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Abstract

Recently, anatomical 3D models, thanks also to the increased diffusion of 3D

printing technologies, have been successfully introduced in the clinical field

as innovative tools to support the medical team in several tasks. Advances in

3D technology now provide a realistic representation of complex anatomies

that can be used as an aid for diagnosis, surgical planning and training. In

general, 3D reconstructions are more accurate when they are the outcome

of the processing of high-resolution image sequences. On the other hand,

if a sequence is characterized by few tomographic sections, only a coarse

reconstruction is achievable and the artifacts that are produced impair the

usefulness as a tool to support the physician. The study carried out during

this thesis work has two objectives. The first is to provide axial interpolation

methods that, applied to low-resolution sequences, allow a refined 3D recon-

struction of the anatomical model to be obtained. The methods are inspired

by compensated frame interpolation techniques (MCFI) developed for video

processing applications and produce an estimate of the displacement vector

field (DVF). The DVF is then processed and used to estimate intermediate

ones. The performance of the proposed methods has been quantitatively

assessed using sequences with simulated axial low resolution. The exper-

imental results show that the proposed methods allow an effective sliced

interpolation and the 3D models obtained clearly benefit from the increased

axial resolution. The second objective is studying image fusion methods spe-

cific for biomedical images obtained from different acquisition methods, also

termed as multimodal image fusion. More specifically, in this thesis mag-

netic resonance imaging (MRI) and magnetic resonance elastography (MRE)

sequences have been taken into account. The objective of the processing is

achieving a fused image containing the structural information from the MRI

and the mechanical (tissue stiffness) information from the MRE. The pro-

posed method is based on multiresolution analysis (MRA). The fused MRE

image is obtained by adding the geometric details, extracted from the MRI,

after being modulated by a suitable injection gain. This gain is based on a

correlation coefficient between the two images. The results show its effec-

tiveness in providing in an unique image both the geometric information and

elastic properties of the investigated tissues.
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Chapter 1

Introduction

In the recent years, 3D modeling has been successfully introduced in the clin-

ical field as an innovative tool to support the medical team; this has been

made possible also thanks to the wider and wider diffusion of 3D printing

technologies. 3D printing is a manufacturing technique that enables objects

to be realized from digital data by using specific software and a printer that

adds layer upon layer of material to create the shape of the desired object.

This technology is defined as Additive Manufacturing (AM). Through 3D

printing it is possible to make objects of any kind using a wide range of ma-

terials such as thermoplastics, polymers, metal and so on. In the biomedical

field, 3D printing has been present since the early 2000s, when the technology

was first used for the creation of dental implants and customized prosthetics.

Since then, medical applications of 3D printing have evolved considerably

and current medical uses can be organized into two categories: organ and

tissue manufacturing and creation of prostheses, implants and anatomical

models. The technology of 3D reconstruction and printing allows solutions

customized on patients’ needs to studied and realized. It can also be widely

applied in medical diagnosis and surgical planning, since it represents a valu-

able help for surgeons in pre-operative and post-operative phases. Thanks to

the three-dimensional reconstruction of anatomical districts, biomodels are

created that faithfully replicate the pathology of the patient and serve as a

basis for preventive study of the surgery. Difficulties, anatomical conditions,

different depths and lengths of surgical instruments and possible instrumen-

tation can be foreseen in advance, with the undisputed advantage of having

greater clarity, greater safety and speed of execution. In addition, in the post-

1



2 Introduction

operative phase, it allows the correct execution of the operation to be verified

and, in particular cases, defects to be detected and possible corrections to

be made. The advantage of biomodels is to go beyond traditional radiology,

integrating the virtual reality of 3D radiology with the physical reality of

a three-dimensional object on which you can perform a real surgery in the

laboratory or operating room. A further advantage of 3D models is the nat-

ural and immediate perception of the case under consideration, as well as an

important means of communication both for the patient himself and for the

families, which is not feasible with 2D. Through these models you can have

a tactile feedback, and this allows a greater understanding and safety by the

surgeon with a consequent reduction of surgical errors and operating time.

The quality of the 3D model depends on the axial resolution of the sequence

used during the 3D reconstruction process. On the other hand, a very coarse

reconstruction characterised by artefacts is obtained if the sequence consists

of only a few tomographic sections. In this case we refer to sequences with

low axial resolution. This is the case, for example, of Computed Tomography

(CT) scans performed on neonatal patients suffering from craniosynostosis.

To solve this problem, axial interpolation can be considered to generate in-

termediate slices from two adjacent ones of the same sequence in order to

increase the resolution in the axial direction. Another example of a low axial

resolution sequence is Magnetic Resonance Elastography (MRE), a diagnos-

tic tool to determine certain mechanical properties of tissues in vivo. The

mechanical characterization of human organs is of great impact on medical

practice, particularly for diagnosis, planning and surgical training, for tis-

sue engineering and trauma research. Classical imaging methods, such as

CT and Magnetic Resonance Imaging (MRI), allow an anatomical structure

to be visualized and its functionality and the presence of pathologies to be

verified, even though information about the mechanical properties of tissues

can not be achieved. Measuring the elastic properties of tissues is of great

interest since it is assumed that the diseased anatomical parts have different

mechanical properties than healthy ones (a greater rigidity of tissues, for ex-

ample, may be related to a pathological state), so that MRE becomes a tool

to discriminate different physiological tissues. Nevertheless, MRE data do

not provide any information about anatomical structures. The fusion of MRI

and MRE images would result in a final image, in which both the geometric

content of the MRI and the elasticity information of the MRE are present,

enabling physicians to perform a more accurate and complete investigation
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of the entire anatomical part of interest. This thesis work presents methods

for volumetric interpolation and fusion of tomographic sequences with ap-

plication to 3D reconstruction; after an excursus on the state of the art of

the main medical image acquisition techniques, we will analyze the problem

of 3D reconstruction of an anatomical model. We will also analyze the as-

pects of image processing necessary for the reconstruction of geometrically

accurate 3D models from image sequences. Finally, the biomedical images

fusion process will be examined.
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Chapter 2

Biomedical imaging

This chapter provides a brief overview of biomedical images formation and

their main acquisition techniques. In the first part of the chapter, the most

common and traditional imaging techniques will be described while in the sec-

ond part a new technique providing a mechanical characterization of tissues

will be presented.

2.1 Traditional diagnostic imaging

The term diagnostic imaging or imaging refers to the process of generating

medical images used for diagnostic purposes and includes radiology, com-

puted tomography, magnetic resonance imaging, ultrasound, pet and so on.

Imaging provides the physician with a very important diagnostic tool in the

development of a detailed and accurate clinical picture of the patient and

can be integrated with other diagnostic techniques. The various diagnostic

imaging techniques use electromagnetic signals produced by a source and

measure the interaction between this energy and the organ to be analyzed.

The generated signal by the source propagates in space and when it inter-

acts with the organ, a fraction of the energy is reflected backwards, another

fraction propagates through the tissues (and eventually beyond) modifying

its characteristics in general, and another part of the energy is somehow ab-

sorbed by the organ itself. These physical phenomena (reflection, refraction

and absorption) vary depending on the type of tissues and on the type of en-

ergy and, therefore, the diagnostic technique vary. The first and nowadays

simplest technique of medical imaging was introduced about one hundred

5



6 Biomedical imaging

years ago and involves the use of electromagnetic waves to generate black

and white images where the various tissues are different due to different levels

of radiation absorption, the bones that absorb the maximum appear white

while the air absorbing the minimum appears black. A significant limitation

of this technique is the impossibility to provide a three-dimensional view of

the investigated organ. In the following we will analyze the diagnostic tech-

niques mentioned above, focusing on those that allow both a visualization

and a reconstruction of the 3D model of the organ of interest.

2.1.1 Computed tomography (CT)

CT is an imaging technique that uses ionizing radiation (X-rays) to scan body

and to reproduce body sections of the patient allowing a three-dimensional

visualization and processing. The anatomical part of interest can be scanned

in two modalities: sequential or volumetric. In the first one, the X-ray tube

rotates around the patient making a 360 degrees rotation at the end of which

the table moves longitudinally and the next scan is performed. This is done

until the end of the scan of the entire volume of interest. In the volumetric

mode, the radiant beam describes a helical trajectory around the patient and

data acquisition takes place simultaneously with the movement of the table

(Figure 2.1). During the scan, the detectors (sensors) measure the radiation

transmitted through the patient by providing a map of attenuation of the

different tissues which is used to reconstruct a digital image of an axial

section (Figure 2.2).

Digital images consist of a pixels that represent the average attenuation

value of each voxel which is the unit volume element. The term attenuation

indicates the reduction of energy that the X-ray beam undergoes when it

passes through the object; the Lambert-Beer law is used to calculate the

linear attenuation coefficient, that is

µ =
1

∆x
ln
It
I0

(2.1)

where It represents the transmitted energy, I0 the incident energy and ∆x

the thickness of the penetrated tissue. Since the photon beam is heteroge-

neous, it is necessary to consider the number of photons and consequently

the Lambert-Beer equation becomes

Nt = N0e
−µ∆x (2.2)
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X-ray 
tube

Detector array

Patient bed Detector array

X-ray 
tube

Patient

Detector array

Axial view Transaxial view

Figure 2.1: Diagram of a CT scanner. The X-ray tube and detector array

rotate in the transaxial plane while the patient’s bed moves along the axial

direction.

Figure 2.2: Example of axial chest CT images.

where Nt represents the number of transmitted photons and N0 the number

of incident photons. Considering that the body of a patient consists of tissues

with different density and each one characterized by a specific attenuation

coefficient, the number of photons results to be

Nt = N0e
−(µ1ds+µ2ds+...) (2.3)

The CT image is produced on a pixel matrix , where each pixel (or voxel)

corresponds to a particular attenuation value that is then transformed into
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a proportional gray tonality value. Such value takes the name of Hunsfield

Unit (HU) and is defined by the following equation

HU = k
µt − µw
µw

(2.4)

where µt and µw represent the tissue and water attenuation coefficients, re-

spectively, while k is a scale factor. The Hounsfield unit describes the tissue

radiodensity and is referred to the water density, which by convention is

equal to 0. Table 2.1.1 shows some examples of HU in related to various

tissues [6].

TISSUE HU

Air - 1000

Lung - 500

Adipose tissue - 100 ÷ - 50

Water 0

Cerebrospinal fluid + 15

Kidney + 30

Blood + 30 ÷ + 45

Muscular tissue + 10 ÷ + 40

Grey matter + 37 ÷ + 45

White matter + 20 ÷ + 30

Liver + 40 ÷ + 60

Contrast agent + 100 ÷ + 300

Bone + 400 ÷ + 3000

Table 2.1: HU values for various types of tissue.

In CT examinations organs and tissues may be classified as hyperdense,

hypodense or isodense in relation to another organ or tissue or the ref-

erence water density. As can be seen in Figure 2.3, hyper dense structures

such as bones appear white and hypodense substances such as air appear

black.
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Figure 2.3: Qualitative tissues classification.

2.1.2 Magnetic resonance imaging (MRI)

MRI provides sequences of sections of the body in the form of two-dimensional

images in the same manner as CT scans. The content and therefore the

information provided are different since this technique exploits the physi-

cal phenomenon of Nuclear Magnetic Resonance, according to which some

nuclei of elements present in the human body (in particular the hydrogen

nucleus) react differently in response to the application of a very intense

external magnetic field. This physical phenomenon occurs due to the in-

teraction within the human body between this intense magnetic field and

electromagnetic waves of appropriate frequency, sent to the patient’s body.

Physical principles

When the patient is introduced into an MRI device, hydrogen ions, which

have an odd number of protons in the nucleus and then acting like a small

magnet, are oriented with respect to the static field of the machine (B0) in

only two possible directions, parallel or antiparallel [7]. Parallel protons are

prevalent over antiparallel ones thus producing a resulting magnetization M ,

oriented parallel to B0, and the axis of each proton rotates around the di-
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rection of the precession moment. During precession (Figure 2.4) the proton

rotation axis rotates describing a cone. The “turns/revolution” number that

Figure 2.4: Precession phenomenon.

the proton completes in a second, around the field force lines, is indicated by

the term frequency which depends both on the type of atom and the force

of the applied magnetic field, according to Larmor’s law:

ω = γ
B0

2π
(2.5)

where ω represents the frequency (MHz), γ the Larmor constant (MHz /

T) and B0 the intensity magnetic field (T). Larmor’s constant for hydrogen

nuclei is 42, which means that in the presence of a 1.0 Tesla magnetic field,

hydrogen atoms rotate at 42 MHz (42 million of turns/revolution per second).

By sending Radio Frequency (RF) pulses, it is possible to interact with the

precession system (this phenomenon is called resonance). For this purpose

it is, however, necessary to send an impulse that has the same frequency as

the Larmor. This mainly determines two aspects:

1. The synchronization of the precession (protons rotate not only at the

same frequency but also in a coordinated way) that establishes a new

macroscopic magnetization, in the orthogonal plane at B0, called trans-

verse magnetization.

2. The change of state of some protons from the low energy level (parallel

to B0) to the high energy level (antiparallel to B0).

After the impulse, the spin will tend to return to the previous energy equi-

librium situation, realigning with the main magnetic field and emitting a
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radio frequency wave that measured by a receiving antenna is converted into

a digital signal. This longitudinal relaxation is also called spin-lattice re-

laxation, and the time constant describing it is named T1. T2 (transverse

relaxation time) is the time constant which determines the rate at which ex-

cited protons reach equilibrium or go out of phase with each other. It is also

possible to measure how many hydrogen protons are present in the single

voxel, called Proton Density (PD). T1, T2 and proton density are, therefore,

to be considered as intrinsic tissues characteristics.

Type of MRI images

The image content depends on the hydrogen nuclei concentration in tissues

and since hydrogen is present in the human body essentially in the form of

water, on the tissue water concentration. For this reason, the information

provided by MRI images are different from those of other imaging methods:

in fact, based on the particular biochemical composition of different tissues,

it is possible to distinguish them. The importance of this examination lies

in the fact that it can discriminate, for example, between a tissue of the

liver and one of the spleen (which compared to X-rays have the same optical

density), or healthy tissue from lesions. In describing most of the MRI

sequences reference is made to the tissues or fluids shades of gray in relation

to the signal intensity, obtaining the following absolute terms:

• White indicates high signal strength

• Grey indicates an intermediate signal strength

• Black indicates low signal strength

The anomalies are described by their relationship of intensity with a

reference structure (brain tissue, CSF etc.). The descriptors used are:

• Hyperintense: if an anomaly is bright (white) as shown in Figure

2.5.

• Isointense: if an anomaly has the same intensity as a reference struc-

ture.

• Hypointense: if an anomaly is dark.
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Figure 2.5: Hyperintense lesion example. Image taken from [1]

There are many RF pulse sequences and those currently most commonly

used are called “spin-echo (SE)” and “inversion recovery”. These sequences

offer T1,T2 or PD weighted images by manipulating the repetition time

(TR) and echo time (TE) which represent, the time between one RF trans-

mission and the next, and the time between excitation and when the coil

is programmed to receive the resulting signal, respectively [8]. Table 2.1.2

classifies the three image types according to TR and TE. Due to the re-

IMAGE TR TE

T1 Short Short

T2 Long Long

PD Long Short

Table 2.2: Echo and repetition time for different types of MRI images.

laxation and phase shift properties (T1, T2) and the proton density value,

differentiation between different body tissues is possible in MRI. Tissue con-

trast is influenced not only by T1, T2 and DP values of specific tissues, but

also by differences in magnetic field strength, temperature variations and

many other factors [9]. The various types of magnetic resonance imaging are

distinguished by the different signal intensities of the tissues and thus the

different gray values as shown in Table 2.3. In Figure 2.6 are shown MRI

images of the same brain acquired in T1, T2 and PD mode.

Paramagnetic contrast agents are used to improve MRI images and visualize

pathologies. They have their strongest effect in T1-weighted images because

they mainly alter the T1 relaxation time in the tissues where they have ac-

cumulated. The most commonly used contrast agent in MRI are the basic
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TISSUE T1 T2 PD

(Signal strength) (Signal strength) (Signal strength)

Fluid (urine,CSF,etc..) Low (black) High (white) High (white)

Muscle Intermediate (gray) Intermediate (gray) Intermediate (gray)

Fat High (white) Low (black) High (white)

Grey matter Intermediate (gray) Intermediate (gray) Intermediate (gray)

White matter Hyperintense (whiteish) Hypointense (darkish) Hypointense (darkish)

(respect to gray matter)

Table 2.3: Signal intensity of different tissues.

Figure 2.6: MRI of the brain. From left to right T1, T2 and PD images.

gadolinium. Contrast is injected intravenously (usually 5-15 ml) and scans

are obtained a few minutes after administration. Pathological tissues (tu-

mors, areas of inflammation or infection) have an accumulation of contrast

and therefore appear brighter than the surrounding tissue [10]. It is also

possible to obtain images in which the light signal of fat is suppressed. This

most commonly occurs in two scenarios: first, after contrast administration

to make the tissue to be analyzed more visible, second, if you want to analyze

a particular adipose tissue that becomes dark.

The continuous evolution of magnetic resonance imaging systems leads to

more advanced and innovative investigation techniques; in the following,

some examples are given.

Diffusion

In this case we refer to Diffusion Weighting Imaging (DWI) which is a

diffusion-weighted image that shows variations in the mobility of water pro-

tons in a biological tissue. In these images, structures with “normal” diffu-

sion are conventionally represented darker, because the resonance signal is
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more attenuated, while where the diffusion rate is lower (“restricted”), as in

ischemia for example, are represented lighter. The DWI thus allow a quali-

tative analysis, representing the spatial distribution of the water molecules

in a voxel. To be able to talk about quantitative analysis we need to intro-

duce the Apparent Diffusion Coefficient (ADC) maps. These maps are the

“negative” of the DWI images, and they allow an analysis of the quantitative

diffusion through the identification of physical parameters. Figure 2.7 shows

a DWI type image and an ADC type image.

Figure 2.7: Example of DWI type image and ADC type image. Image taken

from [1]

Perfusion

Perfusion Weighted Imaging (PWI) sequences allow an evaluation of the

cerebral blood flow. Generally, they require the use of a paramagnetic con-

trast medium, then going to analyze the signal changes obtained during the

passage of the same in the vascular bed. In the presence of an “altered”

cerebral blood flow, the detected signal will be reduced [11] (Figure 2.8a).

Spectroscopy

Different components interact with the magnetic field of MRI scanners in

slightly different ways and the amounts of these components can be quanti-

fied in a prescribed region of the tissue. These can be used to help charac-

terize the tissue in the tumor diagnosis or classification [12] (Figure 2.8b).

Functional MRI

Functional Magnetic Resonance Imaging (fMRI) is a technique used to ob-

tain functional information by visualizing cortical activity. With such a

method a blood flow small alteration can be detected in response to stimuli
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or actions [13] (Figure 2.8c).

Tractography

Magnetic resonance imaging with Diffusion Tensor Imaging (DTI) is a tech-

nique that involves the use of an instrument that allows to obtain images

based on the analysis of the movement of water molecules present in brain

tissue. The resulting data can also be used to three-dimensionally map the

white matter, a method that is called tractography (Figure 2.8d).

The figure shows examples of the four types of images described above

Figure 2.8: Innovative MRI techniques. From A to D example of PWI

image, spectroscopy, fMRI image and tractography. Figure A is taken from

https://www.mrinnovations.com/pwi. Figures B, C and D are taken from [1]

2.1.3 Positron emission tomography (PET)

Positron Emission Tomography (PET) is a diagnostic imaging method that

allows tissues with high metabolic activity (e.g. tumors) to be identified

and their size and location to be estimated. The examination is based on

the administration of radiopharmaceuticals, characterized by the emission of

particles called positrons that allows the radiation emitted by the positrons of

the tissues to be detect and processed. The substantial difference with other

methods of investigation such as, for example, MRI and CT is that PET

can provide quantitative and qualitative information of the tissues under

examination. An example of PET images is shown in figure 2.9. With this

examination it is possible to detect tumors, Alzheimer’s disease, control the
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metabolism of the brain and locate the origin of epileptic activity [14].

Figure 2.9: PET image of healthy brain (left) and Alzheimer’s brain (right).

2.1.4 Ultrasound ecography (UE)

It is a diagnostic imaging method based on the use of high frequency me-

chanical waves (ultrasound). The physical principle on which it is based is

to detect the reflections that ultrasounds undergo in passing through bio-

logical tissues. The ultrasounds used are waves generated by a piezoelectric

crystal inserted in a probe maintained with the interposition of a special gel

in direct contact with the patient’s skin. The same probe is able to collect

the return signal, which is properly processed by a computer and presented

on a monitor. The echo corresponds to the secondary acoustic wave consist-

ing of the portion of the incident ultrasonic beam that returns towards the

probe when it crosses an intermediate zone between two mediums that have

different acoustic impedance. Acoustic impedance is the product between

the medium density and the speed of sound propagation in the medium it-

self. This method is considered as a basic examination or filter compared to

more complex and invasive imaging techniques such as CT and MRI. The

ultrasound is, in any case, operator-dependent, as it requires special skills

of manual ability and spirit of observation, in addition to image culture and

clinical experience. The ultrasound frequencies used for diagnostic purposes

are between 1 and 30 MHz and the propagation speed varies depending on

the medium density. The echoes produced by ultrasound can be displayed

in different ways:
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• A-mode (Amplitude mode): was the first display mode; in disuse, it

still finds residual applications in the ultrasound of the eye.

• B-mode (Brightness mode): the echoes are represented according to

their distance from the source, determined on the basis of the delay

with which they return to the probe. An example of this method is

represented in figure 2.10 A.

• M-mode or TM-mode (Motion or Time Motion mode): used to display

organ movements

• 4D mode: is a 3-dimensional B-Mode ultrasound plus time component

(Figure 2.10 B).

Figure 2.10: Example of UE image. (A) US B-mode; (B) US 4D mode.

2.2 Magnetic resonance Elastography (MRE)

2.2.1 Introduction

Palpation is the most important and immediate clinical method for the diag-

nosis of diseases, since the pathological processes cause substantial changes

in the tissue’s mechanical properties, which are therefore of different con-

sistency. The first consideration regarding these distinctions date back to

400 B.C. in the text “the book of predictions” which was made explicit by

Hippocrates. The “elastic” tissues have since been considered healthy in the

medical field, while the “rigid” ones are associated with pathological pro-

cesses such as chronic inflammation or cancer. Palpation, however, has its

limits as a diagnostic tool because it is subjective and unable to classify the

various components of the tissue, thereby providing only qualitative analysis.
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In 1995 a new imaging technique named Magnetic Resonance Elastography

(MRE) was developed to address these issues. This method is proposed as a

non invasive technique able to quantify the viscoelastic properties of tissues

in vivo, i.e. the ability of tissues to undergo deformation when subjected to

pressure stress and then return to their original shape. The basic concept be-

hind elastography involves three stages: generation of stress in the tissue of

the target, study of tissue deformation, and characterization of the tissue by

dynamic stress-deformation. Stress is defined as applied force per unit area

in materials science, while deformation is defined as tissue displacement per

unit sample length. The elastic modulus, a physical parameter representing

the intrinsic rigidity of the tissue, is the slope of the tension-deformation

curve [15] (Figure 2.11).

Figure 2.11: Stress-strain curve for elastic and viscoelastic materials.

Depending on the type of stress detected, the elastic modulus is reported

as Young modulus E, which provides information on the material’s rigidity at

longitudinal stress, shear modulus G representing the material’s rigidity at

shear stress and mass modulus K representing the ratio between volumetric

stress and volumetric deformation. The SI unit for the elastic modulus is

expressed in kilopascals (KPa) where 1 kPa = 1 kN/m2 and the ratio between

the various elastic magnitudes is defined by the relations:

G =
E

2(1 + v)
(2.6)

K =
E

3(1− 2v)
(2.7)
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where v represents Poisson’s ratio between G and E, and is expressed as:

v =
E

2G
− 1 (2.8)

2.2.2 Operating principal

In conjunction with a magnetic resonance imaging technique, MRE uses the

propagation of mechanical shear waves (Gamma, 20-200 Hz) to probe the

mechanical properties of the tissues. The movement of nuclear rotations

(spin) in the presence of a magnetic field gradient induces a phase shift in

an MRI signal, provided by

ϕ(τ) = γ

∫ τ

0

~Gr(t) · ~r(t)dt (2.9)

where Gr(t) is the magnetic field gradient, r(t) is the position vector of nu-

clear rotations and ϕ is the gyromagnetic ratio characteristic of the nuclei

under examination [16]. Equation 2.9 indicates that the phase shift observed

in the received MRI signal is a function of the gradient vector and position

vector. If we consider the specific case of the harmonic acoustic wave prop-

agation, the spins undergo a simple known harmonic motion with respect

to their average position. Therefore, you could consider the gradient vec-

tor Gr(t) as one of a set of basic functions used to estimate the harmonic

components of the position vector r(t). First we consider the function Gr(t)

truncated in time by the function w(t), so that equation 2.9 becomes

ϕ(τ) = γ

∫ τ

0

~Gr(t)w(t) · ~r(t)dt (2.10)

where

w(t) =

{
1 0 < t < τ

0 otherwise

Applying the inverse Fourier transform to the gradient function, equation

2.10 takes the form

ϕ(τ) = γ

∫ τ

0

[∫ +∞

−∞
~Γr(f)ej2πftdfw(t)

]
·~r(t)dt (2.11)

which can be reformulated as

ϕ(τ) = γ

∫ +∞

−∞
Γr(f) ·

[∫ τ

0

w(t)r(t)ej2πftdt

]
df (2.12)
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and simplified in

ϕ(τ) = γ

∫ +∞

−∞
Γr(f) ·

[
W (−f)⊗ ~R(−f)

]
df (2.13)

A gradient function generalization based on the Fourier transform is de-

fined by equation 2.13. In general, this function can be considered as a

“filter” that measures the components of movement selectively. Assuming

that r(t) operates as a representation of a simple linear motion, its complex

motion is given by

r(t) = r0 + ~ξ(r, t) (2.14)

where ~ξ(r, t) is the displacement of the spin from its average position. In the

specific case of a harmonic propagation wave, the position vector can be a

pure sinusoid and therefore be expressed as

~r(t) = ~r0 + ~ξ0e
j(~k·~r−ωt+θ) (2.15)

where ω is the angular frequancy of the mechanical armonic excitation, θ is

the initial phase offset, k is the wave number, and ~ξ0 is the peak amplitude

of the spin displacement from its average position. Under these conditions,

it is useful to consider a basic function ~Gr(t) that is switched in polarity at

the same frequency as the position vector, whose amplitude results to be

|~Gr(t)| =
{

+|G| ∈ [nT, (2n+ 1)T/2)

−|G| ((2n+ 1)T/2), (n+ 1)T ]
(2.16)

where n=0,1,2,...,N -1, T = 2π/ω is the gradient force. If the time period

τ is chosen so that
∫ τ

0
Gr(t)dt = 0, the observed phase shift in the received

signal is given by

ϕ(τ, ~r) = γ

∫ τ=NT<TE

0

~Gr(t) · ~ξ0ej(
~k·~r−ωt+θ)dt (2.17)

which results in

ϕ(τ, ~r) =
2γNT (~G · ξ0)

π
sin (~k · ~r + θ) (2.18)

where N is the number of gradient cycles, T is the period of mechanical

excitation and TE is the echo time of the MR signal. Equation 2.18 shows
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that the measured phase transfer is related to the scalar product of the

displacement vector and gradient vector and the period and number of gra-

dient cycles. This latter dependence causes high sensitivity to small cyclic

amplitude shifts associated with acoustic wave propagation, constantly ac-

cumulating phase changes over several cycles of mechanical excitation and

gradient waveform. This equation also indicates that the measured phase

shift also depends on the initial phase offset between the gradient waveform

and mechanical excitation. In addition, if a sinusoidal gradient is chosen,

the gradient waveform is given by

~Gr(t) =

{
~G0 cos (ωt) t ∈ [0, nT ]

0 otherwise

and applying the same analysis made for the equation 2.15 and 2.17, the

phase shift results to be

ϕ(τ, ~r) =
γNT (~G · ~ξ0)

2
cos (~k · ~r + θ) (2.19)

This equation suggests that displacements occurring along any direction can

be measured by changing the direction of the applied gradients. Two mea-

surements with alternating gradient polarities are then acquired to reduce

systematic phase errors are and increase sensitivity to small displacements.

This balanced acquisition system reduces systematic phase errors and dou-

bles the sensitivity to small displacements. The phase images of each ac-

quisition are then subtracted to produce a difference image that reflects the

phase shift caused by the mechanical propagation wave, and it is the reason

for which such difference images are defined as wave images. Figure 2.12

shows both the waveforms (MEG) with opposite polarities used in sequence

to produce the difference images and the time ratio between the MEG and

the induced continuous sinusoidal motion [2]. The mechanical excitations

are produced by a pneumatic system that incorporates an active driver (not

MRI compatible) for the continuous production of acoustic waves, a passive

driver (MRI compatible) positioned on the surface of the body, and a plastic

tube in which air passes through to transmit the excitations from the active

to the passive driver. Generally the active driver consists of a signal gen-

erator connected to an audio amplifier and a loudspeaker while the passive

driver, for many abdominal applications, has a drum or disk design to max-

imize contact with the surface, and this can be applied to the body in any

orientation (Figure 2.13).
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Figure 2.12: Example of a gradient-recalled echo MRE pulse sequence dia-

gram [2]

Figure 2.13: Pneumatic System MRE

The mechanical quantities that need to be characterized are those that

connect the force to the deformation (stress-strain), and since the dispersions

are very small in MRE ( order of the microns), a linear relationship between

them can be assumed. If the material is supposed to be isotropic, the problem

is reduced to calculating two quantities independent defined Lamé constants

λ and µ hich represent the longitudinal and shear deformation respectively.

The isotropic relationship between stress and deformation is given by

σij = 2µeij + λδijenm (2.20)

where e it is a component of the stress tensor and δ is the Kronecker delta.

The stress tensor eij is defined in terms of displacement tensor uij as

eij =
uij + uji

2
(2.21)

Replacing this quantity in equation 2.20, gives the general equation for har-
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monic movement in an isotropic and linear elastic medium

[λuji]i + [µ(
uij + uji

2
)]j = −ρω2ui (2.22)

where ρ is the density of the material and ω is the angular frequency of the

mechanical oscillation. To simplify the wave equation, local homogeneity

is assumed, so that λ and µ are not position functions and equation 2.22

becomes an algebraic matrix equation that can be solved locally by direct

inversion, that is

µ∇2u + (λ+ µ)∇(∇ · u) = −ρω2u (2.23)

where bold terms represent column vectors. In general, the longitudinal

wavelength is very long in tissues (tens of meters) that the precise estimate

of λ is very challenging, in addition, the longitudinal waves are much larger

than shear waves. For these reasons, assuming that the displacements due to

the longitudinal wave vary slowly and are therefore irrelevant, λ is eliminated

from the analysis. Under this hypothesis equation 2.23 is simplified into a

single vector equation

[∇(∇ · u) +∇2u]µ = −ρω2[u] (2.24)

Lameé constant µ is a complex quantity in which the imaginary part reflects

the attenuation of a viscoelastic medium and for a harmonic motion is defined

as

µ = µr + µi = c+ iωη (2.25)

where c is the elastic stiffness and η is the material viscosity. Considering

the case of propagation in an isotropic, homogeneous, incompressible medium

without attenuation, a simple shear wave propagates with a specific spatial

frequency fsp and the shear modulus is

µ = ρ
f2
mech

f2
sp

= ρv2
s (2.26)

where fmech is the mechanical driving frequency and vs is the wave speed.

If there is attenuation the wave velocity and the attenuation depend on the

frequency and are defined respectively as

v2
s =

2(c2 + ω2η2)

c+ (c2 + ω2η2)
1
2

(2.27)
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and

α2 =
ω2

2

(c2 + ω2η2)
1
2 − c)

(c2 + ω2η2)
(2.28)

The real “cutting module” is the real part, which describes the behavior of

a static object in equilibrium. However, some processing techniques do not

deal with attenuation but only calculate the local wavelength and estimate

its velocity and then calculate an “effective” or “shear stiffness” modulus

which is defined as the square of the wave velocity. These techniques are

presented below.

Local Frequency Estimation (LFE)

First, the local spatial frequency of the shear wave propagation pattern is

estimated using an algorithm that combines local estimates of instantaneous

frequency on different scales. Through filters that are a product of radial

and directional components and can be considered as lognormally oriented

square waves these estimates are derived [17]. Assuming that ρ ∼ 1.0 the

shear stiffness is given by

µ =
f2
mech

f2
sp

(2.29)

It can be shown that, under the assumption of incompressibility, local ho-

mogeneity and without attenuation, this method solves the Helmholtz equa-

tion.This algorithm allows the estimation of µ from a single image using

the displacement values for only one direction and one phase offset, but is

also applicable to the case of complex harmonic displacement, obtained from

several phase offsets. The limited resolution is a drawback, in particular the

LFE estimate is inaccurate on sharp boundaries and the right one is only

reached in a given area on half wavelength. Consider, for example, a rigid

object with dimensions equal to a quarter of the spatial wavelength, embed-

ded in a less rigid material. The LFE algorithm detects the rigid object but

will never give a correct estimate of its shear stiffness.

Phase Gradient(PG)

After extracting the harmonic component at the drive frequency, both am-

plitude and phase (relative to an arbitrary zero point) characterizing the

harmonic oscillation at each pixel of the image are obtained. If the move-

ment is a simple shear wave, the gradient of this phase is exact the value
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desired: the variation in phase per pixel, easily convertible to a local fre-

quency and therefore to the shear rigidity. In general, this analysis can have

a very high resolution, but it is very sensitive to noise and usually a gra-

dient average is required. This technique produces inaccurate results when

two or more waves are superimposed (for example, reflected waves) or when

the movement is complex, since the phase values do not represent a single

propagation wave.

Algebraic inversion of the differential equation(AIDE)

The Algebraic Inversion of Differential Equation (AIDE) indicates the di-

rect inversion of the motion equations 2.23 and 2.24, with the hypothesis of

local homogeneity. These equations can be solved separately at each pixel

using only data from surrounding regions to estimate local derivatives. The

algebraic inversion of the differential equation 2.23, evaluates the Lame coef-

ficients for an isotropic material and needs all the components of motion [18].

Consider equation 2.23, which can be rewritten as

A

[
λ+ µ

µ

]
= −ρω2

u1

u2

u3

 (2.30)

where

A =

A11 A12

A21 A22

A31 A32

 =

ui,i1 u1,ii

ui,i2 u2,ii

ui,i3 u3,ii

 (2.31)

The solution of 2.31 is given by

[
λ+ µ

µ

]
= −ρω2(AA∗)−1A∗

u1

u2

u3

 (2.32)

Assuming that the longitudinal pressure varies slowly, its derivative is negli-

gible, and therefore in equation 2.32 the term λ can be omitted. Furthermore,

considering an incompressible material, from equation 2.26 we have

µ = −ρω2 ui
∇2ui

(2.33)

It should be noted that LFE and AIDE techniques correctly manage wave

reflections and other complex interactions as they are based on the basic
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motion equations, unlike the PG technique. The images of the mechanical

properties calculated using MRE, result to be stiffness maps called elas-

tograms, where the stiffness of the tissues is expressed in kiloPascal (kPa)

and displayed in color scale. Figure 2.14 shows both the traditional abdomen

Figure 2.14: MRI and MRE images of the abdomen. From left to right: MR

image, Wave image and Elastography image.

MRI image, the wave image obtained by MRE and the related color elastog-

raphy map. From this map it can be observed that the stiffer regions assume

higher values (kPa) than the soft regions that appear darker.

2.2.3 Applications

Liver

Cirrhosis of the liver is the end result of many types of liver diseases and

is characterized by diffuse nodules and the formation of fibrous tissue that

leads to a liver malfunction both from a metabolic and synthetic point of

view. This organ, in fact, is the main gland of the body, located in the upper

abdomen, on the right, under the diaphragm and performs many functions,

including: production and storage of energy, creation of essential plasma

proteins, filter and neutralization of toxic and pharmacological substances,

supply of elements for blood clotting, as well as secretion of bile in the

duodenum. Figure 2.15 shows the difference between scar tissue caused by

cirrhosis and healthy liver tissue. In the past, as the only reference tool for

the characterization of liver fibrosis, biopsy was used, an operation still in

use during which a piece of liver is removed and examined. However, liver

biopsies are invasive, usually inaccurate and make monitoring of the liver
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over time difficult. Normally, healthy liver tissue is very elastic compared

to diseased tissue, making elasticity a key property in the diagnosis of liver

fibrosis. Magnetic resonance elastography imaging has been developed as an

Figure 2.15: Tissue characteristics of normal and cirrothic liver.

alternative, reliable and non-invasive method for the detection and staging

of hepatic fibrosis since it has been suggested that changes in the mechanical

properties of the liver tissue, such as elasticity and stiffness, may correlate

with this pathology. This medical exam is performed at a 60 Hz frequency

using active pneumatic pressure drivers, acquiring wave data with four phase

offsets and using a modified direct inversion rigidity estimation algorithm

with multiscale functionality. The passive driver, in this case, is applied

on the abdomen and held still by a patch elastic. The graph in Figure 2.16,

based on [19], reports liver stiffness in some volunteers with healthy liver and

in patients with liver in different stages of fibrosis. The graph is obtained

by reporting on the abscissae the case of normal liver and the various stages

of fibrosis, from F0 to F4, while on the ordinates the corresponding values

of mean stiffness. As can be seen, liver rigidity is directly related to the

various stages of the disease and increases as the disease progresses. Figure

2.17 shows the wave images and elastogram of four patients with hepatic

fibrosis ranging from F1 to F4. It can be seen that both tissue stiffness and

wavelength increases as the various stages of fibrosis progress. It has also

been discovered that MRE can differentiate between malignant and benign

liver tumors since the former have a greater average shear stiffness than the
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Figure 2.16: Liver stiffness values in both healthy and fibrosis patients.

latter and healthy tissue.

Brain

As already stated at the beginning of this chapter, palpation is the tech-

nique most widely used by a physician to arrive at a diagnosis. Doctors, in

fact, using the sensitivity of the hands, and their detailed knowledge of the

body, can assess the painful part of the body before the disease is identified.

However, there is one organ that cannot be accessed except in the operating

room: the brain, since this organ is protected both by the skull and the cere-

brospinal fluid. Initial MRE studies of the brain were done on some slices of

tissue and reported mechanical property values for global brain tissue, later,

studies on the mechanical properties of both white and gray matter were

performed. More recently, MRE has developed into a technique that can

provide measurements of specific neuroanatomical regions such as corpus

collosum, hippocampus, and corticospinal tract. In addition, healthy ag-

ing, gender differences, and a wide range of focal and diffuse brain diseases

have been investigated. Quantitative measurements of the elastic modulus

of brain tissue in addition to characterizing the related lesions are also used

for biomechanical studies of brain trauma and in the development of neu-

rosurgical simulation techniques. The frequency typically used during the

elastographic examination of the brain varies from 10 to 100 Hertz. Waves
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Figure 2.17: Liver stiffness values in four patients at various stage of fibrosis.

lower than 10 Hz allow the analysis of deeper brain tissue as they attenuate

less quickly, however, are not used because they provide an unacceptable

signal due to the too large wavelength. On the other hand, high frequency

waves with a shorter wavelength can theoretically provide a higher spatial

resolution but those above 100 Hz are generally not used due to discretization

errors. In general, most of the MRE studies of the brain have been carried

out using a frequency of 50-60 Hz which allowed an appropriate compromise

between the penetration depth and the power and noise levels resolution.

The pneumatic system, shown in Figure 2.18 is composed of an active driver

that produces acoustic waves and is located in a different room from the one

in which the MRI is performed, while the passive driver consists of an air

pillow on which the back of the patient’s head rests [3]. Figure 2.19 shows

images of the brain of a patient with meningioma [4]. Specifically, the left

image is a T1 MRI showing the position of the tumor, while the center and

the right image represent the wave image and the related elastographic map

respectively. The latter shows that the tumor is substantially stiffer than

healthy tissue.

Breast

The breast is a glandular organ, present in both sexes but highly developed

in females. Breast cancer is a disease due to the uncontrolled multiplication

of some cells of the mammary gland, which become malignant. Among the

symptoms that could indicate its presence are palpable nodules, suspected

radiological lesions (not palpable), micro calcifications of dubious clinical
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Figure 2.18: Schematic diagram of the pneumatic system used for the MRE

exam of the brain [3].

Figure 2.19: MRI and MRE images of brain affected by meningioma [4]

significance and blood secretions of the nipple. In Italy it is the most fre-

quent tumor in women and affects one in nine women with an increased in-

cidence, compared to the past, especially in the 35-55 years old population.

Early diagnosis is important to treat the disease in its early stages, when

the chances of recovery are higher. Although traditional imaging methods,

such as mammography and MRI, contribute to the early detection of breast

cancer, it has been found that they have significant limitations in detecting

early changes in breast cancer and in distinguishing benign conditions from

important pre-malign and malignant diseases. Compared to benign lesions,

malignant tumors infiltrate the surrounding tissue leading to a pronounced

reactive proliferation of connective tissue, which grasps greater tissue stiff-
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ness, resulting in a reduction in tissue elasticity and homogeneity compared

to benign lesions. Based on this, elastography magnetic resonance imaging

has long been recognized as a method that offers considerable potential for

discriminating malignant from benign tissues. To generate the acoustic shear

waves, an electromechanical driver is used which is connected to two plates

between which the breast is positioned. As can be seen from Figure 2.20,

during the examination the patients are placed in an inclined position, with

the breast positioned between two contact plates, which creates a minimum

compression useful for stabilization. As an example of the effectiveness of

Figure 2.20: Device used for breast elastography, from [5].

this method, in distinguishing tumor tissue from healthy tissue, two cases of

application are reported below, in vitro and in vivo [5]. In the first case an

invasive carcinoma is diagnosed through the use of MRE in vitro, applied to

a mastectomy performed on a 55-year-old woman. From Figure 2.21 (right)

Figure 2.21: Surgical breast specimen. T1 MRI image is shown on the left

and Elastogram map on the right, from [5].

it can be observed that the elastographic map shows highly stiff focal areas,

corresponding to the tumor’s location, delineating them from the softest tis-
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sues around them. In the second case, images from the MRE examination of

a breast cancer patient are shown. This examination was performed in vivo

and from the elostagraphic map of Figure 2.22 a large area of high strength

stiffness can be observed.

Figure 2.22: In vivo MRE on carcinoma patient. T2 MRI image is shown

on the left and Elastogram map on the right, from [5].

Skeletal Muscle System

The musculoskeletal system is the set of bone, joint and muscle structures

that support and defend the body and allow its movements. It is the most

voluminous apparatus of the human body, of which it represents about 80

percent of the total weight. The human skeleton is a support structure

placed inside the body, formed by a set of bones and cartilaginous tissue

that supports the human body, and can be subdivided into in head , trunk

and limb bones. The muscular system, on the other hand, is the set of tissues

that allows the locomotion of the subject and the flow of internal organic

substances such as blood and food. Usually the muscular system consists

of two types of muscles, the voluntary or skeletal muscles, about 600, which

are striped and allow the movement of the subject, and the involuntary

muscles, also called visceral, due to their location, which are smooth and

are found in the structures of the digestive tract, muscle tunics, and the

muscle structures of blood vessels, especially in the arteries to allow the

transformation of the pulsating flow of the heart into continuous flow. The

MRE examination applied to this apparatus has the purpose of studying the

rigidity of the skeletal muscle, which changes in relation to its contraction;
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a possible increase in rigidity therefore means that the muscle is sick or

damaged. Figure 2.23 shows an example of MRE examination on healthy

patient in which images of the calf solus muscle are acquired; the MRI image

of the muscle is shown and the green arrow indicates the position where

the electromechanical driver used to create the shear waves has been placed

(Figure 2.23 a). The examination was performed at 100 Hz frequencies and

wave images were acquired while the muscle exerted forces of 0, 5 and 10

N/m by means a leg press (Figure 2.23 b-d) [2].

Figure 2.23: Skeletal muscle system wave images, from [2].
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Chapter 3

3D medical imaging

In this chapter the use of three-dimensional anatomical models and 3D print-

ing technology in the biomedical field will be discussed. An overview on the

use of both virtual and physical simulators will be given evaluating their dif-

ferences and advantages. In addition, it will be presented a simulation project

developed during this thesis for preoperative planning in neurosurgery. Fi-

nally, four case studies, that have concerned the realization of a preoperative

planning physical simulators for neurosurgical interventions of meningioma

resection, will be presented.

3.1 3D model reconstruction

To date, the standard procedure for making a diagnosis and/or planning of

surgery is based on the analysis of two-dimensional medical images. The

acquisition devices based on tomography, such as CT and MRI, generate

image sequences that allow a layered view of the investigated organ; each

image represents a body section that is called a “slice”. Nowadays these

sequences are generated through increasingly innovative devices that allow

the acquisition of a large area of the body in a short time obtaining high

quality images. Such sequences can contain a very high number of images,

sometimes even more than three hundred sections of the same organ are

acquired. This means that the doctor will have to analyze a high number

of slices in order to make a diagnosis, screening or surgical planning. These

analyses are made on 2D images by evaluating the spatial positions of organs

and malformations or benign and malignant neoformations in relation to the

35
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surrounding tissues. Mentally reconstructing the analyzed anatomy in 3D

and/or integrating information obtained through various acquisition devices

is very complicated and sometimes not feasible. For this reason, anatomical

models 3D reconstruction helps the physician to have a more complete and

precise view of the anatomical region under examination. In this context,

modern advances in 3D technology have enabled the development of anatom-

ical models that provide a realistic representation of complex anatomies that

can be used as an aid to diagnosis, surgical planning and training. In addi-

tion, the simplicity of these models also allows better communication with

families. More specifically, reverse engineering, CAD (computer aided de-

sign) modeling, and AM technologies [20] enable the fabrication of patient

specific and high-resolution 3D anatomical model, which provide a realis-

tic and immersive training environment [21]. In the surgical simulation, an

in-depth study of the clinical case through the customized simulator allows

surgeons to reduce surgery times and complication rates by helping them to

predict surgical crucial points, identify adapted surgical strategies, and im-

prove surgical outcomes [22, 23]. The improvement of computer capabilities

and the availability of more cost-effective medical image processing software

and of affordable 3D printers could empower clinicians with more flexibility

to design and execute personalized therapeutic plans. This enables satisfy-

ing the specific clinical needs of individual patients with affordable costs and

reduced time, thus facilitating the mass personalization of the treatments,

even during the daily practices of hospital departments. In particular, next

generation 3D printers allow the perfect reproduction of internal anatomies

that look, feel, and operate like real anatomies, without the need for further

painting or assembly [24].

3.1.1 Virtual and physical 3D reconstruction

An accurate and a high-resolution 3D reconstruction of the patient’s spe-

cific anatomy represents a major asset to the physician. The development of

virtual (VS) and physical simulators (PS) has allowed us to overcome some

limitations of the traditional methods using for diagnosis, training or pre-

operative planning. The virtual simulators, in addition to reproducing the

specific anatomy of the patient, are also able to reproduce realistic environ-

ments necessary for an immersive simulation. Nevertheless, the vision of the

anatomy on a flat 2D computer screen makes often interpretations related

to depth difficult and the cost of the simulator is high. Quite the reverse,
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physical simulators can be directly palpated, easily modified according to

physician’s request, incised by real surgical instruments and manipulated.

Therefore, by using both physical and virtual simulators it is possible to

overcome the limits of traditional medicine, allowing the physician to under-

stand the spatial relationships between anatomical structures. In the surgi-

cal planning, the combination of virtual and physical simulation enables the

identification of a set of promising surgical procedures that can be objec-

tively compared to find the best intervention strategy. In addition, it allows

to make easier and safer the necessary clinical practices for the treatment of

patients, with the possibility of the clinicians to try procedures several times.

Not by chance in the state of the art there are some works dealing with the

combination of virtual and physical simulators into a single mixed reality

system, linking benefits coming from having a physical scenario to interact

with and the potentialities offered by virtual reality [25]. More specifically,

the combination of VS and PS provide objective and repeated measurements

to evaluate the performance, allows to easily change the anatomy offering

residents the possibility to try the surgery not strictly on a single anatomy,

allow the actual interaction with the simulated anatomy and permit to per-

form specific tasks with actual feedback. Among other things VS and PS,

allow more precise and minimally invasive approaches reducing potential in-

jury and eliminating the risks of serious complications and thus improving

the experience and manual skills of the operator even in the management of

possible situations of stress and error in crisis conditions.

3.2 Surgical simulators realization

In the next paragraph a method developed during this thesis work for the

application of 3D technology on the realization of realistic surgical simula-

tors for the treatment of brain tumors which integrate virtual and physical

simulations will be proposed. In addition, four case studies concerning the

realization of preoperative simulators used for the planning of neurosurgical

interventions, will be presented.

Brain cancer surgery is a complex procedure that is not risk-free, and possi-

ble complications can arise and even cause irreversible neurological deficits

for the patient [8]. The entire surgical procedure involves several phases:

preoperative planning, preparation of the patient and the operation area,

craniotomy, tumor resection, and skull and scalp closure, as shown in Figure
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3.1. Preoperative planning can heavily influence the entire process, since

Figure 3.1: Brain surgery schematic pipeline. Preoperative planning drives

the entire procedure.

during the simulation, the neurosurgeons can decide on their entire surgical

strategy, including how to position the patient, how to perform the cran-

iotomy, and how to access to the tumor. For these reasons, the surgical

planning is considered to be a critical step in many interventions [26]. Once

the patient is taken to the operating room, after the anesthesia administra-

tion, his head is immobilized, and the operating area is drawn on the scalp

(i.e., patient preparation). During the craniotomy phase, the surgeon creates

an arched curl on the scalp overlying the lesion and the soft tissue is bent to

expose the skull. A drill is then used to perform craniotomy, where a bone

flap is removed and stored. Once the craniotomy is completed,the surgeon

accesses the brain tumor according to the pre-planned trajectory. Often,

the resection phase evolves entirely under an operating microscope [27] and

partial or total brain cancer is removed. At the end of the procedure, during

the closure phase, the removed bone flap is repositioned on the skull, is fixed

with titanium plates and screws, then it is sutured.

Before surgery, the time the surgeons devote a preoperative plan is essential

and often determines the level of confidence they have during the interven-

tion. During this step, the surgeon defines the surgical problem, first to

fully identify all the anatomical and technical aspects of the procedure, and

then to plan the approach. The first aim of the planning is to establish a

correct diagnosis that starts from the visualization of multimodal data ob-

tained from various imaging modalities. Such imaging modalities can be

functional or structural such as magnetic resonance imaging, computed to-
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mography, functional magnetic resonance imaging [28], and so on. Based on

this information, the surgeon, that has a thorough knowledge of the relevant

operative procedures and the related hazards and success rates, makes his

decisions on how to manage the intervention [29,30]. Preoperative planning

is traditionally based on the identification of relevant anatomical reference

points on tomographic data, on the measurement of the distance and angles

between them, on the calculation of anatomical areas and volumes, and on

the sketch of the possible trajectories for obtaining access to the tumor site.

This process helps the surgeon to develop a correct 3D image of the problem

in order to get a proprioceptive feel for the dynamics and complexity of the

intervention to perform. Information on a surgical plan will ensure that the

operating room staff has time to prepare for their patient and to identify and

remedy potential difficulties [27]. The surgeon’s experience is paramount for

achieving adequate outcomes. Notably, to avoid violating functional areas,

and even after careful preoperative planning, the surgeon could prefer to per-

form a conservative surgery rather than an effective resection of the tumor.

Such a limitation can be overcome by providing the surgeon with a tool that

is able to (1) accurately and objectively predict the risk of a complete tumor

resection (2) provide a hands on experience of the surgery.

The simulation process developed in this work consists of the following phases

(see Figure 3.2):

1. 3D reconstruction of the patient’s anatomy

2. Surgery virtual planning

3. Fabrication of the bio-model

4. Surgery simulation (the surgeon uses a hands-on bio-model to simulate

the surgery)

In the following paragraphs, the various phases of the simulation process are

described in detail.

3.2.1 3D Reconstruction

The complete simulator manufacturing process includes some key steps rep-

resented in Figure 3.2 that, starting from 3D reconstruction of the patient

anatomy, leads to the creation of 3D anatomical physical replica. An ef-

fective simulator for preoperative planning and simulation requires an exact
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Figure 3.2: Simulation process pipeline.

patient specific geometry 3D reconstruction. The first step consists of the ac-

quisition of patient medical images (i.e., CT/MRI) that provide anatomical

information. More specifically, MRI better represents many soft tissues, thus

enabling an accurate segmentation and 3D reconstruction of tissues such as

the brain and blood vessels. Instead, the reconstruction of bones is performed

from the segmentation of a CT scan, which provides a clear variation between

calcium-based tissues and other types of tissues in gray values. Since infor-

mation gained from different images acquired in the clinical track of events

is usually of a complementary nature, a proper integration is often needed.

The first step of the integration process is to find the spatial transformation

that best aligns different datasets, a procedure referred to as registration [31].

Such registration can be performed both in the 2D domain and in the 3D

domain (i.e., after the reconstruction). The former requires the manual or

automatic identification of several significant anatomical landmarks on both

the considered modalities (usually CT scan and MRI scan). These are elabo-

rated upon by specific image processing algorithms (i.e., mutual-information

based [32] or Deep Neural Network based [33] algorithms), to determine the

spatial roto-translation transformation needed to move the reference dataset

into the coordinate system of the target dataset [34]. Registration in the 3D

domain consists of the reconstruction of 3D models of anatomical structures

from medical imaging and of the subsequent identification of significant 3D

landmarks (in both the reference 3D dataset and in the target 3D dataset)

As a result, by means of specific 3D processing algorithms (e.g., Iterative

Closest Point [35] or Global registration algorithm [36]), the same spatial

roto-translation transformation as in the image domain approach can be
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used [37]. The development of 3D models, for neurosurgical purposes, in-

volves the image segmentation [38] [39], of both soft tissues (e.g., brain,

tumor, etc.) and hard tissues (e.g., skull bones). Segmentation is the parti-

tioning of an image into significant regions to distinguish objects or regions

from everything else (“background”) and therefore the segmented image re-

sults to be binary. The easiest way to identify a region of an image is to

draw an area that defines the Region Of Interest (ROI) and to evaluate the

gray values only within it; often, as a result of the segmentation procedure,

the ROI corresponds to the anatomical region of interest. The most basic

attribute to use to define regions is the gray level or brightness of the image,

but other properties such as structure can also be used. Thresholding by in-

tensity / brightness is a simple technique for images that contain solid objects

on a different background of brightness but uniform. Each pixel is compared

with the threshold: if its value is higher than the threshold, the pixel is

considered “in foreground” and is set to white if it is lower or equal to the

threshold is considered “background” and set to black. A good result of this

process depends critically on the choice of an appropriate threshold. In the

ideal case, the gray level histogram includes two distinct distributions, rep-

resenting objects “in foreground” and “background”, without overlapping.

Figure 3.3 shows an example of segmentation. In this case, skull is the region

of interest, which, as shown in the figure, is isolated from the surrounding

anatomical elements assuming a green color. Registration and segmentation

Figure 3.3: Example of skull segmentation using thresholding technique.

can be carried out with both commercial software (e.g., Mimics ®, Amira®,
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etc.), and with open source software (e.g., 3D Slicer, OsiriX, ITK-SNAP,

TurtleSeg, etc.). Within these software packages, once the segmentation of

the anatomical element has been performed, the volume of the anatomical

element is automatically obtained through embedded procedures, resulting

in a three-dimensional configuration that can be stored in a 3D mesh file (i.e.,

an STL file format). An example of a digital 3D model is shown in figure

3.4. In order to focus the simulator on an optimized head replica, a region

of interest can be first defined to specify the surgical interest 3D boundaries.

Such an operation can be performed, using the surgeon’s instructions in a

commercial 3D modeling software environment (i.e., Fusion 360®, Geomagic

Design XTM, Geomagic Freeform, Materialise 3-Matic, etc.,) or open source

(i.e., Meshmixer, Blender). Such a process is needed to focus the simulation

on a specific anatomical region, but could also be repeated to define the

surgical lines needed to simulate the cranial resection process, thus leading

the design to a partially operated simulator.

Figure 3.4: Example of a skull digital 3D model.

3.2.2 Virtual Planning

Once the 3D model is reconstructed, it is possible to perform a virtual plan-

ning of the surgical intervention. With reference to neurosurgery, the main

aim is to virtually determine the best surgical approach needed to access to

the region of interest (i.e., the area where the tumor is located). In other

words, the surgeon has to decide the position and orientation of a series

of cutting planes to remove the bone and to easily reach the intervention

area. The virtual simulation is carried out thanks to minimal coopera-

tion between the surgeon and the CAD engineer. In detail, by using an
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information-sharing platform, the surgeon can autonomously manipulate 3D

models and provide engineers with all the design constraints needed for the

resection planes. In particular, the 3D modeler Forger®, a mobile-based

polygonal modeler running with an iOS operative system, demonstrated its

effectiveness in dealing with virtual surgical planning. With an intuitive

touch screen interface, the surgeon can quickly pan, zoom, and rotate the

3D models and can easily add resection planes to the virtual model. Once

the planes are correctly positioned on the model, it is possible to simulate the

surgery by cutting the bone and soft tissues defined by the planes themselves

(i.e., surrounding the tumor area). More different surgical strategies can be

simulated using such a tool, to define the best approach (i.e., the minimally

invasive one) to be further tested with the physical simulator. Moreover,

the availability of the virtual model before and after the surgical simulation,

allows us to manufacture the replica with and/or without the removed bone

flap.

3.2.3 Fabrication

A rigid simulator part is certainly appropriate to reproduce the bone tis-

sue but also, when needed, to reproduce a rigid replica of the soft tissues.

The latter is preferred when neurosurgeon does not need to interact with

the simulator through real surgical instruments, but instead needs to sim-

ply train the proprioception and observe the spatial relationships between

the anatomical elements. When the simulation requires distinguishing soft

tissues from rigid tissues, the soft parts are fabricated by casting silicon ma-

terials in rigid shell molds, thus following the same fabrication process of

other rigid parts. Once the virtual simulation has been carried out and the

region of interest has been defined, the physical replica can be manufactured.

This phase is divided into two different steps: rigid part fabrication and soft

tissues fabrication.

Rigid Parts Fabrication

The manufacturing process of rigid parts can effectively be performed with

low cost 3D printer. Materials like Polylactic Acid (PLA) or Acrylonitrile

Butadiene Styrene (ABS) [40] are commonly used as cost-effective materi-

als to reproduce hard tissues like bones, thanks to their optimal properties

such as model infill. Following negative feedback from some surgeons, wood-
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loaded PLA (a material available on the market) was also tested to manu-

facture skull replicas. When PLA and ABS interact with the surgical drill,

swarfs can be created adhering to the surface of the instrument, kneading it,

and not allowing a correct and effective simulation of the cut. Wood-loaded

PLA may represent a good choice to overcome this limit. In this case, the

chip appears to be easily removable from the area of the tool, allowing us to

easily perform the entire cutting procedure of the simulator. The separated

structures need to be equipped by fixture joints to be assembled with accu-

racy after printing. CAD tools are employed to insert the anchoring systems

between the various anatomical elements present in the ROI through the

insertion of pins or other engineering/mechanical solutions. The 3D model

of the parts prior to being printed, must be first processed and optimized by

setting some printing parameters [41], which can be the same for each sim-

ulator sharing similar design requirements. The last step of the bio-model

fabrication consists of the post-processing of the 3D printing output. When

the prototype presents a poor surface finish, high porosity, the presence of

appendices, supporting materials, and unfinished surfaces, an improvement

can be obtained through a sandblasting process. The next step can involve

the application of a resin coating to finish the surface of the final product.

The resin is brushed on the object to fill all the model’s cavities or indenta-

tions and to improve surface quality, thereby smoothing the roughness and

reducing the stair stepping effect typical of a 3D printed object [42,43].

Soft Tissues Fabrication

The low-cost soft tissues fabrication process combines 3D printing and some

tissue-mimicking material casting. Soft tissue structures can be obtained

by casting silicone rubbers in 3D printed molds. Indeed, the ultra-soft na-

ture of some human tissues, such as the brain, can be replicated thanks

to silicone rubber with different hardness ranging from the ultra-soft scale

(shore 00 scale) to the soft scale (shore A scale). Other materials such as

alginate, agarose, Polyvinyl Alcohol (PVA), Phytagel (PHY), Polyethylene

Glycol (PEG), and polyurethanes are widely used in the literature [44], as

their mechanical properties can mimic the elastic and haptic properties of

human tissues. The fabrication process involves developing a mold design

and engineering using CAD software. The mold is a negative replica of the

anatomy, and it is fabricated with a 3D printing technique. The surfaces

of release agents are then covered using an aerosol spray to prevent silicone
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rubbers from sticking to the mold, impeding the removal of the physical

replica from the mold. When the silicone is being mixed with the catalyst,

colorants and silicone additives can be added to the mixture, in order to

modify the chromatic and mechanical properties of the rubbers, such as the

realism and the tactile performance of the final product. To improve the

outcomes of the simulator fabrication process, a vacuum degassing system

can be used to degas the mixture before pouring [45]. The mixture is then

poured inside the mold and after the polymerization time,the silicone replica

is removed from the mold. Ultra-soft silicone rubbers have sticky and oily

characteristics, making them not easily manageable. For this reason, a post

processing of the physical replica is needed, and it consists of sprinkling tal-

cum powder on the replica, eliminating the sticky effect. The last step is to

assemble the individual parts and may require the use of glues to keep the

individual elements fixed.

3.3 Case Studies

During this thesis work, four case studies concerning the fabrication of pre-

operative simulators for neurosurgical interventions involving the resection

of meningioma, were carried out. Written informed consent was obtained

from the four patients, including for publication of both subjects’ data and

all accompanying images. All methods were carried out in accordance with

the guidelines laid down in the Declaration of Helsinki.

3.3.1 Case 1

The first clinical case involved a sixteen-year-old girl suffering from a benign

tumor at the base of the skull. The tumor was slightly compressing the

optic nerve, thus making to accessing the tumor intracerebrally a hazardous

process. The simulation objective was the identification of an alternative op-

timal surgical access option to preserve the optic nerve integrity. CT images

(scanned with Philips Brilliance 64 machine; image size 512x512 px; xy spa-

tial resolution 0.48 mm; slice spacing 0.40 mm) and T1 MRI images (taken

with Philips Medical Systems; image size 512x512 px; xy spatial resolution

0.53 mm; slice spacing 1 mm) were acquired and saved in a DICOM (Dig-

ital Imaging and COmunications in Medicine) format. After obtaining the

3D reconstruction with Materialise Mimics, using first phase of the pipeline
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shown in Figure 3.2, the STL file was imported into Geomagic Design X.

(3D Systems, Inc., Rock Hill, SC, USA) to identify the region of interest

together with the neurosurgeon’s team. At a virtual level, several surgical

lines were tested to arrive at the best strategy of intervention (Figure 3.5),

which allowed us to preserve the primary brain areas and the optic nerve.

Two fully rigid 3D models were manufactured with a 3D printer, one char-

acterized by the entire anatomical portion involved in the intervention, the

other instead faithful to the cuts identified at the virtual level. Both models

were printed with MakerBot Replicator 2 (MakerBot, Brooklyn, NY, USA)

with a PLA filament and are shown in Figure 3.5. In similar clinical cases,

the pterional craniotomy is the traditional approach of accessing the tumor

through the brain by opening the dura mater. Thanks to a careful preop-

erative planning, the neurosurgeon has been able to identify a transorbital

route for the resection of the tumor that has provided for the removal of the

bone of the orbit and the access to the tumor making the surgery minimally

invasive and at low risk of brain damage.

Figure 3.5: On the left, identification of cutting plans for access to the

tumor; on the right biomodels fabricated in PLA. The black model was

manufactured directly with the cut identified by the surgeon at the virtual

level. The grey model reproduces the entire anatomical portion involved in

the surgery.
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3.3.2 Case 2

This case study focused on the fabrication of a simulator for the interven-

tion of a 67 years old patient with a meningioma at the tentorium level.

The position of the tumor required an accurate study of the geometry and

spatial location of the meningioma placed near a venous sinus. The anatom-

ical parts involved in the construction of the simulator were the skull, the

tumor, the brain, the tentorium and the falx. CT images (scanned with

Philips Brilliance 64 machine; image size 512x512 px; xy spatial resolution

0.48 mm; slice spacing 0.40 mm) and T1 MRI images (taken with Philips

Healthcare/Ingenia; image size 256x256 px; xy spatial resolution 0.93 mm;

slice spacing 1 mm) were acquired and saved in a DICOM format. Starting

from the reconstructed digital 3D model obtained from CT segmentation

with Materialise Mimics, the physician indicated the cut on the skull neces-

sary to access the tumor area. Figure 3.6 shows the simulator that consisted

of a replica of skull, brain and tumor; skull and tumor were manufactured

directly in PLA, while brain was made in a super soft silicone rubber with a

shore hardness of 00-50 (Ecoflex 00-50, Smooth-On, PA, USA) to replicate

the mechanical characteristic of the actual human tissue. The manufacturing

process of the soft tissue took longer than the direct 3D printing procedure

of the skull and tumor. In fact, the negative of the brain was printed in

Fused Deposition Modeling (FDM), a resin coating (XTC-3D, Smooth-On,

PA, USA) was brushed on the surface of the mold to eliminate the stair

stepping effect, after the cure time (4 h) the silicone rubber was poured into

the mould to obtain the positive anatomical replica. Thanks to the use of

simulators, it was possible to perform the operation in an optimised way,

removing all the tumour tissue without affecting other anatomical areas.

3.3.3 Case 3

The third simulator involved planning the removal of a meningioma during

the clinoid process in a 55 years old patient. The simulator aim was to incre-

ment the neurosurgeon awareness of the spatial relationships between the pa-

tient brain, the cancer and the big intracranial vessels. CT images (scanned

with Siemens /Somaton Definition As+ machine; image size 512x512 px; xy

spatial resolution 0.47 mm; slice spacing 1 mm) and T1 and T2 MRI im-

ages (taken with Siemens/Aera image size 256x256 px; xy spatial resolution

0.98 mm; slice spacing 1 mm) were saved in a DICOM format. In figure 3.7
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Figure 3.6: Biomodel which consists in skull, brain and growth. Use of the

neurosurgical microscope to observe the spatial relationships of the anatom-

ical elements involved in the surgical procedure with the biomodel.

different views of the simulator are showed; it consisted in skull, brain and

tumor. In particular, the skull and tumor were manufactured in FDM while

for the brain the silicone Eco-flex 00-50 was used. At the digital level, the

access cut to the tumor was identified so that the surgical route did not cross

primary areas of the brain, thus reducing the risk of neuromotor and sen-

sorineural deficits. The CT segmentation has been executed fully manually

and supervised by the surgeon and radiologist, because of the low contrast

of the tissue boundaries to be reconstructed.

3.3.4 Case 4

This case study concerns the manufacture of a simulator used in the case of a

76 years old patient with a meningioma located in the temporal lobe closely

related to the meninges. The surgical operation consisted in separating the

meninges from the tumor mass without affecting any tissue involved in the

operation. CT images (scanned with Philips Brilliance 64 machine; image
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Figure 3.7: Different views of the biomodel that consist in skull, brain and

tumor.

size 512x512 px; xy spatial resolution 0.48 mm; slice spacing 0.40 mm) and

T1 MRI images (taken with Philips Healthcare/Ingenia; image size 512x512

px; xy spatial resolution 0.89 mm; slice spacing 1 mm) were acquired and

saved in a DICOM format. In this case, the simulator consisted of four parts:

skull printed in PLA loaded with wood fibre, brain and meningioma made

with different silicones as tissues with different hardness (the first with Eco-

flex 00-50 the second with Dragonskin 10), meninges reproduced with thin

rubber sheet. In this case the cut was made physically on the simulator by

the surgeon, using real surgical instruments. The simulator allows resident

physicians to practice craniotomy centred on the lesion and therefore has

primarily an educational purpose. The figure 3.8 shows the procedure that

the surgeon performed on the physical model to simulate the entire surgery.

In the first phase the possible access cuts were traced, the best cut was

obtained by opening using the craniotomy drill, and after separating the

layer of latex from the brain and tumor, the latter was removed.
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Figure 3.8: Simulation of the surgical procedure. 1. Skull flap tracking with

surgical skin marker pens; 2. Craniotomy; 3. Separation of meninges from

meningioma tumor; 4. Meningioma removal.

3.4 Concluding remarks

The introduction of 3D technology in medicine has completely changed clin-

ical practice, allowing the exact reproduction of complex and geometrically

difficult anatomical shapes with traditional production techniques. The de-

velopment of simulators, virtual and physical, that faithfully replicate the

specific anatomy of the patient, overcomes some limits of traditional methods

used for diagnosis, training or preoperative planning. This leads to a better

understanding of anatomical structures and the relationships between them,

by the physician. In surgical planning, the combination of virtual and phys-

ical simulation allows to identify a set of promising surgical procedures that

can be objectively compared to find the best intervention strategy. A deep

knowledge of the patient’s anatomical geometry is necessary to plan the best

surgical strategy and to reduce the risk of surgical errors. In this context,

it is clear how important it is to use surgical simulators that allow the doc-

tor to simulate the operation before entering the operating room, improving

self-confidence and reducing stress during the actual surgery. In particular,

during this phase, the surgeon can test different surgical strategies in order

to identify the best one in terms of results and time. During this thesis work,



3.4 Concluding remarks 51

a general pipeline was developed to produce a low-cost, patient-specific 3D

anatomical model that allows surgeons to conduct a successful and accurate

preoperative planning process. The pipeline is the result of a literature re-

view of the use of 3D printing and tissue mimicking materials for surgical

training and planning and aims to introduce neurosurgeons and clinical en-

gineers to an internal, cost-effective preoperative simulation. The pipeline

considers different manufacturing methods that can be used according to the

challenge and goal of the preoperative planning, but that are also strictly de-

pendent on the specific pathological case. Experience with the neurosurgery

team of the Meyer Children’s Hospital in Florence was reported, focusing

on four 3D printed models that were used to plan surgeries according to the

proposed pipeline. The simulators produced allowed the surgeon to identify,

in some cases, alternative surgical pathways to traditional ones, thus avoid-

ing the risk of neurological deficits caused by a possible injury of healthy

tissue. In addition, better surgical results have been obtained thanks to

an in-depth knowledge of diseased tissue volumes and spatial relationships

with other anatomical regions. In conclusion, the methodology presented

aims to provide a clear and systematic procedure to make the creation of

physical simulators in clinical practice more accessible to provide benefits

for both residents and senior surgeons involved in preoperative planning and

simulation.
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Chapter 4

Volumetric interpolation of

biomedical images

In this chapter, volumetric image interpolation methods designed to increase

the axial resolution of tomographic sequences and to obtain a refined 3D

reconstruction are proposed and compared. The techniques considered are

based on motion-compensated frame-interpolation concepts, which have been

developed for video applications, mainly for frame-rate conversion. The per-

formance of the proposed methods is quantitatively evaluated using sequences

with a simulated low axial resolution obtained by decimation of standard high-

resolution computed tomography sequences. Real low axial resolution data are

also used for a qualitative evaluation of the proposed methods.

4.1 Introduction

As explained in the previous chapter, the 3D reconstruction of anatomical

parts from medical images of the patient is a useful support to the physi-

cian in various clinical areas such as diagnosis, pre-operative planning, post-

operative evaluation and teaching and training for medical students and

junior doctors. An accurate “faithful to the original” shape of the 3D model

enables to simulate a scenario similar to the real one, allowing to evalu-

ate every possible aspect. For example, it allows to try different surgical

strategies evaluating the difficulties that can be encountered and allows to

investigate the possible solutions in advance, it also allows to verify the cor-

rect execution of the operation and to identify possible corrections. The

53
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3D reconstructions are obtained by processing the image sequences acquired

through different types of sensors. An accurate 3D reconstruction is possi-

ble if the processing procedure is performed on high axial resolution image

sequences. On the other hand, very coarse reconstruction characterized by

artifacts is obtained if the sequence consists of a few tomographic section.

In this case we refer to low axial resolution sequence. This is the case, for

example, of CT performed on neonatal patients suffering from craniosynosto-

sis [46]. This pathology is a rare condition that affects one in 2500 live births

and is characterized by an early suture of one or more cranial bone sutures,

which leads to severe chronic endocranial hypertension and for which surgi-

cal correction is necessary.The CT scan has a high diagnostic accuracy and

is the gold standard [47] to assess the severity of craniosynostosis although

this acquisition may require sedation and presents risks due to the applica-

tion of these particular rays, which have a specific absorption depending on

the tissue or organ crossed, also subjects under 10 years of age are to be

considered weak since they are particularly susceptible to malignant tumors

caused by advanced radiation. The radiation dose is the amount of energy

absorbed by the tissue per gram and its unit of measurement is Gray [Gy].

The unit of measurement of the Dose relative to the human body is called

Dose Equivalent, and calculated as the Dose for a constant that takes into

account the harmfulness of the radiation used. The enormous advantages of

the CT make it extremely necessary in certain cases and make it possible

to make a risk estimate that depends both on the application of the rays

and the age of the subject. In the case of neonatal patient affected by cran-

iosynostosis, due to the extreme importance of performing a CT scan, the

application of X-rays is minimized and, compared to conventional scan, to-

mographic images can be obtained with a low dose or less ionizing radiation.

As a result, the thickness of the CT sections is increased to compensate for

the resulting loss of signal-to-noise ratio [48,49] and, therefore, the axial res-

olution is reduced. Low resolution image sequences along the axial direction

contain slices spaced by a significant step along the z axis and the voxel size

is anisotropic. The application of this data for a 3D reconstruction produces

models affected by the so-called Lego artifact [50]. In figure 4.1 are shown 3D

models of the skull. In the left a 3D model reconstructed starting from an

high resolution image sequence, in the right a 3D model affected by artifact

due to the low axial resolution of the image sequence. A 3D model affected

by artifacts cannot be used for pre-operative planning, training or diagnosis
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Figure 4.1: 3D model of skull reconstructed from a high axial resolution

sequence (left) and a low axial resolution sequence (right).

as it presents an inaccurate anatomy that can lead the physician to incorrect

evaluations. To solve this problem, interpolation between adjacent slices of

the same sequence can be considered in order to increase the resolution in

the axial direction and obtain volume data with isotropic dimensions. In

literature, several axial interpolation methods, aiming at estimating one or

more intermediate slices from two adjacent ones, have been proposed [51–53].

Image interpolation covers a wide range of techniques that can be classified

as pixel-based [51–55] or object-based [56, 57]. In the first case, the pixels

belonging to the input images are directly employed to estimate the values

of the interpolated pixels, while in the second case, the interpolated image

is constructed following a detection of the objects or features present in the

input images. In this thesis work, the methods proposed focus on pixel-based

techniques, which in the literature are often also referred to as registration-

based methods and are proposed both in the case of 3D images and for the

interpolation of four dimensional sequences, that is when the shape of the

human anatomy changes during the acquisition time [58]. The problem of

slice interpolation is similar to Motion Compensated Frame Interpolation

(MCFI), which is a technique developed for several video processing applica-

tions, mainly in video rate encoding enables the generation of intermediate

frames between those already existing. The purpose of this procedure is to

make the animation more fluid by increasing the frame rate and reducing

some artifacts such as motion blur and jerkiness [50,56,57,59–61].

Figure 4.2 shows a scheme of the MCFI process that includes two main

steps: motion estimationME and motion-compensated interpolation. The



56 Volumetric interpolation of biomedical images

Figure 4.2: Scheme of motion compensated frame interpolation process.

goal of ME methods is estimating the motion vector field (MVF) between

two consecutive frames. The most commonly used techniques of ME are

Optical Flow (OF) [62], block-matching [63, 64] and phase correlation (in

frequency-domain) [65, 66]. These methods calculate the MVF directly, i.e.,

by processing and comparing image pixels of subsequent frames. In order to

reduce ME artifacts, post-processing of the estimated MVF may be applied.

Furthermore, to avoid occlusions and to make the method more robust, the

MVF can be calculated twice, in the forward and backward directions. The

motion compensated interpolation operation allows the intermediate frame

to be constructed by operating on the MVF obtained in the ME step [67].

The intermediate frame is generated by combining the current and past or

future frames according to the estimated forward and backward MVFs. In

this way, the two estimates complement each other in order to obtain a new

interpolated frame of high quality.

In this thesis work, a method based on the OF algorithm is proposed. In the

case of biomedical image sequences, even if the anatomical parts captured are

not subject to a real movement in the adjacent slices, a spatial transformation

(a sort of morphing) can be foreseen, able to relate the different slices to

each other. For this reason, in the proposed method the MVF calculation is

estimated using the optical flow technique, which is more suitable to describe

smaller movements. In the next chapter all the steps of the proposed method

will be presented in detail and different approaches are discussed depending

on how the OF output is used, both pixel-wise and patch-based.
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4.2 Displacement compensated interpolations

In this work, MCFI-inspired techniques are developed and applied to tomo-

graphic sequences with the aim of increasing the resolution of the sequences

by means of an axial interpolation process. Figure 4.3 shows a schematic

view of the proposed methods, whose steps will be detailed in the following

subsections.

Figure 4.3: Block diagram of the proposed processing chain.

4.2.1 Displacement estimation

DVF estimation

A displacement estimation can be performed to calculate the displacement

vector field (DVF) between two adjacent sections. Since the problem is anal-

ogous to MCFI, DVF is similar to MVF and the displacement estimation is

computed employing algorithms taken from ME approaches. More specifi-

cally, in this study, an OF approach has been employed. Optical flow is a

complete motion estimation method, because it calculates an independent

motion for each pixel of the image by returning a dense field of motion vec-

tors. The estimation is not performed directly on the real 3D motion of the
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object under examination, but on the projection of the three-dimensional

motion in a plane. Therefore the OF is an approximation of the 2D motion

field (Figure 4.4). Given two consecutive images, if the motion vector field

Figure 4.4: 3D motion projection on the image plane: Vodt vector indicates

the real 3D motion vector of point P0 and V1dt indicates the motion vector

projection on the 2D image plane.

is applied to each pixel of an image (reference image), it returns a prediction

of the second image (target image).

The purpose of optical flow is to assign to each pixel belonging to the current

frame a motion vector MV, which points to the position of the same pixel in

a consecutive reference frame. It is known that to estimate the optical flow it

is to consider that an object in motion, real or apparent, in an infinitesimal

time ∆t will move the amount ∆x and ∆y along the reference axes. If it

is also considered the hypothesis that in this time interval the object’s gray

levels remain unaltered is obtained (uniformity)

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (4.1)

Applying Taylor’s serial development and the first derivative of the previous

equation, which will result null for uniformity hypothesis, we obtain the

optical flow constraint equation

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
dI

dx
∆x+

dI

dy
∆y +

dI

dt
∆t+O (4.2)

Assuming that the constraints of superior order (O) are negligible and
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considering the hypothesis of uniformity it is obtained

dI

dx
∆x+

dI

dy
∆y +

dI

dt
∆t = 0 (4.3)

Calculating the derivative of I with respect to time, we obtain the equation

of the optical flow constraint

dI

dx
u+

dI

dy
v = −dI

dt
(4.4)

where u = dx
dt and v = dy

dt .

The optical flow equation provides only the constraint along the gradient

direction for the two components of the vector: for each pixel there is an

equation and two unknowns.To solve this problem, several methods have

been proposed in literature from which it is possible to obtain both a dense

and sparse motion vector fields [62, 68–70]. In case of CT images, in order

to obtain a correctly interpolated image, it is necessary to use an algorithm

that allows a dense motion vector fields. This is possible, using, for example,

the Horn & Schunck algorithm [62].This method introduces the constraint

of motion uniformity in the neighboring pixels, at time t, which is defined

by the following energy functional

Esmooth(f) =

∫∫
I

[(
du

dx
)2 + (

du

dy
)2 + (

dv

dx
)2 + (

dv

dy
)2]dx dy (4.5)

In addition to this constraint, it is also necessary to respect the optical flow

constraint, which is defined in terms of energy

Edata(f) =

∫∫
I

(
dI

dx
u+

dI

dy
v +

dI

dt
v)2dx dy (4.6)

Edata is commonly called the data term and Esmooth(f) smoothness term.

Assembling the data term from 4.6 and smoothness term from 4.5 yields the

total energy functional

Etotal(f) = Edata(f) + λEsmooth(f) (4.7)

The parameter λ controls the smoothness of the estimated MVF and has

a significant effect especially on areas with a low brightness gradient. The

optimal value may depend on the type of processed images and is based on

the energy of the error between the actual target image and the predicted
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one. In the case of the CT imagery considered in this work, we found that

λ = max
√
E2
x + E2

y , as suggested in [53], where Ex and Ey are the partial

derivatives of the brightness of the image along x and y axes, actually gave

the best performance.

DVF processing

It is known that MVFs are often affected by anomalies, for which differ-

ent filtering methods have been proposed. The same is also true for DVF

produced when OF algorithms are applied to CT sequences. In [71] , me-

dian filtering algorithms applied to vector fields have been proposed. These

methods, also referred to as vector median filters (VMF), have the ability to

suppress abnormal or outliers values, preserving their edges.The VMF has

the task to regularize the obtained vectors grid, in fact assuming that the

two compared frames can be affected by noise, it is necessary to reduce the

influence of this, eliminating possible errors so as to obtain a more regular

grid of vectors. In Figure 4.5 it is observed how the VMF goes to act in our

case: the vector marked in red represents the displacement that has followed

such pixel, this has opposite direction with respect to its adjacent ones, ap-

plying the filtering we obtain the right grid that results to be more regular.

Figure 4.5: Example of vector median filters applied to motion vectors field.

Mathematically, given a set of N vectors V = {v1,v2, ...,vN} ∈ RN , the

vector-median is defined as the vector vm ∈ V such that

N∑
i=1

‖vm − vi‖ ≤
N∑
i=1

‖vj − vi‖, j = 1, 2, . . . , N (4.8)
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where ‖ · ‖ is the Euclidean norm. When VMF is applied to image filtering,

the set V is composed by the motion vectors associated to pixels belonging

to a (squared) neighborhood of the pixel to be filtered. A possible extension

of the VMF, proposed in [72,73], consists in introducing a term that adjusts

the filter selectivity by establishing a weight factor; this type of filter is called

Weighted Vector Median Filters (WVMF). In this way, the points belonging

to the window that are closer to the pixel concerned have more influence on

the final result, while those that are further away are less decisive. Given the

set of displacement vectors V and a set of weights W = {w1, w2, . . . , wN},
the weighted vector-median (WVM) of these values is the vector vwvm ∈ V
such that

vwvm = arg min
j

N∑
i=1

wi‖vj − vi‖ j = 1, 2, . . . , N (4.9)

In [72], the weights wi are computed based on the energy of the error between

the reference patch displaced by vi and the target patch. More specifically,

we have

wi =
D(vc)

D(vi)
(4.10)

where D is the energy of the displaced error and vc is the displacement

vector of the central pixel.

4.2.2 Pixel-based displacement compensation

Scattered data interpolation

DVF information is used to predict the displacement of objects and features

from the reference slice to the target one. The reference image is denoted as

It(x, y), where t indicates a position along the axial direction, and (x, y) are

the grid locations, which are assumed to be integer values. The prediction

of the target image is denoted as Ît+1. By using the DVF information and

assuming a perfect prediction, we have

Ît+1(x+ vx(x, y), y + vy(x, y)) = It(x, y), (4.11)

where v(x, y) = (vx(x, y), vy(x, y)) is the displacement vector in the (x, y)

position. The objective of slice interpolation is creating an intermediate slice,

denoted as Ît+α. Reasoning in a similar way as before and assuming a linear
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evolution along the axial direction, we have

Ît+α(x+ αvx(x, y), y + αvy(x, y)) = It(x, y). (4.12)

Since α and the components of v(x, y) are noninteger values, the interpo-

lated image representation needs a resampling on an integer grid. Such a

problem is also known as scattered data interpolation (SDI) and consists of

constructing a bivariate function F (x, y), which is as much smooth as possi-

ble and takes on a set of prescribed values F (xk, yk) = fk, k = 1, ..., N , where

(xk, yk) and fk are known. The data are scattered in the sense that there are

no hypotheses on their arrangement, apart from the fact that there are no

repeated points. There are several methods for scattered data interpolation

(SDI), each with its own peculiarities that make it particularly suitable in

certain fields, depending on whether a global, local, computationally fast or

extremely precise function is desired. The first two terms define the region

of interest of the process; in fact global, as the name suggests, takes into

account all the points of the surface while a local function considers small

portions at a time, such as VMF. Finally, precision and speed of calculation

are two inversely proportional characteristics since one tends to exclude the

other, unless a compromise is found.

The principal SDI methods that can be found in the literature are: inverse

distance weighting [74]; triangulated data [75]; radial basis functions [76].

In this study, we used the method based on triangulated data described

in [77] and implemented into the Matlab function scatteredInterpolant.

Interpolation methods belonging to this category operate through two pre-

liminary steps:

• triangulation: it consists in connecting the sampled points in trian-

gles.There are many types of triangulations with the aim of creating

triangles with a shape as close as possible to that of the equilateral

triangle. You have to choose the most appropriate one;

• localization: taking any point P inside the plane, you must find the

triangle that contains it.

The most effective technique for this purpose is the Delaunay triangulation,

named for the Russian mathematician. This triangulation is constructed in

such a way that the circle circumscribing each triangle does not contain any

other point in the scattered data set (Figure 4.6). These constraints, imposed

on the circumferences, bring enormous advantages on the choice of triangles,
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in fact they allow to maximize the least angle of these figures avoiding to

obtain long and narrow figures (the optimal case is obtained for equilateral

triangles). This procedure takes the name Max-in Angle Criterion [78].

Figure 4.6: Example of Delaunay 2D triangulation, starting from a set of

given points in the left.

Once a triangulation is obtained, the simplest interpolation that can be

performed is the linear one by finding the plane through the three vertices.

One of the main drawbacks of the methods based on the linear interpola-

tion performed for each triangle is that, despite ensuring continuity of the

solution within the figure, there is a discontinuity of the derivative along the

edge, where there is contact between different triangles. Therefore we have

that the function obtained is considered C0 and not C1. This characteristic

requires to establish a relationship between the points belonging to the re-

gion considered and the external points, in order to avoid problems with the

contour of the figure.

Forward and backward compensation

In a tomographic representation of anatomical parts, it may happen that

the details of the organs are present only in one (both reference and target)

of the adjacent slices. In this case it is not possible to reproduce interme-

diate versions of such details from an image that does not contain them. A

similar problem occurs in video motion compensation when one object oc-

cludes another due to its relative motion. To partially solve this problem,

it is possible to use forward and backward processing (where the reference

and target images exchange roles). An example of forward and backward

prediction is shown in figure 4.7. Let Î
(f)
t+α(x, y) be the interpolated frame

obtained by using It(x, y) and It+1(x, y) as reference and target images, re-

spectively, and let Î
(b)
t+α(x, y) be the interpolated frame obtained by using

It+1(x, y) and It(x, y) as reference and target images, respectively (notice
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Figure 4.7: Forward and backward prediction.

that, in the backward estimation, α must be replaced by 1 − α in the l.h.s.

of (4.12)). The final interpolated slice is then given by

Ît+α(x, y) =
1

2

[
Î

(f)
t+α(x, y) + Î

(b)
t+α(x, y)

]
. (4.13)

4.2.3 Patch-based displacement compensation

Patch-based interpolation

As explained in the 4.2.1 paragraph, applying a median filter after the motion

estimation allows to eliminate possible anomalies and outliers. In addition to

this processing step, a way to improve the regularity of the interpolated slice

is to consider the image as divided into patches and work on each of them in

a sequential way. This patch based approach, involves the calculation of the

DVF as described in Section 4.2.1. The difference between this method and

the pixel based one is the way the displacement compensation is applied.

Considering a patch of a given size, the DV associated with each patch is the

WVM of the set of DVs related to the pixels within the patch, so that, now,

the whole patch undergoes the same DV. As in the case of scattered data

interpolation, the DV is scaled by the α amount that depends on the position

of the interpolated slice with respect to the adjacent ones. Also in this case,

as in pixel based, the fact that both DC and α are not integer values, leads

to a final spatial shift of the patch not integer. The situation is depicted in

Fig. 4.8, where it is possible to notice that the pixels of the shifted patch

are no longer on the whole grid, so it is necessary to find the values of the

pixels of the missing slice (whose position is indicated with crosses) through
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the interpolation of the surrounding ones. This problem, however, is much

simpler than the scattered data interpolation described above. For example,

the classic bilinear and bicubic interpolation can be used.

Figure 4.8: Interpolation scheme for the patch-based algorithm: shadowed

rectangles represent the reference and the displaced patches; red crosses

represent the interpolation grid positions.

Holes filling

In the patch-based method, patches within the frame of reference are selected

so that they can be strongly overlapped. This has two advantages: first,

overlapping patches produce multiple estimates of pixel values within the

interpolated frame, which produces - averaging all values corresponding to

the same position - a more accurate final estimate; second, the probability

of having a pixel position without any estimate is reduced. As far as the

latter problem is concerned, the presence of empty areas, i.e. in which no

pixel has been associated, in the reconstructed slice is actually probable

and, therefore, a ”hole filling” algorithm must be provided. This algorithm

proceeds in this way: first the holes are identified, then the values on the

edges are interpolated linearly and the output is assigned to the pixels inside

the hole. This procedure is repeated along both rows and columns, and then

an averaging is performed. For example, with reference to 4.9 the algorithm

fills the missing pixel of the first row of the hole region with the quantities

Ît+α(x, y+k) = Ît+α(x, y)+
k

3
·[Ît+α(x, y+3)−Ît+α(x, y)], k = 1, 2 (4.14)
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and the missing pixel of the first column with the quantities

Ît+α(x− 1 + k, y + 1) =Ît+α(x− 1, y + 1) +
k

4
· [Ît+α(x+ 3, y + 1)

− Ît+α(x− 1, y + 1)],

k = 1, 2, 3

(4.15)

The Patch-based interpolation and holes filling procedures can be used both

Figure 4.9: Holes filling algorithm.

in the forward and backward direction and the final missing slice is achieved

by averaging the two estimates.

4.3 Experimental results

The process that leads to 3D model reconstruction from the input data, as

discussed in Chapter 3, starts with a step of segmentation. The segmentation

serves to identify, within each slide in the sequence, the pixels that belong to

the organ/tissue that we would like to reconstruct. Each tissue - within the

entire dataset - is identified by a certain range of gray values; for example,

soft tissue is reproduced with low gray values while bone tissue is correlated

to the highest gray values in CT scans. Segmentation [79, 80] can be per-

formed manually, slice by slice, or automatically by selecting a gray level

range for all slices. The 3D model of interest tissue is obtained by applying

specific 3D voxel-based algorithms to the segmentation performed [81, 82].

If the slices axial interpolation considered in this work is applied, both the
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image segmentation and consequently the final 3D reconstruction can be af-

fected due to the introduction of any new intermediate gray levels in the

estimated slices. For this reason, the performance of the proposed methods

have been evaluated considering both the quality of the 2D interpolated im-

ages and the quality of the reconstructed 3D model. In both cases, objective

indices were considered and a qualitative evaluation of the results obtained

from the visual inspection was also compared with other interpolation algo-

rithms taken from the literature.

4.3.1 Synthetically generated low-resolution sequences

High resolution sequences (HR) can be sub-sampled to synthetically gen-

erate low resolution sequences (LR). In this way, measurement indexes of

the objective quality of the proposed method can be constructed by com-

paring the reconstructed slices with the original ones. More specifically, a

complete CT scan is considered as the HR reference signal and a decimation

along the axial direction produces the LR sequence. In this study, our HR

data set is represented by two CT sequences, hereinafter referred to as CT1

and CT2, which reproduce the image of a skull and were acquired with a

Philips-Brilliance 64 machine. The two sequences consist of 179 and 207 CT

images, respectively, with a radiometric resolution of 12 bits. The slices have

a spacing of 1 mm, a thickness of 2 mm and a size of 512x512 pixels; the

downsampling factor was set to M = 2, 3, 4, 5. The performance of the pro-

posed methods, developed in MATLAB environment, have been evaluated

using the normalized 2D root-mean-square error (NRMSE) metrics, defined

as

NRMSE =

√∑
m,n(xtrue[m,n]− xint[m,n])2∑

m,n(xtrue[m,n])2
(4.16)

where xtrue is the original image and xint is the interpolated one. During

the experimentation phase two algorithms were tested: one belonging to the

pixel-based interpolation method (SDI), and one belonging to the patch-

based method, described in the sections 4.2.2 and 4.2.3, respectively. In

the latter case, linear and cubic interpolation within the patch grid have

been tested: the two methods are indicated as PATCH-L and PATCH-C

respectively. For PATCH-L a patch size of 5 was used (5 for PATCH-L and

7 for PATCH-C). All methods have used the WVM filter with which the

displacement vector field has been regularized. The tables 4.1 and 4.2 show

the results obtained in terms of average NRMSE on the slices just generated,
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for the CT1 and CT2 sequences, respectively, using the SDI, PATCH-L and

PATCH-C methods and varying the M decimation factor. In both are also

reported the NRMSE values obtained with another method proposed in [53];

the latter high order slices interpolation method (here indicated as HOSI),

is used to make a comparison. More specifically, HOSI was performed by

setting the tolerance parameter (here indicated as tol) to values 0.04 and

0.001, resulting in a very different behavior in terms of performance and

computational load

M SDI PATCH-L PATCH-C HOSI HOSI

(tol = 0.04) (tol = 0.001)

2 0.0604 0.0330 0.0315 0.0289 0.0245

3 0.0920 0.0642 0.0628 0.0648 0.0513

4 0.1166 0.0967 0.0952 0.1009 0.0779

5 0.1376 0.1281 0.1268 0.1303 0.1020

Table 4.1: Sequence CT1 – average NRMSE obtained by using different

methods and varying the decimation factor.

M SDI PATCH-L PATCH-C HOSI HOSI

(tol = 0.04) (tol = 0.001)

2 0.0645 0.0366 0.0341 0.0347 0.0297

3 0.1110 0.0692 0.0672 0.0752 0.0606

4 0.1178 0.1027 0.9989 0.1096 0.0914

5 0.1390 0.1372 0.1361 0.1357 0.1165

Table 4.2: Sequence CT2 – average NRMSE obtained by using different

methods and varying the decimation factor.

The performance of the proposed method has been evaluated both through

a 2D analysis of the interpolated images and a study on 3D reconstructed

models from the CT sequences, in which 3D metrics were used. The 3D

reconstructions obtained from the original HR sequences are considered the

reference model against which the approximate 3D model is compared, ob-

tained from the axially interpolated LR sequence. For the reconstruction of

the 3D models, MIMICS, a certified medical software, produced by Mate-

rialise, has been used, which allows to obtain 3D models after a process of

segmentation of the anatomical parts of interest and eventually of further
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elaboration processes. In Figures 4.10, examples of results of the segmen-

tation process are shown; in particular, the skull detected by some original

slices of the CT1 sequence is shown and compared with those obtained with

the PATCH-C, HOSI (tol = 0.04) and HOSI (tol = 0.001) methods. Figures

4.11 show both the 3D models reconstructed from the interpolated sequence

and those obtained from low resolution sequences (i.e. without applying any

axial interpolation method).

Figure 4.10: Accuracy of segmentation. First column: original grayscale

sections; second column: segmentation maps obtained from original sections;

third, fourth and fifth columns: segmentation obtained from interpolated

sections (M = 3) by using PATCH-C, HOSI with tol = 0.04 and HOSI with

tol = 0.001, respectively.

To compare two 3D reconstructions, two specific metrics were considered:

the average value µ and the standard deviation σ of the distance between

the reference mesh (”true”) and the approximate one. These measurements
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are obtained with Geomagic Design X software, a 3D Systems product. The

tables 4.3,4.4,4.5,4.6 show the 3D metrics obtained from the methods under

test and vary the M decimation factor. To appreciate the gain obtained by

interpolation, the metrics calculated on the 3D model obtained using the LR

sequence, that is without any axial interpolation (here indicated as ”Raw”),

are also shown.

M = 2

M = 3

M = 4

M = 5

Figure 4.11: 3D models obtained from the interpolated sequences and vary-

ing with the decimation factor M : in the first column, the models obtained

from the subsampled sequences; from the second to the fourth columns, the

results obtained with the PATCH-C, HOSI with tol=0.04, and HOSI with

tol=0.001 methods, in that order.
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M Raw SDI PATCH-L

µ σ µ σ µ σ

2 0.290 0.470 0.007 0.108 0.007 0.112

3 0.869 0.908 0.315 0.394 0.221 0.360

4 0.960 1.208 0.451 0.573 0.294 0.504

5 1.020 1.233 0.743 0.789 0.521 0.706

Table 4.3: Sequence CT1 – average distance and standard deviations (in mm)

between the 3D models constructed by using SDI and PATCH-L methods.

M PATCH-C HOSI (tol=0.04) HOSI (tol=0.001)

µ σ µ σ µ σ

2 0.003 0.062 0.007 0.144 0.001 0.025

3 0.217 0.362 0.250 0.417 0.152 0.329

4 0.290 0.504 0.439 0.645 0.275 0.524

5 0.519 0.717 0.731 0.879 0.460 0.717

Table 4.4: Sequence CT1 – average distance and standard deviations (in

mm) between the 3D models constructed by using Patch-C method and the

reference one.

M Raw SDI PATCH-L

µ σ µ σ µ σ

2 0.313 0.003 0.066 0.108 0.003 0.060

3 0.742 1.066 0.406 0.581 0.206 0.385

4 1.096 1.506 0.484 0.657 0.299 0.531

5 1.498 1.933 0.800 0.906 0.682 0.944

Table 4.5: Sequence CT2 – average distance and standard deviations (in mm)

between the 3D models constructed by using SDI and PATCH-L methods.

M PATCH-C HOSI (tol=0.04) HOSI (tol=0.001)

µ σ µ σ µ σ

2 0.001 0.040 0.002 0.039 0.001 0.036

3 0.206 0.370 0.236 0.382 0.160 0.350

4 0.289 0.510 0.413 0.592 0.295 0.539

5 0.671 0.934 0.694 0.839 0.500 0.775

Table 4.6: Sequence CT2 – average distance and standard deviations (in

mm) between the 3D models constructed by using Patch-C method and the

reference one.
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4.3.2 Real low-resolution CT sequence

In the case of real CT sequences with low axial resolution, as in the case

of neonatal patients discussed in the introduction, it is possible to apply

the proposed methods to obtain an accurate 3D reconstruction with limited

artifacts (Lego effect). In Fig. 4.12, three examples of 3D models created

from real low resolution CT sequences of neonatal skulls are shown. The

first sequence (see results in the first row of Fig. 4.12) was composed of 82

slices, whereas the last two sequences (see results in the second and third

row of Fig. 4.12) were composed of 41 slices. The results were obtained

with an interpolation factor M = 4 and by using the PATCH-C, HOSI with

tol=0.04, and HOSI with tol=0.001 methods.

Figure 4.12: Examples of 3D reconstructions of skulls of neonatal patients:

in the first column the models obtained from the original low resolution se-

quences; from the second to the fourth column, the models obtained by using

the PATCH-C, HOSI with tol=0.04, and HOSI with tol=0.001 interpolation

methods, in that order.

4.3.3 Discussion

From the experimental results in the Tables 4.1 and 4.2, we can see that the

patch-based interpolation allows better reconstructions than those obtained

with the pixel-based method. Regarding the comparison between cubic and

linear interpolation within patches, we can see that the former produces

only a very small improvement compared to linear interpolation. The per-
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formance of the algorithms based on the proposed patches are close to those

of the HOSI method [53] performed with tol=0.04; better results, instead,

are obtained by performing HOSI with tol=0.001. However, it should be

noted that the interpolation performed with the HOSI method (tol=0.001)

brings better performance at the price of a much higher computational cost,

as can be deduced from the Table 4.7, which shows the computational costs

necessary to process the entire CT1 sequence by varying decimation factor

M , for the various methods that have been compared.

M SDI PATCH-L PATCH-C HOSI (tol = 0.04) HOSI (tol = 0.001)

2 78.334 32.878 89.715 40.981 3149.414

3 144.442 64.609 179.093 29.457 3541.816

4 216.174 100.851 269.580 24.399 3654.700

5 313.294 127.615 360.629 22.875 3705.462

Table 4.7: Computational costs (in seconds) obtained to process the CT1

sequence vs. the methods that are compared.

From the tables 4.3,4.4,4.5,4.6 it can be seen that all methods improve

the quality of the 3D reconstruction that can be obtained from the LR se-

quence without any interpolation and that the quality decreases when the

decimation factor increases. Finally it is evident that the ranking among

the methods that can be derived from the observation of the 2D quality in-

dexes is substantially confirmed by the results obtained with the 3D metrics.

Concerning the results obtained using real sequences with a real low axial

resolution, they clearly show that the quality of the reconstructions obtained

from the original data (images in the first column of Fig. 4.12) is lower than

those obtained using interpolated sequences (images in the columns from the

second to the fourth of Fig. 4.12).

4.4 MRE sequence axial interpolation

MRE is an innovative acquisition technique which uses the propagation of

mechanical shear waves in conjunction with an MRI technique to probe the

elastic properties of in vivo tissues. Chapter 2 provides a detailed explana-

tion of how this method operates and its possible applications. Measuring

elasticity is of great interest since it allows both to differentiate the various

physiological tissues and to distinguish healthy tissue from diseased ones;

the greater rigidity of tissues, for example, may be related to a pathologi-
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cal state. This method has been developed to investigate the properties of

the liver affected by fibrosis and to evaluate the various stages associated

with the pathology, in a non-invasive and reliable way; changes in the elastic

properties of the liver tissue may be related to this pathology. In particular,

the rigidity of the liver increases with the progression of the various stages

of fibrosis. By combining the data obtained from this elastography analysis

with a 3D reconstruction procedure from images, it is possible to obtain an

anatomical 3D model with geometric and mechanical characteristics typical

of the anatomical organ under examination. The limitation of the low res-

olution of the MRE leads to an inaccurate 3D with artifacts due to the low

axial resolution. To solve this problem, the idea is to apply an interpolation

along the axial direction to increase the slices sequence number and obtain

a more accurate 3D reconstruction. In this case an MRE sequence (scanned

with MR Touch GE Healthcare) of the liver with such characteristics, num-

ber of slices = 4, slices distance = 11 mm spatial resolution 256x256, was

considered. The axial interpolation method was carried out by setting the

subsampling factor M= 2 to have the same number of slices contained in the

sequence MRI. The interpolated MRE sequence has been obtained by apply-

ing the PATCH-C method described in 4.2. After the interpolation process,

different segmentations of the sequence were performed to simulate the elas-

tography map and highlight the different tissue elasticity values. Figure 4.13

and 4.14 show the reconstruction of the 3D models corresponding to the orig-

inal (low resolution) liver and to the interpolated sequence. Segmentation

and 3D reconstruction are performed by using Materialise Mimics software.

As can be seen, the reconstructed 3D model with the proposed method is

much smoother than the model obtained from the original data in which

Lego artifact is more prominent.

Figure 4.13: 3D MRE original liver model.
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Figure 4.14: 3D MRE liver model reconstructed with PATCH-C method.

4.5 Concluding remarks

In this chapter we have investigated the problems related to the 3D re-

construction of anatomical models from low axial resolution tomographic

sequences of diagnostic images. The acquisition of sequences by CT devices

includes particular cases where the axial resolution that can be obtained is

limited by the maximum allowed dose of ionizing radiation; this fact can lead

to inaccurate 3D reconstructions. Both pixel-based and patch-based methods

have been investigated. The comparison between the proposed methods has

been performed using both objective and subjective criteria. The objective

criteria considered include both radiometric (NRMSE of slices interpolated

towards their reference) and geometric evaluation (mean and standard devi-

ation of the 3D shape reconstruction error). These methods have also been

compared with a highly sophisticated and performing algorithm of the liter-

ature [53]. The subjective criteria consider the segmentation accuracy of the

interpolated slices and the low jerkiness of the reconstructed 3D shapes, cal-

culated from radiometrically homogeneous segments. The results show that

all axial interpolation methods are highly advantageous for the accuracy of

the 3D model. The comparison between the pixel-based and patch-based ap-

proaches highlights the superiority of the latter. The comparison with the

top performance benchmark [53] reveals that, although globally less accu-

rate, due to the lack of adjustable parameters that determine the cost/per-

formance trade-off, the proposed method seems to be slightly more accurate

on a local basis, for example, in terms of maximum absolute radiometric er-

ror of the interpolated slices; at the same computational cost, also in terms

of global error parameters, both radiometric and geometric. Real low axial

resolution CT sequences are also used for a qualitative evaluation demon-

strating that the proposed methods enable an effective slice interpolation

and that the achievable 3D models clearly benefit from the increased axial
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resolution. These results inspired the application of the proposed patch-based

method on a MRE sequence.



Chapter 5

Multimodal fusion of biomedical

images

In this chapter, the problem of biomedical image fusion is discussed. After

a brief overview of image fusion in the biomedical field, a method inspired

by remote sensing techniques is presented. The proposed fusion criterion

aims to combine the main and complementary information extracted from

the MRI and MRE, of the same patient, into a single image. The evaluation

of the method is performed using quantitative metrics based on geometric and

radiometric consistency and by visual inspection.

5.1 Introduction

The significant growth in the use of acquisition technologies in the medical

field provides specialists with the opportunity to examine a series of images

obtained with different imaging modalities and related to the same patient

in order to make a more accurate and in-depth diagnosis. This is due to

the fact that various acquisition methods generate images with different in-

formation content; for example, a morphological evaluation of the organs of

interest can be performed from CT, MRI and US images, while the PET

allows a functional analysis. By only evaluating images acquired through a

single imaging method does not allow to capture all the necessary details to

have an in-depth clinical picture and a consequent accurate diagnosis. For

this reason, it is often necessary to compare side by side the various types

of medical images. Normally, this comparison is the result of a mental act

77
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of integration of the contents analyzed in the various images and consists

of a mental superimposition of spatial information that can often be very

difficult. As a consequence, multimodal medical imaging fusion plays a very

important role in the field of medical imaging and is constantly growing.

Multimodal medical images fusion is the process of combining and merging

complementary information from images of the same subject obtained with

different imaging modalities allowing a more accurate diagnosis and better

treatment [83–85]. The automatic fusion of multimodal medical images is

the topic of this chapter; more precisely, the registered images of MRI and

MRE, acquired simultaneously on the same organs of a patient, are the imag-

ing data acquisition modalities that are considered in this study. As already

explained in chapter 2, MRE uses a highly sensitive phase contrast-based

imaging method to analyze the propagation of shear waves in tissues sub-

jected to harmonic mechanical excitation. The processing of acquired MRE

data, allows the local value of the cutting modulus to be estimated, which

yields images, usually in the form of color maps, showing the spatial dis-

tribution of the elasticity information of the tissue. The MRE acquisition

process, on the other hand, does not allow information regarding the anatom-

ical structures to be highlighted. To evaluate the elasticity of tissues there

also exists another imaging method called Ultrasound Elastography (UE)

that involves the use of an ultrasound probe producing acoustic pulses to

evaluate the elastic modulus of the tissues with which it comes into contact.

This diagnostic examination is less complex than MRE because it is easier to

perform, but it is operator dependent and does not produce a tomographic

sequence but only a two-dimensional image. In recent years, some MRI and

UE image fusion works have been presented with the aim of improving the

detection of tumors in different diagnostic contexts [86–88]; in this case the

elasticity of a very restricted anatomical area is considered. On the con-

trary, the fusion of MRI and MRE images would make possible to obtain

a final product, a fused MRE dataset, featuring both the high geometric

content of the MRI and the elasticity information of the MRE, facilitating

a more complete and accurate analysis on the whole anatomical part of the

patient and allowing doctors to perform a more accurate investigation of the

anatomical parts of interest. This is the core idea of the last part of this

thesis work: to overcome the absence of spatial details typical of MRE im-

ages by means of fusion with higher spatial resolution MRI images. To this

purpose, a novel fusion scheme, fully automated and based on Multiresolu-
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tion analysis (MRA), is presented. Such fusion algorithm provides a good

trade off between fusion performance, applicability to real-time situations,

and preservation of the original medical relevance of MRE data.

5.2 Fusion of biomedical images: background

In the biomedical field, digital image fusion plays a very important role in

several medical diagnosis and therapy applications. Over the years, exten-

sive research on medical image fusion and a remarkable number of algorithms

have been developed [83].

Image fusion techniques can be classified according to different criteria. One

of the most common way to differentiate fusion algorithms is based on sensor

homogeneity. The term homogeneous image fusion refers to the case in which

the images to be merged are produced by sensors exploiting the same imaging

mechanism. This category is also called unimodal image fusion. In remote

sensing for Earth observation [89], the fusion of panchromatic and multi-

spectral (MS) images, a.k.a. Pansharpening, is an example of homogeneous

image fusion. The images subject to fusion are the outcome of measuring

the reflected solar radiation of the scene, even though they are referred to

different wavelengths and are characterized by different information content,

also in terms of spatial resolution. On the other hand, heterogeneous, or

multimodal image fusion, is referred to those cases in which the data to be

merged come from sensors not sharing the same imaging mechanism. In the

biomedical field, multimodal image fusion seems to be the most frequent case,

also considering the demanding necessity of integrating as much complemen-

tary information as possible in order to support a better clinical outcome.

Fusion of MRI-CT, MRI-PET, and MRI-US modalities are a few examples

belonging to this category. An additional way to discriminate among fusion

techniques is based on the content level subject to fusion, i.e., pixel level, fea-

ture level, and decision level [90]. Pixel level image fusion directly combines

the pixels of the involved images in order to produce a new image, whereas

feature level fusion aims to combine features extracted from the images to

be merged. The extraction of the features can either be performed simulta-

neously on all the images or separately on each image. Finally, decision level

fusion is the combination of the classification results performed individually

on each image. In this case the fusion output is a classification map.

In the category of pixel level fusion, methods can further be classified ac-
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cording to the adopted fusion approach.From a traditional image fusion per-

spective, two macro groups can be identified [91]: Component Substitution

(CS) and Multiresolution Analyis (MRA). CS techniques, also referred to

as spectral methods, aim at separating the spectral and spatial information

of the images by means of specific spectral transformations. Examples of

methods belonging to this class are the Intensity-Hue-Saturation (IHS), the

Principal Component Analysis (PCA), and the Gram-Schmidt (GS) trans-

form. MRA methods, or spatial methods, rely on a multiresolution decom-

position of the images involved in the fusion, in order to extract spatial

information from the image with higher spatial resolution and to inject it

into the image with lower spatial resolution. Examples of MRA techniques

are the decimated wavelet transform (DWT), the ”Ã -trous” wavelet trans-

form (ATWT), laplacian pyramids (LP), contourlet and curvelet transforms.

These two basic classes can be enriched by taking into consideration several

others methods that have been recently developed, such as those based on

artificial neural networks (ANN), fuzzy-logic theory, Bayesian frameworks,

and compressive Sensing [92,93].

5.3 Proposed method

In this section, a fusion method aiming at combining pairs of MRI and MRE

images is proposed. Let I = {Ik}k=1,...,N and E = {Ek}k=1,...,M be the se-

quences of MRI and MRE images, composed of N and M slices, respectively

(N¿M); the objective is achieving fused MRE slices in which the elasticity

information of the tissues, provided by the MRE, and the geometric informa-

tion of the organs, provided by the MRI, are both present. Such a method

can be classified as a solution to the multimodal image fusion problem. The

characteristics of the images to be fused recall the problem of sharpening

thermal infrared (TIR) images and MS images, typically encountered in re-

mote sensing. In such a case, TIR images, which lack spatial details due to

the blurring nature of the heat diffusion process, are sharpened by means of

MS images - typically the bands in the visible and near-infrared regions (V-

NIR) are used - that offer a richer geometric information content. Following

this analogy, the MRE data could be thought as a TIR image that needs

to be sharpened by means of the MRI, the corresponding V-NIR images in

the thermal sharpening process. The proposed fusion algorithm takes into
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consideration two desirable requirements that the ideal MRE fused dataset

should have:

1. the details injected into the MRE should be an undistorted version of

those present in the original MRI;

2. the radiometry of the original MRE should be preserved as much as

possible.

In other words, spatial and radiometric distortions should be avoided. In the

following sections, the various stages of the proposed method are described

in detail.

5.3.1 Spatial and volumetric interpolation

As previously mentioned, MRE images provides information on elasticity of

the investigated organ, allowing to evaluate its state of health without pro-

viding any information about its anatomical geometric structure. The lack

of spatial details in the MRE images is due to the fact that the information

on elasticity is obtained through a wave propagation in the tissues induced

by a vibrating driver that is placed on the patient’s body during the MRI

examination. This movement, acting as a motion blurring, is the main re-

sponsible of the coarser spatial resolution of MRE images, if compared to

MRI images. In image fusion, whenever images with different resolution are

involved, spatial interpolation of the lower resolution image to the scale of

the higher resolution one, is the first necessary step of the process. In this

case, in order to overcome the different pixel size of the two sequences, a

bicubic interpolation of the MRE images is performed at the desired MRI

scale, in order to have pixel by pixel superimposable sequences. The MRE

images investigated in the simulations have pixel size twice as large as of

that of MRI images. Moreover, they all have been acquired during the same

examination, resulting into an axially aligned dataset, which will not require

any additional coregistration operation. Another aspect to be considered,

involves the different number of slices present in the two sequences; typi-

cally, MRE sequences are characterized by a lower number of slices than

MRI sequences. This is due to the more strict requirements imposed to

the patients by the elastographic acquisition process. In fact, elastrography

imaging requires patients to hold their breaths during the whole acquisi-

tion, which obviously set a time limitation leading to a limited number of
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acquirable elastrographic slices. Typically, MRE sequences are created by

prescribing on the coronal plane four slices in axial section, one for each ex-

piratory apnea, acquired during the final phase of exhalation and positioned

so as to include the largest transverse dimension of the liver. In order to have

MRI and MRE sequences with the same number of slices, an axial interpo-

lation strategy is applied. The importance of this step is reflected into the

fact that the subsequent fusion process will be performed on a slice-by-slice

basis, which ultimately will allow doctors to perform a more accurate and

complete medical evaluation. The axial interpolation scheme, applied to the

MRE dataset, is shown in Fig. 5.1. An interpolation based on the DVF

Figure 5.1: Volumetric interpolation of MRE sequence. From right to left:

MRI sequnce composed by N slices, original MRE sequence composed by M

slices, interpolated MRE sequence composed by N slices.

estimation, between two adjacent slices, was performed to improve the axial

spatial resolution of the MRE sequence. The DVF was then processed us-

ing a WVMF and used to estimate the intermediate sections between those

available. The interpolation method considered is the one presented in 4.2.3

and indicated as PATCH-C. As a result of volumetric interpolation, MRE

and MRI share the same dimensionality of the slices and therefore the fusion

process can take place between each pair of axially aligned MRE-MRI slices.

Applying the fusion method to each pair of axially aligned slices results in a

final sequence characterized by images in which both the elasticity informa-

tion of the tissues and the geometric information of the organs are present.

Hereinafter, for notation simplicity, k index is dropped.
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Figure 5.2: Flowchart detailing the steps of the proposed fusion method.

5.3.2 histogram-matching operation

The fusion scheme, proposed in this work, belongs to the MRA class and its

complete flowchart is reported in Figure 5.2. The flowchart depicts the fusion

between the pair of kth MRE and MRI slices, subsequent to the volumetric

interpolation of the MRE dataset. The first step of the scheme include

the histogram matching operation. With the term histogram matching [94],

we refer to the equalization of the first-order statistics, mean and variance,

between the images to be fused. This step, often overlooked in image fusion,

is particular important whenever the images to be merged are characterized

either by different radiometric resolutions, i.e., number of bits, or different

radiometric formats, such as digital numbers (DN) or physical quantities

(i.e., kPa). Such an operation guarantees a radiometric normalization of the

data, which represents an essential prerequisite for high fusion performance.

The histogram matching operation may be written as:

I̊ = (I− µI) ·
σẼ
σI

+ µẼ (5.1)

in which µ and σ are mean and standard deviation, respectively.

5.3.3 Injection gain computation

The histogram-matched version of the MRI is filtered by a low-pass filter in

order to extract the geometric details δ defined as:

δ = I̊− I̊L (5.2)

where I̊L is the low pass histogram-matched MRI. After extracting the ge-

ometric information from the MRI, the following additive detail injection
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fusion scheme is employed to generate the fused image:

Ê = Ẽ + G
(̊
I− I̊L

)
. (5.3)

Equation 5.3 shows that the fused MRE image Ê is obtained by adding to

the interpolated slice Ẽ the geometric details, after the modulation by a suit-

able injection gain, G. About the choice of the injection gain, which suitably

weighs the detail content to be injected into the MRE, multiple strategies

may be devised. In this regard, we make use of the Gram-Schmidt orthogo-

nalization procedure [95], providing the following closed-form expression for

the injection gain:

G =
cov(Ẽ, IL)

var(IL)
. (5.4)

Such an injection coefficient is usually referred to as projective coefficient,

since it is the modulus of the projected vector of the Ẽ along IL.The more

general formulation of the projection coefficient derived from Gram-Schmidt

orthogonalization [95] is defined in terms of inner products. We replaced

inner products with covariances and variances assuming to deal with Eu-

clidean zero-mean vectors. The gain represents the key point of GS spectral

sharpening [96,97], one of the most successful first-generation Pansharpening

methods. By definition, the projection coefficient defined in Equation 5.4 is

a scalar term; conversely, we specifically used a matrix notation to indicate

our choice to use a locally space-varying injection coefficient, computed on

a sliding window of 16 × 16 pixels. With simple algebraic manipulations,

Equation 5.4 can be rewritten as:

G = CC(Ẽ, IL) ·

√
var(Ẽ)

var(IL)
. (5.5)

where CC is the linear correlation coefficient. In the presented fusion frame-

work, G plays a key role since determines whether the detail is to be in-

jected or not, and if so on what proportion, based on local correlation be-

tween the two images. The fact that the proposed method belongs to the

multi-resolution analysis class can be deduced from the detail expression in

Equation 5.3. In fig.5.3, by way of example, the injection gain and the spa-

tial details computed by the proposed algorithm for a given pair of MRI and

MRE images are shown.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a): MRI image; (b) expanded MRE image; (c): spatial details

δ; (d) injection gain G; (e) product of injection gain and spatial details G ·δ,
(f) fused image.

5.4 Experimental results

In this section the fusion experimental results will be presented. Two im-

age datasets, both comprising MRI and MRE sequences and featuring the

liver anatomy and elasticity respectively, have been tested. The dataset has

been acquired by the 1.5 T unit (HD Signa Exciting machine GE Medical

System, Wis, USA) and the MR TOUCH system (GE Medical System, Wis,

USA). The two datasets, referred to as Patient1 and Patient2 in the fol-

lowing, are composed of 7 T1 MRI and 4 MRE slices (which are axially

interpolated to obtain 7 slices). The original MRE images have radiometric

resolution of 15-bit, slice spacing of 10.5 mm, thickness of 8 mm and a size

of 256×256 pixels, whereas the MRI images have radiometric resolution of

12-bit, slices spacing of 6 mm, thickness of 5 mm and a size of 512×512

pixels. During the experimentation phase, three algorithms based on the

fusion scheme described in 5.3 were tested: in the first one, the detail is

injected without undergoing any modeling process, in the second one, the

injection detail is modeled using a global gain, in the third one, the detail is



86 Multimodal fusion of biomedical images

modeled using a local gain; the three methods are referred as ADM, ADM-

GG, ADM-LG respectively. The performance of the proposed fusion method

will be evaluated along with other two state-of-the-art methods: the Gradi-

ent Transfer Fusion (GTF) method [98], and the ATWT method [97]. The

former is based on gradient transfer and total variation (TV) minimization

and was proposed for Infrared and Visible image fusion, whereas the latter

is a successful MRA algorithm. The GTF requires to set the regularization

parameter, λ. We carefully chose such a parameter maximizing the overall

performance for each dataset, resulting in λ = 0.85 and λ = 1.65, for the

Patient1 and Patient2 datasets, respectively.

5.4.1 Performance assessment

Quality evaluation of image fusion products has been, and still is, the ob-

ject of extensive researches. The problem is complicated by the fact that it

may not be easy to formalize what “quality” means in the fusion process.

In this regard, a protocol of assessment should have very clear objectives

and possibly require a reference on which the comparison relies [99]. Image

fusion assessment is traditionally performed in two ways: (1) human visual

inspection by a panel of investigators, (2) mathematical functions capable

of measuring or inferring the similarity of the fusion product to a reference

target, which is always unavailable and often also undefined. In this thesis

work, the latter approach is pursued. In remote sensing image fusion, espe-

cially multispectral pansharpening applications, quality assessment is per-

formed following the Wald’s protocol [100,101], which substantially requires

the fused image to satisfy two main properties:

- consistency: the fused image, once spatially degraded to the original

resolution, should be as close as possible to the original image;

- synthesis: any LR image fused by means of a HR image should be as

identical as possible to the ideal image that the corresponding sensor,

if existent, would observe at the resolution of the HR image.

The property of consistency is usually easier to assess, since the original LR

image can be used as a reference. Only the procedure of spatial degrada-

tion and the matching function are to be standardized. On the contrary,

the synthesis property is harder to be verified, since a reference is required.

A viable shortcoming stems from the assumption of scale-invariance of the
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scene, that is, quality measures do not vary with the resolution, at which

the scene is imaged. This allows the quality to be measured at a resolution

lower than the original one, for which the reference image is available. More

specifically, the process consists of spatially degrading both the enhancing

and the enhanced datasets by a factor equal to the scale ratio between them

and using the original LR image as reference. Obviously, such an assumption

is not always valid, especially when the degradation process does not mimic

the actual sensor acquisition process. In the case of multi-modal image fu-

sion, the applicability of the synthesis properties of the Wald’s protocol is

questionable since a multi-modal fusion method aims at producing images

in which the features coming from different sensors should in principle be

both present. If the imaging sensors exploit different physical mechanisms,

e.g., reflectivity and emissivity in the case of fusion of optical and ther-

mal data, the assumption that an “ideal” sensor producing the fused image

could exist is unlikely, since such a sensor should be able to measure and

integrate different physical phenomena at the same time. This fact impairs

the possibility of evaluating the synthesis properties at a reduced scale. In

other words, when fusion of heterogeneous data is concerned, in the context

of Wald’s protocol the sole suitable choice for evaluating quality is consis-

tency [102]. Unfortunately, Wald’s protocol does not include a spatial, or

geometric, consistency property, since the spatial quality is implicit in the

synthesis property. To give a better insight of the problem, we split the

consistency property into two terms, which are given here with reference to

our MRI-MRE fusion problem:

- radiometric consistency: the fused MRE image, once spatially de-

graded at the original scale, should be as close as possible to the original

MRE image, i.e., the source of the radiometric information;

- geometric consistency: the local similarity relationships between the

original MRE and a spatially degraded version of MRI should be re-

tained by the fused MRE and the original enhancing MRI. This is the

rationale of the spatial quality index of the QNR protocol [103].

Radiometric and geometric consistency are evaluated by using the following

three metrics (the first two referring to radiometric consistency, the third to

geometric consistency).
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Normalized Root Mean Square Error (NRMSE)

NRMSE
∆
=

√
E[(Ẽ− Êlp)2]

µÊlp

(5.6)

where E[·] represents the expectation operator, approximated by means of

a spatial average and Êlp indicates the fused low-pass filtered MRE slice.

NRMSE is a distortion index, hence its ideal value is zero. Note that (5.6) is

the restriction to single-band data of the ERGAS index, originally introduced

by L. Wald [99], and widespread for assessment of pansharpened products

[97].

Radiometric Universal Image Quality Index (QR)

QR =
1

B

∑
b

Q(Ẽb, Ê
lp
b , B) (5.7)

where Q is the Universal Image Quality Index defined as [104]:

Q(A,B)
∆
=

4σA,B · µA · µB
(σ2
A + σ2

B)[µ2
A + µ2

B ]
(5.8)

with σA,B denotes the covariance between A and B. In (5.7), Eb and Êlp
b

denote non overlapped blocks of N×N pixels (in the implementation, was

used N = 16); B indicates the number of blocks composing the image. Q

measures the similarity between two images and thus its ideal value is one.

Incidentally, (5.7) is the restriction of the spectral quality index proposed by

Khan et al. [105] to single-band image data.

Geometric Universal Image Quality Index (QG)

QG = 1−
[

1

B

∑
b

|Q(Êb, Ib)−Q(Ẽb, I
lp
b )|
]

(5.9)

where Ilp denote the low-pass filtered MRI and subscript b defines the bth

block. The statistics are calculated locally over non overlapped blocks of

16×16 pixels and then the global measure is obtained by averaging over the

whole image. Eq. (5.9) is nothing else than the restriction of the spatial QNR

index [103] to single-band data. The coupling of the aforementioned indexes
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has been originally proposed for full-scale assessment of pansharpening fusion

[106]. The calculation of both the indexes requires a low-pass digital filter

for the spatial degradation. To this end, we used a Gaussian filter [107],

whose frequency response is shown in Figure 5.4.

Figure 5.4: Frequency responses of the digital filter employed in the quality

assessment procedure.

5.4.2 Fusion experiments

Tables 5.1 and 5.2 show the results of the quality assessment for Patient1

and Patient2, respectively. Tables show results in terms of average NRMSE,

QR and QG on the slices just generated, using ADM, ADM-GG and ADM-

LG methods. In both are also reported the metrics values obtained with

the Gradient Transfer Fusion (GTF) method [98], and the á trous wavelet

transform (ATWT) method [108] .
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NRMSE QR QG

Ideal 0 1 1

ADM 0.0371 0.9019 0.8876

ADM-GG 0.0200 0.9695 0.9519

ADM-LG 0.0191 0.9739 0.9988

GTF 0.0925 0.6951 0.7485

ATWT 0.0830 0.7345 0.7602

Table 5.1: Fusion assessment for the Patient1 dataset.

NRMSE QR QG

Ideal 0 1 1

ADM 0.0287 0.8925 0.9257

ADM-GG 0.0168 0.9285 0.9685

ADM-LG 0.0155 0.9346 0.9993

GTF 0.1237 0.6421 0.7207

ATWT 0.0739 0.7730 0.8219

Table 5.2: Fusion assessment for the Patient2 dataset.

Figure 5.5 and Figure 5.6 show the fusion results for the Patient1 and

Patient2 datasets, respectively. For each dataset, original and fused images

by using ADM-LG, GTF and ATWT methods are shown.
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(a) (b) (c) (d) (e)

Figure 5.5: Fusion results for the Patient1 dataset. Each row is related to

a specific slice, k = 1, ..., 7. Columns are organized as follows:(a) original T1

MRI; (b) expanded MRE; (c) ADM-LG; (d) GTF; (e) ATWT.
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(a) (b) (c) (d) (e)

Figure 5.6: Fusion results for the Patient2 dataset. Each row is related to

a specific slice, k = 1, ..., 7. Columns are organized as follows: (a) original

T1 MRI; (b) expanded MRE; (c) ADM-LG; (d) GTF; (e) ATWT.
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5.5 Concluding remarks

In the biomedical field, using different types of imaging allows multiple

anatomical information to be obtained from the same patient because each

type of imaging only highlights specific anatomical information. The prob-

lem for the physician is to combine information from different images, which

is often done mentally and is therefore very complex and difficult. One so-

lution is to combine different images of the same subject. In this chapter

we have investigated the problem of the fusion of MRI and MRE images.

methods based on detail modulation calculated on a local and global ba-

sis were investigated. The comparison between the proposed methods has

been performed using both quantitative metrics and visual inspection. The

objective criteria considered include both radiometric and geometric consis-

tency evaluation. Regarding the former, NRMSE and QR, of original MRE

towards low-pass fused MRE, are computed. The geometric consistency has

been evaluated by computing QG. The results show that all methods gener-

ate fused images characterized by consistency values very close to the ideal

ones. Two methods proposed in the literature, one based on the gradient and

the other based on the wavelet transform, were used as a benchmark. This

comparison shows that the proposed methods are superior in terms of both

radiometric and geometric maximum error. Visual inspection of the fused

images shows that the radiometric information is very close to that contained

in the original MRE and that the geometric detail is not a distorted version

of the original MRI.
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Chapter 6

Conclusions

The three-dimensional reconstruction of anatomical models plays a funda-

mental role in biomedical field, especially in preoperative planning and surgi-

cal training. These models are used as a basis for pre-operative studies since

they faithfully reproduce the patient’s anatomy, providing surgeons with a

real perception of the scenario under examination and of the surrounding

structures. The Physical interaction between the model and the surgeon

also allows the surgery before entering the operating room using various

surgical instruments, to be simulated. In this way, it is possible to under-

stand difficulties in advance, anatomical conditions and different depths and

lengths of surgical instruments, to predict critical points of intervention and

to identify appropriate surgical strategies, with the clear advantage of reduc-

ing operating times and surgical errors. During this thesis work, a general

pipeline was developed to produce a patient-specific 3D anatomical model to

help surgeon in the pre-operative planning process. The pipeline considers

different production methods that can be used according to the challenge

and goal of preoperative planning but are also strictly dependent on the

specific pathological case. Experience with the neurosurgery team of the

Meyer Children’s Hospital in Florence is reported; this involved the use of

four 3D printed models to plan surgical interventions according to the pro-

posed pipeline. The 3D model reconstruction process may involve the use

of advanced image processing methods in order to improve the anatomical

accuracy of the final reconstructed product. In fact, in some cases only low

axial resolution sequences are available, so that the reconstructed model is

characterised by artifacts and inaccurate anatomical geometry. One possi-

95



96 Conclusions

ble way to solve this problem is to use axial interpolation algorithms that

allow to increase the axial resolution by generating intermediate slices from

two adjacent ones within the same sequence. In this thesis work, problems

related to the 3D reconstruction of anatomical models from tomographic se-

quences of diagnostic images with low axial resolution were investigated and

two axial interpolation methods based on displacement vector field estima-

tion were proposed: one pixel-based and one patch-based. The assessment

of the proposed methods was carried out considering a sequence of CT im-

ages of the skull. This sequence was decimated to obtain a low-resolution

synthetic one which was axially interpolated using the proposed methods

and varying the interpolation factor. The proposed methods were evalu-

ated considering both radiometric and geometric quality. In the first case,

NRMSE of slices interpolated towards their reference was evaluated, in the

second case, 3D models were first reconstructed from both the original and

the reconstructed sequence and then the mean and standard deviation of

the 3D shape reconstruction error were calculated. The results show that

although the patch-based method is preferable to the pixel-based one, both

are highly advantageous for the geometric accuracy of the 3D model. The

comparison with other methods taken from the literature reveals that the

proposed method, although less accurate globally, seems to be slightly more

accurate on a local basis, e.g., in terms of absolute maximum radiometric er-

ror of slices at the price of a much higher computational cost. The proposed

methods have been also applied to two cases of real sequences with low axial

resolution, CT acquisition on neonatal patients and MRE, demonstrating in

both cases that accurate 3D reconstructions can be obtained. During this

thesis work, the problem of medical image fusion was also investigated. A

method for the fusion of MRE and MRI images was developed with the aim

of generating a single MRE fused image containing the geometrical detail of

the MRI and the elasticity information of the MRE. The proposed method

belongs to the class of Multiresolution Analyis (MRA) methods and has

been developed considering two fundamental requirements: the details in-

jected into the MRE should be an undistorted version of those present in the

original MRI and the radiometric information of the original MRE should be

preserved as much as possible. Based on the proposed fusion scheme three

algorithms were tested by varying the details modulation. The assessment

of the methods was carried out quantitatively by considering radiometric

and geometric consistency using appropriate quality indices. The results



97

show that all methods generate fused images in which the consistency val-

ues considered are close to the ideal ones. These methods were compared

with two methods proposed in the literature and results show that proposed

methods are superior in terms of both maximum radiometric and geometric

error. In addition, a visual inspection of the fused images shows that the

original radiometric information is preserved and that the geometric detail

is an undistorted version of that present in the original MRI images.
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[70] G. Farnebäck, “Two-frame motion estimation based on polynomial expan-

sion,” in Scandinavian conference on Image analysis. Springer, 2003, pp.

363–370.



BIBLIOGRAPHY 105

[71] F. Bartolini and A. Piva, “Median based relaxation of smoothness constraints

in optic flow computation,” Pattern Recognit. Lett., vol. 18, no. 7, pp. 649–

655, 1997.

[72] L. Alparone, M. Barni, F. Bartolini, and R. Caldelli, “Regularization of optic

flow estimates by means of weighted vector median filtering,” IEEE Trans.

Image Process., vol. 8, no. 10, pp. 1462–1467, 1999.

[73] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, “Adaptively weighted

vector-median filters for motion-fields smoothing,” in Proc. IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, vol. 4, 1996,

pp. 2267–2270.

[74] G. Nielson, “Scattered data modeling,” IEEE Comput. Graph. Appl., vol. 13,

no. 1, pp. 60–70, 1993.

[75] S. Cuomo, A. Galletti, G. Giunta, and L. Marcellino, “A novel triangle-

based method for scattered data interpolation,” Appl. Math. Sci., vol. 8, no.

133–136, pp. 6717–6724, 2014.

[76] M. Smolik and V. Skala, “Large scattered data interpolation with radial

basis functions and space subdivision,” Integr. Comput.-Aided Eng., vol. 25,

no. 11, pp. 1–14, 2017.

[77] I. Amidror, “Scattered data interpolation methods for electronic imaging

systems: A survey,” J. Electron. Imaging, vol. 11, no. 2, pp. 157–176, 2002.

[78] C. L. Lawson, “Software for c1 surface interpolation,” in Mathematical soft-

ware. Elsevier, 1977, pp. 161–194.

[79] Z. Ma, J. Tavares, R. Jorge, and T. Mascarenhas, “A review of algorithms

for medical image segmentation and their applications to the female pelvic

cavity,” Comput. Methods Biomech. Biomed. Eng., vol. 13, no. 2, pp. 235–

246, 2010.

[80] N. Sharma and L. Aggarwal, “Automated medical image segmentation tech-

niques,” J. Med. Phys., vol. 35, no. 4, pp. 3–14, 2010.

[81] T. Bucking, E. Hill, J. Robertson, E. Maneas, A. Plumb, and D. Nikitichev,

“From medical imaging data to 3D printed anatomical models,” PLoS ONE,

vol. 12, no. 5, pp. 1–10, 2017.

[82] F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. Zechmannand, R. Un-

terhinninghofen, H.-U. Kauczor, and F. Giesel, “3D printing based on imag-

ing data: Review of medical applications,” Int. J. Comput. Assist. Radiol.

Surg., vol. 5, no. 4, pp. 335–341, 2010.

[83] A. P. James and B. V. Dasarathy, “Medical image fusion: A survey of the

state of the art,” Inf. Fusion, vol. 19, pp. 4–19, 2014.



106 BIBLIOGRAPHY

[84] R. Singh and A. Khare, “Fusion of multimodal medical images using

daubechies complex wavelet transform–a multiresolution approach,” Inf. Fu-

sion, vol. 19, pp. 49–60, 2014.

[85] G. Bhatnagar, Q. J. Wu, and Z. Liu, “Directive contrast based multimodal

medical image fusion in nsct domain,” IEEE Trans. Multimedia, vol. 15,

no. 5, pp. 1014–1024, 2013.
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