


ABSTRACT 

 

The computational work in this doctoral thesis describes the virtual realization of an atom 
interferometry based gravity gradiometer aiming at an accurate determination of the Newtonian 
gravitational constant G. The experimental design and interferometric scheme is different from 
all the measurements published so far. This virtual realization aims on the cancellation of 
ambient gravity gradients from their exact - conjugate fictitiously generated gravity gradients 
from our scheme, therefore resulting in a relative accuracy of 10-6 using only 104 atoms in each 
cloud. Precise simulations are developed meticulously incorporating all the aspects of 
interferometric scheme with well - characterized tungsten source masses measuring the phases 
accumulated by the atomic clouds traversing the path resulting from Mach - Zehnder 
gravimetric sequence in the presence and absence of the aluminium platform supporting the 
new configuration of source masses. One other possible source mass design made out of copper 
(assuming the geometrical configuration analogous to the aluminium platform) is also 
considered, so as to complete a comparative study of phase acquisition due to different designs 
of source masses arising from different total gravitational potentials and material densities. 
These precise simulations also target at achieving the phase noise minimization for the 
interferometric signal in presence of gravity, as a result to completely eliminate the presence 
of systematic errors. The simulation in this thesis incorporates a presence of a finite - sized 
solenoidal coil affecting only second half of the upper interferometer resulting in the opening 
of ellipse, henceforth the systematic errors which are faced while performing the elliptic fit will 
be completely eliminated. The gravity gradiometer as per the new design in the thesis is 
currently being built for the measurement runs of continuous data acquisition to be possible. 
The phase noise minimization condition for the modified experimental scheme has been 
performed and is reported in this thesis. Lastly, the gravity gradient cancellation for both the 
two source mass designs with a relative uncertainty of 0.1%, 0.5% and 1.0% have been 
performed and is reported in this thesis. 
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Chapter 1

Introduction

The work that we present in this thesis lays a computational foundation of a
vertical fountain Atom Interferometer (AI) which can be used to perform high
- precision measurements of Newtonian Gravitational Constant G through
atom interferometry. This apparatus will be also useful for performing high
sensitivity gravitational tests and realizing measurements of earth’s gravita-
tional acceleration (atom gravimetry) and the gravity gradients (atom gra-
diometry). This thesis completes two major targets; to minimize the phase
noise in the interferometric signal and to cancel the gravity gradients.

In this first Chapter, we introduce the subject and motivate the topic of
atom interferometry. We start with analogy between light and atom interfer-
ometers and end stating briefly how G is measured using MAGIA apparatus
with description of thesis organization.

1.1 Light interferometry and Atom interfer-

ometry

An Atom Interferometer (AI) exploits the wave nature of matter resulting
in the phenomenon of interference between two or more matter wavefronts.
The data occuring from interference yields information about the atoms and
related parameters of interest (for example, gravitational acceleration, New-
tonian gravitational constant, gravity gradients, etc.). In this regard, an
atom interferometer becomes conceptually analogous to a standard light in-
terferometer, subject to following key differences:

• Roles between matter and light are exchanged : Considering a light in-
terferometer, a coherent beam of light splits and follows two differ-
ent optical trajectories; the trajectories of these two light beams are
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steered using material components (i.e., glass beam-splitters, mirrors,
gratings, etc.). Just after the light beams interfere, their intensity dis-
play an interference pattern as a function of the relative optical path
length. Whereas, in an AI, the mirrors and beam-splitters (optical
components) are realized with laser pulses. These light pulses are pro-
duced by two counterpropagating vertical laser beams. Manipulating
laser frequency detuning and photon momenta, these light pulses can
behave analogous to mirrors and beam-splitters as it happens in light
interferometer. The production of these mirror and beam-splitter laser
pulses is detailed in Section 2.1.1.

• In an AI, the probe particles are affected by gravity : Atoms being mas-
sive particles possess a high sensitivity towards earth’s gravitational
field and other environmental conditions (like inertial effects and ac-
celerations). The interference of atoms caused due to an AI contains
information about variation of earth’s gravitational acceleration. This
is so because an atom experiences slightly different gravitational accel-
eration at different altitudes, leading to existence of a non-zero gravity
gradient.

It is well-known as it has been demonstrated in a large variety of ex-
periments that light and matter particles both possess a dual nature and
behave in similar ways, depending on the experimental configuration, either
as quantum particles (photons - massive particles) or as waves (light waves -
matter waves). AI is indeed a classic experimental example of wave - particle
duality. This wave - particle duality is explained by an AI as follows: Con-
sider a two - level atom with a well - defined ground state and a first excited
state, freely moving in a certain direction. When the atom with this internal
state structure is irradiated by a light pulse coupling the two internal energy
levels, its original wavefunction splits spatially into two wavefunctions each
having equal amplitudes. The idea is that after interrogation, the atom is in
a superposition of the two internal states, but with different momenta. The
two internal states will have equal amplitude only if the atom is irradiated by
a π/2-pulse. These two parts of the wavefunction traverse different trajec-
tories experiencing different local forces and acquiring different momentum
states. When these two wavefunctions are recombined using light pulses,
an interference pattern is generated such that the internal state population
becomes a function of the relative phase accumulated on the two different
atomic trajectories.

As stated earlier, atoms being massive particles with a high sensitivity to
environmental conditions (like inertial effects and accelerations), pose as a
good probe for examining fundamental tests like UFF (Universality of Free
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Fall) in the field of gravitational physics [1, 2, 3, 4, 5, 6]. Atoms being intrin-
sically sensitive results in access to increased degrees of freedom with several
possibilities to manipulate them. Furthermore, AI sensitivity depends essen-
tially on two features: free evolution time and momentum transfer. Stimu-
lated Raman transitions are used to obtain a considerably large momentum
transfer. In a recent work [7], Mach-Zehnder interferometers with momen-
tum separation of up to 141~k and gradiometers of up to 82~k have been
demonstrated.

1.2 Atom interferometers as inertial sensors

The choice of neutral atoms to perform interferometry as a probe for re-
vealing quantum behaviours arose from the first matter-wave interferometer
which was realized in 1947 by Enrico Fermi [8], the experiment used slow neu-
trons being diffracted (via Bragg diffraction) by crystal planes with different
chemical compositions, resulting in the measurement of the relative sign of
the neutron scattering length from different nuclei samples. Some years later
the first matter-wave interferometry experiment on electrons was performed
using a Mach-Zehnder interferometric scheme arranged with crystals of few
hundreds of atomic layers as mirrors [9, 10, 11]. As time passed, it became
clear at one point that the electrically neutral atoms (neutral matter) were
a good choice to perform atom interferometry measurements with a scope
of building high sensitivity devices for acceleration detection due to reasons
like: possibilities of producing very cold samples by laser cooling and other
techniques, manipulating atoms with laser fields thus easily realizing beam
splitters and mirrors, a good control of the atomic velocities and therefore
the interrogation times. Moreover, for scientists working in the field of in-
terferometry, atoms were preferred over neutrons for one main reason that
neutrons are difficult to produce in the laboratories. Taking this reason into
the account, several research groups around the world started to realize AI
experiments [12, 13, 14, 15].

Till the date, the field of atom interferometry has gained recognition via
different experiments across the globe carrying out precise measurements of:
Newtonian Gravitational Constant [16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28], h/m [29], h/mu [30], h/mCs [31], h/mNa [32], atomic polariz-
ability [33, 34], gravity acceleration [35, 36, 37], curvature [38, 39], Earth’s
gravity gradient [40] and gravity gradient sensitivity [41], fine - structure
constant [42, 43] and rotations [44, 45, 46, 47]. Another example is the
use of AIs for testing the Einstein Equivalence Principle [48, 49]. Different
experiments have attempted to determine the values of many fundamental
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constants precisely for geophysical applications and metrological interests
[16, 17, 19, 20, 21, 22, 23, 24, 30, 50, 51]. Accelerometers based on the
concept of atom interferometry are employed for many practical applications
including metrology, geodesy, geophysics [52], engineering prospecting and in-
ertial navigation [53, 54]. Ongoing studies show that the space environment
will allow to take full advantage of the potential sensitivity of atom inter-
ferometers [55, 56, 57]. In past, two new interferometer schemes based on
multi-photon transitions have been developed and demonstrated [58]. About
more than a decade ago, one of the research works [59] quote about general
relativity tests at unprecedented precision level. From a technological aspect,
designing different transportable apparatus [52, 60, 61] requires noteworthy
efforts to compactify systems of optics and electronics side-by-side developing
robust laser locks [62].

A precise determination of the acceleration due to gravity g and of its gra-
dient have important applications in several scientific domains. Geophysics
and metrology pose as two common examples, but also more practical ap-
plications can be found in exploratory initiatives for underground resources
(oil, water, etc.). In this context, transportable devices are engineered and
assembled for mapping Earth mass anomalies, for monitoring behavior in
volcanoes and also to measure gravitational changes before the happening
of earthquakes. Nowadays, atomic gravimeters are available as commercial
products.

1.3 Measuring G with atom interferometry

The acronym MAGIA stands for Measurement of G by Atom Interferometry.
This state-of-the-art experimental apparatus (Figure 1.1) had its destiny to
precisely measure the Newtonian gravitational constant G. The experiment
fulfilled its destiny in 2014 [16]. In the following years, the apparatus re-
alized several other gravitational measurements [35, 38, 48, 66]. However,
in order to understand the particular design of the MAGIA setup, we shall
briefly describe the principle of the G determination stating the reason for
its relevance.

Among many fundamental constants, this fundamental quantity G is
known with the highest relative uncertainty. The last CODATA recom-
mended value is:

G = 6.67384(80)× 10−11m3Kg−1s−2 (1.1)

holding a relative uncertainty of 1.2×10−4. The particular nature of the grav-
itational force poses several difficulties in the experimental determination of
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the constant G. Since gravitational force is long - ranged and extremely weak,
it exercises control over large neutral masses, henceforth leading to big sys-
tematic effects in laboratory experiments. Due to this reason, all the classical
determinations of G which lay their foundations as macroscopic suspended
masses, i.e. torsion pendulums, or free-falling corner cubes incur from in-
evitable systematics which become strenuous to characterize. Whereas, atom
interferometry provides an alternative method for high - precision measure-
ment of G with a completely different systematic budget from the classical
experiments and it can be used to validate one of the previous inconsistent
measurements thus reducing the relative uncertainty on G.

In the MAGIA experiment [18, 19], G is determined from the measure-
ment of the differential acceleration experienced by two samples of cold 87Rb
atoms when in presence of a well characterized set of tungsten source masses.
Repeating the measurement for two different source masses arrangements,
namely CLOSE and FAR, the interferometric phase imprinted on atoms con-
tains solely the effect of the masses along with simultaneous elimination of
the phase contribution from gravitational field of earth. Having an accurate
knowledge of the source mass distribution, the value of G can be measured
with a high precision. With a relative uncertainty of 150 parts per million,
the value of G measured from MAGIA experiment is:

G = 6.67191(99)× 10−11m3Kg−1s−2 (1.2)

1.4 Motivations and Objectives

In this thesis, we computationally implement a new design highlighting two
crucial steps - the first step is to minimize the phase noise in the gradiometer
signal, and, the second step is to build a new configuration of source masses
[63], thereby pushing the relative accuracy beyond 10−4. This combination of
phase noise minimization in the interferometric signal along with an imple-
mentation of new design of source masses will pave the way towards a precise
determination of G using laser-cooled atoms and quantum interferometry to
probe gravity.

Primary objective with motivation: The motivation and approach behind
phase noise minimization is explained as follows. During the Mach - Zehnder
interferometric sequence, two spatially separated atomic clouds are launched
using moving optical molasses technique along the fountain axis, exhibiting
a free fall motion. Subsequently, they are simultaneously interrogated by the
same Raman beams [16, 17, 35, 48]. As a consequence, the retroreflecting
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Figure 1.1: Overview of the MAGIA with source masses working in two
different geometrical configurations: CLOSE (left) and FAR (right), used
for the double differential measurement of G. Cold atomic clouds of 87Rb
are prepared in the trap chamber (at the bottom of the setup) in a 3D-
MOT (three - dimensional magneto - optical trap). Two cold atomic cloud
samples of 87Rb are launched vertically inside the interferometric tube using
moving optical molasses technique. When the clouds are in the vicinity of
their respective apogees, their vertical acceleration is measured using pulse
sequences of a Mach - Zehnder atom interferometer. This measurement is
conducted in both CLOSE and FAR geometrical configurations of the source
masses.
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mirror vibrations impact both the upper and lower clouds (behaving as si-
multaneous upper and lower interferometers) resulting in a correlation among
their interferometric signals. Lissajous figures (representing interferometric
fringes) are obtained [17] and the phase difference is extracted by fitting point
distribution with an ellipse. In fact, the two fringes can be described with
independent amplitudes and the vertical offsets, and with a relative phase
difference (Φ). Furthermore, due to the presence of systematic errors in the
method of elliptic fitting, the small differential phases (Φ) were not accurately
fitted with the ellipse fitting method [17, 20], so, it is convenient to add an
external and well-controlled relative phase shift in order to have a differential
phase of about π/2. This differential phase requirement was derived from a
simulation performed previously [17], where the noise level and the ellipse
angle were varied for the noise - produced effects on the estimated value of
Φ, also a bias depending on both the noise and the ellipse angle itself; in
particular, is minimum for Φ ≈ π/2 was found [17, 20]. Whereas, in the case
when systematic effects are independent of keff , for each measurement the
k-reversal procedure [64] can be applied.

Secondary objective with motivation: Gravity gradients present a vital ob-
stacle in high-precision measurements using atom interferometry. Controlling
their effects to the required stability and accuracy imposes very compelling
requirements on the relative positioning of freely falling atomic clouds, as in
the case of precise tests of Einstein’s equivalence principle. The crucial sim-
ulations presented in this thesis are developed meticulously incorporating all
the aspects of interferometric scheme with dense, cylindrical – shaped tung-
sten source masses, measuring the phases accumulated by the atomic clouds
traversing the path resulting from Mach – Zehnder gravimetric sequence in
the presence and absence of the aluminium platform constituting as first new
configuration of source masses. The second new configuration marks a torus
– shaped block created from a consecutive stacking of 43 torus – shaped cop-
per rings, inflicting phases on the atomic clouds traversing Mach – Zehnder
trajectory. This second configuration assumes the geometrical configuration
analogous to the aluminium platform of the first configuration. This crucial
research is conducted so as to complete a comparative study of phase acquisi-
tion due to these two different designs of source masses arising from different
total gravitational potentials and distinct material densities. The second
source mass configuration is carved out of copper because it is a material
which is pure, homogeneous and less expensive, and in our case it assumes
simpler geometry as compared to the tungsten cylindrical blocks from the
first configuration. In simple words, all this is done so as to witness the im-
pact of gravitational potentials created from different materials (possessing
different densities and geometries) on the cloud of cold 87Rb atoms.
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Now we explain the motivation behind gravity gradient cancellation.
When we cancel the gravity gradient with a recently discovered technique
[65], the ellipse (a Lissajous figure representing a plot of relative upper ver-
sus relative lower populations of the atoms in the two clouds) degenerates
into a line marking a zero phase shift. Our scheme of phase noise minimiza-
tion which employs a finite-sized solenoidal coil will affect only the second
half of the upper interferometer (upper cloud). Due to this, the ellipse can
be completely opened. Henceforth, the systematic errors which are faced
while performing the elliptic fit will be vanished. Also, as per the standard
gradiometric scheme, it is technically challenging to produce a pair of ultra-
cold samples and routinely place them with a minimized spatial resolution
[16, 17, 20]. The new procedure [65, 66] simulates the effect of a gravity
gradient on the atomic trajectories in the sense that it is able to generate a
fictitious gravity gradient. In our simulations, we applied this technique [65]
to two simultaneous interferometers positioned along the vertical direction
to computationally simulate this effect for measuring local gravity gradients,
void of requirement of the precise knowledge of relative position between the
atomic clouds [66].

1.5 Thesis Outline

The experiment to be performed in near future is described in this thesis
taking into account all theoretical aspects, but mainly from a computational
point of view for experimental physicists. Firstly, from a complete theoretical
introduction on the basic tools for improving the gradiometric signal in the
experimental sequence to the theory and formalisms for Raman transitions
are presented in Chapters 1 and 2 respectively. Chapter 2 ends with applica-
tions in this emerging field of atom interferometry. An overview of the terms
contributing to the phase shift, useful for systematic studies, is reported at
the end.

Chapter 3 explains the modified experimental sequence for the virtual
realization of this new experiment in a clear way, presenting an account of
the mathematical description underlying the basic idea of the scheme.

Chapter 4 presents itself as a complete study of the phase noise minimiza-
tion in the interferomteric signals (in the presence of gravity) with successful
results. In addition to this, the last section of Chapter 4 also describes a
workable design (with related calculations specifying physical parameters) of
two - dimensional magneto - optical trap compatible with the new design of
the experiment presented in this thesis.

Chapter 5 contains a detailed description of the two new designs of source
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masses and phase calculations including compensation of ambient gravity
gradients underlying results stating a relative accuracy of 10−6, which is
achieved while cancelling the real gravity gradient with a fictitious gravity
gradient [66], all of which is reported here.

The thesis ends summarizing the results obtained, and, the future scope
for the experiment in Chapter 6. Lastly, all the important simulations which
produced the results are documented in the thesis, provided as Appendices.
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Chapter 2

Atom Interferometry:
Theoretical Background

In this Chapter, we shall describe theoretical formalisms useful to introduce
Atom interferometry. In the beginning, we shall illustrate a simple case of a
two-level atomic system irradiated by a monochromatic photon source. In our
next step, stimulated Raman transitions will be introduced with an outlook
of multi-level atomic configuration interacting with two counter-propagating
light beams. Experimental parameters and variables, that will be used in this
thesis, are introduced in order to make the reading easier and more directly
comprehensible. The main physical phenomena that can induce a phase
shift in the interferometer signal are separately considered and analytical
expressions for the different phase terms are derived wherever necessary.

2.1 Atom - light field interaction

2.1.1 Two - level atom interacting with travelling waves:
Rabi oscillations

Let us consider a simple two - level atomic system with ground and excited
states marked as |g〉 and |e〉 respectively, with their corresponding energy
eigenvalues as ~ωg and ~ωe. In this mathematical treatment, we will omit
spontaneous emission, because here the first excited state |e〉 is stable enough
during the pulse sequence is between the magnetically insenstive hyperfine
energy levels |F = 1,mF = 0〉 and |F = 2,mF = 0〉 in 87Rb. Energy levels
|g〉 and |e〉 are coupled by an incoming electromagnetic field of frequency ω

with a corresponding wavevector ~k.
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In the rotating - wave approximation, the Hamiltonian is given by:

H =
~̂p2

2m
+~ωe|e〉〈e|+~ωg|g〉〈g|+~Ωei(

~k.~r−ωt)|e〉〈g|+~Ω∗e−i(
~k.~r−ωt)|g〉〈e| (2.1)

The above Hamiltonian equation consists of three crucial elements: kinetic
energy of the atom, in which the momentum operator ~̂p acts upon mo-
mentum part of the relevant state, diagonal matrix element Hamiltonian
- HD = ~ωe|e〉〈e| + ~ωg|g〉〈g|, and lastly, the off - diagonal matrix element

Hamiltonian - HΩΩ∗ = ~Ωei(
~k.~r−ωt)|e〉〈g|+ ~Ω∗e−i(

~k.~r−ωt)|g〉〈e|. This implies:

H =
~̂p2

2m
+HD +HΩΩ∗ (2.2)

Here, Ω is referred to as Rabi frequency. Rabi Frequency is a measure
of atomic population fluctuation between |g〉 and |e〉 states, therefore cou-
pling the ground and first excited states. Mathematically, Rabi frequency is
expressed as:

Ω|g〉−→|e〉 =
~d|g〉−→|e〉. ~E0

~
(2.3)

where ~d|g〉−→|e〉 is the transition dipole moment for the transition: |g〉 −→
|e〉, whereas ~E0 = ε̂E0 marks the amplitude of electric field vector from
the incoming monochromatic electromagnetic radiation. The reason which
explains the existence of a complex conjugate of Rabi frequency in the fourth
term of equation 2.1 is that the polarization ε can be complex. For example -
in the case of a circularly polarized light, or, the electric field amplitude vector
for the case of plane wave is complex itself: ~E0 = | ~E0|eiφ. This argument
clarifies the meaningful existence of Ω∗ in the Hamiltonian for a simple two
- level atomic system illuminated by an incident monochromatic light.

Considering light travelling as a stream of photons, when atoms are il-
luminated by the first π/2 – pulse, atoms receive a momentum kick from
the photon and they go from the ground state to an excited state. Basi-
cally, the atom is now in the superposition of these two states, equivalent
to understanding that the atom has two different trajectories spanned by
two momentum states. After half – time of the interferometric sequence, a
combination of a π and a π/2 – pulse steers back the two different paths
of atom for it to reach a definite state. To be more clear and precise, we
will explore the scenario of a simple two-level scheme considering light as a
bunch of photons, which will take us towards the path of realizing mirrors
and beam splitters using laser pulses as done in atom interferometers.
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Since we are using the picture of photons interacting with atom [29],
the atomic states are labelled in the momentum basis by spanning into the
corresponding tensor products in Hilbert spaces:

|g, ~pg〉 = |g〉 ⊗ |~pg〉

and,

|e, ~pe〉 = |e〉 ⊗ |~pe〉

Under the momentum basis, the spatial dependence arises via the transla-
tional operator:

e±i
~k.~r|~p〉 = |~p± ~~k〉 (2.4)

The above quantum state transformation expresses the well - known result:
Absorption of a photon with a wavevector ~k changes the atomic momentum
by ~~k. The light field couples the quantum momentum states |g, ~pg〉 and

|e, ~pe + ~~k〉.
For the sake of convenience, we employ the transformations |g̃〉 = e−iωgt|g〉

and |ẽ〉 = e−iωet|e〉 inside Hamiltonian terms of equation 2.2 as follows:

HΩΩ∗ = ~[Ωei(
~k.~r−φ(t))|ẽ〉〈g̃|+ Ω∗e−i(

~k.~r−φ(t))|g̃〉〈ẽ|] (2.5)

HD = ~[ωe|ẽ〉〈ẽ|+ ωg|g̃〉〈g̃|] (2.6)

with φ(t) = δt and δ = ω−ωe+ωg. Here, δ is known as detuning of irradiated
monochromatic light source. Hence, the total Hamiltonian becomes:

H =
~̂p2

2m
+~[Ωei(

~k.~r−φ(t))|ẽ〉〈g̃|+Ω∗e−i(
~k.~r−φ(t))|g̃〉〈ẽ|]+~[ωe|ẽ〉〈ẽ|+ωg|g̃〉〈g̃|]

(2.7)

The term
~̂p2

2m
responsible for being an external degree of freedom and the

phase φ(t) depending on both the laser frequency and on the internal energy
of the atoms play an important role in the phase shift calculation of an atom
interferometer.

The time evolution of a time - dependent quantum state |ψ(t)〉 can be
expressed in terms of time - dependent coefficients a|g,~p〉(t) and a|e,~p+~~k〉(t):

|ψ(t)〉 = a|e,~p+~~k〉(t)|ẽ, ~p+ ~~k〉e
−i|~p+~~k|2t

2m~ + a|g,~p〉(t)|g̃, ~p〉e
−i|~p|2t

2m~ (2.8)
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These time - dependent coefficients can be calculated by solving Schroedinger’s
equation:

i~
d|ψ(t)〉
dt

= H|ψ(t)〉 (2.9)

In the limit where φ(t) is constant during the pulse, the probability of
finding an atom in state |e〉 after an interaction time τ is then given by:

|a|e,~p+~~k〉(t)|
2 =

1

2
(1− cos Ωτ) (2.10)

The atom undergoes the well - known Rabi oscillations between the two
states |g〉 and |e〉. Two configurations relevant for atom interferometry in
the particular case where ag(t0) = 1 and ag(t0) = 0 result in:

• Case - I : π/2-pulse: Ωτ = π/2

|ψ(t)〉 =
1√
2

[|g, ~p〉 − i|e, ~p+ ~~k〉e−iφ(t)] (2.11)

• Case - II : π-pulse: Ωτ = π

|ψ(t)〉 = −i|e, ~p+ ~~k〉 (2.12)

From case - I, when the atom is interrogated with a π/2-pulse, the photon

(carrying momentum ~~k) from this π/2-pulse spans the atom into a coherent
superposition with equal wave packet amplitudes, resulting in the formation
of two different internal energy states. The wavepackets are separated by an
atomic recoil velocity vr = ~|~k|/m. This implies that π/2-pulse plays the role
which beam splitter does in the classical optical interferometry. Similarly,
from case - II, we can conclude that if the π-pulse is applied to a superposition
state, the resulting atomic wavefunction is still a superposition state, but
with swapped momentum states, resulting in a mirror-like behavior. Note
that when the atom is in the ground state |g〉 a π-pulse corresponds to an
absorption of an incoming photon with energy ~ωL and to the acquisition of a
momentum +~kL, but when the atom is initially in the state |e〉, a stimulated
emission occurs so a photon with energy ~ωL is emitted copropagating with
the laser light and the atomic momentum changes by −~kL. Hence, the
condition Ωτ = π results in behavior of π-pulse analogous to the role of
mirrors in the classical optical interferometry. Experimentally, this is done
by selecting the coupling parameters resulting in the conditions: Ωτ = π/2
and Ωτ = π.
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Figure 2.1: Action of π/2 - pulses on states |1〉 and |2〉.

Figure 2.2: Action of π - pulses on states |1〉 and |2〉.
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Let a1(t) and a2(t) be the amplitude probabilities of detecting the atom
in the corresponding state at a time t. Let us now split in two terms, one
due to the interaction with the electric field and another one related with the
free evolution of the atomic wavefunction, hence the amplitudes in equation
2.8 and the Hamiltonian with rotating - wave approximation modify as:

a1(t) = a|e,~p+~~k〉(t)e
−i|~p+~~k|2t

2m~ = c1(t)e−iωbt (2.13)

a2(t) = a|g,~p〉(t)e
−i|~p|2t

2m~ = c2(t)e−iωat (2.14)

H =
|~̂p|2

2m
+ ~ωa|g, ~p〉〈g, ~p|+ ~ωb|e, ~p+ ~~k〉〈e, ~p+ ~~k| − ~d. ~EL (2.15)

where ωa and ωb are the frequencies of the ground and excited states re-
spectively. Also, d is an electric dipole operator and EL is the electric
field vector of the incoming coherent monochromatic laser field expressed
as: EL = E0cos( ~kL.~r − ΩLt + φL). In the rotating wave approximation [67],
one gets the following differential equations for the coefficients:

iċ1(t) =
Ω

2
ei(∆t−φL)c2(t) (2.16)

iċ2(t) =
Ω∗

2
e−i(∆t+φL)c1(t) (2.17)

Introducing generalized Rabi frequency ΩG as:

ΩG =
√

∆2 + Ω2 (2.18)

The exact solution for these time - dependent coefficients are reduced as
follows:

c1(t) = ei∆t/2

[
c1(0) cos

(
ΩGt

2

)
− ic1(0)

∆

ΩG

sin

(
ΩGt

2

)
−

ic2(0)
Ω

ΩG

e−iφL sin

(
ΩGt

2

)] (2.19)
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c2(t) =
1

ei∆t/2

[
− ic1(0)eiφL

Ω

ΩG

sin

(
ΩGt

2

)
+ c2(0) cos

(
ΩGt

2

)
+

ic2(0)
∆

ΩG

sin

(
ΩGt

2

)] (2.20)

By performing a measurement of the atomic state as a function of the inter-
action time τ one would find that the probability of finding the atom in the
states |1〉 and |2〉 periodically oscillates at frequency ΩG:

P1(τ) =

(
Ω cos(ΩGτ/2)

ΩG

)2

(2.21)

and

P2(τ) =

(
Ω sin(ΩGτ/2)

ΩG

)2

(2.22)

Incorporating the scenario of an exact resonance (∆ = 0), the time-dependent
coefficients further simplify as:

c1(t) = c1(0) cos(Ωt/2)− ic2(0)e−iφL sin(Ωt/2) (2.23)

and

c2(t) = c2(0) cos(Ωt/2)− ic1(0)eiφL sin(Ωt/2) (2.24)

In such conditions, if a light pulse of temporal length τ is sent on an atom
initially in the state |1〉 its final state at the end of the interaction becomes:

|ψ(τ)〉 = cos

(
Ωτ

2

)
|1〉+ ei(φL−

π
2

) sin

(
Ωτ

2

)
|2〉 (2.25)

All relevant and useful information arising from |ψ(τ)〉 is listed in Table 2.1.
Temporal evolution can be described using the two eigenstates |g, ~p〉 and

|e, ~p+ ~~k〉 with corresponding energy levels as:

|1〉 = |g, ~p〉 −→ E1 = ~ωa +
|~p|2

2m
= ~ω1

|2〉 = |e, ~p+ ~~k〉 −→ E2 = ~ωb +
|~p+ ~~k|2

2m
= ~ω2
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Figure 2.3: Calculated probabilities P (τ) of detecting a rubidium atom in
either state |1〉 (red) or |2〉 (blue) after an interaction with a light field for a
time τ , with ∆ = 6.834 GHz and Ω = 6.8 GHz.

Pulse Type τ |ψ(τ)〉 P1(τ) P2(τ)

π π/Ω ei(φL−
π
2

)|2〉 (Ω cos(ΩGπ/2Ω)
ΩG

)2 (Ω sin(ΩGπ/2Ω)
ΩG

)2

π/2 π/2Ω 1√
2
(|1〉+ ei(φL−

π
2

)|2〉) (Ω cos(ΩGπ/4Ω)
ΩG

)2 (Ω sin(ΩGπ/4Ω)
ΩG

)2

Table 2.1: Pulse types with their respective temporal lengths τ and pop-
ulation probabilities P (τ) (also see Figure 2.3). Here, P1(τ) P2(τ) denote
population probabilities of detecting an atom in states |1〉 (red) and |2〉 re-
spectively. Also, it is clearly visible here how π and π/2 pulses behave like
mirror and beam-splitter respectively.
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which implies definition of laser detuning ∆ and resonant ω0 frequencies:

ω0 = ωb − ωa = ωab −
~p.~k

m
+

~|~k|2

2m
(2.26)

∆ = ωL − ω0 = ωL −

(
ωab +

~p.~k

m
+

~|~k|2

2m

)
(2.27)

clearly showing the Doppler effect and the recoil terms.

2.1.2 Raman Transitions

Let us consider a three - level system with two ground state hyperfine levels
|1〉 and |2〉 being coupled via a virtual intermediate state |i〉 by two lasers

of angular frequencies ω1 and ω2 with their corresponding wavevectors as ~k1

and ~k2.
A Raman transition with two counter-propagating laser beams of fre-

quencies ω1 and ω2 is shown in Figure 2.4. Ignoring the effects from Doppler
shift, the resonance condition responsible for driving a coherent Raman tran-
sition between states |1〉 and |2〉 is: ~(ω1 − ω2) = E2 − E1. These Raman
laser beams travelling in opposite directions change the atom’s momentum
during the transition. The absorption of photon of a wavevector k2 and the
stimulated emission of one in the opposite direction ~k2 ≈ −~k1 resulting in
atom experiencing two recoil kicks in the same direction. Hence, as pre-
sented in Figure 2.4, the Raman transition couples |1, ~p〉 and |2, ~p + 2~~k〉
so that an atom in Raman interferometric scheme has a wavefunction of
the form: ψ = A|1, ~p〉 + B|2, ~p + 2~~k〉. The Raman resonance condition
(~(ω2−ω1) = E2−E1) is sensitive to atom’s velocity for counter-propagating
beams providing the basis for the Raman cooling of atoms. For interferom-
etry this velocity sensitivity is a complicating factor and we shall assume
that the Raman pulses are sufficiently short: 1/τpulse ≈ ∆v/λ (∆v = veloc-
ity selection range width, τpulse = pulse duration, λ = laser wavelength) to
drive transitions over the whole range of velocity components along the laser
beam.

Two - photon Raman transitions on a multi - level atom

Taking into account a multi-level atomic system with two well-defined energy
levels, |g〉 and |e〉 (for example, the two magnetically insensitive hyperfine
levels of rubidium ground state), and a virtual intermediate state |i〉. The
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Figure 2.4: Energy levels and laser frequencies used for Raman transition.

Internal states Energy

|1〉 E1 = ~ωg + |~p|2
2m

= ~ω1

|2〉 E2 = ~ωe + |~p+~(~kR1−~kR2)|2
2m

= ~ω2

|i0〉 Ei0 = ~ωi + |~p+~~kR1|2
2m

= ~ωi0
|i2〉 Ei2 = ~ωi + |~p+~~kR2|2

2m
= ~ωi2

|i1〉 Ei1 = ~ωi + |~p+~(2~kR1−~kR2)|2
2m

= ~ωi1

Table 2.2: Calculated energy magnitudes of all the internal states for a
Raman transition coupling coupling the two ground state hyperfine levels |1〉
and |2〉.

state |i〉 represents an intermediate and a virtual state obtained as a summa-
tion over all the hyperfine levels. Electric field vectors of the two participating
counter-propagating light beams in a two - photon Raman transition are:

~ER1(~r, t) = ÊR1,0 cos[~kR1.~r − ωR1t+ φR1] (2.28)

and

~ER2(~r, t) = ÊR2,0 cos[~kR2.~r − ωR2t+ φR2] (2.29)

with ωR1 and ωR2 simultaneously been acted upon the same atom.
The Hamiltonian for the described system in the electric-dipole approxi-

mation is:

H =
∑
s

~ωs|s〉〈s| − ~d.( ~ER1 + ~ER2), ∀s = {1, 2, i0, i2, i1} (2.30)
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Figure 2.5: Frequency diagram of a Raman transition coupling the two
ground state hyperfine levels |1〉 and |2〉 with a small detuning δR taking
all the possible virtual intermediate states (also see Table 2.2) - |i〉, |i0〉 and
|i1〉. The common detuning of the two monochromatic and coherent light
fields from the direct transition is ∆R.

which will be applied on the atomic wavefunction:

|ψ(t)〉 =
∑
s

cs(t)e
−iωst|s〉 (2.31)

As per Figure 2.5:

∆1 (detuning of light field ER1) = |2〉 −→ |i0〉
∆2 (detuning of light field ER2) = |1〉 −→ |i2〉
∆R (common detuning from the excited level |i1〉) = |1〉, |2〉 −→ |i1〉

Defining the Rabi frequency induced by the laser l (l = 1, 2) between the
states |m〉 (m = 1, 2) and |n〉(n = i0, i1, i2) as:

Ωmnl =
〈n| − ~d. ~E|m〉

~
(2.32)

The time – dependent coefficients derived in the previous section are re-
derived in the scenario of two – photon Raman transition under the rotating
– wave approximation:

iċ1(t) = ci0(t)
Ω∗1i01

2
ei(∆Rt−φR1) + ci2(t)

Ω∗1i22

2
ei(∆2t−φR2) (2.33)
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iċ2(t) = ci0(t)
Ω∗2i02

2
ei(∆Rt−δRt−φR2) + ci1(t)

Ω∗1i22

2
ei(∆2t−φR2) (2.34)

iċi0(t) = c1(t)
Ω∗1i01

2
ei(−∆Rt+φR1) + c2(t)

Ω∗2i02

2
ei(−∆Rt+δR(t)+φR2) (2.35)

iċi1(t) = c2(t)
Ω∗2i11

2
ei(−∆1t+φR1) (2.36)

iċi2(t) = c1(t)
Ω∗1i22

2
ei(−∆2t+φR2) (2.37)

The three excited levels can be adiabatically eliminated [68] by integrating
the three equations and taking out of the integrals the slowly varying terms,
resulting in:

iċ1(t) = c1(t)

[
|Ω1i01|2

4∆R

+
|Ω1i22|2

4∆2

]
+ c2(t)

[
Ω∗1i01Ω2i02

4(∆R − δR)
e−i(φR1−φR2−δR(t))

]
(2.38)

iċ2(t) = c1(t)

[
Ω∗2i02Ω1i01

4∆R

ei(φR1−φR2−δRt)

]
+ c2(t)

[
|Ω2i02|2

4(∆R − δR)
+
|Ω2i11|2

4∆1

]
(2.39)

Let us now simplify the equations by defining the frequency light shifts of
the two states, their sum and difference:

ΩAC = ΩAC
2 + ΩAC

1 (2.40)

δAC = ΩAC
2 − ΩAC

1 (2.41)

where:

ΩAC
1 =

[
|Ω1i01|2

4∆R

+
|Ω1i22|2

4∆2

]
(2.42)

ΩAC
2 =

[
|Ω2i02|2

4(∆R − δR)
+
|Ω2i11|2

4∆1

]
(2.43)
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Introducing more effective physical paramaters with respect to two - photon
Raman transition:

ωeff = ωR1 − ωR2 (2.44)

~keff = ~kR1 − ~kR2 =
~kR1

|~kR1|
(|~kR1|+ |~kR2|) (2.45)

φeff = φR1 − φR2 (2.46)

Ωeff =
Ω1i01Ω2i02

2∆R

(2.47)

ΩG,eff =
√

Ωeff + (δR − δAC)2 (2.48)

Considering δR << ∆R, then one has:

iċ1(t) = c1(t)ΩAC
1 + c2(t)

Ω∗eff

2
e−i(φeff−δR(t)) (2.49)

iċ2(t) = c1(t)
Ω∗eff

2
ei(φeff−δR(t)) + c2(t)ΩAC

2 (2.50)

In order to remove time - dependency in the off - diagonal terms, we rotate
the coefficients in a way:

c1(t) = s1(t)eit
(δR−ΩAC )

2 (2.51)

c2(t) = s2(t)e−it
(δR+ΩAC )

2 (2.52)

resulting in:

iṡ1(t) =
1

2

[
s1(t)(δR − δAC) + s2(t)Ωeffe

−iφeff

]

and

iṡ2(t) =
1

2

[
− s2(t)(δR − δAC) + s1(t)Ωeffe

iφeff

]

Solving the above system of time - dependent differential equations gives
the following general expression for the non - rotated terms of the atomic
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wavefunction:

s1(t) =

{
c1(0)

[
cos

(
ΩG,efft

2

)
− ic1(0)

δR − δAC

ΩG,eff

sin

(
ΩG,efft

2

)]

+c2(0)e−iφeff

[
− i Ωeff

ΩG,eff

sin

(
ΩG,efft

2

)]} (2.53)

and

s2(t) =

{
c1(0)eiφeff

[
− i Ωeff

ΩG,eff

sin

(
ΩG,efft

2

)]

+c2(0)

[
cos

(
ΩG,efft

2

)
+ ic2(0)

δR − δAC

ΩG,eff

sin

(
ΩG,efft

2

)]} (2.54)

Considering a laser pulse having a temporal length τ , phase shifts and
the momenta transferred resulting from the transitions are:

Momentum state transitions Acquired phase magnitudes

|g, ~p〉 −→ |g, ~p〉 (τ/2)(δR − ΩAC)

|g, ~p〉 −→ |e, ~p+ ~~k〉 φeff − π
2

+ (τ/2)(−δR − ΩAC)

|e, ~p+ ~~k〉 −→ |g, ~p〉 −φeff − π
2

+ (τ/2)(δR − ΩAC)

|e, ~p+ ~~k〉 −→ |e, ~p+ ~~k〉 (τ/2)(−δR − ΩAC)

2.1.3 Phase Shift Calculation: Mach - Zehnder Raman
Atom Interferometer

In this Section, we study a complete interferometric sequence (Figure 2.6)
with Raman pulses to evaluate the phase shifts imprinted on the atom’s wave-
function as it traverses its path in time 2T . This interferometric sequence
is equivalent to a set of two consecutive identical Ramsey sequences (τ - τ),
that results in a non - destructive interference of atoms.

Using the results (from previous section) of the phases acquired during
different momentum transfers, the total phases across two paths acquired
due to the π and π/2 laser pulses (labelled with an effective wavevector keff)
with temporal lengths respectively being 2τ and τ are:

Path - I (Figure 2.6): |g, ~p〉 −→ |g, ~p〉 −→ |e, ~p+ ~~keff〉 −→ |g, ~p〉:

φPath−I = (τ/2)(δR − ΩAC) + φT−τeff − π

2
+ (2τ/2)(−δR − ΩAC)

−φ2T−τ
eff − π

2
+ (τ/2)(δR − ΩAC)

(2.55)
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Figure 2.6: Schematic of a Mach - Zehnder atom interferometer.

Path - II (Figure 2.6): |g, ~p〉 −→ |e, ~p+ ~~keff〉 −→ |g, ~p〉 −→ |g, ~p〉:

φPath−II = φ0
eff −

π

2
+ (τ/2)(−δR − ΩAC)− φT−τeff − π

2
+(2τ/2)(δR − ΩAC) + (τ/2)(δR − ΩAC)

(2.56)

Complete phase difference in Mach - Zehnder interferometric scheme is:

∆φ = φ2T−τ
eff − 2φT−τeff + φ0

eff + δRτ (2.57)

The above equation represents the complete phase difference for a spatially
localized wavepacket, that wavepacket itself being a coherent sum over mo-
mentum states. This is so because it is clear in equation 2.57 that the result-
ing phase shift is independent of momentum. Moreover, ∆φ can be varied by
any accelerated motion of the atom relative to the wavefronts of the Raman
beams or by any relative variation between the atomic frequency and the
Raman frequency difference.

Gravity Gradiometer: Freely - falling Raman Atom Interferometer

Considering acceleration due to gravity uniform in our experimental region,
we can write:

vz(t) = vz(0)− gt (2.58)

If we consider two atomic samples in free fall, simultaneously interrogated
by the same electromagnetic pulses, we can obtain a gradiometer, i.e. an
apparatus which is able to measure the difference in gravitational acceleration
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between two points. In this case, the difference of the phase shifts of the
two simultaneous interferometers, depends from the relative gravitational
acceleration difference felt by the couple of atomic clouds. Considering two
different atomic clouds separated by a baseline with initial conditions: z(0) =
0 and v(0) = v0, we can write phase shifts in the basis of time and momentum
transfers as follows:

φ(|g, ~p〉 −→ |g, ~p〉, 0) = 0 (2.59)

φ(|g, ~p〉 −→ |e, ~p+ ~~k〉, T ) = keff(v0T − gT 2/2) (2.60)

φ(|e, ~p+ ~~k〉 −→ |g, ~p〉, T ) = keff(v0T − gT 2/2 + ~keffT/m) (2.61)

φ(|e, ~p+ ~~k〉 −→ |e, ~p+ ~~k〉, 2T ) = keff(2v0T − 2gT 2 + ~keffT/m) (2.62)

Complete phase shift becomes:

∆φg = −keffgT
2 (2.63)

In common atom gravimeters the acceleration is not directly determined
from the measured phase shift, but determining the frequency ramp that
exactly compensates the Doppler shift induced by gravity during the free
fall.

2.2 Applications of Atom Interferometry

Atom Interferometry presents a colossal potential in high precision measure-
ments in the contexts of both pure and engineering sciences. The major
areas of potential applications are internal and gravitational measurements
and related effects, tests of fundamental principles in physics, experimen-
tal verifications for atoms in quantum regimes and revealing the unknown
properties of atoms at ultracold temperatures.

It is interesting to note that for nearly every optical phenomena lying in
a classical regime, there exists an analogue at atomic scale. In atom inter-
ferometry, the experiments depict spatial separation of an atomic wavefunc-
tion, which wavefunctions after interference contain the information about
the properties of atoms. In case if an ensemble of atoms are moving along
the gravity axis, then the resulting interference pattern will reveal the in-
formation about atoms under the influence of gravity, henceforth containing
the information about gravitational acceleration of earth [35, 69].
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2.2.1 Embarking with new ideas from research in Atom
Interferometry

In this Section, we will discuss the following aspects briefly so as to establish
the recent research results indicating a scope of new research ideas in this
emerging field of atom interferometry:

• Quantum violation of Weak - Equivalence Principle

• Measuring the gravitational acceleration with precision matter - wave
velocimetry

• Macroscopic coherence in the measurement of Newtonian Gravitational
constant

Quantum violation of Weak - Equivalence Principle

Einstein’s weak equivalence principle states that in all inertial frames of ref-
erence, the inertial and gravitational masses are equivalent. Experimentally,
this can be tested by preparing atomic samples with different states, and
then allowing them to fall freely under the gravitational influence. We shall
describe the motivation for physics behind the violation of weak equivalence
principle at a quantum scale.

Starting with the effective mass of photon [70], we have:

Meff =
hν

c2
=

h

cλ

From Newtonian mechanics, the uncertainty in acceleration due to gravity
is:

∆ag =
GMeff

r2
eff

=
Gh

cλr2
eff

and the corresponding uncertainty change in position is:

∆xg = ∆agt
2
eff =

Gh

cλ
×
t2eff
r2
eff

=
Gh

λc3

This gives rise to the equation of generalized uncertainty principle:

∆x =
h

∆p
+
Gh∆p

c3λ

The second term in this generalized form of uncertainty principle becomes
very crucial when the length scales are very small or are of the order of
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Planck’s length. This generalized uncertainty principle has been rigorously
incorporated by Brukner and Zych [71] to define the inertial and gravitational
mass - energy operators:

M̂α = mαÎ +
Ĥα

c2
,∀α ∈ {i, g}

In the above equation, the subscript labels i and g denote inertial and grav-
itational mass - energy operators respectively. Performing a simple product
between the two operators M̂g and M̂−1

i yields:

M̂gM̂
−1
i = mgmiÎ +

mgĤ
−1
i

c2
+
miĤg

c2
+O(

1

c4
)

which is clearly unequal to unity, henceforth violating weak equivalence prin-
ciple at a quantum scale along with an indication of off - diagonal terms
present in this equation. These off - diagonal terms are:

M̂gM̂
−1
i =

(
mg Î +

Ĥg

c2

)(
miÎ +

Ĥ−1
i

c2

)

Hitherto, for quantum Weak Equivalence Principle violation, the centre - of
- motion acceleration becomes:

a = M̂gM̂
−1
i g

In 2015, a free - fall experiment of ultracold atomic samples using a combina-
tion of large momentum transfer atom interferometer operating under Mach
- Zehnder interferometric scheme and gravity gradiometer was implemented
[72], which resulted in gravimeter senstivity of 4 × 10−8 for 88Sr atoms.
There is a scope of creating optically separated states using large momen-
tum transfer atom interferometer as WEP violation will increase with the
energy difference between internal levels, which makes it advantageous to
be used for the states with an energy gap greater than the hyperfine split-
ting. Also, In different research groups, atom-based tests of the Einstein’s
equivalence principle are flourishing [3, 4, 5, 6, 48].

Measuring the gravitational acceleration with precision matter -
wave velocimetry

Recently, a new method [35] was demonstrated in our laboratory (experimen-
tal apparatus detailed in [38, 73]) to perform an interferometric measurement
for g without any need for a vibration isolation system or post-corrections
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based on seismometer data monitoring the residual accelerations at the sensor
head with cold rubidium atoms, and was compared with a measurement done
in our laboratory in 2012 [74]. The motivation behind performing this exper-
iment comes from the vibration noise of the measurement platform (which
remains undistinguished from the relevant acceleration signal) arising as one
of the crucial limitation [75] of an atomic gravimeter. In this measurement of
acceleration due to gravity, two successive Ramsey interferometric sequences
were used to explore the velocity variation of freely falling cold rubidium
atom samples.

Our instrument has a fractional stability of 9× 10−6 at 1 s of integration
time, which is one order of magnitude better than a standard Mach-Zehnder
interferometer (operated without any vibration isolation or applied post-
correction). The short term stability of the instrument is limited by both
the interrogation and the free - fall times.

The long term stability and accuracy depend on the velocity variations
introduced by the light shift during the preparation phase. The free-fall time
and the interrogation time are both strictly related to the temperature of the
atomic sample.These freely falling cold atomic cloud samples are prepared
in a narrow velocity distribution [76, 77]. Therefore, ultracold atom sources
become highly beneficial for several reasons: they increase the efficiency of
the velocity selection process (down to the pK regime) while preserving high
atom numbers; allowing longer free evolution times; providing atomic samples
with larger coherence lengths that can be probed in longer interferometers
with limited loss of contrast.

This method shows very interesting perspectives for being further devel-
oped towards state-of-the-art performance and beyond.

Macroscopic coherence in measurement of Newtonian Gravitational
constant

When an interferometer is operated in a gravitational field, it is in an ac-
celerated frame. A quantity which is independent of a frame of reference is
important - this is second partial derivative of the gravitational potential, or,
the space-time curvature. A particle’s wavefunction acquires a phase shift
due to curvature. Theorizing is one thing, but measuring such delicate ef-
fect is quite another. In a beautiful experiment, Kasevich’s group measured
the tidal force - a measure of spacetime curvature, on the wavefunction of
an individual particles inside an atom interferometer. This experiment was
inspired by the experiment performed at Department of Physics and Astron-
omy, University of Florence [48] where differential effect of curvature on two
separated atom interferometers was measured.
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Tidal force was generated by movable external source masses. With
this, the effect of Earth’s gravity is eliminated by comparing the interfer-
ence fringes of the interferometer with the ones of another intereferometer
located about 30 cm from the source masses. To confirm this, they varied
the separation d between the interferometer arms and showed that the signal
from curvature is proportional to d2. This experiment was performed in a 10
m high fountain- the height corresponding to a free fall time of about 2.8 s,
enough to perform interferometry. Momentum of about one hundred photons
separated the spatial components of each individual atom’s wavefunction by
≈ 30 cm. While one of these two partial wavefunctions formed the sensor
interferometer, the other formed the reference interferometer.

The differential acceleration was measured to a staggering precision of
0.6 nm/s2 with sensitivity 5×10−9 m/s2/

√
Hz. The curvature generated by

the source masses (84 kg lead) was about 1 radian phase shift. Experimen-
tal demonstration of effect of curvature on the wavefunction of individual
particles, conclusively established coherence over a macroscopic scale.

These remarkable advances have paved the way of the usage of atom
interferometry in the future detection of gravitational waves.
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Experimental Sequence

3.1 Outline of the new experimental scheme

The complete experimental scheme highlights two major steps - phase noise
minimization in the interferometric signal in the presence of gravity and
cancellation of ambient gravity gradients with implementation of a novel
design of source masses.

As shown in Figure 3.1, the two cold atomic cloud samples are trapped
and cooled in a magneto-optical trap (MOT) and sequentially launched to-
wards the interferometric region after they are prepared in |F = 1,mF = 0〉
and |F = 2,mF = 0〉 states (following dipole - allowed transition: 5S1/2 −→
6P3/2 with λ = 421.5 nm) using juggling mechanism. The first step to min-
imize the phase noise in the gravimetric signal is achieved by adding an
external-well-controlled relative phase shift in order to produce a differential
phase of π/2, therefore satisfying the required condition [17] for phase noise
minimization, i.e., ∆φ ≈ π/2.

A measurement of the local gravity gradient is performed by Raman in-
terferometry. The gravitational perturbation on the atomic trajectories pro-
duced by a well-known set of source masses can be accurately modelled. In
previous works [16, 17, 20, 48], the Raman gradiometer was used to determine
G performing a further differential measurement between the gradiometric
signals in two different source mass configurations, namely CLOSE and FAR.
A new approach to building a new design for the high precision measurements
of atom interferometery is described in Section 3.1.2.

3.1.1 Step - I : Phase Noise Minimization

Consider an atomic fountain tube (Figure 3.1) consisting of a pair of thermal
clouds sequentially launched from a three - dimensional magneto - optical
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Figure 3.1: LEFT: Overview of the experimental apparatus, RIGHT:
Schematic of the modified Mach - Zehnder interferometric sequence for phase
noise minimization with arm labelled in accordance with equations 3.1, 3.2
and 3.3.

trap. This sequential launching is achieved by standard moving optical mo-
lasses technique along with a simultaneous interrogation by a sequence of
three counter - propagating Raman pulses, forming a traditional Mach -
Zehnder interferometric sequence.

Now we will describe the modification to be done in the experimental
sequence to fulfill our objective. Firstly, a finite - solenoidal coil is wrapped
along the altitude axis of the hollow cylindrical design of the interferometric
tube covering complete altitude in a helical trend. This coil generates a bias
magnetic field which helps in defining quantization axis for the individual
atoms inside the atomic cloud samples. This bias magnetic field remains
switched ON throughout the complete experimental session. Secondly, dur-
ing the second-half time period of the interferometric scheme, i.e., from T to
2T , an extra finite - solenoidal coil other than the bias coil should produce
another magnetic field from a very small time - window ∆t ∈ [4 ms,10 ms].
For this to be implemented, an extra finite - solenoidal coil of much smaller
size than the bias coil is winded around the tube in the vicinity of the apogee
point of the upper atomic thermal cloud sample. In this thesis, we will re-
fer to the magnetic field coil producing bias magnetic field throughout the
complete experimental session as bias coil and the extra finite - solenoidal
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coil remaining active for a very small time - window ∆t ∈ [4 ms,10 ms], as
B-pulse coil. The B-pulse coil has to positioned precisely in a way that the
centre of mass of the upper thermal atomic cloud sample must coincide with
the centre of the B-pulse coil which lies at the midway of the helix. We have
to note that for this implementation to have an outcome of triumph, it is
necessary that the flow of current inside both the coils is in the same direction
and both the atomic cloud samples are prepared in magnetically-insensitive
hyperfine states, so that there must be no phase contribution during inter-
feromtric sequence from the first-order Zeeman effect (because in first-order
Zeeman shifts, the hyperfine energy level difference is directly proportional
to the azimuthal quantum number of that magnetically-senstive hyperfine
state). Thanks to the second-order Zeeman shift, because in this case, the
energy difference between the hyperfine levels is proportional to the square
of the magnetic field and is independent of the magnetic azimuthal quan-
tum number. When one applies this scheme of phase - noise minimization in
a traditional Mach - Zehnder gravimeteric sequence, the modified sequence
becomes as shown in Figure 3.1 (right).

Let TP be the B-pulse time duration, ¯TAP is the average time at which the
upper atomic thermal cloud attains its point of apogee, T be the half-time of
the experimental sequence and Bbias be the bias magnetic field that remains
activated till the end of the experimental sequence.

An atomic cloud experiences splitting of its wavefunction due to an il-
lumination from a pair of laser beams from opposite directions serving as a
π/2-pulse. This one wavefunction (of our atomic cloud) which is now in su-
perposition of two states having equal amplitudes which are allowed to evolve
spatially for half - time T of the experimental sequence. After half - time T ,
the two split wavefunctions are irradiated by π-pulse, resulting in steering
of trajectories of matter waves accompanied by a mirror exchange of two
different momentum states. After π-pulse is applied at time T , the two arms
begin to freely evolve again from time T to T̄AP −TP/2. Till now, from time
0 to T̄AP −TP/2, the interferometer arms are only affected by the presence of
bias coil magnetic field Bbias. Now, from T̄AP−TP/2 to T̄AP +TP/2, the arms
are perturbed by the resultant magnetic field modulus BT (produced from
bias and B-pulse coils) for a short time window ∆t ∈ [4 ms,10 ms]. Finally,
in the time left, from T̄AP +TP/2 to 2T , the arms of the upper interferometer
are only affected by the magnetic field of the bias coil. Simultaneously, in
the same timeline, the lower atomic thermal cloud sample only experiences
the effects of bias coil. The phases acquired (due to second-order Zeeman
effect) across every arm (arms marked in right - side of Figure 3.1) of both
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interferometers is calculated as follows:

∆φ = φUP − φLOW = 2πα

(∮
B2
T |UPdT −

∮
B2
T |DWdT

)
(3.1)

where φUP is the upper atom - interferometer and φLOW is the lower atom
- interferometer running in the time circuit from t = 0 to t = 2T . φUP and
φDW are expressed as:

φUP = (φUP1 + φUP2A + φUP2B + φUP2C )− (φUP3A + φUP3B + φUP3C + φUP4 ) (3.2)

φLOW = (φLOW1 + φLOW2 )− (φLOW3 + φLOW4 ) (3.3)

Phase acquired in each arm is expressed by breaking down the contour inte-
gral of equation 3.1 into different time domains:

φUP1 = πα

∫ T

0|F=1〉
B2
biasdT

φUP2A = −πα
∫ T̄AP−TP /2

T |F=2〉
B2
biasdT

φUP2B = −πα
∫ T̄AP+TP /2

T̄AP−TP /2|F=2〉
B2
TdT

φUP2C = −πα
∫ 2T

T̄AP+TP /2|F=2〉
B2
biasdT

φUP3A = πα

∫ T̄AP−TP /2

T |F=1〉
B2
biasdT

φUP3B = πα

∫ T̄AP+TP /2

T̄AP−TP /2|F=1〉
B2
TdT

φUP3C = πα

∫ 2T

T̄AP+TP /2|F=1〉
B2
biasdT

φUP4 = −πα
∫ T

0|F=2〉
B2
biasdT

Experimentally, the lower interferometer will also experience some leakage
of the resultant magnetic field BT from the upper interferometer for ∆t ∈
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[4 ms,10 ms], but this leakage is negligible as the length of the B-pulse coil
along the fountain axis is 23 cm. Henceforth, the lower atomic cloud does not
experience a significant amount of jitter from this resultant magnetic field
leakage as the baseline between the two atomic clouds is 23 cm, but, in our
simulation we have accounted this leakage (from the upper interferometer)
in order to have a realistic model of the our apparatus yielding as precise
results as possible. Therefore, the phases acquired in each arm of the lower
interferometer from timeline 0 to 2T are written as follows:

φLOW1 = πα

∫ T

0|F=1〉
B2
biasdT

φLOW2 = −πα
∫ 2T

T |F=2〉
B2
biasdT

φLOW3 = πα

∫ 2T

T |F=1〉
B2
biasdT

φLOW4 = −πα
∫ 2T

T |F=2〉
B2
biasdT

3.1.2 Step - II : Gravity Gradient Cancellation

As shown in Figure 3.2, sixteen stacked cylindrical disks of sintered tungsten
forming two concentric hexagonal enclosures supported by torus - shaped
aluminium platform serves as a new design of source masses, capable of
generating linear gravitational acceleration profiles. There is another use-
ful design presented in this thesis which accounts as another configuration
of source masses prepared using copper (with different geometrical arrange-
ment) also being capable of producing linear profiles of acceleration due to
gravity. Both of these configurations are explained in detail in Chapter 5.
In the earlier works [16, 17, 20], the double differential measurement be-
tween the phases in the FAR and CLOSE configurations led to an estimate
in the value of universal gravitational constant G [16], whereas the FAR and
CLOSE configurations in our new design are defined as the whole system of
source masses with platform being away from the ground and lying close to
the ground respectively.

In this thesis, performing a virtual realization incorporating new designs
of source masses was one of the important tasks, leading to production of
real gravity gradients then compensated with a high precision. The geometry
of source masses plays a vital role in producing the resultant gravitational
potential which becomes a contributing factor for the phase evolving from the
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Figure 3.2: LEFT: Two atomic clouds separated by a vertical-separation
distance D producing phases from fictitious gravity gradient φΓ∗zz , with the
phases φSM arising from the geometrical arrangement of source masses and
the total gravitational potential of one of the new designs of the source
masses, RIGHT: Geometric arrangement of source masses with labelled co-
ordinates, the labelled coordinates are calculated in Chapter 5.

ambient gravity gradient. Generalized coordinates of every element in this
configuration of source masses are calculated and then reported in Chapter 5.
Here, we have performed series of simulations so as to cancel the real gravity
gradient from fictitiously produced gravity gradient. The resulting negligible
difference between the phase produced by the novel designs of source masses
and the phase produced due to the action of fictitious gravity gradient is
labelled as residual phase (and denoted as φR) in this thesis. This fictitious
gravity gradient is measured by the interferometric phase, which is produced
by slightly changing the wavelength of the second laser pulse (which happens
to be π-pulse as per our pulse sequence).

The event-timeline of the experimental scheme with some limited ongo-
ing mathematics behind the phase production is now described as follows.
Here, we only describe the event-timeline considering the first configuration
(tungsten source masses with aluminium platform) because it has a geometry
complicated as compared to the other source mass design of interest (torus -
shaped copper block).
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From starting time of the experimental sequence, i.e., at t = 0 to the
ending time , i.e., at t = 2T , the source masses with and without platform
follow the same equations of trajectory as the atomic clouds. Now, at this
point we are looking at the phases produced due to the design of the source
masses, which come from the gravitational potential generated by the novel
system of source masses. Mathematically speaking, total gravitational po-
tential experienced by single atoms due to two hexagonal concentric rings
i = 0 and i = 1 in one gravimeter with absence of platform is:

U(x−xi, y−yi, z−zi) = U(x−x0, y−y0, z−z0)+U(x−x1, y−y1, z−z1) (3.4)

such that:

U(x− x0, y − y0, z − z0) =
16∑
n=1

5∑
k=0

U(x− xk0, y − yk0 , z − zn0 ) (3.5)

and,

U(x− x1, y − y1, z − z1) =
16∑
n=1

5∑
k=0

U(x− xk1, y − yk1 , z − zn1 ) (3.6)

where the labels i = 0 and i = 1 respectively indicate one complete inner and
outer hexagonal contour created due to arrangement of cylindrical tungsten
source masses, k labels the hexagonal arrangement formed by cylindrical
source masses and n labels a tower of source mass cylinders stacked one
above the other, 16 in total. Also, we know that the phases are dependent
on the gravitational potential of the whole system of source masses, implying:

φSM =
mRb

~

∮
UUP (x− xi, y − yi, z − zi)dt

− mRb

~

∮
UDW (x− xi, y − yi, z − zi)dt (3.7)

where φSM is the phase imprinted on atoms from the effect of gravitational
potential of the source masses from time t = 0 and t = 2T . In the above
equation, UUP and UDW are gravitational potentials experienced by the up-
per and lower atomic cloud trajectories from one single atom - interferometer.
And, both UUP and UDW take their mathematical representations from equa-
tion 3.4. To include the geometry of the platform, the gravitational potential
of the torus - shaped platform UP is also included:

φSM =
mRb

~

∮
UTOT
UP (x− xi, y − yi, z − zi)dt

− mRb

~

∮
UTOT
DW (x− xi, y − yi, z − zi)dt (3.8)
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where,

UTOT = U + UP (3.9)

In the same timeline, from t = 0 to t = 2T , phases resulting due to the fic-
titious gravity gradient are produced at t = T , by manipulating two - photon
wavevector of π-pulse. These phases are proportional to the distance which
marks the difference between centre of masses of both the clouds separated
vertically inside the gravity gradiometer by a finite distance. Basically, the
phase gradient over the fixed baseline d between the centre of mass coordi-
nates of the two clouds can be written as a function of phase (single - valued
phase, not a Monte Carlo) of two individual atoms located at the centre of
the clouds as:

∇φ =
φSM(xCMUP , y

CM
UP , z

CM
UP )− φSM(xCMDW , y

CM
DW , z

CM
DW )

d
(3.10)

Now, remembering the fact that there is an ensemble of atoms forming a
thermal cloud, with each atom exhibiting its motion along each axis, resulting
in calibration of baseline as:

D = (zUP − zDW ) + (vUPz − vDWz )T (3.11)

At t = T , the phases due to fictitious gravity gradient are produced from:

φΓ∗zz = D∇φ (3.12)

Cancellation of gravity gradients marks from the occurrence of residual phase
at t = 2T :

φR = φSM − φΓ∗zz (3.13)

In Chapter 5, we report a precise compensation of gravity gradients with a
relative accuracy of 10−6, with the Monte Carlo simulation for this virtual
realization being provided in the Appendix of this thesis.
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Chapter 4

Magnetic Fields: Phase Noise
Minimization and 2D - MOT

4.1 Introduction to Phase Noise Minimiza-

tion

Now we know that an extra finite - solenoidal coil with a magnetic field
(value different than the magnitude of the bias field) has to be applied only
on the second part of the atom interferometer. This will acquire the desired
magnitude of phase shift. As a consequence, it will split the energy levels
due to the second - order Zeeman effect (which is explained in the next sec-
tion). Speaking in the simplest way, the phase difference in the experimental
sequence is given as:

∆φ = φ1 − φ2 (4.1)

where φ1 and φ2 are the two phases produced by the two identical cold atomic
cloud samples (separated by a vertical distance d) having states placed in
magnetically - insensitive hyperfine states for our case of chosen wavelength:
λ = 421.5 nm marking a dipole-allowed transition 5S1/2 −→ 6P3/2 of 87Rb.
These two atomic clouds are located at two different positions across the
fountain axis of the atomic fountain tower. In order to reduce the sensitivity
to external and uncontrolled magnetic fields, the two interferometers are
operated on atoms in the magnetically - insensitive mF = 0 state. Now,
using the fact that this solenoidal coil generates a magnetic field for a finite
length, we can write these phases φ1 and φ2 for two different positions of
these two clouds z1 and z2 as follows:

φ1 = 2παB′z
2(z1)∆t (4.2)
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φ2 = 2παB′z
2(z2)∆t (4.3)

where:

B′z(z1) =
µ0nI

2

[
(z1 + L/2)√

(z1 + L/2)2 +R2
− (z1 − L/2)√

(z1 − L/2)2 +R2

]
(4.4)

B′z(z1) =
µ0nIBz1

2
and,

B′z(z2) =
µ0nI

2

[
(z2 + L/2− d)√

(z2 + L/2− d)2 +R2
− (z2 − L/2− d)√

(z2 − L/2− d)2 +R2

]
(4.5)

B′z(z2) =
µ0nIBz2

2
which gives:

∆φ(z1, z2) =
2παµ2

0n
2I2∆t

4
[B2

z1
(z1)− B2

z2
(z2)] (4.6)

Here in equations 4.4 and 4.5, for this moment we have assumed simplified
algebraic expressions of magnetic fields only along the axis of gravity. But in
our simulations, we have incorporated a much more mathematically compli-
cated expression possessing non-zero X, Y and Z magnetic field components
(Section 4.8). This incorporates the dynamics of atoms in three-dimensions.

As per previously done research [17], the required phase noise minimiza-
tion for an interferometric signal in the presence of gravity yields a condition,
which is: ∆φ ≈ π/2. For example, if we calculate the other relevant param-
eters by fixing ∆φ ≈ π/2 and ∆t = 5 ms, then the above equation reduces
to:

∆φ = κπ/2(∆B(z1, z2)) (4.7)

where κπ/2 =
2παµ2

0n
2I2∆t

4
≈ 0.42, which is calculated using the values of

current, number of turns and ∆t as 24 mA, 1000 and 5 ms respectively.
The selection and calculation of all the relevant physical parameters is

reported in the later sections of this thesis. These experimentally applicable
magnitude of these physical parameters for high precision measurements like
the one stated in this thesis is shown assuming a true mathematical form of
magnetic field given in Section 4.8. Here ∆B(z1, z2) = (B2

z1
(z1) − B2

z2
(z2))

and α = 575.15 Hz/G2 is the constant arising from the second order Zee-
man effect. The relative phase ∆φ in the above equation corresponds to a
hyperfine level splitting into magnetically-insensitive sublevels, for example:
|F = 1,mF = 0〉 and |F = 2,mF = 0〉.
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4.2 Understanding of the jitter due to an ap-

plied magnetic field

Now, with all this knowledge, our objective is to apply a magnetic field
pulse when the atomic cloud is at its apogee and its velocity at this point
is very close to zero. Thanks to the second order Zeeman effect so that
a total phase change of π/2 can be acquired after Zeeman splitting. This
jitter occurring due to shine of magnetic field pulse results in spatial and
time inhomogeneities. Time inhomogeneity can be controlled by using a
good current generator. However, if the magnetic field is not constant and is
exhibiting a spatial variability, that implies that one out of two clouds which
experienced jittering in a certain localized zone, may interfere with another
cloud which is either launched prior or will be launched after this cloud at
its apogee, as explained in Figure 4.1.

4.3 B-pulse coil Activation

A magnetic field B removes the degeneracy among mF energy sublevels. The
first order Zeeman shift is:

∆EZ,I = µBgJmF |B| (4.8)

For those atoms the first non - zero term is the effect to the second order in
the field:

∆EZ,II =
hνab

4

(
µBgJ |B|

2A

)2

= haZ,II |B|2 (4.9)

with a negative sign for |F = 2〉 and a positive one for |F = 1〉, therefore
yielding an energy shift 2∆EZ,II to the hyperfine splitting between the two
mF = 0 states. Turning a magnetic field on, uniform in the region around
the ensemble of atoms (forming an atomic cloud) during the second half of
the interferometer sequence the atomic resonance varies with the external
magnetic field while the reference oscillator maintains the same frequency.
This yields an accumulated phase shift [17] expressed as follows:

∆φZ,II = 2π

∫ 2T

T

aZ,II |B(t)|2dt (4.10)

where the sensitivity to magnetic fields for such atoms is expressed by a
constant arising due to second - order Zeeman effect: aZ,II = 575.15 Hz/G2.
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Figure 4.1: Artistic approach to explain the jitter : A plot of magnetic field
for a finite length solenoid along z-axis versus change in position on Z-axis.
Here, the pale blue circles denote atomic clouds, the blue circle at Y-axis
is the one of two clouds, whereas the blue circle at left is the cloud in the
higher region (These are separated by the fact that positions of both the
clouds differ by a vertical separation distance d = 23 cm). In these two
plots, we have considered the two magnetically - insensitive hyperfine states
to be |F = 1,mF = 0〉 and |F = 2,mF = 0〉. In the plot at left, the magnetic
field is only applied to one cloud in the state |F = 1,mF = 0〉, and this
magnetic field does not interfere with other cloud in |F = 2,mF = 0〉 state,
this is the scenario of independent jittering, which has to be achieved. In the
plot at the right, the applied magnetic field from the coil starts to interfere
with the cloud in the state |F = 2,mF = 0〉, with this all the measurements
will contain errors due to leakage of the other magnetic field, this is the
scenario of relative jittering.
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Here, magnetic field is indirectly time - dependent: B(t) = B(x(t), y(t), z(t)),
where x(t), y(t) and z(t) denote the motions of atoms (forming atomic cloud
samples) along X, Y and Z axes respectively.

4.4 Monte Carlo simulation to calculate the

difference in phase between the two clouds

(in absence of classical trajectories of atoms)

First, a calculation was needed to be done to determine the correct value of
current and the correct value of length which was to be used for introducing
this extra finite - solenoidal coil around the interferometric tube. To proceed
with this, we calculate derivatives in equation 4.6 partially with respect to
variables z1 (Z-coordinate of the upper atomic cloud) and z2 (Z-coordinate
of the lower atomic cloud). Thus, we define a new function:

χ(z1, z2, L) =

√√√√(∂(∆φ(z1, z2))

∂z1

)2

+

(
∂(∆φ(z1, z2))

∂z2

)2

(4.11)

where L is the predictable length range of this new coil which ranges from
0.10 m to 0.60 m. After plotting of this function (as shown in Figure 4.2),
the minimum from the resulting plot was found out to be at 0.266 m. Hence,
the value of length of the B - pulse coil to be used in the experiment is
approximately 26.6 cm for the B - pulse coil activation time of 5 ms. We
say here that this is an approximated value because we are disregarding the
three - dimensional motion of atoms at the moment.

The value of current was found using simple calculation as follows: For
the time(∆t) of 5 ms with a condition of ∆φ ≈ π/2 and using the estimated
length (in the absence of classical trajectories of atoms) now which is 26.6
cm, we determined the difference ∆B(z1, z2) at z1 = 0 and z2 = 0, resulting in
∆B(z1 = 0, z2 = 0) = 3.75. Then using this value in equation 4.6, the current
was found out to be ≈ 24 mA. This is the value of the current when the
positions of the atoms inside the cloud are fixed, not possessing any variation
in their physical parameters like positions and velocities. For a more realistic
situation (like in our experimental sequence), non - zero values of standard
deviations are considered for the variations in position and velocities for the
cold atomic cloud samples in next sections of this thesis.
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Figure 4.2: χ versus L: L is the range of predictable length values of the coil
used. The coil lengths were considered ranging from 1 cm to 60 cm. The
lowest point is the minima between the two clear peaks in the graph. The
minima yields the magnitude of 26.6 cm (excluding classical trajectories of
atoms), with the corresponding value of χ as 3.82 rad/m on Y-axis.

4.4.1 Phase variation with respect to change in physi-
cal parameters

After finding the correct magnitude of current for the coil analytically, a
Monte Carlo simulation was carried out for the difference in phase (∆φ)
between the two clouds in the states |F = 1,mF = 0〉 and |F = 2,mF =
0〉, to be equal to π/2. Ten thousand random values of z1 and z2 (in the
range of -0.025 m to 0.025 m) were generated using a normal distribution
function with the values for standard deviation varying from 0.005 to 0.010,
incrementing with a magnitude of 0.001. The standard deviation in our
system is a representation of the atomic cloud width. The resulting values
of ∆φ were stored in a representation of two-dimensional square mesh with
(0,0) as point of origin and vertices of this square grid being (0.002,0.002),
(0.002,-0.002), (-0.002,0.002) and (-0.002,-0.002), spanning over 25 points in
total. Hence, for each particular value of standard deviation, 25 values of ∆φ
(in the vicinity of π/2) were obtained. A 3D-plot concerning this scenario
was generated as shown in Figure 4.3.

Using equations 4.6 and 4.7, different values of current for B - pulse coil
are calculated for permissible time window: ∆t ∈ [5, 10] ms. Furthermore,
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Figure 4.3: 3D-plot showing variation in the value of ∆φ in the vicinity
of π/2, with 25 vertices of square lattice in the XY-plane. According to
this plot, the maximum and minimum values of ∆φ are 1.5705 and 1.5690
respectively. This gives a phase variation of 1.5 mrad in this complete square
mesh of 25 coordinates (when both the atomic clouds serve as fixed points).
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Figure 4.4: 3D-plot displaying a variation in the value of ∆φ in the vicinity
of π/2, with 25 vertices of square lattice in the XY-plane, for each different
value of current though B - pulse coil paired with its corresponding value of
∆t. This 3D-plot is NOT created from a Monte Carlo simulation as it is a
case of two individual atoms acting as a fixed points along the fountain axis
inside the gravity gradiometer.

using z1 ∈ [−2, 2] mm and z2 ∈ [−2, 2] mm, the phase variations for different
time windows and corresponding current values are plotted in Figure 4.4.

4.5 Interferometric phase as a function of time

- dependent atomic trajectories

The equations of motion for a particle in a parabolic trajectory with kicks
induced from the laser pulses were written (in the format of piecewise func-
tions) in our simulations for time domains 0 to T and T to 2T as explained
below.

Let z0 and z1 be the coordinates of the two individual atoms (along foun-
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Figure 4.5: Same results (here in a tabular form) from Figure 4.4 explicitly
showing every phase value at all the 25 points created from permutations of
z1 and z2 spanned as a square lattice. From this table, it is clear that the
maximum variation in ∆φ across a square lattice for the stated combinations
of currents and time windows is 250 µrad.

tain height) at the starting point. Simplified equations for the displacement
vectors representing trajectories of each arm of Mach-Zehnder interferometer
are listed in the format of piecewise functions as follows:

ARM - 1 in Figure 3.1:

~z1(t) = zUP k̂ +

(
vrt+ v0

zt−
gt2

2

)
k̂, ∀t ∈ [0, T ] (4.12)

ARM - 2 in Figure 3.1:

~z1(t) =

(
−g(t− T )2

2
−gT

2

2
+(t−T )(v0

z−gT )+T (vr+v
0
z)+zUP

)
k̂,∀t ∈ [T, 2T ]

(4.13)

ARM - 4 in Figure 3.1:

~z2(t) =

(
zUP + v0

zt−
gt2

2

)
k̂,∀t ∈ [0, T ] (4.14)

ARM - 3 in Figure 3.1:

~z2(t) =

(
−g(t− T )2

2
−gT

2

2
+(t−T )(v0

z+vr−gT )+v0
zT+zUP

)
k̂,∀t ∈ [T, 2T ]
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(4.15)

Similarly, for another Mach - Zehnder interferometer with a non - zero and
a finite separation distance (baseline), the displacement vectors representing
trajectories of each arm are listed as follows:

ARM - 1 in Figure 3.1:

~z1(t) = zDW k̂ +

(
vrt+ v0

zt−
gt2

2

)
k̂,∀t ∈ [0, T ] (4.16)

ARM - 2 in Figure 3.1:

~z1(t) =

(
−g(t− T )2

2
−gT

2

2
+(t−T )(v0

z−gT )+T (vr+v
0
z)+zDW

)
k̂,∀t ∈ [T, 2T ]

(4.17)

ARM - 4 in Figure 3.1:

~z2(t) =

(
zDW + v0

zt−
gt2

2

)
k̂, ∀t ∈ [0, T ] (4.18)

ARM - 3 in Figure 3.1:

~z2(t) =

(
−g(t− T )2

2
−gT

2

2
+(t−T )(v0

z+vr−gT )+v0
zT+zDW

)
k̂,∀t ∈ [T, 2T ]

(4.19)

For accounting the kicks from the laser pulses in our system, the recoil
velocity vr of the rubidium atom was used, which is:

vr =
~k
m

(4.20)

where m is the mass of a rubidium atom, k is the two - photon wavevector
calculated for λ = 421.5 nm and ~ is the reduced Planck’s constant.

Using above equations, the modulus of the magnetic field in the complete
system was expressed as a function of time, for it to be used to calculate the
total phases of both Mach - Zehnder interferometers:

φc = −
∫ T

0|F=2〉

2πα

2
B2(t)dt+

∫ 2T

T |F=1〉

2πα

2
B2(t)dt

−
∫ 2T

T |F=2〉

2πα

2
B2(t)dt+

∫ T

0|F=1〉

2πα

2
B2(t)dt (4.21)
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such that:

φc(t) = φc(B(x(t), y(t), z(t))) = 2πα

∮
B2(x(t), y(t), z(t)) dt (4.22)

Here, the integrals associated with state |F = 2〉 are taken to be negative
and the integrals associated with |F = 1〉 are taken to be positive, therefore
yielding an energy shift of 2∆EZ,II to the hyperfine splitting between the
two mF = 0 states [17, 20].

4.6 Precise optimization position and rela-

tive sensitivity estimation

In order to optimize the position of the gradiometer with respect to the
dimensions and address of the B-pulse coil, we extract the Z-coordinate value
of the cold atomic cloud at the local maximum. So, we use equation 4.22 only
for the B-pulse coil (or equivalently applying equation 3.1 only for the B-pulse
coil) to find the precise optimization position zm, resulting in zm = −4.64
mm when IB−pulse = 19 mA and LB−pulse = 23 cm. Note that LB−pulse = 23
cm is chosen here because now we have accounted the equations describing
atomic trajectories in three-dimensions.

Relative sensitivity S is mathematically defined as:

S = 1− φC
φOC

where φC and φOC are gradiometric phases due to only B-pulse coil excluding
and including zm respectively. Relative sensitivities of the gradiometric phase
with respect to the gradiometer position and to the baseline value respectively
are shown in Figures 4.6 and 4.7.

4.7 Monte Carlo simulation for phase differ-

ence calculation between the two clouds

(accounting classical trajectories of atoms)

Fixing some parameters and applying variations to one - dimensional dy-
namic variables of the atomic clouds to minimize the phase noise was done
in the simulation. The purpose of this step was to study how these dynamic
variables affect the stability of our phase values with respect to the variation
in these variables representing positions, velocities, standard deviations in
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Figure 4.6: Relative sensitivity of the gradiometric phase with respect to
the gradiometer position. Here, the intercept on the X-axis marks the value
zm = −0.00464 m with Z-coordinate being varied between (zm − 1) mm and
(zm + 1) mm.

positions and velocities of the two atomic cloud species. All the parameters
used in the Monte Carlo simulation for two atomic clouds traversing along
the fountain axis are listed in Table 4.1.

4.7.1 Optimized and Unoptimized phases for different
atomic populations

The plots marking the phase stabilities due to all the five variables asso-
ciated only with the axis of launch (or free-fall) - z00, z11, σz, vz and σvz
are shown in Figures 4.8 - 4.12. This 1D - simulation was carried out for
two different population magnitudes of atoms inside each atomic cloud. The
atomic populations chosen were 1000 and 10000. This is done as a sake of
a double – cross check and verification between the plots in these two pop-
ulations which differ by a factor of 10, and, the plot comparison of these
five variables with the actual three – dimensional scenario. The actual 3D
scenario employs the exact formulation of magnetic fields for the case of a
finite – solenoidal coil, hence containing the elliptic functions of first, second
and third kinds (Section 4.8), whereas the one – dimensional scenario which
considers only the motion of two atomic clouds traversing their motion along
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Parameters Fixed values and Variations

Length 4 m (fixed value for bias coil)
Length 23 cm (fixed value for B-pulse coil)
Current 9.9 mA (fixed value for bias coil)
Current 19 mA (fixed value for B-pulse coil)

Time 4 ms (B-pulse duration)
Baseline 23 cm

Atomic Population 103 and 104 (per cloud)
Offset 1.735 m (Gradiometer position)
ĀT 222.11 ms (Average apogee time)
ĀD 241.862 mm (Average apogee distance)
zm −4.6 mm (Optimization position of gradiometer)
z11 {z11 − 0.2, z11 − 0.1, z11, z11 + 0.1, z11 + 0.2} mm
z00 {z00 − 0.2, z00 − 0.1, z00, z00 + 0.1, z00 + 0.2} mm
σz {2.8, 2.9, 3.0, 3.1, 3.2} mm
vz {v0 − 0.2, v0 − 0.1, v0, v0 + 0.1, v0 + 0.2} mm/s
σvz {2.8, 2.9, 3.0, 3.1, 3.2} mm/s

Table 4.1: Complete list of parameters used in simulation to minimize the
phase noise in interferometric signal. Particularly in this simulation, the
atomic motion across XY-plane is disregarded.

55



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

Figure 4.7: Relative sensitivity of the gradiometric phase with respect to the
baseline value.

fountain axis, uses a quite simpler algebraic expression (equations 4.4 and
4.5) to compute magnetic fields. Furthermore, the optimization position (zm)
of the gradiometer with respect to the short / B – pulse coil is included in
both 1D and 3D cases, in order to generate OPTIMIZED (including zm) and
UNOPTIMIZED (excluding zm) phase magnitudes for variation in all the
five parameters.

Looking at all the plots (Figures 4.8 - 4.12), we conclude that these plots
do not display any clear trends. It is clear that the variation in atomic
population does not result in any trend formation. Hence we arrive at an
understanding that all these plots (Figures 4.8 - 4.12) represent random fluc-
tuations in ∆φ rather than being a part of systematic variation. With this
understanding, we can say that if one carries out infinitely many simula-
tions, by taking infinite number of variations in cloud variables (across the
X - axis), one will be able to observe that the phase values should average,
thereby converging to one specific value.
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Figure 4.8: Visualizing UNOPTIMIZED (two upper graphs) and OPTI-
MIZED phases (two lower graphs): Phase variation for two different atomic
populations with respect to the upper cloud position variable z00 with and
without taking into account the optimization of the gradiometer position
with respect to the B-pulse coil zm. In the upper two graphs (UNOPTI-
MIZED phases), we observe a maximum phase fluctuation of 500 µrad/mm
and 680 µrad/mm for 104 and 103 atoms respectively. Similarly, in the lower
two graphs (OPTIMIZED phases), we observe a maximum phase fluctuation
of 330 µrad/mm and 660 µrad/mm for 104 and 103 atoms respectively.
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Figure 4.9: Visualizing UNOPTIMIZED and OPTIMIZED phases: Phase
variation for two different atomic populations with respect to the lower cloud
position variable z11 with and without taking into account the optimization
of the gradiometer position with respect to the B-pulse coil zm. In the upper
two graphs (UNOPTIMIZED phases), we observe a maximum phase fluctu-
ation of 140 µrad/mm and 160 µrad/mm for 104 and 103 atoms respectively.
Similarly, in the lower two graphs (OPTIMIZED phases), we observe a max-
imum phase fluctuation of 138 µrad/mm and 310 µrad/mm for 104 and 103

atoms respectively.
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Figure 4.10: Visualizing UNOPTIMIZED and OPTIMIZED phases: Phase
variation for two different atomic populations with respect to the atomic
cloud width variable σz with and without taking into account the optimiza-
tion of the gradiometer position with respect to the B-pulse coil zm. In the
upper two graphs (UNOPTIMIZED phases), we observe a maximum phase
fluctuation of 140 µrad/mm and 350 µrad/mm for 104 and 103 atoms respec-
tively. Similarly, in the lower two graphs (OPTIMIZED phases), we observe
a maximum phase fluctuation of 130 µrad/mm and 250 µrad/mm for 104

and 103 atoms respectively.
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Figure 4.11: Visualizing UNOPTIMIZED and OPTIMIZED phases: Phase
variation for two different atomic populations with respect to the atomic
cloud velocity variable vz with and without taking into account the optimiza-
tion of the gradiometer position with respect to the B-pulse coil zm. In the
upper two graphs (UNOPTIMIZED phases), we observe a maximum phase
fluctuation of 220 µrad/mm/s and 450 µrad/mm/s for 104 and 103 atoms
respectively. Similarly, in the lower two graphs (OPTIMIZED phases), we
observe a maximum phase fluctuation of 250 µrad/mm/s and 500 µrad/mm/s
for 104 and 103 atoms respectively.
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Figure 4.12: Visualizing UNOPTIMIZED and OPTIMIZED phases: Phase
variation for two different atomic populations with respect to the standard
deviation in atomic cloud velocity variable σvz with and without taking into
account the optimization of the gradiometer position with respect to the B-
pulse coil zm. In the upper two graphs (UNOPTIMIZED phases), we observe
a maximum phase fluctuation of 50 µrad/mm/s and 400 µrad/mm/s for 104

and 103 atoms respectively. Similarly, in the lower two graphs (OPTIMIZED
phases), we observe a maximum phase fluctuation of 90 µrad/mm/s and 360
µrad/mm/s for 104 and 103 atoms respectively.
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4.8 Magnetic field equations of finite contin-

uous solenoid: Bias and B-pulse coils

In our simulation, we treated bias and B-pulse coils as finite continuous
solenoids [78] wrapped around the atomic fountain tower with the currents
flowing through both the coils in the same direction. A finite continuous
solenoid has its structure created by a sheet of conductive material with
current uniformly distributed across the cylindrical surface of the solenoid
unlike cascading of discrete coils. In Appendix A of the thesis, we have pro-
vided the generalized solution for the case when bias and B-pulse coils are
treated as finite solenoidal coils by readapting the mathematical formulation
implemented earlier [79]. The equations [78] used in our simulation to mini-
mize the phase noise in the interferometric signal (complete simulation code
provided in Appendix B) are written below in cylindrical coordinate system
(ρ, φ, z) as follows:

Aφ = χ

[
ηk

(
k2 + h2 − k2h2

k2h2
K(k2)− 1

k2
E(k2)+

h2 − 1

h2
Eπ(h2, k2)

)]η+

η−

(4.23)

where

χ =
µ0I

4πl

√
R

ρ

η± = z ± l

2

h =
2
√
Rρ

R + ρ

k± = 2

√
Rρ

(R + ρ)2 + η2
±

where Aφ is the vector potential and K, E and Eπ are elliptic integrals of first,
second and third kinds respectively. Now, using the relationship between
magnetic field density and vector potential ( ~B = ∇ × ~A), the radial and
axial components can be expressed in cylindrical coordinate system as:

Bρ =
µ0I

2πl

√
R

ρ

[
k2 − 2

k
K(k2) +

2

k
E(k2)

]η+

η−

(4.24)

Bz =
µ0I

4πl
√
Rρ

[
ηk

(
K(k2) +

R− ρ
R + ρ

Eπ(h2, k2)

)]η+

η−

(4.25)
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Physical parameters: Bias coil (for 4 m tower) Magnitudes

Coil altitude 4 m
Number of turns per metre/ altitude 1000

Coil current chosen 10 mA
Coil activation time 440 ms

Chosen internal diameter for 4 m tower 35 mm

Table 4.2: Technical information used for the bias coil in all the simulations.

4.9 Phases obtained due to the sole effect of

bias coil

The purpose of the bias coil is to define a quantization axis for the atoms
in the cold atomic cloud samples. This bias magnetic field coil [79] remains
switched ON throughout the complete experimental sequence. The experi-
mental sequence terminates at 440 ms. The simulation results for the cases
of single - atom gravity gradiometric sequences inside fountain tube of 4 m
tall length is shown in Figure 4.13. Technical information for bias coil used
in the simulations is listed in Table 4.2.

4.10 Monte Carlo simulation of the gradio-

metric sequence

Using the exact expressions of magnetic fields [78], a test code (in python)
was written and executed where the phases in each arm were calculated using
Simpson’s numerical integration method with 1100 equal parts in each arm
of both interferometers so as to keep good precision intact in the resulting
magnitude of the total gradiometric phase. Increasing number of parts for
Simpson’s method more than 1000 - 1200 does not change the result signif-
icantly, and it increases the computation time. First, this simulation was
written and executed for two single - atom Mach - Zehnder interferometers
(forming a gravity gradiometer, experimental sequence depicted in Figure
4.14) with separation distance of 23 cm, results for this scenario are shown
in the Figure 4.15. Simulation variables being set for this particular test
simulation are mentioned in Table 4.3.

Then this simulation was modified for 1000 atoms so as to produce the
result for the gradiometric phases for the two atomic clouds spanned in mag-
netically - insensitive hyperfine states inside the 4 m tall atomic fountain
tower. The results for extending this simulation to the case of atomic cloud
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Figure 4.13: Visual of the output at the the python console for phase calcu-
lation solely due to the effect of bias coil for the scenario of two single-atom
Mach - Zehnder interferometers forming a gravity gradiometer (example of 4
m tower): x00 and y00 indicate the positions of the atoms inside the cold cloud
samples across the XY-plane with a standard deviation of 5 mm, z00 and z11

indicate the vertical positions of the two clouds with an inter-separation dis-
tance of 23 cm. In this example, the gradiometric phase is 1.84 mrad for
the two clouds with width of 5 mm located at vertical positions of −1.50
m and −1.73 m below the midway (point of origin) of the atomic fountain
tower. Code evaluation time is ≈ 5 minutes on INTEL-i5 processor. Rele-
vant parameters used in the simulation are stated in Table 4.2. Lastly, the
graph shown the variation in gradiometric phase due to different values of
current applied through the bias coil at fixed points, i.e., for z00 = −1.73 m
and z11 = −1.50 m. And, this graph matches exactly with the specific value
reported in the simulation = 1.84 mrad (Y-axis) at 6.5 mA (X-axis).
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Physical parameters: B - pulse coil Magnitudes

Coil altitude 26.6 cm
Number of turns per metre / altitude 1000

Coil current range 22.50 mA - 23.75 mA (9 ms)
(including atomic trajectories) 31.75 mA - 33 mA (5 ms)

Magnetic field modulus generated (∆t = 9 ms) 290 mG - 330 mG
Magnetic field modulus generated (∆t = 5 ms) 400 mG - 440 mG

Coil activation time(s) chosen (∆t) 5 ms, 9 ms
Coil activation time window (∆t) 4 ms - 10 ms

Table 4.3: Parameters and their respective magnitudes set in a test simula-
tion (see Figure 4.15) where two - single atom Mach - Zehnder interferometers
experience the resultant magnetic field of both bias and B-pulse coils. These
physical parameters are compatible with an atomic fountain tube standing 4
m tall.

are reported in the next section.

4.10.1 Monte Carlo simulation for the relative phase
calculation in the complete experimental sequence
for the case of two atomic clouds

Employing appropriate loop structures with invoking parallelization, the pro-
gram was modified such that it will produce new random values every time
it runs, therefore obeying Maxwell - Boltzmann distribution spanned inside
thermal cold atomic cloud samples. So, for one atom in each interferometer
with some random position defined according to the values of standard de-
viations, the program evaluates the relative phase of the two interferometers
producing results in the vicinity of π/2, as shown in Figure 4.15, following
the trajectories as defined in Figure 4.14. So, if we choose to run the loop of
this program 1000 times, it gives the result for 1000 atoms. This program in-
dexes the atoms with atom number from 0 to 999, for the case of 1000 atoms.
Calculation of phase of each iteration is automatically stored in a .txt file in
the same folder where the windows batch file was saved and executed using
Anaconda Powershell Prompt. This combination of using a windows batch
file and Anaconda Powershell Prompt (called parallelization) contributed in
the optimization of the computation time by a factor of eight.

The variables arising from the cylindrical coordinate system, namely: r,
σr, vr and σvr , reveal the collective information about the atomic motion
spanned across the XY-plane, such that: r =

√
x2 + y2, σr =

√
σ2
x + σ2

y,

65



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

Figure 4.14: Gradiometric sequence (along-with B-pulse coil): Sketch of two
parallel Mach-Zehnder interferometers separated by D experiencing magnetic
fields from bias and B-pulse coils, where the two parallel brown-colored dot-
ted lines indicate the B-pulse coil is switched ON for time range ∆t (4 ms -
10 ms) in the second part of only one interferometer. Here, T is the evolution
time for the atomic clouds, it also marks the half time of the experimental
sequence. This experimental sequence terminates at the time 2T , which is
440 ms.
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Figure 4.15: Visual of the output at the python console for an example of two
single-particle Mach - Zehnder interferometers forming a gravity gradiometer:
Starting from the top to bottom, the python output console calculates and
displays the values of phases (in radians) calculated for all the arms, the last
value indicates the magnitude of φc in radians, calculated from the expression
of φc for T = 220 ms with IB−pulse = 23.25 mA and Ibias = 2 mA and other
parameter values listed in Tables 4.2 and 4.3.
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Experimental parameters Fixed magnitudes

Number of atoms in each cloud 1000
Fountain tube internal diameter 35 mm

Length (bias coil) 4 m
Length (B-pulse coil) 23 cm

Current (bias coil) 9.9 mA
Current (B-pulse coil) 19 mA

Time chosen 4 ms
Experimental sequence total time 440 ms

B - pulse coil activation permissible time window 4 ms - 10 ms
Bias coil activation time (2T ) 440 ms

Baseline 0.23 m
Calculated offset 1.735 m

ĀT 222.11 ms
ĀD 241.862 mm
v0 216.688511 mm/s
g 9.80491 m/s2

zm −4.6 mm
Recoil velocity of rubidium atom (vr) ≈ 22 mm/s

Table 4.4: Fixed experimental parameters used in three - dimensional sim-
ulation for obtaining the phase - noise minimization condition.

Variables Variations

r {0.0, 0.5, 1.0, 1.5, 2.0} mm
zDW {z11 − 0.2, z11 − 0.1, z11, z11 + 0.1, z11 + 0.2} mm
zUP {z00 − 0.2, z00 − 0.1, z00, z00 + 0.1, z00 + 0.2} mm
σr {2.6, 2.8, 3.0, 3.2, 3.4} mm
σz {2.8, 2.9, 3.0, 3.1, 3.2} mm
vr {0.0, 0.5, 1.0, 1.5, 2.0} mm/s
vz {v0 − 0.2, v0 − 0.1, v0, v0 + 0.1, v0 + 0.2} mm/s
σvr {14, 17, 20, 23, 26} mm/s
σvz {2.8, 2.9, 3.0, 3.1, 3.2} mm/s

Table 4.5: Nine variables governing the motion of atomic cloud and their
respective variations. These variations are set in the simulation producing
∆φ ≈ π/2.
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vr =
√
v2
x + v2

y and σvr =
√
σ2
vx + σ2

vy .

Taking into account the complete information presented in Tables 4.4 and
4.5, a measurement campaign of 90 simulations was launched. Each variable
taking five values with inclusion and exclusion of zm (optimization of the
gradiometer position with respect to the B-pulse coil). These 90 simulations
are distributed as 45 simulations evaluating unoptimized phases (excluding
zm) and 45 simulations evaluating optimized phases (including zm). Infor-
mation about all the physical quantities associated with this simulation is
listed in Tables 4.4 and 4.5. The results of all these simulations describe
the phase stability when all the atomic cloud variables associated with the
modified experimental sequence to carry out phase noise minimization are
varied, reported in Figures 4.18 - 4.21.

4.11 Results from Monte Carlo simulation

All the results reported here are produced in the time span of about two and
a half months considering the example of a 4 m tall atomic fountain tower,
using a better computation machine at MAGIA-Advanced laboratory.

4.11.1 All variable behaviours associated with 3D sce-
nario

Here, we present the results for phase variations corresponding to selected
variations in all the participating variables (three - dimensional case) in the
gradiometric sequence. Results are graphically shown in Figures 4.16 - 4.20.

The ranges of the error bars for all the variables in these plots are reported
in Table 4.6. In Table 4.6, the labels NOPERR and OPERR indicate the error
ranges in the absence and presence of zm respectively, concisely defining the
error bars for unoptimized and optimized phases. Also, Table 4.7 lists all
calculated corresponding averaged uncertainties AC and ACZM when zm is
absent and present respectively. Here, averaged uncertainty is calculated by
taking mean of the lower limit and the upper limit of error bars for each
variable.
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Variable (Units) NOPERR(µrad) OPERR(µrad)

σr (mm) 55-57 41-44
σvz (mm/s) 60-62 48-50
σvr (mm/s) 56-73 47-67
σz (mm) 54-62 46-49
r (mm) 55-59 40-46
zDW (m) 54-55 41-42
zUP (m) 53-57 40-43
vr (mm/s) 57-72 40-59
vz (m/s) 53-55 40-42

Table 4.6: Reduction in lower and upper limits of the error bar ranges when
zm is included in the Monte Carlo phase noise minimization simulation. Here,
NOPERR and OPERR indicate the error ranges in the absence and presence
of zm respectively.

Variable (Units) AC ACZM

σr (mm) 5.60× 10−5 G 4.25× 10−5 G
σvz (mm/s) 6.10× 10−5 G 4.90× 10−5 G
σvr (mm/s) 6.45× 10−5 G 5.70× 10−5 G
σz (mm) 5.80× 10−5 G 4.75× 10−5 G
r (mm) 5.70× 10−5 G 4.30× 10−5 G
zDW (m) 5.45× 10−5 G 4.15× 10−5 G
zUP (m) 5.50× 10−5 G 4.15× 10−5 G
vr (mm/s) 6.45× 10−5 G 4.95× 10−5 G
vz (m/s) 5.40× 10−5 G 4.10× 10−5 G

Table 4.7: Decrease in averaged uncertainties in the possible measurement
of G (calculated from the information in Table 4.6) when zm in included in
the simulation dealing with minimizing the phase noise. AC and ACZM are
measures of accuracies when zm is absent and present respectively.
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Figure 4.16: Phase variation with respect to change in the values of variables
r and σr. Note that r = 0 and σr = 0 indicate a situation when most of
the position of atoms (and their changes) are very close to the centre of the
atomic cloud.
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Figure 4.17: Phase variation with respect to change in the values of variables
vr and σvr . Note that vr = 0 and σvr = 0 indicate a situation when velocities
(and the change in velocities) of most of the atoms inside the atomic cloud
are negligible.
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Figure 4.18: Phase variation with respect to change in the values of variables
zUP and zDW .
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Figure 4.19: Phase variation with respect to change in the values of variables
vz and σvz .
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Figure 4.20: Phase variation with respect to change in the values of variable
σz.
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4.11.2 Comments about graphs

In this Chapter, we have scrutinized how the magnetic fields employed in
the experimental sequence affect the stability of the gradiometric phase. Ad-
ditionally, ∆φ shows no clear trends with respect to any variable governing
dynamics of the atomic clouds. But still, we carried out these simulations
so as to check the stability in our results (∆φ). In some graphs (like σr), it
may seem like it exhibits a linear trend, but the reality is that all the graphs
(Figures 4.16 - 4.20) happen to be random fluctuations rather than being
a part of systematic variation. To summarize, if one carries out infinitely
many simulations taking infinite number of variations across the X-axis (all
the variables in Figures 4.16 - 4.20), then one would be able to observe that
all the phase values (Y-axis of Figures 4.16 - 4.20) average to one particular
value. The maximum relative variations are always within 10−4 G (for both
cases of optimized and unoptimized phases). We conclude that, given the
typical stability of an atomic fountain, the phase noise minimization setup
of the experiment allows to integrate ∆φ down to 10−4 resolution prior to
shift the source mass position.

4.11.3 Peak-to-peak variations

Now, we present another effective way to describe simulation results. This
is done by calculating peak-to-peak variations (denoted by ∆φP−PR ). Mathe-
matically speaking, ∆φP−PR is the difference between maximum and minimum
value in each atomic cloud parameter (in the simulation) for each uncertainty
percent introduced in our simulation. These results are reported in Table 4.8.

4.12 Stability of fixed parameters

In this Section we present the sensitivities of our results due to slight varia-
tions in the possible fixed parameters stated in Tables 4.1, 4.2, 4.3 and 4.4.

4.12.1 Baseline stability

The baseline (d) is a parameter that defines the vertical separation distance
between the centre of mass coordinates of the upper and lower clouds. Con-
sidering each cloud containing 1000 atoms, the standard deviation in baseline
becomes 1.35× 10−4 m, with its mean value being equal to 0.2299 m. Here,
baseline is calculated using d = (zUP−zDW )+T (vUPz −vDWz ), where the inter-
rogation time T is kept fixed at 220 ms with position and velocity variables
along the axis of gravity following a normal distribution.
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Parameters (units) ∆φ
N(P−P )
R (µrad) ∆φ

O(P−P )
R (µrad)

σr (mm) 60.05 51.65
σvz (mm/s) 34.85 31.38
σvr (mm/s) 115.92 90.65
vr (mm/s) 85.82 81.05
r (mm) 62.44 56.08
σz (mm) 157.21 158.72
zDW (m) 56.16 98.33
vz (mm/s) 154.58 141.27
zUP (m) 182.76 94.27

Table 4.8: ∆φ
N(P−P )
R and ∆φ

O(P−P )
R represent unoptimized and optimized

peak-to-peak variations respectively for each participating parameter in the
simulation. The standard error is equal to 45 µrad, equivalent to 31× 10−6

G.

4.12.2 Phase sensitivity due to variation in bias coil
current

The percentage errors in the phases produced by two parallel atom interfer-
ometers for three values of bias coil current are listed in Table 4.9.

The six values of relative sensitivities for unoptimized and optimized
phases are reported below. This is done by comparing the single-atom phase
values from simulations φNS (unoptimized) and φOS (optimized) with theo-
retical phase values φNT (unoptimized) and φOT (optimized) for each value
of bias coil current as follows:

SN9.8mA = 1− φNS9.8mA

φNT9.8mA

= 1.85× 10−3

SO9.8mA = 1− φOS9.8mA

φOT9.8mA

= 2.94× 10−4

SN9.9mA = 1− φNS9.9mA

φNT9.9mA

= 1.68× 10−3

SO9.9mA = 1− φOS9.9mA

φOT9.9mA

= 4.95× 10−4

SN10mA = 1− φNS10mA

φNT10mA

= 2.67× 10−3
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Ibias (mA) PφO PφN

9.8 0.0294% 0.1855%
9.9 0.0495% 0.1685%
10.0 0.0393% 0.2674%

Table 4.9: PφO and PφN representing percentage errors in optimized and
unoptimized phases with respect to a slight current variation of 0.1 mA in
the bias coil.

SO10mA = 1− φOS10mA

φOT10mA

= 3.92× 10−4

Note that while obtaining the above calculated values, B-pulse coil was
not turned off and its current value was fixed at 19 mA. All the phase val-
ues for three different current values are calculated here incorporating the
experimental scheme explained in Chapter 3, but only for two single atoms
(separated by a fixed baseline).

4.12.3 Phase sensitivity due to variation in B-pulse coil
current

The percentage errors in the phases produced by two parallel atom interfer-
ometers for three values of B-pulse coil current are listed in Table 4.10.

The six values of relative sensitivities for unoptimized and optimized
phases are reported below. This is done by comparing the single-atom phase
values from simulations φNS (unoptimized) and φOS (optimized) with theo-
retical phase values φNT (unoptimized) and φOT (optimized) for each value
of B-pulse coil current as follows:

SN19mA = 1− φNS19mA

φNT19mA

= 2.67× 10−3

SO19mA = 1− φOS19mA

φOT19mA

= 3.93× 10−4

SN18.9mA = 1− φNS18.9mA

φNT18.9mA

= 8.14× 10−3

SO18.9mA = 1− φOS18.9mA

φOT18.9mA

= 8.44× 10−4

SN18.8mA = 1− φNS18.8mA

φNT18.8mA

= 1.49× 10−3
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IB−pulse (mA) PφO PφN

18.8 0.0051% 0.1487%
18.9 0.0844% 0.8139%
19.0 0.0393% 0.2674%

Table 4.10: PφO and PφN representing percentage errors in optimized and
unoptimized phases with respect to a slight current variation of 0.1 mA in
the B-pulse coil.

SO18.8mA = 1− φOS18.8mA

φOT18.8mA

= 5.10× 10−5

Note that while obtaining the above calculated sensitivity values, the
bias coil was not turned off and its current value was fixed at 10 mA. All the
phase values for three different B-pulse current values are calculated here as
explained in Chapter 3, but only for two single atoms (separated by a fixed
baseline). The phases evaluated when the current in the B-pulse coil was set
to 18.8 mA and 18.9 mA satisfied the phase noise minimization condition of
∆φ ≈ π/2 less precisely when being compared to the B-pulse coil current
being set at 19 mA. So, all the main results reported in this Chapter are
produced with B-pulse coil current being set to 19 mA.

4.12.4 Phase sensitivity due to zm

It is clear from the calculated single-atom sensitivity values (in Sections 4.12.2
and 4.12.3), the importance of the parameter zm governing the optimized
position of gravity gradiometer with respect to the B-pulse coil. The calcu-
lations in the preceding sections reflect an increase in the relative sensitivity
by one order of magnitude just for the case of single atoms. Whereas, the
information reported in Tables 4.9 and 4.10 clearly show that the inclusion
of zm leads to reduction of percentage errors by one order of magnitude.
This is justified when we compare both PφO and PφN (Tables 4.9 and 4.10)
considering the current variation of 0.1 mA in both bias and B-pulse coils.

4.13 Designing new anti-helmholtz coil sys-

tem

The idea of two-dimensional magneto-optical trap (2D-MOT) plays a vital
role in realization of several methods, techniques or effects such as: Electro-
magnetically Induced Transparency (EIT) [80, 81], EIT based cold atomic
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Quantum Memory [82, 83, 84, 85] with high storage efficiency [86, 87]. A
decade ago, a pair of rectangular coils in the MOT for the production of cold
atom clouds with large optical density was implemented [88] inspired by the
2D-MOT systems achieved in the past [89, 90, 91, 92, 93, 94, 95, 96, 97, 98].

In this thesis, the 2D-MOT system in the new design consists of two pairs
of rectangular coils arranged in an anti-helmholtz configuration [99]. Instead
of circular coils, the rectangular arrangement were preferred because in the
case of rectangular coils, there exists a larger area in which the magnetic field
remains uniform.

4.13.1 2D-MOT coil system with rectangular arrange-
ment: Mathematical Analysis

As shown in Figure 4.21, we have two pairs of coils, one pair of rectangular
coils parallel to each other in XZ plane and the other pair of rectangular
coils parallel to each other in YZ plane arranged in an anti-helmholtz cur-
rent flowing configuration. In Figure 4.21, the tiny red bubble indicates the
coordinates of origin (0, 0, 0) in a 3D cartesian system, where the essential
condition B(0, 0, 0) = 0 was verified. At this point of origin, the magnetic
field resulting from all the coils should sum to zero, which was clearly ob-
served, as shown in Figure 4.22.

The length and breadth of the rectangular coil are 2a and 2b respectively.
Here, we have calculated and plotted the total magnetic field of the system
of two pairs of rectangular coils by first calculating vector potentials across
each axis for all the coils for rectangular anti - helmholtz coils. The curl of
the total vector potential will yield the magnetic fields along all the three
axes. A theoretical derivation was done and all the relevant physical param-
eters were calculated (reported in this Section) using MATHEMATICA, the
code evaluation time was ≈ 14 minutes on INTEL-i5 processor. The vector
potentials for lower half part in the first pair of coils are:

Az(x, y, z) =
µ0I

4π

[ b∫
−b

dz

R1

]
+
µ0I

4π

[ −b∫
b

(−dz)

R3

]
(4.26)

Ax(x, y, z) =
µ0I

4π

[ a∫
−a

dz

R2

]
+
µ0I

4π

[ −a∫
a

(−dz)

R4

]
(4.27)

Ay(x, y, z) = 0 (4.28)
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where,

R2
1 = (z − s)2 + (x+ a)2 + (y + d)2 (4.29)

R2
2 = (x− s)2 + (y + d)2 + (z − b)2 (4.30)

R2
3 = (z − s)2 + (x− a)2 + (y + d)2 (4.31)

R2
4 = (x− s)2 + (y + d)2 + (z + b)2 (4.32)

The vector potentials for upper half part in the first pair of coils are:

Az(x, y, z) =
µ0I

4π

[ −b∫
b

dz

R′1

]
+
µ0I

4π

[ b∫
−b

(−dz)

R′3

]
(4.33)

Ax(x, y, z) =
µ0I

4π

[ −a∫
a

dz

R′2

]
+
µ0I

4π

[ a∫
−a

(−dz)

R′4

]
(4.34)

Ay(x, y, z) = 0 (4.35)

where,

R′1
2 = (z − s)2 + (x+ a)2 + (y − d)2 (4.36)

R′2
2 = (x− s)2 + (y − d)2 + (z − b)2 (4.37)

R′3
2 = (x− a)2 + (y − d)2 + (z − s)2 (4.38)

R′4
2 = (x− s)2 + (y − d)2 + (z + b)2 (4.39)

The vector potentials for upper half part in the second pair of coils are:

Ay(x, y, z) =
µ0I

4π

[ −a∫
a

dy

R2

]
+
µ0I

4π

[ a∫
−a

(−dy)

R4

]
(4.40)

Az(x, y, z) =
µ0I

4π

[ −b∫
b

dz

R1

]
+
µ0I

4π

[ b∫
−b

(−dz)

R3

]
(4.41)

Ax(x, y, z) = 0 (4.42)
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where,

R2
1 = (x− d)2 + (y + a)2 + (z − s)2 (4.43)

R2
3 = (x− d)2 + (y − a)2 + (z − s)2 (4.44)

R2
2 = (x− d)2 + (y − s)2 + (z − b)2 (4.45)

R2
4 = (x− d)2 + (y − s)2 + (z + b)2 (4.46)

The vector potentials for lower half part in the second pair of coils are:

Az(x, y, z) =
µ0I

4π

[ b∫
−b

dz

R′1

]
+
µ0I

4π

[ −b∫
b

(−dz)

R′3

]
(4.47)

Ay(x, y, z) =
µ0I

4π

[ a∫
−a

dy

R2

]
+
µ0I

4π

[ −a∫
a

(−dy)

R4

]
(4.48)

Ax(x, y, z) = 0 (4.49)

where,

R′1
2 = (z − s)2 + (x+ d)2 + (y + a)2 (4.50)

R′3
2 = (x+ d)2 + (z − s)2 + (y − a)2 (4.51)

R′2
2 = (x+ d)2 + (y − s)2 + (z − b)2 (4.52)

R′4
2 = (y − s)2 + (x+ d)2 + (z + b)2 (4.53)

These all vector potentials were derived analytically and computed from our
simulation. After, it was written as a total vector in the following form:

~A = Axî+ Ay ĵ + Azk̂ (4.54)

The squared magnitude of the curl of the above equation results as:

B2(x, y, z) = (Bx)
2 + (By)

2 + (Bz)
2 (4.55)
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Figure 4.21: First and second pair of rectangular coils in the two-dimensional
magneto-optical trap of the new design. The clockwise and anti-clockwise
arrows indicate the direction of current flowing through the coils.

4.13.2 2D-MOT coil system - Calculation and Simula-
tion: Coil parameters, magnetic field and mag-
netic field gradients

Magnetic fields and magnetic field gradients generated by all the coils along
X, Y and Z axes are depicted in Figures 4.22 - 4.24. Other important param-
eters for the preparation and to ensure the functioning of 2D-MOT system
- current, coil length, coil resistance, magnetic field gradients along all axes
and power dissipation due to the coils, which are calculated as follows:

1. Peak magnetic field gradients : The peak value of magnetic field gradi-
ents across X, Y and Z axes were deduced from the value marking the
peaks pointing along plots of Y-axis in Figure 4.23. The total magnetic
field gradient of the system is expressed by the following equation:

dBpeak(x, y, z)

dr(x, y, z)
=

√√√√(dBpeak(x, y, z)

dx

)2

+

(
dBpeak(x, y, z)

dy

)2

+

(
dBpeak(x, y, z)

dz

)2

(4.56)
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As per our data, the values from Figure 4.23 are:

dBpeak

dx
=
dBpeak

dy
= 14 G/cm (4.57)

dBpeak

dz
= 10.5 G/cm (4.58)

2. Coil Length: The desired coil length L is evaluated as follows:

L = 2nhnv((A+B) + 2d(nv − 1)) ≈ 27 m (4.59)

where nh and nv denote the number of turns in horizontal direction
and number of turns in vertical direction respectively. They are taken
as nh = 7 and nv = 8. In above equation, d denotes the cross-sectional
diameter of the coil which is taken as d = 0.0015 m, A and B denote the
length and breadth of the rectangular coils including the cross-sectional
diameter d.

3. Coil Current : The value of current in all the coils is the ratio of peak
value of magnetic field gradient to the absolute value of the gradient for
1 A of current flowing through all the coils. Magnetic field gradients
along X and Y axes when 1 A of current will be passed through the
coils is 2.33 G/cm, provided that the magnetic field gradient of the
system is 14 G/cm because we want to circulate a current magnitude
≈ 6 A in our coils. With this information, we have:

I =
dBpeak

d(x, y)
/

dB

d(x, y)
≈ 6 A (4.60)

Figure 4.23 shows that the magnetic field gradient along Z - axis is 10.5
G/cm for 6 A of coil current, which implies the magnetic field gradient
along Z - axis for 1 A of current is 1.75 G/cm, this reduced magnitude
comes from the reason that all of our rectangular coils are spanned
across XZ and YZ planes (Figure 4.23), all sharing Z as a common axis
for magnetic field and magnetic field gradient contributions.

4. Coil Resistance: The correct magnitude of the coil resistance Rcoil is
calculated as follows:

Rcoil =
Lρ

s
≈ 257 mΩ (4.61)

where L = 26.992 m, ρ = 1.68×10−8 Ωm is the resistivity of the copper
coils and s = 1.76715× 10−6 m2 is the cross - sectional area of the coil.
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Figure 4.22: Plots of the magnetic fields versus axial along all three axes. An
important condition B(0,0,0) = 0 was verified from this simulation leading
to these plots.

5. Power Dissipation: Power dissipation is evaluated as follows:

P = RI2 ≈ 9.27 W (4.62)

Note that in our case, the half - value of the distance from the centre of
the MOT to the internal face of the second pair of rectangular shaped coil
is taken to be 37 mm. Hence the observation in graph 4.23 is in agreement
that with this distance of 37 mm, one would expect trapping along X and Y
axes while atoms being almost free across Z - axis. This expectation makes
sense because in Figure 4.23, the magnetic field gradient along the Z - axis
is negligible within the stretch of about 80 cm.
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Figure 4.23: Plots of the peak magnetic field gradients versus axial distance
for all three axes.

Figure 4.24: 3D-plots of the peak magnetic field gradients: The plot at the
top shows the behavior of the magnetic field gradient in XY plane, the other
two below 3D-plots show the behavior of magnetic field gradient in XZ and
YZ planes.
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4.14 Conclusions and Outlook

Taking into account all the results presented in this Chapter, we can con-
clude that the interferometric signal of the atomic clouds undergoing a Mach-
Zehnder interferometric sequence can be maximized by employing the idea of
second order Zeeman effect. Experimentally, this idea should be able to pro-
duce interferometric fringes with a good contrast and least possible noise. In
the near future, higher relative accuracy than reported in this thesis can be
achieved provided that experimentalists should be able to load more number
of atoms in the MOT chamber as compared to the atomic population consid-
ered in our simulations. Other two parameters which will play a vital role in
increasing the relative accuracy for high precision measurements in the ex-
periments of gravity gradiometry are: height of atomic fountain tube and the
interrogation time. Taller the atomic fountain tube, more is the interrogation
time. For example, if we consider an atomic fountain tube which is 1 m tall
with an interrogation time of 160 ms [66], then interrogation time for a 4 m
tall atomic fountain becomes 220 ms (as accounted in this thesis). Effects of
longer interrogation times in the gravity gradiometry experiments without
the implementation of the phase noise minimization scheme is shown in Fig-
ure 4.25. Also, not to forget that the sensitivity to inertial effects increases
as the square of interrogation time.

An important outlook concerning the phase noise minimization scheme
described and implemented in this thesis is presented as follows. The atom
interference fringes detected at the upper and lower interferometers have a
fixed phase difference proportional to the gravity gradient experienced by
the atomic clouds. Therefore, when plotted one as the function of the other,
atom interference fringes trace an ellipse whose eccentricity and rotation
angle provides a measurement of the differential phase shift. As presented in
this work, it is crucial to open the ellipse to minimize the error with which
the differential phase is extracted. In fact, implementing the phase noise
minimization scheme (by introducing a controlled phase shift in the vicinity
of π/2) helps the elliptic contour transform into a circle, and that circle
degenerates into a straight line representing a zero phase shift, henceforth
displaying the cancellation of gravity gradients.

A concluding outlook on the experimental scheme presented in this thesis
is that this unique apparatus will serve as a foundation for independent
measurements of Newtonian Gravitational constant and precision tests of
gravity to reveal new scenarios in physics.
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Figure 4.25: Effect of longer interrogation times on the interferometric sig-
nal in a gravity gradiometer: In the case presented at the left, a pair of
clear sinusoidal interferometric signals are visible, but resulting in an ellipse
which is not easily readable. In the case presented at the right, same pair
of sinusoidal interferometric signals become very noisy, but yield a readable
ellipse.
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Chapter 5

Source Masses: Design,
Calculation and Simulation

In this Chapter, we state the two possible source mass designs to produce
a linear gravitational acceleration profile for the purpose of gravity gradient
cancellation with a high relative accuracy using significantly lesser number
of atoms in atomic cloud samples. These two favourable configurations are
shown in Figure 5.1.

5.1 Source Mass Design: Geometrical Con-

figuration - I

Source mass tower is arranged in the form of 16 individually (and closely)
stacked identical - cylindrical tungsten source masses each with a height of
3.75 cm and radius of 10 cm. There are 12 identical source mass towers
forming two hexagonal enclosure rings around the atomic fountain tube, as
shown in the left side of Figure 5.1.

In order to include the hexagonal symmetry (only in configuration - I)
and other effects from all the source mass towers, accurate knowledge of
coordinates is necessary. All the coordinates in hexagonal configuration are
defined in Figure 5.2.

5.1.1 Z - Coordinates

The sixteen cylindrical source masses stacked one above each other can be
expressed by the following equation:

z
(n)
i = HT −Hni +D (5.1)
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Figure 5.1: Two atomic clouds separated by a calibrated baseline D produc-
ing phases due to the design of source masses φSM and from fictitious grav-
ity gradient φΓ∗zz arising due to two different geometrical configurations and
choice of materials, LEFT: Geometrical arrangement comprising of stacked
individual cylindrical tungsten source masses supported by aluminium torus
platform, RIGHT: According to this geometrical construction, the source
masses are prepared using 43 stacked copper rings, each of them possessing
same torus geometry.
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where H is height of one cylindrical tungsten source mass, HT is the height
of source mass tower, D is the distance of the lowest located source mass in
the complete configuration of source mass tower with respect to the ground
and ni = 1/2, 3/2, 5/2, 7/2, 9/2, ..., 31/2. Here, n = 1 gives the Z - coordinate
of the cylindrical source mass located at the topmost position of the source
mass tower. Similarly, n = 2 gives the Z - coordinate of the cylindrical
source mass stacked exactly below the cylindrical source mass located at the
topmost position of the cylindrical source mass tower.

5.1.2 X and Y - Coordinates

Let x
(0)
i and y

(0)
i be the X and Y coordinates of the cylindrical source mass in

ith hexagonal ring, with x
(0)
i = a/2 + R and y

(0)
i = R, where a is the radius

of the atomic fountain tube and R is the radius of cylindrical source mass.
Using the idea of 2× 2 rotation matrix, other coordinates can be expressed
as a linear combination of x

(0)
i and y

(0)
i , as follows:

(
x

(1)
i

y
(1)
i

)
=

[
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

](
x

(0)
i

y
(0)
i

)
(5.2)

(
x

(2)
i

y
(2)
i

)
=

[
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

](
x

(0)
i

y
(0)
i

)
(5.3)

(
x

(3)
i

y
(3)
i

)
=

[
cosπ − sin π
sin π cos π

](
x

(0)
i

y
(0)
i

)
(5.4)

(
x

(4)
i

y
(4)
i

)
=

[
cos(4π/3) − sin(4π/3)
sin(4π/3) cos(4π/3)

](
x

(0)
i

y
(0)
i

)
(5.5)

(
x

(5)
i

y
(5)
i

)
=

[
cos(5π/3) − sin(5π/3)
sin(5π/3) cos(5π/3)

](
x

(0)
i

y
(0)
i

)
(5.6)
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Figure 5.2: Cylindrical source masses (blue hollow circles) forming a hexag-
onal pattern starting from the individual cylindrical source masses located
at the top of the six identical source mass towers, the other ones shown
at the bottom of the figure denote the masses located at the bottom of the
tower(closer to the ground). Calculation of all the coordinates is explained in
Sections 5.1.1 and 5.1.2. Red hollow circle denotes the atomic fountain tube
of the new design, and the pale grey colour-filled circles denote the atoms.
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5.1.3 Gravitational Potentials and Accelerations

In this Section, we discuss about the comparison between the equations and
nature of the gravitational potentials and accelerations deduced by two differ-
ent mathematical approaches [17, 100]. This was crucial as it was necessary
to determine the coinciding point between gravitational potential formula-
tion of these two methods. One out of the two methods marks gravitational
potential as a truncation of terms representing series governed by the value of
azimuthal quantum number l [17], whereas the other represents an exact an-
alytical solution [100]. The primary focus while deriving the exact analytical
expression [100] was the calculation of standard deviation and the differential
phase shift (see Figure 1.1 and Section 1.3) due to the uncertainties of the
mean values of the initial coordinates and the velocities of atomic clouds,
intended for a high precision measurement of G.

Comparison of Gravitational Potentials: Truncation v/s Analytic

Let R, ρ and h be the radius, density and height of cylindrical source mass
respectively. Analytical formulation [100] provides the gravitational potential
equation in terms of cylindrical coordinate system as follows:

Φ(r, z) = −2Gρ

∫ R

0

dy

∫ r−
√
R2−y2

r+
√
R2−y2

dξ

∫ z

z−h

(
dζ√

y2 + ξ2 + ζ2

)
(5.7)

Hence, to compare this potential with the gravitational potential from mul-
tipole expansion, this equation was first rewritten in the form of cylindri-
cal coordinate system. Equation for potential generated by homogeneous
cylindrical mass distribution [17] having mass M , height h and radius R in
cylindrical coordinate system is:

U(r, z) = −GM
R

∞∑
l=0

β2l+1P2l

(
z

r

)
Ql(α2) (5.8)

where α and β are dimensionless coefficients:

β(r) =
r

R

α =
h

2R

and

v′ =
r′

R
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r(m) UA UT

0.1 −1.48074× 10−8 −1.48074× 10−8

0.2 −7.27304× 10−9 −7.27304× 10−9

0.3 −4.77631× 10−9 −4.77630× 10−9

0.4 −3.56225× 10−9 −3.56222× 10−9

0.5 −2.84221× 10−9 −2.84228× 10−9

0.6 −2.36516× 10−9 −2.36515× 10−9

0.7 −2.02550× 10−9 −2.02551× 10−9

0.8 −1.77132× 10−9 −1.77132× 10−9

0.9 −1.57382× 10−9 −1.57389× 10−9

1.0 −1.41611× 10−9 −1.41611× 10−9

Table 5.1: Matching of gravitational potential from analytical and truncated
approaches upto fourth decimal place.

u′ =
2z′

h

Values of r were incremented with 10 cm from 0 to 1 m, so as to compute
the gravitational potentials using equations 5.7 and 5.8 for comparison of
results. For l = 3 in equation 5.8, the gravitational potential was matched
upto fourth decimal place as reported in the Table 5.1. Here, UA is calculated
from equation 5.7 and UT is calculated from equation 5.8.

The Table 5.1 applies for truncation of terms upto l = 3 for column
UT . With R = 0.1 m, h = 0.0375 m, ρ = 18000 kg/m3, M = 21.2058 kg,
α = 0.1875 at l = 3, the coefficients and terms in equation 5.8 reduce as
follows:

U(r, z)|l=3 = −1.41× 10−8

(
0.1

r
− IU
r5

+
JU
r9
− SU
r12

)
(5.9)

where:

IU = −1.19× 10−4(3z2 − r2)

JU = 1.34× 10−7(3r4 − 30r2z2 + 35z4)

SU = 3.67× 10−10(−5r6 + 105r4z2 − 315r2z4 + 231z6)

Truncation of series in equation 5.8 upto l = 3 resulted in the potential
described by the equations above and are depicted as a 3D-plot in Figure
5.3. Likewise, the 3D - plot resulting from equation 5.7 is shown in Figure
5.4.
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Figure 5.3: Truncated Potential : 3D-Plot using equation 5.9.

Figure 5.4: Analytical Potential : 3D-Plot using equation 5.7.
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Comparison of Gravitational Accelerations: Truncation v/s Ana-
lytic

Gravitational acceleration arising from the gravitational potential (from se-
ries - truncation approach [17]) is deduced as follows:

AT = −∂U(r, z)

∂r
(5.10)

The above equation reduces for R = 0.1 m, h = 0.0375 m, ρ = 18000 kg/m3,
M = 21.2058 kg, α = 0.1875 at l = 3 as follows:

AT |l=3 = 1.41×10−8

(
2.38× 10−4

r4
−0.1

r2
+
IA
r6

+
JA
r9
−SA
r10
−VA
r13

+
QA
r14

)
(5.11)

where:

IA = 5.95× 10−4(3z2 − r2)

JA = 1.34× 10−7(12r3 − 60zr2)

SA = 1.21× 10−6(3r4 − 30r2z2 + 35z4)

VA = 3.56× 10−10(420r3z2 − 30r5 − 630rz4)

QA = 4.63× 10−9(105r4z2 − 5r6 − 315r2z4 + 231z6)

Now, equation 5.11 needs to be compared to the analytical expression for
gravitational acceleration [100]. Gravitational acceleration determined from
analytical approach is stated as follows:

AA = 2Gρ(gr(r, z)− gr(r, z − h)) (5.12)

where:

gr(r, ζ) =

(
ζ

2r
√
ζ2 + (r +R)2

)
[gK(r, ζ) + gE(r, ζ) + gEπ(r, ζ)] (5.13)

such that K, E and Eπ denote elliptic functions:

gK(r, ζ) = −(ζ2 + 2r2 + 2R2)K

(
4rR

z2 + (r +R)2

)

gE(r, ζ) = (ζ2 + (r +R)2)E

(
4rR

z2 + (r +R)2

)
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r(m) AA AT
0.2 −3.82951× 10−8 −3.82140× 10−8

0.3 −1.62693× 10−8 −1.63236× 10−8

0.4 −9.01230× 10−9 −9.03528× 10−9

0.5 −5.72765× 10−9 −5.73803× 10−9

0.6 −3.96254× 10−9 −3.96779× 10−9

0.7 −2.90466× 10−9 −2.90757× 10−9

0.8 −2.22062× 10−9 −2.22235× 10−9

0.9 −1.75280× 10−9 −1.75389× 10−9

1.0 −1.41875× 10−9 −1.41947× 10−9

Table 5.2: Gravitational accelerations produced by set of dense tungsten
source masses arranged as per configuration - I from analytical and truncated
approaches.

Figure 5.5: Truncated Acceleration: 3D-Plot using equation 5.11.

gEπ(r, ζ) =

(
(r2 −R2)2

(r +R)2

)
(ζ2 + (r +R)2)Eπ

(
4rR

(r +R)2
| 4rR

ζ2 + (r +R)2

)
Several values of r were chosen from 0 to 1m, so as to compute the

gravitational accelerations using equations 5.11 and 5.12 for comparison of
results presented in Table 5.2.

The gravitational acceleration profiles in both the cases are shown in
Figures 5.5 and 5.6, with exact values provided in Table 5.2. Figure 5.7
shows the comparison of both gravitational acceleration and potential profiles
calculated from both of these methods [17, 100].
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Figure 5.6: Analytical Acceleration: 3D-Plot using equation 5.12.

Source Masses: Total Gravitational Potential

Equation for potential generated by homogeneous cylindrical mass distribu-
tion in cylindrical coordinate system is:

U(r, z) = −GM
R

3∑
l=0

β2l+1Ql(α2)P2l

(
z

r

)
(5.14)

with

Ql(α2) =

∫ 1

−1

∫ 1

0

v′P2l

(
αu′√

v2 + (αu′)2

)
(v′2 + (αu′)2)ldv′du′ (5.15)

where α and β are dimensionless coefficients:

β(r) =
R

r
(5.16)

α =
h

2R
= 0.1875 (5.17)

Magnitude of the position vector r (between the coordinates of atom (x, y, z)
and coordinates of source mass (xki , y

k
i , z

n
i )) for the case of ith (in our case, the

ring assumes a hexagonal form) ring of source masses modifies (in cartesian
coordinate system) as follows:

rki =
√

(x− xki )2 + (y − yki )2 (5.18)
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Figure 5.7: Comparison of values of gravitational accelerations and gravita-
tional potentials (for different values of r), using multipole expansion from
truncated approach [17] for 2l = 6, as this was matched with exact analytical
solution [100].
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resulting in the modification of β:

β(rki ) =
R

rki
=

R√
(x− xki )2 + (y − yki )2

(5.19)

Gravitational potential experienced by single atom in one gravimeter due to
ith ring of source masses is:

U(x−xki , y−yki , z−zni ) = −GM
R

∞∑
l=0

β2l+1Ql(α2)P2l

(
z − zni√

(x− xki )2 + (y − yki )2

)
(5.20)

Total gravitational potential experienced by single atoms in each gravime-
ter due to all the source masses is expressed as:

U(x− xi, y − yi, z − zi) =
1∑
i=0

16∑
n=1

5∑
k=0

U(x− xki , y − yki , z − zni ) (5.21)

Gravitational potential difference (equation 5.21) experienced by two indi-
vidual atoms (for example; if one atom is located at 1.54 m and the other
atom is located at 1.77 m above the point of origin of the fountain tube)
inside the atomic fountain tube surrounded by the two concentric hexagonal
rings i = 0 and i = 1:

U |z=1.54 = Ui=0(x−x0, y−y0, 1.54−z0)+Ui=1(x−x1, y−y1, 1.54−z1) (5.22)

U |z=1.77 = Ui=0(x−x0, y−y0, 1.77−z0)+Ui=1(x−x1, y−y1, 1.77−z1) (5.23)

leading to gravitational potential difference UDIFF experienced by two - single
atoms forming a gravimeter:

UDIFF = U |z=1.77 − U |z=1.54 (5.24)

Extending all this knowledge to the case of atomic clouds, a Monte Carlo
simulation was developed to produce the results shown in Section 5.6, of
which the complete code is provided in Appendix B.
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Torus-shaped Platform: Gravitational Potential

The purpose of the torus-shaped platform is to support the massive collection
of the dense tungsten source masses (in configuration - I). When the platform
is included in the system of source masses, platform will also play a role along
with the existing system in impacting the atomic clouds with its gravitational
potential.

For a torus-shaped platform, forming one external and one internal rings,
their gravitational potential is expressed as a difference of gravitational po-
tentials of two rings with unequal radii, resulting in the formation of internal
and external rings of a torus. This is done because there is supposed to be a
vacuum region created due to unequal radii of the two torus-shaped rings.

For the internal ring:

URin(r, z) = −GπρAlr2
i1(V1(z) + 0.5(η(r))2V2(z)) (5.25)

where ρAl is density of aluminium platform, V1(z) and V2(z) are z-dependent
gravitational potential terms expressed as:

V1(z) = V 1
1 + V 2

1 + V 3
1 + V 4

1

V 1
1 = a2

1

((
y(z) + b1

a1

)
−

(
y(z)− b1

a1

))
V 2

1 = −((y(z) + b1)− (y(z)− b1))

V 3
1 = (y(z) + b1)(h2(z)− h4(z))

V 4
1 = −(y(z)− b1)(h1(z)− h3(z))

and:

V2(z) = V 1
2 + V 2

2 + V 3
2 + V 4

2

V 1
2 = −y(z) + b1

h2(z)

V 2
2 =

y(z)− b1

h1(z)

V 3
2 =

y(z) + b1

h4(z)

V 4
2 = −y(z)− b1

h3(z)
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such that for the internal ring:

h1(z) =
√
a2

1 + (y(z)− b1)2

h2(z) =
√
a2

1 + (y(z) + b1)2

h3(z) =
√

1 + (y(z)− b1)2

h4(z) =
√

1 + (y(z) + b1)2

where:

η(r) =
r

ri1

y(z) =
z

ri1

a1 =
re1
ri1

b1 =
ri1H1

2

Similarly, for the external ring:

URout(r, z) = −GπρAlr2
i2(V1e(z) + 0.5(ηe(r))

2V2e(z)) (5.26)

where:

V1e(z) = V 1
1e + V 2

1e + V 3
1e + V 4

1e

V 1
1e = a2

2

((
ye(z) + b2

a2

)
−

(
ye(z)− b2

a2

))
V 2

1e = −((ye(z) + b2)− (ye(z)− b2))

V 3
1e = (ye(z) + b2)(h2e(z)− h4e(z))

V 4
1e = −(ye(z)− b2)(h1e(z)− h3e(z))

and:

V2e(z) = V 1
2e + V 2

2e + V 3
2e + V 4

2e

V 1
2e = −ye(z) + b2

h2e(z)
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V 2
2e =

ye(z)− b2

h1e(z)

V 3
2e =

ye(z) + b2

h4e(z)

V 4
2e = −ye(z)− b2

h3e(z)

such that for the external ring:

h1e(z) =
√
a2

2 + (ye(z)− b2)2

h2e(z) =
√
a2

2 + (ye(z) + b2)2

h3e(z) =
√

1 + (ye(z)− b2)2

h4e(z) =
√

1 + (ye(z) + b2)2

where:

ηe(r) =
r

ri2

ye(z) =
z

ri2

a2 =
re2
ri2

b2 =
ri2H2

2

Hence, the gravitational potential (in cylindrical coordinate system) of the
torus-shaped platform becomes:

UP (r, z) = URout(r, z)− URin(r, z) (5.27)

Mathematical expression for phase due to source masses

In this Section, we theoretically state the phase calculation due to a set of
stacked monolithic cylindrical source masses in both the presence and absence
of an aluminium torus-shaped platform (described in preceding section). In
the past, some theoretical methods to calculate exact phase shifts [101] and
interferomtric phase shift fluctuations [102] have been demonstrated.

Let UUP and UDW be the gravitational potentials experienced by atoms in
the upper and lower arms of a single-atom interferometer respectively, where
U is given by equation 5.21. The complete phase difference from time t = 0 to
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t = 2T due to the presence of new design of source masses is mathematically
expressed as:

φSM =
mRb

~

∮
UUP (x− xi, y − yi, z − zi)dt

− mRb

~

∮
UDW (x− xi, y − yi, z − zi)dt (5.28)

The above equation is valid for the case when there is no platform present.
To include the geometry of the platform, the gravitational potential of the
platform UP is also included:

φSM =
mRb

~

∮
UTOT
UP (x− xi, y − yi, z − zi)dt

− mRb

~

∮
UTOT
DW (x− xi, y − yi, z − zi)dt (5.29)

where,

UTOT = U + UP (5.30)

5.1.4 Determination of radius of tungsten source mass
cylindrical disks

Using the mathematical formulation [100] for gravitational accelerations for a
dense cylinder in cylindrical coordinate system, we firstly estimate the region
in which source mass (made out of material of user’s choice) exhibits a linear
trend of acceleration due to gravity. This estimation is performed using our
result of l = 3 which comes from a thorough study on the comparison between
the gravitational potentials and accelerations of a solid dense homogeneous
cylinder(preceding section). The equations are rewritten labelling all the
variables of interest here as follows:

A(r, z, R, h) = 2Gρ

(
gr

(
r, z +

h

2
, R

)
− gr

(
r, z − h

2
, R

))
(5.31)

where:

gr(r, ζ, R) =

(
ζ

2r
√
ζ2 + (r +R)2

)
[gK(r, ζ, R) + gE(r, ζ, R) + gEπ(r, ζ, R)]

such that K, E and Eπ denote elliptic functions:

gK(r, ζ, R) = −(ζ2 + 2r2 + 2R2)K

(
4rR

z2 + (r +R)2

)
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gE(r, ζ, R) = (ζ2 + (r +R)2)E

(
4rR

z2 + (r +R)2

)

gEπ(r, ζ, R) =

(
(r2 −R2)2

(r +R)2

)
(ζ2 + (r+R)2)Eπ

(
4rR

(r +R)2
| 4rR

ζ2 + (r +R)2

)
Furthermore, using the same mathematical formulation, the acceleration

experienced by a set of hexagonal arrangement of tungsten source masses
can be represented as:

Az = 6A(2R, z,R, h) + 6A(2R
√

3, z, R, h) (5.32)

and in the context of mathematical method following series truncation (the
result with l = 3), the acceleration experienced is expressed as:

Az = −∂U(r, z, R, h)

∂z
(5.33)

Plotting equations 5.31, 5.32, 5.33 and first-order negative partial derivative
of equation 5.9 provides a linear trend estimate for earth’s acceleration due
to gravity at H = 3.75 cm and R = 10 cm as shown in Figures 5.8 and
5.9. Figure 5.10 depicts a good level of compromise regarding the stability
of gravity gradient magnitude (within a permissible baseline for the experi-
ment) for chosen radius disk of 10 cm as compared to the other chosen radii
magnitudes (8 cm and 12 cm).

5.2 Source Mass Design: Geometrical Con-

figuration - II

In this configuration, the source mass design assumes the geometry analogous
to that of the aluminium torus-shaped platform from former configuration
(Figure 5.11). The gravitational potential is taken of the form presented
extending equation 5.25 to 12 consecutively stacked copper rings:

UCu(r−rm, z−zm) = −GπρCur2
i

12∑
m=1

(V1(z−zm)+0.5(η(r−rm))2V2(z−zm))

(5.34)

where the summation index m denotes the number of cascaded torus-shaped
rings. According to this design, the overall phase difference in the time circuit
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Figure 5.8: Plots representing variation in gravitational acceleration along
the axis of gravity - Upper Graph: Plot from equation 5.33, Lower Graph:
Plot from equation 5.31. Along with a display of linear trend, it is clearly
visible that both of these plots coincide exactly when the radius and height of
tungsten cylindrical disk are calculated to be 0.1 m and 0.0375 m respectively.
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Figure 5.9: Plots representing constancy in gravity gradient Γzz along the
fountain axis - Upper Graph: Plot from equation 5.32, Lower Graph: Plot
from a negative first - order partial derivative (with respect to z) of equation
5.9 at l = 3. Along with a display of linear trend, it is clearly visible that
both of these plots coincide exactly when the radius and height of tungsten
cylindrical disk are calculated to be 0.1 m and 0.0375 m respectively.
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Figure 5.10: Plots created using first derivative of equation 5.34: Variation
in gravity gradient Γzz with respect to slight variation in the radius of the
tungsten cylindrical disk-shaped source masses. Here, the blue-coloured,
magenta-coloured and dark-yellow coloured curves mark chosen radius disks
as 10 cm, 8 cm and 12 cm respectively.
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from t = 0 to t = 2T becomes:

φCuSM =
mRb

~

∮
UCu
UP (r − rm, z − zm)dt

− mRb

~

∮
UCu
DW (r − rm, z − zm)dt

such that subscripts UP and DW in UCu respectively indicate upper and
lower trajectory arms of a single atom interferometer.

This configuration of source mass is carved out of copper simply because
copper as a material is cheaper and in our case it possesses a simplified ge-
ometry along with it being homogeneous and pure. As shown in Figure 5.12,
there are 12 identical copper rings stacked one above the other eventually
forming as a single copper torus-shaped block. As presented in this the-
sis, we present two different geometrical source mass configurations in order
to explore the physics arising from phase shifts arising due to gravitational
potentials impacted on atoms by different materials. With our established
design of configuration - I, we use an idea of a dimensionless parameter η.

This ratio η =
√

ρW
ρCu

is a relationship between the density of the materi-

als used to build source masses, hence in our case it is tungsten(ρW ) and
copper(ρCu). While in previous experimental schemes a high density value
was instrumental to cancel the Earth’s gravity gradient around trajectories
apogee, here such condition is no longer required. However, when we use
copper, the induced gravity gradient drops to half that of tungsten. There-
fore, the overall source mass system size needs to be recaliberated in order
to maintain the same gradiometric signal. With respect to this essential cri-
teria, since the phase resulting from the real gravity gradient (i.e., due to
the design of source masses) is proportional to the baseline and atoms drop-
ping distance, a reduction in the average gravity gradient Γzz of a factor η is
compensated by an increase in linear dimension (and therefore total mass) of√
η. With this knowledge, this torus-shaped source mass geometry becomes

applicable and useful for the other source mass models created using any
suitable materials. Employing this dimensionless ratio η, it results in scaling
of existing parameters of configuration - II with respect to configuration - I
as shown vividly in Table 5.3.

5.3 Precise estimation of initial π/2-pulse

In this Section, we precisely calculate the initial π/2-pulse coordinates. In
the vicinity of these coordinates, our cold rubidium atomic cloud samples will
be launched when they are subjected under two different configurations of
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Parameter(Units) Configuration-I Configuration-II

ρ(kg/m3) 18300 8960
H(m) 0.6 0.6η

REXT (m) 0.362 0.362η
RINT (m) 0.105 0.105η
z0(mm) -161.7,-170 -232.2
T (s) 0.22 0.22

√
η

d(m) 0.23 0.23η
v0(m/s) g(T+0.001) g(T+0.001η)

Table 5.3: Parameters impacted due to presence of η, as used in simulations
regarding set of cylindrical tungsten source masses from configuration - I
and cascaded copper rings in configuration - II. Here, ρ, H, REXT , RINT ,
z0, T , d and v0 respectively indicate the densities, complete source mass
arrangement height, external radius (of aluminium platform), internal radius
(of aluminium platform), initial π/2-pulse Z-coordinate, interrogation time,
baseline and atomic cloud launch velocity.

Figure 5.11: Cascaded torus - shaped source mass copper rings forming con-
figuration - II.

110 CHAPTER 5. SOURCE MASSES: DESIGN, CALCULATION AND
SIMULATION



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

source masses, configuration - I and configuration - II. This means that at this
event, the atomic clouds should traverse first half of their parabolic launch
from their modified Mach - Zehnder interferometric sequence as specified in
Chapter 3.

Using classical trajectory equations of atoms (equations 4.12 - 4.19) and
gravitational potential and gravitational acceleration equations from preced-
ing section, the idea here is to equate the first derivative of the gradiometric
phase (with respect to z) to zero which corresponds to determining locally a
region where the value of gravity gradient can be made linear and equal both
for upper and lower clouds. These first - order phase derivatives are marked
as φPA (for configuration - I with platform present), φA (for configuration - I
with platform absent) and φCuA (for configuration - II).

Studying the impact of the source mass system concerning both the con-
figurations, we estimated the initial π/2-pulse coordinates (along Z-axis) of
atomic clouds precisely by plotting variation in first order derivative of gra-
diometric phase versus a possible range of values that constitute the off-
set points marking as initial π/2-pulse coordinates of our cold atomic cloud
samples. Figures 5.12 and 5.13 show the Z-coordinates marking the initial
π/2-pulse coordinates, representing the variation of first derivative of gra-
diometric phase for configurations I and II respectively. For configuration -
I, the initial firing point for π/2-pulse is −161.7 mm and for configuration
- II, the initial firing point of π/2-pulse is −232.2 mm. The negative sign
indicates the initial π/2-pulse coordinates are below the origin of the atomic
fountain, which lies at the midway of the complete atomic fountain tube.

These precisely estimated atomic cloud launch points were accounted in
our simulations, as stated later in Section 5.6.

5.4 Linearity of gravitational acceleration

In principle, we have a limited region where the constant behavior of gravity
gradients can be observed. For the sake of compactification of experimental
apparatus, it is wise to stay within an altitude range corresponding to a few
tons as per the total mass of desirable material to build the source masses.
For example, if we choose the experimental configuration with the parameters
listed in Section 5.2 for configuration - I, we have a region inside the atomic
fountain of 0.5 m where gravity gradient can be made constant. This length
of 0.5 m along the axis of gravity is 10 cm lesser than the total height of
source mass configuration in configuration - I. At the centre, the gravity
gradient is perfectly linear with visible nonlinearities at the edges. Strictly
speaking, in this region of 0.5 m, linearity is better than elsewhere inside the
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Figure 5.12: Variation of φA(blue curve) and φPA(magenta curve): X-
intercepts at −170 mm (φA-curve) and −161.70 mm (φPA-curve) marking the
cases of platform (in configuration - I) being absent and present respectively.
This means that at these intercept values, the phase derivatives φA and φPA
take zero value concerning configuration - I.

Figure 5.13: Variation of φCuA : The curve makes an intercept on X-axis at
−232.22 mm, meaning that at this intercept value, the phase derivative φCuA
is zero for configuration - II.
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atomic fountain tube. Gradiometric phase φGRD is due to: keffγdT
2, where

d is baseline between the two cold atomic cloud samples, γ is the gravity
gradient and T 2 is the square of the half time of the parabolic launch of
atomic clouds, meaning that the atomic clouds acquire their apogees at the
time T . So, the idea here is to balance these two parameters of interest: d
and T . To achieve this, there exist two possibilities, one possibility is with
small d and large T and the other possibility is large d and small T . In
this case where d starts to be comparable with 0.5 m, our apogee is the
place around where the atoms spend most of their time, quid pro quo most
of the phase is accumulated around the apogee at time T . At this point,
if we use this approach, apogee is in the region where gravity gradient is
not constant, hence the choice of a larger d value is not good. In all, it is
necessary to have apogee around the center but with maximizing also T 2,
henceforth arriving at a good compromise between d and T 2. Note that
with a shorter baseline between the atomic clouds, one cannot maximize the
sensitivity. As a result, our compromise marks a trade-off between the two

key parameters of interest d and T : T ≈
√

2d
g

. To summarize, we achieve

a maximized sensitivity without losing too much linearity (of gravitational
acceleration) keeping in mind that the magnitudes of freely falling distance
and baseline are nearly equal.

5.5 Simulation and Calculation: Phases due

to fictitious gravity gradient

Readapting the effective wavevector ∆keff of central π-pulse, a fictitious grav-
ity gradient is generated which exactly compensates the effect of ambient
gravity gradient. Here keff = 4π/λ is wavevector for two - photon Raman
transition. In our case, chosen wavelength is λ = 421.5 nm for the dipole-
allowed transition 87Rb: 5S1/2 −→ 6P3/2. Detuning the laser frequency of
the central π-pulse by ∆ν imparting the momentum to atoms, the required
change in magnitude in the effective wavevector to compensate the ambient
gravity gradient:

∆keff =
4π∆ν

c
(5.35)

Simulated corresponding fictitious gravity gradient is expressed as:

Γ∗zz =
−2∆keff

keffT 2
(5.36)
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The experimental matching condition to be achieved is:

Φ = keffT
2(Γzz − Γ∗zz)(d+ ∆vzT ) (5.37)

where d is the baseline, ∆vz is the differential velocity between the two cold
atomic cloud samples and T is the interrogation time. To find the crossing
point(s) in the linear fit of gradiometric phase versus laser detuning frequency,
the following expression gives the linear dependence of the gradiometric phase
on the laser detuning frequency:

Φ(∆ν) = −

(
keffΓzzT

2 +
8π

c
∆ν

)
(d+ ∆vzT ) (5.38)

To summarize, at frequency value ∆ν which nulls the differential phase,
two gravimeters display the same phase magnitudes, independently of their
positions.

This scheme generates a fictitious gravity gradient, expressed as a tensor
Γ∗zz and a corresponding differential phase which is equal to the phase from
the real gravity gradient. Now, we will derive the mathematical expression
of this phase as follows. The phase gradient over the fixed baseline between
the centre of mass coordinates of the two clouds is:

∇φ =
φSM(xCMUP , y

CM
UP , z

CM
UP )− φSM(xCMDW , y

CM
DW , z

CM
DW )

d
(5.39)

For our understanding to be more realistic, we include the translation of
atoms along all the three axes, resulting in change in magnitude of the base-
line, which is written as follows:

D = (zUP − zDW ) + (vUPz − vDWz )T (5.40)

In the above equation, vUPz and vDWz indicate the velocities of atoms inside the
atomic clouds located at the upper and lower positions respectively, separated
by the recalculated baseline D. Hence, phase arising from fictitious gravity
gradient becomes:

φΓ∗zz = D∇φ (5.41)

Finally, to see this gravity gradient compensation scheme in action, the resid-
ual phase should be theoretically zero and experimentally negligible:

φR = φSM − φΓ∗zz (5.42)
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Here, φR is known as the residual phase which is the difference between the
phase generated due to the gravitational potential of the source mass design
and phase acquired due to the fictitious gravity gradient.

In order to precisely determine φΓ∗zz , it is necessary to calculate single -
atom phase gradient, i.e., ∇φ. Hence, ∇φ for each geometrical configuration:
cylindrical tungsten source masses including and excluding torus-shaped alu-
minium platform, torus-shaped copper ring source masses, were precisely
evaluated using equation 5.41 with results reported in Subsections 5.5.1 and
5.5.2.

5.5.1 Single - atom gradient calculation (Geometrical
Configuration-I)

As per the new design of our experiment (Figure 5.1), our CLOSE and FAR
configurations are defined as the system of source masses (with and without
platform) lying closer to the ground and lying away from the ground respec-
tively. The motivation here is to estimate the real gravity gradients for both
CLOSE and FAR configurations compensating its effects using the recent
technique [65, 66].

In order to precisely determine φΓ∗zz , it is necessary to calculate single
- atom ∇φ for both the cases of torus-shaped platform being present and
absent in the experiment.

For the case of our complete set of tungsten source masses (arranged as
described in Chapter 3), each source mass having a radius of 10 cm and a
height of 3.75 cm, excluding the platform, the magnitude of single - atom
gradient over a centre-of-mass baseline of 23 cm yields:

∇φ =
φSM(xCMUP , y

CM
UP , z

CM
UP )− φSM(xCMDW , y

CM
DW , z

CM
DW )

0.23
= 6.35

Incorporating the same radius and height parameters of source mass disks
with presence of the platform and using equation 5.41, the magnitude of
single - atom gradient over a centre-of-mass baseline of 23 cm yields:

∇φPLATFORM =
φSM(xCMUP , y

CM
UP , z

CM
UP )− φSM(xCMDW , y

CM
DW , z

CM
DW )

0.23
= 6.36
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5.5.2 Single - atom gradient calculation (Geometrical
Configuration-II)

Here φSM is calculated using gravitational potential from equation 5.36.
Evaluation for single - atom ∇φ for copper torus-shaped rings source mass
configuration yields:

∇φ =
φSM(xCMUP , y

CM
UP , z

CM
UP )− φSM(xCMDW , y

CM
DW , z

CM
DW )

0.23η
= 4.80

where the dimensionless ratio η =
√

ρW
ρCu

is used in the existing set of parame-

ters (for geometrical configuration - I with torus-shaped aluminium platform)
so as to invoke generalization of this torus-shaped geometry of source masses
as explained earlier in the Section 5.2.

5.6 Residual Phases: Achieving the relative

accuracy of 10−6

We ran a virtual experiment by simulating the effects of real and fictitious
gravity gradients. This simulation precisely calculates the magnitudes of the
phases φSM , φΓ∗zz and φR. In the next two subsections, we state the results
obtained for different geometrical designs and configurations of source masses
compensating the effects of ambient gravity gradient.

5.6.1 Results: Configuration - I

The results (plots: Figures 5.14 - 5.19) indicate the calculated φR with a
relative accuracy of 10−6. The 12 crucial variables to be set in this simulation
are: x, y, z00, z11, σx, σy, σz, vx, vy, vz, σvxy and σvz . Here, the position and
velocity variables respectively being x, y, z00, z11 and vx, vy, vz describe
the motion of atoms in atomic clouds (z00: upper cloud, z11: lower cloud),
σx, σy and σz represent the thickness of atomic clouds along each axis, σvxy
and σvz play the role of standard deviations in velocities of atoms along
XY - plane and Z axis respectively. The initial velocities of two clouds are
calculated to be: v0 = g(T + 0.001) m/s. At their launch, the clouds have
offsets of 170 mm and 161.70 mm due to application of an initial π/2-pulse
(along axis of launch) respectively when platform is excluded and included
(as shown previously in Section 5.3). This leads to a slight recalibration in
the variables z00 and z11, resulting in zN,P00 = zN,P +z00 and zN,P11 = zN,P +z11

(with zN = −170 mm and zP = −161.70 mm), where the labels N and P
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Parameters Variation (mm)

x −1.0,−0.5, 0.0, 0.5, 1.0
y −1.0,−0.5, 0.0, 0.5, 1.0

z11 zN,P11 − 0.2, zN,P11 − 0.1, zN,P11 , zN,P11 + 0.1, zN,P11 + 0.2

z00 zN,P00 − 0.2, zN,P00 − 0.1, zN,P00 , zN,P00 + 0.1, zN,P00 + 0.2
σx 2.6, 2.8, 3.0, 3.2, 3.4
σy 2.6, 2.8, 3.0, 3.2, 3.4
σz 2.8, 2.9, 3.0, 3.1, 3.2

Table 5.4: Selected variation of parameters (configuration - I) associated
with the position of atoms spanned across each axis inside the atomic cloud.

Parameters Variation (mm/s)

vx −1.0,−0.5, 0.0, 0.5, 1.0
vy −1.0,−0.5, 0.0, 0.5, 1.0
vz v0 − 0.2, v0 − 0.1, v0, v0 + 0.1, v0 + 0.2
σvxy 14, 17, 20, 23, 26
σvz 2.8, 2.9, 3.0, 3.1, 3.2

Table 5.5: Selected variation of parameters (configuration - I) associated
with the velocity of atoms spanned across each axis inside the atomic cloud.

stand for platform absence and platform presence respectively. The variations
incorporated in our simulations associated with atomic positions and atomic
velocities are listed in Tables 5.4 and 5.5 respectively.

Each atomic cloud variable stated in Tables 5.4 and 5.5 have 5 variations.
This enabled us to visualize the stability of our phases produced by our
cold atomic clouds due to the effect of our new design. Hence, in total,
120 simulations are executed with results shown in Figures 5.14 - 5.19 for
relative uncertainties of 0.1%, 0.5% and 1.0% in ∇φ. The choice to introduce
uncertainties as 0.1%, 0.5% and 1.0% in ∇φ was made in our simulations
because experimentally the values of gravity gradients cannot be cancelled
exactly.

In Figures 5.14 - 5.19, the error bars indicate the error in calculation
of φR with and without the platform in the units of µrad for the stated
uncertainty percentages. From these figures, a linear trend of σvxy is clearly
visible. The reason why σvxy is displaying a linear trend is explained in
Subsection 5.6.3. The ranges of the error bars for all the variables are listed
in Tables 5.6 and 5.7 designated as N and P , indicating the error bar ranges
in the absence and presence of platform respectively. The last column in
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Variable(Uncertainty) PERR(µrad) NERR(µrad)

x(0.1%) 2.97-3.00 1.58-1.61
x(0.5%) 3.11-3.14 1.72-1.75
x(1.0%) 3.28-3.32 1.92-1.95
y(0.1%) 2.96-3.00 1.56-1.60
y(0.5%) 3.10-3.15 1.70-1.74
y(1.0%) 3.20-3.33 1.90-1.94
z00(0.1%) 2.91-3.01 1.56-1.61
z00(0.5%) 3.05-3.15 1.70-1.76
z001.0%) 3.26-3.33 1.89-1.95
z11(0.1%) 2.95-2.99 1.56-1.61
z11(0.5%) 3.09-3.13 1.70-1.76
z11(1.0%) 3.27-3.31 1.89-1.95
σx(0.1%) 2.95-3.01 1.55-1.58
σx(0.5%) 3.08-3.16 1.70-1.72
σx(1.0%) 3.26-3.34 1.89-1.92
σy(0.1%) 2.94-2.98 1.57-1.62
σy(0.5%) 3.07-3.12 1.73-1.76
σy(1.0%) 3.25-3.31 1.90-1.95
σz(0.1%) 2.82-3.15 1.49-1.64
σz(0.5%) 2.95-3.30 1.63-1.80
σz(1.0%) 3.12-3.50 1.80-2.00

Table 5.6: Error bar ranges due to atomic positions: Increase in lower and
upper limits of error bar ranges with respect to increasing uncertainty in ∇φ
for configuration - I. PERR and NERR mark the error bar ranges produced
by each participating variable in the simulation in the absence and presence
of platform respectively.

Tables 5.6 and 5.7 clearly display the shortening of error bar magnitudes
when the aluminium platform is not present. Furthermore, in Tables 5.8 and
5.9, the labels ACP and ACN indicate the averaged accuracy (in terms of
Newtonian Gravitational Constant) when platform is included and excluded
respectively. As reported in these two tables, the accuracy is higher when
the uncertainty in ∇φ is lesser and also when the aluminium platform is not
included. This increased averaged accuracy marks reduction in uncertainty
of these measurements from simulations, as it can be vividly seen that the
error bars are shorter in the platform’s absence concerning configuration - I.

Moreover, performing linear fits for the variable σvxy (as the trend of this
variables depicts linear behaviour), the slope and its corresponding standard
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Variable(Uncertainty) PERR(µrad) NERR(µrad)

vx(0.1%) 2.95-3.03 1.57-1.59
vx(0.5%) 3.09-3.17 1.71-1.74
vx(1.0%) 3.27-3.35 1.90-1.93
vy(0.1%) 2.91-2.98 1.55-1.90
vy(0.5%) 3.05-3.12 1.70-1.76
vy(1.0%) 3.22-3.30 1.89-1.95
vz(0.1%) 2.96-2.98 1.54-1.59
vz(0.5%) 3.10-3.12 1.69-1.74
vz(1.0%) 3.28-3.30 1.88-1.94
σvxy(0.1%) 2.84-3.28 1.54-1.63
σvxy(0.5%) 2.99-3.41 1.68-1.87
σvxy(1.0%) 3.18-3.57 1.88-2.05
σvz(0.1%) 2.92-3.01 1.57-1.59
σvz(0.5%) 3.06-3.15 1.72-1.73
σvz(1.0%) 3.24-3.33 1.91-1.93

Table 5.7: Error bar ranges due to atomic velocities: Increase in lower and
upper limits of error bar ranges with respect to increasing uncertainty in ∇φ
for configuration - I. PERR and NERR have the same meaning (as Table 5.6).

error are shown below. The linear fit analysis for the σvxy taking into all
the uncertainties in the absence and presence of platform is listed in Tables
5.10 and 5.11 respectively. Performing linear fits of z00 and z11 resulted in a
high value of standard error which proves that just like all the other variables
except σvxy , these happen to be random fluctuations rather than being a part
of systematic variation.

5.6.2 Results: Configuration - II

The results (Figures 5.20 - 5.24) indicate the calculated φR with a relative
accuracy of 10−6. Since the dense cylindrical tungsten source masses are
absent in this source mass design and also for the sake of convenience, here
we have incorporated cylindrical coordinate system, so that we have nine
variables instead of twelve variables like in geometrical arrangement described
in the preceding subsection. These nine crucial variables set in this simulation
are: r, σr, vr, σvr , zUP , zDW , σz, vz and σvz taking into account the initial π/2-
pulse coordinate as stated earlier in Section 5.3, an offset of −232.22 mm.

The variables (with their respective variations in Table 5.12) namely: r,
σr, vr and σvr , reveal the collective information about the atomic motion
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Variable(Uncertainty) ACP ACN

x(0.1%) 2.985× 10−6 G 1.595× 10−6 G
x(0.5%) 3.125× 10−6 G 1.735× 10−6 G
x(1.0%) 3.300× 10−6 G 1.935× 10−6 G
y(0.1%) 2.980× 10−6 G 1.580× 10−6 G
y(0.5%) 3.125× 10−6 G 1.720× 10−6 G
y(1.0%) 3.265× 10−6 G 1.920× 10−6 G
z00(0.1%) 2.960× 10−6 G 1.585× 10−6 G
z00(0.5%) 3.100× 10−6 G 1.730× 10−6 G
z001.0%) 3.295× 10−6 G 1.920× 10−6 G
z11(0.1%) 2.970× 10−6 G 1.585× 10−6 G
z11(0.5%) 3.110× 10−6 G 1.730× 10−6 G
z11(1.0%) 3.290× 10−6 G 1.920× 10−6 G
σx(0.1%) 2.980× 10−6 G 1.565× 10−6 G
σx(0.5%) 3.120× 10−6 G 1.710× 10−6 G
σx(1.0%) 3.300× 10−6 G 1.905× 10−6 G
σy(0.1%) 2.960× 10−6 G 1.595× 10−6 G
σy(0.5%) 3.095× 10−6 G 1.745× 10−6 G
σy(1.0%) 3.280× 10−6 G 1.925× 10−6 G
σz(0.1%) 2.985× 10−6 G 1.565× 10−6 G
σz(0.5%) 3.125× 10−6 G 1.715× 10−6 G
σz(1.0%) 3.310× 10−6 G 1.900× 10−6 G

Table 5.8: Error bar ranges due relative accuracy occurring from atomic
positions: Increase in relative accuracy with respect to decreasing uncertainty
in ∇φ and exclusion of aluminium platform from configuration - I. ACP and
ACN are accuracies written in terms of measurement of G when the platform
is present and absent respectively. These accuracies are written in terms of
G so that these accuracies along with the error bar range information from
Table 5.7 can be comparable with the actual experimental sequence.
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Variable(Uncertainty) ACP ACN

vx(0.1%) 2.990× 10−6 G 1.580× 10−6 G
vx(0.5%) 3.130× 10−6 G 1.725× 10−6 G
vx(1.0%) 3.310× 10−6 G 1.915× 10−6 G
vy(0.1%) 2.945× 10−6 G 1.725× 10−6 G
vy(0.5%) 3.085× 10−6 G 1.730× 10−6 G
vy(1.0%) 3.260× 10−6 G 1.920× 10−6 G
vz(0.1%) 2.970× 10−6 G 1.565× 10−6 G
vz(0.5%) 3.110× 10−6 G 1.715× 10−6 G
vz(1.0%) 3.290× 10−6 G 1.910× 10−6 G
σvxy(0.1%) 3.060× 10−6 G 1.585× 10−6 G
σvxy(0.5%) 3.200× 10−6 G 1.775× 10−6 G
σvxy(1.0%) 3.375× 10−6 G 1.965× 10−6 G
σvz(0.1%) 2.965× 10−6 G 1.580× 10−6 G
σvz(0.5%) 3.105× 10−6 G 1.725× 10−6 G
σvz(1.0%) 3.285× 10−6 G 1.920× 10−6 G

Table 5.9: Error bar ranges due relative accuracy occurring from atomic ve-
locities: Increase in relative accuracy with respect to decreasing uncertainty
in∇φ and exclusion of aluminium platform from configuration - I. Here, ACP
and ACN have exactly the same meaning as Table 5.8.

Variable(Uncertainty) Slope Standard Error

σvxy(0.1%) -6.319 µrad/mm/s 0.44
σvxy(0.5%) -6.317 µrad/mm/s 0.46
σvxy(1.0%) -6.312 µrad/mm/s 0.49

Table 5.10: Slopes and corresponding standard errors calculated while per-
forming linear fit analysis for σvxy in configuration - I (platform absent).

Variable(Uncertainty) Slope Standard Error

σvxy(0.1%) -7.066 µrad/mm/s 0.35
σvxy(0.5%) -7.035 µrad/mm/s 0.36
σvxy(1.0%) -6.997 µrad/mm/s 0.37

Table 5.11: Slopes and corresponding standard errors calculated while per-
forming linear fit analysis for σvxy in configuration - I (platform present).
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Variables Variations

r {0.0, 0.5, 1.0, 1.5, 2.0} mm
zDW {z11 − 0.2, z11 − 0.1, z11, z11 + 0.1, z11 + 0.2} mm
zUP {z00 − 0.2, z00 − 0.1, z00, z00 + 0.1, z00 + 0.2} mm
σr {2.6, 2.8, 3.0, 3.2, 3.4} mm
σz {2.8, 2.9, 3.0, 3.1, 3.2} mm
vr {0.0, 0.5, 1.0, 1.5, 2.0} mm/s
vz {v0 − 0.2, v0 − 0.1, v0, v0 + 0.1, v0 + 0.2} mm/s
σvr {14, 17, 20, 23, 26} mm/s
σvz {2.8, 2.9, 3.0, 3.1, 3.2} mm/s

Table 5.12: Variability of atomic cloud variables responsible for configu-
ration - II associated with positions and velocities of atoms spanned across
radial and gravity axes inside atomic cloud.

spanned across the XY-plane, such that: r =
√
x2 + y2, σr =

√
σ2
x + σ2

y,

vr =
√
v2
x + v2

y and σvr =
√
σ2
vx + σ2

vy .

Employing the scaled parameters and variables with defined variability
presented in Table 5.12, a measurement campaign of 45 simulations was
launched. Each out of the 9 variables taking 5 values with an uncertainty
of 0.1%, 0.5% and 1.0% in ∇φ, just like these uncertainty percentages were
accounted in the preceding section. The results of all these simulations de-
scribe the stability of our phase values with respect to all the atomic cloud
variables associated with the experiment, reported in Figures 5.20 - 5.24.

As per all the plots, the error bars indicate the error in calculation of φR
in the units of µrad for uncertainty values of 0.1%, 0.5% and 1.0% in ∇φ.
The range of the error bars - ERU1.0%, ERU0.5%, ERU0.1% respectively for
uncertainty percentages of 1.0%, 0.5% and 0.1% in ∇φ for all the variables
observed in these plots are reported in Table 5.13. Furthermore, the corre-
sponding average accuracy (in terms of Newtonian Gravitational Constant)
is calculated by taking the average of lower and upper limit of error bars
stated in Table 5.13. Proceeding further, the three columns in Table 5.14,
namely - ACU0.1%, ACU0.5% and ACU1.0% indicate the average accuracy re-
spectively for the uncertainty percentages (in ∇φ) as 0.1%, 0.5% and 1.0%.
Lastly, performing linear fit analysis for the variable σvr (as the trend of
this variable depicts a linear behaviour), the slopes and its corresponding
standard errors taking into account all the values of uncertainties in ∇φ are
mentioned in Table 5.15.
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Variable(Units) ERU1.0%(µrad) ERU0.5%(µrad) ERU0.1%(µrad)

r(mm) 1.49-1.52 1.29-1.32 1.13-1.16
σr(mm) 1.47-1.51 1.27-1.31 1.11-1.15
σvr(mm/s) 1.49-1.57 1.27-1.38 1.10-1.24
σvz(mm/s) 1.49-1.54 1.29-1.33 1.13-1.17
σz(mm) 1.42-1.52 1.23-1.32 1.08-1.16
vr(mm/s) 1.48-1.52 1.28-1.31 1.12-1.15
vz(m/s) 1.48-1.52 1.28-1.32 1.13-1.15
zDW (m) 1.47-1.50 1.27-1.30 1.12-1.14
zUP (m) 1.48-1.54 1.27-1.33 1.11-1.16

Table 5.13: Decrease in lower and upper limits of error bar ranges with
respect to decreasing uncertainty in ∇φ for configuration - II. The columns
with ER define the error bar ranges for all uncertainty percentages.

Variable(Units) ACU0.1% ACU0.5% ACU1.0%

r(mm) 1.145× 10−6 G 1.305× 10−6 G 1.505× 10−6 G
σr(mm) 1.130× 10−6 G 1.290× 10−6 G 1.490× 10−6 G
σvr(mm/s) 1.170× 10−6 G 1.325× 10−6 G 1.530× 10−6 G
σvz(mm/s) 1.150× 10−6 G 1.310× 10−6 G 1.515× 10−6 G
σz(mm) 1.120× 10−6 G 1.275× 10−6 G 1.470× 10−6 G
vr(mm/s) 1.135× 10−6 G 1.295× 10−6 G 1.500× 10−6 G
vz(m/s) 1.140× 10−6 G 1.295× 10−6 G 1.500× 10−6 G
zDW (m) 1.135× 10−6 G 1.300× 10−6 G 1.510× 10−6 G
zUP (m) 1.130× 10−6 G 1.285× 10−6 G 1.485× 10−6 G

Table 5.14: Decrease in relative accuracy with respect to increasing uncer-
tainty in∇φ for configuration - II. The columns with AC define the accuracies
in terms of G for all uncertainty percentages.

Variable(Uncertainty) Slope Standard Error

σvr(0.1%) -2.572 µrad/mm/s 0.21
σvr(0.5%) -2.596 µrad/mm/s 0.24
σvr(1.0%) -2.625 µrad/mm/s 0.27

Table 5.15: Slopes and corresponding standard errors calculated while per-
forming linear fit for σvr in configuration - II.
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Figure 5.14: Variation in residual phase (φR from equation 5.42) in configu-
ration - I versus the variations of x and y with relative uncertainties of 0.1%,
0.5% and 1.0% in ∇φ.
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Figure 5.15: Variation in residual phase (φR from equation 5.42) in configu-
ration - I versus the variations of zUP (upper cloud Z-coordinate) and zDW
(lower cloud Z-coordinate) with relative uncertainties of 0.1%, 0.5% and 1.0%
in ∇φ.
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Figure 5.16: Variation in residual phase (φR from equation 5.42) in config-
uration - I versus the variations of vx and vy with relative uncertainties of
0.1%, 0.5% and 1.0% in ∇φ.
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Figure 5.17: Variation in residual phase (φR from equation 5.42) in configu-
ration - I versus the variations of σvxy and σvz with relative uncertainties of
0.1%, 0.5% and 1.0% in ∇φ.
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Figure 5.18: Variation in residual phase (φR from equation 5.42) from con-
figuration - I versus the variations of σx and σy with relative uncertainties of
0.1%, 0.5% and 1.0% in ∇φ.
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Figure 5.19: Variation in residual phase (φR from equation 5.42) from con-
figuration - I versus the variations of σz and vz with relative uncertainties of
0.1%, 0.5% and 1.0% in ∇φ.
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Figure 5.20: Variation in residual phase (φR from equation 5.42) with respect
to the change in variables zUP and zDW with relative uncertainties of 0.1%,
0.5% and 1.0% in ∇φ for source mass geometrical configuration - II.
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Figure 5.21: Variation in residual phase (φR from equation 5.42) with respect
to the change in variables r and σr with relative uncertainties of 0.1%, 0.5%
and 1.0% in ∇φ for source mass geometrical configuration - II.

131



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

Figure 5.22: Variation in residual phase (φR from equation 5.42) with respect
to the change in variables vr and vz with relative uncertainties of 0.1%, 0.5%
and 1.0% in ∇φ for source mass geometrical configuration - II.
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Figure 5.23: Variation in residual phase (φR from equation 5.42) with respect
to the change in variables σz and σvz with relative uncertainties of 0.1%, 0.5%
and 1.0% in ∇φ for source mass geometrical configuration - II.
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Figure 5.24: Variation in residual phase (φR from equation 5.42) with respect
to the change in variable σvr with relative uncertainties of 0.1%, 0.5% and
1.0% in ∇φ for source mass geometrical configuration - II.
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5.6.3 Comments about graphs

The residual phase behaviour is quite independent with respect to the accu-
racy of the gravity gradient compensation in both the source mass configu-
rations. Consequently, a modest accuracy of 1% in the preliminary gravity
gradient evaluation is already enough for our purposes. Also here we did
not see clear trends of residual phase in function of any variables (that gov-
ern atomic cloud dynamics) with an exception of σvxy (and σvr) representing
the width of the radial velocity distribution (i.e. a correspondent of the ra-
dial temperature). We found linear slopes of approximately 7 µrad/mm/s,
6.3 µrad/mm/s and 2.6 µrad/mm/s for configuration – I (platform present),
configuration – I (platform absent) and configuration – II respectively. We
can now say that from residual phases (φR) concerning both the source mass
configurations, σvxy and σvr show linear trends because they are associated
with the radial temperature of the atoms and in our simulation (as described
in this thesis), we have considered the gravitational potentials which lead to
maximum atoms being located very close around the centre of the atomic
cloud. So, as the values of σvxy (and σvr) increase, the residual phase (φR)
seems to drop linearly. Considering an uncertainty on σvxy (σvr in the case of
configuration – II) of 3 mm/s [22] we obtained relative uncertainties on G of
13× 10−6 and 5× 10−6 respectively for configuration – I (platform present)
and configuration – II (platform absent). In general and as expected the
configuration – II presents the best result: the absence of a holding platform
maximizes the linearity of the acceleration profile while the larger dimension
mitigates the sensitivity versus the radial coordinates.

5.6.4 Peak-to-peak variations

To describe the physics of our simulated experiment in another effective way,
we present the peak-to-peak variations for each participating variable in the
simulation for each uncertainty percentage considered. Table 5.16 reports
the peak-to-peak phase variations for configuration - I when the platform is
absent and Table 5.17 reports the peak-to-peak phase variations for configu-
ration - I when the platform is present. Similarly, Table 5.18 shows peak-to-
peak phase variations for configuration - II. These peak-to-peak variations
(denoted by ∆φP−PR ) are calculated by taking the difference between the max-
imum and the minimum values in each variable (which governs atomic cloud
dynamics) for each uncertainty percentage. This helps us in realizing which
variable is most suitable to be considered for the experimental measurement
of G. Also, ∆φP−PR indicates how much the phase changes even when we
consider the negligible motion of individual atoms in our atomic clouds.
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Variables (Units) ∆φP−PR |0.1%(µrad) ∆φP−PR |0.5%(µrad) ∆φP−PR |1.0%(µrad)

σvxy (mm/s) 78.82 78.97 79.15
σz (mm) 9.14 9.25 9.81
σvz (mm/s) 3.08 3.40 3.81
vz (m/s) 4.27 4.54 4.89
σx (mm) 6.92 6.97 7.04
σy (mm) 9.53 9.54 10.48
x (mm) 2.39 2.52 2.68
y (mm) 3.82 4.31 4.92

vx (mm/s) 3.66 4.21 4.91
vy (mm/s) 2.12 2.28 2.73
z11 (mm) 14.19 15.89 18.03
z00 (mm) 12.22 14.06 16.35

Table 5.16: Peak-to-peak variations in phases for different uncertainties of
gravity gradient compensation considering configuration - I with platform
absent.

Variables (Units) ∆φP−PR |0.1%(µrad) ∆φP−PR |0.5%(µrad) ∆φP−PR |1.0%(µrad)

σvxy (mm/s) 85.05 84.61 84.04
σz (mm) 17.08 17.32 17.62
σvz (mm/s) 10.94 11.27 11.87
vz (m/s) 4.04 3.92 3.77
σx (mm) 19.17 20.18 21.45
σy (mm) 12.65 13.03 13.51
x (mm) 6.75 7.11 7.56
y (mm) 4.99 5.30 5.69

vx (mm/s) 6.56 6.86 7.23
vy (mm/s) 3.99 4.07 4.28
z11 (m) 8.86 10.19 11.86
z00 (m) 29.91 31.47 33.42

Table 5.17: Peak-to-peak variations in phases for different uncertainties of
gravity gradient compensation considering configuration - I with platform
present. The simulation standard error is equal to 3 µrad equivalent to
2× 10−6 G.
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Variables (Units) ∆φP−PR |0.1%(µrad) ∆φP−PR |0.5%(µrad) ∆φP−PR |1.0%(µrad)

vr (mm/s) 2.25 2.48 2.78
vz (m/s) 1.52 1.74 2.01
σvr (mm/s) 31.07 31.29 31.59
σvz (m/s) 2.11 2.63 3.30
r (m) 4.33 4.26 4.68
zUP (m) 7.45 8.69 10.26
zDW (m) 9.23 10.60 12.32
σr (mm) 4.97 4.55 4.22
σz (mm) 4.61 4.47 4.54

Table 5.18: Peak-to-peak variations in phases for different uncertainties of
gravity gradient compensation considering configuration - II. The simulation
standard error is equal to 1.5 µrad equivalent to 1× 10−6 G.

5.7 Conclusions and Outlook

Considering all the results presented in this Chapter, we can conclude that
the gravity gradients can be compensated with a higher accuracy in the near
future when experimentalists will be able to load more number of atoms in
the MOT chamber as compared to the atomic population considered in our
simulations.

Experimentally speaking, the idea is to slightly vary the wavelength of
the second laser pulse (resulting in wavevector change of the central π-pulse
from keff to keff + ∆keff), so that the momentum transfer in the two Mach -
Zehnder interferometer branches becomes unbalanced. This implies that the
total interferometer phase shift depends on the initial values of the central
position and momentum of the atomic wave packets. As presented in this
thesis, with a suitable selection of the laser detuning frequency (leading to
the birth of fictitious gravity gradient), one can exactly cancel the analo-
gous contribution caused by the ambient gravity gradient. Furthermore, this
selection automatically leads to a closed interferometer (vanishing relative
displacement between the interfering wave packets) with no loss of contrast.

An outlook concerning the gravity gradient cancellation scheme described
and implemented in this thesis is that - small yet considerable differences in
the central position and velocity of the initial wave packets for the two ver-
tically separated atomic clouds can mimic the UFF (Universality of Free
Fall) violation. In principle, preparing wave packets with a very well-defined
central position and momentum does not suffer from limitations associated
with Heisenberg’s uncertainty principle, which only affects their position and
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momentum widths. The work reported here employs a new scheme [65] that
simultaneously overcomes the loss of contrast and the controlling of relative
initial atomic cloud positions and velocities (also known as the initial co-
location problem). As a result, this method circumvents the fundamental
limitations due to Heisenberg’s uncertainty principle. Due to this circum-
vention of Heisenberg’s uncertainty principle, the stringent requirements on
setting the relative initial positions and velocities for atomic clouds inside an
atomic fountain tube are relaxed by several orders of magnitude.
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Chapter 6

Conclusions

6.1 Results

This PhD work had as main goal the development of an atomic gravity
gradiometer for compensation of gravity gradients with minimization of phase
noise in the gravimetric signal, developing a clearer path towards an accurate
determination of the gravitational constant G.

In the first two years, a simulation was developed for the design of 2D-
MOT coils serving as the trapping chamber for the atoms to be launched into
the atomic fountain tube. Another simulation was developed for the case of
atomic clouds treated as fixed points inside a fountain tube producing phases
from the second order Zeeman effect. Also, this simulation was generalized to
three dimensions of the atomic clouds undergoing the modified Mach-Zehnder
interferometric scheme for phase noise minimization when the atomic cloud
samples prepared from cold atoms are subjected to a parabolic trajectory
constituting a launch and a free-fall. The presence of elliptic functions in this
python code resulted in the longer code evaluation times. So, we optimized
the code evaluation time for the case of 1000 atoms in each atomic cloud
sample by a factor of 8.

In the final year, we designed simulations for compensation of gravity
gradients and to invoke the novel design and different geometrical configu-
rations, which calculate the residual phases achieving a relative accuracy of
10−6. Initially the proposed design [63] was supposed to be analogous to
the MAGIA-Adv [16, 17, 48] experiment, but from the simulations it was
realized that the configuration - II stated in this thesis (using torus-shaped
copper ring as source mass design) produced better results yielding better ac-
curacy along with a highly reduced code evaluation time. Not to forget that
in our Monte Carlo simulations, we have only used 1000 and 10000 atoms
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producing error bars in the range of µrad. This implies that when this ex-
periment will be implemented in near future with a minimum atom loading
rate of 105 atoms/s inside the MOT chamber, then the results will be far
more accurate with error bars reducing down to nrad and prad. Enhancing
the atom loading rate leading to increased atomic population contributing
to the signal; an optimization of the launch sequence parameters to further
cool the atoms and a more efficient method of selecting the state and the
velocity after the launch could easily allow to exceed 106 atoms contributing
to the signal. Thanks to the technique [65] and its recent demonstration in
MAGIA-Adv experiment [66], concluding that an accurate knowledge of the
atomic positions at the time of the interferometer pulses is not necessary.

Eventually, all of this will result in elimination of systematic error by one
order of magnitude contributing to determination of gravitational constant
G surpassing the relative accuracy of 10−4, using the subject of cold atom
interferometry.

6.2 Future Prospects

The computational work done in regard to the experiment described in this
thesis is favorable for both the directions - applied and fundamental sciences.
Programming the experiments before actual implementation gives an exper-
imentalist an idea of what will be suitable both in aspects of producing good
quality results with minimization of costs in purchasing the experimental ap-
paratus. It gives theorist a validation of their concepts being applicable to
the real world, henceforth encouraging experimentalists to witness the truth
by their eyes by building the experiment, hoping a positive expectation of
the desired outcome. The codes described in this thesis can be ran for any
number of atoms at good computational facilities so as to witness the experi-
mental side of physics virtually. Furthermore, the simulations described here
are standardized and can be used by all the metrologists around the globe
in order for them to build best experimental configuration (for gravity gra-
diometer with source masses with least noisy interferometric signal) suitable
as per their requirements.

In the simulations presented in this thesis, the centre-of-mass Z-coordinates
of the atomic clouds can be varied further and results can be reproduced in
the zone of the atomic fountain tube where the gravitational acceleration
profiles do not exhibit any nonlinearity. This set of simulations will help
yield the results for either CLOSE or FAR configurations of source masses
aiming at an accurate determination of G and eliminating systematics at a
high precision with a simultaneous cancellation of gravity gradients.
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When heading towards high accuracy and desired precision, one must
also pay good attention to other parameters that did not constitute a limit
in previous determinations of Newtonian Gravitational constant. The most
troublesome one out of them especially for a cold atomic fountain is the Cori-
olis shift, which can bias the interferometer output if transverse velocity of
the atomic samples and/or keff direction change on the displacement of the
source mass. Compensation schemes based on counteracting the Earth’s ro-
tation rate by acting on the retroreflecting Raman mirror must be optimized
towards the percent accuracy.

Lastly, the source mass movement system must be mechanically well iso-
lated from the fountain holding structure, in order to avoid correlations be-
tween source mass position and launch direction of the atomic sample. In
this way, such shift can be efficiently rejected, and thus an improvement by
a factor of ten of the result appears feasible as reported earlier [16].

In general, the experiments in atom interferometry like the one presented
in this thesis can be employed to realize transportable devices and implemen-
tation of atomic sensors to carry out precise measurements verifying laws in
fundamental physics.
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Appendix A

Magnetic Fields: Exact solution

The origin coordinate for the B-pulse coil is taken to be (0, 0, z1) with 2b as
length of the B-pulse/bias coil (Figure A.1), so that the following solution
is generalized for all the possible coordinates along the altitude axis / Z -
axis of the atomic fountain tower, hence this solution can be applied both
for bias coil (z1 = 0) and B-pulse coil (z1 6= 0). Using the knowledge from
equations written for the case of finite solenoid in three dimensions [79], the
components of the magnetic field for the case of the any finite solenoidal coil
with its origin displaced along Z - axis in cartesian coordinate system are
modified and rewritten as follows:

Bz(x, y, z) =
µ0nI

π

∫ π/2

0

[
a((cosφ)2 + γ(sinφ)2)

(
√
x2 + y2 + a)((cosφ)2 + γ2(sinφ)2)

]
[j+−j−]dφ

(A.1)

Bx(x, y, z) = Bρ
x√

x2 + y2
(A.2)

By(x, y, z) = Bρ
y√

x2 + y2
(A.3)

such that

Bρ(x, y, z) =
µ0nI

π

[
α+

∫ π/2

0

cos 2φ√
(cosφ)2 + k2

+

dφ−α−
∫ π/2

0

cos 2φ√
(cosφ)2 + k2

−
dφ

]
(A.4)
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Figure A.1: Finite solenoidal coil centered at (0, 0, z1) with radius a: If z1 = 0
the coil acts as a bias coil else (z1 6= 0) it is a B-pulse coil, considering different
values of altitude magnitude 2b for both bias and B-pulse coils.

where

γ =
a−

√
x2 + y2

a+
√
x2 + y2

(A.5)

j+ =

[
β+√

(cosφ)2 + k2
+(sinφ)2

]
(A.6)

j− =

[
β−√

(cosφ)2 + k2
−(sinφ)2

]
(A.7)

α+ =
a√

(z + b+ z1)2 + (
√
x2 + y2 + a)2

(A.8)

α− =
a√

(z − b− z1)2 + (
√
x2 + y2 + a)2

(A.9)
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k+ =

√
(z + b+ z1)2 + (a−

√
x2 + y2)2

(z + b+ z1)2 + (a+
√
x2 + y2)2

(A.10)

k− =

√
(z − b− z1)2 + (a−

√
x2 + y2)2

(z − b− z1)2 + (a+
√
x2 + y2)2

(A.11)

β+ =
(z + b+ z1)√

(z + b+ z1)2 + (
√
x2 + y2 + a2)

(A.12)

β− =
(z − b− z1)√

(z − b− z1)2 + (
√
x2 + y2 + a2)

(A.13)

Here, a is the internal radius of the atomic fountain tower, L and 2b (L = 2b)
represent the height of the atomic fountain tower, n is the ratio of number of
turns to altitude, I is the current flowing through the bias coil. Using all the
above equations, the modulus of the magnetic field was written using carte-
sian components. After this was done, equations of motion for a parabolic
trajectory with a kick from the laser pulses were written to compute inter-
ferometric phases as explained and implemented in this thesis.

Approach towards generalized and exact solution: In both cylindrical and
cartesian coordinate systems [79], Y - component is zero, X and Z components
of the magnetic field are derived and reduced in terms of special functions as
follows (solutions applicable to both cases : Bias coil (z1 = 0) and B-pulse
coil (z1 6= 0)). The following reduced expressions (in the terms of special
functions) can be trusted well because a simulation was performed to check
the values of magnetic fields at several coordinates for the cases of equations
derived below, and for the ones stated in the preceding section. From the
results of this particular simulation, the values of magnetic fields matched
exactly, with this result it was clear that the equations derived in this Section
and the ones stated in the previous Section are equivalent.

X - COMPONENT:

BX =
µ0nIa

2π
(BX1 +BX2) (A.14)

where,

BX1 =

[∫ π

0

cosφ√
ρ2 + a2 + (z − z1 − b1)2 − 2aρ cosφ

]
dφ (A.15)
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BX2 = −

[∫ π

0

cosφ√
ρ2 + a2 + (z − z1 + b1)2 − 2aρ cosφ

]
dφ (A.16)

Equations A.15 and A.16 are reduced in the terms of elliptic functions (elliptic-
E(E), elliptic-K(K) and elliptic-π(Eπ)) as follows:

BX1 =

(
2A+

N
√
A+ +N

)
K

[
2N

A+ +N

]
−

(
2
√
A+ +N
N

)
E

[
2N

A+ +N

]
(A.17)

and

BX2 =

(
2A−

N
√
A− +N

)
K

[
2N

A− +N

]
−

(
2
√
A− +N
N

)
E

[
2N

A− +N

]
(A.18)

with

A+ = ρ2 + a2 + (z − z1 − b1)2 (A.19)

A− = ρ2 + a2 + (z − z1 + b1)2 (A.20)

N = 2aρ (A.21)

Z - COMPONENT:

BZ = BZ1 +BZ2 (A.22)

where,

BZ1 =

∫ π

0

DZ+

(T − N cosφ)
√
A− −N cosφ

dφ (A.23)

BZ2 =

∫ π

0

−DZ−
(T − N cosφ)

√
A+ −N cosφ

dφ (A.24)

such that:

Z+ = z − z1 + b1 (A.25)
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Z− = z − z1 − b1 (A.26)

T = ρ2 + a2 (A.27)

D = a− ρ cosφ (A.28)

Equations A.23 and A.24 are split in two parts:

BZ1 = Ba
Z1 +Bρ

Z1 (A.29)

where,

Ba
Z1 =

∫ π

0

aZ+

(T − N cosφ)
√
A− −N cosφ

dφ (A.30)

Bρ
Z1 = −

∫ π

0

Z+ρ cosφ

(T − N cosφ)
√
A− −N cosφ

dφ (A.31)

Ba
Z1 is reduced as follows:

Ba
Z1 =

(
2aZ+

(T +N )(A− +N )

)
Eπ

[
2N
T +N

,
2N

A− +N

]
(A.32)

Bρ
Z1 is reduced as follows:

Bρ
Z1 =

( −2ρZ+

√
2A−
A−+N − 1

N (T +N )
√
A− −N

)[
(T +N )K

[
2N

A− +N

]
−T Eπ

[
2N
T +N

,
2N

A− +N

]]
(A.33)

Similarly, Ba
Z2 and Bρ

Z2 are reduced as follows:

BZ2 = Ba
Z2 +Bρ

Z2 (A.34)

where,

Ba
Z2 =

∫ π

0

−aZ−
(T − N cosφ)

√
A+ −N cosφ

dφ (A.35)
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Bρ
Z2 =

∫ π

0

Z−ρ cosφ

(T − N cosφ)
√
A+ −N cosφ

dφ (A.36)

which gives:

Ba
Z2 =

(
2aZ−

(T +N )(A+ +N )

)
Eπ

[
2N
T +N

,
2N

A+ +N

]
(A.37)

Bρ
Z2 =

( −2ρZ−
√

2A+

A++N − 1

N (T +N )
√
A+ −N

)[
(T +N )K

[
2N

A+ +N

]
−T Eπ

[
2N
T +N

,
2N

A+ +N

]]
(A.38)

Hence, Z - COMPONENT:

BZ =
µ0nIa

2π
(Ba

Z1 +Bρ
Z1 +Ba

Z2 +Bρ
Z2) (A.39)
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Appendix B

List of Codes

Here, we present all the relevant codes used to produce results which are
reported in this thesis. The simulations are arranged in this appendix as
follows:

• Figure B.1 - Figure B.3: Simulation for calculation of optimized and
unoptimized phases disregarding the radial motion of atomic clouds for
∆φ ≈ π/2 (one - dimensional case).

• Figure B.4 - Figure B.10: Phase noise minimization simulation (∆φ ≈
π/2) accounting the motion of atomic clouds along X, Y and Z axes.

• Figure B.11 - Figure B.15: Code to evaluate the optimization point of
gravity gradiometer and to estimate the relative sensitivity.

• Figure B.16 - Figure B.27: Simulation used to calculate φR for source
mass configuration - I.

• Figure B.28 - Figure B.35: Simulation used to calculate φR for source
mass configuration - II.
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1   # -*- coding: utf-8 -*-
2   """
3   Created on Wed Feb 26 17:30:26 2020
4   RAW AND OPTIMIZED PHASE CALCULATION FOR 1-D SCENARI O
5   @author: Manan Jain
6   """
7   
8   import numpy as np
9   import matplotlib . pyplot as plt

10   import scipy . integrate as integrate
11   import time
12   from scipy import stats
13   timestart = time . time ()
14   G=6.67408 * 10**(- 11)
15   keff = 4* np . pi /( 421.5 )* 10** 9
16   mRb = 1.443 * 10**(- 25)
17   hbar = 1.055 * 10**(- 34)
18   vr = ( keff * hbar )/ mRb #Recoil velocity of rubidium atom
19   g = 9.80491
20   T = 0.220 #Half-time of the interferometric sequence
21   v0 = ( T + 0.001 )* g #Initial velocity of atomic cloud along the fountai n axis
22   d = 0.23
23   baseline = d
24   offset = 2.00 -( baseline * 0.5 )- 0.15
25   TmeansAp = (( 0.221 +0.22322 )* 0.5 ) #Average apogee time
26   DmeansAp = (( 0.244236 +0.239487 )* 0.5 ) #Average apogee distance 
27   zm = - 0.004645344727698374 #optimization of the gradiometer position with resp ect to 

the B-pulse coil
28   z00s = ( 0. +( baseline * 0.5 )- offset )
29   z00ms = ( zm+( baseline * 0.5 )- offset )
30   z00corr = (-( baseline * 0.5 )- DmeansAp+offset )
31   z11s = ( 0. -( baseline * 0.5 )- offset )
32   z11ms = ( zm-( baseline * 0.5 )- offset )
33   
34   def zdw( z0 , vzz , t ):
35   val = 0
36   if ( t . all () < T):
37   val = z0 + vzz * t - 1/ 2* g* t ** 2 #ARM-4
38   else :
39   val = z0 + vzz * T - 1/ 2* g* T** 2 + ( vzz + vr - g* T)*( t - T) - 0.5 * g*( t - T)** 2

#ARM-3
40   return val
41   
42   def zup ( z0 , vzz , t ):
43   val = 0
44   if ( t . all () < T):
45   val = z0 + ( vzz + vr )* t - 1/ 2* g* t ** 2 #ARM-1
46   else :
47   val = z0 + ( vzz + vr )* T - 1/ 2* g* T** 2 + ( vzz - g* T)*( t - T) - 0.5 * g*( t -

T)** 2 #ARM-2
48   return val
49   
50   tvalss =np . linspace ( 0.221 , 0.22322 , 100 )
51   yvalss =[]
52   for tvals in tvalss :
53   yvalss . append ( zup ( 0, vz , tvals ))
54   yvalssArray =np . array ( yvalss )
55   
56   yvalss =[]
57   for tvals in tvalss :
58   yvalss . append ( zdw( 0, vz , tvals ))
59   yvalssArray =np . array ( yvalss )
60   
61   TmeansAp = ( 0.221 + 0.22322 )/ 2
62   DmeansAp = ( 0.244236 + 0.239487 )/ 2
63   u0 = 4* np . pi * 10**(- 7)
64   n = 1000
65   alfa = 575.33
66   R = 0.032
67   
68   def B( z , I , L):
69   return u0* n* I * 0.5 *(( z + L/ 2)/(( z + L/ 2)** 2 + R** 2)** 0.5 - ( z - L/ 2)/(( z -

Figure B.1: Simulation in PYTHON for 1D case: Calculation of unoptimized
and optimized phases.
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L/ 2)** 2 + R** 2)** 0.5 )* 10000
70   
71   def Blongfixed ( z ):
72   return ( 0.0628319 *(-((- 2 + z )/( 0.001024 + (- 2 + z )** 2)** 0.5 ) + ( 2 + z )/( 0.001024

+ ( 2 + z )** 2)** 0.5 ))
73   
74   print ( "Blong[z_](mG):" , B( 0, 0.01 , 4)* 1000 )
75   baseline = 0.23
76   offset = 2.00 - ( baseline / 2) - 0.15
77   
78   def Bshort ( z , I , L):
79   return B( z - baseline / 2 - DmeansAp + offset , I , L)
80   
81   def Bpulse ( z , I , L):
82   return ( Bshort ( z , I , L) + ( 0.0628319 *(-((- 2 + z )/( 0.001024 + (- 2 + z )** 2)** 0.5 )

+ ( 2 + z )/( 0.001024 + ( 2 + z )** 2)** 0.5 )))
83   
84   Tpulse = 0.004
85   nn = 1000
86   
87   def GetValAtDiffT ( z , vz , tvals ):
88   valList =[]
89   for tval in tvals :
90   valList . append ( Blongfixed ( zup ( z , vz , tval ))** 2+Blongfixed ( zdw( z , vz , tval ))** 2)
91   return np . array ( valList )
92   
93   def GetBPulseValAtDiffT ( z , vz , tvals , I , L):
94   valList =[]
95   for tval in tvals :
96   

valList . append (( Bpulse ( zup ( z , vz , tval ), I , L))** 2+( Bpulse ( zdw( z , vz , tval ), I , L))** 2
)

97   return np . array ( valList )
98   
99   def phi ( I , L, z , vzz ):

100   tval1 = np . linspace ( 0.0 , T, nn)
101   val1 = - 1.0 * np . pi * alfa * integrate . simps ( GetValAtDiffT ( z , vzz , tval1 ), tval1 )
102   tval2 = np . linspace ( T, TmeansAp- Tpulse * 0.5 , nn)
103   val2 = np . pi * alfa * integrate . simps ( GetValAtDiffT ( z , vzz , tval2 ), tval2 )
104   tval3 = np . linspace ( TmeansAp- Tpulse * 0.5 , TmeansAp + Tpulse * 0.5 , nn)
105   val3 = np . pi * alfa * integrate . simps ( GetBPulseValAtDiffT ( z , vzz , tval3 , I , L), tval3 )
106   tval4 = np . linspace ( TmeansAp+Tpulse * 0.5 , 2* T, nn)
107   val4 = np . pi * alfa * integrate . simps ( GetValAtDiffT ( z , vzz , tval4 ), tval4 )
108   return ( val1 +val2 +val3 +val4 )
109   
110   def gradphi ( I , L, z , vzz ):
111   return ( phi ( I , L, z+baseline / 2- offset , vzz )- phi ( I , L, z - baseline / 2- offset , vzz ))
112   
113   LS = 0.23
114   IB = 0.019
115   print ( "GRADPHI:" , gradphi ( IB , LS, 0. , v0 ))
116   
117   numOfParticles = 1000
118   particleIndexArray = np . linspace ( 0, numOfParticles , numOfParticles )
119   z00 = np . random . normal ( 0. +( baseline * 0.5 )- offset , 0.003 , numOfParticles )
120   print ( "z00:" , z00 )
121   z00m = np . random . normal ( zm+( baseline * 0.5 )- offset , 0.003 , numOfParticles )
122   print ( "z00m:" , z00m)
123   z11 = np . random . normal ( 0. -( baseline * 0.5 )- offset , 0.003 , numOfParticles )
124   print ( "z11:" , z11 )
125   z11m = np . random . normal ( zm-( baseline * 0.5 )- offset , 0.003 , numOfParticles )
126   print ( "z11m:" , z11m)
127   zsc = np . random . normal ( z11s -( z00corr +z00s ), 0.003 , numOfParticles )
128   print ( "zsc:" , zsc )
129   zscm = np . random . normal ( z11ms-( z00corr +z00ms), 0.003 , numOfParticles )
130   print ( "zscm:" , zscm)
131   z00n = np . random . normal (- 1.62 , 0.003 , numOfParticles )
132   z11n = np . random . normal (- 1.85 , 0.003 , numOfParticles )
133   vz = np . random . normal ( v0 , 0.003 , numOfParticles )
134   
135   MAGPHASEList = []
136   MAGPHASEOPTMZList= []

Figure B.2: Simulation in PYTHON for 1D case: Calculation of unoptimized
and optimized phases.
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137   
138   for particleIndex in range ( numOfParticles ):
139   print ( "@@@@@@@@@@@@@@@@@@@@@@@@@ Particle Num : "+str ( particleIndex )+ " 

@@@@@@@@@@@@@@@@@@@@@@@@@")
140   vzz = vz [ particleIndex ]
141   MAGPHASE=

phi ( IB , LS, zsc [ particleIndex ], vz [ particleIndex ])- phi ( IB , LS, z11 [ particleIndex ], vz [ pa
rticleIndex ])

142   print ( "MAGPHASE for Particle : " +str ( particleIndex )+ " :: " +str ( MAGPHASE))
143   MAGPHASEList. append ( MAGPHASE)
144   MAGPHASEOPTMZ=

phi ( IB , LS, zscm[ particleIndex ], vz [ particleIndex ])- phi ( IB , LS, z11m[ particleIndex ], vz [
particleIndex ])

145   print ( "Optimized MAGPHASE for Particle : " +str ( particleIndex )+ " :: 
" +str ( MAGPHASEOPTMZ))

146   MAGPHASEOPTMZList. append ( MAGPHASEOPTMZ)
147   
148   MAGPHASEArray = np . array ( MAGPHASEList)
149   MEANMAGPHASE= np . mean( MAGPHASEArray)
150   print ( "++++++++++++++++++++++++++++++++++++++" )
151   print ( "mean : " +str ( MEANMAGPHASE))
152   print ( "++++++++++++++++++++++++++++++++++++++" )
153   MAGPHASEOPTMZArray= np . array ( MAGPHASEOPTMZList)
154   MEANMAGPHASEOPTMZ= np . mean( MAGPHASEOPTMZArray)
155   print ( "++++++++++++++++++++++++++++++++++++++" )
156   print ( "optimized mean : " +str ( MEANMAGPHASEOPTMZ))
157   print ( "++++++++++++++++++++++++++++++++++++++" )
158   
159   np . savetxt ( "PIBY2-1D-RAWVALUES.txt" , MAGPHASEArray)
160   np . savetxt ( "PIBY2-1D-OPTIMIZEDVALUES.txt" , MAGPHASEOPTMZArray)
161   
162   serMAG = MAGPHASEArray
163   serMAGOPTMZ= MAGPHASEOPTMZArray
164   numarray = np . arange ( numOfParticles )
165   plt . plot ( numarray , serMAG, 'r^' , numarray , serMAGOPTMZ, 'bs' )
166   plt . ylabel ( '\u03C6 (radians)' )
167   plt . show()
168   
169   plt . hist ( MAGPHASEArray, bins =50)
170   plt . hist ( MAGPHASEOPTMZArray, bins =50)
171   plt . show()
172   plt . show()
173   
174   plt . hist ( serMAG, normed = True )
175   plt . hist ( serMAGOPTMZ, normed = True )
176   
177   xt = plt . xticks ()[ 0]
178   xmin , xmax = min ( xt ), max( xt )
179   MAGN= np . linspace ( xmin , xmax, len ( serMAG))
180   
181   xxt = plt . xticks ()[ 0]
182   xxmin , xxmax = min ( xxt ), max( xxt )
183   MAGNOPTMZ= np . linspace ( xxmin , xxmax , len ( serMAGOPTMZ))
184   
185   m, s = stats . norm . fit ( serMAG)
186   print ( "m:" , m)
187   print ( "s:" , s /( np . sqrt ( numOfParticles )))
188   pdf_gA = stats . norm . pdf ( MAGN, m, s )
189   plt . plot ( MAGN, pdf_gA , label = "NormA" )
190   plt . show()
191   
192   mo, so = stats . norm . fit ( serMAGOPTMZ)
193   print ( "mo:" , mo)
194   print ( "so:" , so /( numOfParticles ))
195   pdf_gB = stats . norm . pdf ( MAGNOPTMZ, mo, so )
196   plt . plot ( MAGNOPTMZ, pdf_gB , label = "NormB" )
197   plt . show()
198   
199   timeend = time . time ()
200   diff = timeend - timestart
201   print ( "Execution time (s) : " , diff )

Figure B.3: Simulation in PYTHON for 1D case: Calculation of unoptimized
and optimized phases.
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# -*- coding: utf-8 -*-
"""
Created on Tue Jun  9 10:41:02 2020
@author: JAIN MANAN
sigma-r-radial XY-plane FILE
"""

import numpy as np
from mpmath import ellipk
from mpmath import ellippi
from mpmath import ellipe
from scipy.special import legendre
import matplotlib.pyplot as plt
from scipy import integrate
from scipy.integrate import quad
import time
import scipy.special as sc
from scipy import stats
import sys

timestart = time.time()

u0 = (4.*np.pi)/10**7
g = 9.80491
Nspireshort = 230
Nspire = 4000
R = 0.032
baseline = 0.23
DmeansAp = (0.244236 + 0.239487)/2
offset = 2.00 - (baseline/2) - 0.15 
alfa = 575.15 
TmeansAp = (0.221 + 0.22322)/2
Tpulse = 0.004
T = 0.220
keff = 10**9*((4.*np.pi)/(421.5))
hbar = 1.055/10**34
mRb = 1.443/10**25
zm = -0.00464534210
vr = (keff*hbar)/mRb
v0 = 2.16688511
nn = 1100
z00s = (0.+(baseline*0.5)-offset)
z00ms = (zm+(baseline*0.5)-offset)
z00corr = (-(baseline*0.5)-DmeansAp+offset)
z11s = (0.-(baseline*0.5)-offset)
z11ms = (zm-(baseline*0.5)-offset)
vz = np.random.normal(v0, 0.003, 1000)

def zdw(z0,vzz,t):
    val = 0
    if(t.all() < T):
        val = z0 + vzz*t - 1/2*g*t**2
    else:
        val = z0 + vzz*T - 1/2*g*T**2 + (vzz + vr - g*T)*(t - T) - 0.5*g*(t - T)**2

    return val

def zup(z0,vzz,t):
    val = 0

Figure B.4: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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    if(t.all() < T):
        val = z0 + (vzz+vr)*t - 1/2*g*t**2
    else:
        val = z0 + (vzz+vr)*T - 1/2*g*T**2 + (vzz - g*T)*(t - T) - 0.5*g*(t - T)**2

    return val

tvalss = np.linspace(0.221,0.22322,100)
yvalss = []
for tvals in tvalss:
    yvalss.append(zup(0,vz,tvals))
yvalssArray = np.array(yvalss)

yvalss = []
for tvals in tvalss:
    yvalss.append(zdw(0,vz,tvals))
yvalssArray = np.array(yvalss)

def etaplus(z,L):
    return z + L/2

def etaminus(z,L):
    return z - L/2

def h(r):
    numerator = 4.*R*r
    denominator = (r + R)*(r + R)
    return (numerator/denominator)**(1/2)

def kplus(z,r,L):
    numerator = 4.*r*R
    denominator = ((r + R)**2 + (etaplus(z,L))**2)
    return (numerator/denominator)**(1/2)

def kminus(z,r,L):
    numerator = 4.*r*R
    denominator = ((r + R)**2 + (etaminus(z,L))**2)
    return (numerator/denominator)**(1/2)

def Kplus(z,r,L):
    #print("===== Raman : "+str(kplus(z,r,L))+" =======")
    return ellipk(kplus(z,r,L)**2)

def Kminus(z,r,L):
    return ellipk(kminus(z,r,L)**2)

def Eplus(z,r,L):
    return ellipe(kplus(z,r,L)**2)

def Eminus(z,r,L):
    return ellipe(kminus(z,r,L)**2)

def Pplus(z,r,L):
    return ellippi(h(r)**2,kplus(z,r,L)**2)

def Pminus(z,r,L):
    return ellippi(h(r)**2,kminus(z,r,L)**2)

def BR(z,r,J,L):

Figure B.5: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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    c0 = (0.002*J/L*np.sqrt(R/r))
    retVal = c0*((kplus(z,r,L)**2-2)/kplus(z,r,L)*Kplus(z,r,L)
+2/kplus(z,r,L)*Eplus(z,r,L)-(kminus(z,r,L)**2-2)/kminus(z,r,L)*Kminus(z,r,L)-
2/kminus(z,r,L)*Eminus(z,r,L))
    return retVal

print("BR:",BR(0.5,4,0.0000001,0.23))

def BZ(z,r,J,L):
    coeff = (0.001*J/L/np.sqrt(r*R))
    term1 = etaplus(z,L)*kplus(z,r,L)*(Kplus(z,r,L)+(R-r)/(R+r)*Pplus(z,r,L))
    term2 = etaminus(z,L)*kminus(z,r,L)*(Kminus(z,r,L)+(R-r)/(R+r)*Pminus(z,r,L))
    Val = coeff*(term1-term2)
    return Val

print("BZ:",BZ(0.5,4,0.0000001,0.23))

def BRlong(z,r):
    #print("====== Inside BRLong function =====")
    #print("=== Printing varuiso shapes =====")
    #print("Z shape :"+str(z.shape))
    #print("r shape :"+str(r.shape))
    return (Nspire*BR(z,r,0.01,4))

def BZlong(z,r):
    return (Nspire*BZ(z,r,0.01,4))

def BRshort(z,r):
    return (Nspireshort*(BR(z-baseline/2-DmeansAp+offset,r,0.019,0.23)))

def BZshort(z,r):
    return (Nspireshort*(BZ(z-baseline/2-DmeansAp+offset,r,0.019,0.23)))

def BRpulse(z,r):
    return (BRshort(z,r)+BRlong(z,r))

def BZpulse(z,r):
    return (BZshort(z,r)+BZlong(z,r))

def BabsPulse(z,r):
    return (BRpulse(z,r)**2+BZpulse(z,r)**2)**(1/2)

def Babslong(z,r):
    brlongVal= BRlong(z,r)
    #print("========= Returned from BRLONg can calc value  : "+str(brlongVal)+" 
=======")
    #return (BRlong(z,r)**2+BZlong(z,r)**2)**(1/2)
    return (brlongVal**2+BZlong(z,r)**2)**(1/2)

def ra(r,v,t):
    return r+v*t

def GetValAtDiffT(z,vz,r,v,tvals,val=1):
    valList=[]
    if(val==1):
        for tval in tvals:
            
valList.append(Babslong(zup(z,vz,tval),ra(r,v,tval))**2+Babslong(zdw(z,vz,tval),ra(
r,v,tval))**2)

Figure B.6: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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    if(val==2):
        for tval in tvals:
            valList.append(BabsPulse(zup(z,vz,tval),ra(r,v,tval))**2 + 
BabsPulse(zdw(z,vz,tval),ra(r,v,tval))**2)
    return np.array(valList)
            
def newPhi(z,vzz,r,v):
    tval1 = np.linspace(0.0,T,nn)
    tval2 = np.linspace(T,TmeansAp-(Tpulse/2),nn)
    tval3 = np.linspace(TmeansAp-(Tpulse/2),TmeansAp+(Tpulse/2),nn)
    tval4 = np.linspace(TmeansAp+(Tpulse/2),2.*T,nn)   
    val1 = -np.pi*alfa*integrate.simps(GetValAtDiffT(z,vzz,r,v,tval1,1),tval1)
    val2 = np.pi*alfa*integrate.simps(GetValAtDiffT(z,vzz,r,v,tval2,1),tval2)
    val3 = np.pi*alfa*integrate.simps(GetValAtDiffT(z,vzz,r,v,tval3,2),tval3)
    val4 = np.pi*alfa*integrate.simps(GetValAtDiffT(z,vzz,r,v,tval4,1),tval4)
    return (val1+val2+val3+val4)

#def GradPhiMag(z,r,v):
 #   return newPhi(z+baseline/2-offset,r,v)-newPhi(z-baseline/2-offset,r,v)

#print("====== Checking dummy Results ====")    
#finalVal=GradPhiMag(-0.00464534210,0.000000001,0.0)
#print(finalVal)
#print("======= Starting Particle Loop ======")

startpoint=int(sys.argv[1]) #start event number
numOfParticleForOneJob=int(sys.argv[2]) #number of particles per job
#Creating file name to store the result
filename="Output"+str(startpoint)+"-"+str(startpoint+numOfParticleForOneJob)

numOfParticles=numOfParticleForOneJob
particleIndexArray=np.linspace(0,numOfParticles,numOfParticles)
vz = np.random.normal(v0, 0.003, numOfParticles)
z00 = np.random.normal(0.+(baseline*0.5)-offset, 0.003, numOfParticles)
z11 = np.random.normal(0.-(baseline*0.5)-offset, 0.003, numOfParticles)
print("z11:",z11)
z00m = np.random.normal(zm+(baseline*0.5)-offset, 0.003, numOfParticles)
z11m = np.random.normal(zm-(baseline*0.5)-offset, 0.003, numOfParticles)
print("z11m:",z11m)
zsc = np.random.normal(z11s-(z00corr+z00s), 0.003, numOfParticles)
print("zsc:",zsc)
zscm = np.random.normal(zm+z11s-(z00corr+z00s), 0.003, numOfParticles)
print("zscm:",zscm)
vArr=np.absolute(np.random.normal(0.,0.020,numOfParticles))
rArr=np.absolute(np.random.normal(0.,0.0026, numOfParticles))
rArrp=np.absolute(np.random.normal(0.,0.0028,numOfParticles))
rArrpp=np.absolute(np.random.normal(0.,0.0030,numOfParticles))
rArrppp=np.absolute(np.random.normal(0.,0.0032,numOfParticles))
rArrpppp=np.absolute(np.random.normal(0.,0.0034,numOfParticles))

MAGPHASELIST=[]
MAGPHASEOPTMZLIST=[]
MAGPHASELISTrp=[]
MAGPHASEOPTMZLISTrp=[]
MAGPHASELISTrpp=[]
MAGPHASEOPTMZLISTrpp=[]
MAGPHASELISTrppp=[]
MAGPHASEOPTMZLISTrppp=[]
MAGPHASELISTrpppp=[]

Figure B.7: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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MAGPHASEOPTMZLISTrpppp=[]

for particleIndex in range(numOfParticles):
    print("@@@@@@@@@@@@@@@@@@@@@@ Particle Num : "+str(startpoint+particleIndex)+" 
@@@@@@@@@@@@@@@@@@@@@@")

vzz = vz[particleIndex]

    MAGPHASE = 
newPhi(zsc[particleIndex],vz[particleIndex],rArr[particleIndex],vArr[particleIndex]
)-
newPhi(z11[particleIndex],vz[particleIndex],rArr[particleIndex],vArr[particleIndex]
)
    print("MAGPHASE for Particle : "+str(particleIndex)+" :: "+str(MAGPHASE))
    MAGPHASELIST.append(MAGPHASE)
    MAGPHASEOPTMZ = 
newPhi(zscm[particleIndex],vz[particleIndex],rArr[particleIndex],vArr[particleIndex
])-
newPhi(z11m[particleIndex],vz[particleIndex],rArr[particleIndex],vArr[particleIndex
])
    print("MAGPHASEOPTMZ for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASEOPTMZ))
    MAGPHASEOPTMZLIST.append(MAGPHASEOPTMZ)
    
    MAGPHASErp = 
newPhi(zsc[particleIndex],vz[particleIndex],rArrp[particleIndex],vArr[particleIndex
])-
newPhi(z11[particleIndex],vz[particleIndex],rArrp[particleIndex],vArr[particleIndex
])
    print("MAGPHASErp for Particle : "+str(particleIndex)+" :: "+str(MAGPHASErp))
    MAGPHASELISTrp.append(MAGPHASErp)
    MAGPHASEOPTMZrp = 
newPhi(zscm[particleIndex],vz[particleIndex],rArrp[particleIndex],vArr[particleInde
x])-
newPhi(z11m[particleIndex],vz[particleIndex],rArrp[particleIndex],vArr[particleInde
x])
    print("MAGPHASEOPTMZrp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASEOPTMZrp))
    MAGPHASEOPTMZLISTrp.append(MAGPHASEOPTMZrp)
    
    MAGPHASErpp = 
newPhi(zsc[particleIndex],vz[particleIndex],rArrpp[particleIndex],vArr[particleInde
x])-
newPhi(z11[particleIndex],vz[particleIndex],rArrpp[particleIndex],vArr[particleInde
x])
    print("MAGPHASErpp for Particle : "+str(particleIndex)+" :: "+str(MAGPHASErpp))
    MAGPHASELISTrpp.append(MAGPHASErpp)
    MAGPHASEOPTMZrpp = 
newPhi(zscm[particleIndex],vz[particleIndex],rArrpp[particleIndex],vArr[particleInd
ex])-
newPhi(z11m[particleIndex],vz[particleIndex],rArrpp[particleIndex],vArr[particleInd
ex])
    print("MAGPHASEOPTMZrpp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASEOPTMZrpp))
    MAGPHASEOPTMZLISTrpp.append(MAGPHASEOPTMZrpp)
    
    MAGPHASErppp = 
newPhi(zsc[particleIndex],vz[particleIndex],rArrppp[particleIndex],vArr[particleInd
ex])-
newPhi(z11[particleIndex],vz[particleIndex],rArrppp[particleIndex],vArr[particleInd

Figure B.8: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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ex])
    print("MAGPHASErppp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASErppp))
    MAGPHASELISTrppp.append(MAGPHASErppp)
    MAGPHASEOPTMZrppp = 
newPhi(zscm[particleIndex],vz[particleIndex],rArrppp[particleIndex],vArr[particleIn
dex])-
newPhi(z11m[particleIndex],vz[particleIndex],rArrppp[particleIndex],vArr[particleIn
dex])
    print("MAGPHASEOPTMZrppp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASEOPTMZrppp))
    MAGPHASEOPTMZLISTrppp.append(MAGPHASEOPTMZrppp)
    
    MAGPHASErpppp = 
newPhi(zsc[particleIndex],vz[particleIndex],rArrpppp[particleIndex],vArr[particleIn
dex])-
newPhi(z11[particleIndex],vz[particleIndex],rArrpppp[particleIndex],vArr[particleIn
dex])
    print("MAGPHASErpppp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASErpppp))
    MAGPHASELISTrpppp.append(MAGPHASErpppp)
    MAGPHASEOPTMZrpppp = 
newPhi(zscm[particleIndex],vz[particleIndex],rArrpppp[particleIndex],vArr[particleI
ndex])-
newPhi(z11m[particleIndex],vz[particleIndex],rArrpppp[particleIndex],vArr[particleI
ndex])
    print("MAGPHASEOPTMZrpppp for Particle : "+str(particleIndex)+" :: 
"+str(MAGPHASEOPTMZrpppp))
    MAGPHASEOPTMZLISTrpppp.append(MAGPHASEOPTMZrpppp)

MAGPHASEArray = np.array(MAGPHASELIST)
MEANMAGPHASE = np.mean(MAGPHASEArray)
print("++++++++++++++++++++++++++++++++++++++")
print("mean : "+str(MEANMAGPHASE))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASEOPTMZArray = np.array(MAGPHASEOPTMZLIST)
MEANMAGPHASEOPTMZ = np.mean(MAGPHASEOPTMZArray)
print("++++++++++++++++++++++++++++++++++++++")
print("optimized mean : "+str(MEANMAGPHASEOPTMZ))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASErpArray = np.array(MAGPHASELISTrp)
MEANMAGPHASErp = np.mean(MAGPHASErpArray)
print("++++++++++++++++++++++++++++++++++++++")
print("meanrp : "+str(MEANMAGPHASErp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASEOPTMZrpArray = np.array(MAGPHASEOPTMZLISTrp)
MEANMAGPHASEOPTMZrp = np.mean(MAGPHASEOPTMZrpArray)
print("++++++++++++++++++++++++++++++++++++++")
print("optimized meanrp : "+str(MEANMAGPHASEOPTMZrp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASErppArray = np.array(MAGPHASELISTrpp)
MEANMAGPHASErpp = np.mean(MAGPHASErppArray)
print("++++++++++++++++++++++++++++++++++++++")
print("meanrpp : "+str(MEANMAGPHASErpp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASEOPTMZrppArray = np.array(MAGPHASEOPTMZLISTrpp)
MEANMAGPHASEOPTMZrpp = np.mean(MAGPHASEOPTMZrppArray)
print("++++++++++++++++++++++++++++++++++++++")

Figure B.9: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).
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print("optimized meanrpp : "+str(MEANMAGPHASEOPTMZrpp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASErpppArray = np.array(MAGPHASELISTrppp)
MEANMAGPHASErppp = np.mean(MAGPHASErpppArray)
print("++++++++++++++++++++++++++++++++++++++")
print("meanrppp : "+str(MEANMAGPHASErppp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASEOPTMZrpppArray = np.array(MAGPHASEOPTMZLISTrppp)
MEANMAGPHASEOPTMZrppp = np.mean(MAGPHASEOPTMZrpppArray)
print("++++++++++++++++++++++++++++++++++++++")
print("optimized meanrppp : "+str(MEANMAGPHASEOPTMZrppp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASErppppArray = np.array(MAGPHASELISTrpppp)
MEANMAGPHASErpppp = np.mean(MAGPHASErppppArray)
print("++++++++++++++++++++++++++++++++++++++")
print("meanrpppp : "+str(MEANMAGPHASErpppp))
print("++++++++++++++++++++++++++++++++++++++")
MAGPHASEOPTMZrppppArray = np.array(MAGPHASEOPTMZLISTrpppp)
MEANMAGPHASEOPTMZrpppp = np.mean(MAGPHASEOPTMZrppppArray)
print("++++++++++++++++++++++++++++++++++++++")
print("optimized meanrpppp : "+str(MEANMAGPHASEOPTMZrpppp))
print("++++++++++++++++++++++++++++++++++++++")

np.savetxt(filename+"MAGPHASE.txt",MAGPHASEArray)
np.savetxt(filename+"MAGPHASEOPTMZ.txt",MAGPHASEOPTMZArray)
np.savetxt(filename+"MAGPHASErp.txt",MAGPHASErpArray)
np.savetxt(filename+"MAGPHASEOPTMZrp.txt",MAGPHASEOPTMZrpArray)
np.savetxt(filename+"MAGPHASErpp.txt",MAGPHASErppArray)
np.savetxt(filename+"MAGPHASEOPTMZrpp.txt",MAGPHASEOPTMZrppArray)
np.savetxt(filename+"MAGPHASErppp.txt",MAGPHASErpppArray)
np.savetxt(filename+"MAGPHASEOPTMZrppp.txt",MAGPHASEOPTMZrpppArray)
np.savetxt(filename+"MAGPHASErpppp.txt",MAGPHASErppppArray)
np.savetxt(filename+"MAGPHASEOPTMZrpppp.txt",MAGPHASEOPTMZrppppArray)

timeend = time.time()
diff = timeend - timestart
print("Execution time (s)",diff)

Figure B.10: Simulation in PYTHON for 3D case: Phase calculation as per
∆φ ≈ π/2 (both bias and B-pulse coils included).

171



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

In[331]:= Clear@"Global`*"D;

In[332]:= keff = 4 * Pi � H421.5L * 10^9
Out[332]= 2.98135 ´ 107

In[333]:= mRb = 1.443 * 10^H-25L

Out[333]= 1.443 ´ 10-25

In[334]:= hbar = 1.055 * 10^H-34L

Out[334]= 1.055 ´ 10-34

In[335]:= vr = keff * hbar � mRb
Out[335]= 0.0217971

In[336]:= g = 9.80491

Out[336]= 9.80491

In[337]:= T = 0.220

Out[337]= 0.22

In[338]:= v0 = HT + 0.001L * g
Out[338]= 2.16689

In[339]:= zdw@z0_, t_D = If@t < T, z0 + v0 * t - 1 � 2 * g * t^2,
z0 + v0 * T - 1 � 2 * g * T^2 + Hv0 + vr - g * TL * Ht - TL - 0.5 * g * Ht - TL^2D

Out[339]= IfBt < 0.22, z0 + v0 t -
g t2

2
, z0 + v0 T -

g T2

2
+ Hv0 + vr - g TL Ht - TL - 0.5 g Ht - TL2F

In[340]:= zup@z0_, t_D = If@t < T, z0 + Hv0 + vrL * t - 1 � 2 * g * t^2,
z0 + Hv0 + vrL * T - 1 � 2 * g * T^2 + Hv0 - g * TL * Ht - TL - 0.5 * g * Ht - TL^2D

Out[340]= IfBt < 0.22, z0 + Hv0 + vrL t -
g t2

2
,

z0 + Hv0 + vrL T -
g T2

2
+ Hv0 - g TL Ht - TL - 0.5 g Ht - TL2F

In[341]:= Plot @8zup@0, tD<, 8t, 0.221, 0.22322<D

Out[341]=

0.2215 0.2220 0.2225 0.2230

0.244215

0.244220

0.244225

0.244230

0.244235

Figure B.11: Code in MATHEMATICA: Determination of optimization point
of gravity gradiometer zm and relative senstivity estimation.
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In[342]:= Plot @8zdw@0, tD<, 8t, 0.221, 0.22322<D

Out[342]=

0.2215 0.2220 0.2225 0.2230

0.239465

0.239470

0.239475

0.239480

0.239485

In[343]:= TmeansAp = H0.221 + 0.22322L � 2 H*average apogee time*L
Out[343]= 0.22211

In[344]:= DmeansAp = H0.244236 + 0.239487L � 2 H*average apogee distance*L
Out[344]= 0.241862

In[345]:= u0 = 4 * Pi * 10^H-7L

Out[345]=
Π

2 500 000

In[346]:= n = 1000

Out[346]= 1000

In[347]:= alfa = 575.33

Out[347]= 575.33

In[348]:= R = 0.032

Out[348]= 0.032

In[349]:= B@x_, i_, L_D = u0 * n * i � 2 *
HHx + L � 2L � HHx + L � 2L^2 + R^2L^0.5 - Hx - L � 2L � HHx - L � 2L^2 + R^2L^0.5L *
10 000 H*finite solenoid,B axial*L

Out[349]= 2 i Π -
-

L

2
+ x

J0.001024 + I- L

2
+ xM2N

0.5
+

L

2
+ x

J0.001024 + I L

2
+ xM2N

0.5

In[350]:= Blong@z_D = B@z, 0.01, 4D
H*Long coil H4 mL. z=0 => center of the long coil. Offset current: 10 mA*L

Out[350]= 0.0628319 -

-2 + z

I0.001024 + H-2 + zL2M0.5
+

2 + z

I0.001024 + H2 + zL2M0.5

In[351]:= Blong@0D
Out[351]= 0.125648

2     Bias+Bpulse_coils.nb

Figure B.12: Code in MATHEMATICA: Determination of optimization point
of gravity gradiometer zm and relative senstivity estimation.
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In[352]:= baseline = 0.23

Out[352]= 0.23

In[353]:= offset = 2 - baseline � 2 - 0.15
H*Position of the gradiometer. Starting point of the lower

interferometer Hfirst pi�2L 15 cm above the lower end of the long tube*L
Out[353]= 1.735

In[354]:=

In[355]:=

In[356]:= Bshort@z_, i_, l_D = B@z - baseline � 2 - DmeansAp + offset, i, lD H*Short coil. Its

center is placed at the apogee point of the upper interferometer*L

Out[356]= 2 i Π -
1.37814 - l

2
+ z

J0.001024 + I1.37814 - l

2
+ zM2N

0.5
+

1.37814 + l

2
+ z

J0.001024 + I1.37814 + l

2
+ zM2N

0.5

In[357]:= Bpulse@z_, i_, l_D = Bshort@z, i, lD + Blong@zD

Out[357]= 0.0628319 -

-2 + z

I0.001024 + H-2 + zL2M0.5
+

2 + z

I0.001024 + H2 + zL2M0.5
+

2 i Π -
1.37814 - l

2
+ z

J0.001024 + I1.37814 - l

2
+ zM2N

0.5
+

1.37814 + l

2
+ z

J0.001024 + I1.37814 + l

2
+ zM2N

0.5

In[358]:= Tpulse = 0.004 H*B pulse duration*L
Out[358]= 0.004

In[359]:= TmeansAp - Tpulse � 2
Out[359]= 0.22011

In[360]:= TmeansAp + Tpulse � 2
Out[360]= 0.22411

In[361]:= phi@z_, i_, l_D =
HNIntegrate@-Pi * alfa * HHBlong@zup@z, tDDL^2 + HBlong@zdw@z, tDDL^2L,
8t, 0, T<, Method ® 8Automatic, "SymbolicProcessing" ® 0<DL +

HNIntegrate@Pi * alfa * HHBlong@zup@z, tDDL^2 + HBlong@zdw@z, tDDL^2L,
8t, T, TmeansAp - Tpulse � 2<,
Method ® 8Automatic, "SymbolicProcessing" ® 0<DL + HNIntegrate@
Pi * alfa * HHBpulse@zup@z, tD, i, lDL^2 + HBpulse@zdw@z, tD, i, lDL^2L,
8t, TmeansAp - Tpulse � 2, TmeansAp + Tpulse � 2<,
Method ® 8Automatic, "SymbolicProcessing" ® 0<DL +

HNIntegrate@Pi * alfa * HHBlong@zup@z, tDDL^2 + HBlong@zdw@z, tDDL^2L,
8t, TmeansAp + Tpulse � 2, 2 * T<,
Method ® 8Automatic, "SymbolicProcessing" ® 0<DL;

H*phase of a single interferometer*L

Bias+Bpulse_coils.nb    3

Figure B.13: Code in MATHEMATICA: Determination of optimization point
of gravity gradiometer zm and relative senstivity estimation.
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In[362]:= GradphiMag@z_, i_, l_D =
phi@z + baseline � 2 - offset, i, lD - phi@z - baseline � 2 - offset, i, lD;

H*phase of the gradiometer*L

In[363]:= IB = 0.019 H*current short coil*L
Out[363]= 0.019

In[364]:= GradphiMag@0, IB, 0.230D
Out[364]= 1.5824

In[365]:= lshort = 0.23 H*lenght of the short coil*L
Out[365]= 0.23

In[366]:= zm = z �. Last@FindMaximum@GradphiMag@z, IB, lshortD, 8z, -0.02<DD
H*optimization of the gradiometer position with respect to the short coil*L

Out[366]= -0.00464534

In[367]:=

In[368]:= GradphiMag@zm, IB, lshortD
Out[368]= 1.58287

In[369]:= dist = 0.230 - zm - lshort � 2 H*distance of the average apogee of the

lower interfometer from the lower edge of the B-pulse coil*L
Out[369]= 0.119645

In[370]:= Plot @1 - GradphiMag@z, IB, lshortD � GradphiMag@zm, IB, lshortD,
8z, -0.001 + zm, 0.001 + zm<D H*Relative sensitivity of

the gradiometer phase to the gradiometer position*L

Out[370]=

-0.0050 -0.0045 -0.0040

2.´ 10
-6

4.´ 10
-6

6.´ 10
-6

8.´ 10
-6

0.00001

0.000012

4     Bias+Bpulse_coils.nb

Figure B.14: Code in MATHEMATICA: Determination of optimization point
of gravity gradiometer zm and relative senstivity estimation.
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In[371]:= Plot @1 - Hphi@zm + z � 2 + baseline � 2 - offset, IB, lshortD -
phi@zm - z � 2 - baseline � 2 - offset, IB, lshortDL � GradphiMag@zm, IB, lshortD,

8z, -0.001, 0.001<D H*Relative sensitivity of the gradiometer

phase to the baseline value*L

Out[371]=

-0.0010 -0.0005 0.0005 0.0010

-0.0001

-0.00005

0.00005

0.0001

Bias+Bpulse_coils.nb    5

Figure B.15: Code in MATHEMATICA: Determination of optimization point
of gravity gradiometer zm and relative senstivity estimation.

176 APPENDIX B. LIST OF CODES



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 25 13:10:11 2020
@author: Manan Jain
KONSOLE 5/A
"""
import numpy as np
from scipy.special import legendre
import matplotlib.pyplot as plt
from scipy import integrate
import time
import scipy.special as sc
from scipy import stats  
timestart = time.time()
#defining required constants--------------
G=6.67408*10**(-11)
rho = 18300
keff = 4*np.pi/(421.5)*10**9
mRb = 1.443*10**(-25)
hbar = 1.055*10**(-34)
vr = keff*hbar/mRb
g = 9.80491
T = 0.220
v0 = (T + 0.001)*g
z1 = -0.15
z0 = -0.1535
d = 0.23
dinv = 1/d
vxx = 0
vyy = 0
SINGLEATOMGRAD = 6.354549077676691+0.005
SINGLEATOMGRADPLTF = 6.360881600213782+0.005
SINGLEATOMGRADONEPERCENTUNC = 6.354549077676691+0.01
SINGLEATOMGRADPLTFONEPERCENTUNC = 6.360881600213782+0.01
SINGLEATOMGRADPOINTONEPERCENTUNC = 6.354549077676691+0.001
SINGLEATOMGRADPLTFPOINTONEPERCENTUNC = 6.360881600213782+0.001
rhoAl = 2700
zplatform = -0.1617

def Q(l,x):
    val = 0
    if(l==0):
        val = 1
    elif(l==1):
        val =  (1/3)*x - (1/4)
    elif(l==2):
        val = 0.2*x*x - 0.5*x + 0.125
    elif(l==3):
        val = (1/7)*x**3 - (0.75)*x**2 + (5/8)*x - (5/64)
    elif(l==4):
        val = (1/9)*x**4 - x**3 + (7/4)*x*x - (35/48)*x + (7/128)
    return val
    
def V(r, z, R, H):
    firstVal=-G*rho*np.pi*R*H        
    secondVal = 0
    for l in range(0,4):
        Pn = legendre(2*l)
        secondVal +=  (R/(r**2 + z**2)**0.5)**(2*l + 1)*Q(l,(H/(2*R))**2)* Pn(z/(r**2 + z**2)**0.5)    
    retVal = firstVal*secondVal
    return retVal
 
def V22(x, y, z, R, H):
    val=0
    for n in range(0,6):
        val += V(((x + 2*R*np.sin(n*np.pi/3 + np.pi/6))**2 + (y - 2*R*np.cos(n*np.pi/3 + np.pi/6))**2)**0.5, z, R, H) + V(((x + 

Figure B.16: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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2*3**0.5*R*np.sin(n*np.pi/3))**2 + (y - 2*3**0.5*R*np.cos(n*np.pi/3))**2)**0.5, z, R, H)
    return val
    
def Vtot(x, y, z, R, H):
    val = 0
    for n in range(-7,9):
         val += V22(x, y, (z - H/2 + n*H), R, H)
    return val

def xxu(x0, t):
    val = x0+vxxup*t
    return val

def yyu(y0, t):
    val = y0+vyyup*t
    return val

def xxd(x0, t):
    val = x0+vxxdw*t
    return val

def yyd(y0, t):
    val = y0+vyydw*t
    return val
    
def xxuppltf(x0, t):
    val = x0+vxx0uppltf*t
    return val

def yyuppltf(y0, t):
    val = y0+vyy0uppltf*t
    return val

def xxdwpltf(x0, t):
    val = x0+vxx0dwpltf*t
    return val

def yydwpltf(y0, t):
    val = y0+vyy0dwpltf*t
    return val

def zdwcloudup(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + v0up*t - 1/2*g*t**2
    else:
        val = z0 + v0up*T - 1/2*g*T**2 + (v0up + vr - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zupcloudup(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + (v0up + vr)*t - 1/2*g*t**2
    else:
        val = z0 + (v0up + vr)*T - 1/2*g*T**2 + (v0up - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zdwclouddw(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + v0dw*t - 1/2*g*t**2
    else:
        val = z0 + v0dw*T - 1/2*g*T**2 + (v0dw + vr - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

Figure B.17: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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def zupclouddw(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + (v0dw + vr)*t - 1/2*g*t**2
    else:
        val = z0 + (v0dw + vr)*T - 1/2*g*T**2 + (v0dw - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zdwcloudupPLTFUP(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + v0upPLTFUP*t - 1/2*g*t**2
    else:
        val = z0 + v0upPLTFUP*T - 1/2*g*T**2 + (v0upPLTFUP + vr - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zupcloudupPLTFUP(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + (v0upPLTFUP + vr)*t - 1/2*g*t**2
    else:
        val = z0 + (v0upPLTFUP + vr)*T - 1/2*g*T**2 + (v0upPLTFUP - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zdwclouddwPLTFDW(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + v0dwPLTFDW*t - 1/2*g*t**2
    else:
        val = z0 + v0dwPLTFDW*T - 1/2*g*T**2 + (v0dwPLTFDW + vr - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def zupclouddwPLTFDW(z0, t):
    val = 0
    if(t.all() < T):
        val = z0 + (v0dwPLTFDW + vr)*t - 1/2*g*t**2
    else:
        val = z0 + (v0dwPLTFDW + vr)*T - 1/2*g*T**2 + (v0dwPLTFDW - g*T)*(t - T) - 0.5*g*(t - T)**2        
    return val

def BASELINE(zu, zd, vzu, vzd, tall):
    return ((zu - zd) + (vzu - vzd)*tall)

def phicloudup(x, y, z, R, H):
    tval1 = np.linspace(0.0,T,1000)
    tval2 = np.linspace(T,2*T,1000)
    val1 = integrate.simps(Vtot(xxu(x,tval1), yyu(y,tval1), zupcloudup(z, tval1), R, H)-Vtot(xxu(x,tval1), yyu(y,tval1), zdwcloudup(z, 
tval1), R, H),tval1)/hbar*mRb
    val2 = integrate.simps(Vtot(xxu(x,tval2), yyu(y,tval2), zupcloudup(z, tval2), R, H)-Vtot(xxu(x,tval2), yyu(y,tval2), zdwcloudup(z, 
tval2), R, H),tval2)/hbar*mRb
    return val1+val2

def phiclouddw(x, y, z, R, H):
    tval1 = np.linspace(0.0,T,1000)
    tval2 = np.linspace(T,2*T,1000)
    val1 = integrate.simps(Vtot(xxd(x,tval1), yyd(y,tval1), zupclouddw(z, tval1), R, H)-Vtot(xxd(x,tval1), yyd(y,tval1), 
zdwclouddw(z, tval1), R, H),tval1)/hbar*mRb
    val2 = integrate.simps(Vtot(xxd(x,tval2), yyd(y,tval2), zupclouddw(z, tval2), R, H)-Vtot(xxd(x,tval2), yyd(y,tval2), 
zdwclouddw(z, tval2), R, H),tval2)/hbar*mRb
    return val1+val2

rint2 = 0.15
H2 = 0.12
bm2 = H2/2/rint2
rext2 = 0.45

Figure B.18: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.

179



Development of a New Apparatus for Precision Gravity Measurements with
Atom Interferometry

a2 = rext2/rint2 
rint1 = 0.1
H1 = 0.2
bm1 = H1/2/rint1
rext1 = 0.5
a1 = rext1/rint1 
z0p = -0.1535

def y(z):
    val = z/rint1
    return val

print("y:",y(z0p))

def h1(z):
    val = (a1**2 + (y(z) - bm1)**2)**0.5
    return val

print("h1:",h1(z0p))

def h2(z):
    val = (a1**2 + (y(z) + bm1)**2)**0.5
    return val

print("h2:",h2(z0p))

def h3(z):
    val = (1 + (y(z) - bm1)**2)**0.5
    return val

print("h3:",h3(z0p))

def h4(z):
    val = (1 + (y(z) + bm1)**2)**0.5
    return val

print("h4:",h4(z0p))

def plus(z):
    val = (z/rint1)+bm1
    return val

def minus(z):
    val = (z/rint1)-bm1
    return val

def V1(z):
    val1 = a1*a1*(np.arcsinh(plus(z)/a1)-np.arcsinh(minus(z)/a1))
    val2 = (np.arcsinh(plus(z))-np.arcsinh(minus(z)))
    val3 = plus(z)*(h2(z)-h4(z))
    val4 = minus(z)*(h1(z)-h3(z))
    val = (val1-val2+val3-val4)
    return val

print("V1(z0p):",V1(z0p))

def V2(z):
    plus = y(z)+bm1
    minus = y(z)-bm1
    val1 = -plus/h2(z)
    val2 = minus/h1(z)
    val3 = plus/h4(z)
    val4 = -minus/h3(z)
    val = (val1+val2+val3+val4)
    return val

Figure B.19: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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print("V2(z0p):",V2(z0p))

def yout(z):
    val = z/rint2
    return val

print("yout:",yout(z0p))

def h1out(z):
    val = (a2**2 + (yout(z) - bm2)**2)**0.5
    return val

print("h1out:",h1out(z0p))

def h2out(z):
    val = (a2**2 + (yout(z) + bm2)**2)**0.5
    return val

print("h2out:",h2out(z0p))

def h3out(z):
    val = (1 + (yout(z) - bm2)**2)**0.5
    return val

print("h3out:",h3out(z0p))

def h4out(z):
    val = (1 + (yout(z) + bm2)**2)**0.5
    return val

print("h4out:",h4out(z0p))

def plusout(z):
    val = (z/rint2)+bm2
    return val

def minusout(z):
    val = (z/rint2)-bm2
    return val

def V1out(z):
    val1 = a2*a2*(np.arcsinh(plusout(z)/a2)-np.arcsinh(minusout(z)/a2))
    val2 = (np.arcsinh(plusout(z))-np.arcsinh(minusout(z)))
    val3 = plusout(z)*(h2out(z)-h4out(z))
    val4 = minusout(z)*(h1out(z)-h3out(z))
    val = (val1-val2+val3-val4)
    return val

print("V1out(z0p):",V1out(z0p))

def V2out(z):
    plusout = yout(z)+bm2
    minusout = yout(z)-bm2    
    val1 = -plusout/h2out(z)
    val2 = minusout/h1out(z)
    val3 = plusout/h4out(z)
    val4 = -minusout/h3out(z)
    val = (val1+val2+val3+val4)
    return val

print("V2out(z0p):",V2out(z0p))

def Vfinzrring1(x,y,z):
    r = np.sqrt(x**2 + y**2)
    fn = -G*rhoAl*rint1*rint1*np.pi*(0.5*(r/rint1)*(r/rint1)*V2(z)+V1(z))

Figure B.20: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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    return fn

print("Vfinzrring1(z0p):",Vfinzrring1(0,0,z0p))

def Vfinzrring2(x,y,z):
    r = np.sqrt(x**2 + y**2)
    fn = -G*rhoAl*rint2*rint2*np.pi*(0.5*(r/rint2)*(r/rint2)*V2out(z)+V1out(z))
    return fn

print("Vfinzrring2(z0p):",Vfinzrring2(0,0,z0p))

def Vfinal(x,y,z,R,H):
    val = Vtot(x, y, z, R, H)
    fn = Vfinzrring2(x,y,z+0.2*8+0.1)-Vfinzrring1(x,y,z+0.2*8+0.1)
    return fn+val

print("Vfinal(0,0,-0.1617+0.115,0.1,0.0375):",Vfinal(0,0,-0.1617+0.115,0.1,0.0375))

def phiwithplatformcloudup(x, y, z, R, H):
    tval3 = np.linspace(0.0,T,1000)
    tval4 = np.linspace(T,2*T,1000)
    val3 = integrate.simps(Vfinal(xxuppltf(x,tval3), yyuppltf(y,tval3), zupcloudupPLTFUP(z, tval3), R, H) - Vfinal(xxuppltf(x,tval3), 
yyuppltf(y,tval3), zdwcloudupPLTFUP(z, tval3), R, H),tval3)/hbar*mRb
    val4 = integrate.simps(Vfinal(xxuppltf(x,tval4), yyuppltf(y,tval4), zupcloudupPLTFUP(z, tval4), R, H) - Vfinal(xxuppltf(x,tval4), 
yyuppltf(y,tval4), zdwcloudupPLTFUP(z, tval4), R, H),tval4)/hbar*mRb
    return val3+val4

def phiwithplatformclouddw(x, y, z, R, H):
    tval3 = np.linspace(0.0,T,1000)
    tval4 = np.linspace(T,2*T,1000)
    val3 = integrate.simps(Vfinal(xxdwpltf(x,tval3), yydwpltf(y,tval3), zupclouddwPLTFDW(z, tval3), R, H) - Vfinal(xxdwpltf(x,tval3), 
yydwpltf(y,tval3), zdwclouddwPLTFDW(z, tval3), R, H),tval3)/hbar*mRb
    val4 = integrate.simps(Vfinal(xxdwpltf(x,tval4), yydwpltf(y,tval4), zupclouddwPLTFDW(z, tval4), R, H) - Vfinal(xxdwpltf(x,tval4), 
yydwpltf(y,tval4), zdwclouddwPLTFDW(z, tval4), R, H),tval4)/hbar*mRb
    return val3+val4

numOfParticles=10000
particleIndexArray=np.linspace(0,numOfParticles,numOfParticles)
x00up = np.random.normal(0., 0.003, numOfParticles)
y00up = np.random.normal(0., 0.003, numOfParticles)
x00uppltf = np.random.normal(0., 0.003, numOfParticles)
y00uppltf = np.random.normal(0., 0.003, numOfParticles)
z00 = np.random.normal(-0.17+0.115, 0.003, numOfParticles)
z00pltf = np.random.normal(zplatform+0.115, 0.003, numOfParticles)
vxup=np.random.normal(0.0000, 0.02, numOfParticles)
vyup=np.random.normal(0.0000, 0.02, numOfParticles)
vzup=np.random.normal(2.16688511, 0.003, numOfParticles)
vxuppltf=np.random.normal(0.0000, 0.02, numOfParticles)
vyuppltf=np.random.normal(0.0000, 0.02, numOfParticles)
vzuppltf=np.random.normal(2.16688511, 0.003, numOfParticles)
print("vzup:",vzup)
x00dw = np.random.normal(0., 0.003, numOfParticles)
y00dw = np.random.normal(0., 0.003, numOfParticles)
x00dwpltf = np.random.normal(0., 0.003, numOfParticles)
y00dwpltf = np.random.normal(0., 0.003, numOfParticles)
z11 = np.random.normal(-0.17-0.115, 0.003, numOfParticles)
z11pltf = np.random.normal(zplatform-0.115, 0.003, numOfParticles)
vxdw=np.random.normal(0.0000, 0.02, numOfParticles)
vydw=np.random.normal(0.0000, 0.02, numOfParticles)
vzdw=np.random.normal(2.16688511, 0.003, numOfParticles)
vxdwpltf=np.random.normal(0.0000, 0.02, numOfParticles)
vydwpltf=np.random.normal(0.0000, 0.02, numOfParticles)
vzdwpltf=np.random.normal(2.16688511, 0.003, numOfParticles)
print("vzdw:",vzdw)

valList=[]

Figure B.21: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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PHIWITHPLATFORMList=[]
BASEList=[]
BASEPLTFList=[]
#---------------0.5%---------------
PHIROURAList=[]
PHIROURAPLTFList=[]
PHIRESList=[]
PHIRESPLATFORMList=[]
#----------------1.0%---------------
PHIROURAONEPERCENTList=[]
PHIRESONEPERCENTList=[]
PHIROURAPLTFONEPERCENTList=[]
PHIRESPLATFORMONEPERCENTList=[]
#--------------0.1%----------------
PHIROURAPOINTONEPERCENTList=[]
PHIRESPOINTONEPERCENTList=[]
PHIROURAPLTFPOINTONEPERCENTList=[]
PHIRESPLATFORMPOINTONEPERCENTList=[]

for particleIndex in range(numOfParticles):
    
    print("@@@@@@@@@@@@@@@@@@@@@@ Particle Num : "+str(particleIndex)+" 
@@@@@@@@@@@@@@@@@@@@@@")
    v0upPLTFUP=vzuppltf[particleIndex]
    v0dwPLTFDW=vzdwpltf[particleIndex]
    vxx0uppltf=vxuppltf[particleIndex]
    vyy0uppltf=vxuppltf[particleIndex]
    vxx0dwpltf=vxdwpltf[particleIndex]
    vyy0dwpltf=vxdwpltf[particleIndex]    
    v0up=vzup[particleIndex]
    v0dw=vzdw[particleIndex]
    vxxup=vxup[particleIndex]
    vyyup=vyup[particleIndex]
    vxxdw=vxdw[particleIndex]
    vyydw=vydw[particleIndex]
    val = (phicloudup(x00up[particleIndex], y00up[particleIndex], z00[particleIndex], 0.10, 0.0375) - 
phiclouddw(x00dw[particleIndex], y00dw[particleIndex], z11[particleIndex], 0.10, 0.0375))
    valList.append(val)
    phiplusplatform = (phiwithplatformcloudup(x00uppltf[particleIndex], y00uppltf[particleIndex], z00pltf[particleIndex], 0.10, 
0.0375) - phiwithplatformclouddw(x00dwpltf[particleIndex], y00dwpltf[particleIndex], z11pltf[particleIndex], 0.10, 0.0375))
    PHIWITHPLATFORMList.append(phiplusplatform)
    base = (BASELINE(z00[particleIndex], z11[particleIndex], vzup[particleIndex], vzdw[particleIndex], T))
    BASEList.append(base)
    basepltf = (BASELINE(z00pltf[particleIndex], z11pltf[particleIndex], vzuppltf[particleIndex], vzdwpltf[particleIndex], T))
    BASEPLTFList.append(basepltf)
    #------------------COMMANDS FOLLOWING FOR DELTAPHI UNCERTAINTY = 0.5%---------------#
    phiro = base*SINGLEATOMGRAD
    PHIROURAList.append(phiro)
    phires = phiro - val
    PHIRESList.append(phires)
    phiropltf = SINGLEATOMGRADPLTF*basepltf
    PHIROURAPLTFList.append(phiropltf)
    phiresplatform = phiropltf-phiplusplatform
    PHIRESPLATFORMList.append(phiresplatform)
     #------------------COMMANDS FOLLOWING FOR DELTAPHI UNCERTAINTY = 1.0%---------------#
    phiroONEPERCENT = base*SINGLEATOMGRADONEPERCENTUNC
    PHIROURAONEPERCENTList.append(phiroONEPERCENT)
    phiresONEPERCENT = phiroONEPERCENT - val
    PHIRESONEPERCENTList.append(phiresONEPERCENT)
    phiropltfONEPERCENT = SINGLEATOMGRADPLTFONEPERCENTUNC*basepltf
    PHIROURAPLTFONEPERCENTList.append(phiropltfONEPERCENT)
    phiresplatformONEPERCENT = phiropltfONEPERCENT - phiplusplatform
    PHIRESPLATFORMONEPERCENTList.append(phiresplatformONEPERCENT)
    #------------------SIMILAR COMMANDS FOLLOW FOR DELTAPHI UNCERTAINTY = 0.1%---------------#
    phiroPOINTONEPERCENT = base*SINGLEATOMGRADPOINTONEPERCENTUNC
    PHIROURAPOINTONEPERCENTList.append(phiroPOINTONEPERCENT)
    phiresPOINTONEPERCENT = phiroPOINTONEPERCENT - val

Figure B.22: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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    PHIRESPOINTONEPERCENTList.append(phiresPOINTONEPERCENT)
    phiropltfPOINTONEPERCENT = SINGLEATOMGRADPLTFPOINTONEPERCENTUNC*basepltf
    PHIROURAPLTFPOINTONEPERCENTList.append(phiropltfPOINTONEPERCENT)
    phiresplatformPOINTONEPERCENT = phiropltfPOINTONEPERCENT - phiplusplatform
    PHIRESPLATFORMPOINTONEPERCENTList.append(phiresplatformPOINTONEPERCENT)
    
valArray=np.array(valList)
mean=np.mean(valArray)
phiwithplatfArray=np.array(PHIWITHPLATFORMList)
meanphipltf=np.mean(phiwithplatfArray)
print("Mean : "+str(mean))
print("Meanphipltf : "+str(meanphipltf))
np.savetxt("sigmavxy20mmpersec-sm-design-phases-at-center-phi-val.txt",valArray)
np.savetxt("sigmavxy20mmpersec-sm-design-phases-at-center-phiplusplatform-val.txt",phiwithplatfArray)
ser = valArray
serPLATFORM = phiwithplatfArray
#-------------RECORDING RESULTS FOR DELTAPHI UNCERTAINTY = 0.5%-----------------#
PHIROURAArray=np.array(PHIROURAList)
meanroura=np.mean(PHIROURAArray)
phiresArray=np.array(PHIRESList)
phiresmean=np.mean(phiresArray)
phiropltfArray=np.array(PHIROURAPLTFList)
meanrourapltf=np.mean(phiropltfArray)
PHIRESPLATFORMArray=np.array(PHIRESPLATFORMList)
phiresplatformmean=np.mean(PHIRESPLATFORMArray)
print("PHIROURAMEAN : "+str(meanroura))
print("PHIROURAPLATFORMMEAN : "+str(meanrourapltf))
print("PHIRESMEAN : "+str(phiresmean))
print("PHIRESWITHPLATFORMMEAN : "+str(phiresplatformmean))

np.savetxt("sigmavxy20mmpersec-point5percent-unc-all-at-center-roura-val.txt",PHIROURAArray)
np.savetxt("sigmavxy20mmpersec-point5percent-unc-all-at-center-res-val.txt",phiresArray)
np.savetxt("sigmavxy20mmpersec-point5percent-unc-all-at-center-roura-pltf-val.txt",phiropltfArray)
np.savetxt("sigmavxy20mmpersec-point5percent-unc-all-at-center-res-phiplusplatform-val.txt",PHIRESPLATFORMArray)

serROURA = PHIROURAArray
serROURAPLTF = phiropltfArray
serRES =  phiresArray
serRESPLATFORM = PHIRESPLATFORMArray

plt.hist(valArray,bins=50)
plt.hist(PHIROURAArray,bins=50)
plt.show()
plt.show()

plt.hist(ser, normed=True)
plt.hist(serROURA, normed=True)     

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspc = np.linspace(xmin, xmax, len(ser))

xxt = plt.xticks()[0]  
xxmin, xxmax = min(xxt), max(xxt)  
lnspcROURA = np.linspace(xxmin, xxmax, len(serROURA))

#Trying normal distribution first
m, s = stats.norm.fit(ser) # get mean and standard deviation  
print("m:",m)
print("s/numOfParticles**0.5:",s/numOfParticles**0.5)
pdf_gA = stats.norm.pdf(lnspc, m, s/numOfParticles**0.5) # now get theoretical values in our interval  
plt.plot(lnspc, pdf_gA, label="NormA") # plot it

mROURA, sROURA = stats.norm.fit(serROURA) # get mean and standard deviation  
print("mROURA:",mROURA)
print("sROURA:",sROURA)

Figure B.23: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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pdf_gB = stats.norm.pdf(lnspcROURA, mROURA, sROURA) # now get theoretical values in our interval  
plt.plot(lnspcROURA, pdf_gB, label="NormB") # plot it

plt.show()
plt.show()

plt.hist(phiresArray,bins=45)
plt.hist(PHIRESPLATFORMArray,bins=45)
plt.show()
plt.show()

plt.hist(serRES, normed=True)

xxxt = plt.xticks()[0]  
xxxmin, xxxmax = min(xxxt), max(xxxt)  
lnspcRES = np.linspace(xxxmin, xxxmax, len(serRES))

mRES, sRES = stats.norm.fit(serRES) # get mean and standard deviation  
print("mRES:",mRES)
print("sRES/numOfParticles**0.5:",sRES/numOfParticles**0.5)
pdf_gC = stats.norm.pdf(lnspcRES, mRES, sRES/numOfParticles**0.5) # now get theoretical values in our interval  
plt.plot(lnspcRES, pdf_gC, label="NormC") # plot it
 
plt.show() 

plt.hist(serPLATFORM, normed=True)
xxxxt = plt.xticks()[0]  
xxxxmin, xxxxmax = min(xxxxt), max(xxxxt)  
lnspcPLATFORM = np.linspace(xxxxmin, xxxxmax, len(serPLATFORM))

mPLATFORM, sPLATFORM = stats.norm.fit(serPLATFORM) # get mean and standard deviation  
print("mPLATFORM:",mPLATFORM)
print("sPLATFORM/numOfParticles**0.5:",sPLATFORM/numOfParticles**0.5)
pdf_gD = stats.norm.pdf(lnspcPLATFORM, mPLATFORM, sPLATFORM/numOfParticles**0.5) # now get theoretical values in 
our interval  
plt.plot(lnspcPLATFORM, pdf_gD, label="NormD") # plot it

plt.show() 

plt.hist(serRESPLATFORM, normed=True)

xxxxxt = plt.xticks()[0]  
xxxxxmin, xxxxxmax = min(xxxxxt), max(xxxxxt)  
lnspcRESPLATFORM = np.linspace(xxxxxmin, xxxxxmax, len(serRESPLATFORM))

mRESPLATFORM, sRESPLATFORM = stats.norm.fit(serRESPLATFORM) # get mean and standard deviation  
print("mRESPLATFORM:",mRESPLATFORM)
print("sRESPLATFORM/numOfParticles**0.5:",sRESPLATFORM/numOfParticles**0.5)
pdf_gE = stats.norm.pdf(lnspcRESPLATFORM, mRESPLATFORM, sRESPLATFORM/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcPLATFORM, pdf_gE, label="NormE") # plot it

plt.show() 

plt.hist(serROURAPLTF, normed=True)

xxxxxxt = plt.xticks()[0]  
xxxxxxmin, xxxxxxmax = min(xxxxxxt), max(xxxxxxt)  
lnspcROURAPLTF = np.linspace(xxxxxxmin, xxxxxxmax, len(serROURAPLTF))

mROURAPLTF, sROURAPLTF = stats.norm.fit(serROURAPLTF) # get mean and standard deviation  
print("mROURAPLTF:",mROURAPLTF)
print("sROURAPLTF/numOfParticles**0.5:",sROURAPLTF/numOfParticles**0.5)
pdf_gF = stats.norm.pdf(lnspcROURAPLTF, mROURAPLTF, sROURAPLTF/numOfParticles**0.5) # now get theoretical values 
in our interval  
plt.plot(lnspcROURAPLTF, pdf_gF, label="NormF") # plot it

Figure B.24: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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plt.show() 

#-------------RECORDING RESULTS FOR DELTAPHI UNCERTAINTY = 1.0%-----------------#
PHIROURAONEPERCENTArray=np.array(PHIROURAONEPERCENTList)
PHIROURAPLTFONEPERCENTArray=np.array(PHIROURAPLTFONEPERCENTList)
PHIRESONEPERCENTArray=np.array(PHIRESONEPERCENTList)
PHIRESPLATFORMONEPERCENTArray=np.array(PHIRESPLATFORMONEPERCENTList)
serROURAONEPERCENT = PHIROURAONEPERCENTArray
serROURAPLTFONEPERCENT = PHIROURAPLTFONEPERCENTArray
serRESONEPERCENT =  PHIRESONEPERCENTArray
serRESPLATFORMONEPERCENT = PHIRESPLATFORMONEPERCENTArray
meanrouraONEPERCENT=np.mean(PHIROURAONEPERCENTArray)
meanrourapltfONEPERCENT=np.mean(PHIROURAPLTFONEPERCENTArray)
phiresmeanONEPERCENT=np.mean(PHIRESONEPERCENTArray)
phiresplatformmeanONEPERCENT=np.mean(PHIRESPLATFORMONEPERCENTArray)

np.savetxt("sigmavxy20mmpersec-ONEpercent-unc-all-at-center-roura-val.txt",PHIROURAONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-ONEpercent-unc-all-at-center-res-val.txt",PHIRESONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-ONEpercent-unc-all-at-center-roura-pltf-val.txt",PHIROURAPLTFONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-ONEpercent-unc-all-at-center-res-phiplusplatform-
val.txt",PHIRESPLATFORMONEPERCENTArray)

plt.hist(serROURAONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcROURAONEPERCENT = np.linspace(xmin, xmax, len(serROURAONEPERCENT))

mROURA1PERC, sROURA1PERC = stats.norm.fit(serROURAONEPERCENT) # get mean and standard deviation  
print("mROURA1PERC:",mROURA1PERC)
print("sROURA1PERC/numOfParticles**0.5:",sROURA1PERC/numOfParticles**0.5)
pdf_gG = stats.norm.pdf(lnspcROURAONEPERCENT, mROURA1PERC, sROURA1PERC/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcROURAONEPERCENT, pdf_gG, label="NormG") # plot it
 
plt.show() 

plt.hist(serRESONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcRESONEPERCENT = np.linspace(xmin, xmax, len(serRESONEPERCENT))

m1RESPERC, s1RESPERC = stats.norm.fit(serRESONEPERCENT) # get mean and standard deviation  
print("m1RESPERC:",m1RESPERC)
print("s1RESPERC/numOfParticles**0.5:",s1RESPERC/numOfParticles**0.5)
pdf_gH = stats.norm.pdf(lnspcRESONEPERCENT, m1RESPERC, s1RESPERC/numOfParticles**0.5) # now get theoretical 
values in our interval  
plt.plot(lnspcRESONEPERCENT, pdf_gH, label="NormH") # plot it
 
plt.show() 

plt.hist(serROURAPLTFONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcROURAPLTFONEPERCENT = np.linspace(xmin, xmax, len(serROURAPLTFONEPERCENT))

mROURAPLTF1PERC, sROURAPLTF1PERC = stats.norm.fit(serROURAPLTFONEPERCENT) # get mean and standard 
deviation  
print("mROURAPLTF1PERC:",mROURAPLTF1PERC)
print("sROURAPLTF1PERC/numOfParticles**0.5:",sROURAPLTF1PERC/numOfParticles**0.5)
pdf_gI = stats.norm.pdf(lnspcROURAPLTFONEPERCENT, mROURAPLTF1PERC, sROURAPLTF1PERC/numOfParticles**0.5) 
# now get theoretical values in our interval  
plt.plot(lnspcROURAPLTFONEPERCENT, pdf_gI, label="NormI") # plot it
 
plt.show() 

Figure B.25: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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plt.hist(serRESPLATFORMONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcRESPLTFONEPERCENT = np.linspace(xmin, xmax, len(serRESPLATFORMONEPERCENT))

mRESPLTF1PERC, sRESPLTF1PERC = stats.norm.fit(serRESPLATFORMONEPERCENT) # get mean and standard deviation  
print("mRESPLTF1PERC:",mRESPLTF1PERC)
print("sRESPLTF1PERC/numOfParticles**0.5:",sRESPLTF1PERC/numOfParticles**0.5)
pdf_gJ = stats.norm.pdf(lnspcRESPLTFONEPERCENT, mRESPLTF1PERC, sRESPLTF1PERC/numOfParticles**0.5) # now 
get theoretical values in our interval  
plt.plot(lnspcRESPLTFONEPERCENT, pdf_gJ, label="NormJ") # plot it
 
plt.show() 

#-------------RECORDING RESULTS FOR DELTAPHI UNCERTAINTY = 0.1%-----------------#
PHIROURAPOINTONEPERCENTArray=np.array(PHIROURAPOINTONEPERCENTList)
PHIROURAPLTFPOINTONEPERCENTArray=np.array(PHIROURAPLTFPOINTONEPERCENTList)
PHIRESPOINTONEPERCENTArray=np.array(PHIRESPOINTONEPERCENTList)
PHIRESPLATFORMPOINTONEPERCENTArray=np.array(PHIRESPLATFORMPOINTONEPERCENTList)
serROURAPOINTONEPERCENT = PHIROURAPOINTONEPERCENTArray

serROURAPLTFPOINTONEPERCENT = PHIROURAPLTFPOINTONEPERCENTArray
serRESPOINTONEPERCENT =  PHIRESPOINTONEPERCENTArray
serRESPLATFORMPOINTONEPERCENT = PHIRESPLATFORMPOINTONEPERCENTArray
meanrouraPOINTONEPERCENT=np.mean(PHIROURAPOINTONEPERCENTArray)
meanrourapltfPOINTONEPERCENT=np.mean(PHIROURAPLTFPOINTONEPERCENTArray)
phiresmeanPOINTONEPERCENT=np.mean(PHIRESPOINTONEPERCENTArray)
phiresplatformmeanPOINTONEPERCENT=np.mean(PHIRESPLATFORMPOINTONEPERCENTArray)

np.savetxt("sigmavxy20mmpersec-POINTONEpercent-unc-all-at-center-roura-val.txt",PHIROURAPOINTONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-POINTONEpercent-unc-all-at-center-res-val.txt",PHIRESPOINTONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-POINTONEpercent-unc-all-at-center-roura-pltf-
val.txt",PHIROURAPLTFPOINTONEPERCENTArray)
np.savetxt("sigmavxy20mmpersec-POINTONEpercent-unc-all-at-center-res-phiplusplatform-
val.txt",PHIRESPLATFORMPOINTONEPERCENTArray)

plt.hist(serROURAPOINTONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcROURAPOINTONEPERCENT = np.linspace(xmin, xmax, len(serROURAPOINTONEPERCENT))

mROURAP1PERC, sROURAP1PERC = stats.norm.fit(serROURAPOINTONEPERCENT) # get mean and standard deviation  
print("mROURAP1PERC:",mROURAP1PERC)
print("sROURAP1PERC/numOfParticles**0.5:",sROURAP1PERC/numOfParticles**0.5)
pdf_gK = stats.norm.pdf(lnspcROURAPOINTONEPERCENT, mROURAP1PERC, sROURAP1PERC/numOfParticles**0.5) # 
now get theoretical values in our interval  
plt.plot(lnspcROURAPOINTONEPERCENT, pdf_gK, label="NormK") # plot it
 
plt.show() 

plt.hist(serRESPOINTONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcRESPOINTONEPERCENT = np.linspace(xmin, xmax, len(serRESPOINTONEPERCENT))

mP1RESPERC, sP1RESPERC = stats.norm.fit(serRESPOINTONEPERCENT) # get mean and standard deviation  
print("mP1RESPERC:",mP1RESPERC)
print("sP1RESPERC/numOfParticles**0.5:",sP1RESPERC/numOfParticles**0.5)
pdf_gL = stats.norm.pdf(lnspcRESPOINTONEPERCENT, mP1RESPERC, sP1RESPERC/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcRESPOINTONEPERCENT, pdf_gL, label="NormL") # plot it
 
plt.show() 

Figure B.26: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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plt.hist(serROURAPLTFPOINTONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcROURAPLTFPOINTONEPERCENT = np.linspace(xmin, xmax, len(serROURAPLTFPOINTONEPERCENT))

mROURAPLTFP1PERC, sROURAPLTFP1PERC = stats.norm.fit(serROURAPLTFPOINTONEPERCENT) # get mean and 
standard deviation  
print("mROURAPLTFP1PERC:",mROURAPLTFP1PERC)
print("sROURAPLTFP1PERC/numOfParticles**0.5:",sROURAPLTFP1PERC/numOfParticles**0.5)
pdf_gM = stats.norm.pdf(lnspcROURAPLTFPOINTONEPERCENT, mROURAPLTFP1PERC, 
sROURAPLTFP1PERC/numOfParticles**0.5) # now get theoretical values in our interval  
plt.plot(lnspcROURAPLTFPOINTONEPERCENT, pdf_gM, label="NormM") # plot it
 
plt.show() 

plt.hist(serRESPLATFORMPOINTONEPERCENT, normed=True)

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcRESPLTFPOINTONEPERCENT = np.linspace(xmin, xmax, len(serRESPLATFORMPOINTONEPERCENT))

mRESPLTFP1PERC, sRESPLTFP1PERC = stats.norm.fit(serRESPLATFORMPOINTONEPERCENT) # get mean and standard 
deviation  
print("mRESPLTFP1PERC:",mRESPLTFP1PERC)
print("sRESPLTFP1PERC/numOfParticles**0.5:",sRESPLTFP1PERC/numOfParticles**0.5)
pdf_gN = stats.norm.pdf(lnspcRESPLTFPOINTONEPERCENT, mRESPLTFP1PERC, 
sRESPLTFP1PERC/numOfParticles**0.5) # now get theoretical values in our interval  
plt.plot(lnspcRESPLTFPOINTONEPERCENT, pdf_gN, label="NormN") # plot it
 
plt.show() 

timeend = time.time()
diff=timeend-timestart
print("Time taken : ",diff)                         

Figure B.27: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - I.
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# -*- coding: utf-8 -*-
"""
Created on Sat Jul 25 13:10:11 2020
@author: Manan Jain
KONSOLE 36/A
"""
import numpy as np
from scipy.special import legendre
import matplotlib.pyplot as plt
from scipy import integrate
from scipy.integrate import quad
import time
import scipy.special as sc
from scipy import stats
import sys
timestart = time.time()

#defining required constants--------------
G=6.67408*10**(-11)
rho = 8960
eta = (18300/8960)**0.5
keff = 4*np.pi/(421.5)*10**9
mRb = 1.443*10**(-25)
hbar = 1.055*10**(-34)
vr = keff*hbar/mRb
g = 9.80491
T = 0.220*np.sqrt(eta)
v0 = (T + (0.001*eta))*g
z0 = -0.23223352024224914
d = 0.23*eta
dinv = 1/d
H = 0.6*eta
print("eta:",eta)
print("keff:",keff)
rext = eta*0.362
rint = eta*0.105
a = rext/rint
bm = H/2/rint
print("bm:",bm)
GRADPHIEXACT = 4.803185609115827
GRAPHIPOINTONEPERCENT = 4.803185609115827+0.001
GRAPHIPOINTFIVEPERCENT = 4.803185609115827+0.005
GRAPHIONEPERCENT = 4.803185609115827+0.01

def etaa(r):
    #r = np.sqrt(x**2 + y**2)
    val = r/rint
    return val

def y(z):
    val = z/rint
    return val

print("y:",y(z0))

def h1(z):
    val = (a**2 + (y(z) - bm)**2)**0.5
    return val

Figure B.28: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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print("h1:",h1(z0))

def h2(z):
    val = (a**2 + (y(z) + bm)**2)**0.5
    return val

print("h2:",h2(z0))

def h3(z):
    val = (1 + (y(z) - bm)**2)**0.5
    return val

print("h3:",h3(z0))

def h4(z):
    val = (1 + (y(z) + bm)**2)**0.5
    return val

print("h4:",h4(z0))

def plus(z):
    val = (z/rint)+bm
    return val

def minus(z):
    val = (z/rint)-bm
    return val

def V1(z):
    val1 = a*a*(np.arcsinh(plus(z)/a)-np.arcsinh(minus(z)/a))
    val2 = (np.arcsinh(plus(z))-np.arcsinh(minus(z)))
    val3 = plus(z)*(h2(z)-h4(z))
    val4 = minus(z)*(h1(z)-h3(z))
    val = (val1-val2+val3-val4)
    return val

print("V1(z0):",V1(z0))

def V2(z):
    plus = y(z)+bm
    minus = y(z)-bm
    val1 = -plus/h2(z)
    val2 = minus/h1(z)
    val3 = plus/h4(z)
    val4 = -minus/h3(z)
    val = (val1+val2+val3+val4)
    return val

print("V2(z0):",V2(z0))

def Vfin(z,r):
    fn = -G*rho*rint*rint*np.pi*(0.5*(r/rint)*(r/rint)*V2(z)+V1(z))
    return fn

print("Vfin(0,0):",Vfin(0,0))

def zdw(z0,vz,t):
    val = 0
    if(t.all() < T):

Figure B.29: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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        val = z0 + vz*t - 1/2*g*t**2
    else:
        val = z0 + vz*T - 1/2*g*T**2 + (vz + vr - g*T)*(t - T) - 0.5*g*(t - T)**2  

    return val

def zup(z0,vz,t):
    val = 0
    if(t.all() < T):
        val = z0 + (vz + vr)*t - 1/2*g*t**2
    else:
        val = z0 + (vz + vr)*T - 1/2*g*T**2 + (vz - g*T)*(t - T) - 0.5*g*(t - T)**2

    return val

def ra(r,v,t):
    return r+v*t

def phi(z,vz,r,v):
    tval1 = np.linspace(0.0,T,1000)
    tval2 = np.linspace(T,2.*T,1000)
    val1 = (mRb/hbar)*(integrate.simps((Vfin(zup(z,vz,tval1),ra(r,v,tval1))-
Vfin(zdw(z,vz,tval1),ra(r,v,tval1))),tval1))
    val2 = (mRb/hbar)*(integrate.simps((Vfin(zup(z,vz,tval2),ra(r,v,tval2))-
Vfin(zdw(z,vz,tval2),ra(r,v,tval2))),tval2))
    val = val1+val2
    return val
 
print("PHI:",phi(z0+0.115*eta,v0,0,0)-phi(z0-0.115*eta,v0,0,0))  

def BASELINE(zu, zd, vzu, vzd, tall):
    return ((zu - zd) + (vzu - vzd)*tall)

numOfParticles=10000
#----------UPPER-CLOUD---------#
particleIndexArray=np.linspace(0,numOfParticles,numOfParticles)
r00up = np.random.normal(0., 0.003, numOfParticles)
z00 = np.random.normal(z0+0.115*eta, 0.003, numOfParticles)
vzup = np.random.normal(v0, 0.003, numOfParticles)
vrup = np.random.normal(0., 0.020, numOfParticles)
#----------LOWER-CLOUD---------#
r00dw = np.random.normal(0., 0.003, numOfParticles)
z11 = np.random.normal(z0-0.115*eta, 0.003, numOfParticles)
vzdw = np.random.normal(v0, 0.003, numOfParticles)
vrdw = np.random.normal(0., 0.020, numOfParticles)

baseList=[]
#----------0.1% UNCERTAINTY----------#
phivalList=[]
phirovalList=[]
phiresList=[]
#----------0.5% UNCERTAINTY----------#
phivalPOINTFIVEList=[]
phirovalPOINTFIVEList=[]
phiresPOINTFIVEList=[]
#----------1.0% UNCERTAINTY----------#
phivalONEList=[]
phirovalONEList=[]
phiresONEList=[]

Figure B.30: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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for particleIndex in range(numOfParticles):
    
    print("@@@@@@@@@@@@@@@@@@@@@@ Particle Num : "+str(particleIndex)+" 
@@@@@@@@@@@@@@@@@@@@@@")
    
    base = 
(BASELINE(z00[particleIndex],z11[particleIndex],vzup[particleIndex],vzdw[particleIn
dex],T))
    baseList.append(base)
    #----------0.1% UNCERTAINTY----------#
    phival = 
(phi(z00[particleIndex],vzup[particleIndex],r00up[particleIndex],vrup[particleIndex
]) - 
phi(z11[particleIndex],vzdw[particleIndex],r00dw[particleIndex],vrdw[particleIndex]
))
    phivalList.append(phival)
    
    phiroval = base*GRAPHIPOINTONEPERCENT
    phirovalList.append(phiroval)
    
    phires = phiroval - phival
    phiresList.append(phires)
    #----------0.5% UNCERTAINTY----------#
    phivalPOINTFIVE = phival
    phivalPOINTFIVEList.append(phivalPOINTFIVE)
    
    phirovalPOINTFIVE = base*GRAPHIPOINTFIVEPERCENT
    phirovalPOINTFIVEList.append(phirovalPOINTFIVE)
    
    phiresPOINTFIVE = phirovalPOINTFIVE - phivalPOINTFIVE
    phiresPOINTFIVEList.append(phiresPOINTFIVE)
    #----------1.0% UNCERTAINTY----------#
    phivalONE = phival
    phivalONEList.append(phivalONE)
    
    phirovalONE = base*GRAPHIONEPERCENT
    phirovalONEList.append(phirovalONE)
    
    phiresONE = phirovalONE - phivalONE
    phiresONEList.append(phiresONE)

#----------0.1% UNCERTAINTY----------#    
phivalArray=np.array(phivalList)
phimean=np.mean(phivalArray)
print("Mean : "+str(phimean))  
phirovalArray=np.array(phirovalList)
phiromean=np.mean(phirovalArray)
print("Meanro : "+str(phiromean))  
phiresArray=np.array(phiresList)
phiresmean=np.mean(phiresArray)
print("Meanres : "+str(phiresmean)) 

np.savetxt("POINTONEPERCENTunc-phi-at-z11center.txt",phivalArray) 
np.savetxt("POINTONEPERCENTunc-phiroval-at-z11center.txt",phirovalArray)
np.savetxt("POINTONEPERCENTunc-phiresval-at-z11center.txt",phiresArray)

#----------0.5% UNCERTAINTY----------#    
phivalPOINTFIVEArray=np.array(phivalPOINTFIVEList)

Figure B.31: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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phiPOINTFIVEmean=np.mean(phivalPOINTFIVEArray)
print("Mean0.5unc : "+str(phiPOINTFIVEmean))  
phirovalPOINTFIVEArray=np.array(phirovalPOINTFIVEList)
phiroPOINTFIVEmean=np.mean(phirovalPOINTFIVEArray)
print("Meanro0.5unc : "+str(phiroPOINTFIVEmean))  
phiresPOINTFIVEArray=np.array(phiresPOINTFIVEList)
phiresPOINTFIVEmean=np.mean(phiresPOINTFIVEArray)
print("Meanres0.5unc : "+str(phiresPOINTFIVEmean))  

np.savetxt("FIVEPERCENTunc-phi-at-z11center.txt",phivalPOINTFIVEArray) 
np.savetxt("FIVEPERCENTunc-phiroval-at-z11center.txt",phirovalPOINTFIVEArray)
np.savetxt("FIVEPERCENTunc-phiresval-at-z11center.txt",phiresPOINTFIVEArray)

#----------1.0% UNCERTAINTY----------#    
phivalONEArray=np.array(phivalONEList)
phiONEmean=np.mean(phivalONEArray)
print("Mean1unc : "+str(phiONEmean))  
phirovalONEArray=np.array(phirovalONEList)
phiroONEmean=np.mean(phirovalONEArray)
print("Meanro1unc : "+str(phiroONEmean))  
phiresONEArray=np.array(phiresONEList)
phiresONEmean=np.mean(phiresONEArray)
print("Meanres1unc : "+str(phiresONEmean))  

np.savetxt("ONEPERCENTunc-phi-at-z11center.txt",phivalONEArray) 
np.savetxt("ONEPERCENTunc-phiroval-at-z11center.txt",phirovalONEArray)
np.savetxt("ONEPERCENTunc-phiresval-at-z11center.txt",phiresONEArray)

#----------0.1% UNCERTAINTY----------#    
ser = phivalArray
serROURA = phirovalArray
serRES = phiresArray
    
plt.hist(ser,bins=50)
plt.hist(serROURA,bins=50)
plt.show()
plt.show()

plt.hist(ser, normed=True)
plt.hist(serROURA, normed=True)     

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspc = np.linspace(xmin, xmax, len(ser))

xxt = plt.xticks()[0]  
xxmin, xxmax = min(xxt), max(xxt)  
lnspcROURA = np.linspace(xxmin, xxmax, len(serROURA))

#Trying normal distribution first
m, s = stats.norm.fit(ser) # get mean and standard deviation  
print("m:",m)
print("s/numOfParticles**0.5:",s/numOfParticles**0.5)
pdf_gA = stats.norm.pdf(lnspc, m, s/numOfParticles**0.5) # now get theoretical 
values in our interval  
plt.plot(lnspc, pdf_gA, label="NormA") # plot it

mROURA, sROURA = stats.norm.fit(serROURA) # get mean and standard deviation  
print("mROURA:",mROURA)

Figure B.32: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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print("sROURA:",sROURA)
pdf_gB = stats.norm.pdf(lnspcROURA, mROURA, sROURA) # now get theoretical values in
our interval  
plt.plot(lnspcROURA, pdf_gB, label="NormB") # plot it

plt.show()
plt.show()

plt.hist(serRES,bins=45)
plt.show()

plt.hist(serRES, normed=True)

xxxt = plt.xticks()[0]  
xxxmin, xxxmax = min(xxxt), max(xxxt)  
lnspcRES = np.linspace(xxxmin, xxxmax, len(serRES))

mRES, sRES = stats.norm.fit(serRES) # get mean and standard deviation  
print("mRES:",mRES)
print("sRES/numOfParticles**0.5:",sRES/numOfParticles**0.5)
pdf_gC = stats.norm.pdf(lnspcRES, mRES, sRES/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcRES, pdf_gC, label="NormC") # plot it
 
plt.show() 

#----------0.5% UNCERTAINTY----------#   
serF = phivalPOINTFIVEArray
serFROURA = phirovalPOINTFIVEArray
serFRES = phiresPOINTFIVEArray
    
plt.hist(serF,bins=50)
plt.hist(serFROURA,bins=50)
plt.show()
plt.show()

plt.hist(serF, normed=True)
plt.hist(serFROURA, normed=True)     

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcF = np.linspace(xmin, xmax, len(serF))

xxt = plt.xticks()[0]  
xxmin, xxmax = min(xxt), max(xxt)  
lnspcFROURA = np.linspace(xxmin, xxmax, len(serFROURA))

#Trying normal distribution first
mF, sF = stats.norm.fit(serF) # get mean and standard deviation  
print("mPOINTFIVEUNC:",mF)
print("sPOINTFIVEUNC/numOfParticles**0.5:",sF/numOfParticles**0.5)
pdf_gD = stats.norm.pdf(lnspcF, mF, sF/numOfParticles**0.5) # now get theoretical 
values in our interval  
plt.plot(lnspcF, pdf_gD, label="NormD") # plot it

mFROURA, sFROURA = stats.norm.fit(serFROURA) # get mean and standard deviation  
print("mROURAPOINTFIVEUNC:",mFROURA)
print("sROURAPOINTFIVEUNC:",sFROURA)
pdf_gE = stats.norm.pdf(lnspcFROURA, mFROURA, sFROURA) # now get theoretical values

Figure B.33: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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in our interval  
plt.plot(lnspcFROURA, pdf_gE, label="NormE") # plot it

plt.show()
plt.show()

plt.hist(serFRES,bins=45)
plt.show()

plt.hist(serFRES, normed=True)

xxxt = plt.xticks()[0]  
xxxmin, xxxmax = min(xxxt), max(xxxt)  
lnspcFRES = np.linspace(xxxmin, xxxmax, len(serFRES))

mFRES, sFRES = stats.norm.fit(serFRES) # get mean and standard deviation  
print("mRESPOINTFIVEUNC:",mFRES)
print("sRESPOINTFIVEUNC/numOfParticles**0.5:",sFRES/numOfParticles**0.5)
pdf_gF = stats.norm.pdf(lnspcFRES, mFRES, sFRES/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcFRES, pdf_gF, label="NormF") # plot it
 
plt.show() 

#----------1.0% UNCERTAINTY----------#   
serO = phivalONEArray
serOROURA = phirovalONEArray
serORES = phiresONEArray
    
plt.hist(serO,bins=50)
plt.hist(serOROURA,bins=50)
plt.show()
plt.show()

plt.hist(serO, normed=True)
plt.hist(serOROURA, normed=True)     

xt = plt.xticks()[0]  
xmin, xmax = min(xt), max(xt)  
lnspcO = np.linspace(xmin, xmax, len(serO))

xxt = plt.xticks()[0]  
xxmin, xxmax = min(xxt), max(xxt)  
lnspcOROURA = np.linspace(xxmin, xxmax, len(serOROURA))

#Trying normal distribution first
mO, sO = stats.norm.fit(serO) # get mean and standard deviation  
print("mONEUNC:",mO)
print("sONEUNC/numOfParticles**0.5:",sO/numOfParticles**0.5)
pdf_gG = stats.norm.pdf(lnspcO, mO, sO/numOfParticles**0.5) # now get theoretical 
values in our interval  
plt.plot(lnspcO, pdf_gG, label="NormG") # plot it

mOROURA, sOROURA = stats.norm.fit(serOROURA) # get mean and standard deviation  
print("mROURAONEUNC:",mOROURA)
print("sROURAONEUNC:",sOROURA)
pdf_gH = stats.norm.pdf(lnspcOROURA, mOROURA, sOROURA) # now get theoretical values
in our interval  
plt.plot(lnspcOROURA, pdf_gH, label="NormH") # plot it

Figure B.34: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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plt.show()
plt.show()

plt.hist(serORES,bins=45)
plt.show()

plt.hist(serORES, normed=True)

xxxt = plt.xticks()[0]  
xxxmin, xxxmax = min(xxxt), max(xxxt)  
lnspcORES = np.linspace(xxxmin, xxxmax, len(serORES))

mORES, sORES = stats.norm.fit(serORES) # get mean and standard deviation  
print("mRESONEUNC:",mORES)
print("sRESONEUNC/numOfParticles**0.5:",sORES/numOfParticles**0.5)
pdf_gI = stats.norm.pdf(lnspcORES, mORES, sORES/numOfParticles**0.5) # now get 
theoretical values in our interval  
plt.plot(lnspcORES, pdf_gI, label="NormI") # plot it
 
plt.show() 

timeend = time.time()
diff=timeend-timestart
print("Time taken : ",diff)                     

Figure B.35: Simulation in PYTHON for 3D case: Residual phase calculation
for configuration - II.
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अभिस्वीकृति  
 

इस थीभसस के बहुि शुरुआि में, सबसे पहले मैं अपने डॉक्टरेट पर्यवेक्षक प्रो. गुग्ललल्मो नटनो  र मेरे शो  
संरक्षक डॉ. गैब्रिर्ल रोजी के प्रति हानदयक  न्र्वाद व्र्क्ि करना चाह ूँगा। मैं प्रो. नटनो के तनरंिर समथयन, 
प्रोत्साहन  र मागयदशयन के भलए ऋणी ह ूँ। मैं खुद को बहुि िालर्शाली मानिा ह ूँ कक मुझ ेडॉ. रोजी के साथ 
काम करने का अवसर भमला। मैं प्रो. नटनो का शुक्रगुजार ह ूँ कक उन्होंने मुझ ेर्ह मौका नदर्ा क्र्ोंकक र्ह अवसर 
ही मेरे भलए सब कुछ था। र्ह वास्िव में एक ववशेषाध कार है कक प्रो. नटनो  र डॉ. रोजी को मुझ पर ववश्वास 
था, बावज द इसके कक मैंने अपने डॉक्टरेट अनुसं ान के दौरान कई िुच्छ त्रुनटर्ां की हैं। व्र्ग्क्िगि रूप से, मैंने 
अपने वषों के दौरान अपने शो  गुरु गैब्रिर्ल रोजी जैसे रु्वक को किी नहीं देखा है, जो बेहद चिुर, मददगार 
 र ववचारशील होि ेहुए िी मैंने गलतिर्ां कीं, ग्जस पर देखकर कोई िी प्रोफेसर र्ा सलाहकार अपना ववश्वास 
खो सकिा है। मुझ ेर्ह घोषणा करि ेहुए खुशी हो रही है कक इन िीन वषों में, मैं न केवल एक बेहिर शो किाय 
बन गर्ा, बग्ल्क एक अच्छा स्िर का  ैर्य  र ववचार रखने वाला व्र्ग्क्ि िी बन गर्ा।  

मैं अपनी बहन का शुक्रगुजार ह ूँ क्र्ोंकक उसने मुझ ेथीभसस भलखने के भलए प्रोिसानहि ककर्ा। मैं अपने मािा-
वपिा  र मासी को  न्र्वाद देिा ह ूँ कक उन्होंने मेरे जैसे ग्जद्दी  र आवेगी बच्च ेकी परवररश की  र मुझ े
एक महत्वाकांक्षी िौतिक ववज्ञानी के रूप में  र एक अच्छे स्विाव वाले व्र्ग्क्ि के रूप में खुद का सवयशे्रष्ठ 
संस्करण प्राप्ि करने में मदद की। 

मैं िौतिक ववज्ञान में अपने सिी सवोत्तम आकाओं  र वररष्ठों का बहुि आिारी ह ूँ ग्जन्होंने मुझ ेसाथयक  र 
उते्तजक चचायओं के भलए अपना बहुम ल्र् समर् नदर्ा, ग्जनके नाम हैं - रमन सहगल, सुशील शमाय, पुलककि रार्, 
जुभलओ द'अमीको, कन्हैर्ा पांड।े र्ह शुद्  िालर् था कक मुझ ेरमन सहगल जैसे वैज्ञातनक से सीखने का अवसर 
भमला, ग्जन्होंने मुझ ेस्कै्रच से पाइथन प्रोग्राभमगं भसखाई, अंििः इस थीभसस में एक ररकॉडय समर् में बिाए गए 
पररणामों की उपज हो सकी। मेरे मास्टर डडग्री के पहले नदन से लेकर अब िक, मैंने पुलककि रार् जैसे एक 
वररष्ठ रु्वक की प्रशंसा की है, ग्जनके िौतिक ववज्ञान  र जीवन के ज्ञान में कई पहल  अनुकरणीर्  र दोषरनहि 
हैं, उनको देखकर तनरंिर पीछे न हटने  र पररणाम िक पहुूँचने के भलए ह्रदर् में एक आसमान छ ने वाला 
उत्साह  र हौसला उत्पन्न होिा है। उनसे सीखना एक बडा सम्मान था क्र्ोंकक वह एक ऐसे व्र्ग्क्ि है जो 
लगािार मुस्कुराि ेहै चाहे वह ककिनी िी कठोर पररग्स्थतिर्ों  र चुनौतिर्ों से ज झ रहे हो। मैं डॉ. सशुील शमाय 
का िी हानदयक  न्र्वाद करिा ह ूँ, ग्जन्होंने अपना बहुम ल्र् समर् मुझ े अपने डॉक्टरेट के काम के बारे में 
अनौपचाररक बाि करने  र अपने सहर्ोधगर्ों के सामने िौतिक शास्त्रों पर चचाय करने के भलए मुझ ेप्रोत्साहन 
नदर्ा। डॉ. सुशील शमाय  र उनके सहर्ोधगर्ों की प्रतिकक्रर्ा ने संगोष्ठी देि ेहुए मेरा आत्मववश्वास बढार्ा, जो 
एक अच्छा शैक्षणणक कररर्र बनाने के भलए एक कदम के रूप में धचग्ननि करिा है। मुझ ेर्ाद है कक जब मैं 
अपनी पीएचडी उम्मीदवारी के पहले वषय में था, िो मैंने जुभलओ द'अमीको को बडी पे्ररणा के साथ लैब में एक 
अथक रूप से पररश्रम करि ेदेखा है, मेरे पास उनके प्रति आिार व्र्क्ि करने के भलए पर्ायप्ि शब्द नहीं हैं। मैं 
सौिालर्शाली था कक उनके साथ परमाणु िौतिकी की उते्तजक चचायएूँ करने का अवसर मुझ ेप्राप्ि हुआ। उन्होंने 
अपने व्र्स्ि कार्यक्रम के बावज द लैब छोडने के बाद िी मेरे ववज्ञान-संबग्न्  प्रश्नों का उत्तर देकर मेरी मदद की, 
जो कक मेरे डॉक्टरेट की उम्मीदवारी में एक महत्वप णय कदम था। इस महत्वप णय चौकी ने एक पोस्टडॉक्टरल 
ग्स्थति को सुरक्षक्षि करने में मेरी अथयप णय ि भमका तनिाई। अंि में, मेरे जीवन में, पहला व्र्ग्क्ि ग्जसने परमाणु 
प्रर्ोगशाला में प्रार्ोधगक िंत्रो का इस्िमेाल करना भसखार्ा, वह थे डॉ. कन्हैर्ा पांड।े मैं डॉ. पांड ेसे कफर से भमलने 



की उम्मीद करिा ह ूँ र्नद मैं उन जैसे कुशल  र शानदार व्र्ग्क्ि के साथ िौतिकी र्ा परमाणु प्रर्ोगों पर चचाय 
करने में सक्षम हो जाऊूँ । 

ग्िन्दगी में जब नरेंद्र राठौड जैसा आनंदप वयक  र होभशर्ार भमत्र हो, िो उनको देखकर बड ेिाई का क्र्ा कत्तयव्र् 
होिा है उसका एहसास होिा है। जब मेरे पीएचडी के समर् में ब्रबलकुल िी वक़्ि नहीं बचा था, िो मेरे परम भमत्र 
नरेंद्र राठौड ने मेरे कुछ भसमुलेशन उनके कंप्र् टर में िी चलाएूँ, ग्जससे मेरे पीएचडी के पररणाम सही समर् पर 
आगए, इस प्रकार का र्ोगदान देना अपने आप में ही एक बहुि ही बहुम ल्र् कार्य है।     

मैं अवनी सराफ का शुक्रगुजार ह ूँ कक उन्होंने मुझ ेर्ह भसखार्ा कक गंिीर चुनौतिर्ों का सामना करि ेहुए िी 
ग्जंदगी को कैसे खुशी से जीना है। एक सच्ची साथी वास्िव में, वह मेरी अतनद्र-नदनचर्ाय के बावज द मेरे साथ 
रही, जब मैं अपनी पीएचडी उम्मीदवारी के दौरान घंटों  र नदनों िक उससे बाि नहीं कर पार्ा। मेरे पेशेवर  र 
व्र्ग्क्िगि जीवन की बेहिरी के भलए उनका नैतिक समथयन हमेशा महत्वप णय रहा है। एक महत्वाकांक्षी िौतिक 
वैज्ञातनक, अजेर्  र ग्जद्दी शो  छात्र के रूप में, मेरे भलए शुरू में र्ह स्वीकार करना मुग्श्कल हो गर्ा कक मुझ े
अपने पररवार  र भमत्रों के अलावा ककसी  र के नैतिक समथयन  र अपने मन की शांति के भलए आवश्र्किा 
हो सकिी है, लेककन कफर, मेरे जीवन का प्र्ार अवनी ने मेरे जीवन में प्रवेश करके मेरे सिी प्रशनो के उत्तर 
नदए। उसकी उपग्स्थति सी े मेरे जीवन को प्रिाववि करिी है जैसे स खे खेिों में फ ल णखल रहे हों। उसके साथ 
होने कारणवश, जीवन ने मुझ ेपररवियनों का स्वागि करना  र उन्हें गले लगाना िी भसखार्ा। 

मेरी डॉक्टरेट की डडग्री मेरे जीवनकाल के सबसे चुनौिीप णय नदन थे, क्र्ोंकक र्ह वास्िव में एक रोलर-कोस्टर की 
सवारी थी। दो साल िक कंप्र् टर पर काम करने वाली एक पररष्कृि प्रर्ोगशाला में मौज द होने के कारण मुझ े
एक स्विंत्र शो किाय होने की नदशा में प्रगति करने में मदद भमली। इसी वजह से मैं अपनी तछपी क्षमिा को 
ववपाश करने में सक्षम हुआ जो कक मैं अपने पीएचडी पर्यवेक्षक  र मेरे शो  संरक्षक के मागयदशयन  र नटप्पणणर्ों 
के ब्रबना किी प रा नहीं कर सकिा। मेरा जीवन कम िनावप णय हो गर्ा जब मुझ ेर्हाूँ ऐसे लोग भमले ग्जनकी 
सिी उपग्स्थति बहुि महत्व रखिी थी। मैं फ्लोरेंस के इन लोगों का शुक्रगुजार ह ूँ, ग्जन्होंने मुझ ेपुनभमयलन, घर 
की पानटयर्ों, इनडोर / आउटडोर गेम्स खेलने  र र्ात्रा अन्वेषणों के शानदार िरीकों से नैतिक समथयन प्रदान 
करि े हुए मेरे साथ अच्छा व्र्वहार रखा। इन सिी लोगों के नाम हैं: हषयल, श्वेिा, अववषेक, मैत्रेर्ी, मुियजा, 
शमैला, तनहार, दीप्िी, गुंजन, आतिफ, िस्सनदक़, प्रसन्ना, अकांदे, प्रोसेनजीि, राघव, सुहास, नजीब, फहाद, 
शाहनवाि, प्रे्िर, लोरेंजो, एलेसांद्रो, फ्ांसेस्को, जुभलओ, भलर्ोनाडो। 

मैं अपने नदल के करीब सिी िारिीर् लोगों को  न्र्वाद देना चाहिा ह ूँ। इन अनमोल लोगों के नाम जो समान 
रूप से मानि ेथे कक मैं इस प्रर्ास को आगे बढा सकिा ह ूँ  र फलदार्ी पररणाम दे सकिा ह ूँ: अभिनीि परेलकर, 
आनदत्र् खांडकेर, अग्जंक्र् िावसार, आभमर अहमद, अंककि जैन, अरुण र्ादव, अववनाश राजेंद्रन, अवनी सराफ, 
इर्ान फोंसेका, मुस्िफा बोहरा, नरेंद्र राठौड, तनश्चल द्वववेदी, प्रसाद दामले, प्रिीक िानुसे, पुलककि रार्, राजेश्वरी 
शेकर, ऋषि जगलपुरे, ऋवष जैन, सानहल उपाध्र्ार्, िहा अहमद, िीशान भसद्दीकी। 
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