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Abstract. We continue the recent investigation [40] about the quali-
tative properties of the solutions for a class of generalized Liénard sys-
tems of the form ẋ = y − F (x, y), ẏ = −g(x). We present some results
on the existence/non-existence of limit cycles depending on different
growth assumptions of F (·, y). The case of asymmetric conditions at
infinity for g(x) and F (x, ·) is also examined. In the second part of
the article we consider also a bifurcation result for small limit cycles
as well as we discuss the complex dynamics associated to a periodically
perturbed reversible system.
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1. Introduction and “state of art”

In the present work we continue the investigation initiated in the recent
article [40], dealing with a new class of planar dynamical systems of the form

(S)

{
ẋ = y − F (x, y)

ẏ = −g(x).

For this reason, we believe that it may be appropriate to recall some results
recently appeared in [40], because, as far as we know, this is the first case in
which this general class of systems was investigated.

For convenience, throughout the paper, we suppose that F : R × R → R
and g : R→ R are locally Lipschitz continuous functions, in order to guarantee
the uniqueness of the solutions for the associated initial value problems. As it
is well known, for some specific forms of g and F weaker regularity conditions
may be assumed (see, for instance, [1, 32]). We also assume

(g0) g(0) = 0, g(x)x > 0 for x 6= 0
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and

(F0) F0(y) := y − F (0, y), vanishes only at y = 0,

therefore the origin is the only singular point of (S) and, moreover, the trajecto-
ries move upward in the half-plane with x < 0 and downward in the half-plane
with x > 0. When F ≡ 0, we have the planar system associated to the Duffing
equation, namely

(D)

{
ẋ = y

ẏ = −g(x),

with is a conservative system (cf. [17, 22]) with first integral (energy) given by

H(x, y) =
1

2
y2 +G(x), for G(x) =

∫ x

0

g(u) du.

Under assumption (g0), the origin is a center for (D) and it is a global center
if and only if G(x) → +∞ as |x| → +∞. Using the same energy function for
system (S), we have

Ḣ(x, y) = −F (x, y)g(x).

Therefore, the sign of F (x, y) determines the direction of the trajectories with
respect to the level lines of H. In the sequel, we will also consider a variant of
(g0), namely

(g1) g(0) = 0, g(x)x > 0 for x 6= 0, G(x)→ +∞ for x→ ±∞.

On the other hand, if F (x, y) = F(x), then system (S) reduces to{
ẋ = y − F(x)

ẏ = −g(x),

which is the usual generalization of the classical planar system

(L)

{
ẋ = y − λF(x)

ẏ = −x,

introduced by A. Liénard in [23] in his pioneering work about the “oscillations
entretenues” motivated by the study of the Van der Pol equation, where

F(x) =
x3

6
− x

(see also [14, 15, 26]). From this point of view, system (S) can be viewed as
a further generalization of the Liénard one (L) and, with this perspective, in
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the recent article [40] we have initiated the investigation of (S), focusing our
attention to the special case in which F splits as

F (x, y) = λB(y)A(x), for λ > 0,

where B(y) > 0 for y 6= 0 and A(x) satisfies the standard assumptions on F(x)
in the classical case. In the particular, we have shown in [40] that the choice
of a significant case study given by

B(y) = |y|p, A(x) = x3 − x,

already exhibits the mean features of this problem that, as far as we know,
have not been investigated before.

In such a framework the following results are proved in [40] for system

(Hp,λ)

{
ẋ = y − λ|y|p(x2 − 1)x

ẏ = −x,

with λ > 0 and p > 0.

Theorem 1.1. (The “sublinear” case [40, Theorem 3]) For every λ > 0 and
0 < p < 1, system (Hp,λ) has exactly one limit cycle.

Notice that for 0 < p < 1 the uniqueness of the solutions for the initial
value problems is still guaranteed, even if the term B(y) = |y|p is not locally
Lipschitz at y = 0.

On the other hand, for p = 1, we obtain:

Theorem 1.2. ([40, Theorem 1]) The system (H1,λ) has a unique limit cycle
for 0 < λ < λ∗ = 3

√
3/2, while, for λ > λ∗ there are no limit cycles.

The study of the case when p > 1 is more delicate due to different struc-
ture of the isoclines. In fact, we have ẋ = 0 in (Hp,λ) if y = 0 or y =(
1/(λ(x3 − x))

)1/(p−1)
(y > 0), as well as y = −

(
1/(λ(x− x3))

)1/(p−1)
(y < 0).

The regions

V1 :=
{

(x, y) : −1 < x < 0, y > 0, |y|p−1 > 1
λ(x3−x)

}
,

V2 :=
{

(x, y) : 0 < x < 1, y < 0, |y|p−1 < − 1
λ(x3−x)

}
,

which are symmetric with respect to the origin, play a crucial role in the dynam-
ics, because they are are positively invariant and therefore all the trajectories
entering such regions become unbounded in the y-component. We also define
the negatively invariant regions

W1 :=
{

(x, y) : x > 1, y > 0, |y|p−1 > 1
λ(x3−x)

}
,

W2 :=
{

(x, y) : x < −1, y < 0, |y|p−1 < − 1
λ(x3−x)

}
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(see Figure 1), where unboundedness in backward time occurs, as well as pos-
sible blow-up in finite negative time. We notice, however, that all the solutions
are globally defined in forward time.

Figure 1: The infinite-isocline and the zero-isocline for system (H2,λ) and the cor-
responding regions Vi and Wi for i = 1, 2. The graph is produced using [42], for a
suitable λ > 0. Different values of λ gives the same qualitative structure; however,
increasing the value of λ moves the regions closer to the x-axis and therefore when
λ is larger than a critical value, all the nontrivial solutions definitively enter V1 ∪ V2
and become unbounded in the future (see [40]).

In this situation, the following result holds.

Theorem 1.3. (The “superlinear” case [40, Theorem 2]) There is λ∗2 > 0 such
that for every λ ∈ ]0, λ∗2[ system (H2,λ) has at least a limit cycle, while for
λ > λ∗2 all the nontrivial trajectories are ultimately unbounded.

The critical constant in Theorem 1.3 is numerically estimated as

1.474 < λ∗2 < 1.475.

The same result holds for the systems (Hp,λ), for all p > 1, providing the
existence of a corresponding critical constant λ∗p (see [40, Remark 3]). We
observe also that (as proved in [40]) Theorem 1.1 and Theorem 1.3, even if
proved for the special case of systems (Hp,λ), hold for more general systems of
the form

(S1λ)

{
ẋ = y − λB(y)A(x)

ẏ = −g(x),

with B(y) positive for y 6= 0 and having sublinear/superlinear growth at infinity
and A(x) a typical cubic-like function as in the classical Liénard system.

The peculiar features exhibited by systems (Hp,λ), especially in the su-
perlinear case, have raised the attention of other researchers in the field. In
[13, Theorem 3.7] Gasull and Giacomini, using the Bendixson-Dulac approach,
estimate that (Hp,λ), has no limit cycles for

λ ≥ 3√
2

(
3

p

)p/2
, (with p ∈ N, p ≥ 2).
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As mentioned at the beginning, in the present article, we continue the anal-
ysis of system (S) from different points of views. More in details, in Section 2
we present some preliminary results, together with necessary conditions and
sufficient ones for the intersection with the ∞-isocline. Such conditions will
be used in Section 3 to prove our main result, namely the existence of limit
cycles, for a sub-class of (S) not considered before and including some asym-
metric conditions. Section 4 is devoted to an averaging/bifurcation approach
which complements the results in [40]. Finally, in Section 5 we apply a recent
result in [30] to prove the presence of large subharmonic solutions and chaotic-
like dynamics for periodic perturbations of system (S) when the associated
autonomous system has a mirror symmetry with respect to the y-axis.

2. Preliminary results

We start with some basic facts for the general equation

(S)

{
ẋ = y − F (x, y)

ẏ = −g(x),

assuming the usual regularity conditions for the uniqueness of the solutions of
the initial value problems and with g : R → R satisfying (g0). We split this
section in some parts, depending on the different class of conditions which will
be assumed on F (x, y).

2.1. The case when Fy has a constant sign

Our first result provides a simple criterion of nonexistence of limit cycles
when FY has a constant sign.

Proposition 2.1. Assume (g0), F (0, 0) = 0 and let F be a continuously dif-
ferentiable function with Fy(x, y) > 1, for all x, y ∈ R. Then system (S) has no
limit cycles.

The proof is straightforward. In fact, observing that the function

R(x, y) := y − F (x, y)

has Ry < 0, elementary phase-plane analysis shows that the trajectories start-
ing on the y-axis with y > 0 remain in the second quadrant and, symmetrically,
starting with y < 0 remain in the fourth quadrant. This, together with (g0)
prevents the existence of closed orbits.

We observe that, under the additional assumption that g is strictly mono-
tone increasing, this result is well known in a more general setting from the
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theory of Hirsch about monotone systems. Indeed, in this case, system (S)
turns out to be competitive and [19, Theorem 2.3] applies.

On the other hand, in virtue of Dini’s theorem, the following proposition
holds.

Proposition 2.2. Assume (g0), F (0, 0) = 0 and let F be a continuously differ-
entiable function with Fy(x, y) < 1, for all x, y ∈ R. Then the infinite-isocline
is the graph of a function y = φ(x) and the trajectories are clockwise.

The elementary proof is omitted.
The fact that the infinite isocline is a graph allows to better study the

problem of intersection with the orbits. This could be performed along the
lines of [18, 36, 37]. Another way to attack this problem is given in the next
sections concerning the oscillatoriness of all the solutions, because, clearly any
oscillatory solution must intersects the isoclines. Moreover, from now on, we
assume that

F0(y)y > 0, ∀ y 6= 0,

so that the trajectories of system (S) are clockwise. Notice that this assumption
was automatically satisfied in [40] due to the special form of F (x, y) considered
in the above quoted article.

2.2. Oscillatory solutions

At first we observe that, from

Ḣ(x, y) = −F (x, y)g(x),

we immediately see that, if

F (x, y)x < 0 for xy 6= 0 in a neighborhood of the origin, (1)

then the origin is a source. This assumption will be crucial in the following. In
fact, the following result holds.

Theorem 2.3. Under assumptions (g1), (F0) and (1), if |F (x, y)| is bounded,
then all solutions of system (S) are oscillatory.

Proof. We observe that there exists a constant K > 0 such that |F (x, y)| < K.
Now the proof is divided onto two steps.
If x ≥ 0, consider the nested ovals, defined by the level lines of

H̃(x, y) :=
1

2
(y +K)2 +G(x), (2)

introduced by Ponzo and Wax in [31] and appeared also in [36] and [6]. It is
easy to check that the level curves of H̃ are those of the Duffing system shifted
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by −K and ˙̃H = −g(x)[F (x, y) +K] < 0 for x > 0. Observe that, by (g1), the
origin of the Duffing system (D) is a global center. Hence the level lines of H̃
are ellipsoid-like curves centered at (0,−K) and filling the plane.
Now, consider a point P = (0, yP ) with yP > 0 and a point Q = (0, yQ) with

yQ < 0 and such that P and Q are on the same level line of H̃. Being ˙̃H < 0
for x > 0 and using the fact that the origin is a source, it is easy to check that
the positive semi-trajectory γ+(P ) is guided by the level curve and intersects
the y-axis at a point (0, y1) with yQ < y1 < 0. In the same way, for x ≤ 0,
using the function

Ĥ(x, y) :=
1

2
(y −K)2 +G(x), (3)

where the level curves of H are those of the Duffing system shifted by +K, and
considering two points R = (0, yR) with yR < 0 and S = (0, yS) with yS > 0
which belongs to the same level line of Ĥ, we get that γ+(R) intersects the
y-axis at a point (0, y2) with 0 < y2 < yS . In fact, now we have

˙̂
H = g(x)[K − F (x, y)] < 0 for x < 0. (4)

Therefore, all trajectories are oscillatory.
As a side remark we observe that the existence/nonexistence of limit cycles is
not relevant for the proof. On the other hand, the assumption (1) cannot be
avoided, otherwise we cannot exclude the presence of non-oscillatory solutions
tending to/escaping from the origin, as for instance, in the case in which the
origin is a stable node or a homoclinic point.

2.3. Necessary and sufficient conditions for the
intersection with the ∞-isocline

In order to attack the problem of the existence of a limit cycle, a critical step
is the intersection with the ∞-isocline, namely to prove that the trajectories
intersect the set

y = F (x, y).

In this light, we prove some necessary conditions for the intersection, as well
as some sufficient ones. We consider in detail the case in which x > 0. The
symmetric case x < 0 can be treated in the same way with slight modifications.
We show that a modification of the argument introduced in [36] works also in
this situation.

Theorem 2.4. Assume here exists a continuous function φ1 : [0,+∞) → R
such that

F (x, y) ≤ φ1(x), ∀x ≥ 0 and ∀ y.
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Then, a necessary condition for the intersection with the infinite isocline is that

lim sup
x→+∞

(G(x) + φ1(x)) = +∞. (5)

Notice that in (5) the “lim sup” concerns only the function φ1 as G(+∞)
always exists because G is monotone increasing.

Proof. Assume, by contradiction, that G(x)+φ1(x) is upper bounded on x ≥ 0.
Therefore, there exists two positive constants, L,K such that

G(x) < L, φ1(x) < K, ∀x ≥ 0

and, therefore F (x, y) < K.
Arguing as in [36], consider again the function Ĥ defined in (3). Now we

have
˙̂
H = g(x)[K −F (x, y)] > 0 for x > 0. Compare with (4) and observe that

now g(x) > 0. Therefore, the trajectory starting from any point (0, y0) with
y0 > K +

√
2L is bounded away from the line Ĥ(x, y) = L, which, being above

the line y = K, separates the trajectory from the ∞-isocline.

In the same way, the following result holds.

Theorem 2.5. Assume there exists a continuous function φ2 : (−∞, 0] → R
such that

F (x, y) ≥ φ2(x), ∀x ≤ 0 and ∀ y.

Then, a necessary condition for the intersection with the infinite isocline is that

lim sup
x→−∞

(G(x)− φ2(x)) = +∞. (6)

Now we treat the sufficient conditions and we have the following theorem
for the case x > 0.

Theorem 2.6. Assume

i) G(x)→ +∞ as x→ +∞ and let F (x, y) be bounded below on x ≥ 0,

or, alternatively,

ii) G(x) < L for all x > 0 and there exists φ : [0,+∞) → R continuous
and such that F (x, y) ≥ φ(x),∀x ≥ 0,∀ y with lim sup

x→+∞
φ(x) = +∞ and φ

bounded below.

Then any trajectory starting from a point (0, y0) with y0 > 0 intersects the
∞-isocline.
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Proof. The first case was already treated in Theorem 2.3 of Section 2.2. We
just observe that the proof of Theorem 2.3 clearly works the same if we assume
F (x, y) bounded below for x ≥ 0 and bounded above for x ≤ 0.

For the second case, we need to develop a more detailed analysis of the
vector field of system (S). Arguing as in Section 2.2 we introduce the function H̃

defined in (2), where K is a lower bound for φ. Note that ˙̃H(x, y) < 0, because
g(x) > 0. Therefore, trajectories of system (S) enters the curve H̃(x, y) = L
(see [36] and also [6]). Figure 2 shows the situation.

Figure 2: The figure represents the level lines of H̃ with K = 1 and g(x) = x
1+x8

,

with L = π
√
2

8
. The arrows of the vector field indicate that a trajectory of system

(S) departing from a point P on the level line of H̃ passing through (0,−M) (with
M = K +

√
2L), enters the region H̃ < L and is bounded away from the x-axis in

the backward time. The graphs are produced using [42].

Consider a point (0, y0) with y0 > 0 and therefore above the∞-isocline. The

slope of the trajectory, namely y′ = −g(x)
y−F (x,y) is negative; hence, if the trajectory

does not intersects the∞-isocline, then it is the graph of a decreasing function,
bounded from below by the line y = −M := −K −

√
2L and hence it must

have a horizontal asymptote. This is not possible because if we compare with
the solution of the auxiliary system

ẋ = y − φ(x), ẏ = −g(x),

we have that, according to [36], if lim sup
x→+∞

φ(x) = +∞, then the trajectories of

such system starting from (0, y) with y > 0 intersects the corresponding ∞-
isocline, namely y = φ(x) and thus the possibility of a horizontal asymptote is
prevented. Being F (x, y) ≥ φ(x), a comparison of the respective slopes shows
that the trajectories of system (S) are guided by the ones of the auxiliary
system and this concludes the proof.

In a similar manner, we have also the following result.
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Theorem 2.7. Assume

i) G(x)→ +∞ as x→ −∞ and let F (x, y) be bounded above on x ≤ 0,

or, alternatively,

ii) G(x) < L for all x < 0 and there exists φ : (−∞, 0] → R continuous
and such that F (x, y) ≤ φ(x),∀x ≤ 0,∀ y with lim inf

x→−∞
φ(x) = −∞ and φ

bounded above.

Then any trajectory starting from a point (0, y0) with y0 < 0 intersects the
∞-isocline.

3. The non-symmetric case. Existence of limit cycles

The results proved in the previous sections allow us to obtain theorems on
the existence of limit cycles for system (S). In this light we also consider, like
in [40], the special case in which F splits as F (x, y) = B(y)A(x), namely

(S1)

{
ẋ = y −B(y)A(x)

ẏ = −g(x),

with g satisfying (g0) and A(0) = 0. An example in this context will be pre-
sented in the sequel. On the other hand, differently than in [40], where the
case G(x) → +∞ for x → ±∞ and F (x, y) of positive definite sign outside a
vertical strip was analyzed, here we investigate a situation in which a certain
degree of asymmetry is allowed in the functions G and F.

With this respect, we preliminarily observe that if G(x)→ +∞ as x→ ±∞,
then, as proved in the preceding section, a condition of the form

F (x, y) > −K for x > 0 and F (x, y) < K for x < 0,

is sufficient to have the large solutions to wind/unwind around the origin. This
however is not enough to guarantee the existence of limit cycles, but only to
have the oscillatoriness of the solutions. On the other hand, if we do not assume
the condition of divergence of G(x) from both sides, the situation is completely
different. For sake of simplicity, we consider the case of G(x) such

G(−∞) = +∞, G(+∞) = L, for some L > 0.

The opposite case can be considered in the same manner. As usual, in order
to get the existence of a periodic orbit, via the Poincaré-Bendixson theorem,
we need to introduce a winding trajectory. The idea is the following: we use
Theorem 2.6 in the case ii) to produce a trajectory which does not intersect
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the positive x-axis back in time. For x < 0 we apply Theorem 2.7 in the case i)
(see also Theorem 2.3) in order to prove that such a trajectory intersects the
y-axis at some point y0 > 0. Finally, for x > 0, we apply again Theorem 2.6 in
the case ii). Accordingly, the following conditions are now assumed.

Theorem 3.1. Assume (g0), F0(y)y > 0 for y 6= 0 and

F (x, y)x < 0 for xy 6= 0 in a neighborhood of the origin.

Suppose that

G(−∞) = +∞, G(+∞) = L, for some L > 0

and there is φ : [0,+∞)→ R continuous, with F (x, y) ≥ φ(x),∀x ≥ 0,∀ y such
that lim sup

x→+∞
φ(x) = +∞ and φ bounded below. Finally, assume that F (x, y) is

bounded above on x ≤ 0. Then system (S) has at least a stable limit cycle.

Proof. With reference to Figure 2, consider a point P on the level curve H̃ = L
(with x > 0). As proved above, the negative semi-trajectory passing through P
does not intersect the x-axis, while the the positive semi-trajectory intersects
the negative y-axis at a point (0,−y1) above the point (0,−M) with M := K+√

2L. In view of Theorem 2.7, case −i), such positive trajectory intersects the
negative x-axis and then the positive y-axis. At this point, using Theorem 2.6,
case −ii), the positive trajectory intersects the x-axis and again the negative
y-axis at a point (0,−y2) with 0 < y2 < y1 . Hence we have proved the existence
of a winding trajectory. As observed above, the assumption that F (x, y)x < 0,
for xy 6= 0 in a neighborhood of the origin, implies that the origin is a source.
As usual, the Poincaré-Bendixson theorem ensures the existence of at least a
stable limit cycle.

Remark 3.2. Conversely, if we assume

G(+∞) = +∞, G(−∞) = L, for some L > 0,

we can have, in the same way, a dual result, using Theorem 2.6 and Theorem 2.7
in the reverse order.
In the same light we can treat the case in which G(x) is bounded and F (x, y)
is bounded below on x > 0 and bounded above on x < 0. The proofs require
only obvious modifications and are omitted.

The applicability of the above theorem can be verified by several examples.
As a first case, let us consider system (S1) with

B(y) =
(y + 2√

3
)(y2 + 1)

y2 + 3
, A(x) = x(x2 − 1), g(x) = min

{
x,

1

x2

}
. (7)
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Observe that G(−∞) = +∞ and G(+∞) = 3
2 . Notice that F (x, y) is not

always positive outside the strip [−1, 1]. Therefore, the results in [40] cannot
be applied. On the other hand, we are in the environment of Theorem 3.1
and therefore the existence of a limit cycle is granted. Figure 3 of Pinocchio
1(left panel) illustrates the situation. Moreover, as appears in the figure, the
existence of a separatrix, asymptotic to the line y = − 2√

3
, can be easily proved.

As a second example, we consider the case in which F (x, y) is not split as
B(y)A(x), namely,

F (x, y) =
(y + 2√

3
)(y − cos(10x)(cos(10y) + 2.1)x(x− 1)

y2 + 1.1 + sin(x3)
(8)

and g(x) as in (7). Also in this case, Theorem 3.1 applies. Figure 3 (right
panel) illustrates the situation.

(a) Phase-portrait of the system
(S1) with B(y), A(x) and g(x)
as in (7) exhibiting an unexpected
“Pinocchio” shape.

(b) Phase-portrait of the system (S)
with F (x, y) as in (8) and g(x) as
in (7).

Figure 3: The figures summarize the two examples of application of Theorem 3.1,
considered above. The graphs are produced using [42].

4. The superlinear case: an averaging-bifurcation
approach

In this section, we show the effectiveness of a classical bifurcation technique,
dating back to Poincaré (according to Lefschetz [22, pp. 314–320]) and Liénard

1Pinocchio, is a fictional character and the protagonist of the children’s novel “The Ad-
ventures of Pinocchio” by the Italian writer Carlo Collodi (pen name of Carlo Lorenzini)
from Florence. The novel has been translated in almost all languages and the title of the
figure will be evident to the reader.
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to prove the existence of limit cycles bifurcating form a periodic orbit of a cen-
ter when a parameter multiplying the nonlinear terms is small (see also the
introduction and the references in [7] for more information and historical re-
marks on the averaging-bifurcation method in the qualitative analysis of planar
systems). This approach was successfully applied by Duff and Levinson [12]
(see also [34]) to produce multiple limit cycles bifurcating from circular orbits
of the harmonic oscillator and represents a very useful technique to construct
specific examples of multiplicity results for Liénard or Rayleigh equations. We
refer also to [4, Remark 2.4] for another application of this method. As pointed
out by the Referee, this approach has been used in very many papers, even in
the more general case ẋ = y − λP (x, y), ẏ = −x + λQ(x, y), with |λ| a small
parameter and P and Q arbitrary polynomials. Actually, in [7] the method
is generalized to the small perturbations of a planar Hamiltonian system like
ẋ = −yG(x, y) + εA(x, y), ẏ = xG(x, y) + εB(x, y). Hence, from this point of
view, our application to systems of the form (Hp,λ) could be merely considered
as an exercise. On the other hand, we hope that presenting few examples in this
direction can be of some interest, also as a comparison to the global approach
considered in [40]. We give now some details for the reader’s convenience.

As a first step we introduce some polar coordinates. Consider a general
planar system of the form

(SFε) ẋ = y − εF(x, y), ẏ = −x.

where we suppose that F(x, y) is a locally Lipschitz continuous function with
F(0, 0) = 0. System (SFε) can be seen as a perturbation of the linear equation

(Lin) ẋ = y, ẏ = −x.

which represents a global center with all the orbits being concentric circum-
ferences and having 2π as fundamental period. In this context, it is natural
to express the solutions of (Lin) and (SFε) in polar coordinates. For conve-
nience, due to the fact that the trajectories rotates clockwise around the origin,
we propose a modified (but equivalent) polar coordinates system with the an-
gles counted positively oriented in the clockwise sense starting from the positive
y-axis. In this manner, we have that x = ρ sin θ and y = ρ cos θ and a general
nontrivial solution (x(t), y(t)) of a planar system ẋ = X(x, y), ẏ = Y (x, y)
(having the origin as equilibrium point) will satisfy the equationsρ̇ = xX+yY√

x2+y2
= X(ρ sin θ, ρ cos θ) sin θ + Y (ρ sin θ, ρ cos θ) cos θ

θ̇ = yX−xY
x2+y2 = ρ−1

(
X(ρ sin θ, ρ cos θ) cos θ − Y (ρ sin θ, ρ cos θ) sin θ

)
.

This system, in case of (SFε), reduces to{
ρ̇ = −εF(ρ sin θ, ρ cos θ) sin θ

θ̇ = 1− ερ−1F(ρ sin θ, ρ cos θ) cos θ.
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Now, let B(0, R) be an open disc of center the origin and radius R > 0 (with
R sufficiently large) in the phase-plane containing the origin. For ε > 0 small
enough, say 0 < ε < ε0, we have that for all initial points in B(0, R) \ {0} the
solutions of (SFε) are defined in [0, 4π] with values in the larger disc B(0, 2R)
and satisfy θ̇ > 0 for all t ∈ [0, 4π]. Hence (for ε sufficiently small), we can
express the solutions in the (θ, ρ)-plane, as solutions of the equation

dρ

dθ
= − −εF(ρ sin θ, ρ cos θ) sin θ

1− ερ−1F(ρ sin θ, ρ cos θ) cos θ
.

The general method as described in [22, 34] usually considers nonlinear
terms which are polynomials [34] or analytic functions [22], in order to rep-
resents the solutions as series with respect the parameter ε. In our case, we
just need to introduce the first order terms of the expansion, thus, assuming a
sufficiently smooth function F(x, y) (e.g., of class C1) appears to be sufficient
for our purposes (in any case, in our examples of application the nonlinearities
will be of polynomial type).

Taking the first order expansion of ρ(θ) as a function of ε > 0 (for ε→ 0+)
(cf. [22] for the details) we obtain that ρ(2π) − ρ(0) = −εΨ(ρ) + o(ε, ρ, θ),
where

(P ) Ψ(r) :=

∫ 2π

0

F(r sin θ, r cos θ) sin θ dθ

and with o(ε, ρ, θ)/ε → 0+ as ε → 0+, uniformly with respect (ρ, θ) in a
compact set.

Then, according to [22, Theorem 5.5], we can state the following result 2.

Proposition 4.1. Let r0 > 0 be a simple zero of Ψ such that Ψ′(r0) > 0.
Then there exists ε∗ > 0 such that for each 0 < ε < ε∗ there is an orbitally
asymptotically stable limit cycle Γε in a neighborhood of the circumference
C(r0) := {(x, y) : x2 + y2 = r0}. Moreover, Γε tends to C(r0) as ε→ 0+.

Proof. We give only a sketch of the proof, leaving the details to [22, 34]. As-
suming Ψ(r0) = 0 and −Ψ′(r0) < 0, there exists an open neighborhood U of
r0 such that for ρ ∈ U (and ε > 0 sufficiently small), we have ρ(2π)− ρ(0) > 0
when ρ < r0 and ρ(2π)− ρ(0) < 0 when ρ > r0 . This proves that in a narrow
annular neighborhood of C(r0) of the form

V (r0, δε) := {(x, y) ∈ R2 : r0 − δε < (x2 + y2)1/2 < r0 + δε}

there is a stable limit cycle of system (SFε). Moreover, by construction, δε →
0+ as ε→ 0+ from which we find that Γε tends to C(r0).

2Our presentation is not exactly the same (verbatim) as in [22, Theorem 5.5], but it is
substantially equivalent. Moreover, the sign of our function Ψ is the opposite of the equivalent
function considered in [22].
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To show the consistency of our result with the classical ones, consider for a
moment the Van der Pol equation ẍ+ µ(x2 − 1)ẋ+ x = 0 in the Liénard plane

ẋ = y−µ
(
x3

3 −x
)
, ẏ = −x. In this case, we have ε = µ > 0 and F(x, y) = x3

3 −x.
An elementary computation of the integral in (P ) yields to Ψ(r) = r3π

4 − πr,
and so there is a unique positive zero with positive derivative at r0 = 2. In this
manner, we re-obtain the classical result in [22, p. 320].

We consider now an application of Proposition 4.1 to the superlinear case.
In fact, it seems that the superlinear case is the most interesting one to analyze
from the point of view of the bifurcation with respect to small parameters,
because we have already proved that limit cycles do exist only for small values
of the parameter λ. As a first case, we reconsider the system (H2,λ) for which
we already proved the existence/nonexistence result in Theorem 1.3. An ele-
mentary computation of the integral in (P ) yields to Ψ(r) = r5 π8 − r

3 π
4 . This

function has a unique positive zero with positive derivative at r0 =
√

2. Thus
Proposition 4.1 guarantees that when λ > 0 is small there is a (unique) limit
cycle approximating the circumference of center the origin and radius

√
2.

To show the effectiveness of our approach to other superlinear cases (p > 1),
we consider another system related to (H4,λ), namely

(H ′4,λ) ẋ = y − λy4(x4 − 1)x, ẏ = −x,

which fits in the frame of equation (SFε) with ε = λ and F(x, y) = y4(x4−1)x.
An elementary computation of the integral in (P ) yields to Ψ(r) = r9 3π

128 −
r5 π8 . This function has a unique positive zero with positive derivative at r0 =

(16/3)1/4 ≈ 1.519671371. Figure 4 illustrates this situation. The numerical
simulation is performed for λ = 0.3.

Clearly, the same approach can be extended to system (S1λ) with g(x) = x.
In particular, as suggested by the Referee, it might be interesting to apply
Proposition 4.1 to the case when B(y) = |y|p and A(x) is an arbitrary polyno-
mial, namely to the system

ẋ = y − λ|y|pA(x), ẏ = −x,

with A(x) a polynomial of degree n ≥ 2 such that A(0) = 0, that we represent
as A(x) = xÃ(x), with Ã(x) = a0 + a1x + . . . an−1x

n−1. In this case, the
function Ψ in (P ) takes the form of

Ψ(r) = rp+1

∫ 2π

0

(sin2 θ)| cos θ|pÃ(r sin θ) dθ = rp+1P(r),

for P(r) :=
∑

k=0,...,n−1
k even

akckr
k, where ck :=

∫ 2π

0
| sin θ|2+k| cos θ|p dθ (k even).

Now, if we assume a0 < 0 and ak∗ > 0 with k∗ the larger even integer in
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Ã(x) such that ak 6= 0, we know that there is a first positive zero for Ψ where
Ψ′(r0) ≥ 0 and Ψ changes sign from negative to positive values. Checking
whether Ψ′(r0) > 0, in order to enter in the setting of Proposition 4.1, may be
achieved by a more precise analysis on the coefficients of P(r).

(a) Case of system (H ′4,λ) for λ =
0.3, putting in evidence the circum-
ference C(r0) for r0 = (16/3)1/4 and
the part of the infinite-isocline in
the range [−4, 4]×[−3, 3]. Note that
all the regionsWi and Vi for i = 1, 2
are visible.

(b) The phase-portrait of system
(H ′4,λ) for λ = 0.3, showing the fact
that the solutions tend to a limit cy-
cle close to the circumference C(r0)
for r0 = (16/3)1/4. The circum-
ference partially overlaps with the
limit cycle. We have indicated with
a dot the initial point of the orbits.

Figure 4: The figures summarize the essential information for system (H ′4,λ) with
λ > 0 and small, according to Proposition 4.1. The simulation also suggest the fact
that the critical value λ∗ such that there are limit cycles for 0 < λ < λ∗, must be
larger but near to λ = 0.3, since our external trajectory moves very close to the
escaping region V2. The graphs are produced using [42].

Remark 4.2. We observe that the technique exposed in this Section can also
be applied to a more general system of the form ẋ = y − εG(x, y), ẏ = −g(x)
with g and G sufficiently regular functions and g : R→ R satisfying (g1). In this
case, the change of variables u = z(x) :=

√
2G(x) sign(x), introduced in [9],

leads to the equivalent system u̇ = y − εG(z−1(u), y), ẏ = −u which is of the
form of (SFε).

5. Reversible systems and chaotic dynamics for the
periodically perturbed equation

In this section we consider a class of systems of the form

(S1λ)

{
ẋ = y − λB(y)A(x)

ẏ = −g(x),
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for which the orbits are symmetric with respect to the y-axis. Systems with a
symmetry with respect to a line are important in the study of centers and were
considered by professor Roberto Conti in his seminal article [10] (see also [8]
for previous important work on planar centers). For more recent contributions
to this topic, see [33] and the references therein.

Such equations with a line of symmetry are a particular case of the reversible
systems, also studied by Arnold [2] and Moser [27]. A thorough treatment of
the KAM theory for time-dependent reversible systems is contained in the
monograph of Sevryuk [35]. An application of these results to the problem
of the boundedness of the solutions for a class of Liénard equations can be
found in [24]. Consistently with the observation that “there is a very close
similarity between the behaviour of solutions of reversible systems and that
of Hamiltonian ones” (see [35, p. 3]), we have recently extended in [30] some
approaches for the existence of chaotic-like dynamics for periodically perturbed
Hamiltonian systems [25], to a class of forced Liénard equations

ẋ = y − F (x) + E(t), ẏ = −g(x),

with F even and g odd. See also [16, 28, 29, 38, 39] and the references quoted
therein for other results concerning the forced case.

Our aim now is to further extend this type of approach to the perturbed
system

(S2λ)

{
ẋ = y − λB(y)A(x) + E(t),

ẏ = −g(x),

where E : R → R is a piecewise continuous and T -periodic forcing term. For
other results related to [30], see [20].

As a preliminary analysis, we consider system (S1λ) with B(y), A(x) even
and g(x) odd functions. In this situation, it is immediate to check that the
autonomous system is invariant with respect to the composition of a planar
involution R : (x, y) 7→ (−x, y) (i.e., the symmetry with respect to the y-
axis) and time-reversal. In fact, setting u(t) := −x(−t) and v(t) := y(−t) we
obtain the same system as the original one. Notice that the symmetry of the
trajectories with respect to the y-axis does not depend on our choice of B(y)
as an even function. Any choice of B(y) would be fine, provided that A(x) is
even and g(x) is odd. To make a comparison with the results in [40] we will
focus pour attention to the superlinear case and will take B(y) = |y|p with
p > 1. Moreover, we will concentrate, as in [40] to a “case study”, by taking
for A(x) a function, which is negative for 0 < x < 1 and positive for x > 1. In
this manner, we study the model equation

(Rp,λ)

{
ẋ = y − λ|y|p(x2 − |x|)
ẏ = −x,
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with λ > 0 and p > 1. Analogously as in [40] we introduce now the regions

V1 :=
{

(x, y) : −1 < x < 0, y < 0, |y|p−1 < − 1
λ(x2−|x|)

}
,

V2 :=
{

(x, y) : 0 < x < 1, y < 0, |y|p−1 < − 1
λ(x2−|x|)

}
,

which are symmetric with respect to y-axis and are positively invariant, so
that all the trajectories entering such regions become unbounded in the y-
component. We also define the negatively invariant regions

W1 :=
{

(x, y) : x > 1, y > 0, |y|p−1 > 1
λ(x2−|x|)

}
,

W2 :=
{

(x, y) : x < −1, y > 0, |y|p−1 > 1
λ(x2−|x|)

}
,

which are symmetric with respect to the y-axis, where unboundedness in back-
ward time occurs, as well as possible blow-up in finite negative time. However,
as in case of system (Hp,λ), all the solutions of (Rp,λ) are globally defined in
forward time (see Figure 5).

Figure 5: The infinite-isocline and the zero-isocline for system (R2,λ) and the cor-
responding regions Vi and Wi for i = 1, 2. The graph is produced using [42], for a
suitable λ > 0. Different values of λ gives the same qualitative structure; however,
increasing the value of λ moves the regions closer to the x-axis and therefore when λ
is larger than a critical value, all the nontrivial solutions definitively enter V1∪V2 and
become unbounded in the future. It may be interesting to compare Figure 1 with the
present one. The structure of the regions Vi and Wi for systems (Hp,λ) and (Rp,λ)
(with p > 1), as well as their dynamical properties are the same. The only difference,
due to reversibility of system (Rp,λ) is the symmetry of the orbits with respect to the
y-axis.

System (Rp,λ) has a center at the origin. In fact, for |y| small enough, the
orbits are close to those of the harmonic oscillator ẋ = y, ẏ = −x. Hence,
a trajectory departing from a point P0 = (0, y0) with y0 > 0 small enough,
will traverse the right-half plane and cross the y-axis again at a point P1 =
(0, y1) with y1 < 0. Hence, by the y-axis mirror symmetry of the orbits, such
a trajectory will come bach to P0 after traversing the left-half plane. On the
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other hand, a trajectory departing from a point Q0 = (0, y0) with y0 > 0 large,
will move quickly toward the region W1 (without entering it) and then will hit
the vertical line x = 1 at a point Q1 = (1, y1) with y1 < 0. From now on, either
the orbits enter the region V2 and become ultimately unbounded, or it will
cross again the y-axis at a point Q2 = (0, y2), with y2 < 0 (and avoiding the
region V2). In this latter case, by symmetry, we obtain again a periodic orbit,
typically with a larger period than the small one, if λ > 0 is small enough.
Notice that, as in [40], a condition of the form λ < λ∗p will guarantee that
larger orbits of system (Rp,λ) do not enter the region V2 . An illustration of
this situation is given in Figure 6.

(a) Structure of the center at the
origin for system (R2,λ). The or-
bits are consider for an initial
point P0 = (0, y0), with y0 =
1, 2, 3, 5.

(b) Solutions (t, x(t)) for system
(R2,λ), with x(0) = 0 and ẋ(0)) =
y(0) = y0, with y0 = 1, 2, 3, 5. The
fact that the period increases from
smaller to larger orbits is appar-
ent.

Figure 6: The figure illustrates the dynamics associated to system (R2,λ) for λ = 3/4.
The graph is produced using [42].

The gap in the periods between the smaller and the larger orbits of the
center allows us to enter in a framework considered in [30], for the study of the
chaotic behavior of the solutions to the periodically perturbed system (S2λ).
Indeed, continuing our analysis to the case study (Rp,λ) as a paradigmatic
model of (S1λ), we can produce a topological horseshoe, namely a compact
invariant set Λ for the Poincaré Φ map associated to system

(Sp,λ)

{
ẋ = y − λ|y|p(x2 − |x|) + E(t)

ẏ = −x,

such that Φ on Λ is semi-conjugate to the two-sided Bernoulli shift on m ≥ 2
symbols and such that to any k-periodic sequence of symbols it corresponds
the existence of a k-periodic point P for Φ in Λ, so that the solution of (Sp,λ)
starting at the point P is a kT -periodic solution of the system.
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To enter in the setting described in [30] we need to find two linked annular
regions A1 and A2 for the autonomous systems

(Sip,λ)

{
ẋ = y − λ|y|p(x2 − |x|) + Ei

ẏ = −x,

with i = 1, 2, such that there is a period gap between the inner and the outer
closed orbits which are the boundaries of Ai . The geometric configuration is
illustrated in Figure 7.

Figure 7: Phase-portraits of the systems (Si2,λ) (i = 1, 2) for λ = 3/4. The two lower
closed orbits are obtained for E1 = A = 1 and initial points (0, 0.5) and (0, 1). The
two upper closed orbits are obtained for E2 = −A = −1 and initial points (0, 1.5)
and (0, 2). The analysis of the period shows that there is still a (small) gap between
the periods of the two orbits bounding each of the annular regions A1 and A2. The
graph is produced using [42]. For the presentation, the aspect-ratio of the figure has
been slightly modified (with a compression along the y-axis).

More precisely, if we denote by Ai the annular region in the plane bounded
by two closed orbits of system Ei and we assume that the annuli A1 and A2

are topologically linked as in Figure 7 (see [30, Definition 3.2] for the technical
condition), then a gap for the periods of the bounding orbits allows us to enter
in a variant of the theory of the linked twist maps ([11, 41], as well as [25] and
there references therein) and have the existence of chaotic-like dynamics (in the
sense described above) and infinitely many subharmonics, if we take as E(t)
a T -periodic forcing term which is close to a stepwise function of sufficiently
large period. For our purposes, we will take

E(t) = A tanh(n sin(ωt+ α)), A > 0, n ≥ 1, ω > 0, α ∈ [0, 2π[ , (9)

which is a smooth function, close (in the L1-norm) to a stepwise function of
period T = 2π/ω, and such that E(t) oscillates between the values E1 = A and
E2 = −A.
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(a) Dynamics associ-
ated with the clas-
sical standard map
when the parameter
ε gets close to 1 (from
[5, Fig.1.5, p.14]).

(b) Dynamics asso-
ciated with an area
preserving quadratic
map considered by
Henon (1969) (from [3,
Fig.1.39, p.52]).

(c) Poincaré map (for a
period of the forcing term
T = 4) for the system
(S2,λ) for λ = 3/4 and
E(t) as in (9), with A =
1, α = 0, n = 6, ω =
π/2.. The graph is pro-
duced using [42].

Figure 8: The portrait (Figure (c) at the right) after 800 iterations of the Poincaré
map, for different initial points, suggests the presence of invariant curves and quasi-
periodic solutions, as well as the existence of large subharmonic solutions, librational
curves (according to [5, Fig. 1.5, pag.14] - see Figure (a) at the left), island chains
[3, Fig. 1.39, pag. 52] (see Figure (b) at the center) and more complex solutions,
perhaps of chaotic-type; a situation analogous to that encountered for planar area-
preserving homeomorphisms associated to Hamiltonian systems when the variation of
some parameters moves the system outside the integrability case [5, 27]. The graphs
are produced using [42].
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