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Introduction

To characterize and enumerate permutations that can be sorted by two consecutive
stacks, connected in series, is amongst the most challenging open problems in
combinatorics. It is known that the set of sortable permutations is a class with
an infinite basis, but the basis remains unknown. The enumeration of sortable
permutations is still missing as well. Several variants and weaker formulations
have been discussed in the literature, some of which are particularly meaningful.
For instance, West 2-stack sortable permutations are those that can be sorted
by making two passes through an increasing stack. To use an increasing stack
means to always perform a push operation, in a greedy fashion, unless adding
the next element would make the content of the stack not increasing, reading
from top to bottom. As it is well known, an increasing stack is optimal for the
classical problem of sorting with one stack, thus West’s device is arguably the
most straightforward generalization to two stacks of the orginal instance. This
monotonicity requirement can be equivalently expressed by saying that the stack
is 21-avoiding, again referring to the stack not being allowed to contain occurrences
of the pattern 21. The present work of thesis is nothing more than an attempt to
answer a question raised1 by Claesson:

What happens if we regard the stack as σ-avoiding during the first pass, for some
pattern σ, and 21-avoiding during the second pass?

The resulting device is called the σ-machine. A σ-machine is the natural gen-
eralization of West’s device obtained by replacing 21 with any pattern σ, during
the first pass, and using the optimal algortithm, during the second pass. This
approach can be pushed even further by replacing σ with a set of patterns Σ,
obtaining a family of sorting devices which we call pattern-avoiding machines.

We devote this entire manuscript to the study of pattern-avoiding machines,
aiming to gain a better understanding of sorting with two consecutive stacks.
For specific choices of σ, we characterize and enumerate the set of permutations

1As a follow-up question of a related talk given by Ferrari and the current author at Permu-
tation Patterns 2018.
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that are sortable by the σ-machine, which we call σ-sortable. The combinatorics
underlying σ-machines and σ-sortable permutations is extremely rich. It often
displays geometric structure and reveals links with a great deal of discrete objects.
Certain patterns are particularly relevant. For instance, by setting σ = 21 we
get West’s device, while the 12-machine is similar to a device studied by Smith
(but uses a different sorting algorithm). In order to sort the largest amount of
permutations, a sensible try is to set σ = 231: indeed a 231-stack constantly aims
to prevent the output of occurrences of 231, which is the well known requirement
that the input of a classical (increasing) stack has to satisfy in order to be sortable.

The thesis has the following structure:
In Chapter 3 we provide results that cover families of patterns by analyzing how

the choice of σ affects the structure of σ-sortable permutations. The most relevant
(and maybe surprising) is the proof that sets of σ-sortable permutations that are
not permutation classes are enumerated by the Catalan numbers, contained in
Chapter 3. If σ-sortable permutations form a class, it is the set of permutations
avoiding 132 and the reverse of σ. On the other hand, sets that are not classes
are really hard to characterize and enumerate. Amongst them, the only patterns
we are able to solve are 123 and 132. A description of 231-sortable permutations
remains unknown, as well as their enumeration. We then prove that σ-sortable
permutations avoid a bivincular pattern ξ of length three, unless σ is the skew-sum
of 12 minus a 231-avoiding permutation.

The pattern 123 is solved in Chapter 4. We provide a step by step construction
of 123-sortable permutations that leads to a bijection with a class of pattern-
avoiding Schröder paths, whose enumeration is known.

The pattern 132 is solved in Chapter 5. We first characterize 132-sortable
permutations as those avoiding 2314 and a mesh pattern of length three. The ob-
tained description is then exploited to determine their geometric structure. More
precisely, we show that 132-sortable permutations satisfy specific geometric con-
straints in the grid decomposition induced by left-to-right minima. Finally, we
define a bijection with a class of pattern-avoiding set partitions, encoded as re-
stricted growth functions.

In Chapter 6 we discuss a variant of pattern-avoiding machines where the first
stack is (σ, τ)-avoiding, for a pair of patterns σ and τ . We solve several pairs
of patterns of length three. We then determine an infinite family of pairs where
sortable permutations are enumerated by the Catalan numbers.

In Chapter 7 we analyze some dynamical aspects of the σ-stack operator. We
introduce the notions of σ-sorted permutations, σ-fertility and effective pattern.
We characterize effective patterns, then we describe σ-sorted permutations and σ-
fertilities of the 123-machine.

In Chapter 8 we consider a natural generalization of σ-machines where input
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sequences and forbidden patterns are chosen in different sets of words, namely
Cayley permutations, ascent sequences and modified ascent sequences. In each
case, we characterize sets of σ-sortable sequences that are classes. By encoding the
action of σ-stacks as labeled Dyck paths, we then determine for which patterns σ
the σ-stack operator is bijective on the set of Cayley permutations.

Many aspects concerning pattern-avoiding machines are yet to be investigated
thoroughly. Some of them, as well as some open problems and questions that
motivated our research, will be mentioned at some point in the manuscript.
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Chapter 1

Preliminaries

1.1 Patterns on words and permutations

The notion of pattern avoidance plays a central role in our work. A detailed
introduction on patterns on words can be found in the books [14] and [37], while
the paper [12] contains a brief presentation on permutation patterns. In this
section we recall some basic definitions and notations from the literature.

Let N∗ be the set of words over the alphabet N = {1, 2, . . . } of positive integers.
Let x = x1 · · ·xn and y = y1 · · · yk be words in N∗, with k ≤ n. We say that y is a
pattern of x if there exist indices i1 < i2 < · · · < ik such that xi1xi2 · · ·xik is order
isomorphic to y, that is:

• xis < xit if and only if ys < yt; and

• xis = xit if and only if ys = yt,

for each pair of indices s, t. The subsequence xi1 · · · xik is an occurrence of y in x
and we write xi1 · · ·xik ' y. If y is a pattern of x, we say that x contains y
and we write x ≥ y. Otherwise, we say that x avoids y (or x is y-avoiding) and
write x 6≥ y.

Let X be a set of words. Given a pattern y, let X(y) be the set of words
in X that avoid y. For a set of patterns Y , denote by X(Y ) the set of words
in X that avoid every pattern in Y . If Y = {y1, . . . , yt}, we write X(y1, . . . , yt)
instead of X ({y1, . . . , yt}). We use the notation Xn to denote the set of words of
length n in X, where the length of a word is the number of letters it contains. The
sets Xn(y) and Xn(Y ) are defined accordingly.

Let n ≥ 1 and let [n] = {1, . . . , n}. A permutation of length n is a rearrange-
ment x = x1 · · ·xn of the integers [n]. Sometimes we regard the empty word as
the only permutation of length zero. Denote by S the set of all permutations. A
permutation x = x1 · · ·xn is often represented by plotting the points {(i, xi)}i in

1
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the Euclidean plane, as in Figure 1.1. The identity (or increasing) permutation
of length n is idn = 12 · · ·n. The anti-identity (or decreasing) permutation of
length n is ain = n · · · 21.

Pattern containment is a partial order on the set S and the resulting poset
is called the permutation pattern poset. A set of permutations C which is closed
downwards under this partial order is said to be a permutation class (or simply
class). To be closed downwards means that for any pair of permutations x, y,
if x ∈ C and y ≤ x, then y ∈ C too. A permutation class C is characterized
completely by the minimal permutations in the complementary set S \ C. The
basis of C is the set of minimal avoided patterns. Note that the basis of a class is
an antichain due to minimality. Conversely, if B is an antichain, then S(B) is a
class with basis B. A class C is finitely based if its basis is finite. If the basis is a
singleton, then C is said to be principal.

Example 1.1. Let y = 231. A permutation x = x1 · · · xn contains y if there are
three elements xi, xj, xk, with i < j < k, such that xk < xi < xj. It is well known
that there are cn 231-avoiding permutations of length n, where cn = 1

n+1

(
2n
n

)
is

the n-th Catalan number (sequence A000108 in [45]).

1.1.1 Generalized pattern avoidance

Pattern containment has been generalized in a variety of ways. Some notions of
non-classical pattern are recalled below.

A barred permutation [50] is a permutation where some entries are barred. Let y
be a barred permutation and let y′ be the classical permutation underlying y, that
is the permutation obtained from y by ignoring the bars. Let w be the permutation
order isomorphic to the non-barred entries of y. For a permutation x, to avoid
the barred pattern y means that every occurrence of w in x is part of a classical
occurrence of y′.

A bivincular pattern [17] of length k is a triple (y, S, T ), where y is a per-
mutation of length k and S, T are subsets of {0, 1, . . . , k}. An occurrence of the
bivincular pattern (y, S, T ) in a permutation x = x1 · · ·xn is then a classical oc-
currence xi1 · · ·xik of y such that:

• is+1 = is + 1, for each s ∈ S;

• jt+1 = jt + 1, for each t ∈ T ,

where {xi1 , . . . , xik} = {j1, . . . , jk}, with j1 < · · · < jk; by conventions, i0 = j0 = 0
and ik+1 = jk+1 = n + 1. The set S identifies contraints of adjacency on the
positions of the elements of y, while the set T , symmetrically, identifies constraints
on their values. An example of bivincular pattern is depicted in Figure 1.1.
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Figure 1.1: The plot of the permutation x = 25341, on the left. The bivin-
cular pattern σ = (132, {2}, {2}), in the center. And the mesh pattern µ =
(132, {(0, 2), (2, 0), (2, 1)}), on the right. Note that, for example, 253 is an occur-
rence of µ in x, but it is not an occurrence of σ, since the element 4 breaks the
adjacency constraint between 5 and 3. On the other hand, 254 is not an occurrence
of σ in π due to the element 3 falling in the shaded square (2, 1).

Mesh patterns generalize both classical and bivincular patterns. A mesh pat-
tern [18] of length k is a pair (y, A), where y is a permutation of length k
and A ⊆ {0, 1, . . . , k} × {0, 1, . . . , k} is a set of pairs of integers. The elements
of A identify the lower left corners of shaded squares in the plot of y. An occur-
rence of the mesh pattern (y, A) in the permutation x is then an occurrence of the
classical pattern y in x such that no elements of x are placed into a shaded square
of A. An example of mesh pattern is depicted in Figure 1.1.

In analogy with classical pattern avoidance, we use the same notation S(σ)
(respectively Sn(σ)) to denote the set of permutations (respectively permutations
of length n) that avoid σ, where σ is either a barred, bivincular or mesh pattern.
Notice that S(σ) is not necessarily a permutation class when σ is a non-classical
pattern.

1.2 Statistics and decompositions

Let x = x1 · · ·xn be a permutation of length n.
The trivial bijections on Sn are inverse, reverse and complement. The inverse

of x is its usual group theoretic inverse I(x). In one-line notation, I(x) = y1 · · · yn
is defined by yi = j, if xj = i, for each i = 1, . . . , n. The reverse of x is R(x) =
xn · · ·x1. The complement of x is C(x) = (n + 1 − x1) · · · (n + 1 − xn). The
three trivial bijections behave well with respect to pattern involvement, that is x
contains y if and only if O(x) contains O(y), for O ∈ {I,R, C}. As shown in [47],
the trivial bijections generate the full automorphism group of the permutation
pattern poset.

An inversion is a pair of indices (i, j) such that i < j and xi > xj. Equivalently,
it is an occurrence xixj of the pattern 21.

An ascent is an index i ∈ {1, . . . , n−1} such that xi < xi+1. If i is an ascent, we
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will sometimes abuse notation and say that xixi+1 is an ascent. If xi+1 = xi + 1,
the ascent is said to be consecutive. Denote by Asc(x) the set of ascents of x
and let asc(x) = |Asc(x)|. Descents, consecutive descents, the set Des(x) and the
statistic des(x) are defined symmetrically.

An entry xi is a left-to-right minimum (briefly ltr-minimum) of x if xi <
xj, for each j < i. The set of ltr-minima of x is denoted with LTRmin(x)
and ltrmin(x) = |LTRmin(x)|. The left-to-right minima decomposition (briefly
ltr-min decomposition) of x is x = m1B1m2B2 · · ·mtBt, where t = ltrmin(x),
LTRmin(x) = {m1, . . . ,mt} and the block Bi contains the entries of x that are
placed strictly between mi and mi+1, for i = 1, . . . , n− 1. The last block Bt con-
tains the entries that follow mt. Note that mt = 1. The notion of left-to-right
maximum (briefly ltr-maximum), the set LTRmax(x), its size ltrmax(x) and the
ltr-max decomposition x = M1B1M2B2 · · ·MtBt are defined analogously. In this
case, we have Mt = n.

Example 1.2. Let x = 471823769. Then Asc(x) = {1, 3, 5, 6, 8}, where the only
consecutive ascent is 5. The ltr-minima of x are LTRmin(x) = {4, 1}, thus its
ltr-min decomposition is x = m1B1m2B2, where m1 = 1, B1 = 7, m2 = 1 and
B2 = 823769.

Let k ≥ 1. The k-inflation of x at xi is the permutation of length n + k − 1
obtained from x by replacing xi with the consecutive increasing sequence xi(xi +
1) · · · (xi + k − 1) and suitably rescaling the remaining elements. For instance,
the 3-inflation of 45132 at 3 is 6713452.

Let x = x1 · · ·xn and y = y1 · · · yk. The direct sum of x and y is the per-
mutation x ⊕ y = xy′, where y′ is obtained from y by adding n to each of its
entries. In other words, x⊕ y is the only permutation w1 · · ·wn+k of length n+ k
such that wi < wj for each i ≤ n and j ≥ n + 1, w1 · · ·wn is an occurrence of x
and wn+1 · · ·wn+k is an occurrence of y. The skew sum x 	 y is obtained anal-
ogously by requiring wi > wj for each i ≤ n and j ≥ n + 1. A permutation is
layered if it is the direct sum of decreasing permutations. As it is well known [5],
a permutation w is layered if and only w ∈ S(231, 312) and there are 2n−1 lay-
ered permutations of length n, for each n ≥ 1. Similarly, a permutation w is
co-layered if w ∈ S(132, 213), or, equivalently, if w is the skew sum of increasing
permutations.

1.3 Sets of integer sequences

Let x = x1 · · ·xn be a word of length n on N.
The word x is a Cayley permutation if {x1, . . . , xn} = [max(x)]. Equivalently,

if x contains at least one copy of each integer from one to its maximum value. De-
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note by Cay the set of Cayley permutations. Cayley permutations are sometimes
called normalized words [27], but also surjective words1, Fubini words or packed
words. A Cayley permutation x = x1 · · ·xn with maximum equal to k encodes
an ordered set partition (ballot) of [n] with k blocks B1B2 . . . Bk, where i ∈ Bxi

for each i. Cayley permutations are enumerated, with respect to their length, by
the Fubini numbers (sequence A000670 in [45]). For example, the only Cayley
permutation of length one is 1, there are three Cayley permutations of length two,
namely 11, 12 and 21, and thirteen Cayley permutations of length three, which
are 111, 112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321. Given a
word x = x1 · · ·xk on N, there is exactly one Cayley permutation std(x) that
is order isomorphic to x. We call std(x) the standardization of x. The se-
quence std(x) is obtained by replacing each occurrence of the smallest integer
of x with 1, each occurrence of the second smallest integer with 2 and so on.
For instance, we have std(1381365) = 1251243. Notice that, if x is a word on N
and y is a Cayley permutation, then xi1 · · ·xik is an occurrence of y in x if and
only if std(xi1 · · · xik) = y. In other words, the set Cay is the set of standardized
sequences, and thus it is is the set where patterns live naturally in.

The word x is a restricted growth function (briefly rgf) if x1 = 1 and xi+1 ≤
1 + max{x1, . . . , xi}, for each i ≤ n − 1. Similarly to Cayley permutations, a
rgf x = x1 · · ·xn naturally encodes the partition of [n] with blocks B1B2 . . . Bk,
where xi is the index of the block that contains i. Thus rgfs are enumerated by
the Bell numbers (sequence A000110 in [45]). The set of rgfs is denoted by RGF.
Note that RGF is a subset of Cay. Pattern avoidance on rgfs was discussed
in [19,35,44].

The word x is an ascent sequence if x1 = 1 and xi+1 ≤ 2 + asc (x1 · · ·xi), for
each i ≤ n − 1. Ascent sequences were introduced2 in [17] as an auxiliary class
of objects that embodies the structure of (2 + 2)-free posets, certain chord dia-
grams and Fishburn permutations. Fishburn permutations are those avoiding the
bivincular pattern f = (231, {1}, {1}) (see Figure 1.2). Roughly speaking, ascent
sequences encode bijectively the so called active sites of Fishburn permutations.
All these objects are enumerated by the Fishburn numbers (sequence A022493
in [45]). Denote by A the set of ascent sequences. Due to the intrinsically com-
plicated structure of ascent sequences, pattern avoidance on A seems to be rather
more complicated than its analogue on permutations [10, 22, 30, 40]. Modified as-
cent sequences [17] are a slightly more manageable version of A. Let x = x1 · · ·xn
be an ascent sequence and let Asc(x) = {i1, . . . , ik}. The modified ascent sequence
of x is obtained as follows. For j = 1, . . . , k, increase by one each entry that pre-
cedes position ij and is greater than or equal to xij+1. The resulting sequence ω(x)

1Cayley permutations encode surjective endofunctions [n] 7→ [k].
2In the original work ascent sequences are 0-based, that is x1 = 0 and xi+1 ≤ 1+asc (x1 · · ·xi).
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A
φ

//

ω
��

F

MA
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77

Figure 1.2: The pattern f, on the left. How the bijections φ, ω and φ′ are related,
on the right.

is the modified sequence of x. Let MA be the set of modified ascent sequences.
This procedure can be easily inverted, thus the map ω : A→MA defined this way
is a size-preserving bijection between A and MA. The maps φ and ω, as well as
the bijection φ′ : MA→ F obtained by composition, are depicted in Figure 1.2. A
recursive construction of MA can be found in [22]: There is exactly one modified
ascent sequence of length one, namely the single letter word 1. If n ≥ 2, then
every x ∈MAn is of one of two forms, depending on whether its last letter a forms
an ascent with the penultimate letter:

• x = ya, with 1 ≤ a ≤ b, or

• x = y′a, with b < a ≤ 2 + asc(y),

where y ∈ MAn−1, b is the last letter of y, and y′ is obtained from y by
increasing by one each entry that is less than or equal to a. One of the main
advantages of working with modified sequences is that MA is a subset of Cay,
contrary to A. For example, the sequence x = 12124 is an ascent sequence, but
not a Cayley permutation. Its modified sequence is ω(x) = 13124, which is indeed
an element of Cay. Some more tools and notions on (modified) ascent sequences,
as well as a characterization of MA as a subset of Cay (in terms of patterns), will
be provided in Section 8.2.1.

In all the above sets, we either include or rule out the empty word (of length
zero), according to the situation. Moreover, when possible, we extend the notions
introduced in Section 1.1 and Section 1.2 accordingly.

1.4 Lattice paths

Lattice paths are amongst the most studied combinatorial objects due to the huge
amount of combinatorial issues they can model. They are well suited to be studied
with the elegant symbolic approach, which often leads directly to enumerative
results. In this thesis, we always consider lattice paths in the first quadrant of the
discrete plane Z × Z, starting at the origin and ending on the x-axis. The length
of a lattice path is its final abscissa. A lattice path is encoded by the word that
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records its steps, going from left to right. A labeled lattice path is a path where
each step has a label. According to what kind of steps are allowed, we obtain
several families of lattice paths.

A Dyck path is a lattice path that uses two kinds of steps (of length one),
namely up steps U = (+1,+1) and down steps D = (+1,−1). The height of a
step is its final ordinate. The height of a Dyck path is the maximum height of its
steps. Observe that in a Dyck path the number of U steps matches the number
of D steps, since the path ends on the x-axis. Moreover, in each prefix the number
of U steps is at least equal to the number of D steps (due to the path never falling
below the x-axis). These two properties characterize the set of words on {U, D}
that encode Dyck paths. For each up step U, there is a unique matching down
step D defined as the first D step after U that has height one less than U. Since each
step has length one, the length of a Dyck path is equal to the total number of its
steps, which is two times the number of D (or equivalently U) steps. Given a Dyck
path P of semilength n, the reverse path of P is the path R(P ) obtained from P
by taking the symmetric path with respect to the vertical line x = n. Equivalently,
the path R(P ) is encoded by the word obtained by taking the reverse of the word
that encodes P and then transforming each U in D and viceversa. It is well known
that Dyck paths, according to their semilength, are enumerated by the Catalan
numbers. An example of Dyck path is depicted in Figure 1.3. The set of Dyck
paths of semilength n is denoted by Dn, while D denotes the set of all Dyck paths.

Remark 1.1. It is well known that any non-empty Dyck path P has a unique
decomposition P = UQ1DQ2, where Q1 and Q2 are two (possibly empty) Dyck
paths. Since the D step that follows Q1 is the first return on the x-axis, this is
called the first-return decomposition of P .

A Motzkin path is defined exactly like a Dyck path, except that one additional
kind of step is allowed: the horizontal step H = (1, 0). Again the length of a
Motzkin path is equal to the total number of its steps. Motzkin paths, according to
their length, are enumerated by the Motzkin numbers (sequence A001006 in [45]).
The sets of Motzkin paths and Motzkin paths of length n are denoted by M
and Mn, respectively. If we allow horizontal steps H2 = (2, 0) of length two,
instead of H, we obtain Schröder paths. The length of a Schröder path is then
the sum of the number of its up steps and down steps plus twice the number of
its double horizontal steps. Schröder paths are enumerated by the large Schröder
numbers (sequence A006318 in [45]).

Pattern containment can be naturally extended to lattice paths by considering
the words that encode them. The arising notion of classical pattern is rather dull on
words on small alphabets (such as {U, D}). Thus we always consider consecutive
patterns on paths, that is where occurrences of a pattern must be realized by
consecutive letters. From here on, we omit the word consecutive in this context.
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Figure 1.3: The Dyck path UUDUUDDDUD, of semilength 5 and with 3 peaks. The
corresponding 213-avoiding permutation 25341 is obtained by reading the bold
labels from left to right. Dotted lines connect matching steps.

A valley is an occurrence of the pattern DU. A peak is an occurrence of UD. In
a Dyck path, the number of peaks is equal to one plus the number of valleys. A
double rise is an occurrence of UU. An ascending run of length k is a maximal
occurrence of Uk. A descending run of length k is a maximal occurrence of Dk.
Given a pattern q and a set of paths X, we use the notation X(q) to denote the
set of paths in X that avoid the (consecutive) pattern q. Pattern avoidance on
lattice paths was studied, for instance, in [6] and [25].

Example 1.3. The following is a well known bijection between 213-avoiding per-
mutations (of length n) and Dyck paths (of semilength n). Given a Dyck path P
of semilength n, label its down steps from right to left with the integers [n] in
increasing way. Then assign to each up step the label of its matching down step.
Finally, read the labels of the up steps from left to right. The resulting sequence
is a 213-avoiding permutation and this correspondence is bijective. For instance,
the Dyck path UUDUUDDDUD is mapped to the 213-avoiding permutation 25341 (see
Figure 1.3). An equivalent version of the above bijection, but using 132-avoiding
permutations, was given by Krattenthaler in [39].

1.5 Generating trees and succession rules

Generating trees and succession rules are very powerful tools in enumerative and
bijective combinatorics. Roughly speaking, a generating tree describes a com-
binatorial construction for a family of discrete objects. Each node of the tree
produces a certain set of children, and each child has a unique father, that is it is
uniquely obtained from a node situated at the previous level. Typically, starting
from the root, each level of the tree contains all the objects of the family that have
a given size, which is equal to one more than the size of the objects contained
in the previous level. Generating trees are well encoded by succession rules. A
succession rule naturally translates the combinatorial construction into something
algebraic, which can be exploited to effectively enumerate the objects it represents.
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Succession rules were introduced by West in [51] and [52]. Below we recall some
basic definitions, referring the interested reader to [7] and [31] for a more detailed
discussion.

A generating tree is a rooted, labeled tree with the property that the label of
each node determines the labels of its children. A generating tree is recursively
encoded by a succession rule consisting in:

• the label of the root, and

• a set of rules (productions) that explain how to derive, given any node of the
tree, the number of its children and their labels.

Example 1.4. To illustrate the above constructions, we show a very well known
succession rule for Dyck paths (see for instance [7]). Given a Dyck path P , let k
be the number of points with integer coordinates contained in the last descending
run of P . Then we obtain k Dyck paths of semilength one more by inserting a
new peak UD either before a D step of the last descending run or at the end of the
path. The resulting paths are the children of P . Note that every Dyck path P of
semilength at least two is uniquely constructed this way. Since this construction
depends solely on the parameter k, we shall use that integer as label of a given Dyck
path. This generation of Dyck paths is then encoded via the following succession
rule:

Ω :

{
(2)

(k) −→ (2)(3) · · · (k)(k + 1)

The root is the path UD, which has label (2) and children UDUD, with label (2),
and UUDD, with label (3). Note that Dyck paths of semilength n are in one-
to-one correspondence with nodes at level n, supposing the root is at level one.
Therefore Ω is a generating rule for Dyck paths according to their semilength.

Example 1.5. The following succession rule generates Motzkin paths according
to their length.

Ω :


(1)

(1) −→ (2)

(k) −→ (1)(2) · · · (k − 1)(k + 1), k ≥ 2.

Observe that different generating rules may encode the same family of objects
and the same generating rule may encode different families. Notice also that a
bijection between two combinatorial families is immediately obtained by showing
that both families are generated by the same succession rule, a fact that will be
used in the rest of this thesis.



Chapter 2

Stack sorting and
pattern-avoiding machines

2.1 Classical stack sorting

A stack is a data structure equipped with two operations: push, which adds an
element to the stack, at the top; and pop, which extracts from the stack the most
recently pushed element. The problem of sorting permutations using a stack,
together with its many variants, has been widely studied in the literature. The
reader is referred to [13] for an extensive survey on stack-sorting disciplines. The
original version was proposed by Knuth in [38]: given an input permutation π,
scan its elements from left to right. Every time an element of π is scanned, either
push it into the stack or pop the top element of the stack, placing it into the
output. The goal is to describe and enumerate sortable permutations. To sort a
permutation means to produce a sorted output, that is the identity permutation.
As stated in the next lemma, which will be repeatedly used throughout the rest
of this thesis, an elegant solution to the original problem can be given in terms of
pattern avoidance.

Lemma 2.1. [38] Let π be a permutation. Then π is sortable using a classical
stack if and only if π avoids the pattern 231.

More in general, one can sort permutations using a connected network of data
structures [48]. The input permutation is scanned and its entries flow through the
network, going from one device to another, according to how the network is built
(or equivalently to which sorting procedure is used). In this framework, some of
the most interesting questions that arise are the following.

• How to characterize those permutations that can be sorted by a given net-
work?

10
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• How to enumerate sortable permutations?

• What is the behavior of specific sorting algorithms?

A reasonable way to pick a specific procedure consists in imposing static con-
straints on a stack, for instance by restricting the set of sequences it is allowed to
contain. It is also interesting to search for the most efficient sorting algorithm. An
algorithm is optimal if it sorts every sortable permutations. In other words, if it
has the same sorting power as the device used in its full generality (with a non-
deterministic sorting procedure). Finding optimal strategies is often a hard task.
Regarding classical stack sorting, it is very well known that there is an optimal
algorithm, known as stacksort, which is defined by the two following key properties
(see Listing 1 in Appendix D):

1. the elements in the stack are maintained in increasing order, reading from top
to bottom; in other words, the stack tries to prevent an occurrence of 21 to be
output. This can be expressed by saying that a classical stack is increasing.

2. the algorithm is right-greedy, meaning that it always performs a push op-
eration, unless this violates the previous condition. The expression “right-
greedy” refers to the usual (and most natural) representation of this problem,
depicted in Figure 2.1.

Although the classical problem is rather simple, it becomes much harder as
soon as one allows several stacks connected in series. Quite recently, Pierrot and
Rossin [43] proved that the problem of deciding whether a given permutation is
sortable by two stacks in series is polynomial. Nevertheless, almost every other
related question remains unsolved. For example, it is known that sortable permuta-
tions form a class, but its basis is infinite [42], and still unknown. The enumeration
of sortable permutations is still unknown too. In the attempt of gaining a bet-
ter understanding of two stacks in series, some (simpler) variants of the problem
have been considered. In his PhD thesis [49], West considered two passes through
a classical (i.e. increasing) stack, which is equivalent to perform a right-greedy
algorithm on two stacks in series. In [46], Smith considered a decreasing stack
followed by an increasing stack. Smith’s approach was pushed further in [21],
where the authors consider many decreasing stacks, followed by an increasing one.
More recently, Claesson, Ferrari and the current author [23] introduced an even
more general device consisting of two stacks in series with a right-greedy proce-
dure, where a restriction on the first stack is given in terms of pattern avoidance.
The present work of thesis is dedicated to the analysis of these devices, which we
call pattern-avoiding machines. Pattern-avoiding machines are defined formally in
Section 2.2, and discussed extensively in the following chapters.
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Figure 2.1: The usual representation of sorting with one stack, on the left. The
σ-machine, on the right.

Other than imposing restrictions on devices and sorting algorithms, one can
also allow a larger set of input sequences (see [2, 4, 27]). This line of research, on
pattern-avoiding machines, is investigated in Chapter 8.

2.2 Pattern-avoiding machines

Let Σ be a set of permutations.

Definition 2.1. A Σ-avoiding stack (or simply Σ-stack) is a stack that is not
allowed to contain an occurrence of the pattern σ, reading from top to bottom, for
each σ ∈ Σ.

Definition 2.2. The term Σ-machine refers to performing a right-greedy algo-
rithm on two stacks in series: a Σ-stack, followed by a 21-stack.

Recall that a 21-stack is simply a stack as normally used in classical stack-
sorting. Thus the Σ-machine consists in a pass through a Σ-avoiding stack, followed
by a pass of the resulting output through a classical stack. From now on, we will
assume that Σ does not contain the unit length permutation, since otherwise no
element could be pushed in the Σ-stack. For singletons and pairs of patterns, we
omit the brackets to ease notation. For example, if Σ = {σ}, we write σ-stack
and σ-machine. An illustration of the σ-machine is depicted in Figure 2.1, while
the corresponding algorithm is described formally in Listing 2 of Appendix D. The
sequence of operations performed by the 231-stack on input 2413 is represented in
Figure 2.2.

Next we introduce some tools and notations and prove some basic results re-
garding Σ-machines. A permutation π is Σ-sortable if the Σ-machine on input π
yields the identity permutation. The set of Σ-sortable permutations is denoted
by Sort(Σ). For n ≥ 1, denote by fΣ

n the cardinality of Sortn(Σ), that is the
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Figure 2.2: The action of the 231-stack on input 2413.

number of Σ-sortable permutations of length n. Let FΣ(t) =
∑
n≥1

fΣ
n t

n be the or-

dinary generating function of Sort(Σ). Given a permutation π, denote by SΣ(π)
the output of the Σ-stack on input π. Due to Lemma 2.1, since SΣ(π) is the input
of the (final) classical stack in the Σ-machine, a permutation π is Σ-sortable if
and only if SΣ(π) avoids the pattern 231. This basic fact allows us to determine
the Σ-sortability of an input permutation π by simply checking whether SΣ(π)
avoids 231 or not, ignoring the final stack. We highlight this remark in the next
lemma, which will be used repeatedly from now on.

Lemma 2.2. Let π be an input permutation for the Σ-machine. Then π is Σ-
sortable if and only if SΣ(π) avoids 231.

The next lemma shows that prefixes of Σ-sortable permutations are Σ-sortable.

Lemma 2.3. Let π = π1 · · · πn be a permutation of length n. Suppose that the
prefix π1 · · · πk is an occurrence of the pattern γ, for some 1 ≤ k ≤ n and γ ∈ Sk.
If π is Σ-sortable, then γ is Σ-sortable.

Proof. Observe that the behavior of the Σ-stack on the prefix π1 · · · πk does not
depend on the remaining entries πk+1 · · · πn of π. Moreover, it is the same as the
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behavior on γ, since the operations performed by the Σ-stack depend solely on the
relative order of the elements processed. Therefore SΣ(γ) avoids 231, or else SΣ(π)
would contain 231 too, contradicting the hypothesis that π is Σ-sortable.

Lemma 2.3 suggests a recursive construction for Sortn(Σ). Indeed every Σ-
sortable permutation is obtained by appending a new rightmost element to a Σ-
sortable permutation of length one less, and suitably rescaling the other elements.

As anticipated before, almost the entirety of this thesis is devoted to the anal-
ysis of Σ-machines. The combinatorics underlying these devices turns out to be
unexpectedly rich and deep, offering links with other discrete objects such as lat-
tice paths, set partitions and various families of integer sequences. Some of the
questions that motivate our research are reported below (in random order).

• Given a set of patterns Σ, how to characterize the set Sort(Σ) of Σ-sortable
permutations? Ideally, we wish to find geometric descriptions, recursive gen-
erations and characterizations in terms of pattern avoidance.

• Given a set of pattern Σ, what is the number of Σ-sortable permutations of
length n? To answer this question, we shall exploit an eventual structural
description of Sort(Σ), find a bijection with other discrete objects or provide
a generating tree for Sort(Σ).

• Are there properties of Σ that allow us to determine structural information
on Sort(Σ)? In this framework, our main result is a characterization of the
patterns σ such that Sort(σ) is a permutation class.

• Given n ≥ 1, what is the number of Wilf-classes of σ-sortable permutations
of length n? In other words, how many different counting sequences arise by
considering the sets Sort(σ), for each permutation σ ∈ Sn?

2.3 The σ-stack

Before moving on to the study of Σ-machines, we analyze σ-stacks separately.

Lemma 2.4. Let σ be a permutation of length k ≥ 2. Let π be a permuta-
tion of length n ≥ k − 2 and suppose that Sσ(π) is the increasing permutation.
Then π1π2 · · · πk−2 = n(n− 1) · · · (n− k + 3).

Proof. Since σ has length k, the elements π1 · · · πk−2 are pushed directly into the σ-
stack. Then they remain at the bottom of the σ-stack until the end of the sorting
process and thus they are the rightmost elements of Sσ(π).
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Theorem 2.5. Let π = π1 · · · πn be a permutation of length n and let σ ∈ Sk,
with k ≥ 2.

1. If σ = idk, then Sσ(π) is the increasing permutation if and only if π = ain
and n ≤ k − 1.

2. If σ = 21⊕ idt, then Sσ(π) is the increasing permutation if and only if π =
ait 	 α, for some α ∈ S(231).

3. In all the remaining cases, Sσ(π) is the increasing permutation if and only
if π = ai.

Proof. 1. Let σ = idk. If π = ain, for some n ≤ k−1, then Sσ(π) = R(π) = idn.
Conversely, suppose that Sσ(π) = id. If n ≤ k − 1, then it must be π = ain
due to Lemma 2.4. Otherwise, suppose, for a contradiction, that n ≥ k and
write π = π1 · · · πk−1πk · · · πn. Initially, the elements π1, . . . , πk−1 are pushed
into the σ-stack. If πkπk−1 · · · π1 ' σ, then πk < πk−1 and πk−1 is extracted,
which is a contradiction with the hypothesis that Sσ(π) is increasing. On the
other hand, if πk · · · π1 is not an occurrence of σ, then πk is pushed into the σ-
stack and thus Sσ(π) contains the substring πk · · · π1. But, since πk · · · π1 is
not an occurrence of σ = idk, the output Sσ(π) is not increasing, which
contradicts the hypothesis.

2. Let σ = 21 ⊕ idt. Suppose that Sσ(π) is the increasing permutation. By
Lemma 2.4, we have π1π2 · · · πt = n(n− 1) · · · (n− t+ 1). Thus π = ait 	 α.
We wish to show that α avoids 231. Observe that the elements π1 · · · πt
are pushed into the σ-stack at the beginning of the sorting process. Then,
since σ = 21⊕ idt, the behavior of the σ-stack with n, n− 1, . . . , n− t+ 1 at
the bottom is equivalent to the behavior of an empty 21-stack. Indeed the
elements n, n−1, . . . , n− t+1 play the role of idt in any potential occurrence
of σ = 21⊕ idt. In other words, the σ-stack with n, n−1, . . . , n− t+ 1 at the
bottom performs a pop operation if and only if an empty 21-stack performs
a pop operation. Therefore α is 21-sortable, which in turn is equivalent to α
avoiding 231 by Lemma 2.1. Similarly, it is easy to prove that if π = ait	α,
with α a 231-avoiding permutation, then Sσ(π) is increasing.

3. Finally, suppose that σ is not increasing and σ is not the direct sum of 21
and the identity permutation. Since σ is not increasing, we have Sσ(ai) =
R(ai) = id. Conversely, suppose that π 6= ai. Write π = π1 · · · πiπi+1 · · · πn,
where i is the leftmost ascent of π. We show that Sσ(π) is not increasing.
Since σ 6= id and π1 > π2 > · · · > πi, the elements π1, . . . , πi are pushed
into the σ-stack. Now, if πi+1 enters the σ-stack above πi, then πi+1 pre-
cedes πi in Sσ(π), with πi+1 > πi, thus Sσ(π) is not increasing. Otherwise,
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suppose that πi is extracted from the σ-stack before πi+1 enters. That is,
the σ-stack contains k − 1 elements, say πj2 , . . . , πjk , with j2 < · · · < jk,
such that πi+1πjk · · · πj2 is an occurrence of σ. Notice that πjk < · · · < πj2
due to our assumptions. Without losing generality, choose the minimal in-
dices j2, . . . , jk such that πi+1πjk · · · πj2 is an occurrence of σ, so that πi+1

enters the σ-stack above πjk−1
(and thus πi+1 precedes πjk−1

in Sσ(π)). Now,
if πi+1 < πjk−1

, then σ = 21 ⊕ idk−2, which is a contradiction. Otherwise,
if πi+1 > πjk−1

, then Sσ(π) is not increasing, as desired.



Chapter 3

The σ-machine

This chapter is devoted to the analysis of σ-machines. Most1 of the results pre-
sented here are contained in [23]. Patterns σ of length two are discussed in Sec-
tion 3.1. In Section 3.2 we prove the main result of this chapter, which is a
characterization of those patterns σ where the set of σ-sortable permutations is a
class. We prove the surprising fact that there are cn patterns σ of length n such
that Sort(σ) is not a class. If instead Sort(σ) is a class, we explicitly determine its
basis, which is either the singleton {132} or the pair {132,R(σ)}. In Section 3.3
we define a bivincular pattern ξ and show that σ-sortable permutations avoid ξ,
unless σ is the skew-sum of 12 minus a 231-avoiding permutation. Permutations
avoiding ξ display a rather regular geometric structure. This suggests that the
cases where Sort(σ) is not contained in S(ξ) could be the most challenging to
be solved. In Section 3.4 we investigate the decreasing pattern σ = ai and show
that Sort(aik) is in bijection with Dyck paths of height at most k − 1. Finally, in
Section 3.5 we suggest some open problems and lines of research.

3.1 Patterns of length two

We start by analyzing the 12- and 21-machines.
Let σ = 12. Recall that the 12-machine consists in a pass through a 12-stack,

followed by a pass through a classical stack. Notice that this device is substantially
different from the one considered in [46], which is constituted by the same stacks,
but allows a non-deterministic (and thus more powerful) sorting procedure.

Theorem 3.1. Let π be a permutation. If π is 12-sortable, then S12(π) = ai.
Moreover, we have:

Sort(12) = S(213).

1With the exception of Section 3.3.
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Therefore f 12
n = cn, the n-th Catalan number.

Proof. Suppose that π is 12-sortable. We show that S12(π) = ai and π avoids 213
by induction on the length of π. This is trivial for the unit length permutation.
Let π be a permutation of length two or more. Write π as π = L1R, where L
is the prefix of π preceding 1 and R is the suffix of π following 1. Since 1x is
an occurrence of 12 for each x ∈ L, 1 enters the 12-stack only when the 12-stack
is empty. Similarly, 1 is extracted from the 12-stack only at the end, since y1
is not an occurrence of 12 for each y ∈ R. Therefore S12(π) = S12(L)S12(R)1.
By the inductive hypothesis, S12(L) and S12(R) are decreasing. Moreover, it
must be x > y for each x ∈ S12(L) and y ∈ S12(R), otherwise xy1 would be an
occurrence of 231 in S12(π), contradicting the hypothesis that π is 12-sortable.
Therefore S12(π) = ai, as wanted. Finally, suppose, for a contradiction, that π
contains an occurrence bac of 213. If bac is contained in L, then S12(L) contains 231
by the inductive hypothesis and thus S12(π) contains 231, a contradiction with π
being 12-sortable. The same happens if bac is contained in R. On the other hand,
if b ∈ L and c ∈ R, then bc1 is an occurrence of 231 in S12(π), which is impossible.

Conversely, suppose that π is not 12-sortable, or, equivalently, that S12(π)
contains an occurrence bca of 231. We wish to show that π contains 213. Note
that necessarily b comes before c in π. Indeed a non-inversion in the output
necessarily comes from a non-inversion in the input, since the 12-stack cannot
repair inversions2. Moreover, b is extracted from the 12-stack before c enters. This
must be due to the presence of an element x, located between b and c in π, which
is smaller than b. More precisely, x is the next element of the input when b is
extracted. The three elements b, x and c are thus an occurrence of 213 in π, as
desired.

Next we consider the pattern 21. The 21-machine is equivalent to the device
considered by West in [50], where the following result is stated.

Theorem 3.2. [50] We have:

Sort(21) = S(3241, 35̄241).

Due to the presence of the barred pattern 35̄241, the set Sort(21) is not a
permutation class. For example, the 21-sortable permutation 35241 contains the
pattern 3241, which is not 21-sortable. On the other hand, Sort(12) is a class due
to Theorem 3.1. By looking at some data for permutations of length three or more,
it seems that the number of permutations σ such that σ-sortable permutations are
not a class is equal to the n-th Catalan number. We will prove this rather striking
fact in Section 3.2.

2If πi > πj , with i < j, then πi is extracted from the 12-stack before πj enters.
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3.2 Classes and non-classes of σ-sortable permu-

tations

Let σ be a permutation of length two or more. As one would expect, the σ-
sortability of a permutation π is strongly affected by how π is related to the
pattern σ defining the constraint of the stack. The permutation σ̂, defined below,
proves to be crucial.

Definition 3.1. Let σ = σ1 · · ·σk, with k ≥ 2. Then define σ̂ as the permutation:

σ̂ = σ2σ1σ3 · · · σk.

In other words, σ̂ is the permutation obtained from σ by interchanging the first
two elements σ1 and σ2.

Lemma 3.3. Let π be a permutation. If π contains R(σ), then Sσ(π) contains σ̂.

Proof. Let sksk−1 · · · s1 be the (lexicographically) leftmost occurrence ofR(σ) in π,
where k is the length of σ. Consider the action of the σ-stack on π. Initially, every
element of π is pushed into the σ-stack, until s1 is the next element of the input.
Now, before pushing s1 into the σ-stack, the element s2 has to be extracted,
since s1s2 · · · sk ' σ, with s2 · · · sk inside the σ-stack. On the other hand, s3 is
still in the σ-stack when s1 enters, otherwise π would contain another occurrence
of R(σ) strictly to the left of sksk−1 · · · s1, which is a contradiction. Thus s1 is
pushed into the σ-stack above s3 and Sσ(π) contains s2s1s3 · · · sk, which is an
occurrence of σ̂.

Lemma 3.4. Let π be an input permutation for the σ-machine.

1. If π avoids R(σ), then Sσ(π) = R(π). In this case, π is σ-sortable if and
only if π avoids 132.

2. If π contains R(σ), then Sσ(π) contains σ̂. In this case, if σ̂ contains 231,
then π is not σ-sortable.

Proof. 1. If π avoids R(σ), then the restriction of the σ-stack is never triggered.
Thus every element of π is pushed directly into the σ-stack and Sσ(π) =
R(π). In particular, π is σ-sortable if and only if R(π) avoids 231, or,
equivalently, π avoids 132.

2. Suppose that π contains R(σ). By Lemma 3.3, Sσ(π) contains σ̂. Therefore,
if σ̂ contains 231 then π is not σ-sortable.
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Corollary 3.5. For each permutation σ, we have:

S (132,R(σ)) ⊆ Sort(σ).

Proof. It is an immediate consequence of the first item of Lemma 3.4.

Theorem 3.6. Let σ be a permutation. If σ̂ contains 231, then:

Sort(σ) = S(132,R(σ)).

Therefore Sort(σ) is a class with basis either {132,R(σ)}, if R(σ) avoids 132,
or {132}, otherwise.

Proof. Following Corollary 3.5, all we need to prove is that Sort(σ) ⊆
S(132,R(σ)). Suppose that π is σ-sortable. If π contains R(σ), then Sσ(π)
contains σ̂ by Lemma 3.4. But then σ̂ contains 231 by hypothesis, contradicting
the fact that π is σ-sortable. Otherwise, suppose that π avoids R(σ), but con-
tains 132. Due to the same Lemma 3.4, we have Sσ(π) = R(π), which contains 231,
a contradiction with π being σ-sortable.

Corollary 3.7. Let k ≥ 3. Then:

Sort(aik) = S(132, idk).

In particular, the set of 321-sortable permutations is a class with basis {132, 123}.

Proof. It follows immediately from Theorem 3.6, since âik = (k− 1)k(k− 2) · · · 21
contains an occurrence (k − 1)k1 of 231.

Theorem 3.6, which is a rather straightforward consequence of Lemma3.4, gives
a sufficient condition for the set Sort(σ) to be a class. Next we show that this
condition is also necessary.

Theorem 3.8. If σ̂ avoids the pattern 231, then Sort(σ) is not a permutation
class.

Proof. The case by case analysis of Table 3.1 and Corollary 3.7 show that the
theorem holds for patterns σ of length three. Now suppose that σ has length at
least four. It is not hard to realize that the permutation 132 is not σ-sortable,
since Sσ(132) = 231. Next we show that, under the hypothesis that σ̂ avoids 231,
it is always possible to construct a permutation α such that α contains 132, but α
is σ-sortable. This proves that Sort(σ) is not closed downwards, as desired. Let σ =
σ1σ2 · · ·σk. We distinguish two cases, according to whether σ1 < σ2 or σ1 > σ2.

1. If σ1 < σ2, define α = σ′kσ
′
k−1 · · ·σ′3zσ′2σ′1, where:
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• z = σ1;

• σ′i =

{
σi, if σi < σ1;

σi + 1, otherwise.

Notice that zσ′2σ
′
1 is an occurrence of 132. We show that α is σ-sortable

by providing a detailed analysis of the behavior of the σ-machine on in-
put α. Initially, the elements of α are pushed into the σ-stack until σ′1 is
the next element of the input. In particular, both the additional element z
and σ′2 can be safely pushed: indeed σ′2z · · ·σ′k−1σ

′
k is not an occurrence of σ,

since σ1 < σ2, whereas σ′2 > z. Now, before σ′1 enters the σ-stack, the
element σ′2 is extracted. At this point, σ′1 can enter without violating the
restriction, again because σ2 > σ1, whereas z < σ′1, and so σ′1zσ

′
3 · · ·σ′k is not

an occurrence of σ. The output of the σ-stack is then Sσ(α) = σ′2σ
′
1zσ

′
3 · · ·σ′k.

We wish to show that Sσ(α) avoids 231. Since σ̂ avoids 231 by hypothesis,
and σ′2σ

′
1σ
′
3 · · ·σ′k is an occurrence of σ̂, any potential occurrence of 231 nec-

essarily involves the additional element z. In particular, it is easy to observe
that z can be neither the smallest nor the biggest element of such a pattern,
because z < σ′1 < σ′2 and z is the third element of Sσ(α). Finally, if z were
the first element of an occurrence zσ′jσ

′
l of 231 in Sσ(α), then σ1σjσl would

be an occurrence of 231 in σ̂, contradicting the hypothesis.

2. If σ1 > σ2, define α = σ′kσ
′
k−1 · · ·σ′3σ′2σ′1z, where:

• z = σ2 + 1;

• σ′i =

{
σi, if σi ≤ σ2;

σi + 1, otherwise.

Observe that σ′2σ
′
1z is an occurrence of 132. As for the previous case, we

now describe what happens when α is processed by the σ-machine. The first
element that cannot be pushed into the σ-stack is σ′1, which forces σ′2 to be
extracted. Successively both σ′1 and z can enter the σ-stack, since zσ′1σ

′
3 · · ·σ′k

is not an occurrence of σ: indeed σ1 > σ2, whereas z < σ′1. Therefore
the output of the σ-stack is Sσ(α) = σ′2zσ

′
1σ
′
3 · · ·σ′k. Again any potential

occurrence of 231 in Sσ(α) must involve the additional element z. However z
cannot be the smallest element of a pattern 231, because it is the second
element of Sσ(α). Moreover, if z were the first element of a 231, then σ2

would be the first element of an occurrence of 231 in σ̂, which is forbidden.
Finally, if z were the largest element of a 231, then σ′2 would be the first
element of such an occurrence, so also σ′1, which is greater than both σ′2
and z, would be the largest element of an occurrence of 231 which does not
involve z, giving again a contradiction.
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σ σ-sortable permutation Non-σ-sortable pattern

123 4132 132

132 2413 132

213 4132 132

231 361425 1324

312 3142 132

321 class

Table 3.1: Classes and non-classes of σ-sortable permutations, for patterns σ of
length three.

In each of the two cases considered, we proved that Sσ(α) avoids 231, thus α is
a σ-sortable permutation that contains the non σ-sortable pattern 132, as desired.

Corollary 3.9. For every permutation σ of length three or more, the set Sort(σ)
is a permutation class if and only if σ̂ contains the pattern 231.

Corollary 3.10. The permutations σ for which Sort(σ) is not a permutation class
are enumerated by the Catalan numbers.

Proof. Such permutations are in bijection with S(231), which is known to be
enumerated by the Catalan numbers.

What we have proved so far assures that Sort(σ) is a permutation class if and
only if σ̂ contains the pattern 231. In this case, Sort(σ) = S (132,R(σ)), hence
the basis of Sort(σ) has exactly two elements if and only if R(σ) avoids 132, or,
equivalently, if σ avoids 231. Next we enumerate those patterns σ such that the
basis of Sort(σ) has two elements.

Lemma 3.11. Let σ = σ1 · · ·σk, with k ≥ 3, and suppose that R(σ) avoids 132.
Then σ̂ contains the pattern 231 if and only if σ1σ2σ3 is an occurrence of 321.

Proof. Observe that, since σ avoids 231 by hypothesis, an occurrence of 231 in σ̂ =
σ2σ1σ3 · · ·σk must involve both σ1 and σ2, respectively as the first and the second
element of the pattern, with σ2 < σ1.

Suppose that σ̂ contains an occurrence σ2σ1σi of 231, for some i ≥ 3. If σ3 > σ2,
then i > 4 and thus σ2σ3σi is an occurrence of 231 in σ, which is a contradiction.
Therefore we have σ3 < σ2 and σ1σ2σ3 is an occurrence of 321, as desired.

Conversely, if σ1σ2σ3 is an occurrence of the pattern 321, then clearly σ2σ1σ3

is an occurrence of 231 in σ̂.
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Proposition 3.12. Let n ≥ 1. Define An = {π ∈ Sn(231) : π1π2π3 ' 321} and
let an = |An|. Then, for each n ≥ 2, we have an = cn − 2cn−1. In particular, the
generating function of the sequence (an)n≥0 is:

A(x) =
1− 4x+ 2x2 − (1− 2x)

√
1− 4x

2x
.

Proof. Suppose that n ≥ 2. Define the sets:

Fn = {π ∈ Sn(231) : π1 < π2}

and
Gn = {π ∈ Sn(231) : π1 > π2, π2 < π3} ,

so that:
Sn(231) = An∪̇Fn∪̇Gn.

Let fn = |Fn| and gn = |Gn|. Since |Sn(231)| = cn, we have an = cn−(fn+gn). We
now show that fn = gn = cn−1 by providing bijections between Fn and Sn−1(231),
as well as between Gn and Sn−1(231). The desired enumeration follows.

• If π ∈ Fn, then it must be π1 = 1, otherwise π1π21 would be an occurrence
of 231 in π. Define the map f : Fn → Sn−1(231), where f(π) is obtained
from π by removing π1 = 1 and subtracting one to the remaining entries. It
is easy to realize that f(π) ∈ Sortn(231) and that f is an injection. More-
over, if τ ∈ Sn−1(231), then adding a new minimum at the beginning (and
rescaling the other elements) cannot create any occurrence of 231, so f is
also surjective.

• If π ∈ Gn, then it must be π2 = 1, otherwise it would be π2π31 ' 231
in π, a contradiction. We thus define g : Gn → Sn−1(231) such that g(π) is
obtained from π by removing π2 = 1 and rescaling the remaining elements.
Again it is clear that g(π) ∈ Sn(231) and that g is an injection. Finally,
if τ ∈ Sn−1(231), then the permutation π obtained from τ by adding a new
minimum in the second position avoids 231. Indeed a potential occurrence
of 231 in π should involve the added element π2, and so π2 would be either
the first or the second element of such an occurrence. But this is impossible
since π2 = 1. Therefore g is a bijection between Gn and Sn−1(231), as desired.

Let us now compute the generating function A(t) =
∑

n≥1 ant
n. Let C(t) =

(1−
√

1− 4t)/(2t) be the generating function for the Catalan numbers. We have:
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A(t) =
∑
n≥0

an+2t
n+2 =∑

n≥0

cn+2t
n+2 − 2t

∑
n≥0

an+1t
n+1

= C(t)− t− 1− 2t(C(t)− 1) =

C(t)(1− 2t) + t− 1,

from which

A(t) =
1− 4t+ 2t2 − (1− 2t)

√
1− 4t

2t
,

as desired.

The sequence (an)n≥0 is recorded (with offset two) as sequence A002057 in [45].
The first terms are 0, 0, 1, 4, 14, 48, 165, 572, 2002. An alternative expression for its
generating function is given by A(t) = t2C(t)4, although we are not able to provide
a combinatorial explanation of this fact.

We end this section by collecting some enumerative results concerning classes
of σ-sortable permutation with basis of cardinality two (see Appendix B). A direct
combinatorial argument can be used in order to prove each of these results, as we
show in the following example. In fact, due to Theorem 3.6, each of these classes is
a subclass of S(132) of the form S(132,R(σ)), and thus its generating function is
rational. A constructive proof of this fact can be found in [41], which provides an
algorithm to compute the generating function in all such cases. A clear and succint
description of the algorithm (in the context of representing catalan structures as
arch systems) is given in [3].

Example 3.1. Let σ = 421356. Then Sort(σ) = S(132, 653124) due to The-
orem 3.6. Given π ∈ Sn(132, 653124), write π = LnR, where L is the prefix
of π that precedes n and R is the suffix of π that follows n. Notice that, since π
avoids 132, we have L > R, i.e. x > y for each x ∈ L and y ∈ R (otherwise
it would be xny ' 132). Now, we can partition S(132, 653124) according to
whether L is increasing or not in the above decomposition of π. If L is increasing,
then π ∈ S(132, 653124) if and only if R ∈ S(132, 53124). Indeed any occurrence
of 53124 in R would realize an occurrence of 653124 together with n. Conversely,
if L is increasing, then the elements corresponding to 53124 in any occurrence
of 653124 in π must belong to R. Similarly, if L contains at least one descent,
then π ∈ S(132, 653124) if and only if R ∈ S(132, 3124). Let G(t) =

∑
k≥0 gkt

k

be the generating function of S(132, 53124) and let H(t) =
∑

k≥0 hkt
k be the gen-

erating function of S(132, 3124). Let F (t) = F 421356(t) and fn = f 421356, for n ≥ 0.
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Then, due to the above discussion:

fn+1 =
n∑
k=0

1 · gn−k +
n∑
k=0

(fk − 1)hn−k.

By summing over n, we get:

1

t
(F (t)− 1)) =

1

1− t
G(t) + F (t)H(t)− 1

1− t
H(t).

Now, it is easy to compute the generating functions G(t) = t2−3t+1
3t2−4t+1

and H(t) =
1−2t

1−3t+t2
. Then, solving the above equation yields:

F (t) =
2t5 − 16t4 + 29t3 − 23t2 + 8t− 1

9t5 − 33t4 + 46t3 − 30t2 + 9t− 1

The resulting sequence starts 1, 2, 5, 14, 42, 131, 416, 1329, 4247, 13544, . . . and does
not appear in [45].

3.3 A set of challenging patterns

For the rest of this chapter, denote by ξ = (132, {0, 2}, ∅) the bivincular pattern
depicted in Figure 3.1. The main result of this section is a proof that Sort(σ) is
always a subset of S(ξ), unless σ is the skew sum of 12 with a non-empty 231-
avoiding permutation β. The geometric structure of permutations avoiding ξ can
be described precisely, as we show in what follows. This suggests that the family
of σ-machines, when σ = 12 	 β, could contain the more challenging σ-machines
to be studied. The shortest such pattern is 231. In fact, as suggested by some
data, the 231-machine seems to be the σ-machine that can sort the largest amount
of permutations. For example, it is the only one that can sort every permutation
of length three.

We start by providing a geometric description of S(ξ), from which its enu-
meration follows easily. Let π = π1 · · · πn ∈ S(ξ) and let π1 = t + 1, for
some t ≥ 0. Let {πi1 , . . . , πit} be the set of elements of π that are smaller than π1,
with i1 < i2 < · · · < it. For j = 1, . . . , t, let bj = πij . Finally, write:

π = π1B0b1B1b2B2 · · · btBt,

where Bj = πij+1 · · · πij+1−1, for j = 0, 1, . . . , t. We refer to this as the first-element
decomposition of π; for j = 0, 1, . . . , t, Bj is said to be the j-th block of π in its
first-element decomposition.
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ξ = R(ξ) =

Figure 3.1: Bivincular patterns ξ = (132, {0, 2}, ∅) and R(ξ).

Lemma 3.13. Let π = π1B0b1B1b2B2 · · · btBt be the first-element decomposition
of π. Then π avoids ξ if and only if Bj is increasing for each j.

Proof. Suppose that π avoids ξ and let j ≥ 0. By definition of first-block decom-
position, all the elements contained in Bj are greater than π1. Therefore Bj is
increasing, since otherwise a descent in Bj would result in an occurrence of ξ. On
the other hand, suppose that πuπvπv+1 is an occurrence of ξ in π. Note that u = 1
and πv > πv+1, with v ≥ 2 and πv+1 > π1. Thus πv and πv+1 are in the same
block Bj, for some j, and Bj is not increasing.

Corollary 3.14. If π avoids ξ and π1 = 1, then π is the increasing permutation.

Theorem 3.15. For n ≥ 0 and t = 0, 1, . . . , n− 1, define St
n(ξ) by

St
n(ξ) = {π ∈ Sn(ξ) : π1 = t+ 1}.

Let fn,t be the cardinality of St
n. Then:

fn,t = t!(t+ 1)n−t−1.

In particular, |Sn(ξ)| =
n−1∑
t=0

t!(t+ 1)n−t−1 (sequence A129591 in [45]).

Proof. Any permutation π ∈ St
n(ξ) can be constructed as follows. The t elements

of π that are smaller than π1 = t + 1 can be chosen freely, since they cannot
contribute to an occurrence of ξ. This can be done in t! distinct ways. On the other
hand, by Lemma 3.13, elements greater than π1 must be arranged in increasing
blocks. In other words, for each of them it is sufficient to choose the index of the
(increasing) block it belongs to. So there are t + 1 possibilities for each of the
remaining n− t− 1 elements. Therefore fn,t = t! · (t+ 1)n−t−1, as desired.

Theorem 3.16. Let σ be a permutation of length at least three. The following
three conditions are equivalent:

(1) Sort(σ) 6⊆ S(ξ).

(2) σ = 12	 β, for some β ∈ S(231).
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(3) σ̂ ∈ S(231) and R(σ) /∈ S(ξ).

Proof. Let σ = σ1 · · ·σk, with k ≥ 3.

• We start by proving that (2) and (3) are equivalent. Suppose that σ = 12	β,
for some β = β1 · · · βs ∈ S(231), where s = k − 2. Observe that σ̂ = (s +
2)(s+ 1)β avoids 231, since β does so. Finally, we have R(σ) = βs · · · β1(s+
2)(s+ 1), thus βs(s+ 2)(s+ 1) is an occurrence of ξ in R(σ), as wanted.

Conversely, suppose that σ̂ avoids 231 and R(σ) contains ξ, or, equivalently,
σ contains R(ξ). The pattern R(ξ) is depicted in Figure 3.1. Let σiσi+1σk be
an occurrence of R(ξ) in σ. Note that the classical pattern underlying R(ξ)
is 231, but σ̂ avoids 231 by hypothesis. Therefore it has to be i = 1, other-
wise σiσi+1σk would still be an occurrence of 231 in σ̂, which is impossible.
Thus σk < σ1 < σ2. Now, observe that σu < σ1 for each u > 2. Other-
wise, if σu > σ1 for some 2 < u < k, then σ1σuσk would be an occurrence
of 231 in σ̂, which is again impossible. Therefore σ = σ1σ2 	 β = 12 	 β,
where β = σ3 · · ·σk. Finally, β avoids 231 because σ̂ does so, as wanted.

• Next we wish to prove that (3) implies (1). Suppose that σ̂ avoids 231
and R(σ) contains ξ. We show that R(σ) is σ-sortable (and contains ξ),
thus R(σ) ∈ Sort(σ) \ S(ξ). Due to Lemma 3.4, we have Sσ(R(σ)) = σ̂.
Finally, σ̂ avoids 231, so R(σ) is σ-sortable, as desired.

• Finally, we show that (1) implies (2), which completes the proof. Suppose
that there is a permutation π = π1 · · · πn such that π is σ-sortable and π con-
tains ξ. Let π1πjπj+1 be an occurrence of ξ in π. Let β = σ3 · · ·σk. We show
that σ2 > σ1 > σu for each u ≥ 3 and β is a 231-avoiding permutation. Ob-
serve that σ̂ avoids 231. Otherwise it would be Sort(σ) = S(132,R(σ)) due
to Theorem 3.6 and thus Sort(σ) ⊆ S(ξ), contradicting the hypothesis. In
particular, β avoids 231, as wanted. Now, since π1 is the last element that ex-
its the σ-stack, πj must be extracted before πj+1 enters, else πj+1πjπ1 would
be an occurrence of 231 in Sσ(π), contradicting the fact that π is σ-sortable.
Let us consider the instant when πj is extracted (and πj+1 is the next el-
ement of the input). Since a pop operation is performed by the σ-stack,
the σ-stack must contain k − 1 elements α2α3 · · ·αk (reading from top to
bottom) such that πj+1α2 · · ·αk is an occurrence of σ. Without losing gener-
ality, we can suppose that α3 is still in the σ-stack when πj+1 enters: this can
be achieved, for instance, by taking the “deepest” such sequence of elements
in the σ-stack. Note that Sσ(π) contains the occurrence α2πj+1α3 · · ·αk
of σ̂. Now, if αv > πj+1 for some v ≥ 3, then αv 6= π1 (because π1 < πj+1)
and πj+1αvπ1 is an occurrence of 231 in Sσ(π), a contradiction with π be-
ing σ-sortable. Therefore, since πj+1α2 · · ·αk ' σ, we have σu < σ1 for



28

k Sequence {f aik
n }n OEIS

3 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 A011782

4 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946 A001519

5 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525 A124302

6 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542 A080937

7 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, 54320 A024175

Table 3.2: Enumerative results for aik-sortable permutations, with k = 3, 4, 5, 6, 7,
starting from permutations of length one.

each u ≥ 3. To conclude the proof, we have to show that σ1 < σ2. Suppose,
for a contradiction, that σ1 > σ2. Then σ1 = k is the maximum element
of σ, since σ1 > σu for each u ≥ 3. Now, consider the instant immediately
after πj is pushed into the σ-stack (and πj+1 is the next element of the input).
Note that πj+1 > α2, because we are assuming σ1 > σ2 and πj+1α2 ' σ1σ2.
But πj > πj+1, thus πjα2 · · ·αs is an occurrence of σ contained in the σ-stack,
which is impossible.

Corollary 3.17. Let σ = 12	 β, for some non-empty and 231-avoiding permuta-
tion β. Let π = π1 · · · πn be a σ-sortable permutation with π1 = 1. Then π is the
identity permutation.

Proof. It follows from Lemma 3.14 and Theorem 3.16.

Corollary 3.17 fails if Sort(σ) 6⊆ S(ξ). For example, the permutations 12354,
12453, 12534 and 12543 are 3421-sortable.

3.4 The decreasing pattern

In this section we provide some enumerative results for the sets Sort(aik), high-
lighting a link with a class of pattern-avoiding lattice paths. The results of the
previous section allow us to directly characterize σ-sortable permutations when σ
is the decreasing pattern. Indeed, by Theorem 3.6 and for each k ≥ 1, we
have Sort(aik) = S(idk, 132). The sequences that enumerate these sets, for k ≤ 7,
are reported in Table 3.2.

If n < k, then obviously Sortn(aik) = Sn(132) and thus f aik
n = cn. Therefore

the rows of Table 3.2 tend to the sequence of Catalan numbers. By looking at the
reference in [45] for small values of k, we notice that {f aik

n }n counts the number
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of Dyck paths of height at most k − 1. A formal proof can be obtained by using
the bijection between Dyck paths and 132-avoiding permutations mentioned in
Example 1.3. Indeed, if π is a 132-avoiding permutation and P is the Dyck path
associated to π, then the maximum length of an increasing sequence in π is equal to
to the height of P . Finally, a permutation π avoids idk if and only if the maximum
length of an increasing sequence in π is at most k − 1. Dyck paths of bounded
height are rather well studied objects (see for example [15,33]).

We now compute the generating function of {f aik
n }n by exploiting this con-

nection with Dyck paths of bounded height. Let Fk(t) = F aik(t). Given a Dyck
path P , consider its first-return decomposition P = UQ1DQ2, for some (possibly
empty) Dyck paths Q1, Q2 (see Remark 1.1). If P has height at most k, then Q2

has height at most k, whereas Q1 has height at most k − 1. This provides a
recursive description of Fk(t) with respect to the semilength:{

F0(t) = 1;

Fk(t) = 1 + tFk−1(t)Fk(t), k ≥ 1.

A consequence of the above recurrence is that Fk(t) is rational, for all k; indeed
we have

Fk(t) =
Gk(t)

Gk+1(t)
,

where G0(t) = G1(t) = 1 and Gk(t) satisfies the recurrence

Gk+1(t) = Gk(t)− tGk−1(t).

Solving this recurrence yields

Gk(t) =
∑
i≥0

(
n− 1

i

)
(−t)i.

The polynomials Gk(t) are sometimes called Catalan polynomials (see for in-
stance [26]); the table of their coefficients is sequence A115139 in [45].

3.5 Open problems

In this chapter we provided some general results regarding σ-machines and sets
of σ-sortable permutations. As a consequence of Corollary 3.9, we are able to tell
when Sort(σ) is a permutation class by simply checking whether σ̂ contains 231 or
not. If Sort(σ) is a class, Theorem 3.6 states that Sort(σ) = S(132,R(σ)), thus the
set of σ-sortable permutations is completely determined (and enumerated). On the
other hand, Theorem 3.16 is currently the only known general result when Sort(σ)
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σ Sequence {fσn}n OEIS

213 1, 2, 5, 16, 62, 273, 1307, 6626, 35010, 190862

231 1, 2, 6, 23, 102, 496, 2569, 13934, 78295, 452439

312 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245 A202062

Table 3.3: Enumerative data for unsolved patterns of length three, starting from σ-
sortable permutations of length one.

is not a permutation class. It would be interesting to provide more results in order
to find structural information on the sets Sort(σ), when they are not permutation
classes.

Open Problem 3.1. Find geometric properties of the set Sort(σ), when Sort(σ)
is not a permutation class.

More specifically, the only non-class for patterns σ of length two is Sort(21),
which is the classical case of West’s 2-stack sortable permutations. Moving on to
patterns of length three, the only permutation class is Sort(321) = S(132, 123).
We provide a characterization of the sets Sort(123), in Chapter 4, and Sort(132),
in Chapter 5. The remaining three patterns are yet to be solved. Some related
data are reported in Table 3.3. A potentially interesting link with ascent sequences
is the following: in Chapter 5 we prove that Sort(132) is Wilf-equivalent to the
set A(312, 321) of ascent sequences avoiding 312 and 321 (see [10]), while Sort(321)
seems to be Wilf-equivalent to A(312).

Open Problem 3.2. Characterize and enumerate the sets Sort(213), Sort(231)
and Sort(312).

If we consider the family of σ-machines from the enumerative perspective, it
would be nice to investigate deeper the notion of Wilf-equivalence that naturally
arises by looking at how many different sequences of σ-sortable permutations can
be obtained for patterns σ of a fixed length. Formally, we say that two pat-
terns σ and τ of length k are PAM-Wilf-equivalent (where PAM stands for pattern-
avoiding machine) if the sets Sort(σ) and Sort(τ) are Wilf-equivalent in the usual
sense. Denote by wk the number of PAM-Wilf classes of length k.

Open Problem 3.3. Compute the number of PAM-Wilf classes, that is the se-
quence {wk}k≥1.

A slightly easier version of the above open problem can be obtained by con-
sidering the sets Sort(σ) which are permutation classes only. Some data (for
which the author is extremely grateful to Christian Bean and Anders Claesson)
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indicate that the first terms of the resulting sequence, starting from length two,
are 1, 1, 2, 5, 11, 25, 55, 126, 283 (not in [45]). For example, there are 11 such Wilf-
classes for patterns σ of length six: 10 of them are reported in Appendix B and the
last one consists of those patterns σ such that Sort(σ) is a class and σ ≥ 132, that
is where Sort(σ) = S(132) and the counting sequence is the sequence of Catalan
numbers.



Chapter 4

The 123-machine

This chapter is devoted to the analysis of the 123-machine. The paper [24] contains
most of the results presented in this part of the thesis. Since, as a consequence
of Corollary 3.9, the set Sort(123) is not a permutation class, this pattern is con-
siderably more challenging that the decreasing pattern of the same length. If
we compute the first terms of the sequence {f 123

n }n≥1, we get 1, 2, 5, 13, 35, 99, ...,
which suggests a match with A294790 in [45]. This sequence enumerates, for ex-
ample, Schröder paths avoiding the (consecutive) path UH2D (see [25]). Our goal
is to provide a length-preserving bijection between 123-sortable permutations and
this family of pattern-avoiding paths. To do that, we follow a step-by-step pro-
cedure, aiming to progressively reduce the problem of characterizing 123-sortable
permutations to more manageable subsets of Sort(123).

4.1 Structural description of Sort(123)

We start by dealing with 123-sortable permutations that start with an ascent.

Lemma 4.1. Let π ∈ Sn. If π is 123-sortable, then π2 ≤ π1 + 1.

Proof. Suppose, for a contradiction, that π2 > π1 + 1. Then there exists an
index i ≥ 3 such that π2 > πi > π1. Note that the first two elements π1 and π2 are
extracted from the 123-stack only when the 123-stack is emptied at the end of the
sorting process. Indeed, since π1 < π2 (and π2 enters above π1), they cannot be
both part of an occurrence of 123. Thus πiπ2π1 is an occurrence of 231 in S123(π),
contradicting the hypothesis that π is 123-sortable.

Let us now partition Sort(123) according to Lemma 4.1: permutations starting
with a consecutive ascent π2 = π1 + 1, and permutations starting with a descent.
The next step consists in showing that inflating the first element of a 123-sortable
permutation does not affect its 123-sortability.

32
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Lemma 4.2. Let π be a permutation of length n and let π′ be the permutation
(of length n+ 1) obtained from π by 2-inflating π1. Then π is 123-sortable if and
only if π′ is 123-sortable.

Proof. Observe that, by hypothesis, the first two elements of π′ are consecutive in
value (a and a+1, say) and the first one is smaller than the second one. Therefore,
during the sorting process, such two elements remain at the bottom of the 123-
stack (with a + 1 above a) until all the other elements of the input permutations
have exited it. Moreover, since a + 1 is above a, the behavior of the 123-stack is
not affected by the presence of a+ 1, meaning that a and a+ 1 can be considered
as a single element. As a consequence, the last two elements of S123(π′) are a+ 1
and a. Finally, it is easy to realize that S123(π) contains 231 if and only S123(π′)
contains 231.

Corollary 4.3. Let π be a permutation of length n and let π′ be the permutation
(of length n + k − 1) obtained from π by k-inflating π1, for some k ≥ 1. Then π
is 123-sortable if and only if π′ is 123-sortable.

Proof. This is a direct consequence of the previous corollary, by just iterating the
same argument.

Due to Lemma 4.1 and Corollary 4.3, in order to describe Sort(123) we just
need to investigate the sortability of permutations starting with a descent. Denote
by Sort↓(123) the set:

Sort↓(123) = {π ∈ Sort(123) : π1 > π2}.

By first characterizing and enumerating Sort↓n(123), we can easily recollect the
analogous results for Sort(123). Indeed by deflating the prefix of consecutive as-
cents (if there is one), we can always trace back the 123-sortability of a permutation
to another permutation in Sort↓(123).

Lemma 4.4. Let π ∈ Sort↓n(123), with π1 = k. Then:

S123(π) = n(n− 1) · · · (k + 1)(k − 1) · · · 21k.

Proof. Let S123(π) = γ1γ2 · · · γn. Clearly γn = k. Now suppose, for a contradic-
tion, that the two elements u and v constitute an ascent in S123(π), with u < v
and v 6= k. We first show that v precedes u in π. Suppose in fact that this is not
the case, and focus on the instant when u is extracted from the 123-stack. Let a be
the next element of the input when this happens. Then there are two elements b, c
in the 123-stack, with b < c and b above c, such that abc ' 123. We distinguish
two cases.
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• u = b. In this case, we have a 6= v, and so v follows a in π. Therefore S123(π)
contains either the subword uav, which is impossible since u and v are sup-
posed to be consecutive in S123(π), or the subword uva, which is impossible
too since otherwise S123(π) would contain the pattern 231, contradicting the
fact that π is 123-sortable.

• u 6= b. In this case, S123(π) would contain the subword ubv, which is impos-
sible, again because u and v would not be consecutive.

Thus we can write π as π = kπ2 · · · v · · ·u · · · . Since u and v are consecutive
in S123(π), u must enter the 123-stack just above v. This implies, in particular,
that v > π1, otherwise u, v and π1 would constitute a forbidden 123 inside the 123-
stack. We also notice that, when u enters the 123-stack, at the bottom of the 123-
stack there is at least one element w < π1 just above π1. Indeed, either π2 is
still in the 123-stack (and in this case w = π2) or π2 has been forced to exit
by some w̃ < π2 < π1; in this case, w̃ replaces π2 just above π1. Iterating this
argument, we get the desired property. Summing up, when u enters the 123-
stack, the 123-stack itself contains the elements (from top to bottom) u, v, w, π1.
Now, it must be u > w, otherwise uwπ1 would be a forbidden 123 in the 123-
stack. Hence S123(π) contains the subword uvw ' 231 and π is not 123-sortable,
a contradiction.

Corollary 4.5. Let π ∈ Sort↓n(123) and suppose that π1 < n. Also, suppose
that πi = n, for some i ≥ 2. Then either πi−1 = n−1, if π1 6= n−1, or πi−1 = n−2,
if π1 = n− 1.

Proof. Notice that i ≥ 3: indeed i 6= 1 by hypothesis and i 6= 2 since π starts
with a descent. The element πi = n enters the 123-stack immediately above πi−1,
since pushing the maximum n into the 123-stack can never generate a forbidden
pattern 123. Moreover, n and πi−1 are extracted from the 123-stack together,
since n cannot play the role of the second element in a forbidden pattern inside
the 123-stack. Therefore, S123(π) contains the factor nπi−1. The desired result
follows then from Lemma 4.4.

Corollary 4.6. Let n ≥ 2. Then the set of permutations of Sort↓n(123) starting
with n is the set of 213-avoiding permutations of length n that start with n.

Proof. Let π ∈ Sort↓n(123), and suppose that π1 = n. As soon as n enters the 123-
stack, it makes the 123-stack act as a 12-stack for the rest of the permutation.
This means, formally, that since n is the maximum of π, from now on the restric-
tion of the 123-stack is triggered if and only if the restriction of a 12-stack that
ignores n is triggered. Therefore, by Theorem 3.1, π is 123-sortable if and only if
the permutation obtained from π by removing the first element avoids 213, which
is in turn equivalent to the fact that π avoids 213.
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A straightforward consequence of Corollary 4.6 is that there are cn−1 permuta-
tions in Sort↓n(123) that start with the maximum n. The remaining permutations
of Sort↓n(123) are precisely those having at least two ltr-maxima. Denote this
set by Sort↓n(≥2; 123). Similarly, denote by Sort↓n(i; 123) the set of permutations
of Sort↓n(123) having exactly i ltr-maxima.

Theorem 4.7. Let n ≥ 3. There exists a bijection:

ϕ : Sort↓n−1(123)→ Sort↓n(≥2, 123).

Moreover, the restriction of ϕ to Sort↓n−1(i; 123) is a bijection be-

tween Sort↓n−1(i; 123) and Sort↓n(i+ 1; 123).

Proof. Let π = π1 · · · πn−1 ∈ Sort↓n−1(123). Let ϕ(π) be obtained from π by
inserting n:

• either immediately after n− 1, if π1 6= n− 1, or

• immediately after n− 2, if π1 = n− 1.

First we show that ϕ is well defined, that is ϕ(π) ∈ Sort↓n(≥2; 123). We analyze
the two cases in the definition of ϕ separately.

• If π ∈ Sort↓n−1(1; 123) (that is π1 = n− 1), then by Lemma 4.4 we have:

S123(π) = (n− 2)(n− 3) · · · 1(n− 1).

Now we analyze what happens on input ϕ(π) after the first pass through
the 123-stack. Remember that the first element of ϕ(π) is n− 1 and that n
immediately follows n− 2; moreover, suppose that n− 2 is the i-th element
of ϕ(π). Therefore, the first i elements of π and ϕ(π) are equal, and so
they are processed exactly in the same way by the 123-stack. In particular,
since n − 2 is the first element of S123(π), when n − 2 enters the 123-stack,
all the previous elements of ϕ(π) are still inside the 123-stack. Immediately
after n − 2 enters the 123-stack, n enters the 123-stack as well, since it
cannot produce a forbidden pattern. Now we claim that n and n − 2 exit
the 123-stack together. This is trivial if n is the last element of the input. If
instead n is not the last element of ϕ(π), consider the next element πi+1. Such
element cannot enter the 123-stack, otherwise πi+1, n− 2 and n− 1 (which
is at the bottom of the 123-stack) would constitute a forbidden pattern 123.
Thus n− 2 must exit the 123-stack before πi−1 enters it, and this forces n to
exit as well. As a consequence of this fact, we have that:

S123(ϕ(π)) = n(n− 2)(n− 3) · · · 1(n− 1),

which avoids 231. Hence ϕ(π) is sortable.
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• If π ∈ Sort↓n−1(≥2; 123) (that is π1 = k 6= n − 1), then by Lemma 4.4 we
have:

S123(π) = (n− 1)(n− 2) · · · (k + 1)(k − 1) · · · 21k.

Finally, an analogous argument can be used to prove that:

S123(ϕ(π)) = n(n− 1)(n− 2) · · · (k + 1)(k − 1) · · · 21k,

and so that ϕ(π) is 123-sortable.

To complete the proof we now have to show that ϕ is a bijection. The fact
that ϕ is injective is trivial. To show that ϕ is surjective, consider the map ψ :
Sort↓n(≥2; 123)→ Sort↓n−1(123) which removes n from α ∈ Sort↓n(≥2; 123). Let α =
α1 · · ·αn and let i ∈ {3, 4, . . . n} such that αi = n. From Corollary 4.5, we have
that either αi−1 = n− 1 (if α1 6= n− 1) or αi−1 = n− 2 (if α1 = n− 1). Moreover,
Lemma 4.4 implies that:

S123(π) = n(n− 1) · · · (k + 1)(k − 1) · · · 21k,

with k = α1 ≥ 2. Therefore, when n enters the 123-stack, all the previous elements
are still inside the 123-stack. In particular, at the top of the 123-stack there are n
and αi−1. Now notice that, if n is forced to exit the 123-stack, this is due to the
fact that there exist j, h, l, with j < h ≤ i and l > i, such that αl, αh and αj form
an occurrence of 123. However, it cannot be h = i, since n cannot play the role of
the 2 in a 123. Similarly, it cannot be h = i − 1: in fact, if αi−1 = n − 1, then n
and n− 1 are consecutive in the 123-stack and so they play the same role in any
pattern; if instead αi−1 = n−2, then α1 = n−1 is at the bottom of the 123-stack,
and so n and n−2 play the same role in any forbidden pattern. As a consequence,
h < i−1, and so n and αi−1 are forced to leave the 123-stack together. This means
that basically n does not modify the behavior of the machine, and so:

S123(ψ(α)) = (n− 1)(n− 2) · · · (k + 1)(k − 1) · · · 21k,

that is ψ(α) is 123-sortable, as desired.

Corollary 4.8. For all n ≥ 3, |Sort↓n(≥2; 123)| = |Sort↓n−1(123)|.

4.2 Enumeration of Sort(123)

We now use the results proved in Section 4.1 to enumerate Sortn(123). Due to
Corollary 4.3, Corollary 4.6 and Theorem 4.7, any 123-sortable permutation π
which is not the identity permutation can be uniquely constructed as follows:
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1. choose α = α1α2 · · ·αk ∈ Sk(213), with α1 = k ≥ 2;

2. add h new maxima, k + 1, . . . , k + h, one at a time, using the bijection ϕ of
Theorem 4.7;

3. add n − k − h consecutive ascents at the beginning, by inflating the first
element of the permutation, according to Corollary 4.3.

As an example to illustrate the given construction, let π = 567148923. By
deflating the prefix of initial consecutive ascents, we get the permutation π′ =
5146723; due to Corollary 4.3, π is 123-sortable if and only if π′ is 123-sortable.
Now, π′ is (uniquely) obtained by adding two new maxima to the permuta-
tion π′′ = 51423, whose first element is its maximum, according to the bijection of
Theorem 4.7. Since π′′ avoids 213, we can finally conclude that π is 123-sortable.

Theorem 4.9. For all n ≥ 1, we have:

f 123
n = 1 +

n−1∑
h=1

(n− h)ch.

Proof. A permutation π ∈ Sortn(123) is either the identity or it is obtained by
choosing a permutation α in Sk(213) starting with its maximum k (with k ≥ 2)
and then (possibly) adding the remaining n − k elements according to the above
construction, i.e. adding new maxima and/or consecutive ascents at the beginning.
Concerning α, there are ck−1 possible choices, thanks to the observation following
Corollary 4.6. For the remaining elements, one has to choose, for instance, the
number of new maxima to add, which runs from 0 to n − k, so that the total
number of choices is n− k + 1. Summing on all possible values of k, we get:

f 123
n = 1 +

n∑
k=2

ck−1 · (n− k + 1) = 1 +
n−1∑
h=1

(n− h)ch,

as desired.

We end this section by computing the generating function F 123(t) of Sort(123).
As anticipated, we shall exploit the link with pattern-avoiding Schröder paths.

Theorem 4.10. We have:

F 123(t) =
(1− t)2

1− 2t+ tC(t)
.
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Figure 4.1: The UH2D-avoiding Schröder path associated to the 123-sortable per-
mutation 567489132. Referring to the notations of Theorem 4.10, we have L = 56,
β = 7489132, and so r = s = 2. Moreover, α = 4132 and the associated Dyck
path is UDUUDUDD.

Proof. We start by providing a bijection f between 123-sortable permutations
of length n and UH2D-avoiding Schröder paths of semilength n − 1. Given π ∈
Sortn(123), decompose it as π = Lβ, where L is the (possibly empty) initial
sequence of consecutive ascents of π, deprived of the last element, and β is the
remaining suffix of π. Suppose that L has length r. Now repeatedly remove the
maximum from β until the remaining word β′ starts with its maximum. Denote
with s the number of elements removed this way. Then β′ is order isomorphic
to a 213-avoiding permutation α of length k + 1 = n − r − s, that starts with
its maximum. Removing the maximum from α results in another 213-avoiding
permutation ρ of length k. We can now describe the Schröder path f(π) associated
with π: it starts with r double horizontal steps and ends with s double horizontal
steps; in the middle, there is the Dyck path of semilength k associated to the 213-
avoiding permutation ρ through the bijection described in Example 1.3.

Next, as announced, we express the generating function of Sort(123) by ex-
ploiting the bijection f . In fact, the generic Schröder path avoiding UH2U either
consists of double horizontal steps only (so the generating function is (1 − t)−1),
or can be obtained by concatenating an initial sequence of double horizontal steps
(having generating function (1− t)−1) with a non-empty Dyck path (whose gener-
ating function is (C(t)−1) · t, where C(t) is the generating function of the Catalan
numbers and the additional factor t takes into account the removal of the starting
maximum from the permutation α above), finally adding a sequence of double
horizontal steps (again with generating function (1− t)−1). Summing up, we get:

F 123(t) =
1

1− t
+

1

1− t
(
t(C(t)− 1)

) 1

1− t
=

(1− t)2

1− 2t+ tC(t)
.



Chapter 5

The 132-machine

This chapter, whose paper version is [24], is devoted to the study of the 132-
machine. We prove that 132-sortable permutations are enumerated by the bino-
mial transform of Catalan numbers (sequence A007317 in [45]) by first character-
izing Sort(132) in terms of avoidance of a classical pattern and a mesh pattern.
Then we exploit this result to determine some geometric properties of Sort(132).
These ultimately lead to a bijection with the set of 12231-avoiding rgfs, whose
enumeration is a corollary of a much more general mechanism proposed by Jeĺınek
and Mansour in [35]. We then exhibit direct combinatorial proofs for the enumer-
ation of some patterns in the same Wilf-equivalence class as 12231, highlighting
connections with lattice paths and pattern-avoiding permutations. We enumerate
two of these patterns via a bijection with a family of labeled Motzkin paths, which
provide a combinatorial interpretation of a beautiful continued fraction for the
related counting sequence. Finally, by putting all these pieces together, we obtain
an independent proof of the enumeration of Sort(132).

5.1 Characterization of Sort(132)

We start by showing a useful decomposition lemma for the 132-stack.

Lemma 5.1. Let π be a permutation and let π = m1B1m2B2 · · ·mtBt be the
ltr-min decomposition of π. Then:

1. S132(π) = B̃1B̃2 · · · B̃tmtmt−1 · · ·m2m1, where each B̃i is a suitable rear-
rangement of the elements of Bi.

2. If π is 132-sortable, then x > y for each x ∈ Bi, y ∈ Bj, with i < j.

Proof. 1. For each x ∈ B1, m1xm2 ' 231, thus every element of B1 has to be
popped from the 132-stack before m2 enters. After that, we have m1 and m2

39
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Figure 5.1: The mesh pattern µ = (132, {(0, 2), (2, 0), (2, 1)})

on the 132-stack, with m1 > m2 and m2 above m1. Note that they cannot
both be part of a 132, therefore m2 remains in the 132-stack until the end
of the sorting process. Similarly, each element of B2 has to be extracted
before m3 enters, since m3xm2 ' 132 for each x ∈ B2. The same argument
holds for every mj with j ≥ 2.

2. Suppose there are two elements x, y such that x < y, x ∈ Bi and y ∈
Bj, with i < j. Then, as a consequence of the previous item, xymt is an
occurrence of 231 in S132(π), which is impossible since π is 132-sortable.

Lemma 5.2. Let π ∈ Sortn(132) and let π = m1B1m2B2 · · ·mtBt be its ltr-min
decomposition. Suppose that the next element of the input is x ∈ Bi, for some i.
Then the content of the 132-stack when read from bottom to top is:

m1m2 · · ·mix1x2 · · ·xs,

where {x1, . . . , xs} is a (possibly empty) subset of Bi such that x1 < x2 < · · · < xs.

Proof. The first i ltr-minima m1, . . . ,mi of π lie at the bottom of the 132-stack,
by Lemma 5.1. Then the remaining elements x1, . . . , xs of Bi in the 132-stack
must be in increasing order from bottom to top, for otherwise, if xh > x` for
some h < `, then S132(π) would contain x`xhmi ' 231, contradicting the 132-
sortability of π.

Next we provide a characterization of Sort(132) in terms of pattern avoid-
ance. For the rest of this section, denote by µ the mesh pattern µ =
(132, {(0, 2), (2, 0), (2, 1)}) depicted in Figure 5.1. A permutation π thus contains
an occurrence of µ if π contains an occurrence acb of the classical pattern 132 such
that:

• every element that precedes a in π is either smaller than b or greater than c;

• every element between c and b in π is greater than b.

Theorem 5.3. We have:

Sort(132) = S(2314, µ).
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Proof. We start by showing that Sort(132) ⊆ S(2314, µ). Let π =
m1B1m2B2 · · ·mtBt be the ltr-min decomposition of π. Suppose, for a contra-
diction, that π contains an occurrence bcad of 2314. When a enters the 132-stack,
at least one of b and c, call it x, has already been popped from the 132-stack, oth-
erwise we would get the forbidden pattern acb ' 132 inside the 132-stack. Hence,
by Lemma 5.1, S132(π) contains xdmt ' 231, violating the hypothesis that π
is 132-sortable. Next suppose that acb is an occurrence of 132 in π. We wish to
show that acb is part of an occurrence of either 3142, 2413 or 1423, thus proving
that π avoids µ. Let m(a) be the ltr-minimum immediately preceding the block
that contains a, or a itself if a is an ltr-minimum. Then m(a) ≤ a and m(a) exits
the 132-stack after b and c (by Lemma 5.1), so c has to be popped before b enters,
otherwise bcm(a) would be an occurrence of 231 inside S132(π). We consider the
following two cases. Note that a < b < c, so b, c are not ltr-minima in π.

• c ∈ Bi and b ∈ Bj, with i < j. In this case, mj < m(a) ≤ a, hence acmjb '
2413, which is one of the desired patterns.

• c and b are in the same block Bi. First suppose there is an ltr-minimum m =
m`, with ` < i, such that b < m < c; then m > m(a), so m precedes m(a)
in π and macb ' 3142, again one of the listed patterns. Otherwise, suppose
that, for every ltr-minimum m, either m < b or m > c and consider the
element w that immediately precedes b in π. We wish to show that w < b,
which will conclude the proof. Suppose, for a contradiction, that w > b
and let x1, x2, . . . , xs = w be the elements on the 132-stack, after w has
been pushed, that are not ltr-minima when we read from bottom to top. By
Lemma 5.2, we have x1 < x2 < · · · < xs; moreover xs = w > b, so there is a
minimum index u such that xu > b. Now observe that, for ` > u, all the ele-
ments x` are popped from the 132-stack before b enters, because bx`xu ' 132.
We also observe that necessarily xu ≤ c, otherwise c would already have been
popped and S132(π) would contain the pattern cxum(a) ' 231. We can now
assert that b is pushed onto the 132-stack immediately above xu. In fact,
x` < b for every ` < u; moreover, our hypothesis implies that either m < b
or m > c for every ltr-minimum m inside the 132-stack, therefore b can-
not be the first element of an occurrence of 231 (read from top to bottom)
that involves elements inside the 132-stack. However this results in an oc-
currence bxum(a) of 231 in S132(π), which again contradicts the hypothesis
that π is 132-sortable.

We have thus proved that Sort(132) ⊆ S(2314, µ). Next we show the opposite in-
clusion S(2314, µ) ⊆ Sort(132). Let π ∈ S(2314, µ). Suppose, for a contradiction,
that π is not 132-sortable, that is, S132(π) contains an occurrence bca of 231. Let
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again π = m1B1m2B2 · · ·mtBt be the ltr-min decomposition of π. By Lemma 5.1,
we have

S132(π) = B̃1B̃2 · · · B̃tmtmt−1 · · ·m2m1.

Since the ltr-minima are popped from the 132-stack in increasing order, neither b
nor c can be an ltr-minimum. Suppose that b ∈ Bi and c ∈ Bj, for some i ≤ j.
If i < j, then mibmjc ' 2314, which is forbidden. Suppose instead that i = j and

consider the leftmost ascent x < y in B̃i (indeed there is at least one ascent in B̃i,

since the elements b, c constitute a noninversion in B̃i). There are two possibilities.

• If y comes after x in π then x has to be popped before y is pushed onto
the 132-stack. Therefore, when x is popped, there are two elements u, v in
the 132-stack, with v above u, such that uvw ' 231, where w is the next
element of the input. If v 6= x, then also v is popped after x (for the same
reason), but this is a contradiction with the fact that x and y constitute an

ascent in B̃i. Thus we have v = x and uxw ' 231, which implies that w 6= y
and uxwy ' 2314 in π, contradicting the assumption that π avoids 2314.

• Suppose instead that y precedes x in π. Observe that y has to be on the 132-
stack when x enters, because S132(π) contains the ascent (x, y) (this fact will
be frequently used in the sequel). In this situation, miyx is an occurrence
of 132 in π. We now show that either miyx is an occurrence of µ or π
contains 2314. If there is an element z that precedes mi in π such that x <
z < y (so that zmiyx ' 3142), then z cannot be an ltr-minimum. In such
a case, in fact, by Lemma 5.1, z would be in the 132-stack below y when x
is pushed, but xyz ' 132, which is impossible due to the restriction of
the 132-stack. Instead, if z ∈ B` for some ` < i, then m`zmiy ' 2314.
Therefore we can assume that every element that precedes mi in π is either
smaller than x or greater than y. Finally, suppose that there is an element z
between y and x in π such that z < x, which gives an occurrence miyzx of
either 2413 or 1423. Then, since y is still in the 132-stack when x is pushed
and z precedes x in π, z enters the 132-stack above y, and so B̃I contains
either x . . . z . . . y or z . . . x . . . y, with z < x. However, both cases give a
contradiction, because (x, y) is the first ascent in S132(π).

Due to the presence of the mesh pattern µ (and in accordance with Theo-
rem 3.8), the set S(2314, µ) is not a permutation class. For instance, the 132-
sortable permutation 2413 contains the non 132-sortable pattern 132.
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5.2 A grid decomposition for Sort(132)

In the previous section we have proved that Sort(132) = S(2314, µ), obtaining
a precise description (in terms of generalized pattern avoidance) of 132-sortable
permutations. However, we are still not able to enumerate Sort(132) directly. In
this section we will thus investigate its geometric structure by refining the ltr-
minima decomposition as follows. Let π be a permutation of length n with t
ltr-minima and let π = m1B1m2B2 · · ·mtBt its ltr-min decomposition. Then:

• for j ≥ 1, the j-th vertical strip of π is Bj;

• for i ≥ 1, the i-th horizontal strip of π is Hi = {x ∈ π : mi < x < mi−1},
where m0 = +∞.

• for any two indices i, j, the cell of indices i, j of π is Ci,j = Hi ∩ Bj (note
that Ci,j is empty when i > j).

• the core of π is core(π) = B1B2 · · ·Bk, obtained from π by removing the
ltr-minima.

From now on, the content of each Bj, Hi, Ci,j will be regarded as a permuta-
tion. As an example, consider the permutation π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2.
Then (see Figure 5.2):

• π has six ltr-minima, namely 13, 10, 6, 3, 1;

• the vertical strips of π are B1 = 14 15 ' 1 2, B2 = 12 ' 1, B3 = 7 8 11 9 '
1 2 4 3, B4 = ∅ and B5 = 4 5 2 ' 2 3 1;

• the horizontal strips of π are H1 = 14 15 ' 1 2, H2 = 12 11 ' 2 1, H3 =
7 8 9 ' 1 2 3, H4 = 4 5 ' 1 2 and H5 = 2 ' 1;

• the nonempty cells of π are C1,1 = 14 15 ' 1 2, C2,2 = 12 ' 1, C2,3 = 11 ' 1,
C3,3 = 7 8 9 ' 1 2 3, C4,5 = 4 5 ' 1 2 and C5,5 = 2 ' 1;

• the core of π is core(π) = 14 15 12 7 8 11 9 4 5 2 ' 9 10 8 4 5 7 6 2 3 1.

The terminology introduced above refers to the graphical representation of π,
as illustrated in Figure 5.2.

In what follows we prove that the requirement of being 132-sortable imposes
precise constraints on the grid structure of a permutation: both the content of
strips and cells and the relative position of non-empty cells are affected.

Lemma 5.4. Let π be a 132-sortable permutation and suppose that the cell Ci,j is
nonempty, for some i, j. Then the cell Cu,v is empty for each pair of indices (u, v)
such that u < i and v > j1.

1That is when Cu,v is strictly northeast of Ci,j (see Figure 5.3).
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C3,4

B1 B2 B3 B4 B5

H1

H2

H3

H4

H5

Figure 5.2: The grid decomposition of π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2. The im-
age of π under the bijection of Theorem 5.13 is the rgf η(π) = 111223332345445.

Proof. Suppose there are two elements x ∈ Ci,j and y ∈ Cu,v such that u < i
and v > j. Then mixmvy ' 2314, which is impossible due to Theorem 5.3.

Lemma 5.5. Let π be a 132-sortable permutation and suppose that the cell Ci,j
contains an inversion x > y, where x precedes y in Ci,j. Then there is an element z
between x and y in π such that z < mi.

Proof. We refer to Figure 5.3 for a description of the statement of the lemma.
For x and y as above, we have mixy ' 132. In particular, x and y are in the
same cell Ci,j and mi is the corresponding ltr-minimum, hence every element w
preceding mi in π is greater than x (because w > mi−1 and x < mi−1). Therefore,
as a consequence of Theorem 5.3, there exists an element z between x and y in π
such that z < y. If z < mi, then we are done. Otherwise, if z > mi, we can repeat
the same argument using the occurrence mixz of 132, in which we have replaced y
with the element z that comes strictly before y in π; continuing in this way we
eventually find an element of π with the desired property.

Proposition 5.6. If π is 132-sortable, then Ci,j ∈ S(132, 213), for every i, j.

Proof. Suppose that Ci,j contains an occurrence acb of 132. By Lemma 5.5, there
exists an element z between c and b in π such that z < mi. In particular, miazb '
2314, which is a contradiction since π is 132-sortable (by Theorem 5.3). On the
other hand, if Ci,j contains an occurrence bac of 213, then (b, a) is an inversion in
the cell Ci,j and therefore, again by Lemma 5.5, there is an element z between b
and a in π with z < mi and mibzc ' 2314, a contradiction.
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Figure 5.3: The constructions of Lemma 5.4, on the left, and of Lemma 5.5, on
the right.

Proposition 5.7. If π is a 132-sortable permutation, then Hi ∈ S(132, 213), for
every i.

Proof. This is a consequence of Lemma 5.1 and Proposition 5.6.

Proposition 5.8. If π is 132-sortable, then core(π) ∈ S(213).

Proof. Suppose that π contains an occurrence bac of 213 that does not involve
any ltr-minimum and suppose that b ∈ Ci,j for some i, j. Note that b < c, so, by
Lemma 5.1, b and c must belong to the same vertical strip Bj. Now, if a ∈ C`,j,
with ` > i, then mibac ' 2314, which is a contradiction, since π is 132-sortable.
Therefore we must have a ∈ Ci,j. This results in an occurrence miba of 132, with b
and a both in the cell Ci,j; thus, by Lemma 5.5, there is an element z between b
and a in π such that z < mi and mibzc ' 2314, which is again a contradiction.

The results proved so far in this section provide necessary conditions that a
permutation has to satisfy in order to be 132-sortable. Now, since the prefix
of a σ-sortable permutation is always σ-sortable (see Lemma 2.3), if we remove
the last element from a 132-sortable permutation we get another 132-sortable
permutation of length one less. Equivalently, every 132-sortable permutation is
obtained from a 132-sortable permutation (of length one less) by inserting a new
rightmost element, and suitably rescaling the remaining ones. Our next goal is
to understand which integers are allowed for such an insertion, so to obtain a
recursive construction for the set Sort(132). For example, since the insertion of a
new minimum can never create either 2314 or µ, by Theorem 5.3, such an insertion
is always allowed. In all the other cases, we need to satisfy the requirements of
Lemma 5.4 and Propositions 5.7 and 5.8.

Let π be a 132-sortable permutation with t ltr-minima. Suppose we insert a
new rightmost element in a cell Ci,t of the last vertical strip. By Proposition 5.7,
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any horizontal strip Hi in a 132-sortable permutation avoids both 132 and 213, that
is Hi is co-layered. Therefore, if we wish to obtain a new co-layered permutation
by inserting a new rightmost element, there are exactly two possibilities:

1. min: to insert a new minimum in Ci,t (which is also a new minimum of the
horizontal strip Hi);

2. cons: to create a consecutive ascent2 in the two final positions of Ci,t.

We formalize this construction by introducing the notion of active cell. Let π
be a 132-sortable permutation with t ltr-minima. For i ≥ 1, the cell Ci,t is said to
be active if both the following conditions are satisfied:

(i) Cu,v is empty for each u, v such that u > i and v < t;

(ii) inserting a new rightmost element according to min does not create an oc-
currence of 213 in core(π).

Thanks to condition (i), we can equivalently express condition (ii) by saying
that the permutation

⋃
j≥i+1Cj,t is increasing. Moreover, as a consequence of

Lemma 5.4 and Proposition 5.8, if we insert a new rightmost element in a cell Ci,t
that is not active, then we get a non 132-sortable permutation. Othwerise, if Ci,t
is active, we wish to show that exactly one of the operations min and cons returns
a 132-sortable permutation. Let us consider two cases, according to whether Ci,t
is empty or not.

Proposition 5.9. Let π = π1 · · · πn be a 132-sortable permutation with t ltr-
minima and let Ci,t = γ1 · · · γk be a nonempty active cell of π. Let x = πn and
suppose x ∈ C`,t. Then:

1. by performing min on Ci,t we get a 132-sortable permutation π′ if and only
if ` > i;

2. by performing cons on Ci,t we get a 132-sortable permutation π′ if and only
if ` ≤ i.

Proof. 1. Suppose that ` < i and we want to insert a new rightmost ele-
ment γk+1 into Ci,t according to min. Assume, for a contradiction, that
the resulting permutation π′ is 132-sortable. The elements γk and γk+1 form
an inversion in Ci,t, so by Lemma 5.5 there exists an element z between γk
and γk+1 in π such that z < mi. Hence miγkzx ' 2314, which contradicts
the assumption that π is 132-sortable. Instead, if ` = i, that is, γk = x = πn,

2recall that an ascent πi < πi+1 is consecutive if πi+1 = πi + 1.
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then γkγk+1 is an inversion inside Ci,t such that γk and γk+1 are adjacent
in π. This implies that π is not 132-sortable (again as a consequence of
Lemma 5.5).

Conversely, suppose that ` > i and γk+1 is inserted into Ci,t according to min.
By Theorem 5.3, π ∈ S(2314, µ), so we just have to show that the permu-
tation π′ obtained after the insertion still avoids the two forbidden patterns.
If γk+1 plays the role of the 2 in an occurrence of 132, say acγk+1, then we
have either acxγk+1 ' 1423 or acxγk+1 ' 2413, which means that the selected
occurrence of 132 is not an occurrence of the mesh pattern µ. Otherwise,
suppose there is an occurrence bcaγk+1 of 2314 in π′. If mt = 1 precedes c
in π, then caγk ' 213 in core(π), contradicting Proposition 5.8. On the
other hand, if mt follows c in π, then c ∈ Bj, for some j < t, and γk ∈ Bt,
with c < γk, contradicting Lemma 5.1.

2. Suppose we insert γk+1 into Ci,t according to cons and ` > i. Then γkxγk+1

is an occurrence of 213 in core(π′), hence π′ is not 132-sortable, due to
Proposition 5.8, as desired.

Conversely, suppose that ` < i and we insert γk+1 into Ci,t according to cons;
this means that γk+1 = γk+1. The resulting permutation π′ does not contain
an occurrence bcad of 2314 with γk+1 = d, for otherwise bcax would be an
occurrence of 2314 in π, contradicting the hypothesis that π is 132-sortable.
On the other hand, suppose there are two elements a, c in π such that acγk+1

is an occurrence of 132. We now prove that acγk+1 is not an occurrence of
the mesh pattern µ by distinguishing two cases.

If c > mi−1 (note that i > `, so mi−1 exists), then a < γk+1 < mi−1,
so mi−1 precedes a in π (because a < mi−1 and mi−1 is an ltr-minimum)
and mi−1acγk+1 would be an occurrence of 3142.

Instead, if c < mi−1, then c is not an ltr-minimum, because a < c pre-
cedes c; moreover, c is in Ci,t, since c < mi−1 and c > γk+1, hence cγkx is an
occurrence of 213 in core(π), which is impossible due to Proposition 5.8.

Finally, if ` = i, then x = γk, γk+1 = γk + 1 and they are adjacent in π′,
so γk+1 is neither part of an occurrence of 2314 nor of µ, since otherwise γk
would be as well, contradicting the hypothesis that π is 132-sortable.

When Ci,t is empty, the only possibility is to try to perform min (since cons

does not make sense). Next we show that this is always allowed.

Proposition 5.10. Let π = π1 · · · πn be a 132-sortable permutation with t ltr-
minima and let Ci,t be an empty active cell of π. Let π′ be the permutation
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obtained from π by inserting a new rightmost element y in Ci,t according to min.
Then π′ is 132-sortable.

Proof. By Theorem 5.3 we have that π ∈ S(2314, µ) and we want to prove
that π′ ∈ S(2314, µ) as well. Suppose there are three elements b, c, a in π such
that bcay ' 2314. Since c > b, the element c is not an ltr-minimum of π. Suppose
that c ∈ Cu,v, for some u, v. If a is an ltr-minimum, then of course v < t, and we
have also u > i, because y is the minimum of its horizontal strip and y > c. This
would imply that Cu,v is a nonempty cell, with u > i and v < t, which is impos-
sible since Ci,t is active. Otherwise, if a is not an ltr-minimum, then cay ' 213
in core(π′), which again contradicts the assumption that Ci,t is active.

Next, in order to prove that π′ does not contain the mesh pattern µ, suppose
there are two elements a, c in π such that acy ' 132 and suppose c ∈ Bj, for
some j ≤ t. If j < t, then acmty is an occurrence of 2413, as desired. Otherwise,
if j = t, we have that c ∈ C`,t, for some ` < t, because Ci,t is empty before we
insert y; moreover, m` precedes a in π, because m` > y and a < y. Thus m`acy '
3142, as desired.

Corollary 5.11. Let π be a 132-sortable permutation. Then, for every active cell
of π, exactly one of min and cons generates a 132-sortable permutation.

As a consequence of Propositions 5.9 and 5.10, every 132-sortable permutation
can be constructed inductively by repeatedly inserting a new rightmost element
either as a new minimum or by performing min and cons, according to the rules of
Propositions 5.9. In particular, given a 132-sortable permutation π with k active
cells, then k + 1 132-sortable permutations are produced this way (one for each
active cell and one when the new minimum is inserted). Using the generating tree
terminology, these are the children of π. Understanding the distribution of active
cells of 132-sortable permutations would lead to a generating tree for Sort(132),
which could be used directly to find its enumeration. So far we were not able to
fulfill this task, which is left as an open problem.

Open Problem 5.1. Given n ≥ 1 and k ≥ 0, compute the number of 132-sortable
permutations with k active cells. Moreover, given a 132-sortable permutation π
with k active cells, compute the number of active cells of each child of π.

Instead of using the generating tree approach, we wish to exploit the grid struc-
ture of 132-sortable permutations in order to determine a bijection with a class of
pattern-avoiding rgfs, ultimately obtaining the desired enumeration of Sort(132).

Let π = π1 · · · πn be a permutation with t ltr-minima m1, . . . ,mt and set m0 =
+∞. Define the map η by setting η(π) = r1 · · · rn, where ri = j if mj ≤ πi < mj−1.
An alternative description of η(π) is the following: scan the permutation π from
left to right and record the index of the horizontal strip that contains the current
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element, including the ltr-minima in the corresponding strips. An example of this
construction is illustrated in Figure 5.2. It is easy to realize that η is defined
for any permutation and that η(π) is a rgf. The next theorem asserts that if
we restrict to 132-sortable permutations, then η is a bijection between Sortn(132)
and RGFn(12231). First a useful lemma concerning pattern avoidance on rgfs.

Lemma 5.12. Let w = w1w2 · · ·wk be a sequence of positive integers. Let w′ =
std(w) be the standardization3 of w and suppose that w′1 = k, for some k ≥ 1.
Let R be a rgf. Then w′ ≤ R if and only if 12 . . . (k − 1)w′ ≤ R.

Theorem 5.13. The map η defined above is injective and the image of Sortn(132)
through η is RGF(12231).

Proof. By Lemma 5.12, we have RGF(12231) = RGF(2231). We start by prov-
ing that, for each 132-sortable permutation π, η(π) avoids 2231. Suppose, on
the contrary, that η(π) contains an occurrence ri1ri2ri3ri4 of 2231. Consider the
leftmost occurrence rj of the integer ri1 in π (note that j ≤ i1). Then rj cor-
responds through η to the ltr-minimum of the horizontal strip of index ri1 in π.
Hence the elements πjπi2πi3πi4 form an occurrence of 2314 in π4, which contradicts
Theorem 5.3.

That η is injective on Sortn(132) is a consequence of Corollary 5.11. More-
over, using the construction of Proposition 5.9, we will show that η(Sortn(132)) =
RGF(2231). Given a rgf R = r1r2 · · · rn, construct the permutation πR by scan-
ning R from left to right and, when the current element is r`, insert a new right-
most element π` in the following way (suitably rescaling the previous elements
when necessary):

• when r` is the first occurrence of an integer in R then π` = 1;

• otherwise, π` is inserted in the horizontal strip Hr` , according to the rules of
Proposition 5.9.

We now wish to prove that, if the rgf R avoids 2231, then πR is a 132-sortable
permutation such that η(πR) = R. It is easy to see that η(πR) = R, as a direct
consequence of the definition of η. Since insertions inside active cells are always
allowed, what remains to be shown is that each element is in fact inserted into an
active cell. We now argue by contradiction, and suppose that y is the first element
that is inserted into a nonactive cell Ci,j. According to the definition of an active
cell, there are two cases to consider.

3Recall that w′ is obtained by replacing all the occurrences of the smallest integer of w with 1,
all the occurrences of the second smallest integer with 2 and so on.

4Note that the value order between elements of π coded by distinct values in η(π) is the
reverse of their order in η(π).
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Pattern p Formula OEIS

12123, 12132, 12134, 12213

12231, 12234, 12312, 12321 |RGFn(p)| =
n−1∑
k=0

(
n− 1

k

)
ck A007317

12323, 12331, 12332

Table 5.1: The eleven patterns of the Wilf-class containing 12231.

1. If there exists a nonempty cell Cu,v, with u > i and v < j, then, given
any x ∈ Cu,v, the elements of R corresponding to muxmjy form an occurrence
of 2231, which is forbidden.

2. Suppose that inserting a new rightmost element according to min creates
an occurrence bay of 213 that does not involve any ltr-minima. Let Hu be
the horizontal strip that contains b and let Hv be the horizontal strip that
contains a. Note that v ≥ u > i. If v > u, then the elements corresponding
to mubay in R form an occurrence of 2231, which is again a contradiction. On
the other hand, if v = u, then a belongs to the same horizontal strip of b, so,
since a < b, a was inserted according to min. Therefore, by Proposition 5.9
and our choice of y, the element a′ that precedes a in core(π) belongs to Hw,
for some w > u. As a consequence, the elements muba

′c correspond to an
occurrence of 2231 in R, which is impossible.

Corollary 5.14. For every natural number n, we have:

|Sortn(132)| = |RGFn(12231)|.

The enumeration of RGF(12231) is an immediate consequence of the results
proved in [35], where the authors determine the Wilf-equivalence class of 12231
(see Table 5.1). Amongst the Wilf-equivalent patterns, 12332 can be easily enu-
merated. Indeed 1221-avoiding rgfs are enumerated by the Catalan numbers (see
again [35]). Moreover, as a result of Theorem 31 in [35], we immediately obtain
that:

|Sortn(132)| =
n−1∑
k=0

(
n− 1

k

)
ck,

that is sequence A007317 in [45].
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5.3 Combinatorial proofs for pattern-avoiding

restricted growth functions

The problem of enumerating 132-sortable permutations has been solved in the
previous section by means of a bijection η between Sort(132) and RGF(12231).
The enumeration of RGF(12231) is a corollary of the (much more general) theory
developed by Jeĺınek and Mansour in [35]. However, although η has a neat descrip-
tion (η(π) records the index of the horizontal strip that contains each element of π,
from left to right), it is not enough to have a clear understanding of why Sort(132)
is enumerated by the binomial transform of Catalan numbers.

We choose to devote this section to a deeper investigation on the combina-
torics underlying some related sets of pattern-avoiding rgfs, aiming to find a
more transparent connection with 132-sortable permutations. Ideally, we would
like to provide a link between Sort(132) and some combinatorial objects that im-
mediately reveals why this counting sequence arises. We start by showing a (pre-
sumably) new bijection between RGFn(1221) and the set Dn of Dyck paths of
semilength n. Then we define new bijections between RGF(y), with y pattern in
the Wilf-equivalence class of 12231, and other families of combinatorial objects,
such as labeled Motzkin paths and pattern-avoiding permutations. Finally, we
obtain a bijective argument that clearly justifies the enumeration of Sort(132) by
showing a bijection between RGF(12231) and RGF(12321).

5.3.1 Pattern 1221

The following lemma can be found in [19].

Lemma 5.15 ( [19], Lemma 6.2). Let R be a rgf. Then R ∈ RGF(1221) if and
only if the subword w(R) obtained by removing the first occurrence of each letter
in R is weakly increasing.

An immediate consequence of Lemma 5.15 is the following.

Corollary 5.16. Let R = r1 · · · rn ∈ RGF(1221) and M = max(R). If R has
no repeated elements let t = 1; otherwise let t be the maximum among repeated
elements of R. Then r1 · · · rnj ∈ RGF(1221) if and only if t ≤ j ≤M + 1.

Using again the language of generating trees, we say that an integer j is an
active site of the rgf R ∈ RGF(1221) if by appending j at the end of R we get
another rgf in RGF(1221), which is said to be a child of R. The set of active
sites of R is the interval {t, t + 1, . . . ,M,M + 1} due to Corollary 5.16. Thus R
has M + 1− t+ 1 active sites, where M and t are defined as in the corollary.

Now, recall from section 1.4 that a double rise in a Dyck path is an occurrence
of the consecutive pattern UU.
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Theorem 5.17. There is a bijection ψ : RGFn(1221) → Dn, such that the
maximum of R ∈ RGFn(1221) equals one plus the number of double rises in
the path ψ(R). As a consequence, denoting by fn,k the number of elements
in RGFn(1221) whose maximum is k, we get that fn,k = nn,k, where nn,k is
the (n, k)-th Narayana number.

Proof. Recall from Example 1.4 that every Dyck path P̃ of semilength n + 1 is
obtained (in a unique way) from a Dyck path P of semilength n by inserting a
peak UD either before a D-step in the last descending run of P or after the last D-
step. This construction gives rise to a well known generating tree for Dyck paths,
such that the number of active sites of a path P is k + 1, where k is the length of
the last descending run of P . The path P̃ is therefore a child of P in the associated
generating tree. Our goal is to define (in a recursive fashion) a bijection α between
the generating tree of RGF(1221) and the generating tree of Dyck paths. In other
words, we wish to show that α is a bijection preserving both the size (that is, a
rgf of length n is mapped to a Dyck path of semilength n) and the number of
active sites.

We start by setting α(1) = UD. Note that 1 has two active sites, since the
children of 1 are 11 and 12. The path UD has two active sites as well, since its
children are UUDD and UDUD. Now let R = r1 · · · rn and α(R) = p1 · · · p2n, for
some n ≥ 1. Suppose that the number of active sites of both R and α(R) is k.
Let M = max(R) and let t be the maximum element of R that is not an ltr-
maximum of R. By Corollary 5.16, the active sites of R form the interval {t, t +
1, . . . ,M,M + 1}, with M + 1 − t + 1 = k by hypothesis. Moreover, the length
of the last descending run of α(R) is k − 1. We shall define α on the children of
both R and α(R), and show that the number of active sites is still preserved.

• The child of R corresponding to the active site M is mapped to the path
obtained from α(R) by inserting a new peak UD immediately after the last D-
step of α(R). Here the active sites of the resulting sequence are M + 1 −
M + 1 = 2. The same holds for the resulting Dyck path, since the length of
its last descending run is 1.

• For i = 1, . . . ,M − t, the child of R corresponding to the active site t +
i− 1 is mapped to the path obtained from α(R) by inserting a new peak UD

immediately after the i-th D step of the last descending run. Then the number
of active sites of the resulting rgf is then (M+1)−(t+i−1)+1 = M−t−i3,
which is equal to one plus the length of the last descending run of the resulting
path, that is (M + 1− t)− i+ 1.

• Finally, the child of R corresponding to the active site M + 1 is mapped to
the path obtained from α(R) by inserting a new peak UD immediately before
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the first D-step of the last descending run of α(R). In this case the number
of active sites of the resulting rgf is M + 2− t + 1 = k + 1. Moreover, the
number of active sites of the resulting path is also k + 1, since the length of
its maximal suffix of D-steps is increased by one with respect to α(R).

Therefore α is a bijection between the two generating trees, as desired. To
conclude, observe that the number of double rises in α(R) is equal to max(R) −
1. Indeed, by definition of α, each double rise in α(R) corresponds to the first
occurrence of an integer in R, except for the first occurrence of 1 (which does not
create a double rise). It is well known (see for example [29]) that the number of
Dyck paths of semilength n with k − 1 double rises is equal to nn,k, which gives
the desired equality fn,k = nn,k.

Corollary 5.18. Let n ≥ 0. Denote by g(n, k) the number of elements
in RGFn(12332) whose maximum is k, for 1 ≤ k ≤ n. Then:

g(n+ 1, k + 1) =
n∑
j=k

(
n

j

)
nj,k.

Proof. As observed in [35], every 12332-avoiding rgf of length n + 1 can be ob-
tained by choosing n− j positions for the 1s (except for the first 1, which is fixed)
and then choosing a rgf R ∈ RGFj(1221) for the remaining j spots (where the
elements of R incremented by one will be inserted). In particular, if the maximum
of R is k, then the resulting rgf has maximum k + 1. So, as a consequence of
Theorem 5.17, we have g(n+ 1, k + 1) =

∑n
j=k

(
n
j

)
nj,k.

In the following sections (Proposition 5.21 and Theorem 5.26), we provide a bi-
jection between 12231- and 12321-avoiding rgfs in order to prove that 132-sortable
permutations, according to the number of their ltr-minima, are enumerated by the
formula in Corollary 5.18. A direct proof of this fact is still to be found.

Open Problem 5.2. Prove directly (that is, without using a bijection involving
different objects) that the number of 132-sortable permutations of length n + 1

with k + 1 left-to-right minima is equal to
n∑
j=k

(
n

j

)
nj,k.

5.3.2 Patterns 12323 and 12332

Consider the ordinary generating function of 132-sortable permutations:

F 132(t) =
∑
n≥0

(
n−1∑
k=0

(
n− 1

k

)
ck

)
tn
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Then F 132(t) can be expressed using the following continued fraction (see, for
example, [9, 32]):

F 132(t) =
1

1− 2t−
t2

1− 3t−
t2

1− 3t−
t2

1− 3t− . . .

Labeled Motzkin paths provide a neat combinatorial interpretation for the above
continued fraction, via Flajolet’s general correspondence [32]. The n-th term of
the sequence {|Sortn+1(132)|}n is equal to the number of Motzkin paths of length n
such that:

• each horizontal step at height zero has two types of labels `0, `1;

• each horizontal step at height at least one has three types of labels `0, `1, `2.

Denote by Mlab
n the set of such labeled Motzkin paths of length n. We shall

define a bijection β fromMlab
n to RGFn+1(12323) by scanning a Motzkin path from

left to right and suitably intepreting each labeled step. We use an auxiliary stack ∆,
which is initialized as the empty stack. Let P ∈ Mlab

n . Start by setting R = 1.
Then, if L is the label of the currently scanned step, append a new rightmost
element to R according to the following rules:

• if L = U, then append a new strict maximum M and push M onto ∆;

• if L = D, then append top(∆) and pop it from ∆;

• if L = `0, then append a new strict maximum (without pushing it onto ∆);

• if L = `1, then append 1;

• if L = `2, then append top(∆) (without popping it from ∆).

Equivalently, U corresponds to the first occurrence of a letter x that appears at
least twice in R, D to the last occurrence of such a letter, and `2 to an occurrence of
such an x that is neither the first nor the last. Moreover, the label `0 corresponds
to an element x 6= 1 appearing only once and the label `1 corresponds to the
element 1. An example of this construction is illustrated in Figure 5.4.

We can also express the correspondence between the labels of P and R = β(P )
in terms of properties of the set partition associated to R. If B is a block of cardi-
nality at least two in such a partition and B does not contain 1, then U, D and `2
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`0 `1
U

U D `2 `0

D `0 `0

Figure 5.4: The labeled Motzkin path corresponding to the rgf R = 12134435367
via the bijection β of Theorem 5.19. The set partition associated to R
is 13|2|479|56|8|10|11.

correspond, respectively, to the least, the largest and any of the remaining ele-
ments of the block. Moreover, `0 corresponds to a singleton block not containing 1
and `1 corresponds to the elements of the block containing 1. At each step of the
construction of R, the auxiliary stack ∆ keeps track of the currently open blocks
in the corresponding partition (that is those blocks that have not yet received all
their elements).

Theorem 5.19. The map β is a bijection between Mlab
n and RGFn+1(12323).

Proof. It is straightforward to see that β is injective and that β(P ) is a rgf for
every P ∈ Mlab

n . Since |Mlab
n | = |RGFn(12323)|, we only need to show that β(P )

avoids 12323, for each P ∈ Mlab
n . Suppose, for a contradiction, that abcb′c′ is

an occurrence of 12323 in β(P ). This implies, of course, that b, c 6= 1. Without
loss of generality, we may assume that b and c are the first occurrences of the
corresponding integers in β(P ); then both b and c correspond to U-steps in P
and are pushed onto ∆. Moreover, since b′ = b and b′ follows c in β(P ), when c
enters ∆, b is still in, and so c lies above b in ∆. Now observe that the element b′

must correspond to either a D-step or a horizontal step labeled `2 of P . However, in
both cases, when b′ is inserted into β(P ), b has to be at the top of the stack, hence c
should have been popped. This would imply that there are no more occurrences
of c in β(P ) after b′, which is not the case, since c′ = c.

Remark 5.1. If we replace the stack ∆ with a queue Ξ, then the same map gives
a bijection with rgfs avoiding 12332. The proof is analogous to the previous one,
and thus omitted.

Remark 5.2. If we restrict the previous bijections to Motzkin paths with no
horizontal steps labeled `1, then we get bijections with rgfs that avoid 1212 (if we
use a stack ∆) or 1221 (if we use a queue Ξ), provided that we remove the 1 at the
beginning and decrease all the other elements by one. This follows again from the
characterization of RGF(12323) and RGF(12332) given in [35] (and mentioned in
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the proof of Corollary 5.18). The corresponding continued fraction is then:

G(t) =
1

1− t−
t2

1− 2t−
t2

1− 2t−
t2

1− 2t− · · ·
This gives an alternative proof of the fact that rgfs avoiding either 1221 or 1212
are enumerated by the Catalan numbers, whose generating function is known to
be given by the above continued fraction.

Remark 5.3. As a consequence of the bijections in Theorem 5.19 and Remark 5.1,
the statistic “sum of the numbers of U and `0 steps” inMlab

n is equidistributed with
the statistic “(value of the) maximum minus one” both in RGFn+1(12332) and
in RGFn+1(12323). The same holds for the statistics “number of labels `0” and
“number of singletons 6= {1}”, as well as for the statistics “number of labels `1”
and “number of occurrences of 1 minus one”. Some computations seem to suggest
that the distribution of the maximum is the same for several other patterns of
the same Wilf-class, namely 12123, 12132, 12213, 12231, 12312, 12321, 12331, so
we suspect that the same approach should lead to straightforward bijections, by
suitably modifying the interpretation of the steps. For example, define ri to be a
repeated ltr-maximum of a rgf r1r2 · · · rn if ri = max {r1, . . . , ri−1}. Then steps
having label `1 seem to have the same distribution as the repeated ltr-maxima
in RGF(12321) and RGF(12312), so in order to define a bijection with Mlab it
could be enough to find the “correct” interpretations for steps having labels D

and `2.

Open Problem 5.3. Find suitable interpretations of the steps of labeled Motzkin
paths inMlab to obtain bijections with the remaining sets of pattern-avoiding rgfs
in the same Wilf-equivalence class.

5.3.3 Patterns 12321 and 12312

In this section we show a connection between rgfs avoiding the patterns 12321
and 12312 and permutations avoiding the patterns 321 and 312, respectively. We
initially provide a bijection between RGF(12321) and S(321) by showing that
these two sets share the same combinatorial structure: elements of both sets can
be written as shuffle of two weakly increasing sequences, one of those being the
sequence of ltr-maxima. An analogous property links RGF(12231) and S(231).

Let R = r1 · · · rn be a rgf. Recall from Remark 5.3 that ri is said to be a
repeated ltr-maximum when ri = max {r1, . . . , ri−1}. Let RGFn.r. be the set of
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rgfs that have no repeated ltr-maxima. Define RGFn.r.n and RGFn.r.(Q), for a
pattern Q, as usual. Given R = r1 · · · rn ∈ RGFn.r., define R̃ as the subsequence
obtained by deleting the ltr-maxima of R. It is easy to realize that R̃ is not
necessarily a rgf. For example, if R = 121311245246, then R̃ = 111224.

Lemma 5.20. Let R ∈ RGFn.r.. Then R avoids 12321 if and only R̃ is weakly
increasing.

Proof. Suppose that R̃ = · · · ba · · · , with b > a. Note that b is not a repeated
ltr-maximum of R, so there has to be an element c in R such that c > b and c
comes before b. Then R contains an occurrence cba of 321 and therefore it also
contains 12321, by Lemma 5.12.

Conversely, if R contains an occurrence abcb′a′ of 12321, then b′ precedes a′

in R̃ and b′ > a′, so R̃ is not weakly increasing.

We now wish to describe the anticipated bijection between RGFn(12321)
and Sn(321). Let R = r1 · · · rn ∈ RGFn.r.(12321) and let R̃ = ri1 · · · rik , with k ≥
0. Construct a permutation π(R) of length n by keeping the same positions for
the ltr-maxima and mapping R̃ to a strictly increasing sequence S = s1 · · · sk as
follows:

• s1 = ri1 ;

• sj = sj−1 + (rij − rij−1
) + 1, for j ≥ 2.

Finally, insert the remaining elements in increasing order in order to get a
permutation that avoids 321: elements inserted at this point will be the ltr-maxima
of the resulting permutation π(R). For instance, let R = 121314234. Then the
string obtained by removing the ltr-maxima from R is R̃ = 11234. We thus get the
increasing sequence S = 12468 and finally π(R) = 351729468 (where ltr-maxima
of π(R) are bolded). Observe that the number of ltr-maxima of π(R) is equal to
the number of ltr-maxima of the starting rgf R. Moreover, it is easy to realize
(by construction) that π(R) is a 321-avoiding permutation. The map defined this
way is also injective. Indeed positions and values of the ltr-maxima uniquely
determine a 321-avoiding permutations, thus the strictly increasing sequence S
is enough to identify one such permutation. The construction proposed can be
inverted in a similar fashion. It follows that the map R 7→ π(R) is a size-preserving
bijection between RGFn.r.(12321) and S(321). The next corollary is an immediate
consequence of what discussed so far.

Proposition 5.21. The number of rgfs in RGFn.r.n (12321) is cn. Moreover, the
number of rgfs in RGFn.r.n (12321) having maximum k is given by nn,k.
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Next, in order to enumerate RGF(12321), it is sufficient to show that any rgf
avoiding 12321 can be uniquely obtained by inserting some repeated ltr-maxima
in a sequence in RGFn.r.(12321).

Theorem 5.22. Let R be a rgf and let α(R) be the sequence obtained from R
by removing all the repeated ltr-maxima. Then α(R) is a rgf. Moreover, R
avoids 12321 if and only α(R) avoids 12321.

Proof. It is easy to check that α(R) is still a rgf and clearly α(R) avoids 12321
if R does. On the other hand, suppose that R contains an occurrence abcb′a′

of 12321. Note that b′ and a′ are not repeated ltr-maxima, so they are elements
of α(R) and they follow c in R. Let c′ be the first occurrence of the integer c in R.
Then c′ ∈ α(R) and c′ precedes b′ in α(R), so α(R) contains an occurrence c′b′a′

of 321, which is equivalent to containing 12321.

Corollary 5.23. For each n ≥ 1, we have:

|RGFn+1(12321)| =
n∑
k=0

(
n

k

)
ck.

Moreover, there are
∑n

j=k

(
n
j

)
nj,k rgfs in RGFn+1(12321) with maximum k.

Proof. This is a direct consequence of the results proved in this section, together
with the fact that the first element of a rgf cannot be a repeated ltr-maximum.

Remark 5.4. The same approach can be used to find a bijection between
RGFn.r.(12312) and S(312). In fact, 312-avoiding permutations are also uniquely
determined by the positions and values of their ltr-maxima, and a completely
analogous argument can be applied. As a consequence, we also have:

|RGFn+1(12312)| =
n∑
k=0

(
n

k

)
ck.

5.3.4 A bijection between RGF(12321) and RGF(12231)

In Section 5.2 we showed a bijection between Sort(132) and RGF(12231). A direct
combinatorial enumeration of RGF(12231) could be obtained by using the labeled
Motzkin path approach described in Section 5.3.2, but so far the pattern 12231
proved to be rather more complicated than some other patterns in the same equiv-
alence class. The main goal of this section is to obtain an independent5 proof of

5Without relying on the Wilf-equivalence showed in [35].
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the enumeration of Sort(132) by means of a bijection δ between RGF(12231)
and RGF(12321).

For the rest of this chapter, we say that the rgf R contains an occurrence
of the pattern 2̃31 if R contains three elements ri1ri2ri3 such that ri1ri2ri3 ' 231
and ri1 is not an ltr-maximum of R (equivalently, ri1 is not the leftmost occurrence
of the corresponding integer in R). Due to Lemma 5.12, we have RGF(12231) =
RGF(2̃31) and also RGF(12321) = RGF(321). This allows us to focus on 2̃31
and 321 instead of 12231 and 12321, respectively. More precisely, we shall define
the promised map δ from RGF(12231) to RGF(12321) by repeatedly transforming
the rightmost occurrence of 321 into an occurrence of 2̃31, until the resulting rgf
avoids 321. This is formalized in what follows.

Let R = r1 · · · rn be a rgf. Define rm(R, 321) = i1i2i3, where riiri2ri3 are the
indices of the lexicographically rightmost occurrence of 321 in R. More extensively,
this can be expressed by saying that for any other occurrence rjirj2rj3 of 321 in R,
it must be either j1 < i1, or j1 = i1 and j2 < i2, or j1 = i1, j2 = i2 and j3 < i3.
If R avoids 321, we assume rm(321) = 000 by convention. Similarly, denote
by lm(R, 2̃31) = i1i2i3 the indices of the lexicographically leftmost occurrence
of 2̃31 in R. If R avoids 2̃31, we assume lm(R, 2̃31) = (n+ 1)(n+ 1)(n+ 1).

Let us now define the map δ. Suppose that R = r1 · · · rn ∈ RGF(2̃31). Define
recursively a rgf δ(R) as follows.

1. R(0) = R.

2. For t ≥ 0, if R(t) contains 321, then R(t+1) is obtained from R(t) by exchanging
the elements ri1 and ri2 , where i1i2i3 = rm(R(t), 321).

3. Finally, define δ(R) = R(k), where k is the minimum index such that R(k)

avoids 321.

Observe that R(t) is a rgf for each t and that R(k) avoids 321 by construction.
Moreover, as a consequence of the next lemma, the integer k exists and thus the
map δ is well defined.

Lemma 5.24. For every t ≥ 0, we have rm(R(t+1), 321) <` rm(R(t), 321), where <`

denotes the lexicographical order.

Proof. Let R(t) = r
(t)
1 · · · r

(t)
n and, similarly, R(t+1) = r

(t+1)
1 · · · r(t+1)

n . Moreover,
let rm(R(t), 321) = i1i2i3 and rm(R(t+1), 321) = j1j2j3. Note that, as illustrated in
Figure 5.5, our hypothesis imposes some constraints on the elements of R(t). More
precisely, r

(t)
j ≤ r

(t)
i2

, for each j = i1+1, . . . , i2−1. Also, for each j = i2+1, . . . , i3−1,

either r
(t)
j ≤ r

(t)
i3

or r
(t)
j ≥ r

(t)
i1

. Finally, r
(t)
j ≥ r

(t)
i2

for each j > i3. We will
repeatedly use these inequalities throughout this proof. Our goal is now to show
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i1 i2 i3 i1 i2 i3

Figure 5.5: On the left, the rightmost occurrence of the pattern 321 in R(t), with
indices i1i2i3, represented as a Cayley-mesh pattern. On the right, the resulting
(Cayley-mesh) pattern in R(t+1), obtained by exchanging the elements in posi-
tions i1 and i2.

that j1j2j3 <` i1i2i3. Suppose, by contradiction, that j1j2j3 ≥` i1i2i3. Consider
the following case analysis.

• Suppose j1 > i1. If j1 < i2, then necessarily r
(t+1)
j1

= r
(t)
j1
≤ r

(t)
i2

, due to
the above constraints. Hence we must have j2, j3 6= i2, since otherwise the
indices j1, j2, j3 would not correspond to an occurrence of 321 in R(t+1). This
implies that r

(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

= r
(t)
j1
r

(t)
j2
r

(t)
j3

is an occurrence of 321 in R(t) as
well, with j1j2j3 >` i1i2i3: this is a contradiction, since we are assuming
that rm(R(t), 321) = i1i2i3. Next suppose that j1 = i2 (and so j2 > i2). Note

that r
(t)
i1

= r
(t+1)
i2

= r
(t+1)
j1

, hence r
(t)
i1
r

(t)
j2
r

(t)
j3

is an occurrence of 321 in R(t)

with i1j2j3 >` i1i2i3, which is impossible. Finally, suppose that j1 > i2.
Then obviously r

(t)
j1
r

(t)
j2
r

(t)
j3

= r
(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

is an occurrence of 321 in R(t),
with j1j2j3 >` i1i2i3, again a contradiction.

• Suppose instead that j1 = i1 and j2 > i2. Then r
(t+1)
i1

= r
(t)
i2

and j2 > i2,

so r
(t)
i2
r

(t)
j2
r

(t)
j3

is an occurrence of 321 in R(t), with i2j2j3 >` i1i2i3, which is
impossible.

• Finally, the case j1 = i1 and j2 = i2 is clearly impossible, since we
have r

(t+1)
i1

= r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

.

We wish to show that δ is a bijection by proving that the recursive construc-
tion proposed above can be reversed (in the expected way!). Indeed, in order to
obtain R(t) from R(t+1), it is sufficient to transform the leftmost occurrence of 2̃31
into an occurrence of 321 (see Figure 5.6). A formal proof is given in the next
lemma.

Lemma 5.25. Let t ≥ 0. Let rm(R(t), 321) = i1i2i3 and lm(R(t+1), 2̃31) = j1j2j3.
Then i1 = j1 and i2 = j2.
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rm(321) 99K 2̃31
77

''

R(t)
gg R(t+1)

ww

321 L99 lm(2̃31)

Figure 5.6: The diagram of Lemma 5.25.

Proof. We again refer to Figure 5.5 for an illustration of the constraints imposed on
the elements of R(t) by the position of the rightmost occurrence of 321 inside R(t).
We proceed by induction on t.

Suppose first that t = 0, that is, R(0) = r
(0)
1 · · · r

(0)
n avoids 2̃31, but contains 321.

Set R(1) = r
(1)
1 · · · r

(1)
n , rm(R(0), 321) = i1i2i3 and lm(R(1), 2̃31) = j1j2j3. Note

that r
(1)
i1
r

(1)
i2
r

(1)
i3

is an occurrence of 2̃31 in R(1). Indeed, by Lemma 5.12, the

first occurrence of the integer r
(0)
i2

in R(0) precedes r
(0)
i1

, since r
(0)
i1

> r
(0)
i2

. There-
fore j1j2j3 ≤` i1i2i3. We have to show that i1 = j1 and i2 = j2. Suppose, to
the contrary, that j1 < i1. If either j2 = i1 or j2 = i2, then r

(0)
j1
r

(0)
i1
r

(0)
j3

would be

an occurrence of 2̃31 in R(0), which is impossible since R(0) ∈ RGF(2̃31). Thus
we must have j2 6= i1 and j2 6= i2. In particular, since j2 6= i2, we must have
either j3 = i1 or j3 = i2, otherwise r

(0)
j1
r

(0)
j2
r

(0)
j3

= r
(1)
j1
r

(1)
j2
r

(1)
j3

would be an occurrence

of 2̃31 in R(0) as well. However, if either j3 = i1 or j3 = i2, then r
(0)
j1
r

(0)
j2
r

(0)
i2

would

be an occurrence of 2̃31 in R(0), which is again a contradiction. Therefore it has to
be i1 = j1. Finally, the case j1 = i1 and j2 < i2 is forbidden, due to the restrictions
depicted in Figure 5.5. Summing up, we must have i1 = j1 and i2 = j2, as desired.

Now suppose that t ≥ 1. Let R(t) = r
(t)
1 · · · r

(t)
n . For the rest of this proof, we

fix the following notation:

- rm(R(t−1), 321) = t1t2t3;

- lm(R(t), 2̃31) = s1s2s3;

- rm(R(t), 321) = i1i2i3;

- lm(R(t+1), 2̃31) = j1j2j3.

By the inductive hypothesis we have s1 = t1 and s2 = t2. Moreover,
Lemma 5.24 implies that t1t2t3 >` i1i2i3, hence t1t2 ≥` i1i2 and s1s2 ≥` i1i2. Note
that r

(t+1)
i1

r
(t+1)
i2

r
(t+1)
i3

is an occurrence of 2̃31 in R(t+1), so we must have j1j2j3 ≤`
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i1i2i3. Our goal is to show that i1 = j1 and i2 = j2. We shall proceed by contra-
diction, so we assume that j1 < i1 or j2 < i2. Our strategy consists in finding an
occurrence of 2̃31 in R(t) such that the indices of its first two elements strictly pre-
cede i1i2 (in the lexicographical order). Indeed, this would imply that s1s2 <` i1i2,
since s1s2s3 = lm(R(t), 2̃31), which is impossible since we know that s1s2 ≥` i1i2.

Suppose first that j1 < i1. If {j2, j3} ∩ {i1, i2} = ∅, then r
(t)
j1
r

(t)
j2
r

(t)
j3

is the

desired occurrence of 2̃31 in R(t), since in this case j1, j2, j3 are not involved in the
transition from R(t) to R(t+1) and we are assuming that j1 < i1. Therefore at least
one of j2 and j3 must coincide with either i1 or i2. We will now show that, in each
case, we are able to find an occurrence of 2̃31 in R(t) with the desired property.

• If j2 = i1, then r
(t+1)
j2

= r
(t+1)
i1

< r
(t)
i1

, hence r
(t)
j1
r

(t)
j2
r

(t)
j3

is an occurrence of 2̃31

in R(t), and j1j2 <` i1i2.

• If j2 = i2, then r
(t)
j1
r

(t)
i1
r

(t)
j3

is an occurrence 2̃31 in R(t), and j1i1 <` i1i2.

• If j3 = i1, then r
(t)
j1
r

(t)
j2
r

(t)
i2

is an occurrence of 2̃31 in R(t), and j1j2 <` i1i2.

• If j3 = i2, then r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

, hence r
(t)
j1
r

(t)
j2
r

(t)
i2

is an occurrence of 2̃31

in R(t), and j1j2 < i1i2.

The above case-by-case analysis shows that i1 = j1. Moreover, we cannot
have j2 < i2; this is again due to the restrictions illustrated in Figure 5.5.

Theorem 5.26. The map δ is a size-preserving bijection between RGF(12321)
and RGF(12231). Moreover, δ preserves the maximum value of a rgf.

As a consequence of Theorem 5.26 and Corollary 5.23, the distribution of the
maximum letter in rgfs over RGFn(12231) is given by

∑n
i=k

(
n
i

)
ni,k. This provides

a combinatorial (even if not direct) proof of the formula stated in Open Problem 5.2
for the distribution of ltr-minima of Sort(132).



Chapter 6

The (σ, τ )-machine

In this chapter we consider Σ-machines where Σ = {σ, τ} is a pair of patterns of
length three. For specific pairs of patterns, the set of (σ, τ)-sortable permutations is
enumerated by either the (binomial transform of) Catalan numbers or the Schröder
numbers. We also determine an infinite family of pairs of patterns, namely the
pairs (σ, σ̂), whose enumeration is given by the Catalan numbers. Some of the
mentioned cases were discussed in [8]. Here we will sometimes follow an alternative
approach. We also provide enumerative results for other pairs of patterns, which
are currently unpublished.

6.1 Two decomposition lemmas

The avoidance of specific pairs of patterns deeply influences the geometric structure
of the output of a (σ, τ)-stack. The following two decomposition lemmas are
particularly useful.

Lemma 6.1. Consider the (312, σ)-machine, where σ = σ1 · · ·σk−1σk ∈ Sk,
with σk−1 < σk and k ≥ 3. Given a permutation π of length n, let π =
M1B1 · · ·MtBt be its ltr-max decomposition. Then:

1. Every time an ltr-maximumMi is pushed into the (312, σ)-stack, the (312, σ)-
stack contains the elements Mi,Mi−1, . . . ,M2,M1, reading from top to bot-
tom. Moreover, we have:

S312,σ(π) = B̃1 · · · B̃tMt · · ·M1,

where B̃i is a suitable rearrangement of Bi.

2. If π is (312, σ)-sortable, then Mj = n − t + j, for each j = 1, . . . , t. There-
fore {M1, . . . ,Mt} = {n− t+ 1, . . . , n}.
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Proof. 1. Let us consider the action of the (312, σ)-stack on input π. Note that,
since k ≥ 3, the element M1 remains at the bottom of the (312, σ)-stack until
the end of the sorting procedure. Now, for each x ∈ B1, the elements M2xM1

form an occurrence of 312. Therefore the block B1 is extracted before M2

enters the (312, σ)-stack. As soon as M2 enters, the stack contains M2M1,
reading from top to bottom. Since M2 > M1, but σk−1 < σk by hypothesis,
M2 cannot play the role of either σk−1 in an occurrence of σ or 1 in an
occurrence of 312. Thus M2 remains at the bottom of the stack (above M1)
until the end of the sorting procedure. The thesis follows by iterating the
same argument on each block Bi, for i ≥ 2.

2. Suppose, for a contradiction, that there is an element j ∈ {n− t+ 1, . . . , n}
which is not an ltr-maximum. Note that j 6= π1 = M1 and j 6= n = Mt.
Then, by what proved above, S312,σ(π) contains an occurrence jnM1 of 231,
which contradicts the hypothesis that π is (312, σ)-sortable.

Lemma 6.2. Consider the (132, σ)-machine, where σ = σ1 · · ·σk−1σk ∈ Sk,
with σk−1 > σk and k ≥ 3. Given a permutation π of length n, let π =
m1B1 · · ·mtBt be its ltr-min decomposition. Then:

1. Every time an ltr-minimum mi is pushed into the (132, σ)-stack, the (132, σ)-
stack contains the elements mi,mi−1, . . . ,m2,m1, reading from top to bot-
tom. Moreover, we have:

S132,σ(π) = B̃1 · · · B̃tmt · · ·m1,

where B̃i is a suitable rearrangement of Bi.

2. If π is (132, σ)-sortable, then B̃i is increasing for each i. Moreover, for
each i ≤ t− 1, we have Bi > Bi+1 (i.e. x > y for each x ∈ Bi, y ∈ Bi+1).

Proof. 1. The proof is analogous to the first part of Lemma 6.1.

2. Suppose that π is (132, σ)-sortable. Suppose, for a contradiction, that B̃i

is not increasing, for some i, and let xy be a descent in Bi. Then, by
what proved above, S132,σ(π) contains an occurrence xymt of 231, which is
impossible. Finally, suppose that x > y, for x ∈ Bi and y ∈ Bi+1. Then
again xymt is an occurrence of 231 in S132,σ(π), a contradiction.

Some enumerative data for (σ, τ)-sortable permutations are reported in Ta-
ble 6.1.
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(σ, τ) Sequence {fσ,τn }n Reference OEIS

123,132
123,213
132,312

1, 2, 5, 14, 42, 132, 429, 1430 Section 6.4 A000108

231,321 1, 2, 5, 14, 42, 132, 429, 1430 Remark 8.2 A000108

123,231 1, 2, 6, 21, 79, 310, 1252, 5168

123,312 1, 2, 5, 15, 51, 188, 731, 2950 Section 6.5 A007317

123,321 1, 2, 4, 7, 14, 28, 56, 112 Section 6.3

132,213 1, 2, 5, 16, 61, 261, 1206, 5882

132,231 1, 2, 6, 22, 90, 394, 1806, 8558 Section 6.2 A006318

132,321 1, 2, 4, 10, 26, 72, 206, 606 Section 6.3 A102407

213,231 1, 2, 6, 23, 101, 483, 2450, 12978

213,312 1, 2, 5, 16, 61, 261, 1206, 5882

213,321 1, 2, 4, 12, 46, 200, 941, 4677

231,312 1, 2, 6, 23, 101, 484, 2471, 13254

312,321 1, 2, 4, 10, 28, 85, 274, 925

Table 6.1: Enumerative results for (σ, τ)-sortable permutations, with σ and τ
patterns of length three and starting from (σ, τ) sortable permutations of length
one.
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6.2 The (132, 231)-machine

In this section we analyze the (132, 231)-machine. We use Lemma 6.2 to pro-
vide a geometric description of the (132, 231)-sortable permutations, which we
exploit to show that Sort(132, 231) = S(1324, 2314). As it is well known, the
set S(1324, 2314) is enumerated by the large Schröder numbers.

Lemma 6.3. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of a permu-
tation π. Write S132,231(π) = B̃1 · · · B̃tmt · · ·m1 as in Lemma 6.2. Then B̃i =
S12(Bi), for each i.

Proof. Let i ≥ 1. Consider the instant when mi enters the (132, 231)-stack, that is
as soon as Bi is the next block of π to be processed. Here, by Lemma 6.2, the stack
contains mi,mi−1, . . . ,m1, reading from top to bottom. We shall prove that the
behavior of the (132, 231)-stack on Bi is equivalent to the behavior of an empty 12-
stack on input Bi. In other words, the (132, 231)-stack performs a pop operation
if and only if a 12-stack that ignores the current content of the (132, 231)-stack
does the same. If either the next element of the input is mi+1 or the input is
empty, then both the (132, 231)-stack and the 12-stack perform a pop operation.
Otherwise, suppose that the next element of the input is y, for some y in Bi.
Suppose that the (132, 231)-stack pops the element x ∈ Bi. Thus the (132, 231)-
stack contains two elements z, w, with z above w, such that yzw is an occurrence
of either 132 or 231. Note that, since z > w, z is not an ltr-minimum. Therefore yz
is an occurrence of 12 and the 12-stack performs a pop operation too, as desired.
Conversely, suppose that the 12-stack pops the element x. Thus the 12-stack
contains an element z such that z > y. Therefore yzmi is an occurrence of 231
and the (132, 231)-stack performs a pop operation as well, as desired.

Corollary 6.4. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of a permu-
tation π. The following are equivalent:

1. Bi avoids 213 and Bi > Bi+1, for each i.

2. π is (132, 231)-sortable.

3. π ∈ S(1324, 2314).

In particular, we have Sort(132, 231) = S(1324, 2314).

Proof. By Lemma 6.2 and Lemma 6.3, we have:

S132,231(π) = S12(B1) · · · S12(Bt)mt · · ·m1.

We will use this decomposition for the rest of the proof.
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• [1⇒ 2] Suppose, for a contradiction, that S132,231(π) contains an occur-
rence bca of 231. Note that, since c > a, while mt < · · · < m1, c is not
an ltr-minimum of π (and thus neither b is). Moreover, since we assumed
that Bi > Bi+1 for each i, b and c must belong to the same block Bj. There-
fore S12(Bj) is not decreasing and, by Theorem 3.1, Bj contains 213, which
contradicts the hypothesis.

• [2⇒ 3] Suppose, for a contradiction, that π contains 1324 or 2314. Initially,
suppose that π contains an occurrence acbd of 1324. Note that b, c and d
are not ltr-minima of π. Let b ∈ Bj and c ∈ Bk, for some j ≤ k. If j = k,
then Bj contains an occurrence bac of 213. Therefore S12(Bj) contains an
occurrence of 231 due to Theorem 3.1, which contradicts the hypothesis.
Otherwise, if j < k, then bcmk is an occurrence of 231 in S132,231(π), which
is again impossible. The pattern 2314 can be addressed similarly, and it is
left to the reader.

• [3⇒ 1] Again we argue by contradiction. If Bi contains an occurrence bac
of 213, then π contains an occurrence mibac of 1324, which is impossible.
Otherwise, if π contains two elements x ∈ Bj, y ∈ Bk, with x < y and j < k,
then mjxmky is an occurrence of 2314, which is impossible too.

6.3 The (123, 321)- and (132, 321)-machines

The pairs of patterns (123, 321) and (132, 321) can be studied with similar tools.
We show that, in both cases, sortable permutations avoid 123. Therefore the re-
striction involving the pattern 321 is never triggered when processing (123, 321)-
and (132, 321)-sortable permutations. Equivalently, the (123, 321)-stack acts as
a 123-stack when the input is a (123, 321)-sortable permutation and thus we can
use the results of Chapter 4 to describe Sort(123, 321). In a similar fashion,
the (132, 321)-stack acts as a 132-stack when the input is a (123, 321)-sortable
permutations, which allows us to use what we proved in Chapter 4.

Lemma 6.5. Let σ ∈ {123, 132}. If π is (σ, 321)-sortable, then π avoids 123.

Proof. We prove the contrapositive statement by showing that if π contains 123,
then Sσ,321(π) contains 231. Let abc be the leftmost1 occurrence of 123 in π.
Let us consider the instant when c is pushed into the (σ, 321)-stack. If a is still
in the (σ, 321)-stack when c enters, then b is not inside the (σ, 321)-stack, since

1with respect to the lexicographical order of the indices.
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otherwise cba would be an occurrence of 321, which is forbidden. Thus Sσ,321(π)
contains bca ' 231 and we are done. Therefore we can assume that a is extracted
before c enters the (σ, 321)-stack. Let us consider the instant when a is extracted
from the (σ, 321)-stack. Let z be the next element of the input. Then there are
two elements x, y into the stack, with x below y, such that zyx is an occurrence of
either σ or 321. Note that necessarily x comes before a in π (it could be y = a).
If zyx ' 321, then xyz is an occurrence of 123 which precedes abc, which is
impossible due to our choice of abc. Therefore we have zyx ' σ. Next we show
that y = a. Indeed, suppose, for a contradiction, that y 6= a. Note that both x
and y are greater than a, since otherwise we would have an occurrence xac or yac
of 123 which precedes abc, a contradiction. But then the (σ, 321)-stack would
contain an occurrence xya of σ, which is impossible. We can now assume y = a.
Note that x > a due to our choice of abc. Thus σ 6= 132, since zax is an occurrence
of σ and x > a. This completes the proof for the case σ = 132. Let us now
assume that σ = 123 for the remaining part of the proof. Now, zax ' 132,
thus c 6= z. If z is still in the (123, 321)-stack when c enters, then S123,321(π)
contains an occurrence acz of 231, as desired. Otherwise, consider the instant
when z is extracted from the (123, 321)-stack, with c still in the input. Let w be
the next element of the input. Then there are two elements u, v into the stack,
with u below v, such that wvu is an occurrence of either 123 or 321. Observe that,
since z is the next element of the input when a is extracted, the elements u and v
precede a in π (otherwise they would have been extracted from the (123, 321)-
stack before a). Therefore it cannot be wvu ' 321, due to our choice of abc as
leftmost occurrence of 123 in π. Finally, if wvu ' 123, then we can repeat the
same argument on the triple wvu, in place of zyx. Since wvu is strictly to the left
of zyx, iterating this process will sooner or later result in either a contradiction or
in finding an occurrence of 231 in the output of the (123, 321)-stack, as desired.

Corollary 6.6. We have:

Sort(123, 321) = Sort(123) ∩S(123)

and
Sort(132, 321) = Sort(132) ∩S(123).

Proof. Let σ ∈ {123, 132}. Due to Lemma 6.5, any (σ, 321)-sortable permutation
avoids 123. Therefore the behavior of a (σ, 321)-stack on a (σ, 321)-sortable per-
mutation is equivalent to the behavior of a σ-stack, since the restriction involving
the pattern 321 is never triggered.

Let us now focus on the pair (123, 321). Since Sort(123, 321) = Sort(123) ∩
S(123), we will describe this set by exploiting the characterization of Sort(123)
provided in Chapter 4.
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Theorem 6.7. Let fn = f 123,321
n be the number of (123, 321)-sortable permutations

of length n. Then: 
f1 = 1;

f2 = 2;

f3 = 4;

fn = 7 · 2n−4, n ≥ 4.

Proof. Each permutation of length one and two is (123, 321)-sortable, while 132
and 123 are the only permutations of length three that are not (123, 321)-
sortable. Let n ≥ 4 and let π ∈ Sort(123, 321). Due to Corollary 6.6, we
have Sort(123, 321) = Sort(123)∩S(123). Therefore π can be uniquely constructed
according to the procedure described in Section4.2, which we recall below, as long
as occurrences of 123 are not created:

1. Choose α = α1α2 · · ·αk ∈ Sk(213), with α1 = k ≥ 2;

2. add h new maxima, k + 1, . . . k + h, one at a time, using the bijection ϕ of
Theorem 4.7;

3. add n − k − h consecutive ascents at the beginning, by inflating the first
element of the permutation, according to Corollary 4.3.

Observe that it must be k ≥ n − 1. Otherwise, if k < n − 1, then it would
be k + h ≥ 2, which would necessarily result in an occurrence of 123 in π. Thus
we have either k = n or k = n− 1. We distinguish the following cases.

• If k = n, then π = α is a permutation of Sn(213, 123) with π1 = n. Notice
that π is uniquely obtained by adding the initial maximum to a permutation
in Sn−1(213, 123). In other words, this operation yields a bijection between
the set of (123, 321)-sortable permutations of length n that start with their
maximum value and Sn−1(213, 123). It is well known that |Sn−1(213, 123)| =
2n−2.

• Suppose that k = n − 1 and h = 1, that is π is obtained by adding a new
maximum, immediately after n− 2, to some α ∈ Sn−1(213, 123), with α1 =
n− 1. Then it must be necessarily α2 = n− 2, otherwise α2n− 2n would be
an occurrence of 123 in π. Therefore α ∈ Sn−1(213, 123), with α1 = n − 1
and α2 = n − 2. Similarly to the previous item, removing the first two
elements of α yields a bijection with Sn−3(213, 123), and |Sn−3(213, 123)| =
2n−4.
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• Finally, suppose that k = n − 1 and h = 0, that is π is obtained from
some α ∈ Sn−1(213, 123), with α1 = n − 1, by inflating the first el-
ement of α by one. Since this operation cannot create an occurrence
of 123, each α ∈ Sn−1(213, 123) such that α1 = n − 1 is a suitable choice,
and |Sn−1(213, 123)| = 2n−3.

At the end we obtain:

fn = 2n−2 + 2n−4 + 2n−3 = 7 · 2n−4,

as desired.

Next we consider the set Sort(132, 321). We shall define a bijection be-
tween (132, 321)-sortable permutations of length n and Dyck paths of semilength n
that avoid the (consecutive) pattern DUDU. More precisely, we will describe a bijec-
tion between two generating trees for these families. First we refine the geometric
description of Sort(132, 321) by polishing the characterization of Sort(132) pro-
vided in Chapter 5. Recall from Section 5.1 that µ = (132, {(0, 2), (2, 0), (2, 1)}) is
the mesh pattern depicted in Figure 1.1.

Theorem 6.8. We have:

Sort(132, 321) = S(µ, 123).

Proof. It follows from Theorem 5.3 and Corollary 6.6, since 123 ≤ 2314.

The grid decomposition of a permutation π was introduced in Section 5.2.
Let π = m1B1m2B2 . . .mtBt be the ltr-min decomposition of π. Recall that:

• for i ≥ 1, the j − th vertical strip of π is Bj;

• for i ≥ 1, the i − th horizontal strip of π is Hi = {x ∈ π : mi−1 < x < mi},
where m0 = +∞.

• for any pair of indices i, j, the cell of indices i, j of π is Ci,j = Hi

⋂
Bj (note

that Ci,j is empty for each i > j).

Proposition 6.9. Let π be a (132, 321)-sortable permutation. Then each cell Ci,j
contains at most one element.

Proof. Suppose, for a contradiction, that the cell Ci,j contains at least two elements
and let Ci,j = xy · · · . If x < y, thenmixy is an occurrence of 123, which contradicts
Theorem 6.8. Otherwise, if x > y, then due to Lemma 5.5 there has to be some
element z between x and y in π such that z < mi. Let mj be the ltr-minimum of
the horizontal strip that contains z, for some j ≥ i. Notice that mj 6= z, since x
and y are in the same cell and z is placed between x and y in π. Then mjzy is an
occurrence of 123 in π, which is again impossible.
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Proposition 6.10. Let π be a (132, 321)-sortable permutation. Suppose that the
cell Ci,j is not empty. Then the cell Cu,v is empty for each pair of indices u, v such
that i < u and j ≤ v.

Proof. Suppose that x ∈ Ci,j and y ∈ Cu,v, with i < u and j ≤ v. Then mjxy is
an occurrence of 123 in π, which is impossible due to Theorem 6.8.

Proposition 6.11. Let π be a (132, 321)-sortable permutation. Then Bi > Bi+1

for each pair of consecutive vertical strips Bi, Bi+1.

Proof. It follows from Lemma 5.1 and Theorem 6.8.

Now, any prefix of a (132, 321)-sortable permutation is (132, 321)-sortable by
Lemma 2.3. Therefore every permutation of Sortn(132, 321) can be uniquely
constructed by inserting a new rightmost integer a ∈ {1, . . . , n} in a permuta-
tion π ∈ Sortn−1(132, 321), and suitably rescaling the other elements2. Every
permutation obtained this way from π is said to be a child of π. Now, due to
Propositions 6.9 and 6.11, there is at most one way to insert a new rightmost
element in each cell of the last vertical strip of a (132, 321)-sortable permutation.
Indeed each cell can contain at most one element due to Proposition 6.9 and the
value of this element is completely determined due to Proposition 6.11: it has to be
less than all the other elements in the same horizontal strip. Finally, some choices
will be forbidden due to Theorem 6.8. Given a (132, 321)-sortable permutation π,
where π = m1B1 · · ·mtBt is the usual ltr-min decomposition, a cell Ci,t is said to
be active if inserting a new rightmost element in the cell Ci,t yields a (132, 321)-
sortable permutation. Next we characterize precisely which cells are active. First
we introduce a new parameter.

Let π = m1B1 · · ·mtBt. Let y be the rightmost element of π which is not an ltr-
minimum and suppose that y ∈ Ci,j, for some i, j. Then the depth of π is dep(π) =
t− i+ 1. If π = m1 · · ·mt is the decreasing permutation, we assume dep(π) = t.

Theorem 6.12. Let π = m1B1 · · ·mtBt a (132, 321)-sortable permutation and
let d = dep(π).

1. If Bt is not empty, then the cell Ci,t is active if and only if i < d. In this
case π has d children.

2. If Bt is empty, then the cell Ci,t is active if and only if i ≤ d. In this case π
has d+ 1 children.

2i.e. adding 1 to each integer b such that b ≥ a.
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Proof. If π is the decreasing permutation, then dep(π) = t by definition. More-
over Bt is empty and the cell Ci,t is active for each i = 1, . . . , d − 1 due to Theo-
rem 6.8. Since inserting a new rightmost minimum is always allowed, in this case π
has d children.

Otherwise, let y be the rightmost element of π which is not an ltr-minimum and
suppose that y ∈ Cu,v, for some u, v, with d = t− u+ 1. Note that every cell Ci,t,
with i > d, is not active. Indeed inserting a new rightmost element a ∈ Ci,t,
with i > d, creates an occurrence mvya of 123, and this is forbidden due to
Theorem 6.8. On the other hand, we shall prove that each cell Ci,t, with i < d,
is active. Due to the same Theorem 6.8, it is sufficient to show that inserting a
new rightmost element a in the cell Ci,t, with i < d, cannot create an occurrence
of either 123 or µ. Suppose that πj1πj2a ' 123, for some indices j1 < j2. Note
that πj2 is not an ltr-minimum of π, therefore it precedes y in π. Moreover we
have πj2 < y, since y > a > πj2 . Thus πj1πj2y is an occurrence of 123 in π, which
contradicts the fact that π is (132, 321)-sortable. The pattern µ can be treated
analogously, so we leave the details to the reader.

Finally, we wish to prove that the cell Ct,d is active if and only if Bt is empty.
If Bt is not empty, then Ct,d is not active due to Proposition 6.10. If instead Bt

is empty, then inserting a in Ct,h cannot create an occurrence of 123. This can
be proved by repeating the same argument used above. Instead, suppose that a
creates an occurrence πj1πj2a of 132. Then, since Bt is empty, πj1πj2mta is an
occurrence of 2143, and thus πj1πj2a is not an occurrence of µ, as desired.

Theorem 6.12 allows us to define a generating tree for Sort(132, 321). The node
corresponding to the (132, 321)-sortable permutation π, with π = m1B1 · · ·mtBt,
is equipped with two labels (d, b), where:

• d = dep(π) is the depth of π.

• b is a boolean counter with value b = 0, if Bt is empty, and b = 1, otherwise.

According to Theorem 6.12, the following rule provides a generating tree
for Sort(132, 321):

Ω1 :


(1, 0)

(d, 0) −→ (d+ 1, 0)(1, 1)(2, 1) · · · (d− 1, 1)(d, 1)

(d, 1) −→ (d+ 1, 0)(1, 1)(2, 1) · · · (d− 1, 1)

We shall prove that the above tree is a generating tree for Dyck paths avoid-
ing DUDU as well. Let us consider the generating tree for Dyck paths described
in Example 1.4. In this tree, the children of a given Dyck path P are obtained
by inserting a new peak UD either before a D step of the last descending run or
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at the end of P . To obtain a generating tree for DUDU-avoiding paths, we have
to remove all the children where this operation creates an occurrence of the for-
bidden pattern DUDU. More precisely, let k be the length of the last descending
run of P and write P = p1 · · · pi−1piD

k, where pi is the rightmost U step of P .
If pi−1 = U, then inserting a new peak is always allowed. Otherwise, if pi−1 = D,
and thus pi−1pi = DU, then we cannot insert a new peak immediately before pi+2,
since pi−1pipi+1U would be an occurrence of DUDU. We then assign to each Dyck
path P two labels (k, b), where:

• k is the length of the last descending run of P ;

• b is a boolean counter with value 0, if the step that precedes the last U step
of P is U, and 1 otherwise. We assume b = 0 for the path UD.

According to what observed above, the following is a generating tree for Dyck
paths avoiding DUDU:

Ω2 :


(1, 0)

(k, 0) −→ (k + 1, 0)(1, 1)(2, 1) · · · (k − 1, 1)(k, 1)

(k, 1) −→ (k + 1, 0)(1, 1)(2, 1) · · · (k − 1, 1)

Corollary 6.13. The number of (132, 321)-sortable permutation of length n is
equal to the number of Dyck paths of semilength n avoiding DUDU.

Proof. The rules Ω1 and Ω2 are identical.

An example of the bijection between Sort(132, 321) and the set of DUDU-avoiding
Dyck paths induced by the rules Ω1 and Ω2 is illustrated in Figure 6.1.

6.4 The (123, 132)-machine

In this section we discuss the (123, 132)-machine. In [8], the authors show that
permutations in Sort(123, 132) are characterized by the avoidance of four (gen-
eralized) patterns of length four. Then they prove that the distribution of the
first element in Sort(123, 132) is given by the well known Catalan triangle (se-
quence A009766 in [45]). An immediate consequence is that (123, 132)-sortable
permutations are enumerated by the Catalan numbers. In this thesis we follow an
alternative path. We first provide a decomposition lemma for (123, 132)-sortable
permutations, then we collect several geometric properties of Sort(123, 132) that
lead, towards a step by step procedure, to the same enumerative result.

Although Lemma 6.2 does not apply to Sort(123, 132), it is still useful to look
at the ltr-min decomposition of (123, 132)-sortable permutations.
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Figure 6.1: On the left, the grid decomposition of the (132, 321)-sortable permu-
tation π = 6837214, where dep(π) = 3 and the last block B4 is not empty. On
the right, the corresponding Dyck path P , with k = 3 and b = 1. Active sites are
marked with “X”, while the symbol “×” marks those sites that are not active.

Lemma 6.14. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of the per-
mutation π. Then:

1. S123,132(π) = B̃1B̃2m2B̃3m3 · · · B̃kmkm1, where B̃i is a rearrangement of Bi,
for each i.

2. If π is (123, 132)-sortable, then Bi > Bi+1
3 for each i = 1, . . . , t− 1.

3. If π is (123, 132)-sortable, then B1 is increasing and B̃1 = R(B1) is the
reverse of B1.

4. If π is (123, 132)-sortable, then x < mi−1 for each x ∈ Bi and i ≥ 3. More-
over, we have B̃i = S12(Bi).

Proof. 1. Consider the action of the (123, 132)-stack on the input permuta-
tion π. Note that the element m1 remains at the bottom of the (123, 132)-
stack until the end of the sorting procedure. Now, since m2xm1 is an oc-
currence of 132 for each x in B1, all the elements in B1 are extracted from
the (123, 132)-stack before m2 enters. Then the element m2 can never play
the role of 2 in either 123 or 132, since m2 < m1 and m1 is the only el-
ement below m2 in the (123, 132)-stack. Therefore m2 is never involved
in any occurrence of either 123 or 132 with m1 and some elements of B2.
By repeating the same argument, we deduce that the block B2 has to be
extracted from the (123, 132)-stack before m3 enters (m3xm2 ' 132 for
each x ∈ B2). Then m2 is extracted too, since m3m2m1 ' 123. Next,
m3 is pushed above m1. The thesis follows by iterating the same argument
on the remaining blocks.

3That is x > y for each x ∈ Bi, y ∈ Bi+1.
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2. Suppose, for a contradiction, that there are two elements x ∈ Bi and y ∈
Bi+1 such that x < y. Then, due to what proved in the previous item,
S123,132(π) contains an occurrence xymt of 231, contradicting the fact that π
is (123, 132)-sortable.

3. Suppose, for a contradiction, that B1 is not increasing. Write B1 =
x1 · · ·xkxk+1 · · · , where xk > xk+1 is the leftmost descent of B1. Then the
elements x1, . . . , xk, xk+1 are pushed into the (123, 132)-stack and S123,132(π)
contains an occurrence xk+1xkm1 of 231, contradicting the fact that π
is (123, 132)-sortable. Thus B1 is increasing. In particular, each element
of B1 can be pushed into the (123, 132)-stack, so that B̃1 = R(B1).

4. Let i ≥ 3. If Bi contains an element x > mi−1, then S123,132(π) contains
an occurrence mi−1xmi of 231, a contradiction with π (123, 132)-sortable.
Finally, we show that B̃i = S12(Bi). Consider the instant when mi is pushed
into the (123, 132)-stack, that is as soon as the first element of Bi is the next
one to be processed. As a consequence of what said in the first item of this
lemma, at this step the (123, 132)-stack contains mim1, with mi above m1.
We show that, on Bi, the behavior of the (123, 132)-stack is equivalent to the
behavior of a 12-stack that ignoresmim1. Suppose that the 12-stack performs
a pop operation. In other words, the restriction of the 12-stack is triggered
by an occurrence y2y1 of 12, where y2 is the next element of the input and y1

is in the 12-stack. Notice that m1 > x for each x ∈ Bi, since we have
just proved that x < mi−1 and obviously mi−1 < m1. Thus y2y1m1 ' 123
and the (123, 132)-stack performs a pop operation too. Conversely, suppose
that the (123, 132)-stack performs a pop operation, that is the restriction of
the (123, 132)-stack is triggered by an occurrence y3y2y1 of either 123 or 231,
where y3 is the next element of the input. If y3y2y1 ' 123, then y2 6= mi,
since m1 > m2 and y3 < y2. Therefore y2 and y3 are elements of Bi and the
restriction of the 12-stack is triggered by y3y2 ' 12, as desired. Otherwise,
suppose that y3y2y1 ' 132. Note that both m1 and mi cannot be part of this
occurrence. Indeed m1 6= y1, since m1 > x for each x ∈ Bi, and mi 6= y1, y2

since mi < x for each x ∈ Bi. Therefore y3 < y1 are elements of Bi that
trigger the restriction of the 12-stack. This completes the proof.

What proved so far determines the structure of a (123, 132)-sortable permu-
tation π = m1B1 · · ·mtBt, except for the second block B2. Indeed, since B1 is
increasing and Bi > Bi+1 for each i, then B1 contains the biggest elements of π
in increasing order. Then, for each i ≥ 3, the block Bi is a 213-avoiding permu-
tation due to Theorem 3.1. Moreover, since mi < x < mi−1 for each x ∈ Bi,
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elements in miBi are strictly greater than elements in mi+1Bi+1. This guaran-
tees that occurrences of 213 are not created if we juxtapose miBi and mi+1Bi+1.
As a consequence, we can equivalently say that m3B3 · · ·mtBt is a 213-avoiding
permutation. Next we describe the structure of the remaining block B2. For the
rest of this section, let ξ = (132, {0, 2}, ∅) be the bivincular pattern depicted in
Figure 3.1. A geometric description of the set S(ξ) was provided in Section 3.3.
Recall that an occurrence of ξ in a permutation π = π1 · · · πn is a descent πi > πi+1

such that πi+1 > π1. Finally, denote by ∗213 an occurrence of either 4213, 3214,
2314, or 1324. Note that for any permutation π = π1 · · · πn, we have π ∈ S(∗213)
if and only if π2 · · · πn avoids 213.

Lemma 6.15. Let π = m1m2B2 be a permutation with two ltr-minima and such
that the first block in the ltr-min decomposition is empty. Then π is (123, 132)-
sortable if and only if π ∈ S(ξ, ∗213).

Proof. By Lemma 6.14 we have S123,132(π) = B̃2m2m1. Suppose initially that π
is (123, 132)-sortable. We wish to prove that π avoids ξ and m2B2 avoids 213.
Suppose, for a contradiction, that π contains an occurrence m1πiπi+1 of ξ. If πi+1

enters the (123, 132)-stack before πi is extracted, then S123,132(π) contains an
occurrence πi+1πim2 of 231, a contradiction with π being (123, 132)-sortable.
Therefore πi must be extracted when πi+1 is the next element of the input.
Let m1m2x1 · · ·xlπi be the elements contained in the (123, 132)-stack at this point.
Notice that it has to be x1 < x2 < · · · < xl < c, otherwise S123,132(π) would contain
an occurrence of 231 (with m2 playing the role of 1), which is impossible. Now,
starting from the top of the stack (which is πi > πi+1) and going down, consider
the last element y such that y > πi+1. Since m2 < πi+1, it must be either y = πi
or y = xj, for some j. In any case, πi+1 enters above y and S123,132(π) contains an
occurrence πi+1ym2 of 231, which is again a contradiction.
Otherwise, suppose, for a contradiction, that m2B2 contains an occurrence πiπjπk
of 213. Notice that i > 2, since m2 = 1. If πj < m1, then πjπim1 is an occurrence
of either 321 or 231. Thus πi has to be extracted before πj enters the (123, 132)-
stack. But this results in an occurrence piiπjm2 of 231 in S123,132(π), which con-
tradicts the fact that π is (123, 132)-sortable. Therefore we can suppose πj > m1.
If j = i + 1, then π1πiπi+1 is an occurrence of ξ and we are back to the previous
case. Instead, if j > i+ 1, consider the element πi+1. If πi+1 < πj, then we repeat
the same argument replacing πj with πi+1. Finally, if πi+1 > πj, we repeat the same
argument replacing πi with πi+1. Sooner or later this will lead to a contradiction.

Conversely, suppose that π is not (123, 132)-sortable. Equivalently, let bca be
an occurrence of 231 in S123,132(π) = B̃2m2m1. Note thatm2 6= b, c, sincem2 < m1.
Therefore b and c are elements of B̃i. We distinguish two cases. Initially, suppose
that b precedes c in π (and in S123,132(π) as well). Therefore b is extracted from
the (123, 132)-stack before c enters. Let y be the next element of the input when b is
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extracted. If y < b, then byc is an occurrence of 213 inm2B2, as desired. Otherwise,
let y > b. Since the restriction of the (123, 132)-stack is triggered by y, there are
two elements into the stack u, v, with u below v, such that yvu is an occurrence
of either 123 or 132. Since we assumed y > b, we have bvu ' yvu and thus bvu is
an occurrence of either 123 or 132 inside the (123, 132)-stack, which is impossible.
Finally, suppose that c precedes b in π. Since b is extracted before c, c is still inside
the (123, 132)-stack when b enters. This implies that b > m1, otherwise bcm1 would
be an occurrence of either 123 (if m1 > c) or 132 (if m1 < c), which is impossible.
Similarly, for each element x between c and b in π we have x > m1. Now, if c and b
are consecutive in position, then m1cb is an occurrence of ξ, as wanted. Otherwise,
let x be the element immediately after c in π. If x < c, then m1cx is the desired
occurrence of ξ. Otherwise, if c < x (and thus x > b), we can repeat the same
argument using x instead of c.

Lemma 6.16. Let π be a permutation of length n. Let π = m1m2B2m3B3 · · ·mtBt

be the ltr-min decomposition of π and suppose that B1 is empty. For k ≥ 1, define:

π̄ = m1(n+ 1)(n+ 2) . . . (n+ k)m2B2 · · ·mtBt.

Then π is (123, 132)-sortable if and only if π̄ is (123, 132)-sortable.

Proof. Let k ≥ 1 and suppose that π is (123, 132)-sortable. Consider the action of
the (123, 132)-stack on input π̄. Since m1 < n+1 < n+2 < · · · < n+k, the prefix
of π̄ up to n+k is pushed into the (123, 132)-stack. Then, since m2(n+1)m1 ' 132,
the elements n + k, n + k − 1, . . . , n + 1 are extracted from the (123, 132)-stack.
Therefore we have:

S123,132(π̄) = (n+ k)(n+ k − 1) . . . (n+ 1)S123,132(π).

It is easy to realize that S123,132(π) contains 231 if and only if S123,132(π̄) con-
tains 231, thus the thesis follows.

Corollary 6.17. Let π = m1B1 · · ·mtBt be the ltr-min decomposition of the
permutation π. Then π is (123, 132)-sortable if and only if the following four
conditions are satisified:

1. Bi > Bi+1 for each i = 1, . . . , t− 1;

2. B1 is increasing;

3. m1m2B2 ∈ S(ξ, ∗213);

4. m3B3 · · ·mtBt ∈ S(213).

Proof. It is an immediate consequence of lemmas 6.14, 6.15 and 6.16.
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The structural characterization of Corollary 6.17 can be exploited in or-
der to compute the number of (123, 132)-sortable permutations. For n ≥ 1
and 1 ≤ k ≤ n, let bn,k be the (n, k)-th ballot number. The triangle of ballot
numbers is also known as the Catalan triangle (sequence A009766 in [45], see
Figure 6.2). Let b̃n,k = bn,n+1−k be the triangle obtained by reversing its rows
(sequence A033184 in [45]).

Lemma 6.18. 1.
s∑
i=1

b̃s,i

(
n− 1− s+ i

i

)
= bn,s+1.

2. 1 +
n−1∑
s=1

bn,s+1 = cn.

Proof. 1. We have:

s∑
i=1

b̃s,i

(
n− 1− s+ i

i

)
=

s∑
i=1

bs,s+1−i

(
n− 1− s+ i

i

)
=

s∑
j=1

bs,j

(
n− j

s− j + 1

)
.

We shall prove that

bn,s+1 =
s∑
j=1

bs,j

(
n− j

s− j + 1

)
by showing that each coefficient bs,j contributes

(
n−j
s−j+1

)
times to bn,s+1 (see

Figure 6.2). It is well known that ballot numbers are defined, for example,
by the recurrence:

bn,s+1 =
s+1∑
i=1

bn−1,i.

In other words, in the triangle bn,k each coefficient bn,k is obtained by sum-
ming the coefficients of indices 1, 2, . . . , k of the previous row. Let us consider
the coefficient bs,j, for some j. The contribution of bs,j to bn,s+1 is obtained
by choosing (see again Figure 6.2):

• a coefficient bs+1,t1 in the (s+ 1)-th row, with t1 ∈ {j, j + 1, . . . , s+ 1};
• a coefficient bs+2,t2 in the (s+ 2)-th row, with t1 ≤ t2 ≤ s+ 1;
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n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 1 2 2

4 1 3 5 5

5 1 4 9 14 14

6 1 5 14 28 42 42

7 1 6 20 48 90 132 132

••
•
•

•
•
•
•

•
•

(s, j)

(n, s+ 1)

t1
t2

tn−s−2

tn−s−1

Figure 6.2: The triangle of the ballot numbers, on the left, and the construction
described in Lemma 6.18, on the right.

• a coefficient bs+3,t3 in the (s+ 3)-th row, with t2 ≤ t3 ≤ s+ 1;

...

• a coefficient bn−1,tn−s−1 in the (n − 1)-th row, with tn−s−2 ≤ tn−s−1 ≤
s+ 1.

Finally, there are
(

(n−s−1)+(s+1−j+1)−1
(s+1−j+1)−1

)
=
(
n−j
s−j+1

)
sequences t1 ≤ t2 ≤ · · · ≤

tn−s−1, with values in {j, j + 1, . . . , s + 1}, therefore the desired equality
follows.

2. Since bn,1 = 1, we have

1 +
n−1∑
s=1

bn,s+1 = bn,1 +
n∑
t=2

bn,t =
n∑
t=1

bn,t = cn.

Theorem 6.19. Let fn = f 123,132
n be the number of (123, 132)-sortable permu-

tations of length n. Let gn be the number of (123, 132)-sortable permutation of
length n with at least two ltr-minima and where the first block B1 in the ltr-min de-
composition is empty. Denote by hn the number of permutations π in Sn(ξ, ∗213)
such that π2 = 1 (i.e. where π1 and π2 are the only two ltr-minima of π.). Then:

1. h1 = 0 and hn+1 = cn, for each n ≥ 1.

2. g1 = 0 and gn+1 = cn+1 − cn, for each n ≥ 1.
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3. fn = cn, for each n ≥ 1.

Proof. 1. Let π ∈ S(ξ, ∗213) be a permutation of length at least two and sup-
pose that π2 = 1. Let π1 = k and write:

π = k1A1α1A2α2 · · ·AsαsAs+1,

where αi < k for each i and the elements of the blocks A1, . . . , As+1 are
greater than k. Let i be the minimum index such that αi > αi+1. Note
that Aj is empty for each j ≥ i + 2. Otherwise, if x ∈ Aj, then π1αiαi+1x
would be an occurrence of ∗213 in π, which contradicts the hypothesis. Anal-
ogously, it must be x > y for each x ∈ Bj and y ∈ Bj+1, with j = 1, . . . , i,
or else π1xαjy would be an occurrence of ∗213. Moreover, the block Bj is
increasing for each j = 1, . . . , i+ 1. Otherwise, a descent x > y in Bj would
result in an occurrence π1xy of ξ, which is impossible. What observed so
far is enough to completely characterize a permutation π ∈ Sn+1(ξ, ∗213),
with π2 = 1. Such permutation is either the increasing permutation or it can
be constructed as follows (see Figure 6.3):

• Choose a permutation α ∈ Ss(213), for some 1 ≤ s ≤ n−1. Let i be the
index of the leftmost descent in α (if α is the increasing permutation,
let i = n− 1).

• Choose how to distribute n − 1 − s elements in the blocks A1, . . . , Ai.
As a consequence of what observed above, the blocks are increasing and
the relative order of the blocks is uniquely determined, therefore there
are

(
n−1−s+i

i

)
different ways to distribute such elements.

• Finally, add the two initial elements π1π2 = k1.

Now, it is well known that the the number of 213-avoiding permutations
of length s, where i is the index of the leftmost descent, is given by b̃s,i.
Therefore we have:

hn+1 = 1 +
n−1∑
s=1

(
s∑
i=1

b̃s,i

(
n− 1− s+ i

i

))
,

and the thesis follows from Lemma 6.18.

2. Due to Corollary 6.17, each (123, 132)-sortable permutation π =
m1m2B2 · · ·mtBt, where B1 is empty, is obtained by juxtaposing
a 213-avoiding permutation m3B3 · · ·mtBt to a permutation m1m2B2 ∈
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S(ξ, ∗213). By summing over the length j of the 213-avoider (note that 0 ≤
j ≤ n− 1), we obtain:

gn+1 =
n−1∑
j=0

hn+1−jcj =
n−1∑
j=0

cn−jcj.

Finally, it is well known that:

cn+1 =
n∑
j=0

cn−jcj = cn +
n−1∑
j=0

cn−jcj,

thus the thesis follows.

3. Let π be a (123, 132)-sortable permutation of length n. If π has one
ltr-minimum, then π is the increasing permutation due to Lemma 6.14.
Otherwise, according to Lemma 6.16, π is obtained from a (123, 132)-
sortable permutation, with B1 empty, by inserting k ≥ 0 consecutive as-
cents k + 1, k + 2, . . . , n − 1, n immediately after π1. Therefore, summing
over k, we have:

fn = 1 +
n∑
k=2

gn = c1 +
n∑
k=2

(cn − cn−1) = cn.

6.5 The (123, 312)-machine

In this section we provide a structural description of (123, 312)-sortable permu-
tations and define a generating tree for the set Sort(123, 312). The enumeration
of Sort(123, 312), which is given by the binomial transform of the Catalan num-
bers, was proved in [8] by means of a bijection with a family of pattern-avoiding
partial permutations.

Let π = M1B1 · · ·MtBt the ltr-max decomposition of a permutation π. By
Lemma 6.1, we have S123,312(π) = B̃1 · · · B̃tMt · · ·M1, where B̃i is a suitable re-
arrangement of Bi. Due to the same theorem, if π is (123, 312)-sortable and has
length n, then Mj = n− t+ j, for each j = 1, . . . , t.

Theorem 6.20. Let π = M1B1 · · ·MtBt be a (123, 312)-sortable permutation.
Then:

1. Bi avoids 213 for each i.
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A1 A2

. . .

Ai Ai+1

•
π1

•π2 = 1

•
•

•
. .
.

•

•

α1

α2

αi−1

αi

αi+1
αi+2 · · ·αs

∅

Figure 6.3: The geometric structure of a permutation π ∈ S(ξ, ∗213), with π2 = 1.

2. B̃i = S12(Bi), for each i.

Proof. Let i ≥ 2. Notice that, as a consequence of Lemma 6.1, immediately
after the push of Mi into the (123, 312)-stack, the (123, 312)-stack contains the
elements Mi · · ·M2M1, reading from top to bottom. Moreover, these elements
remain at the bottom of the (123, 312)-stack until the end of the sorting procedure,
since they are the last elements of S123,312(π). This fact will be used for the rest
of the proof.

1. Suppose, for a contradiction, that Bi contains an occurrence bac of 213,
for some i. Therefore, since abMi is an occurrence of 123, b is extracted
from the (123, 312)-stack before a enters. Since π is (123, 312)-sortable, this
implies that a is then extracted before c enters, otherwise bca would be an
occurrence of 231 in S123,312(π). Consider the instant when a is extracted
from the (123, 312)-stack. Let x be the next element of the input. Since a
pop operation is performed, there must be two elements y, z in the (123, 312)-
stack, with y above z, such that xyz is an occurrence of either 123 or 312.
Notice that z = Mj, for some j ≤ i. Otherwise, if z ∈ Bi, then yzMi would
be an occurrence of 123 in the (123, 312)-stack, a contradiction. Since y < z,
we necessarily have y ∈ Bi (y cannot be an ltr-maximum). Now, xyz is not
an occurrence of 312. Otherwise it would be x > z = Mj and thus x would
be an ltr-maximum. But since x precedes c ∈ Bi (it could be x = c), this is
impossible. Therefore xyz ' 123. If x > a, then it would be y > a as well
and thus Miya would be an occurrence of 123 in the (123, 312)-stack, which
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is impossible. So we have x < a and bxc is an occurrence of 213 in Bi (note
that x is strictly to the right of a), thus we can repeat the same argument
using bxc instead of bac, until we eventually find a contradiction.

2. Let us consider the action of the (123, 312)-stack on the block Bi. We wish to
show that the behavior of the (123, 312)-stack when processing Bi is equiv-
alent to the behavior of an empty 12-stack on input Bi. In other words, we
prove that the restriction of the (123, 312)-stack is triggered if and only if the
next element of the input forms an occurrence of 12 together with some other
element in the (123, 312)-stack. As soon as Mi enters the (123, 312)-stack
(and the first element of Bi is the next one to be processed), the (123, 312)-
stack contains the elements Mi · · ·M2M1, reading from top to bottom. Ob-
serve that Bi avoids 213 by what proved above, therefore the (123, 312)-
stack cannot be triggered by an occurrence of 312 when processing Bi. Sup-
pose that the next element of the input x forms an occurrence xy of 12
with some y ∈ Bi. Then xyMi is an occurrence of 123 in the (123, 312)-
stack, as desired. Conversely, suppose that the (123, 312)-stack is triggered
by an occurrence of xyz of 123, where x is the next element of the input.
Since Mi > Mi−1 > · · · > M1, it must be y ∈ Bi. Thus xy is an occurrence
of 12 that triggers the 12-stack, as wanted.

As a consequence of what proved so far in this section, for any (123, 312)-
sortable permutation π = M1B1 · · ·MtBt of length n, we have Bi ∈ Sort(213)
and M1, . . . ,Mt = n − t + 1, . . . , n. Moreover, S123,312(π) = B̃1 · · · B̃tMt · · ·M1,
where B̃i is decreasing. Therefore, for any three elements x, y, z, with x ∈ Bi,
y ∈ Bj and z ∈ Bk, with i < j ≤ k, xyz cannot be an occurrence of 231.
Otherwise xyz would still be an occurrence of 231 in S123,312(π), contradicting the
fact that π is (123, 312)-sortable. From now on, we say that xyz is an occurrence
of 2 − 3 − 1 if xyz ' 231, with x ∈ Bi, y ∈ Bj, z ∈ Bk and i < j < k. In the
analogous case, but when j = k, we say that xyz is an occurrence of 2− 31.

Theorem 6.21. Let π = M1B1 · · ·MtBt be the ltr-max decomposition of a per-
mutation of length n. Let S123,312(π) = B̃1 · · · B̃tMt · · ·M1. Then π is (123, 312)-
sortable if and only if the following four conditions are satisfied:

1. Mj = n− t+ j, for each j = 1, . . . , t.

2. Bi avoids 213 for each i (and thus B̃i is decreasing for each i).

3. π avoids 2− 3− 1.

4. π avoids 2− 31.
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Proof. If π is (123, 312)-sortable, then π satisfies all the above conditions as a
consequence of what proved before in this section. Conversely, it is easy to check
that, if π satisfies the above conditions, then S123,312(π) avoids 231. We leave this
part of the proof to the reader.

In [8], the structural description of Theorem 6.21 is reformulated in terms
of avoidance of (generalized) patterns. This ultimately leads to a bijection be-
tween Sort(123, 312) and the set of partial permutations avoiding the pattern 213,
whose enumeration is given by the binomial transform of the Catalan numbers
(sequence A007317 in [45]). We refer the reader to [8] for a definition of partial
permutations, as well as for a detailed proof of the results mentioned above. In
what follows we provide a generating tree for Sort(123, 312). As usual, we wish
to generate all the permutations in Sort(123, 312) by inserting a new rightmost
element (and rescaling the others). Before doing that, we reformulate the third
condition of Theorem 6.21 in the following lemma, whose easy proof is omitted.

Lemma 6.22. Let π = M1B1 · · ·MtBt be the ltr-max decomposition of
the (123, 312)-sortable permutation π. Let S123,312(π) = B̃1 · · · B̃tMt · · ·M1.
Then S123,312(π) avoids 2 − 31 if and only if for each x ∈ Bi, y ∈ Bj, with i < j,
we have:

• if y > x, then Bj > x.

• If y < x, then Bj < x.

In other words, due to Lemma 6.22, each block Bj of a (123, 312)-sortable
permutation π is bounded between two previous elements of π. Now, let π =
M1B1 · · ·MtBt be a (123, 312)-sortable permutation of length n. We distinguish
three possible ways to insert a new rightmost element x in order to get a (123, 312)-
sortable permutation:

(A) Insert a new ltr-maximum x = n+ 1;

(B) if Bt is empty, insert the first element of Bt;

(C) if Bt is not empty, insert an element in Bt.

In order to provide a generating tree for (123, 312)-sortable permutations, we
assign to each element of Sort(123, 312) two labels (k,m). The label k denotes
the number of active sites of the current block Bt, thus it takes into account the
insertion of x according to (C). Due to Lemma 6.22, the relative position of the
block Bt with respect to the previous blocks is uniquely determined by its first
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element. Therefore we just have to make sure that Bt avoids 213, as stated in
Theorem 6.21, and the active sites related to the label k will be Catalan-type:

(k)→ (2)(3) · · · (k)(k + 1).

The other label m denotes the number of active sites with respect to the relative
order of the blocks and it takes into account the insertion of x according to (B).
More precisely, since we have to avoid creating an occurrence of 2 − 3 − 1, the
label m will be Catalan-type too:

(m)→ (2)(3) · · · (m)(m+ 1).

Notice that inserting x according to (C) affects the label m as well. Indeed a new
element in the blockBt creates one additional active site for the relative order of the
blocks (so m is increased by one). Finally, inserting a new ltr-maximum x = n+ 1
according to (A) always produces a permutation where the last block is empty,
that is where k = 1. Note that this operation does not affect the label m.

Theorem 6.23. The following rule provides a generating tree for Sort(123, 312):

Ω :


(1, 0) −→ (1, 0)(2, 2)

(1,m) −→ (1,m)(2, 2)(2, 3) · · · (2,m)(2,m+ 1), m ≥ 2

(k,m) −→ (1,m)(2,m+ 1)(3,m+ 1) · · · (k + 1,m+ 1), k,m ≥ 2

(6.1)

Proof. Let π = M1B1 · · ·MtBt be a (123, 312)-sortable permutation with la-
bel (k,m), for some integers k,m. Suppose we insert a new rightmost element x.
This can be done according to either condition (A), (B) or (C), as described below
Lemma 6.22. We discuss each case separately.

• If (k,m) = (1, 0), then π = 1 · · ·n consists solely of ltr-maxima, since m = 0.
If x is a new ltr-maximum, then the label of the resulting permutation is
again (1, 0). Otherwise, if x is the first (and only) element of Bt, then the
resulting label is (2, 2).

• If (k,m) = (1,m), for some m ≥ 2, then the last element of π is Mt and Bt

is empty. If x is a new ltr-maximum, then the resulting label is (1,m), as
noted above. Otherwise, x is the first element of Bt, according to (B). Then
the behavior of the label m is Catalan-type, according to the relative order
of the blocks. Moreover, the label k of any resulting permutation is always 2,
since x is the only element of Bt in the resulting permutation.
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• Finally, let k,m ≥ 2. Then, since k ≥ 2, the block Bt is not empty (and
it has k Catalan-type active sites). Again if x is a new ltr-maximum, then
the resulting label is (1,m). Otherwise, x is an element of Bt. Therefore
the behavior of the label k is Catalan-type, according to (C). The label m,
instead, is increased by one, as noted before.

The problem of showing directly that the family of objects generated by the
rule of Theorem 6.23 is counted by the binomial transform of the Catalan numbers
remains open.

Open Problem 6.1. Prove directly that objects generated by Rule 6.23 are
counted by the binomial transform of Catalan numbers.

6.6 The family of (σ,σ̂)-machines

We end this chapter by mentioning a result for a family of pairs of patterns. Let σ
be a permutation of length k. Recall that σ̂ = σ2σ1σ3 · · ·σk is the permutation
obtained by interchanging the first two entries of σ. Then the map π 7→ Sσ,σ̂(π)
is bijective from Sort(σ, σ̂) to S(231). More precisely, each (σ, σ̂)-sortable permu-
tation π is obtained uniquely from a 231-avoiding permutation α as:

π = R(Sσ,σ̂(R(α)).

The above equality gives a constructive description of Sort(σ, σ̂). Indeed it follows
immediately that:

Sort(σ, σ̂) = R(Sσ(R(S(231)))

A proof of this fact (which will be obtained as a corollary of a much more general
result for Cayley permutations) is postponed to Remark 8.2 in Section 8.1.1. An
immediate consequence is that fσ,σ̂n = cn, for each permutation σ and n ≥ 1.



Chapter 7

Dynamical aspects of
the σ-machine

In this chapter we analyze some dynamical aspects of σ-machines by regarding a
σ-stack as an operator π 7→ Sσ(π). This approach has been adopted recently for
pattern-avoiding machines in [8, 11, 20, 28]. Suppose to perform a deterministic
sorting procedure. Then it is natural to study the map S that associates to an
input string π the (uniquely determined) output of the sorting process. Some of
the problems that arise, and are classically considered, are the following:

• Determine the fertility of a string, which is the number of its pre-images
under the map S .

• Determine the image of S , i.e. the strings with positive fertility. These are
often called sorted permutations [16].

In what follows, we define some properties of the operator Sσ associated to
a σ-stack, then we start to collect the first related results.

7.1 Sorted permutations and fertility

Let σ be a permutation of length two or more. The map Sσ is defined by:

Sσ : S→ S

π 7→ Sσ(π).

Define Sorted(σ) = Sσ(Sort(σ)). Permutations in Sorted(σ) are thus images of σ-
sortable permutations through the map Sσ. We call them the σ-sorted permuta-
tions. Notice that Sorted(σ) = Sσ(S) ∩S(231).
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Remark 7.1. In the adopted definition, σ-sorted permutations are those that
are both output of the σ-stack and 12-sortable. A different notion (of sorted
permutations) can be obtained by considering the set Sσ(S), thus including all
the possible outputs of the σ-stack. This framework will be adopted in Chapter 8
in the (more general) case of Cayley permutations.

The σ-fertility of a permutation π is

fertσ(π) = | (Sσ)−1 (π)|.

Due to the adopted definition of σ-sorted permutations, we have:

|Sortn(σ)| =
∑

γ∈Sorted(σ)

fertσ(γ).

A permutation σ is surjective if Sorted(σ) = S(231). A permutation σ is injective
if fertσ(π) ≤ 1 for each π ∈ S(231). We say that σ is bijective if σ is both surjective
and injective. In this case, for each n ≥ 1, we have:

|Sortn(σ)| =
∑

γ∈Sorted(σ)

fertσ(γ) =
∑

γ∈Sn(231)

1 = cn,

where cn is the n-th Catalan number. Equivalently, σ is said to be injective,
surjective or bijective if the (restricted) map Sσ : Sort(σ)→ S(231) is respectively
injective, surjective or bijective. Finally, σ is said to be effective if Sorted(σ) ⊆
S(σ), that is the σ-stack succesfully performs its task of preventing occurrences
of σ to be produced. One of the main goals of this chapter is to characterize which
patterns are effective. First we prove a simple lemma that leads to an equivalent
definition of effectiveness.

Lemma 7.1. We have:

S(231, σ) ⊆ Sorted(σ) ⊆ S(231).

Proof. The inclusion Sorted(σ) ⊆ S(231) has already been noted. For the other
inclusion, observe that every σ-avoiding permutation is equal to the output of Sσ
on its reverse, and therefore, every such permutation that also avoids 231 belongs
to Sorted(σ). Moreover, by Lemma 3.4 we have:

Sσ(S(132,R(σ)) = R(S(132,R(σ)) = S(231, σ),

and thus S(231, σ) ⊆ Sorted(σ).

Corollary 7.2. A pattern σ is effective if and only if Sorted(σ) = S(231, σ).
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Proof. If σ is effective, that is Sorted(σ) ⊆ S(σ), then by Lemma 7.1 we
have S(231, σ) ⊆ Sorted(σ) ⊆ S(231, σ) and thus Sorted(σ) = S(231, σ). The
other implication is trivial.

Theorem 7.3. Let σ be a permutation of length two or more. If σ̂ ≥ 231,
then Sorted(σ) = S(231, σ) and σ is both injective and effective.

Proof. Suppose that σ̂ ≥ 231. By Theorem 3.6, we have Sort(σ) = S(132,R(σ)).
Therefore, if π ∈ Sort(σ), then π avoids R(σ) and thus Sσ(π) = R(π). In other
words, the operator Sσ acts as the reverse operator on Sort(σ) and thus the σ-
machine is injective. Finally, we have:

Sorted(σ) = R(Sort(σ)) = R(S(132,R(σ))) = S(231, σ),

hence the σ-machine is effective due to Corollary 7.2.

Due to Theorem 7.3, if both σ̂ and σ contain 231, then Sorted(σ) = S(231) and
the σ-machine is also surjective. On the other hand, if σ̂ ≥ 231, but σ avoids 231,
then Sorted(σ) is strictly contained in S(231) and the σ-machine is not surjective.

7.2 Characterization of effective patterns

In Lemma 7.1 we have proved that S(231, σ) ⊆ Sorted(σ). Our next goal is to
provide a characterization of the effective patterns. Such patterns are precisely
those where the equality holds, as stated in Corollary 7.2.

Proposition 7.4. Let σ be a permutation of length two or more. If σ̂ = 1 ⊕ α,
for some α ∈ S(231), then σ is not effective.

Proof. Let σ̂ = 1 ⊕ α, with α ∈ S(231). We show that there is a σ-sortable
permutation π such that Sσ(π) ≥ σ. Let σ = σ1σ2 · · ·σk, where σ2 = 1 since the
first element of σ̂ is 1 by hypothesis. Suppose that σ1 = t, for some 2 ≤ t ≤ k.
Define

π = R(σ)	R(σ2 · · · σt) = σ′kσ
′
k−1 · · · σ′2σ′1σtσt−1 · · · σ2,

where σ′i = σi + t− 1 for each i. Notice that:

σ′2 = σ2 + t− 1 = 1 + t− 1 = t = σ1.

We shall prove that:
Sσ(π) = σ1σ2 · · ·σtσ′1σ′3 · · ·σ′k.

Due to our assumptions, we have that σ = t1σ3 · · ·σk and σ avoids 231. Thus it
must be

{σ3, . . . , σt} = {2, . . . , t− 1} and {σt+1, . . . , σk} = {t+ 1, . . . , k},
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otherwise there would be two indices i ∈ {2, . . . , t − 1} and j ∈ {t + 1, . . . , k}
such that σi > t and σj < t. But then σ would contain an occurrence σ1σiσj
of 231, which is a contradiction. An immediate consequence is that the
string w = σ1 · · · σtσ′t+1 · · ·σ′k is order isomorphic to σ. Indeed w is obtained
from σ by adding t − 1 to the elements σ′t+1, . . . , σ

′
k. Moreover, the string z =

σ2 · · ·σtσ′1σ′3 · · · σ′k avoids σ. Indeed we have σ1 = t, whereas σi < t for each i ≤ t.
Thus no element amongst σ2, . . . , σt can play the role of σ1 in an occurrence of σ
in z. Finally, the remaining suffix of z is too short to contain σ (it has length k−1).
Now, let us consider the action of the σ-stack on input π. Since π contains the pre-
fix σ′kσ

′
k−1 · · ·σ′2σ′1, the first element that cannot be pushed into the σ-stack is σ′1,

which causes the pop of σ′2. Then σ′1 is pushed and, immediately after, the σ-stack
contains σ′k · · ·σ′3σ′1, reading from bottom to top. The remaining elements of the
input are σt · · ·σ2. Notice that σ′k · · ·σ′3σ′1σt · · · σ2 = R(z), which avoids R(σ) due
to what observed above. Therefore all the remaining elements of the input are
pushed into the σ-stack directly and the output is:

Sσ(π) = σ′2σ2 · · ·σtσ′1σ′3 · · ·σ′k.

This is precisely what we wanted, since σ′2 = σ1. Now, Sσ(π) contains the sub-
string w, which is an occurrence of σ. Finally, it is easy to show that Sσ(π)
avoids 231, since σ avoids 231 and σ′i > σj, for each i, j. Thus π is σ-sortable
and Sσ(π) ≥ σ. This completes the proof.

Next we show that if σ̂ is not the direct sum of 1 plus a 231-avoiding permuta-
tion, then σ is effective. If σ̂ ≥ 231, then the desired results follows immediately
by Theorem 7.3. We just need to address the remaining case where σ̂ avoids 231
and σ2 6= 1.

Proposition 7.5. Let σ be a permutation of length two or more. If σ̂ avoids 231
and σ2 6= 1, then σ is effective.

Proof. We show that Sorted(σ) ⊆ S(σ). Let γ ∈ Sorted(σ) and suppose, for a
contradiction, that γ ≥ σ. Let π be a σ-sortable permutation such that Sσ(π) = γ.
If π avoids R(σ), then γ = Sσ(π) = R(π) avoids σ, which is a contradiction.
Therefore we can assume that π ≥ R(σ). By Lemma 3.4, we have that γ ≥ σ̂.
Thus γ contains both σ and σ̂ and moreover γ avoids 231. Since σ2 6= 1, it must
be σ1 = 1. Otherwise, if σi = 1, with i ≥ 3, then it would be either σ1σ2σi ' 231,
if σ1 < σ2, or σ2σ1σi ' 231, if σ1 > σ2. In the first case, it would be γ ≥ σ ≥ 231,
which is impossible. In the second case, it would be γ ≥ σ̂ ≥ 231, again a
contradiction.

Now, let σ̃1 · · · σ̃k be the leftmost occurrence of σ in γ. Let us consider the in-
stant when σ̃1 is extracted from the σ-stack. If the input is empty, then the σ-stack
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must contain all the elements σ̃1 · · · σ̃k, from top to bottom, which is impossible
by definition of σ-stack. Thus σ̃1 is extracted due to the fact that the next ele-
ment of the input, say σ′1, triggers the restriction of the σ-stack. More explicitly,
σ′1 realizes an occurrence of σ together with some elements σ′2 · · ·σ′k contained in
the σ-stack (from top to bottom). Since σ1 = 1, it must be σ̃1 > σ′1, other-
wise σ̃1σ

′
2 · · ·σ′k would be an occurrence of σ inside the σ-stack. If σ̃2 precedes σ′1

in γ, then σ̃1σ̃2σ
′
1 ' 231 in γ, which is impossible. Thus we can assume that σ̃2

follows σ′1 in γ. We consider two cases, according to whether or not σ̃2 follows σ′1
in π.

• Suppose initially that σ̃2 precedes σ′1 in π, and thus σ̃2 is contained in the σ-
stack when σ′1 is the next element of the input. Consider the instant when σ̃1

is extracted from the σ-stack. Recall that at this point σ′1 is the next element
of the input and σ′1σ

′
2 · · ·σ′k ' σ, for some elements σ′2 · · ·σ′k contained in

the σ-stack. Moreover, the top element of the σ-stack is σ̃1 and σ̃2 is still
contained in the σ-stack. We shall prove that σ̃j is contained in the σ-stack
for each j ≥ 3. Suppose, for a contradiction, that σ̃j follows σ′1 in the input,
for some j ≥ 3. Notice that σ̃2 is extracted from the σ-stack before σ̃j
enters. Let σ′′′1 σ

′′′
2 · · ·σ′′′k be the occurrence of σ that causes the pop of σ̃2,

with σ′′′1 the next element of the input. Again we have σ̃2 > σ′′′1 , since σ1 = 1.
Moreover γ contains σ̃1σ̃2σ

′′′
2 , thus it must be σ′′′1 > σ̃2, or else σ̃1σ̃2σ

′′′
1 would

be an occurrence of 231 in γ, which is impossible. But then, when σ̃1 is the
top of the σ-stack, the σ-stack contains σ̃1σ

′′′
2 · · ·σ′′′k , which is an occurrence

of σ since σ′′′1 > σ̃1 (and σ1 = 1), again a contradiction. We can thus assume
that, when σ̃1 is extracted, σ̃j is contained in the σ-stack for each j ≥ 3. But
this is impossible, since the σ-stack would contain an occurrence σ̃1σ̃2 · · · σ̃k
of σ.

• Suppose instead that σ̃2 follows σ′1 in π, and thus σ′1 is extracted from the σ-
stack before σ̃2 enters. Let us consider the instant when σ′1 is extracted.
At this point, the σ-stack contains some elements σ′′2 · · · σ′′k that realize an
occurrence of σ together with the next element σ′′1 of the input. Again it
must be σ′1 > σ′′1 , otherwise (since σ1 = 1) the σ-stack would contain an
occurrence σ′1σ

′′
2 · · ·σ′′k of σ. Thus σ̃1 > σ′1 > σ′′2 and σ̃1σ̃2σ

′′
1 ' 231. This

means that σ̃2 must follow σ′′1 in γ. Now, if σ̃2 precedes σ′′1 in π, then we
are back to the previous case. Otherwise, we can repeat the same argument
on σ̃1σ̃2σ

′′
1 , with σ′′1 in place of σ′1. Sooner or later, since σ′′1 is strictly to the

right of σ′1 in π, this will result in a contradiction.

What proved so far in this section, together with Lemma 7.1, leads to the
following characterization of effective patterns.
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σ Sorted(σ) Sequence {|Sortedn(σ)|}n OEIS

123 S(123, 231) 1, 2, 4, 7, 11, 16, 22, 29, 37,. . . A000124

132 S(132, 231) 1, 2, 4, 8, 16, 32, 64, 128, 256,. . . A000079

213 ? 1, 2, 4, 9, 22, 58, 161, 466, 1390

231 S(231) 1, 2, 5, 14, 42, 132, 429, 1430, 4862,. . . A000108

312 ? 1, 2, 4, 8, 17, 40, 104, 291, 855

321 S(231, 321) 1, 2, 4, 8, 16, 32, 64, 128, 256,. . . A000079

Table 7.1: σ-sorted permutations for patterns σ of length three, starting from σ-
sorted permutations of length one.

Corollary 7.6. Let σ be a permutation of length two or more. Then σ is not
effective if and only if σ̂ = 1⊕ α, for some α ∈ S(231).

An immediate consequence of Corollary 7.6 is that there are cn−1 = |Sn−1(231)|
patterns of length n that are not effective. For instance, there is one such pattern
of length two, namely 21, since 2̂1 = 12 = 1 ⊕ 1. Similarly, there are two such
patterns of length three, namely 213 and 312 (see Table 7.1).

7.3 Fertility and sorted permutations of the 123-

machine

Fertility and sorted permutations for the 123-machine can be determined from the
results proved in Chapter 4. Recall that any π ∈ Sortn(123) which is not the
identity permutation can be uniquely constructed as follows:

• choose α ∈ Sk(213), with α1 = k ≥ 2;

• add h new maxima k + 1, . . . , k + h, one at a time, using the bijection ϕ of
Theorem 4.7;

• add t = n− k− h consecutive ascents at the beginning, by inflating the first
element of the permutation, according to Corollary 4.3.

We wish to exploit the above construction to describe the set Sorted(123)
and compute the fertility of 123-sorted permutations. Let π be a 123-sortable
permutation. If π starts with a descent π1 > π2, with π1 = k, then by Lemma 4.4,
we have S123(π) = n(n − 1) · · · (k + 1)(k − 1) · · · 21k. Moreover, observe that
inserting t consecutive ascents π1(π1 + 1) · · · (π1 + t) at the beginning does not
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affect the behavior of the 123-stack. Indeed the elements π1(π1 + 1) · · · (π1 + t)
act as a single element at the bottom of the 123-stack during the sorting process.
Therefore, if π′ is obtained from π by t-inflating π1 = k, then we have:

S123(π′) = (k + t+ h) · · · (k + t+ 1)︸ ︷︷ ︸
(I)

k − 1 · · · 21︸ ︷︷ ︸
(II)

(k + t) · · · (k + 1)k︸ ︷︷ ︸
(III)

,

where the segment (I) corresponds to the h new maxima added using ϕ, (II)
corresponds to the elements of α ∈ Sk(213) and (III) contains the t-inflation
of π1. The fertility of S123(π′) is then ck−1, since there are ck−1 permutations α
in Sk(213) whose first element is equal to k.

Corollary 7.7. We have:

Sorted(123)n = {id−1
h 	

(
id−1
k ⊕ id−1

t

)
: k ≥ 2, h, t ≥ 0, k + h+ t = n}∪̇{id−1

n }.

Moreover, the fertility of id−1
h 	 (id−1

k ⊕ id−1
t ) is equal to ck−1.

Proof. If π = idn, then S123(π) = id−1
n . The rest follows from what discussed

before.

From the description obtained in Corollary 7.7, and in accordance with Corol-
lary 7.6, it is easy to deduce that Sorted(123) = S(231, 123). Corollary 7.7 can be
used to obtain an alternative proof of the enumeration of Sort(123):

Sort(123) =
∑

γ∈Sorted(123)

fert123(γ) =

1 +
∑
k≥2

∑
h,t≥0,k+h+t=n

ck−1 =

1 +
n∑
k=2

(n− k + 1)ck−1 =

1 +
n−1∑
k=1

(n− k)ck,

which is the same as what we got in Theorem 4.9.



Chapter 8

Sorting words of various types

In this chapter we extend Σ-machines to Cayley permutations, ascent sequences
and modified ascent sequences, which has been defined in Section 1.3. Pattern-
avoiding machines are built upon the notion of pattern, which is inherently more
general, thus it is natural to allow different sets of strings as input sequences. The
idea of analyzing sorting procedures on words is not new in the literature [2,4,27].
For example, classical stacksort on N∗ has been discussed in [27]. Due to the
presence of sequences with repeated elements, there are two possibilities when
defining a stack sorting algorithm on N∗. One can either allow a letter to sit
on a copy of itself in the stack or force a pop operation if the next element of
the input is equal to the top element of the stack. In this thesis we choose the
former possibility, leaving the latter for future investigation. This is equivalent to
regarding a classical stack as a 21-avoiding stack (instead of as a (11, 21)-stack).
Moreover, we relax the condition for the output to be sorted by requiring that it
is weakly increasing. The following theorem was proved in [27].

Theorem 8.1. [27] Let π be a word on N. Then π is sortable using a 21-stack if
and only if π avoids 231.

Patterns live1 in the set Cay of Cayley permutations, thus it seems appropriate
to start our analysis by studying σ-machines where both input sequences and the
forbidden pattern that defines the constraint of the stack are elements of Cay.
We then consider σ-machines on ascent sequences and modified ascent sequences.
Following a principle of uniformity, we always require forbidden patterns and input
sequences to be chosen in the same set. Notice that the output of the σ-stack in all
these cases is a word on N, therefore we can use Theorem 8.1 to determine whether
an input sequence is sortable. In Chapter 3, we characterized those patterns σ such
that the set of σ-sortable permutations is a class. The main goal of this chapter

1As standardized sequences.
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is to prove analagous results for the sets Cay, A and MA. In Section 8.1.1 we
study the operator Sσ on Cayley permutations. Some enumerative and structural
properties of ascent and modified ascent sequences are derived in Section 8.2.1 and
Section 8.2.2.

8.1 The σ-machine on Cayley permutations

In this section we consider σ-machines on Cayley permutations. Some of the
results contained here can be found in [20]. We give a formal definition of these
devices in the case of Cayley permutations. The corresponding machines, on A
and MA, are defined analogously. Let σ be a Cayley permutation of length at
least two. A σ-stack is a stack that is not allowed to contain an occurrence of the
pattern σ when reading the elements from top to bottom. The term σ-machine
refers to performing a right-greedy algorithm on two stacks in series: a σ-stack,
followed by a 21-avoiding stack. A Cayley permutation π is σ-sortable if the
output of the σ-machine on input π is weakly increasing. All the definitions and
notations regarding σ-machines on Cayley permutations are inherited from the
classical case. If necessary, we add an apex to avoid confusion: for instance,
we denote by SortCay(σ) the set of σ-sortable Cayley permutations. Note that,
being Sσ(π) the input of the 21-stack, Theorem 8.1 guarantees that π ∈ SortCay(σ)
if and only if Sσ(π) avoids 231. This fact will be used repeatedly for the rest of
this chapter. In analogy with Definition 3.1, let σ̂ = σ2σ1σ3 · · ·σk be the Cayley
permutation obtained from σ by interchanging σ1 with σ2. Denote by R : Cay→
Cay the reverse operator on Cayley permutations.

Remark 8.1. For any σ ∈ Cay, if the input Cayley permutation π avoids R(σ),
then the restriction of the σ-stack is never triggered and thus Sσ(π) = R(π).
Otherwise, the leftmost occurrence of σ results necessarily in an occurrence of σ̂
in Sσ(π). The proof of this fact is identical to that of Lemma 3.3. An analogous
result can be similarly obtained by replacing Cay with either A or MA.

The next result is the analogue of Theorem 3.6 on Cayley permutations. The
proof is identical, with Remark 8.1 playing the role of Lemma 3.4. We report it
anyway for completeness.

Theorem 8.2. Let σ be a Cayley permutation. If σ̂ contains 231,
then SortCay(σ) = Cay(132,R(σ)). In this case, SortCay(σ) is a class with basis
either {132,R(σ)}, if R(σ) avoids 132, or {132}, otherwise.

Proof. We start by proving that SortCay(σ) ⊆ Cay(132,R(σ)). Let π ∈ SortCay(σ).
Note that Sσ(π) avoids 231. Suppose, for a contradiction, that π contains R(σ).
Then Sσ(π) contains σ̂ due to Remark 8.1 and σ̂ contains 231 by hypothesis, which
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is impossible. Otherwise, if π avoids R(σ), but contains 132, then Sσ(π) = R(π)
due to the same remark. Moreover R(π) contains 231 by hypothesis, again a
contradiction with π ∈ SortCay(σ). This proves that SortCay(σ) ⊆ Cay(132,R(σ)).

Conversely, suppose that π avoids both 132 and R(σ). Then, again by Re-
mark 8.1, we have Sσ(π) = R(π), which avoids R(132) = 231 by hypothesis,
therefore π is σ-sortable.

Next we show that the condition of Theorem 8.2 is also necessary for SortCay(σ)
in order to be a class. The only exception is given by the pattern σ = 12.

Theorem 8.3. We have:

SortCay(12) = Cay(213).

Proof. Let π be a Cayley permutation. Suppose that π contains k occurrences of
the minimum element 1 and write:

π = A11A21 · · ·Ak1Ak+1.

It is easy to see that:

S12(π) = S12(A1)S12(A2) · · · S12(Ak)S12(Ak+1)1 · · · 1.

Indeed any entry equal to 1 enters the 12-stack only if the 12-stack is either empty
or contains other copies of 1 only. Moreover, any entry equal to 1 cannot play the
role of 2 in an occurrence of the (forbidden) pattern 12. Therefore the presence of
some copies of 1 at the bottom of the 12-stack does not affect the sorting process
of the block Ai, for each i.

Now, suppose that π contains an occurrence bac of 213. We prove that π
is not 12-sortable by showing that S12(π) contains 231. We argue by in-
duction on the length of π. Let π = A11A21 · · ·Ak1Ak+1 and S12(π) =
S12(A1)S12(A2) · · · S12(Ak)S12(Ak+1)1 · · · 1 as above. Suppose that b ∈ Ai and c ∈
Aj, for some i ≤ j (note that b, c 6= 1). If i = j, then Ai contains an occurrence bac
of 213. Thus S12(Ai) contains 231 by the inductive hypothesis2, as wanted. Oth-
erwise, let i < j. Then b ∈ S12(Ai), c ∈ S12(Aj) and the elements b and c, together
with any copy of 1, realize an occurrence of 231 in S12(π), as desired.

Conversely, suppose that π = π1 · · · πn is not 12-sortable, i.e. S12(π) con-
tains 231. We prove that π contains 213. Let bca be an occurrence of 231 in S12(π).
Observe that b must precede c in π, since a non-inversion in the output necessarily
comes from a non-inversion in the input, being the stack 12-avoiding. However,

2Formally we apply the inductive hypothesis to std(Ai), since not necessarily Ai is a Cayley
permutation.
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b is extracted before c enters. Let x be the next element of the input when b is
extracted. Since the stack is 12-avoiding, then the top b is greater than or equal
to any other element contained in the 12-stack. Thus x < b and also x 6= c,
since c > b. Finally, the triple bxc is an occurrence of 213 in π, as desired.

Theorem 8.4. Let σ be a Cayley permutation and suppose that σ 6= 12. If σ̂
avoids 231, then SortCay(σ) is not a class.

Proof. Let σ = σ1 · · ·σk, with k ≥ 2. We show that there are two Cayley per-
mutations α and β such that α ≤ β, β is σ-sortable and α is not σ-sortable.
Table 8.1 shows an example of such permutations for patterns σ of length two and
for σ = 231. Now, suppose that σ has length at least three and σ 6= 231. Then
the Cayley permutation α = 132 is not σ-sortable. Indeed, Sσ(α) = R(α) = 231,
since α avoids R(σ). Define β according to the following case by case analysis:

• Suppose that σ1 is the strict minimum of σ, that is σ1 = 1 and σi ≥ 2 for
each i ≥ 2. Define:

β = σ′k · · ·σ′31σ′2σ
′
1,

where σ′i = σi + 1 for each i. Note that β ∈ Cay and 1σ′2σ
′
1 is an occurrence

of 132 in β. We prove that β is σ-sortable by showing that Sσ(β) avoids 231.
The action of the σ-stack on input β is depicted in Figure 8.1. The first k−1
elements of β are pushed into the σ-stack, since σ has length k. Then the σ-
stack contains 1σ′3 · · ·σ′k, reading from top to bottom, and the next element
of the input is σ′2. Note that σ′2 > 1, whereas σ1 < σ2, therefore σ′21σ′3 · · ·σ′k
is not an occurrence of σ and so σ′2 is pushed. The next element of the input
is now σ′1. Here σ′1σ

′
2σ
′
3 · · ·σ′k is an occurrence of σ, thus σ′2 is extracted

before σ′1 enters. After this pop operation, the σ-stack contains 1σ′3 · · ·σ′k.
Again we have σ′1 > 1, whereas σ1 < σ2, therefore σ′1 is pushed into the σ-
stack. The resulting string is:

Sσ(β) = σ′2σ
′
11σ′3σ

′
4 · · ·σ′k.

We show that Sσ(β) avoids 231. Note that σ′2σ
′
1σ
′
3σ
′
4 · · ·σ′k ' σ̂ avoids 231

by hypothesis. Moreover, the element 1 cannot be part of an occurrence
of 231, because σ′2 > σ′1 and 1 is strictly less than the other elements of β.
Therefore Sσ(β) avoids 231, as desired.

• Next suppose that σ1 is not the strict minimum of σ, i.e. either σ1 6= 1
or σi = 1 for some i ≥ 2. Define

β = σ′′k · · ·σ′′21σ′′12,
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σ σ-sortable Cayley permutation Non-σ-sortable pattern

11 3132 132

21 35241 132

231 361425 1324

Table 8.1: The case by case analysis of Theorem 8.4

where σ′′i = σi + 2 for each i. Note that β ∈ Cay and 1σ′′22 is an occurrence
of 132 in β. Consider the action of the σ-stack on input β. Again the
first k − 1 elements of β are pushed into the σ-stack. Then the σ-stack
contains σ′′2 · · ·σ′′k , reading from top to bottom, and the next element of the
input is 1. Note that 1σ′′2 · · ·σ′′k is not an occurrence of σ. Indeed 1 < σ′′i for
each i, while σ1 is not the strict minimum of σ by hypothesis. Therefore 1
enters the σ-stack. The next element of the input is then σ′′1 , which realizes
an occurrence of σ together with σ′′2 · · ·σ′′k . Thus 1 and σ′′2 are extracted
before σ′′1 is pushed. Finally, the last element of the input is 2. Again 2 can
be pushed into the σ-stack, since 2 is strictly smaller than every element in
the σ-stack, whereas σ1 is not the strict minimum of σ by hypothesis. The
resulting string is:

Sσ(β) = 1σ′′22σ′′1σ
′′
3 · · ·σ′′k .

Note that σ′′2σ
′′
1σ
′′
3 · · ·σ′′k ' σ̂ avoids 231 by hypothesis. Finally, it is easy to

realize that the elements 1 and 2 cannot be part of an occurrence of 231,
similarly to the previous case. This completes the proof.

Corollary 8.5. Let σ be a Cayley permutation of length three or more.
Then SortCay(σ) is not a permutation class if and only if σ̂ avoids 231. Other-
wise, if σ̂ contains 231, then SortCay(σ) is a class with basis either {132,R(σ)},
if R(σ) avoids 132, or {132}, otherwise.

Cayley permutations avoiding any classical permutation pattern of length three
are enumerated by sequence A226316 in [45]. We end this section by analyzing
the 21-machine. The 11-machine will be discussed in Section 8.1.1, thus com-
pleting the analysis of σ-machines for patterns of length two. The analogue of
the 21-machine on classical permutations consists in applying a right-greedy algo-
rithm on two stacks in series, which is precisely the well known case of West 2-
stacksort [50]. Recall from Theorem 3.2 that Sort(21) = S(2341, 35̄241). The
barred pattern 35̄241 can be represented as a mesh pattern, as shown in Figure 8.2.
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inputoutput
σ′2σ
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1

σ′k
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σ′3

1

Step 1

inputoutput
σ′1

σ′k

...

σ′3

1

σ′2

Step 2

inputoutput
σ′1

σ′k

...

σ′3

1

σ′2

Step 3

inputoutput

σ′k

...

σ′3

1

σ′1

σ′2

Step 4

Figure 8.1: The action of the σ-stack on input β described in Theorem 8.4.

Figure 8.2: On the left, the barred pattern 35̄241, equivalent to the mesh pat-
tern (3241, {(1, 4)}). On the right, the Cayley-mesh pattern ζ. The additional
shaded box in ζ keeps into account the case of an occurrence of 3241 that is part
of an occurrence of 34241.

In order to prove an analogous result for the 12-machine on Cayley permutations,
we define mesh patterns on Cayley permutations (see [20]). To extend mesh pat-
terns to strings that may contain repeated elements, we simply allow the shading
of boxes that correspond to repeated elements. Instead of giving a formal defini-
tion, we refer the reader to [20] and to the example depicted in Figure 8.2. We
will use the term Cayley-mesh pattern to denote mesh patterns on Cayley permu-
tations. For the rest of this section, let ζ be the Cayley-mesh pattern depicted in
Figure 8.2.

Lemma 8.6. Let π = π1 · · · πn ∈ Cay. Suppose that πi < πj, for some i < j.
Then πi precedes πj in S21(π).

Proof. We have πjπi ' 21, thus πi must be extracted from the 21-stack before πj
enters.
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Theorem 8.7. We have:

SortCay(21) = Cay(2341, ζ).

Proof. We can essentially repeat the argument used by West for classical permu-
tations, but incorporating the additional shaded box in ζ, which corresponds to
an occurrence of 3241 that is part of an occurrence of 34241. We sketch the proof
below, leaving some technical details to the reader.

Suppose that π is 21-sortable. Suppose, for a contradiction, that π contains
an occurrence bcda of 2341 and consider the action of the 21-stack on π. By
Lemma 8.6, b is extracted from the 21-stack before c enters. Similarly, c is extracted
before d enters. Thus S21(π) contains the occurrence bca of 231, a contradiction
with π being 21-sortable. Otherwise, suppose that π contains an occurrence cbda
of 3241. We show that there is an element x between c and b in π such that x ≥ d.
If x < c for each entry x between c and b, then b is pushed into the 21-stack before c
is popped. This results in the occurrence bca of 231 in S21(π), a contradiction with
the fact that π is 21-sortable. Otherwise, suppose there is at least one element x
between c and b in π, with x ≥ c. If x = c, we can repeat the same argument
with xbda instead of cbda. If c < x < d, then cxda ' 2341, which is impossible
due to what said in the previous case. Therefore it has to be x ≥ d, as desired.

Conversely, suppose that π is not 12-sortable. Equivalently, let bca be an
occurrence of 231 in S21(π). We show that either π contains 2341 or π contains
an occurrence cbda of 3241 such that x < d for each x between c and b in π.
Observe that a follows c and b in π due to Lemma 8.6. Suppose that b comes
before c in π. Note that c is extracted from the 21-stack before a enters. Let d
be the next element of the input when c is extracted. Then d > c and bcda is
an occurrence of 2341, as wanted. Otherwise, suppose that b follows c in π, and
thus π contains cba. Since c is not extracted before b enters, it has to be x ≤ c for
each x between c and b in π. Moreover, c is extracted before a enters. When c is
extracted, the next element d of the input is such that d > c. This results in an
occurrence cbda of 3241 with the desired property.

Observe that, due to the presence of the Cayley-mesh pattern ζ, the
set SortCay(21) is not a class. For instance, the 21-sortable Cayley permuta-
tion 34241 contains the non-sortable pattern 3241. The problem of enumerat-
ing SortCay(21) remains to be solved.

Open Problem 8.1. Enumerate the set of 21-sortable Cayley permutations. The
initial terms of the sequence are 1, 3, 13, 73, 483, 3547, 27939, 231395 (not in [45]).

Recall that West 2-stack sortable permutations are precisely those classical
permutations that are 21-sortable. It would thus be interesting to find a combi-
natorial argument for the enumeration of SortCay(21) that generalizes the one for
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West 2-stack sortable permutations (and allows us to recollect the classical result
as a particular instance of this new, more general, approach).

8.1.1 Fully bijective σ-stacks

In this section we regard a σ-stack as a map Sσ : Cay → Cay and investigate the
properties of the resulting operator. This approach is slightly more general than
the one adopted in Chapter 7, where we studied the behavior of the restriction
of Sσ to the set Sort(σ) of σ-sortable permutations. Recall (from Section 7.1) that
a classical permutation σ is said to be bijective if the map Sσ : Sort(σ)→ S(231)
is bijective. Analogously, given a Cayley permutation σ, we say that σ is bijective
if Sσ : SortCay(σ)→ Cay(231) is bijective. A Cayley permutation σ is fully bijective
if the map Sσ : Cay → Cay is bijective. Notice that if σ is fully bijective, then σ
is bijective and thus SortCay(σ) and Cay(231) are Wilf-equivalent. The main goal
of this section is to provide a characterization of fully bijective patterns.

We start by discussing the pattern σ = 11. The following is a useful decompo-
sition lemma for the 11-stack.

Lemma 8.8. Let π = π1 · · · πn be a Cayley permutation. Suppose that π con-
tains k + 1 occurrences π1, π

(1)
1 , . . . , π

(k)
1 of the integer π1, for some k ≥ 0. Write:

π = π1B1π
(1)
1 B2 · · · π(k)

1 Bk.

Then:
S11(π) = S11(B1)π1S11(B2)π

(1)
1 · · · S11(Bk)π

(k)
1 .

Proof. Consider the action of the 11-stack on input π. Since x 6= π1 for
each x ∈ B1, the sorting process of B1 is not affected by the presence of π1 at
the bottom of the 11-stack. Then, when the next element of the input is the sec-
ond occurrence π

(1)
1 of π1, the 11-stack is emptied, since π1π

(1)
1 is an occurrence

of the forbidden pattern 11. The initial elements of S11(π) are thus S11(B1)π1.

Finally, π
(1)
1 is pushed into the (empty) 11-stack and the same argument can be

repeated.

Theorem 8.9. The map (R ◦ S11) is an involution on Cay. Therefore the pat-
tern 11 is fully bijective.

Proof. We proceed by induction on the length of input permutations. Let π =
π1 · · · πn be a Cayley permutation of length n. The case n = 1 is trivial. If n ≥ 2,
write π = π1B1π

(1)
1 B2 · · · π(k)

1 Bk as in Lemma 8.8. Then, using the same lemma
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and the inductive hypothesis: [
R ◦ S11

]2
(π) =[

R ◦ S11
]2 (

π1B1π
(1)
1 B2 · · · π(k)

1 Bk

)
=[

R ◦ S11 ◦ R
] (
S11(B1)π1S11(B2)π

(1)
1 · · · S11(Bk)π

(k)
1

)
=[

R ◦ S11
] (
π

(k)
1 R(S11(Bk)) · · · π(1)

1 R(S11(B2))π1R(S11(B1))
)

=

R
(
S11(R(S11(Bk)))π

(k)
1 · · · S11(R(S11(B2)))π

(1)
1 S11(R(S11(B1)))π1

)
=

π1

[
R ◦ S11

]2
(B1)π

(1)
1

[
R ◦ S11

]2
(B2) · · · π(k)

1

[
R ◦ S11

]2
(Bk) =

π1B1π
(1)
1 B2 · · · π(k)

1 Bk = π

Therefore (R ◦ S11)2(π) = π, as desired. Finally, the reverse map R is bijective,
thus S11 is a bijection on Cay with inverse R ◦ S11 ◦ R.

An immediate consequence of Theorem 8.9 is that every 11-sortable Cayley
permutation π is obtained from a 231-avoiding Cayley permutation by applyingR◦
S11 ◦ R, that is:

SortCay(11) = R ◦ S11 ◦ R(Cay(231)).

We wish to generalize this result by encoding the action of Sσ as a labeled Dyck
path. In what follows, we always consider labeled Dyck paths where the label of
each up step is equal to the label of its matching down step. This allows us to
represent a labeled Dyck path as a pair P = (P, π), where P is the underlying Dyck
path and π is the string obtained by reading the labels of the up steps of P from
left to right. Let σ be a Cayley permutation and let π be an input permutation
for the σ-stack. Define a labeled Dyck path Pσ(π) as follows, starting from the
empty path:

• insert an up step U labeled a whenever an element a is pushed into the σ-
stack;

• insert a down step D labeled a whenever an element a is extracted from
the σ-stack.

Equivalently, if Pσ(π) is the unlabeled Dyck path obtained by recording the
push operations of the σ-stack with U and the pop operations with D, then Pσ(π) =
(Pσ(π), π). It is easy to realize that Pσ(π) is a Dyck path. Indeed the number of
push and pop operations performed by the σ-stack on π is the same (it is equal to
the length of π), therefore the number of U steps matches the number of D steps



103

4

2

1

3
3

1

2
2

2

4

Figure 8.3: The Dyck path UUUUDDDUDD which encodes S11(42132). Dotted
lines connect matching steps, which have the same label.

(and thus the path ends on the x-axis). Moreover, the path never goes below the x-
axis, since this would correspond to performing a pop operation when the σ-stack
is empty, which is not possible. An example of this construction, when σ = 11,
is depicted in Figure 8.3. We collect several properties of Pσ(π) in the following
lemma, whose easy proof is omitted.

Lemma 8.10. Let σ be a Cayley permutation. Let π = π1 · · · πn be a Cayley
permutation of length n and let Pσ(π) = (Pσ(π), π). Then:

1. The input π is obtained by reading the labels of the up steps of Pσ(π) from
left to right. The output Sσ(π) is obtained by reading the labels of the down
steps from left to right.

2. The height of Pσ(π) after each up (respectively down) step is equal to the
number of elements contained in the σ-stack after the corresponding push
(respectively pop) operation.

3. A pop operation empties the σ-stack if and only if the corresponding D step
of Pσ(π) ends on the x-axis. Notice that the decomposition of π consid-
ered in Lemma 8.8 corresponds to the decomposition of Pσ(π) obtained by
considering the returns on the x-axis.

4. The labels of the down steps are uniquely determined by the labels of the
up steps. Conversely, the labels of the down steps uniquely determine the
labels of the up steps. More precisely, matching steps have the same label.
Indeed any element pushed into the σ-stack by an up step is then popped
by the matching down step.

5. Two consecutive steps of Pσ(π) form a valley DU if and only if, denoting by a
the label of D and b the label of U, b plays the role of σ1 in an occurrence
of σ that triggers the restriction of the σ-stack, while a plays the role of σ2

in that same occurrence. Therefore the number of valleys of Pσ(π) is equal
to the number of elements of π that trigger the restriction of the σ-stack.
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6. If σ1 = σ2, then the steps D and U in each valley DU have the same label.

Recall from Section 1.4 that the reverse path R(P ) of a Dyck path P is its
symmetric with respect to the vertical line x = n, where n is the semilength of P .
The following lemma shows that if σ1 = σ2, then the path that encodes the action
of the σ-stack on π is the reverse of the path that encodes the action of the σ-stack
on input R(Sσ(π)).

Lemma 8.11. Let σ = σ1 · · ·σk be a Cayley permutation. Let π = π1 · · · πn
be a Cayley permutation and let γ = R(Sσ(π)). Consider the two labeled Dyck
paths Pσ(π) = (Pσ(π), π) and Pσ(γ) = (Pσ(γ), γ).

1. If σ1 = σ2, then Pσ(π) = R(Pσ(γ)).

2. If Pσ(π) = R(Pσ(γ)), then (R ◦ Sσ)2(π) = π.

Proof. 1. Suppose that σ1 = σ2. We proceed by induction on the number of
valleys of Pσ(π). If Pσ(π) has zero valleys, then π avoids R(σ) by point 5. of
Lemma 8.10. Therefore Sσ(π) = R(π) and γ = R2(π) = π. Since Pσ(π) =
UnDn is a pyramid, the thesis follows immediately since each pyramid is equal
to its reverse.

Now suppose that Pσ(π) has at least one valley. Let Pσ(π) = p1 · · · p2n and
write Pσ(π) = UiUjDjUlDQ, where pi+2j, pi+2j+1 is the leftmost valley and Q =
pi+2j+l+2 · · · pn is the remaining suffix of Pσ(π) (see Figure 8.4). Observe
that the label of both pi+2j and pi+2j+1 is equal to πi+1 as a consequence of
items 4., 5. and 6. of Lemma 8.10. Item 5. also implies that pi+2j+1 plays
the role of σ1 in an occurrence of σ that triggers the restriction of the σ-
stack. More precisely, as soon as πi+j is pushed (i.e. after the up step pi+j
in Pσ(π)), πi+j+1 is the next element of the input. Since the next segment of
the path is Dj, j pop operations are performed before pushing πi+j+1. This
means that the element πi+1, corresponding to the last down step, plays the
role of σ2 in an occurrence of σ, while πi+j+1 plays the role of σ1. Moreover,
there are k− 2 elements in the σ-stack that play the role of σ3, . . . , σk. Since
the elements in the σ-stack correspond to the labels of the initial prefix Ui,
π1 · · · πi contains an occurrence of σk · · ·σ3 (claim I). Then, after that j pop
operations are performed, the σ-stack contains πi · · · π1, reading from top
to bottom, and the elements πi+j+1, πi+j+2, . . . , πi+j+l are pushed (claim II).
Now, write:

π = π1 · · · πi︸ ︷︷ ︸
A

πi + 1 · · · πi+j︸ ︷︷ ︸
B

πi+j+1 · · · πi+j+l︸ ︷︷ ︸
C

πi+j+l+1 · · · πn︸ ︷︷ ︸
D

,
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where the elements of A correspond to the initial prefix Ui of Pσ(π), B cor-
responds to Uj, C to Ul and D to the remaining up steps. Consider the
string:

ACD = π1 · · · πiπi+j+1 · · · πn,

obtained by removing the segment B = πi+1 · · · πi+j from π. Let π̃ =
std(ACD) be the standardization of ACD. Note that Pσ(π̃) is obtained
from Pσ(π) by cutting out the pyramid UjDj, which corresponds to the re-
moved segment B. Indeed the elements contained in the σ-stack when πi en-
ters are exactly the same as the elements contained in the σ-stack when πi+j+1

is pushed, thus we can safely cut out the pyramid UjDj without affecting the
sorting procedure. Therefore:

Sσ(π) = R(B)Sσ(π̃)

and
γ = R(Sσ(π)) = R(Sσ(π̃))B.

Now, since Pσ(π̃) has one valley less than Pσ(π), by the inductive hypothesis
we have Pσ(π̃) = R(Pσ(γ̃)), where γ̃ = R(Sσ(π̃)). The only difference
bewteen Pσ(π) and Pσ(π̃) is the removed pyramid UjDj. Therefore, if we
show that Pσ(γ) is obtained from Pσ(γ̃) by reinserting the pyramid UjDj

in the same place, the thesis follows. We have γ = R(Sσ(π̃))B and γ̃ =
R(Sσ(π̃)). Consider the last push operation performed by the σ-stack when
processing γ̃, which corresponds to the last up step of Pσ(γ̃). Note that,
since Pσ(π̃) = R(Pσ(γ̃), this is also the first down step of Pσ(π̃), and thus
the first pop operation performed when processing π̃. Therefore the elements
contained in the σ-stack when the last push operation is performed, while
processing γ̃, are πi+j+l · · · πi+j+1πi · · · π1, reading from top to bottom. If
we sort γ instead of γ̃, we have to process the additional segment B. Now,
the first element of B is πi+1. As a consequence of claim I, πi+1 realizes
an occurrence of σ together with πi+j+1 (which plays the role of σ2) and
other k − 2 elements in π1 · · · πi. The only difference is that, contrary to
what happened when sorting π, the role of πi+1 and πi+j+1 are interchanged:
here the hypothesis σ1 = σ2 is relevant. As a result, before pushing the first
element πi+1 of B, we have to pop each element of the σ-stack up to πi+j+1,
πi+j+1 included. Then, the σ-stack contains πi · · · π1, reading from top to
bottom. Therefore we can push πi+1 = πi+j+1 and the remaining elements
of B, this time because of claim II. This means that Pσ(γ) is obtained by
inserting a pyramid UjDj immediately before the last i down steps of Pσ(γ̃),
as desired.
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UjDj

πi

πi+j

πi+j+l

π1

πi+1 πi+1 πi+j+1

Figure 8.4: The (prefix of the) path Pσ(π) mentioned in the proof of Lemma 8.11.

2. By hypothesis, Pσ(γ) = R(Pσ(π)), therefore the word w obtained by reading
the labels of the down steps of Pσ(γ) (from left to right) is w = R(π). By
definition of Pσ(γ), we also have w = Sσ(γ). Therefore:

R(π) = Sσ(γ) = Sσ(R(Sσ(π)))

and the thesis follows by applying the reverse operator to both sides of the
equality.

As a consequence of what proved so far in this section, we obtain the desired
characterization of fully bijective Cayley permutations.

Theorem 8.12. Let σ = σ1 · · · σk ∈ Cay. Then σ is fully bijective if and only
if σ1 = σ2.

Proof. Suppose that σ1 6= σ2. Then σ̂ 6= σ and so R(σ) 6= R(σ̂). Finally, it is easy
to realize that:

Sσ(R(σ)) = σ̂ = Sσ((R(σ̂))),

therefore Sσ is not injective on Cay.
Conversely, suppose that σ1 = σ2. By Lemma 8.11, we have that (R ◦ Sσ)2 is

the identity on Cay, therefore R◦Sσ is bijective. Finally, since the reverse map R
is bijective, Sσ is a bijection too, as desired.

Remark 8.2. As we pointed out in the proof of Lemma 8.11, the hypothe-
sis σ1 = σ2 guarantees that the Dyck path obtained when sorting π is equal
to the reverse of the path obtained when sorting R(Sσ(π)). This is sufficient for
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the operator Sσ in order to be bijective on Cay. More precisely, the crucial prop-
erty is that the roles of σ1 and σ2 are interchanged in the paths associated to π
and R(Sσ(π)): this is precisely where the hypothesis σ1 = σ2 plays a role. Due to
this reason, an analogous argument can be repeated on stacks avoiding the pair
of patterns (σ, σ̂). Indeed every time an occurrence of σ triggers the (σ, σ̂)-stack
on input π, an occurrence of σ̂, where the roles of σ1 and σ2 are interchanged,
triggers the (σ, σ̂)-stack on input R(Sσ1,σ2(π)). The converse statement is true
as well. Therefore the operator Sσ,σ̂ is bijective on Cay. Similarly, since classi-
cal permutations are mapped into classical permutations by any operator SΣ, the
operator Sσ,σ̂ associated to the classical (σ, σ̂)-machine is bijective on S. This
result was generalized by Berlow in [11]: the map SΣ is bijective if and only if for
every σ ∈ Σ we have σ̂ ∈ Σ as well.

Remark 8.3. The encoding of the action of a σ-stack as Dyck paths could the-
oretically lead to the enumeration of SortCay(σ). Indeed, due to Lemma 8.10, the
number of σ-sortable Cayley permutations of length n is equal to the number of
labeled Dyck paths of semilength n such that:

• Reading the labels of the down steps from left to right yields a 231-avoiding
Cayley permutations.

• Each valley of the path corresponds to an element of the input permuta-
tion that triggers the restriction of the σ-stack, as described in item 5. of
Lemma 8.10.

A natural question would thus be the following. Given a Dyck path P , are there
any parameters of P that allow us to describe (and enumerate) the set of Cayley
permutations that can be used to suitably label P? In other words, can we describe
those Cayley permutations where the action of the σ-stack is encoded by the same
Dyck path P?

8.2 The σ-machine on ascent sequences

We spend the last section of this chapter by discussing σ-machines on classical
ascent sequences A and modified ascent sequences MA (see Section 1.3). Recall
that ascent sequences are a bijective encoding of Fishburn permutations F = S(f),
where f is the bivincular pattern f = (231, {1}, {1}). The maps that link the
sets A, MA and F, as well as the pattern f, are depicted again (for convenience)
in Figure 8.5.

Recently, Claesson and the current author [22] initiated the development of
a theory of transport of patterns between Fishburn permutations and ascent se-
quences. One of their goals is to achieve a better understanding of the notion of
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f =

A
φ

//

ω
��

F

MA
φ′

77

Figure 8.5: The pattern f, on the left. How the bijections φ, ω and φ′ are related,
on the right.

pattern involvement on the sets A and MA, which proved to be rather challenging.
The transport relies on a high-level generalization of φ′, which they call the Burge
transpose. One of the main results of [22] is an explicit construction of a set of
patterns B(p) such that φ′ maps the set MA(B(p)) of modified ascent sequences
avoiding every pattern in B(p) to the set F(p) of Fishburn permutations avoiding p.
The set B(p) is called the Fishburn basis of p. We refer the reader to [22] for the
definition of Burge transpose and for a detailed construction of B(p).

Theorem 8.13 ( [22], Transport of patterns from F to MA). For any permuta-
tion p, we have:

F(p) = φ′
(
MA(B(p))

)
.

Therefore F(p) and MA(B(p)) are Wilf-equivalent subsets of Cay.

The current author aims to add one more piece to the general picture by ana-
lyzing the behavior of σ-machines on ascent and modified ascent sequences. It is
worth noticing that, in some cases, we can use the results obtained in the previous
section on Cayley permutations, as we show in the following result.

Theorem 8.14. Let X ∈ {A,MA} and let σ ∈ Cay∩X. If SortCay(σ) = Cay(A),
for a set of patterns A, then SortX(σ) = X(A).

Proof. Let w ∈ X and let w′ = std(w) be the standardization of w. Notice
that w′ ∈ Cay. It is easy to observe that, for every pattern y, w contains y if
and only if w′ contains y. More precisely, any subsequence wi1 · · ·wik of w is
order isomorphic to the corresponding subsequence w′i1 · · ·w

′
ik

of w′ = std(w). An
immediate consequence is that the action of the σ-stack on w is identical to the
action of the σ-stack on w′. Therefore w is σ-sortable if and only if w′ is σ-sortable,
which in turn is equivalent to w′ ∈ Cay(A) by hypothesis. Finally, w′ ∈ Cay(A) if
and only if w ∈ X(A), thus the thesis follows.

Due to Corollary 8.5 and Theorem 8.14, if σ ∈ Cay ∩ A and σ̂ contains 231,
then SortA(σ) is a class with basis {132,R(σ)}. An analogous result holds for
modified ascent sequences. On the other hand, if SortCay(σ) is not a class, not
necessarily the same holds for SortA(σ) and SortMA(σ).
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8.2.1 Classical ascent sequences

We start by recalling some useful results from the literature. The following lemma
was proved by Duncan and Steingrimsson in [30].

Lemma 8.15. [30] The set A(y) consists solely of rgfs if and only if y ≤ 12123.

Lemma 8.16. Let x ∈ A(123). Then max(x) ≤ 2.

Proof. It follows from Lemma 8.15 and the definition of rgf.

Next we show that the pattern σ = 11 is an instance where SortA(σ) is a
permutation class, whereas SortCay(σ) is not.

Theorem 8.17. We have:

SortA(11) = A(1213, 1223).

Proof. Let x ∈ A. Observe that the first element x1 = 1 is extracted from the 11-
stack if and only if the next element of the input is equal to 1, which in this case
replace x1 at the bottom of the 11-stack. Thus the last element xlast of S11(x)
is xlast = 1. This fact will be repeatedly used for the rest of this proof.

Suppose initially that x contains an occurrence xixjxkx` of 1213. Without
losing generality, we can assume that xixjxk is the leftmost 121 in any occurrence
of 1213 where x` plays the role of 3. We wish to prove that x is not 11-sortable
by showing that S11(x) contains 231. If xi is contained in the 11-stack when xk
is the next element of the input, then, since xkxi is an occurrence of 11, every
element up to xi must be extracted before pushing xk. Therefore xj is extracted
before xk enters and S11(x) contains the occurrence xjx`xlast of 231, as wanted.
Otherwise, suppose that xi is extracted before xj enters the 11-stack. Let y be the
next element of the input when xi is extracted. Consider the following two cases.

• yxi is an occurrence of 11 (and thus xi must be extracted); in this case we
can repeat the same argument replacing xi with y until we fall in the next
case.

• y 6= xi and there is an entry y′ contained in the 11-stack such that yy′ is
an occurrence of 11 (thus the top element xi must be extracted). If y < xi,
then y′xiy is an occurrence of 121 (with xi < x`) that precedes xixjxk,
which is impossible due to our choice of xixjxk. On the other hand, suppose
that y > xi. Then it must be xi > 1, or else x1xjxk would be an occurrence
of 121 that precedes xixjxk, which is again impossible. Finally, we get the
desired occurrence xiyxlast of 231 in S11(x), as desired.
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Next suppose that x contains an occurrence xixjxkx` of 1223. Then xj must
be extracted from the 11-stack before xk enters (since xjxk is an occurrence of 11)
and thus S11(x) contains an occurrence xjx`xlast of 231, which is what we wanted.

Conversely, suppose that x avoids 1213 and 1223. Suppose, for a contradiction,
that x is not 11-sortable. Equivalently, let xi = b, xj = c and xk = a be three
elements of x that result in an occurrence xixjxk = bca of 231 in S11(x). Since x
avoids 1213, then x is a rgf by Lemma 8.15. Moreover, again due to the avoidance
of 1213, the prefix x1 · · · xj of x must be weakly increasing, that is:

x = 1t12t2 · · · ata · · · btb · · · (c− 1)tc−1ctcxj · · · ,

for some integers tu ≥ 1, u = 1, . . . , c−1, and tc ≥ 0. Moreover, since x avoids 1223,
it must be tu = 1 for each 2 ≤ u ≤ c− 1. Now, it is easy to observe that as soon
as xj = c enters the 11-stack, the content of the 11-stack is (c−1) · · · b · · · a · · · 321,
reading from top to bottom. Therefore, if i > j then xj is extracted before xi
enters, since xi = b forms an occurrence of 11 together with the other copy of b in
the 11-stack. But this is impossible since xi precedes xj in S11(x). Thus it must
be i < j. But then xj enters the 11-stack above xi, which is again impossible since
we supposed that xi precedes xj in S11(x).

Due to Lemma 8.15, we have A(1213, 1223) = RGF(1213, 1223). The enumer-
ation of RGF(1213, 1223) can be found in [36], where the authors determine all the
Wilf-equivalence classes of pairs of patterns of length four. The arising sequence
is A005183 in [45].

Next we analyze the 12-machine. Since SortCay(12) = Cay(213), we can apply
Theorem 8.14.

Theorem 8.18. We have:

SortA(12) = A(213).

Notice that A(213) = A(1213) due to Lemma 5.12 and Lemma 8.15. The
enumeration of A(213) can be found in [30].

Theorem 8.19. We have:

SortA(121) = A(213).

Proof. Let x ∈ A. Suppose that x ≥ 213. We show that x is not 121-sortable.
Due to Lemma 8.15, x ≥ 213 if and only if x ≥ 1213. Let xixjxkxl be the leftmost
occurrence of 1213 in x. Observe that xj must be extracted from the 121-stack
before xk enters. Therefore xjxlx1 is an occurrence of 231 in S121(x), as wanted.

Conversely, suppose that x is not 121-sortable and let bca be an occurrence
of 231 in S121(x). Let b = xi, c = xj and a = xk, for some i, j, k. Suppose, for a
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contradiction, that x avoids 213. Then x is a rgf due to Lemma 8.15. Since x
avoids 213, the elements before xj = c in x must be in weakly increasing order.
More precisely, it must be:

x = 1t12t2 · · · ata · · · btb · · · ctcxj,

for some integers tu ≥ 1, u = 1, . . . , c − 1, and tc ≥ 0. Now, if i > j, then xj = c
is extracted before xi enters, since otherwise xixjb would be an occurrence of 121
in the 12-stack. But this contradicts our assumption that xi, xj, xk results in an
occurrence of 231 in S121(x). Therefore i < j and, by hypothesis, xi = b is
extracted from the 121-stack before xj = c enters. But this is impossible, since
the prefix of x up to xj is weakly increasing.

Notice that the set of 121-sortable Cayley permutations is not a permutation
class due to Corollary 8.5. By Theorems 8.18 and 8.19, we have SortA(12) =
SortA(121). However, the operations performed by the 12-stack and the 121-stack
are not always the same. For example, S12(12132) = 23211, whereas S121(12132) =
22311.

Theorem 8.20. Let σ ∈ A and suppose that σ contains 123. Then SortA(σ) =
A(132).

Proof. Let x ∈ A. Suppose that x ≥ 132. We show that x is not σ-sortable.
If x avoids R(σ), then Sσ(x) = R(x) contains R(132) = 231, which means that x
is not σ-sortable. On the other hand, suppose that x contains R(σ). Notice
that Sσ(x) contains σ̂ due to Remark 8.1. Moreover, since σ contains 123, it is easy
to observe that σ̂ contains an occurrence ab of 12 such that a > 1. Let y1 and y2 be
the elements that correspond to a and b in such occurrence of 12 in Sσ(x). Notice
also that the last element of Sσ(x) is x1 = 1. Therefore y1y2x1 is an occurrence
of 231 in Sσ(x). Thus x is not σ-sortable.

Conversely, we show that if x avoids 132, then x is σ-sortable. If x avoids R(σ),
then Sσ(x) = R(x) avoids 231 and thus x is σ-sortable. Otherwise, suppose
that x ≥ R(σ). Since σ ≥ 123, x contains an occurrence xi1xi2xi3 ofR(123) = 321.
But then x1xi1xi2 would be an occurrence of 132 in x, a contradiction.

Theorem 8.21. Let σ be an ascent sequence of length at least four and suppose
that σ avoids 123. Then SortA(σ) is not a class.

Proof. Let σ = σ1 · · ·σk, with k ≥ 4. Observe that the ascent sequence 1232
is not σ-sortable. Indeed 1232 avoids R(σ), since σ has length at least four
and R(1232) = 2321 is not an ascent sequence. Thus Sσ(1232) = R(1232) = 2321
contains 231. We shall define an ascent sequence α such that α contains 1232 and α
is σ-sortable, thus showing that SortA(σ) is not a class. Due to Lemma 8.16, we
have max(σ) ≤ 2 for each i. We distinguish the following cases.
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• Suppose that max(σ) = 1, i.e. σ = 1 · · · 1 = 1k, for some k ≥ 1. Define:

α = 1k−12312.

Note that α ≥ 1232 and α is an ascent sequence. Finally, it is easy to check
that:

Sσ(α) = 32121k−1,

which avoids 231. Thus α is σ-sortable.

• Suppose that max(σ) = 2 and the last element is σk = 1. Define:

α = σk · · · σ23σ12.

Since max(σ) = 2, there is an index m such that σm = 2. Notice that
by our assumptions it must be m 6= k and m 6= 1, thus α contains 1232.
Also 3 ≤ asc(σk · · ·σ2) + 2 (and σk = 1), thus α is an ascent sequence.
Finally, an easy computation shows that:

Sσ(α) = 3σ21σ1σ3 · · ·σk,

which avoids 231 (for example, because the initial 3 is the only element
greater than 2 in Sσ(α)).

• Suppose that max(σ) = 2 and the last element is σk = 2. Similarly to the
previous case, define:

α = 1σk · · ·σ23σ12.

Due to the insertion of the initial 1, α is again an ascent sequence and α
contains 1232. Finally, we have that:

Sσ(α) = 3σ21σ1σ3 · · ·σk1,

which avoids 231. We leave the details to the reader.

Corollary 8.22. Let σ be an ascent sequence. If σ ∈ {11, 12, 121}, then SortA(σ)
is a class. In all the other cases, SortA(σ) is a class if and only if σ ≥ 123. Moreover,
if σ ≥ 123, then SortA(σ) = A(132).

Proof. Patterns σ of length at most three, except 123, are discussed in Table 8.2
and theorems 8.17, 8.18 and 8.19. Patterns of greater length and the pattern 123
are discussed in Theorems 8.20 and 8.21.

It is easy to observe that, in accordance with Corollary 8.5 and Theorem 8.14,
if σ̂ contains 231, then σ contains 123 and SortA(σ) is indeed a class, as stated in
Corollary 8.22.
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σ σ-sortable ascent sequence Non-σ-sortable pattern

111 112312 1232

112 121312 1232

122 122312 1232

Table 8.2: Patterns σ of length at most three where SortA(σ) is not a class.

a = b =

Figure 8.6: Cayley-mesh patterns such that MA = Cay(a, b).

8.2.2 Modified ascent sequences

The following two results can be found in [22].

Lemma 8.23. [22] Let x ∈ Cayn be a Cayley permutation. Then x is a modified
ascent sequence if and only if the following two conditions hold:

1. x1 = 1;

2. an entry xi = k > 1 is the leftmost occurrence of the integer k in x if and
only if xi−1 < xi (that is xi is an ascent top).

Theorem 8.24. [22] Let a and b the Cayley-mesh patterns depicted in Figure 8.6.
Then:

MA = Cay(a, b).

Theorem 8.24 is essentially a reformulation of Lemma 8.23 in terms of Cayley-
mesh patterns. The avoidance of a implies that every ascent top is the leftmost
occurrence of the corresponding integer. Conversely, to avoid b implies that each
entry that is not an ascent top is not the leftmost occurrence of the corresponding
integer.

Lemma 8.25. We have:

MA(213) = MA(1213).

Moreover, the set MA(213) is enumerated by the Catalan numbers.

Proof. We start by showing that MA(213) = MA(1213). Let x = x1 · · ·xn ∈MA.
It is enough to show that if x ≥ 213, then x ≥ 1213. Let xixjxk be an occurrence
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of 213 in x. Let j′ be the index of the leftmost occurrence of the integer xj
in x. If j′ < i, then xj′xixjxk is an occurrence of 1213. If i < j′ ≤ j, then by
Lemma 8.23 it must be xj′−1 < x′j. Therefore we can repeat the same argument
on the occurrence xixj′−1xk of 213, until we either find an occurrence of 1213 or a
contradiction.

Now, by Theorem 8.13, the set F(3124) is Wilf-equivalent to the
set MA(B(3124)), where the Fishburn basis of 3124 is B(3124) = {1213, 2314}
(see again [22]). In [34], the set F(3124) is shown to be enumerated by the Cata-
lan numbers. Finally, due to what proved above we have MA(1213) = MA(213).
Thus:

MA(1213, 2314) = MA(213, 2314) = MA(213),

and the thesis follows.

Theorem 8.26. We have:

SortMA(11) = MA(1213, 1223).

Proof. The proof of the inclusion SortMA(11) ⊆MA(1213, 1223) is identical to the
analogous inclusion of Theorem 8.17.

Conversely, let x ∈ MA and suppose that x is not 11-sortable. Let xi =
b, xj = c and xk = a be the three elements of x that result in the leftmost
occurrence xixjxk = bca of 231 in S11(x), with a < b < c. We wish to show that x
contains 1213 or 1223. We distinguish two cases, according to whether i < j
or i > j.

• Suppose that i < j. Note that xi = b is extracted from the 11-stack be-
fore xj = c enters. Let y be the next element of the input when xi is
extracted. If y = b, then x1xiyc ' 1223. If y 6= b, then there must be
another copy y′ of the integer y in the 11-stack. If y < b, then y′xiyc ' 1213.
Otherwise, if y > b then xiy

′xk is an occurrence of 231 that precedes xixjxk
in S11(x), which is a contradiction.

• Suppose that i > j, that is xj = c precedes xi = b in x. Since xi precedes xj
in S11(x), xj must be contained in the 11-stack when xi enters. Let i′ be
the index of the first occurrence of the integer b in x. If i′ < j, then xi′
is extracted from the 11-stack before xj enters. Otherwise both xi′ = b
and xj (which is above xi′) would be extracted (at most) when xi = b is
the next element of the input, since xi = xi′ . But this is impossible due
the hypothesis that xi precedes xj in S11(x). Consider the instant when xi′
is extracted and let y be the next element of the input when this happens.
If y = b, then x1xi′yc ' 1223, as desired. If y 6= xi′ , then there must be
another copy of the integer y, say y′, contained in the 11-stack. If y′ < b,
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then y′xi′yc ' 1213. Finally, if y′ > b then xi′y
′x1 is an occurrence of 231

in S11(x) that precedes xixjxk, contradicting our choice of i, j, k.

Theorem 8.27. The set MA(1213, 1223) is enumerated by the odd index Fi-
bonacci numbers (sequence A001519 in [45]).

Proof. Due to Theorem 8.13, we have

F(1324) = φ′
(
MA(1223, 1324)

)
and F(3124) = φ′

(
MA(1213, 2314)

)
.

Recall also that MA(1213) = MA(213), as proved in Lemma 8.25. Thus,
since 213 ≤ 1324 and 213 ≤ 2314, we have:

MA(1223, 1324, 1213, 2314) = MA(1223, 213) = MA(1213, 1223)

and

F(1324, 3124) = φ′
(
MA(1223, 1324, 1213, 2314)

)
= φ′

(
MA(1213, 1223)

)
.

Let F (n) = Fn(1324, 3124) and let f(n) = |F (n)|. We show that the coeffi-
cients f(n) satisfy f(1) = 1, f(2) = 2 and f(n+ 1) = 3f(n)− f(n− 1), for n ≥ 2,
which is a very well known recurrence for the odd index Fibonacci numbers.
Let G(n, k) be the set:

G(n, k) = {p ∈ F (n) : ltrmax(p) = k}.

Let g(n, k) = |G(n, k)|. Notice that F (n) =
⋃̇
kG(n, k) and thus f(n) =∑n

k=1 g(n, k). We show that, for any n ≥ 1:
g(n+ 1, 1) = f(n)

g(n+ 1, 2) = f(n)

g(n+ 1, k + 1) = g(n, k), k ≥ 2.

• Let us start by proving the first equation g(n + 1, 1) = f(n). We provide
a bijection α : F (n) → G(n + 1, 1). Given p ∈ F (n), define α(p) = 1 	 p.
Equivalently, α(p) is obtained from p by adding an initial maximum n+1. It
is easy to realize that α(p) ∈ G(n+1, 1) for each p ∈ F (n) and α is injective.
Finally, if q ∈ G(n + 1, 1), then q1 = n + 1 and the removal of n + 1 from q
yields a permutation p ∈ F (n), thus α is surjective too.



116

• Similarly, we define a bijection β : F (n)→ G(n+ 1, 2) by suitably adding a
new maximum n+ 1 to a permutation p ∈ F (n). If p ∈ G(n, 1), then p1 = n
and we set β(p) = n(n+1)p2 · · · pn. Otherwise, if p ∈ G(n, k), for some k ≥ 2,
let:

p = m1A1m2A2 · · ·mkAk

be the ltr-max decomposition of p. Then define β(p) by

β(p) = m1A1(n+ 1)m2A2 · · ·mkAk.

It is easy to realize that β(p) avoids f, 1324 and 3124. The case k = 1 is
trivial. On the other hand, if k ≥ 2 then an occurrence of any of the listed
patterns in β(p) should involve the new element n + 1, either as a 4 in an
occurrence of 1324 or 3124 or as a 3 in an occurrence of f. But then, in all
these cases, the element m2 would play the same role in an occurrence of the
same pattern in p, which is impossible since p ∈ F (n). A similar analysis
shows that the removal of n + 1 from a permutation in G(n + 1, 2) yields a
permutation in F (n), thus β is bijective and g(n+ 1, 2) = f(n), as wanted.

• Next suppose that k ≥ 2. We provide a bijection γ : G(n, k)→ G(n+1, k+1).
Let p ∈ G(n, k) and write again:

p = m1A1 · · ·mk−1Ak−1mkAk.

Let Ak = a1 · · · at and define:

γ(p) = m1A1 · · ·mk−1Ak−1m
′
k−1m

′
ka
′
1 · · · a′t,

where m′k = mk + 1 and a′i = ai + 1, if ai > mk−1, or a′i = ai, if ai < mk.
In other words, γ(p) is obtained from p by inserting mk−1 + 1 immediately
beforemk = n and suitably rescaling the other elements. Only those elements
contained in the last block Ak, mk included, eventually need to be rescaled.
Notice that γ(p) has k + 1 ltr-maxima and γ is injective by construction.
The proof that γ(p) avoids f, 1324 and 3124 is identical to the previous
cases, so we omit it. Finally, in the resulting permutation γ(p), the new
element mk−1 + 1 is the k-th ltr-maximum. Thus the inverse map γ−1 :
G(n + 1, k + 1) → G(n, k) is obtained by removing the k-th ltr-maximum,
which again does not create an occurrence of one of the forbidden patterns.
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Due to what proved above, using induction, we have:

f(n+ 1) =
n+1∑
k=1

g(n+ 1, k) =

g(n+ 1, 1) + g(n+ 1, 2) +
n+1∑
k=3

g(n+ 1, k) =

f(n) + f(n) +
n+1∑
k=3

g(n, k − 1) =

f(n) + f(n) +
n∑
j=2

g(n, j) =

f(n) + f(n) + [f(n)− g(n, 1)] =

3f(n)− f(n− 1),

as desired.

The next result for the pattern 12 is again a corollary of Theorem 8.14.

Theorem 8.28. We have:

SortMA(12) = MA(213).

Theorem 8.29. We have:

SortMA(121) = MA(213).

Proof. Due to Lemma 8.25, we have MA(213) = MA(1213). Let x ∈ MA and
suppose that x ≥ 1213. We show that x is not 121-sortable. Let xi1xjxi2xk be an
occurrence of 1213 in x. We can assume that xi1xjxi2 is the leftmost occurrence
of 121 such that the element that plays the role of 2 is smaller than xk. If xj is
extracted from the 121-stack before xk enters, then S121(x) contains xjxkx1 ' 231,
thus x is not 121-sortable. Otherwise, suppose that xj is still in the 121-stack
when xk enters. Observe that, since xi2xjxi1 ' 121, the element xi1 is extracted
before xj enters. Otherwise xi1 and xj would be extracted from the 121-stack at
most when xi2 is the next element of the input (which contradicts the assumption
that xj is still in the 121-stack when xk enters). Let y1 be the next element of the
input when xi1 is extracted. Since the 121-stack restriction is triggered, there are
two elements in the 121-stack, say z and y2, with z above y2, such that y1zy2 ' 121.
Due to our choice of i1, j, i2, it must be z > xk (and thus z 6= xi1). Notice that
it cannot be xi1 = 1, since in that case the 121-stack would contain xi1zx1 ' 121.
Then xi1 > 1 and S121(x) contains an occurrence xi1zx1 of 231, as wanted.
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Conversely, suppose that x is not 121-sortable. Equivalently, suppose there are
three elements xi = b, xj = c and xk = a such that xixjxk = bca is an occurrence
of 231 in S121(x). We show that x contains 213. We can assume that bca is
the leftmost occurrence of 231 in S121(x). We distinguish two cases, according to
whether i < j or j > i.

• Suppose that i < j, i.e. xi = b precedes xj = c in x. By hypothesis xi is
extracted from the 121-stack before xj enters. Therefore, at that moment,
the 121-stack contains two elements zy1, with z above y1, such that y2zy1 '
121, where y2 is the next element of the input. If y2 < b, then xiy2xj is
an occurrence of 213 in x, as wanted. If instead y2 = b, then the stack
contains an occurrence xizy1 of 121, which is forbidden. Finally, if y1 > b,
then also x > b and thus xizxk is an occurrence of 231 in S121(x) that
precedes xixjxk, which is impossible due to our choice of i, j, k.

• Suppose that j < i, i.e. xj = c precedes xi = b in x. Note that xj must be in
the 121-stack when xi enters. Moreover, since xixjxk is the leftmost occur-
rence of 231 in S121(x), xi = b is the first occurrence of the integer b that is
extracted from the 121-stack. Let i′ be the index of the first occurrence of the
integer b in x. If i′ < j, then xi′xjxi ' 121. Therefore at least one between xi′
and xj must be extracted from the 121-stack before xi enters (otherwise we
would have xixjxi′ ' 121 inside the 121-stack). As said before, xj is still
contained in the 121-stack when xi enters, therefore xi′ is the one that has
been extracted before. But then xi′xjxk is an occurrence of 231 in S121(x)
that precedes xixjxk, which is impossible. We can thus assume that i′ > j.
Now, consider the element xi′−1. Due to Lemma 8.23, we have xi′−1 < xi′ .
If xi′−1 = 1, then xi′−1xjx1 ' 121 and thus xj is extracted from the 121-
stack before xi enters, which is a contradiction. If instead xi′−1 > 1, we can
repeat the same argument, but using the first occurrence xw of xi′−1 in x
in place of xi′ (if w < j, then xj is extracted too soon and otherwise we
consider xw−1). Sooner or later this would result in a contradiction.

The proof of the next result is analogous to the proof of Theorem 8.20, and it
is left to the reader.

Theorem 8.30. Let σ = σ1 · · ·σk be a modified ascent sequence of length at least
three and suppose that σ ≥ 123. Then SortMA(σ) = MA(132).

Theorem 8.31. Let σ = σ1 · · ·σk be a modified ascent sequence of length at least
three. If σ avoids 123 and σ1σ2σ3 ' 122, then SortMA(σ) = MA(132,R(σ)⊕ 1).



119

Proof. Suppose that σ avoids 123 and let σ2 = σ3 = t, for some t > 1. Observe
that t = max(σ), otherwise σ1σ2 = 1t would realize an occurrence of 123 together
with the maximum of σ. Let x be a modified ascent sequence.

We firts show that if x is not σ-sortable, then x /∈ MA(132,R(σ)) ⊕ 1), thus
proving the inclusion SortMA(σ) ⊇ MA(132,R(σ) ⊕ 1). Suppose that the three
elements xi = a, xj = b and xk = c result in an occurrence bca of 231 in Sσ(x).
If j > k, then x1xkxj is an occurrence of 132 in x, as wanted. Otherwise, suppose
that j < k and xj is extracted from the σ-stack before xk enters. When xj is
extracted, there must be k − 1 elements σ′2, . . . , σ

′
k in the σ-stack, reading from

top to bottom, such that σ′1σ
′
2 · · ·σ′k is an occurrence of σ, where σ′1 is the next

element of the input. Now, if σ′2 < c, then σ′u < c for each u, since σ2 = max(σ).
Therefore σ′k · · ·σ′2σ′1c is an occurrence of R(σ)⊕ 1, as wanted. If instead σ′2 > c,
then x1σ

′
2c is an occurrence of 132 in x. Finally, suppose that σ′2 = c. Thus xk = c

is not the leftmost occurrence of the integer c in x, since xk follows σ′2 = c in x.
By Lemma 8.23, it must be xk−1 ≥ xk (and thus xk−1 6= σ′1). If xk−1 > xk,
then x1xk−1xk is an occurrence of 132. If xk−1 = xk, then we can repeat the same
argument, but using xk−1 instead of xk. Sooner or later this will result in either
an occurrence of 132 or a contradiction.

Conversely, we shall prove the inclusion SortMA(σ) ⊆ MA(132,R(σ) ⊕ 1) by
showing that if x contains either 132 or R(σ) ⊕ 1, then x is not σ-sortable. Sup-
pose initially that x ≥ 132. Without losing generality, choose the leftmost occur-
rence x1xixj of 132 in x. If xj enters the σ-stack above xi, then Sσ(x) contains
an occurrence xjxix1 of 231, thus x is not σ-sortable. Suppose instead that xi is
extracted from the σ-stack before xj enters. At that moment, the next element
of the input σ′1 forms an occurrence of σ together with some elements σ′2, . . . , σ

′
k

contained in the σ-stack. Notice that σ′2 = σ′3 > 1, since σ1σ2σ3 ' 122. Due
to our choice of x1xixj as leftmost occurrence of 132 in x, it must be σ′u ≤ xj
for each u ≤ k − 1. Since σ1 < σ2, we also have σ′1 < xj and thus σ′2 6= xi.
If σ′2 < xj, then Sσ(x) contains an occurrence σ′2xjx1 of 231 and we are done.
Therefore we can assume σ′2 = xj (and thus σ′2 = σ′3 = xj). Due to Lemma 8.23,
it must be xj−1 ≥ xj. Also xj−1 ≥ xi, again due to our choice of x1xixj as left-
most occurrence of 132, and thus xj−1 6= σ′1. If xj−1 > xi, then xixj−1x1 is an
occurrence of 231 in Sσ(x). Finally, let xj−1 = xi. Then again xj−2 ≥ xj−1 due to
Lemma 8.23 and we can repeat the same argument on xj−2. Sooner or later, since
the next element of the input is σ′1 6= xj−1, either we will find an occurrence of 132
or a contradiction. This proves that if x ≥ 132, then x is not σ-sortable. Next
suppose that x avoids 132, but x contains an occurrence σ′k · · ·σ′2σ′1m of R(σ)⊕ 1.
If the elements σ′k · · ·σ′2 are still in the σ-stack when σ′1 is the next element of
the input, then σ′2 is extracted and Sσ(x) contains an occurrence σ′2mx1 of 231.
Otherwise, there must have been a previous occurrence, say σ′′k · · ·σ′′2σ′′1 , of R(σ)
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in x such that at least one element amongst σ′k, . . . , σ
′
2 is extracted when σ′′1 is the

next element of the input, together with σ′′2 . Observe that it must be σ′′2 ≤ m,
since we are assuming that x avoids 132. If σ′′2 < m, then again σ′′2mx1 is an oc-
currence of 231 in Sσ(x). Finally, if σ′′2 = m, then x1σ

′′
2σ
′
2 is an occurrence of 132,

a contradiction.

Lemma 8.32. Let x = x1 · · ·xk be a modified ascent sequence and suppose that x
avoids 123. If xk = 1, then R(x) is a modified ascent sequence. Otherwise,
if xk > 1, then 1R(x) is a modified ascent sequence.

Proof. Let m = max(x). Since x avoids 123 (and x1 = 1), the elements of x that
are greater than 1 are in weakly decreasing order. Therefore, by Lemma 8.23, we
have:

x = 1i1mj11i2(m− 1)j2 · · · 1im−12jm−11im ,

where iu ≥ 1 for each u < m, im ≥ 0 and jv ≥ 1 for each v. Therefore, again by
Lemma 8.23, if xk = 1 (or equivalently im ≥ 1) then R(x) is a modified ascent
sequence. Similarly, if xk > 1, then we obtain a modified ascent sequence by
inserting an additional 1 at the beginning of R(x).

Theorem 8.33. Let σ = σ1 · · ·σk be a modified ascent sequence of length at least
four. If σ avoids 123 and σ1σ2σ3 is not an occurrence of 122, then SortMA(σ) is
not a class.

Proof. Observe that the modified ascent sequence α = 1312 is not σ-sortable,
since Sσ(α) = R(α) = 2131 ≥ 231, for each σ of length four or more. We wish
to construct a σ-sortable modified ascent sequence β, with β ≥ α. We distinguish
some cases. Being the other cases similar, we give a detailed proof for the first one
only.

• Suppose that σ2 = 1 and σk = 1. Define:

α = σk · · ·σ3σ2(m+ 2)σ1(m+ 1),

where m = max(σ). Notice that σk(m+2)σ1(m+1) is an occurrence of 1312
in α. Now, an easy computation shows that:

Sσ(α) = (m+ 2)σ2(m+ 1)σ1σ3 · · · σk.

Observe that Sσ(α) avoids 231. Indeed m + 2 and m + 1 are not part of
an occurrence of 231 (since σ2 = 1). Moreover, suppose, for a contradiction,
that σ3 · · ·σk contains an occurrence σiiσi2σi3 of of 231. Then σ1σi2σi3 is an
occurrence of 123 in σ, which contradicts the hypothesis. Finally, we shall
prove that α is a modified ascent sequence. Notice that R(σ) is a modified
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σ σ-sortable modified sequence Non-σ-sortable pattern

111 11312 1312

112 121413 1312

Table 8.3: Patterns σ of length at most three where SortMA(σ) is not a class.

ascent sequence by Lemma 8.32. The only additional elements are m + 2,
which is placed immediately after σ2 = 1 and before σ1 = 1, and m+2, which
is placed at the end, immediately after σ1 = 1. Therefore α is a modified
ascent sequence by Lemma 8.23.

• If σ2 = 1 and σk > 1, then define α exactly as in the previous case, but
inserting an additional 1 at the beginning (as in Lemma 8.32).

• Suppose that σ2 > 1 and σk = 1. Then σ2 = m is equal to the maximum
value of α, because α avoids 123. Since σ1σ2σ3 is not an occurrence of 122,
Lemma 8.23 implies that σ2 is the only occurrence of m in σ. Define:

α = σk · · ·σ3(m+ 1)σ1σ2.

Then α contains 1312, α is a modified ascent sequence and:

Sσ(α) = (m+ 1)σ2σ1σ3 · · ·σk,

which avoids 231. We leave the details to the reader.

• If σ2 > 1 and σk > 1, then define α exactly as in the previous case, but
inserting an additional 1 at the beginning (as in Lemma 8.32).

The following corollary, which is an immediate consequence of the results
proven so far in this section, provides a characterization of the patterns σ
where SortMA(σ) is a class.

Corollary 8.34. Let σ = σ1 · · ·σk be a modified ascent sequence. If σ ∈ {11, 12},
then SortMA(σ) is a class. In all the other cases, SortMA(σ) is a class if and only
if σ ≥ 123 or σ1σ2σ3 ' 122. Moreover, if σ ≥ 123, then SortMA(σ) = MA(132). If
instead σ avoids 123 and σ1σ2σ3 ' 122, then SortMA(σ) = MA(132,R(σ)⊕ 1).

Proof. The patterns 11, 12, 121, 111 and 112 were solved in Theorem 8.26, The-
orem 8.28, Theorem 8.29 and Table 8.3. The remaining cases were considered in
Theorems 8.30, 8.31 and 8.33.
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Similarly to what observed in the previous section, in accordance with Corol-
lary 8.5 and Theorem 8.14, if σ̂ contains 231, then σ contains 123 and SortMA(σ)
is a class, as in Corollary 8.34.
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Appendix A

Index of integer sequences

OEIS Sequence References

A000079 Powers of 2 Appendix B, Table 7.1
A000108 Catalan numbers Example 1.1, Table 6.1, Table 7.1
A000110 Bell numbers Section 1.3
A000124 Central polygonal numbers Table 7.1
A000670 Fubini numbers Section 1.3
A001006 Motzkin numbers Section 1.4
A001519 Odd indexed Fibonacci numbers Appendix B, Table 3.2, Theorem 8.27
A002057 4-th convolution of Catalan numbers Proposition 3.12
A006318 Large Schröder numbers Section 1.4, Table 6.1
A007317 Binomial transform of Catalan numbers Chapter 5, Table 6.1
A009766 Catalan triangle (ballot numbers) Section 6.4
A011782 Table 3.2
A022493 Fishburn numbers Section 1.3
A024175 Table 3.2
A033184 Catalan triangle transposed Section 6.4
A080937 Appendix B, Table 3.2
A102407 Table 6.1
A115139 Catalan polynomials Section 3.4
A116845 Appendix B
A124302 Appendix B, Table 3.2
A129591 Theorem 3.15
A202062 Table 3.3
A294790 Subtract n from partial sums Chapter 4

of partial sums of Catalan numbers
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Non-principal classes Sort(σ)

σ G.F. Sequence {fσn }n OEIS

321 1−t
1−2t 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 A000079

3214
4213
4312
4321

1−2t
1−3t+t2

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181 A001519

32145 −3t4+9t3−12t2+6t−1
(t−1)(t2−3t+1)2

1, 2, 5, 14, 41, 121, 355, 1032, 2973, 8496 A116845

52134 (1−t)(2t−1)2

t4−9t3+12t2−6t+1
1, 2, 5, 14, 41, 121, 355, 1033, 2986, 8594

54123 1−4t+5t2−3t3

t4−6t3+8t2−5t+1
1, 2, 5, 14, 41, 121, 356, 1044, 3057, 8948

32154
42135
43125
43215
52143
53124
53214
54132
54213
54312
54321

t2−3t+1
3t2−4t+1

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842 A124302

129
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σ G.F. Sequence {fσn }n OEIS

3216451

...
654321

3t2−4t+1
1−5t+6t2−t3 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041 A080937

421356
431256
432156

2t5−16t4+29t3−23t2+8t−1
9t5−33t4+46t3−30t2+9t−1

1, 2, 5, 14, 42, 131, 416, 1329, 4247, 13544

631245
632145

t5−7t4+17t3−17t2+7t−1
4t5−16t4+29t3−23t2+8t−1

1, 2, 5, 14, 42, 131, 416, 1329, 4247, 13545

621345 F 621345(t)2 1, 2, 5, 14, 42, 131, 414, 1304, 4065, 12530

521346
651243
651324
652134

t4−9t3+12t2−6t+1
5t4−17t3+17t2−7t+1

1, 2, 5, 14, 42, 131, 416, 1329, 4248, 13560

541236
641235
654123

t4−6t3+8t2−5t+1
4t4−11t3+12t2−6t+1

1, 2, 5, 14, 42, 131, 416, 1330, 4261, 13658

321465
321546

t4−12t3+16t2−7t+1
6t4−23t3+22t2−8t+1

1, 2, 5, 14, 42, 131, 416, 1328, 4233, 13430

621354
621435

t4−8t3+12t2−6t+1
(t2−3t+1)(4t2−4t+1)

1, 2, 5, 14, 42, 131, 416, 1328, 4234, 13446

651234 1−6t+14t2−17t3+10t4−4t5

t6−9t5+20t4−27t3+19t2−7t+1
1, 2, 5, 14, 42, 131, 414, 1306, 4094, 12766

321456 F 321456(t)3 1, 2, 5, 14, 42, 131, 414, 1304, 4063, 12497

1321654, 421365, 431265, 432165, 521436, 531246, 532146, 541326, 542136, 543126, 543216,
621534, 621543, 631254, 632154, 641325, 642135, 643125, 643215, 651423, 651432, 652143,
653124, 653214, 654132, 654213, 654312, 654321.

2 F 621345(t) = (1−t)3(2t−1)3
t7−24t6+74t5−109t4+89t3−41t2+10t−1 .

3 F 321456(t) = 1−11t+50t2−122t3+175t4−152t5+79t6−25t7+4t8

(1−t)3(t2−3t+1)3 .
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Enumerative data for Sort(σ)

σ Sequence {fσn }n
123 1, 2, 5, 13, 35, 99, 295, 920, 2975, 9892, 33605
132 1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191
213 1, 2, 5, 16, 62, 273, 1307, 6626, 35010, 190862, 1066317
231 1, 2, 6, 23, 102, 496, 2569, 13934, 78295, 452439, 2674769
312 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245, 435492
321 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

1234 1, 2, 5, 14, 40, 113, 319, 918, 2731, 8438, 27011
1243 1, 2, 5, 14, 41, 122, 366, 1108, 3397, 10586, 33618
1324 1, 2, 5, 14, 42, 134, 455, 1640, 6229, 24692, 101205
1342 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
1423 1, 2, 5, 14, 44, 154, 588, 2396, 10237, 45284, 205608
1432 1, 2, 5, 14, 43, 144, 521, 2010, 8156, 34402, 149496
2134 1, 2, 5, 14, 45, 170, 740, 3567, 18408, 99505, 555982
2143 1, 2, 5, 14, 44, 157, 634, 2844, 13829, 71318, 383825
2314 1, 2, 5, 15, 53, 215, 972, 4767, 24837, 135434, 764875
2341 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
2413 1, 2, 5, 15, 52, 201, 842, 3745, 17435, 84119, 417617
2431 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
3124 1, 2, 5, 14, 44, 155, 603, 2541, 11401, 53758, 263847
3142 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
3214 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946
3241 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
3412 1, 2, 5, 15, 53, 214, 954, 4562, 22929, 119512, 640367
3421 1, 2, 5, 15, 53, 214, 954, 4562, 22929, 119512, 640367
4123 1, 2, 5, 14, 42, 135, 467, 1731, 6803, 28031, 119976
4132 1, 2, 5, 14, 43, 144, 522, 2027, 8334, 35894, 160531
4213 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946
4231 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
4312 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946
4321 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946

131
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σ Sequence {fσn }n
12345 1, 2, 5, 14, 42, 129, 391, 1158, 3384, 9924
12354 1, 2, 5, 14, 42, 130, 405, 1257, 3883, 11980
12435 1, 2, 5, 14, 42, 130, 405, 1257, 3883, 11980
12453 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
12534 1, 2, 5, 14, 42, 131, 417, 1341, 4335, 14059
12543 1, 2, 5, 14, 42, 131, 417, 1341, 4335, 14059
13245 1, 2, 5, 14, 42, 131, 420, 1388, 4765, 17094
13254 1, 2, 5, 14, 42, 132, 430, 1447, 5032, 18110
13425 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
13452 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
13524 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
13542 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
14235 1, 2, 5, 14, 42, 133, 444, 1566, 5841, 22989
14253 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
14325 1, 2, 5, 14, 42, 132, 432, 1475, 5272, 19756
14352 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
14523 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
14532 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
15234 1, 2, 5, 14, 42, 135, 470, 1773, 7170, 30636
15243 1, 2, 5, 14, 42, 134, 456, 1657, 6403, 26098
15324 1, 2, 5, 14, 42, 134, 456, 1657, 6404, 26117
15342 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
15423 1, 2, 5, 14, 42, 133, 443, 1552, 5717, 22092
15432 1, 2, 5, 14, 42, 133, 443, 1552, 5717, 22092
21345 1, 2, 5, 14, 42, 136, 493, 2043, 9547, 48738
21354 1, 2, 5, 14, 42, 135, 474, 1851, 8061, 38601
21435 1, 2, 5, 14, 42, 135, 474, 1851, 8061, 38601
21453 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
21534 1, 2, 5, 14, 42, 134, 458, 1696, 6857, 30246
21543 1, 2, 5, 14, 42, 134, 458, 1696, 6857, 30246
23145 1, 2, 5, 14, 43, 146, 552, 2316, 10642, 52641
23154 1, 2, 5, 14, 43, 145, 539, 2208, 9896, 47917
23415 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
23451 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
23514 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
23541 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
24135 1, 2, 5, 14, 43, 144, 523, 2045, 8530, 37583
24153 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
24315 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
24351 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
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24513 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
24531 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
25134 1, 2, 5, 14, 43, 145, 534, 2119, 8921, 39327
25143 1, 2, 5, 14, 43, 144, 522, 2028, 8352, 36088
25314 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
25341 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
25413 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
25431 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
31245 1, 2, 5, 14, 42, 135, 471, 1793, 7400, 32692
31254 1, 2, 5, 14, 42, 134, 457, 1675, 6602, 27852
31425 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
31452 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
31524 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
31542 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
32145 1, 2, 5, 14, 41, 121, 355, 1032, 2973, 8496
32154 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
32415 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
32451 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
32514 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
32541 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
34125 1, 2, 5, 14, 43, 145, 538, 2188, 9650, 45495
34152 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
34215 1, 2, 5, 14, 43, 145, 538, 2188, 9650, 45495
34251 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
34512 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
34521 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
35124 1, 2, 5, 14, 43, 144, 522, 2027, 8332, 35849
35142 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
35214 1, 2, 5, 14, 43, 144, 522, 2027, 8332, 35849
35241 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
35412 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
35421 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
41235 1, 2, 5, 14, 42, 133, 445, 1578, 5924, 23418
41253 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
41325 1, 2, 5, 14, 42, 134, 456, 1658, 6422, 26314
41352 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
41523 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
41532 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
42135 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
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42153 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
42315 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
42351 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
42513 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
42531 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
43125 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
43152 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
43215 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
43251 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
43512 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
43521 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
45123 1, 2, 5, 14, 43, 146, 550, 2279, 10216, 48660
45132 1, 2, 5, 14, 43, 145, 538, 2187, 9628, 45205
45213 1, 2, 5, 14, 43, 145, 538, 2187, 9628, 45205
45231 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
45312 1, 2, 5, 14, 43, 145, 538, 2187, 9628, 45205
45321 1, 2, 5, 14, 43, 145, 538, 2187, 9628, 45205
51234 1, 2, 5, 14, 42, 131, 421, 1403, 4893, 17932
51243 1, 2, 5, 14, 42, 132, 432, 1476, 5288, 19908
51324 1, 2, 5, 14, 42, 132, 432, 1476, 5288, 19908
51342 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
51423 1, 2, 5, 14, 42, 133, 443, 1552, 5718, 22113
51432 1, 2, 5, 14, 42, 133, 443, 1552, 5718, 22113
52134 1, 2, 5, 14, 41, 121, 355, 1033, 2986, 8594
52143 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
52314 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
52341 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
52413 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
52431 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
53124 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
53142 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
53214 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
53241 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
53412 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
53421 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
54123 1, 2, 5, 14, 41, 121, 356, 1044, 3057, 8948
54132 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
54213 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
54231 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796
54312 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842
54321 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842



Appendix D

Listings

Algorithm 1: Stacksort. Here Stack is the stack, TOP (Stack) is the current
top of the stack, π = π1 · · · πn is the input permutation.

Stack := ∅;
while i ≤ n do

if Stack = ∅ or πi < TOP (Stack) then
execute S;
i := i+ 1;

end
else

execute O;
end

end
while Stack 6= ∅ do

execute O;
end
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Algorithm 2: The σ-machine. Here Stackσ is the σ-avoiding stack, StackI
is the increasing stack, Pσ means pushing into Stackσ, PI means pushing
into StackI , O means moving TOP (StackI) into the output, ◦ is the con-
catenation operation.

StackI := ∅;
Stackσ := ∅;
i := 1;
while i ≤ n do

if σ � Stackσ ◦ πi then
execute Pσ;
i := i+ 1;

end
else if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then

execute PI ;
end
execute O;

end
while Stackσ 6= ∅ do

if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then
execute PI ;

else
execute O;

end

end
while StackI 6= ∅ do

execute O;
end
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