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ON THE STRUCTURE OF INDUCED MODULES AND TENSOR

INDUCTION FOR GROUP REPRESENTATIONS

EMANUELE PACIFICI

Dedicated to Professor Guido Zappa on the occasion of his 90th birthday

Abstract. Let V be a simple module for a finite group G , over a finite

field F , and let H be a subgroup of G . Assuming that V is induced by an

FH -module, we investigate some aspects of the structure of V viewed as a

module for H . This kind of analysis turns out to play a central role in a

problem concerning tensor induction for representations of finite groups.

Key words and phrases. Representations of finite groups, induced modules,

tensor induction.

Introduction

I. Let G be a finite group, F a finite field, and V a simple FG-module; given a

subgroup H having odd index in G , and an FH -submodule W of V , assume that

V is isomorphic to the induced module W↑G . In this setting, we are interested in

exploring the structure of the FH -module V ↓H (which is V restricted to H ) from

a particular point of view: namely, we ask whether the odd-index assumption for

H implies that the multiplicity of W as a composition factor in the socle of V ↓H
is also odd. By Lemma 1.4(b), this is equivalent to saying that V ↓H is isomorphic

to the FH -module (
⊕s

i=1 W )⊕ Y , where s is an odd positive integer, and Y is a

submodule of V ↓H not containing any submodule isomorphic to W .

It follows from Clifford’s Theorem ([1, 11.1]) that the answer to the above ques-

tion is certainly affirmative when H is a normal subgroup of G . More generally,

as outlined in the last paragraph of Section 2, it is not difficult to see that the same

holds when W is induced from the normal core L of H in G , provided L has odd

index in H (hence in G). On the other hand, if W is induced from L but |H : L|
is even, then the answer can be negative, as it is shown by an example ([5, 11.1])

in which G is solvable, F is the prime field in characteristic 3, and |G : H| is 3.

In view of our original motivation for this kind of analysis (presented in Part II

of this Introduction), we are actually interested in the case when W is not induced

from L , and we can also assume that F has odd characteristic. The main result of

this paper (which is proved in Section 2) is the following.

Theorem A. Let G be a finite solvable group, H a subgroup of G having odd index,

F a (not necessarily finite) field of odd characteristic, V a simple FG-module, and

W a submodule of V ↓H such that V 'W↑G . Denoting by L the normal core of H

in G , assume that W is not induced from L , and that G/L is a Frobenius group
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2 EMANUELE PACIFICI

with Frobenius complement H/L . Then we have V ↓H' (
⊕s

i=1 W ) ⊕ Y , where s

is an odd number and Y is a submodule of V ↓H such that HomFH(W,Y ) = 0 (In

other words, W has odd multiplicity as a composition factor in soc(V ↓H)).

Note that, if H is a (not normal) subgroup of odd prime index in the solvable

group G , then G/L does have the structure of a Frobenius group with Frobenius

complement H/L (in fact, denoting by K/L a minimal normal subgroup of G/L ,

we have that G/L is a semidirect product of K/L and H/L ; moreover, every non-

trivial element of H/L acts fixed-point-freely by conjugation on K/L). Therefore

Theorem A covers this case, thus providing a generalization of Theorem 9.7 in [5].

II. It may be worth mentioning the problem which led us to the question pre-

sented in Part I.

Let G be a finite group, H a subgroup of G , and D an irreducible complex

representation for G . As it is easy to check, every direct summand of the restriction

D↓H must have degree at least as large as degD divided by the index |G : H| ,
and D is induced by a representation of H if and only if D↓H does have a direct

summand of degree (degD)/|G : H| . One of the main purposes of [5] is to explore

the possibility of an analogous result for tensor induction; more explicitly we ask

whether the following holds.

Conjecture. Let D be a faithful, quasi-primitive and tensor-indecomposable rep-

resentation of G . Then D is tensor-induced by a projective representation of H if

and only if D↓H has a tensor factor whose degree is the |G : H|th root of degD .

(We refer to [5, Introduction and Section 1] for a detailed discussion about the

concept of tensor induction, which motivates and explains the setting of the above

Conjecture.) Following the line developed in [5], this problem can be approached

by means of two subsequent reductions. First, the Conjecture appears to be deeply

linked to a statement ([5, ‘weak’ Conjecture 4.3]) concerning form induction for

symplectic modules over finite fields (see Section 3), and at this level it can be shown

that the Conjecture is false in its full generality (Example 5.2 in [5]). Next, positive

results toward the Conjecture are obtained assuming that H has odd index in G ,

and such results are achieved via a reduction to the question presented in Part I.

In particular, the Conjecture is proved to be true when H is a normal subgroup of

odd index in G (provided the Fitting subgroup of G is assumed noncentral) and

also, through Theorems 9.7 and 9.10 of [5], when G is solvable and H has odd

prime index in G .

As in this paper we generalize [5, 9.7 and 9.10] (by means of Theorem A and

Theorem 3.3 respectively), we are in a position to extend the cases in which the

Conjecture (together with the weak version of Conjecture 4.3 in [5]) is proved to be

true. The precise statements for these results, together with the relevant definitions

and notation, are formulated in Section 3.

To conclude, every abstract group considered throughout the following discussion

is tacitly assumed to be finite. Also, we shall freely use (often with no reference)

some basic facts in Representation Theory, such as Clifford’s Theorem, Mackey’s

Lemma ([1, 10.13]) and Nakayama reciprocity ([3, VII, 4.5 and 4.10]).
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1. Some preliminaries

Before proving Theorem A, we recall some results and notation which will be

relevant in the sequel.

Lemma 1.1. Let G be a Frobenius group with Frobenius complement H and Frobe-

nius kernel K , and let I be a subgroup of G such that I ∩H 6= 1 . Then we have

I = (I ∩H)(I ∩K) .

Proof. See [4, 4.1.8].

Lemma 1.2. Let H be a solvable Frobenius complement of even order, which does

not have any subgroup of index 2 . Then there exists a normal subgroup N of H

such that H/N is isomorphic to the alternating group A4 .

Proof. Set A := O2(H), and N := CH(A); looking at the proof of Zassenhaus’

Theorem 18.2 in [6], we see that our assumptions force A to be isomorphic to the

quaternion group of order 8, whence H/N embeds in Aut(Q8) ' S4 . Moreover, a

Sylow 2-subgroup of H/N must be isomorphic to C2 ×C2 . As H/N can not be a

2-group, its order is necessarily divisible by 3, and the claim follows.

Lemma 1.3. Let H be a group, F a field, and M a normal subgroup of H . Also,

let W be a simple FH -module, and U a simple constituent of W↓M . If I is the

inertia subgroup of U in H , and e denotes the multiplicity of U as a composition

factor in W↓M , then |I/M | ≥ e2 · (dimF EndFM (U))/(dimF EndFH(W )) holds.

Proof. Let f denote the multiplicity of W as a composition factor of the largest

semisimple quotient of U ↑H . Since the direct sum of f copies of W is a homo-

morphic image of U↑H , the direct sum of ef copies of U is a homomorphic image

of U ↑H↓M . From Mackey’s Lemma, it is easy to see that U ↑H↓M is semisimple

and one of its homogeneous components is the direct sum of |I/M | copies of U :

therefore |I/M | ≥ ef . By [3, VII, 4.13],

e · dimF EndFM (U) = f · dimF EndFH(W ).

Thus

|I/M | ≥ ef = e2 · (dimF EndFM (U))/(dimF EndFH(W )),

as claimed.

Lemma 1.4. Let G be a group, H a subgroup of G , F a field, V a simple

FG-module, and W a submodule of V ↓H such that V ' W ↑G . Let T be the

homogeneous component of W in the socle of V ↓H . Then the following conclusions

hold:

(a) the multiplicity of W as a composition factor in T is given by

(dimF EndFG(V ))/(dimF EndFH(W ));

(b) T is a direct summand in V ↓H , it has a unique direct complement Y , and Y

is such that HomFH(W,Y ) = HomFH(Y,W ) = 0 .
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Proof. Claim (a) easily follows from the fact that, by [3, VII, 4.12b)], the multi-

plicity of W as a composition factor in T is given by

(dimF HomFH(W,V ↓H))/(dimF EndFH(W )).

Nakayama reciprocity yields now the conclusion.

For claim (b), note that if Z is any submodule of V ↓H with the same dimension

as W , then Z is a direct summand (simply because V is the vector space direct

sum of the translates of Z , the translates different from Z are permuted by H

among themselves, and so their sum is an H -module complement to Z ). Let Y be

of minimal dimension among the submodules of V ↓H such that T + Y = V ↓H . If

Y contained a submodule Z isomorphic to W , then Z would lie in T and Z would

be a direct summand of Y , contrary to the minimality of Y . Therefore we must

have HomFH(W,Y ) = 0, and T ∩ Y = 0 (so that Y is a direct complement to T ).

Dually, one can use the fact that if Z ′ is any submodule of V ↓H with codimension

equal to dimW then it is a direct summand: if Y had a nonzero homomorphism

onto W , the sum of T with the kernel of that could play the role of Z ′ and yield a

contradiction. Thus HomFH(Y,W ) = 0, and from this it follows at once that there

can be no direct complement to T other than Y .

Lemma 1.5. Let H be a group, L a normal subgroup of H , F a finite field,

and S a 1-dimensional FH -module whose kernel contains L . Let W be a simple

FH -module. Then W ⊗ S and W have the same (nonzero) multiplicity as compo-

sition factors in the socle of W↓L↑
H .

Proof. See [5, 9.1].

Lemma 1.6. Let H be a group, L a normal subgroup of H , F a finite field, and

W an absolutely simple FH -module. Assume that there exists an FH -module S

such that kerS contains L , |H : kerS| = 2 , and W ⊗ S is isomorphic to W .

Then the multiplicity of W as a composition factor in the socle of W↓L↑
H is an

even (positive) number.

Proof. See [5, 9.4].

Remark 1.7. It is not hard to see that the ideas of the proof of [5, 9.7] can be

applied more generally, and we shall need some of their consequences here. Let G

be a (finite) group, H a subgroup of G , F a finite field, V a simple FG-module, and

W a submodule of V ↓H such that V 'W↑G . Then EndFG(V ) and EndFH(W ) are

fields, every element of the latter arises as the restriction of one and only one element

of the former, and the relevant elements of EndFG(V ) form a subfield: call that K ,

write VK for V regarded as KG-module, and WK for W regarded as KH -module

(of course VK is simple, and it is induced by WK from H ). It is now easy to see

that EndKG(VK) = EndFG(V ), and EndKH(WK) = EndFH(W ), so WK is indeed

absolutely simple, and by Lemma 1.4(a) the multiplicity of W as a composition

factor in soc(V ↓H) is the same as the multiplicity of WK as a composition factor

in soc((VK)↓H). Moreover, if WK is induced from some subgroup L of H , then

WK has a submodule of K-dimension dimK(WK)/|H : L| ; that subspace is also
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a submodule of W , of F -dimension dimF(W )/|H : L| , and so W is also induced

from L .

2. A proof of the main theorem

We present next a proof of Theorem A, which was stated in the Introduction.

We are interested in this result when the field F is finite (and this will be our

assumption), but in Remark 2.1 we shall take the opportunity to explain that the

theorem is in fact true also if F is infinite. It may be worth stressing that in the

special case when F is a splitting field for G (for instance, when F is algebraically

closed), Theorem A is an immediate consequence of Lemma 1.4(a).

Proof of Theorem A. In what follows, we shall assume the statement true for all

groups having order strictly smaller than |G| , and our aim will be to show that the

statement is true for G as well. As the first step, we shall prove that W can be

assumed absolutely simple.

In fact, let us suppose that Theorem A is true when the relevant H -module

is absolutely simple. Taking in account Remark 1.7 and its set-up, we can apply

Theorem A with K , VK and WK in place of F , V and W respectively. Then we

get that the multiplicity of WK as a composition factor in soc((VK)↓H) is odd. But,

as explained in 1.7, that multiplicity equals the multiplicity of W as a composition

factor in soc(V ↓H), and we achieve the desired conclusion.

In view of the previous step, we henceforth assume that W is absolutely simple.

Let X be a simple constituent of W ↓L , and let I denote the inertia subgroup

IG(X) (recall that this is the subgroup of all the elements g of G such that Xg

is isomorphic to X as an FL-module). Also, denote by K/L the Frobenius kernel

of G/L . We shall proceed by discussing the various situations which may occur,

depending on I .

(1). Case I∩H = L . This can not happen, as otherwise we would get IH(X) = L ,

and Clifford’s Theorem would yield that W is induced by X from L , against the

hypothesis.

(2). Case L < I ∩ H < H . Set J := IK = (I ∩ H)K (see Lemma 1.1), and

let U be the (unique) submodule of W ↓I∩H with the property that U ↓L is the

homogeneous component of W ↓L containing X . Since U ↑H' W , this U must

be absolutely simple. Moreover, we get (U↑J)↑G' U↑G ' (U↑H)↑G' W↑G' V ,

so that U↑J is a simple FJ -module. Of course J is a solvable group, I ∩H is a

subgroup of it having odd index, L is the normal core of I ∩ H in J , and J/L

is a Frobenius group with Frobenius complement (I ∩H)/L . Moreover, U is not

induced from L . By our inductive hypothesis, we can conclude that U has odd

multiplicity as a composition factor in the socle of (U↑J)↓I∩H . By Lemma 1.4(a),

this is equivalent to saying that dimF EndFJ(U↑J) is an odd number. Now, we have

dimF EndFG(V ) = dimF EndFJ(U↑J) · (dimF EndFG(V ))/(dimF EndFJ(U↑J)),

and it suffices to show that U↑J has odd multiplicity (as a composition factor) in

soc(V ↓J). We shall see that this multiplicity is in fact 1.
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Denoting by T a transversal for I ∩H in H , we get

V ↓J'W↓I∩H↑
J'

(⊕
t∈T

U t)↑J' U↑J ⊕
( ⊕
t∈T \(I∩H)

U t)↑J
(Observe that, although the individual U t are not necessarily F[I ∩ H] -modules,

certainly
⊕

t∈T \(I∩H) U
t is invariant under the action of I ∩ H ). For a proof

by contradiction, suppose that the multiplicity of U ↑J in soc(V ↓J) is greater

than 1; this means that HomFJ(U↑J ,
(⊕

t∈T \(I∩H) U
t)↑J) (which is isomorphic, as

a vector space, to HomF[I∩H](U,
(⊕

t∈T \(I∩H) U
t)↑J↓I∩H)) is not the zero space.

Therefore, X is a constituent of
(⊕

t∈T \(I∩H) U
t)↑J↓L and, finally, there exist t

in T \ (I ∩H) and j in J such that X is a constituent of (U tj)↓L . Now, X(tj)
−1

is a constituent of U↓L , so that tj lies in I . Writing j as hk , where h is in I ∩H
and k in K , we have that thk = tj is in I = (I ∩ H)(I ∩ K) (see Lemma 1.1).

This implies that t lies in I ∩H , which is not the case.

(3). Case I = H . We see that in this situation W has multiplicity 1 in soc(V ↓H).

In fact, W↓L is now a homogeneous component of V ↓L . If V ↓H contained another

isomorphic copy of W , the restriction of that to L would be isomorphic to W↓L ;

but this is a contradiction, as a homogeneous component can never be isomorphic

to any submodule distinct from it.

(4). Case H < I < G . We have that I is a solvable group, H is a subgroup of I

having odd index, L is the normal core of H in I , and I/L is a Frobenius group

with Frobenius complement H/L . Also, let R be the submodule of V ↓I generated

by the subspace W (so that R is isomorphic to W↑I , and it is certainly a simple

FI -module). By the inductive hypothesis we deduce that dimF EndFI(R) is an odd

number and, as dimF EndFG(V ) is given by that number times the multiplicity of R

in soc(V ↓I), it is enough to show that the latter multiplicity is odd. But, similarly

to what happens in Case (3), R↓L is a homogeneous component of V ↓L and, as

above, there can not be any other copy of R in V ↓I : therefore the multiplicity of

R in soc(V ↓I) is 1, and the argument for this case is complete.

(5). Case I = G . Our assumption that G/L is a Frobenius group with Frobenius

complement H/L implies that, considering the action of H on the set of its right

cosets in G (given by right multiplication), the orbits not containing the trivial

coset H have a common length, namely |H : L| . Therefore, Mackey’s Lemma

applied to the present situation yields

V ↓H'W ⊕
( n⊕

i=1

W↓L↑
H
)
,

where n is the number of nontrivial double cosets of H in G . This number is given

by (|G : H| − 1)/|H : L| , so there is nothing to prove if |H : L| is odd (in that case

n is even). From now on we shall then assume |H : L| even, and most of the time

our aim will be to show that W has even multiplicity as a composition factor in

soc(W↓L↑
H).
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Let us start by assuming that H has a subgroup Q which contains L and is

such that |H : Q| = 2; then we can consider the representation of H/Q which

maps the generator to −1 in F (and view it as a representation for H ). We claim

that, if S denotes an FH -module associated to this representation, then W ⊗S is

isomorphic to W . In fact, by Lemma 1.5, W⊗S and W have the same multiplicity

(call it r ) as composition factors in the socle of W↓L↑
H . If they are assumed to

be nonisomorphic, then Lemma 1.4(a) yields

nr + 1 = |EndFG(V ) : EndFH(W )| = |EndFG(V ) : EndFH(W ⊗ S)| = nr

(here we used that EndFH(W ) and EndFH(W ⊗ S) are isomorphic vector spaces),

a clear contradiction. We are now in a position to apply Lemma 1.6 (as of course

the kernel of S has index 2 in H ), and we are done in this case.

If H/L does not have a subgroup of index 2, then (by Lemma 1.2) there exists

a normal subgroup N of H , containing L , such that H/N is isomorphic to A4 .

In what follows, we denote by M the subgroup of H which contains N and such

that M/N is the Sylow 2-subgroup of H/N .

Let us assume that W↓M is not homogeneous. Then we get W↓M= U⊕Uh⊕Uh
2

,

where h is in H \M and the three summands are simple homogeneous components.

Now, M is a subgroup of KM having odd index, L is the normal core of M in

KM , and KM/L is a Frobenius group with Frobenius complement M/L . Since

W is induced by U from M , we see that U is absolutely simple; moreover, U↑KM

is simple, as it induces V . Now, M/L does have a subgroup of index 2 and, since

U ↑KM↓L is homogeneous, we can apply the same argument as in the first two

paragraphs of Case (5) (with KM , M , U↑KM and U in place of G , H , V and

W respectively) concluding that the multiplicity of U in soc(U↓L↑
M ) is even: say,

2k . Since I = G , the restriction of V to L is homogeneous; thus U↓L and Uh↓L ,

which are submodules of equal dimension in V ↓L , must be isomorphic. From this,

we get

HomFM (Uh, U↓L↑
M ) ' HomFL(Uh↓L, U↓L) ' HomFL(U↓L, U↓L) '

' HomFM (U,U↓L↑
M ),

whence Uh and (similarly) Uh
2

have the same multiplicity as U in soc(U↓L↑
M ).

Now we have

W↓L↑
M' (U↓L ⊕U

h↓L ⊕U
h
2

↓L) ↑M' U↓L↑
M ⊕U↓L↑

M ⊕U↓L↑
M'

'
( 6k⊕

i=1

U
)
⊕
( 6k⊕

i=1

Uh)⊕ ( 6k⊕
i=1

Uh
2)
⊕ Z,

where the socle of Z does not contain any of the Uh
i

as a submodule (from each of

the three copies of U↓L↑
M we ‘extracted’ all the copies of each Uh

i

; note that every

submodule of U↓L↑
M isomorphic to one of the Uh

i

is certainly a direct summand

of U↓L↑
M ). Finally,

W↓L↑
H'

( 2l⊕
i=1

W
)
⊕ Z↑H ,
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(where l := 9k ) with HomFH(W,Z↑H) ' HomFM (W↓M , Z) = 0.

It remains to examine Case (5) in the situation in which H/L does not have a

subgroup of index 2, and W↓M is homogeneous. Observe that in this case W↓M is

simple because, by Lemma 1.3, if e denotes the multiplicity of a simple constituent

of W↓M in it, we have e2 ≤ |H/M | = 3. The composition length (as an F[KM ] -

module) of W↓M↑
KM' V ↓KM can be 1, 2, or 3. We analyze the situation in each

of the three cases.

Assume that the composition length of V ↓KM is 3, and set V ↓KM' Z1⊕Z2⊕Z3

where the Zi are simple F[KM ] -modules. Since we get

HomFM (W↓M , Zi↓M ) ' HomF[KM ](W↓M↑
KM , Zi) ' HomF[KM ](V ↓KM , Zi) '

' HomFG(V,Zi↑
G) ' EndFG(V ),

the multiplicity of W↓M in soc(Zi↓M ) is dimF EndFG(V )/dimF EndFM (W↓M ). In

particular, this number does not depend on i , so that the multiplicity of W↓M in

the socle of V ↓M is a multiple of 3. On the other hand, Mackey’s Lemma gives

V ↓M'W↓M↑
KM↓M'W↓M ⊕

( d⊕
j=1

W↓L↑
M
)
,

where d is the number of double cosets of M in KM different from M . This

number is given by (|KM : M | − 1)/|M : L| = 3(|G : H| − 1)/|H : L| , whence the

multiplicity of W ↓M in the socle of V ↓M is congruent to 1 modulo 3. We thus

reached a contradiction, so this case can not arise.

Let us now examine the case in which the composition length of V ↓KM is

2, so that we have dimV = 2k dimX . On the other hand, dimV is given by

|G : H|dimW = s|G : H|dimX , where s denotes the composition length of W↓L .

The conclusion is that s is even, say 2r ; therefore we get

W↓L↑
H'

2r⊕
j=1

(X↑H),

and of course we are done.

Finally, let V ↓KM be simple, and let S be an FM -module such that kerS

contains L , and |M : kerS| = 2. If W ↓M ⊗S 6' W ↓M , then a contra-

diction arises as in the second paragraph of Case (5); therefore we must have

W↓M ⊗S 'W↓M . If W↓M is absolutely simple, then we apply Lemma 1.6 getting

that dimF HomFM (W ↓M ,W ↓L↑
M ) is an even number; we reach now the desired

conclusion, as HomFM (W↓M ,W↓L↑
M ) is isomorphic to HomFH(W,W↓L↑

H). We

are left with the case in which W↓M is not absolutely simple: in such a situation,

the Theorem stated in the Introduction of [2] guarantees that W↓M↑
H is isomor-

phic to a direct sum of three copies of W , and also that EndFM (W↓M ) has degree

3 as a field extension of F . Observe that we can also assume W ↓M not induced

from L , otherwise the composition length of W↓L (as an FL-module) is the even

number |M : L| , and again we are done. Now, we get

HomFM (W↓M , V ↓M ) ' HomFH(W,V ↓M↑
H) ' HomFH(W, (V ↓KM ) ↓M↑

H) '

' HomFH(W,V ↓KM↑
G↓H) ' HomFH(W,V ↓H ⊕V ↓H ⊕V ↓H),
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where the last isomorphism relation holds because of the following:

V ↓KM↑
G' (W↓M↑

KM )↑G'W↓M↑
G' (W↓M↑

H)↑G' (W⊕W⊕W )↑G' V ⊕V ⊕V.

The conclusion so far is

dimF HomFM (W↓M , V ↓M )/dimF EndFM (W↓M ) = 3 dimF HomFH(W,V ↓H)/3 =

= dimF HomFH(W,V ↓H);

in other words, the multiplicity of W in the socle of V ↓H equals the multiplicity

of W ↓M in the socle of V ↓M . This completes the proof, as we can now use the

inductive hypothesis and conclude that the latter multiplicity is odd.

Remark 2.1. Let G be a finite group, and F a field of prime characteristic.

Denoting by n the order of G , we set F(n) to be the (finite) subfield of the algebraic

closure of F generated by the n -th roots of 1, and we define F0 := F(n) ∩ F . In

this setting, Lemma 6 of [2] establishes what follows: for every subgroup X of

G , and for every simple FX -module U , there exists a simple F0X -module U0 ,

uniquely determined up to isomorphisms, such that U ' U0 ⊗F0
F (we refer here

to Definition 1.1b) of [3, VII]).

The above result enables us to prove Theorem A in its full generality, without

requiring that F is finite. In fact, assume the hypotheses of Theorem A as stated

in the Introduction, and consider the modules W0 and V0 (an F0H -module and

an F0G-module respectively) associated to W and V by means of [2, Lemma 6].

It is easy to check that W0 and V0 satisfy the hypotheses of Theorem A (for this

purpose, it is convenient to take in account that the process of induction of modules

“commutes” with the process of tensoring modules with a field extension); thus,

as we proved Theorem A when the relevant field is finite, we can conclude that

(dimF0
EndF0G

(V0))/(dimF0
EndF0H

(W0)) is an odd number (here we also applied

Lemma 1.4). Now, using 1.12 and 1.1a) of [3, VII], we get

dimF EndFG(V ) = dimF(EndF0G
(V0)⊗F0

F) = dimF0
EndF0G

(V0)

and, similarly, dimF EndFH(W ) = dimF0
EndF0H

(W0). Another appeal to 1.4 com-

pletes the argument.

We stress that, as mentioned in the Introduction, the assumption of W not being

induced from L is crucial for Theorem A (see [5, 11.1]), although that assumption

is not needed when |H/L| is odd. In fact, assuming W induced from the FL-

module X , it is easy to see (using [3, VII, 4.12b)] and Clifford’s Theorem) that

the multiplicity of W as a composition factor in the socle of V ↓H is given by

|IG(X) : IH(X)| , a divisor of the odd number |G/L| .

3. Form induction and tensor induction

We start this section recalling some definitions and notation. For further details,

we refer to [5, Introduction, Section 1 and Section 3].
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Definition 3.1. Let G be a group, F a field, V an FG -module, and f a symplectic

F -form defined on (the underlying vector space of) V ; if f(ug, vg) = f(u, v) holds

for all u , v in V and g in G , then f is called G-invariant.

Definition 3.2. Let G be a group, H a subgroup of G , F a field, V a simple

FG-module, and W a submodule of V ↓H . Assume that a G -invariant nonsingular

symplectic F-form f is defined on V , and that the following conditions hold:

(a) the restriction of f to W ×W , which is an H -invariant symplectic F -form on

W , is nonsingular;

(b) the translate W g lies in W⊥ for all g in G such that W g 6= W ;

(c) V is induced by W from H .

Then we say that V is form-induced by W (with respect to f ) from H .

A map P : H → GL(d,F) is called a projective representation of H (of degree d ,

over the field F) if the map P̄ , defined as the composite of P with the natural

homomorphism of GL(d,F) onto PGL(d,F), is a group homomorphism. If P1

and P2 are projective representations of H having the same degree d , then they

are called equivalent if P̄2 is the composite of P̄1 with an inner automorphism of

PGL(d,F); in this case, we write P̄1 ' P̄2 .

Given two projective representations P and Q of H , having degrees c and d

respectively, the symbol P⊗Q denotes the inner tensor product of P and Q (which

is a projective representation of H whose degree is cd), whereas the symbol P↑⊗G

denotes the projective representation of G which is tensor induced by P from H .

In order to achieve the desired results on form induction of modules, and conse-

quently on tensor induction of representations, we need (together with Theorem A)

a generalization of Theorem 9.10 in [5]. This generalization is only stated in that

paper, so we present next a proof.

Theorem 3.3. Let G be a solvable group, H a subgroup of G having odd index,

F a finite field, V a simple FG-module which carries a G-invariant nonsingular

symplectic F-form f , and W a submodule of V ↓H such that V ' W↑G . Assume

that W is induced from the normal core L of H in G . Then there exists a sub-

module Z of V ↓H such that f does not vanish on Z , V ' Z↑G , and Z has odd

multiplicity as a composition factor in soc(V ↓H) .

Proof. We proceed by induction on |G : H| . If H is a maximal subgroup of G ,

then we get the conclusion applying [5, 9.10]; thus we shall assume that there exists

a proper subgroup E of G such that H is properly contained in E . Now, V is

induced by W from H , so we get V ' (W↑E)↑G ; denoting by R the module W↑E ,

we have that V is induced by R from E , and R is in turn induced from a normal

subgroup of G contained in E (which is L). We conclude that R is induced from

the normal core of E in G and, since |G : E| is odd, we can apply the inductive

hypothesis (we can certainly assume that R is a submodule of V ↓E ) and find a

submodule S of V ↓E such that f does not vanish on S , V ' S↑G , and S has

odd multiplicity as a composition factor in soc(V ↓E).
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Next, we know that there exists a submodule X of V ↓L such that V ' X↑G ;

by Mackey’s Lemma we get

V ↓E'
⊕
t∈T

(
(Xt)↑E

)
where T is a set of representatives for the double cosets in G of L and E . Since

each of the (Xt)↑E induces V from E and is therefore simple, we have that S is

isomorphic, as an FE -module, to one of those. We conclude that S is induced from

L , hence also from the normal core of H in E . Therefore we can use again the

inductive hypothesis, obtaining that there exists a submodule Z of S↓H such that

f does not vanish on Z , S ' Z↑E , and Z has odd multiplicity as a composition

factor in soc(S↓H). Now, putting together the two steps, we see that Z satisfies

the required conditions.

We are now in a position to extend Theorem 10.1 and Theorem 10.2 of [5]. The

two theorems below are only stated, as a proof of them can be obtained arguing as

in 10.1 and 10.2 of [5], just replacing Theorem 9.7 and Theorem 9.10 of [5] with

Theorem A and Theorem 3.3 of this paper.

Theorem 3.4. Let G be a solvable group, H a subgroup of G having odd index, F
a finite field, V a simple FG-module, and W a submodule of V ↓H . Denoting by L

the normal core of H in G , assume that G/L is a Frobenius group with Frobenius

complement H/L . Assume also that V carries a G-invariant nonsingular sym-

plectic F-form f which does not vanish on W . If V is induced by W from H ,

then V is also form-induced from H (with respect to f ).

Theorem 3.5. Let G be a solvable group, H a subgroup of G having odd index,

and D a faithful, primitive, tensor-indecomposable representation of G . Denoting

by L the normal core of H in G , assume that G/L is a Frobenius group with

Frobenius complement H/L . Assume also that we have D̄↓H ' P1 ⊗ P2 , where P1

and P2 are projective representations of H . If degP2 is not 1 , and (degP2)|G:H|

is a divisor of degD , then we have (degP2)|G:H| = degD , and there exists a

projective representation P of H such that D̄ ' P↑⊗G holds.
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