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 

Abstract—Salivary gland ultrasonography (SGUS) has shown 

good potential in the diagnosis of Primary Sjögren’s syndrome 

(pSS). However, a series of international studies have reported 

needs for improvements of the existing pSS scoring procedures in 

terms of inter/intra observer reliability before being established 

as standardized diagnostic tools. The present study aims to solve 

this problem by employing radiomics features and artificial 

intelligence (AI) algorithms to make the pSS scoring more 

objective and faster compared to human expert scoring. The 

assessment of AI algorithms was performed on a two-centric 

cohort, which included 600 SGUS images (150 patients) 

annotated using the original SGUS scoring system proposed in 

1992 for pSS. For each image, we extracted 907 histogram-based 

and descriptive statistics features from segmented salivary glands 

(SG). Optimal feature subsets were found using the Genetic 

algorithm-based wrapper approach. Among the considered 

algorithms (7 classifiers and 5 regressors), the best preforming 

was the Multilayer perceptron (MLP) classifier (κ = 0.7). The 

MLP over-performed average score achieved by the clinicians (κ 

= 0.67) by the considerable margin, while its reliability was on the 

level of human intra-observer variability (κ = 0.71). The 

presented findings indicate that the continuously increasing 

HarmonicSS cohort will enable further advancements in AI-

based pSS scoring methods by SGUS. In turn, this may establish 

SGUS as an effective noninvasive pSS diagnostic tool, with the 

final goal to supplement current diagnostic tests. 

 

Index Terms—Sjögren’s syndrome, salivary glands, 

ultrasonography, radiomics. 
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I. INTRODUCTION 

RIMARY SJÖGREN’S SYNDROME (pSS) is a chronic 

autoimmune disease, whose manifesting symptoms are 

oral and ocular dryness, fatigue, arthralgia and arthritis. The 

annual incidence of pSS has been estimated at a range from 

200 to 3000 per 100.000 people, with highly unbalanced 

gender ratio (~10 females per 1 male) [1]. Standardization of 

the pSS classification has been the subject of debate for 

decades. Chronologically, four standardized guides are: 

European Classification (PEC) criteria [2], American 

European Consensus Group (AECG 2002) classification 

criteria [3] the American College of Rheumatology (ACR 

2012) criteria [4] and the more recent ACR-European League 

Against Rheumatism (EULAR) 2016 criteria [5]. Briefly, 

these guides are based on the combination of examined 

clinical symptoms, results of autoantibody tests and salivary 

gland (SG) biopsy [6]. All these criteria do not incorporate 

new insights in pSS enabled by noninvasive salivary gland 

ultrasonography (SGUS) [7]. According to clinical reports, 

failing to include any imaging modalities (as mentioned in the 

standardized guides) has been reported as an obstacle in the 

practice – as patients frequently complain at invasive tests and 

biopsies, especially during follow-up studies or when 

presented with negative findings [8]. 

Up until now, various SGUS-based pSS scoring approaches 

have been introduced and showed satisfactory results in 

comparison to both ACR 2012 and AECG 2002 [9]. The 

proposed approaches are based on the visual observation of 

parotid and submandibular SGs’ characteristics from SGUS. 

These scores are further subtracted and compared to the cut-

off threshold to determine the final pSS score [10-15]. In order 

to investigate human-dependency, international experts have 

recently participated in the consensus meetings with the aim to 

evaluate reliability of SGUS echo structural parameters [16]. 

Considering the obtained results of inter/intra observer 

reliability, it is concluded that there is still no gold standard 

for pSS diagnosis based on the observation of echo structural 

abnormalities in SGUS images. 

In order to resolve these obstacles, leading SS experts (35 

partners from 13 countries) have recently started the 

HarmonicSS (http://harmonicss.eu) initiative. The aim of the 

joint European research initiative is to envelop independently 

reported cohorts and metacentric data with the end goal to 
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ease further progress in the diagnosis and treatment of pSS. As 

recently suggested, one of desirable advances in SGUS is the 

development of dedicated computerized tools that could 

reduce screening time and dependency on human experts [17]. 

To the best of our knowledge, there is still no available 

solution with such ability on the market, nor reported in the 

scientific literature. By using the growing HarmonicSS cohort, 

the aim of the present study was to propose a novel radiomics-

based approach for the assessment of pSS in SGUS images. 

II. MATERIALS 

After obtaining the institutional review board approvals, we 

retrospectively reviewed medical records of 150 patients from 

two clinical centers in Europe: Belgrade (Serbia) and Udine 

(Italy). US examinations assumed routine acquisition of 

parotid and submandibular glands longitudinal scans. Since 

four images were acquired for each patient, the cohort 

included 600 SGUS images. Belgrade clinical center 

contributed with 112 patients (448 images) examined with GE 

LogiqE9 device with a linear high-frequency transducer (6-

15MHz), while the center from Udine provided 38 patients 

(152 images) examined with the ESAOTE MyLabClassC US 

machine with a linear high frequency probe (6-18MHz).  

All subjects underwent a diagnostic work-up for pSS 

according to the AECG [3]. The evaluation included the 

following: 1) questionnaire with six questions to assess ocular 

and oral symptoms, 2) evidence of dry eye (Rose-Bengal), 3) 

presence of anti-SS-A/SS-B antibodies, 4) sialoscintography 

for the evidence of salivary dysfunction and 5) biopsy of 

minor salivary glands. Characteristics of patients involved in 

this study are shown in Table I. 

In this study, pSS scores of SGUS images were defined 

using the original scoring system proposed by De Vita et al. 

[14]. This easy-to-apply score was chosen because adequate 

discriminant analyses were employed to select the items to 

build the score itself, and these items were subsequently 

confirmed to be of value. Since the scoring is expert-based 

approach, ground truth values were defined by using the 

Delphi method. The scoring assumed grading images on the 0-

3 scale regarding SGs’ echo structural characteristics, as 

proposed in Luciano et al. [14]. SGUS images were 

randomized and assessed twice by five independent clinicians, 

whose expertise varied between experienced to leading 

rheumatologists in the field. After the definite scores were 

obtained by the experts’ consensus, the resulting class 

distribution in the database was 30%, 13%, 39% and 18%, 

respectively (class distribution of images used for the 

development of train and test sets are given in Table I). 

A. Reliability of pSS clinical assessment in SGUS images 

Intra-observer and inter-observer reliability were assessed 

using the kappa coefficient. The intra-observer agreement was 

measured using the Cohen’s weighted kappa, showing the 

substantial agreement: κ = 0.71 ± 0.11 (κmin = 0.58 and κmax = 

0.88). The overall inter-observer agreement (before the expert 

consensus) was measured using the Scott/Fleiss' kappa (κ = 

0.61). 

In order to compare the performances of proposed 

radiomics-based algorithms with clinicians, the performance 

indicators given in this paragraph were calculated with respect 

to scores adapted through the expert consensus. The mean 

Pearson's correlation of the five observers with ground truth 

was R2= 0.690 ± 0.137 (R2
min=0.461 and R2

max= 0.837). The 

percentage agreement was 70.1 ± 10.3% (within the range 

55.6 – 82.1%). The agreement of observers with ground truth 

was measured using the weighted Cohen’s kappa κ = 0.66 ± 

0.14 (κmin = 0.44 and κmax = 0.83).  

III. METHODS 

Characteristics that are specific to the assessment of pSS 

from SGUS images are: a) high variance of SGs in 

appearance, shape and size, and b) low relevance of SGs’ 

surrounding tissues for the diagnosis. Considering the cohort 

size, and these requirements, we propose a novel radiomics-

based procedure as a suitable approach for solving the given 

problem. The procedure’s workflow is sketched in Fig. 1 and 

Fig. 2, while its composing steps are described in the rest of 

this section. 

TABLE I 
CHARACTERISTICS OF CLINICAL DATA USED IN THIS STUDY. 

Characteristics 
pSS Patients SGUS images (four images were acquired for each patient) 

All (N=150) Train (N=500) Test (N=100) P value 

Age (years) 54 ± 15 53.8 ± 12 55 ± 11 0.702 

Sex (female), n (%) 140 (93.3) 468 (93.6) 92 (92) 0.558 

Disease duration (years) 7 ± 4.5 7.3 ± 4.1 6.4 ± 3.8 0.401 

Ocular symptoms, n (%) 131 (87.9) 445 (89) 82 (82) 0.051 

Oral symptoms, n (%) 129 (85.9) 425 (85) 90 (90) 0.190 

Positive biopsy of MSG*, n/91 (%) 86/91 (94.5) 287/303 (95) 57/61 (93) 0.526 

Anti-SSA*, n/146 (%) 102/146 (69.8) 331/486 (68) 77/98 (78) 0.050 

Anti-SSB*, n/N=127 (%) 64/127 (50.3) 221/423 (52) 35/85 (41) 0.064 

De Vita scores (0, 1, 2, 3) distribution (%) / 31, 11, 41, 17 25, 25, 25, 25 / 

N indicates a number of subjects; n indicates a number of positive findings.  

*Tests were not performed on all N subjects. Percentage was computed with respect to the number of examined subjects: n / number of examined subjects (%). 
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A. Features extraction 

Semi-automatic segmentation of SGs was performed using 

the Snake algorithm (Fig. 1(a)) [18]. The presence of artifacts 

and pepper noise were reduced by using the Wiener and 

Median filters, respectively (Fig. 1(b)). The extraction of 

radiomics features from the segmented SGUS image was 

performed using a series of algorithms (Fig 1(c-j)). Invariance 

of the proposed procedure to both size and shape of the 

segmented SGs was ensured by computing: a) Histogram-

based features f1-9 (after expressing the bin counts in 

percentage, following Fig. 1(i)); and b) Descriptive statistics 

features f10-19 that account for pixels inside the segmented SG 

region (Fig. 1(j)). The considered feature-extractors were: 

1) Multi-resolution Image Gaussian Pyramid 

The Gaussian filter (GF) is a 2D convolutional smoothing 

operator, whose kernel was generated using the Gaussian 

function (Fig. 1 (c)): 
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where FGaussian is the filtered image, * is the convolution 

operator, I is the image, whereas x and y are pixels 

coordinates in the local Gaussian filter space. By varying the 

  parameter in the range ~0:2:16, we obtained eight new 

filtered images. From each of them we extracted 17 

histogram-based features listed in Fig. 1(i) – which represent 

the feature vector f1-136 in Fig. 1(k). 

2) Image gradients and Sobel operator 

Each image was convolved with two gradient operators 

with the 6x6 kernel (Fig. 1(d)); one detecting horizontal 

gradients (f137-153) and the other detecting vertical gradients 

(f154-170). Additionally, we processed each image using the 

Sobel operator (Fig. 1(e)) with the 3x3 kernel (f171-187 in Fig. 1 

(k)). 

 

Fig.1. Overview of the feature extraction procedure. From a segmented SG region, radiomics features were extracted by using: Gaussian filter, 

image gradients, Sobel operator, Gabor filter, Local Binnary Patter and Gray Level Coocurence Matrix. The raw feature vector F consisted of 

a total 907 features, which were obtained by varying parameters of the considered feature extractors. 
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3) Multi-resolution Gabor representation 

The Gabor filter represents a two-dimensional sinusoidal 

wave (with predefined orientation and wavelength), whose 

amplitude is multiplied with the Gaussian function [19]: 
2 2 2
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where   is the length of the wave,   is the wave orientation 

(so that ' cos sinx x y    and ' sin sy x yco    ), 

  is the phase shift,   is standard deviation of the Gaussian 

function and   is the factor that control elasticity of the filter. 

We created a bank of 16 Gabor filters (Fig. 1(f)) generated by 

varying the orientation {0,  / 4,  / 2,  3 / 4}    and frequency 

{0.12,  0.16,  0.24,  0.32}  while Gaussian standard deviation 

had values {1,  2,  2,  1}x   and {1,  2,  4,  2}y  . The 

extracted set of features is marked as f188-459 in Fig. 1(k). 

4) Local Binary Pattern (LBP) 

The LBP features were computed following the steps in the 

literature [20]. Briefly, for each pixel LBP compares its value 

to N pixels along a surrounding circle with a diameter R. If the 

centre pixel's value is greater than the circle neighbour’s 

value, LPB writes 0, otherwise it writes 1. This gives an N-

digit binary number, which is finally converted to decimal for 

convenience, as sketched in Fig. 1(g). In the present study, we 

generated the feature set f460-731 in Fig. 1(k) by varying 

N=8:8:32 and R=4:4:16. 

5) Gray-level co-occurrence matrix (GLCM) 

The GLCM is a statistical method used for characterization 

of a texture. GLCM calculates how often pairs of pixels with 

specific values and in a specified spatial relationships occur in 

an image. It creates a GLCM matrix (Fig. 1(h)), and then 

extracts 22 statistical features from the matrix (Fig. 1(j)) [21]. 

In the present study, we set the number of levels to 10 and 

offsets to [0 5; -5 5; -5 0; -5 -5; 0 1; -1 1; -1 0; -1-1], resulting 

in the feature set f732-907 in Fig. 1(k). 

B. Data stratification 

SGUS images were stratified on the training-learning and 

independent test sets, to more rigorously assess the 

generalization ability of the proposed procedure. Both data 

sets were computed only once and saved, so that they could be 

loaded on-demand during the development and evaluation of 

the considered predictive models. 

1) Development of balanced independent test set 

Since we deal with the development of multiclass predictor 

using the imbalanced cohort, the size of the independent test-

set was determined with the size of the most under-sampled 

class. In this way, we ensured that the sufficient amount of 

balanced and real-word samples of each class are available 

during both learning stage and subsequent independent testing. 

We created the balanced test-set by randomly sampling 25 

images (approximately 30% of the least presented class – 

grade 1) from each grading category (Fig. 2(a)). The 

remaining data was further used as the training-set. 

2) Development of balanced K-folds for the cross-validation 

The training was performed using the k-fold cross-

validation. Accordingly, the training set was divided into k=6 

folds, ensuring that each fold consisted of the same number of 

 

Fig.2. Procedure for the development of predictive models and selection of optimal features subset using Genetic algorithm-based wrapper. 
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samples with equal distribution of classes (Fig. 2 (b)). Since 

the training set was unbalanced, we applied the ADASYN 

algorithm that sharpens boundaries between classes by 

generating synthetic samples in minority classes (Fig. 2 (c)) 

[22]. Therefore, the ADASYN improves learning by: 1) 

reducing the bias introduced by the class imbalance, and 2) 

adaptively shifting the classification decision boundary toward 

the difficult-challenging examples [11]. 

C. Selection of optimal features subset 

Since each feature extractor depends on several (hyper) 

parameters, there is a risk of omitting to use relevant 

(combination of) features if feature extractors’ parameters are 

not set correctly. This problem was solved by varying the 

extractors’ parameters (section III-A) and using a robust 

supervised wrapper feature selector to subsequently find an 

optimal feature subset for a particular predictive model. The 

workflow of the proposed procedure is given in Fig. 2(d), 

whereas its key steps are explained in the following 

paragraphs. 

1) Genetic algorithm-based wrapper 

Genetic algorithm (GA) is the iterative method for solving 

optimization problems [23]. The process starts from an initial 

guess of parameters (called population) subjected for the 

optimization. At each iteration (called generation), the GA 

selects some portion of best individuals from the current 

population and uses them as parents to produce the candidates 

(called children) for the next generation (crossover and 

mutation). Over successive generations, this process leads to 

the evolution of populations of individuals that are better 

adapted to their environment than the individuals that they 

originated from (similar to natural adaptation). 

In the present study, we employed the GA to select optimal 

features subset by considering the feature selection as the 

integer optimization problem within the bounds 0 and 1. In 

each call of the GA objective function, the predictive model 

was cross-validated using the previously created k-folds. 

Parameters of the objective function represented features 

selector (i.e. F2 chromosome in Fig. 2(d)), so that the 

parameters with value 1 indicated features that should be 

selected while parameters with value 0 indicated features to be 

neglected during the training. The value of the GA objective-

function was the kappa-statistics for classification and the 

Pearson’s correlation for the regression predictive models. In 

this study, population size was set to 600, number of 

generations was set to 500, while the rest of GA hyper 

parameters had default values defined within the Matlab 

gaoptimset function (see the Matlab online documentation). 

2) Considered predictive models 

The pSS scoring could be considered as both classification 

(the score is the ordinal value: 0,1,2 or 3) and regression (the 

score is any real number on the interval 0-3) problem. In order 

to find which one is the most efficient approach for the pSS 

scoring, we evaluated 7 classifiers and 5 regressors [24]: 

Decision Table (DT), J48 tree, K-nearest neighbors (KNN), 

Linear Regression (LinR), Logistic regression (LogR), 

Multilayer perceptron (MLP), Naive Bayes NET (NBNET), 

Naive Bayes (NB) and Random forest (RF). The parameter 

settings for each of the predictive models were set iteratively, 

while the MLP was configured following the Evolutionary 

assembling approach [25].   

IV. RESULTS 

The implementation of the proposed procedure was 

performed using the Matlab R2010 (MathWorks, Natick, MA) 

and Java wrapper for the Weka v. 3.8 library (University of 

Waikato) [13]. The computational time needed to find optimal 

features and develop predictive models varied among 

algorithms. In worst case scenarios, it took up to several hours 

on the Dell PowerEdge server (204 processors, 800GB RAM, 

4.5TB SSD). After the learning process had been completed, 

execution of the developed algorithms for scoring newly 

supplied SGUS images was done almost in real-time. 
Performances of the assessed algorithms are given in Table 

II. Calculated efficiency indicators were: Pearson's correlation 

(R2), Mean absolute error (MAE), Root mean squared error 

(RMSE) - for regression-based algorithms; and: Accuracy 

(ACC, %), Area under the receiver operating characteristic 

curve (AUC), kappa-statistics (κ), MAE and RMSE – 

TABLE II 

PERFORMANCES OF THE CONSIDERED PREDICTIVE MODELS OBTAINED DURING THE CROSS-VALIDATION AND EVALUATION ON THE INDEPENDENT TEST SET. 
 

 Regression Classification  

 R2 MAE RMSE ACC κ MAE RMSE AUC 

J48 n /a n /a n /a 73.1/57.0 0.64/0.42 0.13/0.22 0.35/0.45 0.84/0.73 

LogR n /a n /a n /a 76.3/59.0 0.68/0.45 0.12/0.20 0.34/0.43 0.88/0.80 

NB n /a n /a n /a 69.0/57.0 0.58/0.42 0.16/0.21 0.36/0.44 0.88/0.80 

NBNET n /a n /a n /a 57.0/55.0 0.42/0.4 0.23/0.24 0.38/0.40 0.83/0.82 

RF 0.89/0.83 0.38/0.49 0.51/0.61 84.5/67.0 0.79/0.56 0.18/0.22 0.26/0.32 0.96/0.90 

KNN 0.86/0.75 0.22/0.43 0.57/0.75 81.1/67.0 0.74/0.56 0.09/0.16 0.30/0.40 0.87/0.78 

MLP 0.87/0.83 0.33/0.49 0.55/0.69 86.0/78.0 0.80/0.70 0.08/0.11 0.24/0.30 0.96/0.93 

LinR 0.79/0.85 0.53/0.48 0.68/0.58 n /a n /a n /a n /a n /a 

DT 0.70/0.75 0.58/0.55 0.80/0.73 n /a n /a n /a n /a n /a 

R2-Pearson's correlation, MAE-Mean absolute error, RMSE-Root mean squared error, ACC-Accuracy (%), κ -Kappa statistics. 

Values of the performances’ indicators are given as: train / test, AUC–Area under the receiver operating characteristic curve. 
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calculated for classification-based algorithms. 

After the identification of the top ranked algorithms, we 

further analyzed their sensitivity on errors during the SG 

segmentation (the only user dependent step). For each image 

in the test set, we automatically created six intra-observers’ 

variability scenarios by: scaling up the segmented contours 

20%, scaling down segmented contours 20%, as well as 

translating segmented contours in four directions for [20 20], 

[-20 20], [20 -20] and [-20 -20] pixels. The obtained results of 

the sensitivity analysis are given in Table III. 

Histogram of the most frequently used features used for the 

development of considered predictive models is shown in Fig. 

3, while sample results obtained by the top-ranked predictive 

models are shown in Fig. 4. 

A. Configuration of the top-performing MLP classifier 

The development of the MLP may be intuitively described 

as scheduling of its hyper parameters (type of activation 

functions in layers, learning rate, learning momentum, number 

of neurons per layer, training algorithm, number of learning 

epochs) with the aim to maximize the classification 

performances. In order to set these parameters automatically 

and correctly, we employed the recently proposed 

Evolutionary assembling approach [25]. The obtained MLP 

configuration assumed: 41 neurons in the hidden layer, 

activation functions in both layers were tansig (hyperbolic 

tangent sigmoid), training algorithm was set to the trainscg 

(scaled conjugate gradient backpropagation), learning 

momentum was set to 0.83 while the maximum number of 

epochs for training was set to 921. The GA-based wrapper 

selected the following list of features as optimal subset for the 

development of MLP: f29, f101, f180, f249, f256, f257, f278, f380, f474, 

f480, f535, f628, f641, f680, f722, f755, f804, f816, f830, f841 and f895 

(histogram of features selected for the development of 12 

considered predictive models are shown in Fig. 3). Robustness 

of the proposed procedure comes from the fact that hyper 

parameters of both feature extractors and MLP classifier are 

set automatically. Thus, we emphasize that it could be applied 

for solving a wide range of problems in computer aided 

diagnosis. 

V. DISCUSSION 

A. Performances of top-ranked algorithms 

Depending on the type of 12 considered algorithms, number 

of features selected by the GA wrapper varied from 23 up to 

187. Histogram in Fig. 3 indicates that there were no key 

radiomics features. Instead, the challenge was to find an 

optimal feature subset that maximizes performance of a 

particular predictor. Each of the developed predictive models 

was evaluated twice, with the cross-validation and on the 

independent test-set, in order to more rigorously assess the 

generalization performances. Results from Table II indicate 

that RF, KNN and MLP were top-ranked algorithms in both 

classification and regression categories. In the following 

sections, classification and regression approaches for pSS 

scoring will be discussed separately in order to highlight their 

benefits. 

1) Benefits from using classification-based algorithms 

The obtained results show that classification algorithms 

produce a lower mean absolute error and root mean squared 

error, which is important during the definite pSS classification 

(when clinicians consider scorings of four SGUS images 

acquired from a single patient). In such situations, procedures 

that are able to accurately grade 3 out of 4 images (over 75% 

accuracy) represent a considerable contribution to the current 

practice [2]. In our study, RF, KNN and MLP reached above 

66% accuracy (guarantee that at least 2 of 4 images will be 

graded correctly). However, only the MLP classifier surpassed 

the threshold of 75% accuracy, which we recommend as the 

most reliable for the pSS diagnosis using the SGUS scoring 

system developed by De Vita et al. for pSS (14). In terms of 

the kappa-statistics, which is commonly used in pSS related 

studies, the MLP showed substantial agreement (κ=0.7) with 

the ground truth defined via the expert consensus. 

2) Benefits from using regression-based algorithms 

One of the most challenging issues related to the screening 

of pSS from SGUS is the follow-up of patients, when 

clinicians have to estimate the disease progress by inspecting 

two or more SGUS images. Although using scores in the 

TABLE III 

SENSITIVITY ANALYSIS OF THE TOP RANKING PREDICTIVE MODELS ON ERRORS DURING THE SG SEGMENTATION. 

WE CONSIDERED THREE SCENARIOS: 1-OVERESTIMATED SG (SCALE UP 20%); 2-UNDERESTIMATED SG (SCALE DOWN 20%); AND 3- SEGMENTED SG CONTOUR IS 

TRANSLATED FOR [20 20], [-20 20], [20 -20] AND [-20 -20] PIXELS. 

 RF MLP RF MLP 

 classification regression 

Scenario ACC / κ / MAE / RMSE /AUC ACC / κ / MAE / RMSE /AUC R2 / MAE / RMSE R2 / MAE / RMSE 

1 63.0 / 0.52 / 0.22 / 0.34 / 0.86 73.0 / 0.65/ 0.13 / 0.34 / 0.91 0.76 / 0.56 / 0.70 0.78 / 0.55 / 0.70 

2 66.0 / 0.55 / 0.21 / 0.33 / 0.88 76.0 / 0.68 / 0.12 / 0.31 / 0.92 0.79 / 0.53 / 0.65 0.81 / 0.52 / 0.64 

3 61.0 / 0.46 / 0.23 / 0.37 / 0.85 72.0 / 0.62 / 0.16 / 0.36 / 0.90 0.72 / 0.60 / 0.72 0.72 / 0.58 / 0.72 

MAE-Mean absolute error, RMSE-Root mean squared error, ACC-Accuracy (%), κ-Kappa statistics. 

 

Fig.3. Histogram of features selected for the development of 12 

considered predictive models (5 regressors and 7 classifiers). 
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interval 0-3 is more appropriate for the follow-up (compared 

to the ordinal scale), it is difficult for clinicians to objectively 

perform such accurate estimation. In such situation, regression 

algorithms may appear as useful tools for assisting clinicians. 

In the present study, the RF and MLP regressors performed 

the best in terms of both Pearson's correlation (R2=0.83) and 

RMSE (Table II) with respect to the ground truth defined via 

the expert consensus. 

B. Sensitivity to errors in SGUS segmentation 

Considering RF and MLP as top ranked algorithms, we first 

used the Stuart-Maxwell's test to prove that predictions of two 

multi-class classifier are statistically significant (2=9.6 and p 

=0.022 values for the significance level of α=0.05). 

Furthermore, we analyzed RF and MLP classifiers sensitivity 

to errors that may occur during the SG segmentation (the only 

user dependent step). The obtained results in Table III showed 

that the proposed predictive models are robust on the SG 

underestimation (case 2). However, case 1 and case 3 types of 

inaccurate SG segmentation decreased accuracy of predictive 

models for 4-8%. Although larger segmentation errors are 

uncommon for the trained clinicians, the recommendation is to 

prefer underestimating SG when a user is presented with noisy 

SGUS images. In summary, we recommend the MLP as the 

most reliable predictive model for the assessment of De Vita 

scores from SGUS images.  

C. Contribution to the state of the art 

1) Computerized analysis of SGUS and assessment of pSS 

After literature review, we report that the computerized 

medical image analysis of SG and pSS remain underestimated 

problems. Instead, the most of related work is focused on 

analyzing pSS biopsy images or other diseases present in SGs. 

Chernomordik et al. proposed a fluorescence scanning 

imaging system that performs a noninvasive optical biopsy of 

the Sjögren syndrome (based on the 2D CCD imaging of the 

lower lip), with the end-goal to replace the traditionally used 

histological biopsy [26]. Regarding the SGUS-based studies, 

Chikui et al. suggested using the fractal analyses to 

characterize SG tumors [27]. The same author afterwards 

reported that average size of the particles, area ratio of the 

particles within the region and Hurst-ori were useful 

predictors for detecting abnormal sialographic stages [28]. 

Siebers et al. performed multi-feature tissue characterization 

for differentiating malignant and benign parotid gland lesions 

using maximum likelihood supervised classifier [29]. 

Murakami et al. applied 2D wavelet analysis to SGUS images 

for the diagnosis of SS [30]. A couple of studies investigated 

the possibility of using the elastography techniques for 

diagnosing pSS in SGUS. Dejaco et al. used real-time 

sonoelastography of SGs for the diagnosis and assessment of 

glandular damage in pSS [31]. Zhang et al. assessed SG 

stiffness in pSS via acoustic radiation force impulse imaging 

[32]. 

Therefore, we found that currently there is a lack of 

methods for automated analysis and scoring of pSS in SGUS. 

This may be justified with a few facts: 1) studies that 

introduced scoring systems were mono-disciplinary (relied 

mostly on clinicians’ experience in image analysis) [10-15]; 

and 2) the nature (rarity) of pSS makes it difficult for a single 

institution to collect a larger cohort appropriate for the training 

of robust AI algorithms. To the best of our knowledge and 

 

Fig.4. Samples of SGUS images and scores (probabilities) obtained by top-ranked classifiers (MLPC, RFC) and regressors (ANNR, RFR). 
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insight into the topic, the present study is the first one that 

proposes the procedure for computer-aided diagnosis and 

scoring of pSS from SGUS. 

2) Performances of AI with respect to trained clinicians  

By comparing the average performances of clinicians 

(average intra-observer agreement was κ = 0.71 and average 

agreement with ground truth was κ = 0.67) with the 

performances obtained with the proposed classifier, it may be 

found that the MLP classifier over-performed (κ = 0.7) 

clinicians by the considerable margin while its reliability is on 

the level of humans’ intra-observer variability. Therefore, we 

confirm the hypothesis that the proposed AI-based procedure 

represents a potential improvement of healthcare standards 

present in most clinics worldwide [33]. Also, it is worth 

emphasizing that it still cannot compete with the most-skilled 

clinicians who are the leading scientists in the field (κmax = 

0.83 and intra-observer κmax = 0.88). Regarding the regression-

based assessment, the MLP (R2=0.83) over-performed 

clinicians (R2=0.69) by a large margin and it is on the level of 

leading experts (R2
max= 0.837). In addition, while the score by 

De Vita was proposed as ordinal values, our findings may be a 

starting point towards developing a continuous scale that is 

more appropriate for the follow-up assessment of pSS and for 

the detection of changes. 

3) Reliability of SGUS scoring systems 

Incorporation of SGUS scoring systems into standardized 

diagnosing guides has been prolonged due to their dependency 

on experts. As a solution to this problem, the score by De Vita 

et al. was proposed as an easy and practical measure [14]. Our 

findings support this claim since the average intra observer 

reliability was quite good κ = 0.71, while the most experienced 

clinicians reached excellent results in terms of both intra κmax 

= 0.88 and inter reliability κmax = 0.83. Therefore, we report 

that the obstacle for wide acceptance of SGUS in pSS 

screening may be related to the lack of highly skilled 

sonographers rather than to the need for more suitable scoring 

systems. The present study confirmed this hypothesis and 

showed that the problem of clinicians intra/inter observer 

variability could be solved by employing AI-based algorithms. 

Particularly, AI algorithms could be trained from data 

annotated by highly skilled experts and afterwards they could 

be used to assist and ease the training of less experienced 

clinicians. 

D. Future work on this topic 

Further development and improvements of dedicated 

computerized software tools for the pSS assessment from 

SGUS may significantly advance the way of treating pSS by 

reducing the invasiveness, screening time and dependency on 

experts. We highlight the strong potential of applying such 

technology for assisting and training of novice clinicians, 

whose perfecting could improve and equalize the healthcare 

quality worldwide [33]. Although, at the current stage, we 

have achieved performance on the edge with trained clinicians 

[11], we refer to this study as the first milestone of the wider 

HarmonicSS initiative. Considering the size of the cohort at 

the moment, we have assessed the radiomics-based algorithms 

to prove our hypothesis. In the future work, we aim to 

automate both SG segmentation and pSS scoring by 

employing other AI methods that benefit from the ongoing 

cohort growth, like Deep learning methods [34]. 

VI. CONCLUSION 

Although humans are efficient in high-level cognitive tasks, 

our limitation in performing lower-level vision tasks such as 

calculation of textures’ statistics or differentiating shades of 

colors are well studied and depend on many factors (i.e. 

ageing, genetics, fatigue, environment, diseases and so on) 

[35]. As an alternative to using descriptive and linguistic 

nominal attributes to characterize pSS in SGUS images, the 

present study aimed to assess various radimomics-based AI 

algorithms for pSS scoring from SGUS using the score 

proposed by De Vita in pSS [14]. We found that the MLP 

classifier (κ=0.7) over-performed average score achieved by 

the clinicians (κ=0.67) by the considerable margin, while its 

reliability is on the level of humans’ intra-observer variability 

(κ=0.71). We emphasize that the proposed procedures still 

cannot compete with the leading scientists in the field 

(κmax=0.83 and intra-observer κmax=0.88). With further 

increase in the HarmonicSS cohort and improvements, 

validation and democratization of the AI able to compete 

leading clinicians in the pSS scoring, SGUS could be 

established as a reliable assessment procedure supplementing 

or replacing currently used invasive diagnostic tests. 
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