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ABSTRACT The International Union of Railway provides an annually safety report highlighting that human
factor is one of the main causes of railway accidents every year. Consequently, the study of human reliability
is fundamental, and it must be included within a complete reliability assessment for every railway-related
system. However, currently RARA (RailwayAction Reliability Assessment) is the only approach available in
literature that considers human task specifically customized for railway applications. Themain disadvantages
of RARA are the impact of expert’s subjectivity and the difficulty of a numerical assessment for the model
parameters in absence of an exhaustive error and accident database. This manuscript introduces an innovative
fuzzymethod for the assessment of human factor in safety-critical systems for railway applications to address
the problems highlighted above. Fuzzy logic allows to simplify the assessment of the model parameters by
means of linguistic variables more resemblant to human cognitive process. Moreover, it deals with uncertain
and incomplete data much better than classical deterministic approach and it minimizes the subjectivity of
the analyst evaluation. The output of the proposed algorithm is the result of a fuzzy interval arithmetic,
α-cut theory and centroid defuzzification procedure. The proposed method has been applied to the human
operations carried out on a railway signaling system. Four human tasks and two scenarios have been
simulated to analyze the performance of the proposed algorithm. Finally, the results of the method are
comparedwith the classical RARAprocedure underline compliant results obtain with a simpler, less complex
and more intuitive approach.

INDEX TERMS Fuzzy logic, human factors, reliability engineering, railway engineering, maintenance.

I. INTRODUCTION
Railway engineering is a complex field in which many
aspects of work throughout the complete system life cycle
are performed by human operators. Starting from design and
construction of the system up to the functioning, management
and maintenance, human operators play a fundamental role
in the life cycle of several railway-related systems [1], [2].
Several papers and technical reports [3]–[5] agree that lots
of railway accidents are caused by human error or by the
combination of human errors with hardware/software fail-
ures. Furthermore, also the European standard EN 50126 [6]
which covers the topic of Human Reliability Analysis (HRA)
in railway engineering points out the necessity of a proper

The associate editor coordinating the review of this manuscript and
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Human Error Probability (HEP) evaluation since it severely
contributes to the overall RAMS (Reliability, Availability,
Maintainability, Safety) parameters of the system under
study.

Catastrophic disasters and dangerous accidents are the
most evident results of human errors. However, trivial human
errors that lead tominor accidents without safety implications
are quite common [7]–[9]. Studying the reliability of a sys-
tem (either a mechanical or an electrical one) is absolutely
necessary to take into account every operating conditions
that affect the hardware performances, such as temperature
excursions, relative humidity, mechanical vibrations, ther-
mal and mechanical shocks and so on [10], [11]. Quite the
same, the operative conditions of the human operators must
be taken into account during the assessment of the Human
Error Probability (HEP). Internal and external factors such
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as ergonomics of the workstation, time available to complete
the task, microclimate, level of stress etc. deeply affect the
behavior of the operators [12].

Despite several HRA techniques are available in litera-
ture, only one method specifically developed for railway
engineering has been published. The Rail Safety and Stan-
dards Board (RSSB) proposes a customized technique called
Railway Action Reliability Assessment (RARA) in 2012 to
evaluate the human error probability in railway field [13].
RARA method is extensively used in railway engineering
since it is the only approach widely recognized in this field.
However, several criticalities could be found in this tech-
nique. The first one is the impact of subjectivity of the
analyst that performs the evaluation, which is not taken into
account. The second one is the difficulty and complexity
required for the assessment of the numerical values which
represent the impact of each external factor that influence
the human performances. Therefore, the quality of the esti-
mation is extremely related to the experience of the ana-
lyst performing the assessment. Trying to solve these needs,
this research aims at finding an innovative HRA method
specifically developed for railway engineering applications
which must be able to solve the major drawbacks of the
RARA method available in literature, namely the impact
of analyst subjectivity and the complexity of a numerical
assessment of the influence factors. The approach proposed
in this work is based on fuzzy logic and interval arithmetic
to estimate the HEP of railway-related task with the aim of
reducing the drawbacks of the classical RARAmethod. More
in detail, the proposed approach simplifies the assessment
of the HEP by means of linguistic variables to describe
both the probability of error and the affect level of each
internal and external factor. In this way, it is possible to
develop a simple and effective tool for HEP assessment which
minimizes the subjectivity and the impact of analyst expe-
rience. Fuzzy sets have been used as human reliability rat-
ings because classical ratings may be ambiguous, uncertain,
and hardly represented with a crisp number, while linguistic
variables may provide the optimal solution to solve such
problems.

The major contributions of the proposed method are the
following:
• Introduction of an innovative HRA method specifically
developed for operator tasks in railway engineering
which uses fuzzy logic to estimate the HEP.

• Proposal of a RARA-based methodology able to solve
two of the major problems of the classical RARA: the
analyst subjectivity and the difficulty and complexity of
a numerical assessment of the affect level.

• Validation of the results achieved on a real case study
through a comparison with RARA method.

The rest of the paper is organized as follows: section II
presents a detailed literature review regarding HRA,
Section III presents the proposed fuzzy-based approach along
with the developed tool, in section IV the proposed method is
applied to a real case study and finally Section V presents the

results validation through comparison with an existing HRA
method.

II. LITERATURE REVIEW
Starting from 1970 Human Reliability Analysis (HRA) has
been extensively studied introducing many different tech-
niques for Human Error Probability (HEP) estimation. Each
method could be classified into three categories:
• First-generation techniques are HRA milestones. They
are simple approaches which consider a human being
the same as an electric/mechanic component (i.e. it is
only capable to succeed or fail). The HEP is calcu-
lated weighting the base error probability of the task
with some factors called Performance Shaping Factor
(PSF) [14], such as available time, stress, and working
time [15], [16]. Generally, these methods classify errors
as omission (when the operator fails to carry out a
task) or commission (when the operator carries out a
task incorrectly or do something that is not required).
Moreover, simple cognitive models are used such as the
Rasmussen operator performances classification (skill-
based, rule-based or knowledge-based).

• Second-generation techniques introduce cognitive mod-
els and focus on the role of the context in the HEP
evaluation. The aim of these methods is to include the
human cognition (mental processes such as thinking,
remembering, problem solving etc.) within the analysis
of human performances.

• Third-generation techniques introduce simulator to gen-
erate data for the analysis. These methods aim at
developing new HRA methods or modifying existing
HRA techniques to consider the dynamic progression
of human behavior which leads to a human error. The
dynamic models used to estimate human behavior rep-
resent a fundamental aspect in modern HRA techniques.

Table 1 summarizes the main HRA techniques of each
generation pointing out the field of application, the year of
publication and the central points of each method. As it is
possible to see in Table 1, most of the techniques has been
developed for nuclear industry. Despite this, human reliability
is a central point in many different fields of application
where human errors could lead to dangerous accidents and
hazardous conditions. One of this fields is the railway indus-
try which requires an accurate human reliability analysis
in compliance with the European standard EN 50126 [6].
According to the latest UIC (International Union of Railway)
safety report 2020 [5] human factor is the second cause of
railway accident after external causes (such as trespassing,
pedestrian on public railway, weather, etc.) accounting for
the 3.7 % of all accidents. Consequently, the estimation of
the HEP in railway could provide several benefits to avoid
dangerous accidents. As a matter of fact, only few works
in recent literature deals with human reliability analysis in
railway engineering.

In [32] the probability of failure in the communication
actions between driver and signaler have been analyzed.
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TABLE 1. State of the art of human reliability analysis: summary of the main techniques.
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Grozdanovic [33] proposes the use of SLIM technique to
analyze the human error probability of an operator working
in a railway control center. In [34] the human error during
a train monitoring and control system assessment has been
studied. Train cab simulators have been used in [35] to collect
human error probability data on train driver fault diagnosis.
In [36] authors introduce the concept of railway engineer-
ing among other industrial fields proposing the Analysis of
Consequences of Human Unreliability (ACIH). Some works
propose to use HEART technique to estimate HEP in railway-
related systems. For instance, in [37] authors use HEART
method as part of a risk assessment evaluation of existing
yard switching operations and remote-control locomotive
operations in the United States. Zhou et al. [38] estimates the
HEP in locomotive driving processes using a hybrid HEART
approach. However, HEART technique has not been specif-
ically developed for railway, and consequently some adap-
tations are required. Other papers enhance first-generation
techniques to estimate the HEP in railway field. For instance,
in [39] the SLIM method has been combined with empirical
study and network analysis while in [40] SLIM is integrated
with Analytic Network Process. More generally, the research
interest in HRA in railway field is moving toward the exten-
sion of already existing HRA methods initially developed for
other fields due to the lack of available data and available
techniques specifically developed for railway.

The RSSB developed the RARA (Railway Action Relia-
bility Assessment) model in 2012 [13]. RARA is the most
common HRA technique in railway engineering since it is the
only one specifically developed only for this kind of appli-
cations. It classifies the human activities in railway within
eight different Generic Task Types (GTTs) grouped into three
categories: more automated and skill-based processes; more
effortful and rule-based processes; thinking outside proce-
dures. For each GTT the method provides a range of variation
of the human error probability and a nominal value within
this range. RARA also considers 27 different Error Produc-
ing Conditions (EPCs) to consider the internal and external
factors that influence the human behavior. For each one of the
EPC the technique provides the Maximum Affect (MA) that
the considered EPC will have on the operator. The MA value
is weighted by means of the APOA (Assessed proportion of
affect) to evaluate howmuch the EPC actually affects the task,
as follow:

A = (MA− 1) � APOA+ 1 (1)
APOA ∈ [0.1, 1] (2)

where the greater the APOA, the greater the affect A that the
EPC will have on the task. Finally, RARA considers:
• HEPnom the error probability of the selected GTT;
• Ai the generic affect of the EPCi;
• n the number of selected EPC;

Then the RARAmodel calculates the human error probability
HEP as follow:

HEP = HEPnom �
n∏

i=1

Ai (3)

HEP = HEPnom �
n∏

i=1

[(MAi − 1) � APOAi + 1] (4)

Human Reliability Analysis requires failure data to achieve
quantitative analysis. However, it is not always possible to
fully obtain this data due to unavailability of observations
and consequent scarcity of statistical data about errors and
failures [41]. Therefore, some works introduce fuzzy set
theory to handle reliability evaluation under conditions of
uncertainty. Some papers in literature deal with a fuzzy cog-
nitive reliability and error analysis method - fuzzy CREAM
[42], [43]. These methods use fuzzy logic to calculate human
error probability applying if-then rules and a defuzzifica-
tion procedure. The main disadvantages of the fuzzy-based
CREAM available in literature [42], [43] are the time-
consuming processes required to develop the rules and the
risk of using contradicting rules. To solve the problems of
too many rules needed and incomplete or contradicting rules
some advanced methods like monotone fuzzy rules relabel-
ing, monotone interval fuzzy inference systems, monotone
fuzzy rules interpolations, and hierarchical fuzzy inference
systems, have been proposed in other field of applications.
Regarding HRA, Rotshtein et al. [44] proposes a procedure
which introduced membership functions of fuzzy perfection
of performance conditions and the theory of decision-making
in CREAM. To validate the approach five scenarios have been
considered. Zhou et al. [45] uses the fuzzy logic to model
the uncertainty and ambiguity of the Common Performance
Conditions (CPCs) as well the control modes in CREAM.
The probability distribution of each control mode and conse-
quently the human error probability are evaluated by means
of a Bayesian network and the membership functions of
the CPCs. Another work [46] develops a fuzzy Bayesian
network (BN) approach to improve the quantification of
organizational influences inHRA (human reliability analysis)
frameworks. Kumar et al. [47] presents Fuzzy HEART and
expert elicitation to evaluate the HEP of refueling operations
in an LPG refueling station. This approach integrates the
fuzzy membership functions during the assessment of the
Error Producing Conditions. Finally, their new approach has
been validated comparing the results obtained with the classi-
cal CREAM assessment. Bayesian networks and fuzzy logic
have been also used in [48].

III. PROPOSED FUZZY-BASED APPROACH
This section illustrates the proposed fuzzy-based approach
used to evaluate the human error probability for railway engi-
neering. Taking the database of the RARA method, the pro-
posed approach consists in several steps in order to calculate
the HEP in a simpler way for the analyst ensuring consistent
results. Since data regarding human failures are not always
available, the proposed approach starts with the already val-
idated data provided by RARA. Then, fuzzy logic is used to
combine the base human error probability and the external
affect conditions in order to estimate the probability of com-
mitting an error during the work shift. Fuzzy ratings have
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been used as ratings because they helpmitigate the drawbacks
of ambiguous and uncertain data suffered by classical ratings.
Moreover, fuzzy logic allows to minimize the subjectivity of
the HEP evaluation bymeans of linguistic variables instead of
crisp number. In fact, the analyst that carry out the evaluation
must choose between different Membership Functions (MFs)
and their associated linguistic variable instead of picking a
value within the range of the HEP or choosing an APOA
value to quantify the Affect Ai of each EPC. The steps of
the proposed fuzzy approach are illustrated in fig. 1 and are
described as follow:

1. Preliminary GTT fuzzification.
1.1 Use HEPmin,HEPmax and HEPnom provided by

RARA for each GTT to identify the domain of
the fuzzy set.

1.2 Identify 3 to 5 MFs for each fuzzy set of the GTT.
2. Preliminary EPC fuzzification.

2.1 Calculate min (APOA = 0.1) and max
(APOA = 1) value of any affect considered by
RARA.

2.2 Create a domain of the fuzzy set for each affect.
2.3 Define 5 MFs for each affect.

3. Identification of the proper GTT.
3.1 Select a Generic Task Type (GTT).
3.2 Select a MF for the considered GTT.

4. Identification of the EPC.
4.1 Select any Error ProducingConditions i which are

relevant to the task being assessed.
4.2 Select a MF for each EPC.

5. Calculation of the Human Error Probability H̃EP.
6. Defuzzification of the fuzzy H̃EP.
RARA method is based on eight different GTTs. For each

one of them RARA provides a minimum value of the error
probability HEPmin, a maximum valueHEPmax and a nominal
value HEPnom which correspond to the most probable error
probability for the considered task [13]. All the considered
GTTs and the corresponding minimum, maximum and nom-
inal HEP are included in Table 2.

Step 1 of the proposed procedure uses these values to
calculate the fuzzy human error probability associated to each
GTT. More in detail, a fuzzy base human error probability
H̃EPbi will be associated to each kind of task i as:

H̃EPbi =
{(
x,µGTTi (x)

)
|x ∈ DGTTi

}
(5)

µGTTi (x) : DGTTi → [0, 1] (6)

DGTTi =
[
HEPmini ,HEPmaxi

]
(7)

where µGTTi (x) represents the membership functions of the
task i while DGTTi is the domain of possible admissible value
by the fuzzy base error probability H̃EPbi of the GTT i. As in
Equation (7) domain DGTTi is generated using the minimum
and maximum values of the HEP provided by RARA for
each GTT.

For instance, taking the GTTR4 as an example, the domain
of possible admissible values DGTTR4 by the fuzzy base error

FIGURE 1. Flowchart of the proposed fuzzy-based approach used to
estimate the human error probability in railway engineering.

TABLE 2. Generic task type and human error probability according to
RARA technique [13].

probability H̃EPbR4 is given by Equation (7) and Table 2 as
follow:

DGTTi = [0.2%, 0.4%] (8)

128652 VOLUME 9, 2021



L. Ciani et al.: Improving HRA for Railway Systems Using Fuzzy Logic

Then, according to Equation (6), the membership functions
of GTT R4 must follow the following:

µGTTR4 (x) : [0.2%, 0.4%]→ [0, 1] (9)

More in detail, the fuzzy set H̃EPbR4 is composed by 3MFs
within the domain DGTTR4 . For illustrative purposes only, one
of these three MFs is included in Table 3 in compliance with
Equation (5) and considering a small sampling rate for the
sake of simplicity.

The results of the complete preliminary fuzzification step
are shown in fig. 2, where the fuzzy sets developed for each
GTT are illustrated. Inside the domain DGTTi of each task a
different number of trapezoidal membership functions (three,
four or five) have been defined depending on the extension
of the domain itself. Trapezoidal MFs have been used since
they are the most common functions in reliability applica-
tions according to [41], [49]. A linguistic variable has been
assigned to each MF of each GTT in order to intuitively
describes the probability of error of the considered GTT.

Six different linguistic variables with increasing probabil-
ity values have been developed, namely: {Very Low; Low;
Moderate; Medium; High; Very High}. Along with mini-
mum and maximum values of HEP for each GTT, RARA
also provides a nominal value which according to the original
technique is the most probable value within the range. To take
into account also this information provided by RARA the
membership function that encloses the RARA nominal HEP
has been developed larger than the others, with more values
with maximum degree of membership.

TABLE 3. Example of membership function assessed for GTT R4 using
equations (5)- (7).

The second step is quite similar to the first one. The
objective of the fuzzification this time is the value of the
Affect A of each EPC j. RARA evaluates the Affect of each
EPC by means of the Maximum Affect MA and the APOA
value as in Equation (1). The proposed method introduces
linguistic variables instead of the APOA value to estimate
the level of affect with lower subjectivity. More in detail, the

fuzzy affect Ãj of each EPC j is defined as follow:

Ãj =
{(
z,µEPCj (z)

)
|z ∈ DEPCj

}
(10)

µEPCj (z) : DEPCj → [0, 1] (11)

DEPCj =
[
Aminj ,Amaxj

]
(12)

where µEPCj (x) stands for the membership functions of the
EPC j while DEPCj represents the domain of possible admis-
sible value by the fuzzy affect Ãj of the EPC j. The minimum
Aminj and maximum Amaxj affect values of each EPC j used
to generate the domain DEPCj have been evaluated setting the
minimum and maximum APOA values respectively within
Equation (1), as follow:

Aminj = (MA− 1) � 0.1+ 1 (13)

Amaxj = (MA− 1) � 1+ 1 = MA (14)

For instance, according to RARA, the EPC T2: ‘‘A short-
age of time available for error detection and correction.’’ is
characterized by MA = 11. Thus, in compliance with Equa-
tions (12)-(14) the domain of the EPC T2 is given by:

AminT2 = (11− 1) � 0.1+ 1 = 2 (15)

AmaxT2 = (11− 1) � 1+ 1 = 11 = MA (16)

DEPCT2 = [2, 11] (17)

Then, after the estimation of the domain of all the EPCs
taken into account by RARA, five trapezoidal membership
functions have been designed within each domain DEPCj .
Successively, a linguistic variable has been assigned to each
MF developed in this work to rapidly and easily describes the
affect level of the considered EPC.

The five corresponding linguistic variables are the follow-
ing {Very Low; Low; Moderate; High; Very High}.

The results of the preliminary EPCs fuzzification step are
shown in Table 4, where the fuzzy sets developed for each
EPC are listed. For the definition of each EPC see [13].

For the sake of brevity, the following notation for trape-
zoidal membership function have been used in table 4:

ATRAP = (z1, z2, z3, z1) (18)

where the relationship between mathematical notation and
trapezoidal membership function is explained in fig. 3.

The two above-described steps are preliminary phases car-
ried out only one time. It is not necessary to repeat the GTT
and EPC fuzzification steps every time that a human error
probability is assessed by means of the proposed method.
Therefore, a suitable tool has been specifically developed
using MATLAB R2020b to automatize the assessment using
the proposed method. A screenshot of the Graphical User
Interface is reported in fig. 4. The top left panel of the
developed software allows to select the Generic Task Type
that better describes the task that the operator must perform.
Then the panel also allows to select the membership function
that is the optimal choice (Step 3) according to the analyst
performing the assessment. The top figure in the center of the
tool illustrates the membership functions of the selected task
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FIGURE 2. Membership functions proposed to estimate the HEP of each generic task type (GTT) included in the procedure.

within the proper domain DGTTi . The bottom left panel of the
software allows to select the EPC that affect the performances
of the operator. It also allows to select the membership func-
tion using the linguistic variable that better describe the affect
level of the selected EPC (Step 4). The bottom figure in the
center of the tool illustrates the membership functions of the
selected task within the proper domain DEPCj . Step 4 could
be repeated several times selecting different EPCs. The right
panel in the developed tool resumes the selected task and
the selected EPC with their relative membership functions.
Fig. 5 shows the data entry dialog box of the developed
software after the selection of GTT and all EPCs.

The top subplot in the central panel of the tool illustrates
the selected membership function of the proper GTT (in this
case task R6, membership function ‘‘Low’’). The bottom
subplot shows the last chosen EPC, while the complete list
of EPC is reported in the right panel.

The following step (Step 5) consists in the evaluation of the
fuzzy human error probability H̃EP by means of fuzzy arith-
metic. The choice of fuzzy multiplication in spite of a rule-
based methods has been made because of its simplicity and
its easiness of implementation. To perform fuzzy arithmetic
operations, the α-cut theory has been taken into account. Any
fuzzy set can be described by specifying its α-cut. More in

detail, a fuzzy set can be obtained as upper envelope of its
α-cut, where the α-cut of a fuzzy set X is a crisp set Xα that
contains all elements in the domain that have membership
degree greater than or equal to α. Considering two fuzzy sets
X and Y described using the following trapezoidal member-
ship functions µX (z) and µY (z) respectively [50], [51]:

µX (z) =



z−aX
bX − aX

if aX < z < bX

1 if bX ≤ z < cX

dX−z
dX − cX

if cX ≤ z < dX

0 otherwise

(19)

µY (z) =



z−aY
bY − aY

if aY < z < bY

1 if bY ≤ z < cY

dY−z
dY − cY

if cY < z < dY

0 otherwise

(20)

Then the α-cut of the fuzzy sets X and Y are given
by [52], [53]:

Xα = [Xα−L,Xα−R] (21)

128654 VOLUME 9, 2021



L. Ciani et al.: Improving HRA for Railway Systems Using Fuzzy Logic

TABLE 4. Trapezoidal membership functions proposed to estimate the effects of each EPC included in the procedure.

FIGURE 3. Example of a generic trapezoidal membership function.

Xα =
[
aX + α1/n (bX − aX) , dX − α1/n (dX − cX)

]
(22)

Yα = [Yα−L,Yα−R] (23)

Yα =
[
aY + α1/n (bY − aY) , dY − α1/n (dY − cY)

]
(24)

The multiplication of two fuzzy sets could be achieved
using interval arithmetic, as follow [54]–[56]:

Tα = Xα � Yα = [Tα−L,Tα-R] (25)

Tα−L = min (Xα−L � Yα−L,Xα−L � Yα−R,Xα-R
�Yα−L,Xα-R � Yα-R) (26)

FIGURE 4. MATLAB graphical user interface developed to rapidly
implement the proposed approach for HEP estimation. The screenshot
represents the dialog box for data entry.

Tα-R = max (Xα−L � Yα−L,Xα−L � Yα-R,Xα-R
�Yα−L,Xα-R � Yα-R) (27)

where the operator� is the multiplication between two fuzzy
sets performed by means of α-cut and interval arithmetic.

Finally, according to [52] the membership function µT (z)
of the fuzzy set Tα = [Tα−L,Tα-R] achieved after
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FIGURE 5. Screenshot of the MATLAB tool after the selection of GTT and
EPC. The input data are collected inside the right panel. The
figure illustrates the selected task and the last chosen EPC.

multiplication of two fuzzy sets is given by:

µT (z) =


f1 (z) if aXaY < z < bXbY
1 if bXbY≤ z ≤cXcY
f2 (z) if cXcY < z < dXdY
0 otherwise

(28)

The functions f1 (z) and f2 (z) are not linear relationships
as in Equation (19) or Equation (20). Instead, the effect of
the multiplication by α-cut is the alteration of the trapezoid
shape into semi-trapezoid shape where the linear increase and
decrease from µT= 0 to µT = 1 and vice versa become a
square root function.

The above-mentioned theory of fuzzy multiplication has
been used to evaluate the fuzzy human error probability H̃EP
(Step 5). In particular, the latter is given by the product of
the fuzzy membership function of the selected task H̃EPbi
(selected during Step 3) with an overall weighting factor W̃.
Thus, the fuzzy human error probability is given by:

H̃EP = H̃EPb � W̃ (29)

The weighting factor W̃ is a fuzzy set which takes into
account every affect Ãj selected during Step 4. The following
equation is used to obtain this factor:

W̃ = Ã1 � Ã2 � · · · � Ãp =

p∏
j=1

Ãj (30)

where p is the number of selected EPC during the several
repetition of Step 4. The product symbol

∏
in Equation (30)

represents the fuzzy product � of a sequence of factors.
Consequently, substituting Equation (30) into Equation (29)
the fuzzy H̃EP is given by:

H̃EP = H̃EPb �
p∏

j=1

Ãj (31)

where H̃EP is the fuzzy human error probability described by
the membership function µHEP (z).

Finally, Step 6 consists in the defuzzification of the
obtained fuzzy human error probability using the centroid
method.

Starting from a fuzzy number and its corresponding mem-
bership function the defuzzification procedure is the pro-
cess of generating a crisp logic value related to the starting
fuzzy value. The centroid defuzzification is one of the most
implemented defuzzification method in reliability engineer-
ing according to [41]. It returns HEP∗ which is the center
of gravity of the fuzzy number described by the membership
function µHEP (z) as follow [57]:

HEP∗ =

∫
z � µHEP (z) dz∫
µHEP (z) dz

(32)

The developed tool automatically implements Step 5 and
Step 6 after the selection of the base HEP and the affect value
of the proper EPCs. The output box of the developed tool is
illustrated in Fig. 6, where both fuzzy human error probability
H̃EP and defuzzified HEP∗ are shown.

The developed software allows an easy and rapid imple-
mentation of the proposed fuzzy-based approach. The analyst
is able to perform the HEP assessment following just few
simple steps without have to deal with numerical estimations.
The linguistic variables used in the tool allows to easily carry
out the assessment in a way that is more suitable to human
reasoning, decreasing subjectivity and possibility of error
during the evaluation.

Furthermore, this procedure allows to easily simulate dif-
ferent scenarios for the considered task easily and rapidly
changing the membership functions of the selected EPCs or
simply introducing or removing one or more EPCs.

FIGURE 6. Output box of the developed MATALB graphical user interface.
The software provides the fuzzy HEP and the defuzzification result, along
with a note with the selected membership functions used to evaluate
the HEP.

IV. CASE STUDY
A. AUTOMATIC TRAIN PROTECTION SYSTEM
Railway signaling systems are used to regulate the safe move-
ments of trains. This kind of systems are able to direct railway
traffic in order to keep trains clear of each other at any
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times. In order to do that, railway signaling systems comprise
train detection units used to identify the exact position of
each train, semaphores, different kind of signals, a central-
ized traffic unit and several safety-related systems used to
protect the safety of passengers and operators in case of
failure (including hardware failure, software malfunctions
and human errors).

One of the most important safety-oriented systems is the
Automatic Train Protection (ATP). It is used to constantly
monitor the speed of the train in order to ensure that the
current speed is compatible with the speed allowed by signal-
ing in the area of interest. In case the train speed overcomes
the allowed track speed, then the ATP detects this hazardous
condition and it activate an emergency brake to decrease
the train speed or, in particular circumstances, to stop the
train. Therefore, ATPs are particularly useful to identify both
hardware failures and/or human errors. If the driver of the
train fails to obey an instruction of railway signaling the ATP
mitigates this failure adapting the train speed to the require-
ment of the signaling [58], [59]. ATPs are based on two
subunits interacting with each other:

• An onboard subsystem.
• A ground subsystem.

The ground unit of the ATP under test is illustrated
in Fig. 7. It comprises a set of two antennas (usually called
balises) deployed in different points of the rail tracks. Usually,
these kinds of transponder are located near a semaphore or
a reduced speed zone and they are used to relay informa-
tion regarding the signaling to the onboard subsystem of the
passing train. Most of the available ATPs use two nearby
balises located in the center of the railroad track to ensure
high reliability and safety requirements.

To avoid crosstalk and ensure a correct communication
between onboard unit and ground unit a set of strict require-
ments are forced during the balise installation.

FIGURE 7. Scheme of the automatic train protection system under test
highlighting the devices of the ground subunit (two balises, an encoder
and a semaphoric unit).

Another important equipment of the ATP under analysis
included within the ground subsystem is the encoder which
is used to convert the signaling information from semaphores
and signals into messages suitable for the balises.

B. HUMAN ACTIVITIES PERFOMED ON ATP
An Automatic Train Protection system is a reliable and safe
equipment used to correct the train driver errors. Therefore,
it is improbable that a driver error will lead to an accident
if ATP are properly used. Consequently, the human activi-
ties significant for the safety of the railway systems mainly
reside in the design, installation, verification andmaintenance
phases of the ATP itself. Table 5 includes the most critical
human activities performed by specialized operator on the
ATP under analysis. These activities have been studied in
the next subsections in order to estimate the human error
probability of each operation in different scenarios.

TABLE 5. Human operations performed on the ground unit of an
automatic train protection system.

C. HUMAN ERROR PROBABILITY ESTIMATION
After the preliminary steps 1-2 automatically performed by
the developed tool, step 3 of the proposed procedure consists
in the selection of the proper task for the considered human
operation. The four above-described human operations have
been studied considering:
• Balise Laying: GTT R3 has been chosen since this is a
simple task performed following suitable well-defined
procedures. The selected MF is the lowest admissible
(‘‘Very Low’’) since it is a standardized procedure car-
ried out by well-trained operator.

• Balise Configuration: GTT R4 has been selected
because this is a skill-based task performed by a well-
trained operator. The operation is simple, but there is
some possibility of confusion due to the programming of
several identical balises. The selected MF is the lowest
admissible (‘‘Low’’).

• Maintenance: GTT R6 is the task of RARA specifically
developed for maintenance actions following a proce-
dure. The selectedMF is the lowest admissible (‘‘Low’’)
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since it is a standardized procedure carried out by expe-
rienced operator.

• Encoder wiring: GTTR3 has been selected since this is a
simple action performed following suitable well-defined
procedures. The selected MF is ‘‘Low’’ which is a bit
higher than the balise laying since it requires a higher
mental involvement.

Once selected the GTT and its membership function, some
scenarios of the external and internal conditions are proposed.
In particular, for each one of the operation two different
scenarios are taken into account:

1. Optimal case is the most likely situation.
2. Stressed and Fatigued when the operators are tired and

stressed because of previous work or personal reasons.
Both scenarios consider the same EPCs as follow:
• T2: ‘‘a shortage of time available for error detection
and correction’’. To perform the operations on ATP,
the railway line must have been blocked. Thus, the oper-
ators have to work quickly to minimize the railroad
unavailability.

• P2: ‘‘fatigue from shift and work patterns’’. It represents
the likelihood that operators are tired from the previous
works.

• P6: ‘‘low workforce morale’’. It stands for the conse-
quences of the fatigue and stress from the work shift.

• E: ‘‘a poor or hostile environment’’. These operations
have to be performed outdoor on the track and generally
at night, moreover sometimes the work locations are
accessible only by walking.

Some important EPCswhich are usually taken into account
during this kind of analysis has been neglected thanks to fun-
damental information provided by the company that manage
operation and maintenance of the ATP under analysis. In par-
ticular, EPCs related to experience of the operators and their
perceived risk have been neglected since the operators that
perform the tasks are experienced and well-trained regarding
the risk of their work. Moreover, detailed documentations
regarding the specific tasks is regularly provided by the com-
pany to the operator allowing the analyst to neglect several
others EPCs.

Table 6 summarizes all the scenarios considered in this
work. For the sake of representation, only the first letter of
each linguistic variable has been used, namely VL = Very
Low, L = Low, M = Moderate, H = High and VH = Very
High.

The four tasks have been studied considering the above-
mentioned EPCs and taking into account both stressed and
non-stressed operators (Scenario 1. And 2. Respectively).
The EPCs P2 and P6 related to stress and fatigue conditions
have been set ‘‘Very Low’’ for all the tasks in the Optimal
scenario, while have been set ‘‘Very High’’ for all the tasks
in the second scenario. This option allows to easily quantify
the effect of a stressed and fatigued operator on the human
error probability. The environment-related EPC (E) has been
set ‘‘Moderate’’ in case the operation has to be performed on
the tracks (i.e. Balise laying and Maintenance), while it has

TABLE 6. Input data used to calculate the human error probability of the
four considered operations in two different scenarios.

a minor effect (‘‘Very Low’’) in case the task is performed
near the tracks (i.e. Balise configuration and Encoder wiring).
Finally, the T2 EPC related to the available time has been set
considering the average task duration of each task.

The results of the Human Error Probability assessment
(Step 5 and Step 6) are illustrated in Fig. 8. Each subplot
shows fuzzy human error probability H̃EP (continuous trend)
and defuzzified HEP∗ (vertical dotted line) of a single task in
both the considered scenarios. The Optimal case is illustrated
using blue lines, while the red color stands for the Stressed
and Fatigued scenario.

Analyzing Fig. 8 is clear that the P2 and P6 EPCs related
to the stress and fatigue conditions of the operator deeply
affect the human performances. Both fuzzy H̃EP and defuzzi-
fied value HEP∗ show a remarkable increase when the sec-
ond scenario is taken into account. Such increment remarks
the importance of stress management to ensure a low error
probability.

Furthermore, railway companies should develop the work-
ing shift and the maintenance operations taking into account
the negative effect of fatigue and long consecutive shifts.

In addition, is fundamental to note that the defuzzification
operation is a practical but also a simple solution for order-
ing of outcomes. Defuzzification allows to remove all the
uncertainties providing a single crisp value which represents
the complete fuzzy set. Despite the removal of the com-
plete fuzzy set, the defuzzified crisp value can still provide
satisfactory ordering outcomes as it is possible to see in
Fig. 8. The major contribution of the defuzzified outcome
is given by the easiness of results comparison and outcomes
ordering. However, one of the potentialities of the proposed
fuzzy-based method is the results contained in the complete
fuzzy set domain (including uncertainties). Therefore, ana-
lysts should always take into account both the complete fuzzy
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FIGURE 8. Results of the proposed approach. Fuzzy human error
probability and defuzzified HEP considering two different scenarios
(optimal case in blue and stressed and fatigued in red). Each plot
illustrates the results of a different activity.

set and the defuzzified outcome because each output provides
useful information.

In order to better compare the results of the proposed
approach, Fig. 9 illustrates a bar chart of the defuzzified
HEP∗. Each set of bars stands for a different operation. The
optimal case is illustrated using blue bars, while the red bars
stand for the Stressed and Fatigued scenario. What stands
out from the figure is that the Maintenance Operation is the
most challenging task for the ATP under analysis in both
the analyzed scenarios. This is mainly due to the fact that
the maintenance operation requires a sequence of different
activities involving fault diagnosis, control and verification.
Another critical task is the encoder wiring which provides
the second highest HEP∗ due to the high number of cables
to be connected. Balise laying and balise configuration result
to be less critical and challenging, with a lower human error
probability.

The proper working of railway signaling systems is funda-
mental to ensure safety of passengers and operator. Therefore,
the latter comparison should be useful to companies to take
adequate countermeasures and prevent a high likelihood of
accident due to human errors. First of all, railway companies
should plan the working shifts trying to avoid fatigued and
stressed operator.

Even if the operator could be stressed and fatigued not only
because of previous work shifts, it is essential to guarantee
adequate rest to the workers in order to minimize the proba-
bility of a human error during maintenance, installation and
verification phases of ATP. Furthermore, the ordering out-
come of the four studied tasks must be carefully considered
by companies during the work planning. Since maintenance
has proven to be a much more complex tasks characterized
by higher error probability, it is important to ensure that only
highly specialized and well-trained experienced operator will
perform such critical task.

V. COMPARISON WITH AN EXISTING METHOD
In order to test and validate the effectiveness of the fuzzy-
based proposed approach the results of the previous analysis

FIGURE 9. Bar chart of the defuzzified HEP∗ obtained using the proposed
approach considering four different tasks and two simulation scenarios
(1. Optimal case using blue and 2. Stressed and Fatigued using red).

are compared with a human error probability estimation
achieved using the well-known RARA method.

The RARA technique has been chosen as state-of-the-
art comparison because it represents the only HRA method
specifically developed for railway engineering. Furthermore,
RARA is the starting point of the proposed fuzzy-based
approach. Consequently, a comparison with RARA ismanda-
tory to validate the results achieved by the proposed method.
At the same time, it also represents the only comparative
analysis significant for the scope of this work.

Table 7 summarizes the input data required by the RARA
method for each one of the considered tasks. For the sake
of comparison, the GTT and the EPCs selected in the
RARA assessment are the same one used in the proposed
approach. The nominal HEP of each task has been selected
within the range of the admissible value provided by RARA
following the guidelines of the company that manage opera-
tion and maintenance of the ATP under analysis. The APOA
value of each EPC has been assessed following the same con-
siderations of the previous analysis. Each Affect is calculated
using Equation (1), while the resulting HEP is evaluated with
Equation (3).

The comparison between RARA and the proposed fuzzy-
based approach is shown in Table 8, where the HEP of the
four operations is reported considering both scenarios.

The differences between the Human Error Probability
provided by RARA and proposed approach are negligi-
ble leading to comparable results of all the studied oper-
ations. Therefore, the proposed approach is validated by
the comparison with the widest used technique in railway
engineering.

The main advantages of the proposed fuzzy-based method
are the following:

• The proposed approach provides a range of possible
HEP with different degree of membership. This is a
fundamental skill since HRA is not an exact science and
therefore is not recommended to consider a crisp HEP
value.

• Fuzzy logic is the most suitable approach in case of
incomplete and uncertain data. In fact, data regarding
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human error in railway are not always available, espe-
cially in case of near miss.

• Comparing the required input data for the proposed
approach and the RARA method is extremely evident
how the parameters assessment is easier using the pro-
posed approach. In fact, the use of linguistic variables
to assess the input data is closer to human intuition than
numbers assessment.

• Fuzzy minimizes subjectivity of the assessment as well
as it accurately balances the tradeoff between precision
and significance.

TABLE 7. Input data used to calculate the human error probability using
the RARA method available in literature.

TABLE 8. State-of-the-art comparison between classical RARA method
and proposed fuzzy-based approach.

VI. CONCLUSION
Human errors are one of the primary causes of accidents in
railway. Despite several different techniques are available to
study human reliability, Railway Action Reliability Assess-
ment (RARA) is the only method specifically developed for
railway industry. In this paper an innovative fuzzy-based
approach has been presented to evaluate the human error
probability of railway-related operations. The database of
RARA has been used as a starting point for the proposed
procedure. Then, fuzzy logic has been implemented to over-
come the subjectivity of the assessment and to deal with the
uncertain data that characterize human reliability analysis.
The α-cut theory and fuzzy interval arithmetic are used to
calculate the human error probability.

To test and validate the performances of the proposed
approach, the procedure has been applied to four human oper-
ations performed on an automatic train protection system.
The method shows full compatibility of the results provided
by RARA, without necessity to select number and values
during the assessment. Therefore, this procedure could be
performed also by non-expert analysts with minimum sub-
jectivity.
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