thermal conductivity (kest, W m−1 K−1) of bed compost materials versus measured (kmea, W m−1 K−1)
values when applying dynamic compaction (DC) for each depth evaluated: (a) H1, (b) H2, and (c) H3.

In spite of the good R2 values presented by Figure 13, these results indicate that the
models to predict k values applying SC (Figure 12) showed better adjustment with better
R2 values than the models to predict k applying DC (Figure 13). Overall, the models
proposed in this study to predict k based on MC and DCo (both SC and DC) showed
good generalization performance. The results are promising, considering that the modeled
equations depend on variables that are subject to large variations in the field, such as
moisture, applied pressure, the type of bed material, and depth.

4. Conclusions

Studies were conducted to evaluate the effect on thermal conductivity (k) with the
variation in moisture content (MC), the degree of compaction (DCo), particle size (PS), and
the depth of bedding material from different compost-bedded pack (CBP) barns. Based on
the results, the following conclusions are made:

(a) A strong dependence of thermal conductivity on the moisture content and degree of
compaction (static and dynamic) was observed. Thus, a growing trend in thermal
conductivity (k) was observed with increasing moisture content and degree of com-
paction for all bed materials tested. The polynomial regression models developed in
this study presented an excellent model fit, with R2 greater than 91%.

(b) Overall, thermal conductivity increased with increasing particle size (PS), indicating
that it is strongly dependent on PS, and;

(c) In general, the values of thermal conductivity reduced along the evaluated depths.
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