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Abstract

Thermal  waters  near  the  city  of  Viterbo  (Central  Italy)  are  known  to  show  high  As  contents  (up  to  600  µg/l).

Travertine  is  precipitated  by  these  waters,  forming  extended  plateau.  In  this  study,  we  determine  the  As  content,

speciation and bioaccessibility in soil and travertine samples collected near a recreational area highly frequented by

local  inhabitants  and tourists,  to  investigate  the  risk of  As exposure through accidental  ingestion of  soil  particles.

(Pseudo)total contents in the studied soils range from 17 to 528 mg/kg, being higher in soil developed on a travertine

substrate (197 ± 127 mg/kg) than on volcanic rocks (37 ± 13 mg/kg). In travertines, most As is bound to the carbonatic

fraction,  whereas  in  soil  the  semimetal  is  mostly  associated  with  the  oxide  and  residual  fractions.  Accordingly,

bioaccessibility (defined here by the simplified bioaccessibility extraction test,  SBET; Oomen et al.  in Environ Sci

Technol  36(15):3326–3334,  2002.  https://doi.org/10.1021/es010204v)  is  maximum  (up  to  139  mg/kg)  for  soil

developed on a  travertine substrate,  indicating a  control  of  calcite  dissolution on As bioaccessibility.  On the other

hand,  risk  analysis  suggests  a  moderate  carcinogenic  risk  associated  with  accidental  soil  ingestion,  while  dermal

contact is negligible. By contrast, ingestion of thermal water implies a higher carcinogenic and systemic health risk.
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Introduction
Arsenic contamination of drinking water, air, food and beverages is a major global health issue, affecting more than 300

million people worldwide (Quansah et al., 2015). The consequences of exposure to As for human health are severe,

ranging from dermatologic manifestations to carcinogenic and systemic non-carcinogenic effects.
AQ1

Geothermal As is common in active and former continental-volcanic settings such as in New Zealand, the Andes,

Southern Italy, and to a lesser extent in oceanic-volcanic terrains (Ravenscroft et al., 2009). Besides, As spreads in the

environment as a consequence of changing redox conditions, which trigger As mobilization from adsorbing mineral

phases. This is especially testified in floodplains and/or rice paddy fields, which commonly undergo flooding/non-

flooding conditions during their agricultural seasons (e.g., Kim et al., 2021). Arsenic contents of uncontaminated soils

worldwide range from 1 to 100 mg/kg, but in general As levels are mostly below 10 mg/kg, and often below 5 mg/kg

(Ravenscroft et al., 2009). As indicated by the EuroGeoSurveys database (Salminen et al., 2005), As is unevenly

distributed among topsoils of European countries, displaying significant enrichment in southern Europe (Italy, France

and Spain) with respect to Scandinavia (10.5–2.3 mg/kg, respectively), reflecting the soil finer nature and the long

weathering history (Reimann et al., 2009). The As enrichment in soils is indeed considered one of the causes of the

higher incidence of dementia in some European countries, among others Italy, France and Spain (Dani, 2010).

Ingestion of contaminated drinking water and food is the primary route to As exposure for humans (Polya & Lawson,

2016). However, incidental ingestion of As-contaminated soil is a significant exposure pathway through hand-to-mouth

transfer during outdoor activities. This is especially true for children (2–6 years old; Calabrese et al., 1989; Kwon et al.,

2004), who ingest soil both deliberately and involuntarily by putting dirty hands and objects in their mouths, and are

hence exposed to the risk associated with this behavior (Ljung et al., 2007). Once ingested, the risk for human health is

associated with As bioavailability, defined as the fraction of an ingested dose that crosses the gastrointestinal epithelium
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and becomes available for absorption by internal tissues (US EPA, 2007a). Bioavailability can be determined by in vivo

studies (Bradham et al., 2018). In the last decades, As bioaccessibility, i.e., the As fraction soluble in the gastrointestinal

tract and available for absorption (Rodriguez et al., 1999; Ruby et al., 1999; US EPA, 2007a), is often employed as a

surrogate of bioavailability. To estimate bioaccessibility, in vitro simulations of gastrointestinal fluids are carried on. For

this purpose, different extractant methods have been established (Bradham et al., 2018 and reference therein). Among

them, the simplified bioaccessibility extraction test (SBET) (Oomen et al., 2002; US EPA, 2007b), which simulates the

action of gastric juices in a single step, has been extensively used by many researchers (Bagherifam et al., 2014; Mingot

et al., 2011; Smith et al., 2008), and validated with in vivo tests (Juhasz et al., 2014).
AQ2

Linear regression analysis and hierarchical modeling employing soil physicochemical properties, such as the soil

elemental composition, pH, mineralogy, particle size, soil aging, have been frequently employed to predict As

bioaccessibility (Appleton et al., 2012; Cave et al., 2003; Juhasz et al., 2007; Karna et al., 2017; Martínez-Sánchez et al.,

2013; Nelson et al., 2018). On the other hand, selective/sequential chemical extractions (SEC) and synchrotron radiation

investigations (Kim et al., 2014; Mikutta et al., 2014) can be used to unravel As solid phase speciation, identifying the

mineral pools which contribute at most of the bioaccessible As from the in vitro tests. Moreover, the knowledge of the

solid phases hosting bioaccessible As helps predicting the environmental processes which enhance As bioaccessibility

through destabilization of the mineral carrier phases. In soils, Fe oxy(hydr)oxides have the prominent role in controlling

As bioaccessibility (Hiller et al., 2018). Specifically, amorphous and poorly crystalline Fe oxy(hydr)oxides increase As

bioaccessibility, whereas crystalline phases reduce it (Girouard & Zagury, 2009; Kim et al., 2014; Mikutta et al., 2014;

Palumbo-Roe et al., 2015; Smith et al., 2008; Whitacre et al., 2013).

To date, most studies were conducted on soils with low carbonate contents. Carbonates, and in particular calcite, may,

however, trap significant amounts of As in natural environments (e.g., Costagliola et al., 2013), possibly controlling As

bioaccessibility.

In Italy, hotspots of As occur in Central Italy, especially between Tuscany (Benvenuti et al., 2009; Costagliola et al.,

2010) and Latium, particularly in the province of Viterbo. Here groundwaters from the volcanic aquifer exceed the

thresholds established by the European Drinking Water Directive 98/83/EC. Public awareness of the problem grew

during the second half of 2010 and led to a widespread use of bottled water for drinking purposes. There is, however,

poor awareness of the risk deriving from exposure to As associated with the thermal springs of Viterbo (Central Italy),

which are well known to discharge waters rich in As (Cinti et al., 2019, and references therein). These waters also

deposit travertine (Pentecost, 1995), which has formed an extended plateau. Little information is, however, available on

As distribution in the carbonate rock itself and in the surrounding soils. In this paper, As distribution is investigated in

travertine deposits and soils surrounding these thermal springs; the main goals are: i) to define As distribution in soils in

relation to the different geological substrata; ii) to quantify As bioaccessibility and how it is correlated with As

fractionation, determined by SBET and sequential extraction procedures, respectively; iii) to estimate the risk associated

with the accidental soil ingestion among adults and children in the area.

Study area
The study area is located few km west of the city of Viterbo (northern Latium), in the surroundings of the city thermal

area (Fig. 1). Geologically, it belongs to the Vicano-Cimino volcanic complex extending between the Tyrrhenian coast

and the Apennines chain. Plio-Quaternary extensional tectonics related to the post-collisional phases of Apennines

orogeny were responsible for crustal thinning (< 25 km; Scrocca et al., 2003), heat flow anomalies (100–200 mW/m ;

Della Vedova et al., 2001), and the development of subduction-related magmatism (Peccerillo, 2017, and references

therein). Specifically, the Vico complex (0.4–0.1 Ma), consisting of volcanic rocks belonging to the Roman Magmatic

Province, diffusely crops out in the study area. It consists of silica-oversaturated to silica-undersaturated potassic and

ultrapotassic magmas, which partially superimpose on the Mt. Cimini rocks (~ 1.3–0.9 Ma) belonging to the Tuscan

Magmatic Province. The pre-volcanic substratum is composed by Neogene marine and continental deposits, which filled

NW–SE-oriented grabens (Barberi et al., 1994), Upper Cretaceous-Oligocene Flysch (Ligurian Units), Triassic-

Paleogene carbonate rocks and evaporites (Tuscan-Marche Units), and Cenozoic turbidite deposits (Flysch units). The

volcanic rocks are covered by Pleistocene-Holocene continental deposits and Holocene travertines, which extend

horizontally and sub-horizontally forming vast plateau (Manfra et al., 1976). According to Minissale et al. (2002), the

2
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formation of travertines is associated with decarbonation processes affecting Mesozoic units at depth.

Fig. 1

a Geological map of the Viterbo area and location of samples; the dash-point circled area is enlarged in b; b detailed map of

thermal hot-spring sites of Piscine Carletti and Bullicame

In the proximity of the study area, two aquifers were recognized: i) a shallow circulation within the volcanic rocks and

ii) a deep circulation confined in the Triassic-Paleogene carbonate rocks, which hosts a thermal reservoir, characterized

by high As contents (176–371 µg/l; Angelone et al., 2009). These two aquifers are separated by low-permeability

horizons (Flysch Units and/or Pliocene–Pleistocene sedimentary rocks), but interact both vertically and laterally

(Baiocchi et al., 2012). West of Viterbo, the reduced thickness of the Flysch units and faulting allows the uprising of

thermal waters (Angelone et al., 2009). Hot (54–60 °C) H S-rich spring waters emerge along a N-S fault at Bagnaccio,

Piscine Carletti, Bullicame and Le Zitelle, where travertine is being deposited in stream beds.

The hot springs close to the city of Viterbo are well known since at least III century B.C. by the Etruscans, when thermal

waters were already being used for therapeutic properties. Nowadays, natural springs are employed in the therapies of a

variety of medical complaints. The recreational area of Viterbo is visited by thousands of people during the whole year,

including children (Strangio and Teodori, 2015). In particular, the Bullicame (also referred as Bullicame west; Pentecost,

1995) and Piscine Carletti (also referred as Bullicame 3; Duchi et al., 1985) sites rise up in a large green area freely open

to the public. Here, the waters were artificially channeled to provide bathing water for visitors and local inhabitants. It is

a common practice for bathers to spread the white carbonate mud on skin lesions, inhale H S, or drink the mineral

waters, which are believed to have healthy effects.

Materials and methods

Sampling

Samples were collected inside and around the hot springs of Bullicame and Piscine Carletti (Fig. 1a, b) from soils formed

on top of the main geological formations cropping out in the area, as verified in the field. In total, 9 soils developed on

volcanic rocks and 27 on travertine were sampled (see Table S1 for GPS coordinates). Some of them were collected from

agricultural fields, mainly cultivated for wheat. After the removal of vegetation, wherever present, about 1 kg of topsoil

(0–10 cm) was collected with a Teflon scoop. Soils are classified as Luvic Endoleptic Phaeozems according to the

cartography of Latium Region (Napoli et al., 2019), where additional details on soil main characteristics may be found.

2
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Additionally, travertine mud (i.e., currently precipitating from waters, “new forming” thereafter) and rocky (“fossil”)

travertine were sampled (n = 17) in three locations (Le Zitelle, Bullicame and Piscine Carletti).

Chemical and mineralogical analysis

Travertine and soil samples were dried at room temperature for one month and then disaggregated with a ceramic mortar.

Soils were sieved in two granulometric fractions: (1) the < 2 mm fraction was used for (pseudo) total metal

characterization, according to the Italian law requirement (D.L. 152/2006) and for sequential extraction scheme (SEC),

and (2) the < 250 µm fraction was primarily used for the SBET procedure and for (pseudo) total metal concentrations in

samples analyzed for SBET. Representative samples (fossil travertine (n = 4), new-forming travertine (n = 6), travertine

soils (n = 7), and volcanic soils (n = 5)) were analyzed for the whole chemistry by wavelength-dispersive X-ray

fluorescence (WD XRF) with a PHILIPS PW 1480.

Loss on ignition (LOI) was measured by gravimetric methods; 0.50 g of oven-dried (at 105 °C overnight) samples were

heated to 950 °C in quartz-fiber crucibles for 2 h. The LOI values were employed for major elements calculations

(Franzini et al., 1975). The analytical quality was controlled by using international standards, and the relative differences

between the results and certified values are less than 5%.

X-ray diffraction (XRD) patterns were collected on the < 250 µm fraction of selected soil samples and travertines with a

Philips PW 1050/37 instrument, operating with a Cu anode and a graphite monochromator, driven by a PANalytical

X’Pert PRO data acquisition system.

All analyses were performed at the Dipartimento di Scienze della Terra, Università di Firenze (Italy).

Aqua regia digestion

Samples dissolution (on the < 2 mm fraction) was performed by digestion with aqua regia (HCl/HNO  3:1) to quantify

the pseudo-total As (As ) concentrations in soils and travertines (n = 53). As stated before, the < 250 µm soil fraction

analyzed for SBET was also digested by aqua regia to determine pseudo-total As (As ). Digestions were

accomplished both by the US EPA 3051 method by microwave digestion (Milestone CEM MARS 6) in pre-cleaned

Teflon vessels at 175 °C for 20 min and in a sand bath at 50 °C for 3 h. The last procedure was employed to avoid

contamination of Teflon bombs for samples with high As content. The obtained solutions were then filtered to 0.45 µm

after adequate cooling, diluted to 100 ml volume with Milli-Q water, stored in polyethylene bottles, and later analyzed by

inductively coupled plasma optical emission spectroscopy coupled with hydride generation (HG-ICP-OES; PerkinElmer

Optima 8000) within 1 week from digestion. Accuracy was evaluated with international standards (Montana Soil, 2711,

RTS4, 2710) and internal laboratory standards (among them, a travertine rock). Recovery was between 90 and 100%.

Samples were processed together with blanks prepared with the same acid mixture to evaluate potential contamination

from the reagents and sample containers. Instrumental detection limits for ICP-OES were < 0.3 µg/l.

Reproducibility was checked by duplicate analyses of six random selected samples, and differences were less than 15%.

Simplified bioaccessibility extraction test: SBET

Soils (n = 14, underlined in Table 1) with different As contents (high, low and medium values of the dataset) developed

on travertine substratum were selected for the in vitro SBET procedure to quantify the bioaccessible As fraction

(As ) (Oomen et al., 2002; Ruby et al., 1999; US EPA, 2012). Around 1 ± 0.05 g of < 250 μm soil particle size

fraction was mixed with a solution of 50 mL of glycine (0.4 M) at pH = 1.50 ± 0.05 and adjusted with HCl (37% v/v).

This mixture was rotated end-over-end at 30 rpm for 1 h at 37 °C. pH was controlled every 5 min (pH acceptable

variation should be ± 0.5) and adjusted whenever necessary. The mixture was centrifuged, the supernatant was separated

with nitrate cellulose filters (0.45 µm), and it was preserved at 4 °C until analysis. The concentration of As was

determined by atomic absorption spectroscopy (AAS) coupled with hydride generation (PerkinElmer Analyst 100).

Quality controls involved preparation and analysis of three sample triplicates on six samples (D01, D03, D06, AS10,

SOILVTB4 and SOILVT2), and on blank solutions. The relative standard deviation of the replicate analyses was below

4%. Arsenic contents in blank solutions were below the detection limit (10 µg/L).

3

T-2000

T-250

SBET
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Table 1

As (mg/kg) contents of the investigated soils and travertines

soilVT1 Trav soil Piscine Carletti 323 nd

soilVT2 Trav soil Agricultural area 495 569

soilVT3 Trav soil Agricultural area 321 nd

soilVT4 Trav soil Agricultural area 81 nd

BLS 1 Trav soil Agricultural area 47 nd

BLS 2 Trav soil Agricultural area 90 nd

BLS 3 Trav soil Agricultural area 42 nd

soilVTB1 Trav soil Agricultural area 195 nd

soilVTB2 Trav soil Agricultural area 58 nd

soilVTB3 Trav soil Agricultural area 132 nd

soilVTB4 Trav soil Agricultural area 130 104

soilVTB5 Trav soil Agricultural area 119 nd

AS3 Trav soil Agricultural area 255 nd

AS7 Trav soil Agricultural area 528 512

AS10 Trav soil Agricultural area 420 518

D01 Trav soil Bullicame 150 135

D02 Trav soil Bullicame 152 158

D03 Trav soil Bullicame 166 151

D04 Trav soil Bullicame 141 124

D05 Trav soil Piscine Carletti 164 169

D06 Trav soil Piscine Carletti 246 252

D07 Trav soil Piscine Carletti 211 224

D08 Trav soil Piscine Carletti 186 182

D09 Trav soil Piscine Carletti 173 166

D10 Trav soil Piscine Carletti 155 147

D11 Trav soil Piscine Carletti 152 nd

BLS4 Trav soil Agricultural area 56 nd

BLS5 Vulc soil Agricultural area 30 nd

BLS6 Vulc soil Agricultural area 32 nd

BLS7 Vulc soil Agricultural area 17 nd

AS1 Vulc soil Agricultural area 26 nd

AS2 Vulc soil Agricultural area 36 nd

AS4 Vulc soil Agricultural area 24 nd

AS5 Vulc soil Agricultural area 53 nd

Mean of triplicate analysis; reproducibility < 4 mg/kg As

Underlined samples are those investigated for SBET

nd stands for not determined

a

a

a

a

a

a
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1

Mean of triplicate analysis; reproducibility < 4 mg/kg As

Underlined samples are those investigated for SBET

nd stands for not determined

AS6 Vulc soil Agricultural area 48 nd

AS9 Vulc soil Agricultural area 43 nd

ZIT1 New-form trav Le Zitelle 73 nd

BL1 New-form trav Bullicame 154 nd

BL2 New-form trav Bullicame 206 nd

BL3 New-form trav Bullicame 201 nd

BL4 Fossil trav Bullicame 160 nd

BL5 Fossil trav Bullicame 186 nd

BL7 Fossil trav Bullicame 123 nd

VT1s New-form trav Piscine Carletti 130 nd

VT2s New-form trav Piscine Carletti 80 nd

VT3s Fossil trav Piscine Carletti 195 nd

VT4s New-form trav Piscine Carletti 164 nd

VT5s New-form trav Piscine Carletti 148 nd

VT6s New-form trav Piscine Carletti 168 nd

VT7s Fossil trav Piscine Carletti 50 nd

VT8s Fossil trav Piscine Carletti 39 nd

VT9s Fossil trav Piscine Carletti 276 nd

VT10s New-form trav Piscine Carletti 125 nd

Relative bioaccessibility—RBA (%)—was calculated as (Hu et al., 2011; Juhasz et al., 2007):

where As  and As  refer to As extracted from SBET and aqua regia digestions (250 µm), respectively.

Sequential extraction scheme: SEC

The As content of specific geochemical fractions of travertine soils can be extracted selectively by using appropriate

reagents, and it was here quantified through two SEC procedures. Details of the reagents employed, the solid-to-liquid

ratios and extractions times for each As fraction (As non-specifically bound—A ; As specifically bound—A ; As

associated with carbonates—A ; As associated with amorphous Fe oxides—A ; As in the residual fraction—A )

are reported in Table 2. The first scheme (A), made of six extraction steps (A1–A6) and modified after Wenzel et al.

(2001), was preliminarily applied to four travertines and four soils to screen the main As-hosting phase. Following the

preliminary results, to selectively quantify the amount of As associated with carbonates with respect to other mineral

phases as a whole, a simplified four-step scheme A* (Costagliola et al., 2013) was applied to other six soil samples.

Here, the aqua regia digestion (A *) was hence directly applied after the step devoted to carbonates (A *).

Therefore, the sum of As extracted from A  to A  (  of scheme A should be comparable to the As

extracted from As * of scheme A*. For the sake of simplicity, in the following we will report  as

A , so that it can be directly compared with A *.

a

a

SBET T-250

SO4 PO4

CARB OX AR

AR CARB

OX AR

AR

AR
SUM

AR
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Table 2

Summary of the sequential chemical extraction procedures (A and A*) employed in this study

Extractant Extractions conditions SSR Behavioral classesScheme Scheme

A A * 0.05 mol/L (NH ) SO 4 h shaking, 25 °C 1:25 Non-specifically
sorbed

A A * 0.05 mol/L (NH ) PO 16 h shaking, 25 °C 1:25 Specifically sorbed

A A * 40 ml of 1 mol/l sodium
acetate/acetic acid buffer; pH 5 12 h shaking, 25 °C 1:25 As bound to

carbonates

A nd 0.2 mol/L NH4-oxalate buffer; pH
3.25 4 h shaking in the dark, 25 °C 1:25 As bound to

amorphous Fe oxides

A nd 0.2 mol/L NH4-oxalate buffer + 
0.1 M ascorbic acid; pH 3.25 30 min in a sand basin at 96 °C 1:25 As bound to

crystalline Fe oxides

A A * aqua regia; HCl/HNO  3:1 3 h in sand bath, 50 °C for scheme A;
microwave assisted for scheme A* 1:20 Residual

**Solid-to-liquid ratio

The sum of As extracted from A  to A  ( ) of the scheme A is comparable to A * of the scheme A* (nd stands
for not determined)

Extractions were conducted by weighing 1 ± 0.05 g of sample in 50 ml vials and sequentially adding 20–25 ml of the

respective extraction solution (Table 2). After each step, the suspension was centrifuged at 10,000 g for 15 min, and the

supernatant was separated. Only for step A * the residue was filtered through 0.45-µm paper filter (Whatman 42),

and the filter microwave digested. The concentration of As was determined by AAS coupled with hydride generation

(PerkinElmer Analyst 100).

The analytical quality of the sequential extraction was controlled calculating the As recovery (R %) as:

where ΣAs  is the sum of As extracted from each single extraction step and As  is the As extracted from the bulk

sample with aqua regia. Recovery was between 84 and 122%. Reproducibility was evaluated by analyzing three samples

(D06, D07 and soilVT2) in duplicate. Differences are < 15% for all extraction steps.

Exposure and human health risk assessment

Humans exposure to As in the thermal areas of Viterbo may occur via two principal contact routes with contaminated

soils and waters, which are (1) oral ingestion and (2) dermal absorption. Based on the data of the present study, we

specifically evaluated the human health risk, following the procedure by USEPA (1989) and transposed by the Italian

legislation (D.L. 152/2006 and D.L. 4/2008), associated with accidental ingestion of contaminated soils by residents

visiting the thermal pools. Moreover, we evaluated the health risk associated with: (1) the oral exposure derived from the

voluntary ingestion of thermal waters for depurative purpose; (2) the dermal exposure associated with water (during

bathing activities) and soils (Including voluntary applications on skin of thermal muds). The cumulative effect of the

multiple exposure pathways was hence calculated (see later). Children (age 1–6) and adults’ exposure scenarios were

considered.

Average daily dose (ADD) (or lifetime average daily dose, LADD), expressed in mg/kg day, of As from ingestion of soil

(ADD ) or dermal contact (ADD ) was calculated with the following formula (US EPA, 1989, 1992, 2004):

SO4 SO4 4 2 4

PO4 PO4 4 2 4

CARB CARB

OX

OX+C

AR AR 3

OX AR AR

CARB

SEC T

s,ing s,derm
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3

4

5

where C  is the As content in soils in the < 250 µm fraction (As ) at each sampling site (at those sites we also have

the available glycine extractable (i.e., SBET) contents (mg/kg)); IR  is the soil ingestion rate (mg/day); EF the exposure

frequency (days/year); ED the exposure duration (years); EV the event/day; CF  the unit conversion factor (10  kg/mg);

BW the body weight (kg), AT  the averaging time for exposure (ED*365 days for non-carcinogenic substances), SA the

skin surface area available for contact (cm /event); AF is the soil to skin adherence factor (mg/cm ); ABS is the

absorption factor for the skin (unitless); BW is the body weight (kg). For carcinogenic chemicals, the LADD was

standardly calculated by substituting AT  for AT , where the averaging time corresponds to lifetime (i.e., AT = 70*365)

(US EPA, 1989, 2004).

Similarly, we calculated ADD (or LADD) for water ingestion (ADD ) or dermal contact (ADD ):

where C  is chemical concentration in water (mg/l) from the Bullicame and Piscine Carletti thermal pools (Cinti et al.,

2019), IR  is the volume (l) of drunk thermal water during or soon after the visit to the pools, PC is the chemical-

specific dermal permeability constant (cm/hr); ET is the exposure time (hours/day); CF  is the volumetric conversion

factor for water (1 l/1000 cm ), and the other variables as described above for Eqs. (2) and (3). Exposure frequency (EF 

= 100) was determined specifically for this study, assuming that local people visit the thermal recreational areas during

the weekend (i.e., twice a week). Similarly, we assumed that the consumption of thermal waters for depurative purposes

(i.e., IR ) does not exceed a water bottle (1 l) or a quarter of water bottle (0.25 l) in 2 days for adults and children,

respectively. These estimates are obviously tentative: to our knowledge, there is no systematic survey of the actual habits

of site visitors. The other specific parameters for ADD or LADD calculations are available in Table 3. For adults, ADD

or LADD was age-mediated (ADD ) considering a child (6 years) plus adults (24 years) exposure to As, corresponding

to a total ED of 30 years.

Table 3

Summary of the parameters employed for the ADD and LADD (mg/kg day) calculation for soil ingestion, soil dermal, water ingestion

and water dermal exposure scenarios

Parameters Symbol Units Source

Water ingestion

Element concentration in water C mg/l 0.35 Cinti et al. (2019)

Ingestion rate of water IR l/day 0.12 0.5 This study

Exposure frequency EF day/year 100 This study

Exposure duration ED year 6 30 US EPA (2004)

Body weight BW year 15 70 US EPA (2004)

Averaging time (non-cancerogenic) AT days 2190 10,950 US EPA (1989)

Averaging time (carcinogenic) AT days 25,550 US EPA (1989)

Water dermal exposure

*For swimming

**Reasonable maximum exposure during a swimming scenario
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Parameters Symbol Units Source

*For swimming

**Reasonable maximum exposure during a swimming scenario

Element concentration in water C mg/l 0.35 Cinti et al. (2019)

Skin surface area SA cm 6600 18,000 US EPA (2004)

Chemical-specific dermal permeability constant PC cm/h 1.00E−03 GSI (2011)

Exposure time* ET hours/day 2.6 US EPA (1989)

Exposure duration** ED years 6 30 US EPA (2004)

Exposure frequency EF day/year 100 This study

Body weight BW kg 15 70 US EPA (2004)

Averaging time (non-cancerogenic) AT days 2190 10,950 US EPA (1989)

Averaging time (carcinogenic) AT days 25,550 US EPA (1989)

Volumetric conversion factor for water CF l/cm 1.00E−03 US EPA (1989)

After exposure assessment, risk characterization was delineated by integrating data about toxicity (dose/response).

Arsenic is considered both a threshold and non-threshold contaminant. For threshold contaminant, a toxic effect is

expected when a certain exposure concentration is surpassed (reference dose), while for non-threshold contaminants

toxic effects are shown at any level of exposure. The hazard quotient (HQ), i.e., the potential for non-carcinogenic

toxicity to occur, and the cancer risk (CR), i.e., the incremental probability of developing a cancer during a lifetime, refer

to the threshold and non-threshold behavior, respectively. Skin cancer risk (CR ) was separately calculated for dermal

and ingestion scenarios and for water and soil matrix. HQ and CR  were calculated as follows (US EPA, 2007a):

where RfD is the oral reference dose of As for assessing non-cancer health effects (0.0003 mg/kg/day; US EPA, 1991)

and CFS is the As cancer slope factor (1.5 mg/kg/day for oral exposure; US EPA, 2010), while RBA is the relative

bioaccessibility. For soils ingestion, RBA was specifically determined in this study at each studied point analyzed by

SBET (Eq. 1; $3.2.2) and not averaged (Izquierdo et al., 2015). For water ingestion, inorganic As is almost completely

(~ 95%) adsorbed in the gastrointestinal tract (US EPA, 2004); consequently, a value of 100% of the ingested dose was

set up in this study. For dermal contact, a dermal absorption rate of 1% was employed as suggested by Zuzolo et al.

(2020). It has to be highlighted that US EPA did not define specific RfD and CSF for dermal exposure (US EPA, 2004);

therefore, oral RfD and CFS are instead here employed. A systemic health risk is not expected when HQ < 1, while if

HQ > 1, there is a chance that non-carcinogenic effects may occur, with a probability which tends to increase as the value

of HI increases (US EPA, 2001). For carcinogenic risk, acceptable or tolerable risk for US EPA regulatory purposes is in

the range of 1 × 10  and 1 × 10  (i.e., 1 case of cancer in 1,000,000 exposed people to 1 case of cancer in 10,000

exposed people). The risk level of 1 × 10  has been considered as the point of excess cancer risk, indicating 1 per

1,000,000 chance of getting cancer by single or multiple exposure routes. The safe point for carcinogenic risks must be

lower than this level. Risks surpassing 1 × 10  are unacceptable and need some sort of intervention and remediation.

Cumulative hazard quotient (HQ ) and cancer risk (CR ) were finally calculated assuming addition of adverse

health effects for multiple exposure routes, i.e.,  and .

Results
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Major chemistry and pseudo-total As

Travertines are mainly composed of CaO (mean + standard deviation;  = 54.06 ± 1.76 wt%), with minor silica (SiO  

≤ 6.22 wt%) and Fe contents (Fe O  ≤ 1.06 wt%) (Table S2). Al, Na, Mg, K, P, Ti, and Mn oxides rarely exceed 1

weight % (Table S1). Fossil deposits show in general lower concentrations of CaO (  = 52.57 ± 1.92%) and higher

contents of Fe O  (  = 0.43 ± 0.43 wt%), MnO (  = 0.12 ± 0.13 wt%) and SiO  (  = 2.89 ± 2.41 wt%) with

respect to the new-forming ones (  = 55.04 ± 0.66 wt%;  = 0.06 ± 0.04 wt%;  = 0.02 ± 0.01 wt%;  = 

0.78 ± 0.41 wt%).

Aging of travertine is hence indicated by crystallization of accessory minerals, such as Fe(Mn)-oxydroxides, commonly

associated with travertine deposits (e.g., Le Guern et al., 2003) and increased SiO  content probably due to silicification

of the deposits. Soils developed on both geological substrata (travertine and volcanic rocks) cover a wide range of SiO

(31.75–55.02 wt%), and Al O  (10.22–21.38 wt%) contents (Table S2). Soils formed on travertine are characterized by

higher contents of CaO (  = 11.12 ± 9.74 wt%) compared to volcanic soils (  = 4.47 ± 0.96 wt%;  = 7.54 ± 

0.96 wt%). On the contrary, volcanic soils show higher concentrations of Fe O  (  = 9.93 ± 1.13 wt%), Na O

(  = 1.00 ± 0.17 wt%) and K O (  = 5.80 ± 1.04 wt%) with respect to the carbonatic ones (  = 7.84 ± 1.46

wt%;  = 0.45 ± 0.21 wt%;  = 2.97 ± 0.46 wt%). Chemical characteristics of volcanic soils are consistent with

the geochemistry of volcanic rocks belonging to the K-alkaline cycle of the Roman Magmatic Province (Conticelli et al.,

2002). CaO (wt%) concentrations reflect the variable content of calcite, which is the only carbonate mineral in soils

(XRD data, not shown). Semi-quantitative estimates by XRD indicate that Bullicame soils (sample D03) are composed

almost exclusively of calcite (> 90 wt%) with minor quartz and k-feldspar; however, calcite is minor at Piscine Carletti

(sample D06) and in the agricultural areas, where silicate minerals (quartz, plagioclase, k-feldspar, and clay minerals)

dominate. Here, minor Fe oxides (goethite) were also detected.

Arsenic in soils (As , referred simply as total As thereafter) ranges between 17 and 528 mg/kg (Table 1). Travertine

and volcanic soils display mean total As of 197 ± 127 mg/kg and 37 ± 13 mg/kg, respectively. Irrespective of the

substratum, both soil types show higher As contents compared to As upper crustal range (2–5.7 mg/kg; Wedepohl, 1995;

Hu & Gao, 2008) and As in other geothermal manifestations in volcanic settings (Kusatsu, Japan: 15–170 mg/kg,

Kikawada et al., 2008; Bagno Vignoni, Mt. Amiata: 4.2–344 mg/kg Chiarantini et al., 2016). Similarly, travertine rocks

display hundreds of mg/kg of As (up to 276 mg/kg As; Table 1). Fossil travertines exhibit the greatest variability in As

concentrations, ranging from 30 to 276 mg/kg. In the sieved fraction < 250 µm, As  is comparable to As

(differences ranging between 3 and 23%).

SEC and SBET

Results of As extraction by SEC are shown in Table 4. Specific and non-specific exchangers (steps A  and A )

extracted moderate amounts of As (As ≤ 27 mg/kg) from new-forming travertine and fossil travertine deposits. Major

differences between groups are observed in the other extraction steps. In the new-forming travertine, the highest amounts

of extracted As (128–162 mg/kg As) are observed in the carbonatic step (A ), while only 2–3 mg/kg As are

associated with residual phases (A ; Table 4).

Table 4

Arsenic contents (mg/kg) extracted from SEC steps on soils and travertines

Sample type
Sample
ID

A A A
A A

A A
ΣAs

New-forming
travertine

VT1s 15 13 128 2 <DL <DL 2 158

VT6s 4 17 162 1 1 1 3 186

Fossil travertine
VT7s 2 8 35 10 1 <DL 11 56

VT9s 8 27 101 111 54 4 169 305

nd stands for not determined

CaO 2

2 3

CaO

2 3 Fe2O3 MnO 2 SiO2

CaO Fe2O3 MnO SiO2

2

2

2 3

CaO CaO LOI

2 3 Fe2O3 2

Na2O 2 K2O Fe2O3

Na2O K2O
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SO4 PO4
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Sample type
Sample
ID

A A A
A A

A A
ΣAs

nd stands for not determined

Travertine soil

D03 2 10 141 nd nd 8 nd 161

D06 3 14 18 nd nd 218 nd 252

D07 3 18 15 nd nd 166 nd 202

soilVT1 2 46 15 138 133 81 352 415

soilVT2 2 45 11 nd nd 442 nd 499

soilVTB4 2 25 10 nd nd 82 nd 119

AS7 2 46 12 nd nd 483 nd 543

AS10 2 34 14 nd nd 301 nd 351

soilVT3 2 38 5 120 176 16 312 357

soilVT4 2 7 19 31 20 75 126 154

On the contrary, in fossil travertine, represented by sample VT9s, steps A , A  and A  extract 169 mg/kg (A

 = 169 mg/kg), with 66% of As extracted in the step dedicated to amorphous Fe oxides (A ).

Sample VT7s shows an intermediate behavior between fossil and new-forming travertines, with the highest As

concentration extracted from A  (35 mg/kg), but displaying higher As concentrations (up to 10 mg/kg) from steps

A  to A  compared to new-forming travertines.

In soils, As amounts recovered from the A  in all samples are < 5 mg/kg, while As ranges in the A  fraction are of

10–46 mg/kg. In all samples but D03 (Bullicame), As extracted from the carbonatic step is comprised in a narrow range

of 10–20 mg/kg, whereas the highest recovery is for the residual step (82–483 mg/kg) (Table 4). Notably, sample D03 is

characterized by up to 141 mg/kg of As in the A  fraction, and low recovery in A  (8 mg/kg), comparable to

travertine rocks.

Results of the bioaccessibility tests (As  and RBA) are summarized in Fig. 2. Measured As  concentrations range

from 24 to 139 mg/kg As, and in some cases, it nearly corresponds to As  concentrations, while RBA varied between

6 and 100%. Major differences in As  concentrations and RBA are found among sampling sites. Soils from Bullicame

show the highest As  (125–139 mg/kg), corresponding to the highest relative bioaccessibility-RBA (80–100%); lower

bioaccessible values (24–93 mg/kg As) are otherwise observed in soils from Piscine Carletti, with RBA of 15–63%

(Fig. 2). It is important to note that the lowest percentages of RBA (7–27%) are found in agricultural soils, which display

the highest As  (130–528 mg/kg; Table 1).

Fig. 2

Bar chart of extracted As (mg/kg) during SBET (As ), and relative bioaccessible As (RBA,  %) values (numbers and

asterisks in red)
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Discussion

Arsenic source in soils of the Viterbo area

In the Viterbo area, a well-diffused geogenic As anomaly in groundwaters relates to the uprising of deep As-rich thermal

waters (Angelone et al., 2009; Cinti et al., 2015, 2019; Vivona et al., 2007) that discharge at surface, precipitating

travertine, dominantly composed by calcite (> 94 wt%) (Di Benedetto et al., 2011), and minor accessory phases (Fe O ,

TiO , Al O  and MnO rarely exceeding 1 wt%). Arsenic repartition from solution to solid phase results in As enrichment

in travertine, with up to ~ 280 mg/kg As found in fossil and new-forming deposits of the different plateau (Le Zitelle,

Bullicame, and Piscine Carletti). Similar results were obtained by Dessau (1968), who documented up to 220 mg/kg of

As in the travertine of Viterbo thermal springs (the exact location of the sampled spring is not given), and by Di

Benedetto et al. (2011) in the travertine of Piscine Carletti spring (85–213 mg/kg As). Arsenic is often widespread in hot

spring deposits (e.g., Webster and Nordstrom, 2003), but not many works investigated As in the associated travertine

(Pentecost, 2005; Catelani et al., 2018). In addition to Costagliola et al. (2013), travertines with concentrations of As of

hundreds to thousands mg/kg were documented in Iran (Hamidian et al., 2019; Khorasanipour & Esmaeilzadeh, 2015),

Greece (Kampouroglou et al., 2017; Winkel et al., 2013), and Turkey (Dogan & Dogan, 2007), commonly associated

with tectonically active areas, where the waning stages of Quaternary volcanic activity set up hydrothermal circulation at

a basin scale, vehiculating emissions of CO -rich fluids to the surface (Minissale et al., 2002). High concentrations of

HCO , as those commonly observed at the thermal pools of Viterbo (Duchi et al., 1985; Di Benedetto et al., 2011), may

indeed favor the leaching of As from the rock pile, represented in the study area by volcanic rocks (Casentini et al.,

2010), during the fluid ascent (Anawar et al., 2004). Concentrations of 9–166 mg/kg As were indeed documented in

rocks of the Vicano-Cimino system (Armiento et al., 2015; Casentini et al., 2010), together with As-bearing mineral

phases (Della Ventura et al., 1991).

Soils main geochemical characteristics strictly correlate with the nature of parent rock (travertine vs volcanite) (Table

S2). Arsenic contents (As ; 24–56 mg/kg), except in sample BLS7, far exceed the national accepted Italian threshold

limit (20 mg/kg) for recreational and residential use soils (D.L. 152/06). Our results expand the dataset of Zuzolo et al.

(2020), who reported maximum As concentrations of 60 mg/kg in soils of the Viterbo area. Soils developed on

travertines are particularly enriched in As when compared to those developed on the volcanic substratum (Mann–

Whitney test, p ≪ 0.05), suggesting that the As anomaly genetically relates to the formation of travertine plateau. For

instance, the As is transferred to soils by dismantling the carbonate minerals.
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Additional information on the processes controlling As distribution and partition in soils is provided by the sequential

extraction procedures, specifically setup in this work to identify As speciation and leachability in samples characterized

by high CaO contents. The carbonatic fraction hosts 81–88% of the total As (Fig. 3) in the new-forming travertines, and

in soils at Bullicame (represented by sample D03), which are essentially a debris of the dismantled travertine rocks, and

contain very abundant calcite (> 90 wt%). A specific and specifically sorbed As account for approximately 10% of the

As budget, while the role of Fe(Mn)-oxyhydroxides in As sorption is negligible (~ 1–5% As is extracted in A ). On the

contrary, at Piscine Carletti and in the agricultural areas, where soils are poor in calcite (silicates are dominant in the

mineralogical analysis) and well-developed (thickness ~ 50–60 cm, with abundant vegetation) only minor As (1–12%) is

associated with the carbonate phase, and Fe(Mn)-oxyhydroxides have the prominent role for As trapping (82–89% of

total As). It is worth to note that the A  step accounts for up to 20% of the total As (Fig. 3), suggesting that the

common employment of phosphate-based fertilizers in agricultural terrain may likely induce As mobilization from the

soils due to the competitive PO  for AsO  exchange (Zeng et al., 2008). Fossil travertines collocate between the two

end-members (i.e., high- and low-calcite soils), displaying intermediate percentage of As bound to calcite (33–63%;

Fig. 3).

Fig. 3

Percentages (normalized to 100% of extraction) of extracted As by SEC

Iron oxides are well-known scavengers of As in the environment by establishing inner- and outer-sphere surface

complexes (Giménez et al., 2007; Goldberg & Johnston, 2001), as well as As incorporation in the lattice structure.

Besides Fe(hydr)oxides, laboratory experiments demonstrated that calcite efficiently retains As by surficial adsorption

mechanisms (Sø et al., 2008) and/or structural incorporation (Alexandratos et al., 2007; Yokoyama et al., 2009, 2012). In

natural travertines, As(III) can be incorporated in calcite through the substitution of AsO  for CO  (Bardelli et al.,

2011; Di Benedetto et al., 2006). Recently, As(V) has been documented in the crystal lattice of calcite precipitating at

Bullicame, while both As(V) and As(III) species were observed in biogenic calcites produced by the As-resistant

bacterium B. Licheniformis, synthesized under laboratory condition on a solid medium (Catelani et al., 2018).

Data show that As-rich calcite dissolution from travertine likely controls As translocation in natural soils of the Viterbo

area. Surface dissolution of calcite occurs during travertine diagenesis, when rocks are exposed to percolation of

solutions undersaturated with respect to the carbonatic mineral, such as direct rainfall (Pentecost, 2005), and it is
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accompanied by Fe(Mn)- enrichment, likely suggesting Fe–Mn (hydr)oxides deposition. This is confirmed by major

chemistry analysis of fossil rocks, displaying lower CaO wt% and higher Fe O  and MnO wt% with respect to the

travertine mud, and by SEC results showing progressively lower As recovery (both as absolute and percentage values)

from the carbonatic step with increasing travertine age (Table 4; Fig. 3).

In conclusion, at Viterbo, calcite acts indeed only as a short-term trap for As, which is released by dissolution of the

primary host, and finally transferred to Fe oxy(hydr)oxides during pedogenesis.

Arsenic bioaccessibility and estimation of health risk

In the Viterbo soils, As is distributed in different solid phases, which have different As bioaccessibility. Differently from

other studies which found a linear correlation between bioaccessible concentrations of As and total concentrations in the

soils (Hiller et al., 2018), total As contents in the studied soils are not explicative of As bioaccessibility (Fig. 4), which

depends on the As mineral hosting phase. Relative bioaccessibility is variable among the investigated sites, reaching

80–100% in soils at Bullicame, and lowering to 6–63% at Piscine Carletti and in the agricultural areas (Fig. 2). It is our

opinion that bioaccessibility is related to the presence of calcite, which easily dissolves in the gastric conditions

simulated by the in vitro test. However, we suggest the opportunity of further investigations to increase the sampling

number and to perform statistically significant tests.

Fig. 4

Bivariate plot showing total As (As , mg/kg) and absolute bioaccessible As (As , mg/kg)

The ranges of RBA of Bullicame soils are the highest documented in literature for soils where As bioaccessibility was

determined by SBET. For example, up to 56.1% RBA was reported in playground soils of Bratislava, Slovakia (Hiller et

al., 2018), or 46.3% in residential soils of Ambagarh Chowki block, India (Das et al., 2013). Significantly lower RBA

was also documented in mine-impacted soils due to the presence of arsenopyrite and complex ferric arsenates, both

hardly soluble in simulated gastric conditions (Drahota et al., 2017; Gamiño-Gutiérrez et al., 2013; Li et al., 2015).

Similar to our study, high RBA (~ 80%) was observed in the playground soils of Madrid, where the presence of easily

dissolved carbonate was hypothesized (Mingot et al., 2011), hence confirming the prominent role of carbonate minerals

in controlling As bioavailability.
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In this study, we specifically estimate the daily As intake, and the associated carcinogenic (CR) and non-carcinogenic

(HQ) risks via ingestion of soils for different age groups of people (children and adults). Furthermore, other potentially

relevant sources of As exposures connected to the thermal pools attendance are evaluated, like the As adsorption by

dermal contact with soil and water, and thermal water ingestion for depurative purposes. The overall risk associated with

the multiple exposure pathways is also evaluated. Data are summarized in Table 5.

Table 5

Results of the computed hazard quotient (HQ) and cancer risk (CR ) for different age groups and exposure pathways with respect to

thermal water and soil

Sample
type

Exposure
pathway

Thermal
water

Ingestion 2.6 (88%) 2.3 (99%) 9.9E−05 (88%) 4.5E−04 (97%)

Dermal contact 3.7E−03 (0%) 2.1E−03 (0%) 1.4E−07 (0%) 1.4E−07 (0%)

Soil

Ingestion (min–
max)

5.8E−02
(12%)

3.1E−03
(1%)

2.3E−06
(12%)

2.7E−06
(3%)

3.3E−01 1.8E−02 1.3E−05 1.6E−05

Dermal contact
(min–max)

2.2E−03
(0%)

8.0E−05
(0%)

8.4E−08
(0%)

1.2E−08
(0%)

1.2E−02 4.4E−04 4.6E−07 6.7E−08

HQ 2.7–2.9 2.3 – –

CR – – 1.0–1.1E−04 4.5–4.7E−04

Double underlined numbers identify high carcinogenic and/or systemic risk (CR  > 1 × 10  or HQ > 1), while single underlined
numbers indicate situation with moderate risk (CR  > 1 × 10 ). Percentages refer to the contribution of the exposure risk (HQ or
CR) due to a single pathway scenario with respect to the total (HQ , CR )

Based on the CR , the additional chance of developing a skin cancer during the lifetime due to the overall As

exposure routes is in the range of 1.0–1.1 × 10  and 4.5–4.7 × 10  (Table 5) for children and adults, respectively. These

values denote a potential high risk for population visiting the thermal pools, exceeding both the US EPA and Italian

jurisdiction values of one additional case of cancer in one-million (1 × 10 ), which is used as a management goal for the

risks posed by environmental contaminants. In detail, dermal exposure scenarios derived from water and soil contact are

lower than the safer point (i.e., CR  = 1 × 10 ), being around 10 –10  (Table 5), likely due to the low absorption

of As through the skin. On the contrary, water ingestion is evidently the most relevant exposure route, accounting for

88–97% (Table 5) of the total CR  risk for children and adults, respectively. In the light of these data, consumption of

thermal waters for depurative purposes, commonly practiced by local residents, should be strongly discouraged. On the

other hand, As exposure due to soil ingestion is not entirely negligible, since it shows a moderate cancer risk for children

(CR  = 1.3 × 10 ) and adults (1.5 × 10 ). This is especially relevant for children (12% of total cancer risk) due to the

common mouth-to-hands activity during outdoor playing. Accordingly, the geographical distribution of As-related cancer

risk due to soil ingestion highlights a moderate risk (1 × 10 –1 × 10 ) in Italian central regions, like Latium (Zuzolo et

al., 2020), as a consequence of geogenic As anomalies occurring in water and soils. In their work, Zuzolo et al. (2020)

did not take into consideration bioaccessibility for risk calculation. However, we stress that it is a crucial step in

exposure and risk analysis (US EPA, 2007a). The proposed method allows identifying the area at Bullicame as the one

with the highest (1.1–1.5 × 10 ) cancer health risk, due to RBA approaching 100% of the total As budget in soils

(Fig. 2).

The determined values of hazard quotient (HQ) indicate that As concentrations in soils via dermal or ingestion pathways

or in water by dermal contact do not result in higher likelihood of non-carcinogenic health effects for people visiting the

recreational thermal areas of Viterbo (HQ < 1; Table 5). However, a significant potential health risk (HQ = 2.3–2.6) for

pathologies such as hyperpigmentation, keratosis, and possible vascular complications, associated with chronic exposure

to As, occurs through thermal water ingestion.

Similarly, the lifetime consumption of As-contaminated tap water in the Viterbo region potentially exposes people to
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high skin cancer risk (1*10 –10 ) and hazard risk (HQ = 4) (Zuzolo et al., 2020).

Conclusions
Travertine and soils developed on volcanic and travertine substratum are investigated for As contents in and around the

two most famous hot springs near Viterbo (Bullicame and Piscine Carletti), which host urban recreational areas highly

frequented by local population and tourists. A wide geogenic As anomaly affecting both fossil and recently formed

travertine is documented. In soils, As concentrations (42–528 mg/kg) largely exceeding Italian law limits spatially and

genetically relate to the underlying travertine plateau. Sequential extractions and bioaccessibility test (SBET) are

employed to elucidate the mineral phases controlling As bioaccessibility, and the processes that govern As distribution in

the environment. SEC data indicate that in travertines and poorly developed soils, calcite is the primary mineral phase

containing As (33–88% of the total As budget), while in well-developed soils As is mainly bound to Fe oxy(hydr)oxides

(calcite only entrapped 1–12% of total As). Arsenic-rich calcite dissolution from new-forming travertine during

diagenesis and pedogenesis is responsible for As partition in local soils and subsequent transfer to Fe oxy(hydr)oxides.

Arsenic relative bioaccessibility is especially elevated in soils of the Bullicame area (80–100%), likely due to the

presence of calcite, which is highly soluble in human gastric conditions, while it is low in agricultural soils (6–27%),

where Fe oxy(hydr)oxides dominate. Arsenic exposure scenarios and associated risk analysis indicate that a moderate

carcinogenic risk (CR  > 1 × 10 ) is present for adults and children by soil ingestion pathway. Nonetheless, the

ingestion of contaminated water remains the principal exposure route for people attending the thermal pools. Therefore,

we strongly suggest providing the thermal parks with public informative plaques discouraging people on the habit of

thermal waters consumption.
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