FLORE

Repository istituzionale dell'Università degli Studi

 di Firenze
Dissecting and Reassembling Color Correction Algorithms for Image Stitching

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

Original Citation:
Dissecting and Reassembling Color Correction Algorithms for Image Stitching / Fabio, Bellavia; Carlo, Colombo. - In: IEEE TRANSACTIONS ON IMAGE PROCESSING. - ISSN 1057-7149. - STAMPA. - 27:(2018), pp. 735-748. [10.1109/TIP.2017.2757262]

Availability:
This version is available at: 2158/1105472 since: 2018-03-23T12:40:23Z

Published version:
DOI: 10.1109/TIP.2017.2757262

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:
Conformità alle politiche dell'editore / Compliance to publisher's policies
Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di copyright.
This version of the publication conforms to the publisher's copyright policies.

Dissecting and Reassembling Color Correction Algorithms for Image Stitching

Fabio Bellavia and Carlo Colombo

Abstract

This paper introduces a new compositional framework for classifying color correction methods according to their two main computational units. The framework was used to dissect fifteen among the best color correction algorithms and the computational units so derived, with the addition of four new units specially designed for this work, were then reassembled in a combinatorial way to originate about one hundred distinct color correction methods, most of which never considered before.

The above color correction methods were tested on three different existing datasets, including both real and artificial color transformations, plus a novel dataset of real image pairs categorized according to the kind of color alterations induced by specific acquisition setups. Differently from previous evaluations, special emphasis was given to effectiveness in real world applications such as image mosaicing and stitching, where robustness with respect to strong image misalignments and light scattering effects is required. Experimental evidence is provided for the first time in terms of the most recent perceptual image quality metrics, which are known to be the closest to human judgment.

Comparative results show that combinations of the new computational units are the most effective for real stitching scenarios, regardless of the specific source of color alteration. On the other hand, in the case of accurate image alignment and artificial color alterations, the best performing methods either use one of the new computational units, or are made up of fresh combinations of existing units.

Index Terms-Color correction, compositional framework, image stitching, image mosaicing.

I. Introduction

COLOR correction is an image processing technique with several applications, from photometric registration in image mosaicing and stitching [1] to image enhancement and recoloring for visual effects generation [2]. Its aim is to transfer color properties from a source image to a target image. In applications such as image mosaicing, it is also required that color attributes remain consistent with the image geometric structures, so as to prevent alterations of the original image content at the semantic level. For this purpose, a preliminary geometric alignment of the input images is required to obtain color correspondences. Despite the recent progress in image stitching [3], [4], only a coarse image alignment is often obtained in practical situations, giving rise to wrong color correspondences that can remarkably affect the final results.

Several color correction algorithms have been proposed and analyzed in the last few years. Their strengths and weaknesses have been outlined in recent surveys [5] and evaluations [6], that classify color correction methods into model-based parametric vs model-less non-parametric, or local vs global approaches (see Sec. II).

[^0]
A. Paper Contributions

In this paper, we introduce a compositional framework for classifying color correction methods in a new way. The idea stems from the observation that any color correction method can be decomposed into two main Computational Units (CUs). These are (1) the low-level color map Model Estimator (ME), that actually computes the color maps, and (2) the highlevel color map Prober and Aggregator (PA), that organizes, combines and applies the color maps. As shown in the block diagram of Fig. 1, the PA unit (a) receives as input an image pair, computes sets of pixel correspondences and (b) outputs them to the ME unit, then (c) inputs from ME one or more color maps, and finally (d) provides as output the corrected image. The two CUs are distinct yet mutually interdependent, providing input data to each other in steps (b)-(c) that can be iterated according to the PA used.

Fig. 1. Color mapping CUs. Source and target images are shown superimposed before and after color correction and as anaglyphs to emphasize image misalignments. PA determines the image subregions that serve as input to ME and combines the ME output color maps to obtain the final result (best viewed in color and zoomed in).

The main contributions of this work arise from the above framework, which allowed us both to investigate existing methods from a new perspective, and to develop more effective solutions to the color correction problem. Specifically:

- 15 among the most successful literature approaches were revisited and categorized according to the specific ME/PA pair they employ. The analysis revealed that many methods share either one of their CUs. As a result, only 12 distinct MEs and 5 distinct PAs were found, to which four novel CUs (2 MEs and 2 PAs), expressly designed for this work, were added. Sec. III addresses the above computational unit categorization and design.
- The combinatorial nature of our compositional framework led us to perform an exhaustive comparative evaluation of all the color correction methods that can be assembled with the available MEs and PAs, for a total of $14 \times 7=98$
different methods, 83 of which never considered before (see Sec. IV).
As anticipated above, another contribution of this paper is the design of four novel CUs (2 MEs and 2 PAs), which according to the experiments can be used to build the best performing algorithms. The first ME, named GPS (Gradient Preserving Spline), employs a monotone cubic spline to locally model the correction function. It takes into account not only the color values of corresponding image pixels, but also the gradient of both the source and target images to preserve the image structure. The second ME, referred to as $F G P S$ (Fast GPS), introduces an approximated yet faster coarse-tofine spline search space reduction with respect to GPS, thus extending the idea originally presented in [7]. Of the two PAs, the Linear Color Propagation ($L C P$) CU is based on the approach first introduced in [7], now also integrating a global color map estimation step and further refinements. The other PA, called Best Local to Global (BLG), extracts local color maps from the input data and globally selects and combines the best ones to form a final color palette. Both PAs can infer local color properties unattainable by global methods, and then propagate global color models to the non-overlapping area of the target image.

As a final contribution of the paper, a very thorough experimental evaluation of the 98 color correction methods was carried out. In particular, besides testing with 127 image pairs from three different existing datasets [2], [6], [7], we further experimented with a novel dataset of 127 real image pairs (increasing the number of tested image pairs to 254), specifically created for this work. Image pairs from this dataset are classified according to the four main acquisition setups giving rise to color alterations. Unlike previous evaluations, specific tests were done in order to assess the robustness of the evaluated methods in the presence of hard color inconsistencies, such as those due to image misalignments and light scattering effects, which is a critical aspect in real world applications such as image stitching. Moreover, unlike previous evaluations, the image quality metrics used for all the experiments were the recent state-of-the-art improved Color Image Difference (iCID) measure [8] and the Feature Similarity (FSIM) index [9], which are known to be the closest to human judgment.

The remainder of the paper is organized as follows. Sec. II addresses related work on color correction. Computational units are introduced in Sec. III, and results are discussed in Sec. IV. Finally, conclusions are drawn and future work is outlined in Sec. V.

II. Related Work

Recent surveys on color correction algorithms can be found in [5], [6]. Color correction techniques can be classified into model-based parametric and model-less non-parametric approaches. Model-based parametric approaches assume a known color distribution model for both the source and target images, to be inferred from the input data. Conversely, no explicit assumptions are made for model-less non-parametric methods, usually inferred directly from color histograms and
employing a look-up table to record the color map. Color correction methods can also be divided into global and local approaches. While in the former case a single color transfer function is estimated and applied to the whole image, in the latter case multiple color maps are computed for different areas of the image, previously segmented according to their spatial and chromatic characteristics.

The earliest work on color correction can be traced back to Reinhard [10]. This global approach consists in rearranging the color distribution of the target image to have the same mean and variance of the source image. Color space is first converted into the $l \alpha \beta$ space representation in order to decorrelate color channels, on which to independently apply the transformation. An alternative solution is proposed in [11], where a linear transformation is applied to decorrelate color channels.

Local approaches give generally better and more accurate results on complex scenes [12], since the assumption that a single global color palette is sufficient to cover all the color maps is often unrealistic. To overcome this issue, Reinhard's method can be extended in order to obtain a more accurate color map as the combination of several weighted color maps after segmenting the image into several regions [11], [13], [14]. This is achieved, for instance, with mean shift or soft color segmentations.

A very popular model-based color correction approach is gain compensation [1], originally introduced to address symmetric color balancing in panoramic mosaicing by a least-square minimization. This method was further improved by introducing block-wise smooth multiple models [15]. Other model-based approaches fit linear or polynomial leastsquares transformations, working simultaneously on all color channels [16]. Models based on weighted affine transformations [2], splines [17], Gaussian mixture models [18] and nonlinear manifold learning approaches [19] have also been proposed.

Straight model-less color histogram transformations can be derived by histogram matching [20], and further refined using segmentation and Bayesian inference [21]. Since histogram matching is a channel-wise operation, the Radon transform is used in [22] to define one-dimensional subspaces on which to apply the histogram matching; then, back-projection is applied to return back to the original color space. Color histogram peaks can also be used to define image 'principal regions' [23], modeling a polynomial mapping function between corresponding color histogram peaks of the input images.

The monotone constraint is often imposed to the color map, since it holds for the camera radiometric response function that models the image formation. This constraint is used in the case of spline-based color map models [17] but also for model-less approaches. In particular, tensor voting [24] and maximum likelihood estimation of the brightness transfer function [25] model the color correction map according to this constraint.

Color mapping requires to find color correspondences between the source and target images. In the case of local methods, each segmented region should be sufficiently wide to tolerate color correspondence mismatches that can occur due to coarse image alignment [21]. Keypoint-based matching can be used to define and grow corresponding image regions
instead of segmenting the images [26], thus bypassing the rigid transformation constraint imposed by mosaicing, but also increasing the risk of color mismatches.

III. Compositional Framework

As anticipated in Sec. I, according to our compositional framework, color correction algorithms can be organized into two main CUs (see again Fig. 1). The low-level ME is the inner core of the algorithm. Given as input a set $\mathcal{P}=$ $\left\{\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right\}\right.$ of spatially referenced corresponding color pairs, where $I_{s}(\mathbf{x})$ and $I_{t}(\mathbf{x})$ are the color values at \mathbf{x} in the source and target images, respectively, ME generates as output a color map $C_{\mathcal{P}}$. Assuming that input and output are coarsely registered 24 bit RGB color images, $C_{\mathcal{P}}$ is defined as

$$
\begin{equation*}
C_{\mathcal{P}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}=U \circ \mathrm{M} \circ T \tag{1}
\end{equation*}
$$

where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{n}, U: \mathbb{R}^{m} \rightarrow \mathbb{R}^{3}$ are invertible, fixed, space projection functions and $\mathrm{M} \in \mathbb{R}^{m \times n}$ is a matrix inducing a linear map. On the other hand, PA provides ME with multiple color correspondence sets \mathcal{P}, combines and applies the output color maps $C_{\mathcal{P}}$, thus synthesizing from the spatially registered input images I_{s} and I_{t} the final corrected source image I_{c}. For example, a global PA computes only a single color correspondence set \mathcal{P} of overlapping pixels between the images, and applies the resulting color map $C_{\mathcal{P}}$ to the whole source image I_{s}.

In the next subsection, the most relevant color correction methods are revised according to our compositional framework, and the T, U and M functions defining the corresponding MEs are explicitly outlined and reported. Analogously, all PAs are discussed in detail in Sec. III-B. A summary of all MEs and PAs analyzed in this paper is reported in Table I for the readers' convenience.

A. Color Map Model Estimators (MEs)

1) Reinhard's (R) [10]: The function

$$
\begin{equation*}
T:[R G B]^{\mathrm{T}} \mapsto[l \alpha \beta 1]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

maps RGB to $l \alpha \beta$ space in homogeneous coordinates, $U=T^{-1}$, and $\mathrm{M} \in \mathbb{R}^{4 \times 4}$ is computed as

$$
\mathrm{M}=\left[\begin{array}{cccc}
\frac{\sigma_{t}^{l}}{\sigma_{s}} & 0 & 0 & \mu_{t}^{l}-\mu_{s}^{l} \frac{\sigma_{t}^{l}}{\sigma_{t}} \tag{3}\\
0 & \frac{\sigma_{t}^{\alpha}}{\sigma_{s}^{\alpha}} & 0 & \mu_{t}^{\alpha}-\mu_{s}^{\alpha} \sigma_{t} \\
0 & 0 & \frac{\sigma_{t}^{\beta}}{\sigma_{0}^{\prime}} & \mu_{t}^{\beta}-\mu_{s}^{\beta} \frac{\sigma_{t}^{3}}{\sigma_{s}^{\beta}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where μ_{i}^{k} and σ_{i}^{k} are respectively the mean and standard deviation for channel k and image $i \in\{s, t\}$ in the input set \mathcal{P}.
2) Correlated Space (CS) [11]: The function

$$
\begin{equation*}
T:[R G B]^{\mathrm{T}} \mapsto[R G B 1]^{\mathrm{T}} \tag{4}
\end{equation*}
$$

converts its input into homogeneous coordinates, $U=T^{-1}$, and

$$
\begin{equation*}
\mathrm{M}=\mathrm{A}_{t}^{-1} \mathrm{R}_{t}^{\mathrm{T}} \mathrm{D}_{t}^{-1 / 2} \mathrm{D}_{s}^{1 / 2} \mathrm{R}_{s} \mathrm{~A}_{s} \tag{5}
\end{equation*}
$$

TABLE I
COMPUTATIONAL UNITS SUMMARY.

ME	color map Model Estimator	Section III-A
R	Reinhard's	1
CS	Correlated Space	2
GC	Gain Compensation	3
3M	3×3 Map	4
PM	$2^{\text {nd }}$ Order Polynomial Map	5
AM	Affine Map	6
PR	Principal Regions	7
HM	Histogram Matching	8
TG	Truncated Gaussian	9
G	Gaussian	10
MS	Monotone Spline	11
3MS	Correlated Monotone Spline	12
GPS	Gradient Preserving Spline	13
FGPS	Fast Gradient Preserving Spline	14

(a)

PA	color map Prober and Aggregator	Section III-B
GL	Global	1
P	Pitié’s	2
CIM	Color Influence Map	3
TS	Soft Tai's Segmentation	4
MSS	Mean Shift Segmentation	5
LCP	Linear Color Propagation	6
BLG	Best Local to Global	7

(b)
where $C_{i}=\mathrm{R}_{i}^{\mathrm{T}} \mathrm{D}_{i} \mathrm{R}_{i}$ is the eigendecomposition of the autocovariance matrix $C_{i} \in \mathbb{R}^{3 \times 3}$ provided by \mathcal{P} for image I_{i}. The matrix

$$
\mathrm{A}_{i}=\left[\begin{array}{cccc}
1 & 0 & 0 & -\mu_{i}^{R} \tag{6}\\
0 & 1 & 0 & -\mu_{i}^{G} \\
0 & 0 & 1 & -\mu_{i}^{B} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

translates its input into a zero mean distribution.
3) Gain Compensation (GC) [1]: T, U are the identity function, and

$$
\mathrm{M}=\left[\begin{array}{ccc}
g^{R} & 0 & 0 \tag{7}\\
0 & g^{G} & 0 \\
0 & 0 & g^{B}
\end{array}\right]
$$

where the gain g^{k} for channel k is computed as

$$
\begin{equation*}
g^{k}=\frac{\mu_{s}^{k} \mu_{t}^{k} \sigma_{g}^{2}+N^{2} \sigma_{N}^{2}}{\mu_{t}^{k^{2}} \sigma_{g}^{2}+N^{2} \sigma_{N}^{2}} \tag{8}
\end{equation*}
$$

with $N=|\mathcal{P}|$, and σ_{g}, σ_{N} two fixed constants that avoid the zero solution. This formulation is derived from the original symmetric minimization error [1] by setting to 1 the gain for the target image.
4) $3 \times 3 \mathrm{Map}(3 M)$ [16]: T, U are the identity function, while $\mathrm{M} \in \mathbb{R}^{3 \times 3}$ is obtained by least squares minimization so that

$$
\left[\begin{array}{l}
R_{t} \tag{9}\\
G_{t} \\
B_{t}
\end{array}\right]=\mathrm{M}\left[\begin{array}{l}
R_{s} \\
G_{s} \\
B_{s}
\end{array}\right]
$$

where $I_{i}(\mathbf{x})=\left[R_{i} G_{i} B_{i}\right]^{\mathrm{T}}$ and $\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right) \in \mathcal{P}$ is a color correspondence.
5) $2^{\text {nd }}$ Order Polynomial Map (PM) [16]: $\mathrm{M} \in \mathbb{R}^{3 \times 7}$ is computed analogously to 3 M , but on a different space, since

$$
\begin{equation*}
T:[R G B]^{\mathrm{T}} \mapsto\left[R^{2} G^{2} B^{2} R G B 1\right]^{\mathrm{T}} \tag{10}
\end{equation*}
$$

and U is the identity function.
6) Affine Map (AM) [2]: T maps to homogeneous coordinates as in Eq. (4), $U=T^{-1}$, and the matrix M, obtained by least square minimization, is constrained to be an affine map in \mathbb{R}^{3}.
7) Principal Regions ($P R$) [23]: T projects into a higher dimension $l \alpha \beta$ space

$$
\begin{equation*}
T:[R G B]^{\mathrm{T}} \mapsto\left[l^{2} \alpha^{2} \beta^{2} l \alpha \beta 1\right]^{\mathrm{T}} \tag{11}
\end{equation*}
$$

while $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps $l \alpha \beta$ to $\mathrm{RGB} . \mathrm{M}$ is computed according to the 'principal regions' of images [23]. Principal regions are defined according to the 3 highest peaks in the hue histogram of the image. For each channel, the average color value for corresponding principal regions between the two images is used to compute a polynomial mapping function, yielding a matrix M of the form

$$
\mathrm{M}=\left[\begin{array}{lllllll}
a & 0 & 0 & b & 0 & 0 & c \tag{12}\\
0 & d & 0 & 0 & e & 0 & f \\
0 & 0 & g & 0 & 0 & h & i
\end{array}\right]
$$

8) Histogram Matching (HM) [20]: For each 8-bit RGB channel k a lookup table $H^{k}(x)=y$ is defined, which maps all the possible 256 color values according to the cumulative distribution of the corresponding color value channels as described in [20]. In this case, the function

$$
\begin{equation*}
T:[R G B]^{\mathrm{T}} \mapsto\left[0 \cdots 01_{R+1} 0 \cdots 01_{G+256} 0 \cdots 01_{B+512} 0 \cdots 0\right]^{\mathrm{T}} \tag{13}
\end{equation*}
$$

maps RGB to a $256 \times 3=768$ binary space, i.e. to a vector which is zero everywhere except at the positions defined by the RGB value. U can be written as the block matrix $\mathrm{U} \in \mathbb{R}^{3 \times 768}$

$$
\mathrm{U}=\left[\begin{array}{lll}
\mathbf{v} & \mathbf{0} & \mathbf{0} \tag{14}\\
\mathbf{0} & \mathbf{v} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{v}
\end{array}\right]
$$

where $\mathbf{0} \in \mathbb{R}^{1 \times 256}$ is a zero vector and $\mathbf{v}=[01 \ldots 255]$. The binary block matrix M is defined as

$$
\mathrm{M}=\left[\begin{array}{ccc}
\mathrm{L}^{R} & \mathbf{0} & \mathbf{0} \tag{15}\\
\mathbf{0} & \mathrm{~L}^{G} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathrm{~L}^{B}
\end{array}\right]
$$

where each $\mathrm{L}^{k} \in \mathbb{R}^{256 \times 256}$ is such that

$$
\mathrm{L}_{i, j}^{k}= \begin{cases}1 & \text { if } H^{k}(j)=i \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

9) Truncated Gaussian (TG) [21]: Lookup tables H^{k} are derived from local joint image histograms modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. These lookup tables are used to define the functions T, U and M as for HM (see Eqs. (13)-(16)).
10) Gaussian (G) [21]: This ME differs from TG only for the use of the classical Gaussian distribution instead of the truncated Gaussian distribution.
11) Monotone Spline (MS) [17]: Lookup tables H^{k} are derived according to a channel-wise mapping into splines. In particular, piece-wise cubic splines S^{k} are estimated from data independently for each channel, so that $H^{k}(x)=$ round $\left(S^{k}(x)\right)$. Splines are constrained to be monotone and to have 6 knots, two of them fixed so that the color values 0 and 255 map to themselves. Outliers are discarded and the spline is re-estimated to improve the model. Functions T, U and M are defined as for HM .
12) Correlated $M S$ (3MS) [17]: This is the proper color mapping described in the original paper. The spline model obtained by MS is concatenated with 3 M to take into account channel correlation.
13) Gradient Preserving Spline (GPS): This is the first of the two MEs specially designed for this work. Lookup tables H^{k} that map channel-wise to splines are used, and T, U and M are derived as for HM. Although MS also is based on splines, our approach is altogether different as we show in the following. We employ the monotone piecewise Hermite cubic spline interpolation procedure described in [27], with only 4 knots, two of them fixed so as to map the 0 and 255 color values to themselves. For each channel k, we look for the spline minimizing the weighted error sum

$$
\begin{equation*}
E^{k}=w_{\mu} \varepsilon_{\mu}^{k}+w_{\sigma} \varepsilon_{\sigma}^{k}+\sum_{d \in\{x, y\}} \sum_{m \in\{s, t\}} w_{d, m} \varepsilon_{d, m}^{k} \tag{17}
\end{equation*}
$$

among all the possible splines meeting the previous constraints. The errors

$$
\begin{align*}
& \varepsilon_{\mu}^{k}=\left|\mu_{c}^{k}-\mu_{t}^{k}\right| \tag{18}\\
& \varepsilon_{\sigma}^{k}=\left|\sigma_{c}^{k}-\sigma_{t}^{k}\right| \tag{19}
\end{align*}
$$

are respectively the absolute differences between the mean and the standard deviations of the color values of the corrected source image I_{c} and the target image I_{t} computed in \mathcal{P} for channel k, and minimize the color distribution in the spirit of Reinhard's method. The term

$$
\begin{equation*}
\varepsilon_{d, m}^{k}=\frac{1}{|\mathcal{P}|} \sum_{\mathcal{P}}\left|\frac{\partial I_{c}^{k}}{\partial d}\left(\mathbf{x}_{s}\right)-\frac{\partial I_{m}^{k}}{\partial d}\left(\mathbf{x}_{m}\right)\right| \tag{20}
\end{equation*}
$$

in Eq. (17) improves structure similarity with the target image while also preserving the image structure of the source image I_{s}, by explicitly taking into account the derivatives for each channel k along the direction d. The error weight w_{μ} in Eq. (17) was set experimentally to 0.5 while the other five were set to 0.1 so that all weights add to unity. According to our preliminary tests, variations up to 20% around these values do not affect significantly the final result.

Since finding an analytical solution for minimizing the error E^{k} is not trivial, an exhaustive search for the two free knots defining the spline is carried out. In the case of 8-bit color channels, imposing only the monotone condition and neglecting that different knot pairs can give rise to the same spline color map, this would yield to an upper bound of $q=(n(n-1) / 2)^{2}=n^{2}(n-1)^{2} / 4$ different error values to test, which for $n=256$ amounts to about 10^{9}, an unfeasible number in practice. Nevertheless, both the time spent to evaluate the error E^{k} on a given spline and the solution search

Fig. 2. The checkerboard-like sampling grids (left) for the two knots K_{1} and K_{2} leading to the spline with minimum error for the correspondence set \mathcal{P}. Inside a neighborhood \mathcal{R}_{j} (right, yellow squares) of the current region \mathcal{R}_{0} (green square), already computed spline color maps f_{i} (red splines) for regions \mathcal{R}_{i} (red squares) can be used to restrain the sampled search space (yellow band) according to their mean \bar{f} (purple spline) and standard deviation σ_{f} in order to obtain the spline color map f_{0} for \mathcal{R}_{0} (green spline) minimizing the error (best viewed in color and zoomed in).
space can dramatically be reduced by employing three suitable heuristics, thus obtaining a near-optimal solution.

The first heuristic is motivated by the observation that, for common images, the error on the mean color value ε_{μ}^{k} is dominant in Eq. (17), while the other errors just refine the solution. Therefore, if the error ε_{μ}^{k} for the current solution is greater than $\varepsilon_{\mu}^{k}+15$ for the best solution so far, the current solution is discarded, thus avoiding the computation of the full error E^{k} and saving time.

The second heuristic can be derived by observing that (1) some knot arrangements are unlikely to occur and (2) perturbing the position of a knot changes only slightly the error E^{k}. In particular, for each knot, instead of a full range value search, we can define two uniform square grids in the range of $[0,144]$ and $[111,255]$ respectively, with a step of 8 and a checkerboard-like alternate grid sampling (see Fig. 2). Such sampling scheme reduces the search space to approximately 3×10^{4} possible splines, i.e. by five orders of magnitude, while still maintaining a near-optimal solution.

The last heuristic arises from the following observation: In the case of PAs working locally (see Sec. III-B), for each channel, spline color maps $f_{j}=\mathcal{C}_{\mathcal{P}_{j}}$ of neighboring regions \mathcal{R}_{j} must change smoothly, as they are related to region areas with similar color properties. Hence, when computing the color map f_{0} of the region \mathcal{R}_{0}, one can take advantage of the already computed neighborhood color maps $f_{i}, 1 \leq i \leq b$ (red splines in Fig. 2). If at least $b \geq 3$ such neighborhood regions exist, then the search space of the two free knots of f_{0} (green line) can be statistically constrained within a narrow region (yellow band). Indeed, given a knot in the form $\left(x, f_{0}(x)\right)$, the error E^{k} is evaluated only if it holds

$$
\begin{equation*}
\left|f_{0}(x)-\bar{f}(x)\right| \leq h \tag{21}
\end{equation*}
$$

for both knots defining the spline, with

$$
\begin{equation*}
h=\min \left(a, 4 \sigma_{f(x)}\right) \tag{22}
\end{equation*}
$$

Fig. 3. A representative spline f^{r} (red) and some splines of its subset V_{r} (blue), falling inside the band limited by t_{0} (green). Other representative splines (purple) cannot fall completely inside the t_{1} band (yellow) (best viewed in color and zoomed in).
where $\bar{f}(x)$ and $\sigma_{f(x)}$ are respectively the mean and standard deviation of the already computed $f_{i}(x)$ mapped values (purple and yellow splines respectively), and $a=48$ is used to limit the standard deviation value. This heuristic, which typically halves the search space, is used only in combination with LCP and BLG (see Sec. III-B and Fig. 4) since other PAs are either global or do not provide uniform neighborhood regions.

Further speed-up improvements can be obtained with trivial optimizations, including a pre-computation of the spline maps for each knot pair and a parallel implementation of the code.
14) Fast Gradient Preserving Spline (FGPS): In order to reduce even further the spline search space of GPS, a coarse-to-fine approach was designed. The spline search space $\Gamma=\left\{f_{1}, f_{2}, \ldots\right\}$ is split into several subsets $V_{r}, r>0$, each induced by the representative spline $f^{r} \in \Gamma$ through

$$
\begin{equation*}
V_{r}=\left\{f \in \Gamma: \forall x\left|f^{r}(x)-f(x)\right| \leq t_{0}\right\} \tag{23}
\end{equation*}
$$

for a given threshold t_{0}. In other words, the subset V_{r} contains all the splines in the search space Γ that are inside a band of width t_{0} around f^{r} (see Fig. 3). A greedy strategy is adopted to construct the set $F=\left\{f^{r}\right\}$ of representative splines. F, initially containing only the identity color map, is grown by iterating on the whole search space Γ and including at each iteration i the spline f_{i} under evaluation only if

$$
\begin{equation*}
\exists x \forall f^{r} \in F:\left|f^{r}(x)-f_{i}(x)\right|>t_{1} \tag{24}
\end{equation*}
$$

where $t_{1} \leq t_{0}$, i.e. the current spline f_{i} is included in F only if f_{i} does not fall completely inside a band of width t_{1} for each representative spline f^{r} already included in F (see Fig. 3). By construction, the union of the subsets V_{r} covers the whole search space, but it does not form a partition, since non-empty intersections exist between V_{r} subsets. For each channel k, the error E^{k} is first evaluated on the set F of representative splines, by choosing the best representative spline $f^{r^{*}}$ minimizing the error E^{k}. Then, only splines in the subset $V_{r^{\star}}$ are evaluated. According to our experiments, setting $t_{0}=16$ and $t_{1}=12$ gives a good compromise between speed and correctness of the solution, leading to a further reduction of the spline search space ranging from two to eight times.

B. Color Map Probers And Aggregators (PAs)

1) Global (GL): This is the simplest PA. The color map $C_{\mathcal{P}}$ is applied to the whole source image I_{s} to obtain the corrected output image I_{c}, where $\mathcal{P}=\left\{\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right): \mathbf{x} \in\right.$ $\left.I_{s} \cap I_{t}\right\}$ contains the color correspondences in the overlapping area between the source and target images I_{s} and I_{t}.
2) Pitié's (P) [22]: Originally combined with HM, this PA progressively transforms the source image I_{s} into the target image I_{t} by projections onto random orthonormal basis sets, i.e. by multiplying the color values by a rotation matrix $\mathrm{R} \in$ $\mathbb{R}^{3 \times 3}$. This is aimed at decorrelating the signal in the RGB space in order to support those MEs that operate channelwise. The input images in the new space $I_{\widetilde{s}}$ and $I_{\tilde{t}}$ are then passed to ME, where \mathcal{P} is computed as for GL but in the space induced by the rotation matrix R . The corrected image $I_{\widetilde{c}}$ is back-projected into the original RGB space, thus obtaining I_{c}, that is used in the next iteration as the new estimate of I_{s}. More specifically, the RGB vector $I_{i}(\mathbf{x})$ for the pixel \mathbf{x} in the generic image I_{i} is projected as

$$
\begin{equation*}
I_{\hat{i}}(\mathbf{x})=\mathrm{R} I_{i}(\mathbf{x}) \tag{25}
\end{equation*}
$$

With the assumption that

$$
\begin{equation*}
I_{c}(\mathbf{x})=I_{s}(\mathbf{x})+\delta \tag{26}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
I_{\widetilde{c}}(\mathbf{x})=\mathrm{R} I_{c}(\mathbf{x})=\mathrm{R}\left(I_{s}(\mathbf{x})+\delta\right)=I_{\widetilde{s}}(\mathbf{x})+\mathrm{R} \delta \tag{27}
\end{equation*}
$$

so that δ can be derived in the least square sense by solving for all the considered \mathbf{x}

$$
\begin{equation*}
\mathrm{R} \delta=I_{\widetilde{c}}(\mathbf{x})-I_{\widetilde{s}}(\mathbf{x}) \tag{28}
\end{equation*}
$$

3) Color Influence Map (CIM) [13]: This PA was originally combined with R. The source image I_{s} is partitioned into n regions \mathcal{R}_{q} by mean shift segmentation [28]. The set $\mathcal{P}_{q}=$ $\left\{\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right): \mathbf{x} \in \mathcal{R}_{q}\right\}$ of corresponding color values for each region \mathcal{R}_{q} is passed to ME, thus producing n color maps $C_{\mathcal{P}_{q}}$. The final output image is obtained as the weighted sum of each color map $C_{\mathcal{P}_{q}}$. In particular, defining the CIM weight w for the region q on the $l \alpha \beta$ space as

$$
\begin{equation*}
w(\mathbf{x}, q)=e^{-3\left\|I_{s}(\mathbf{x})-\mu_{\mathcal{R}_{q}}\right\|^{2}} \tag{29}
\end{equation*}
$$

where $\mu_{\mathcal{R}_{q}}$ is the mean color value of I_{s} over \mathcal{R}_{q}, the final image I_{c} is obtained as

$$
\begin{equation*}
I_{c}(\mathbf{x})=\sum_{q=1}^{n} \frac{w(\mathbf{x}, q) C_{\mathcal{P}_{q}}\left(I_{s}(\mathbf{x})\right)}{\sum_{\bar{q}=1}^{n} w(\mathbf{x}, \bar{q})} \tag{30}
\end{equation*}
$$

Note that a similar approach using manually segmented regions had already been proposed in [11].
4) Soft Tai's Segmentation (TS) [29]: Designed to work in conjunction with R, this PA operates analogously to CIM. However, weights w are obtained directly with the soft color segmentation algorithm exploiting Gaussian mixture models described in [29].

Fig. 4. The whole area $I_{s} \cup I_{t}$ is divided by a grid (green) into overlapping image square regions \mathcal{R}_{b} (blue square), with central cell $\overline{\mathcal{R}}_{b}$ (red square). Color maps of neighboring cells (yellow squares) can be used to reduce the search space and to speed up the minimization when GPS or FGPS are used, see Sec. III-A13 (best viewed in color and zoomed in).
5) Mean Shift Segmentation (MSS) [21]: Paired in the original paper with TG, this unit considers two distinct mean shift segmentations of I_{s}. The first segmentation works on the whole image, and produces n_{a} regions \mathcal{R}_{a}; the second one works only on the overlapping area $I_{s} \cap I_{t}$ and produces n_{o} regions \mathcal{R}_{o}. As with CIM, the n_{o} sets \mathcal{P}_{o} corresponding to the regions \mathcal{R}_{o} are given to ME, that outputs the color maps $C_{\mathcal{P}_{o}}$. Colors inside each \mathcal{R}_{o} region are corrected accordingly. Colors inside regions \mathcal{R}_{a} that are outside the overlap area are corrected according to the closest color map $C_{\mathcal{P}_{k}}$, where

$$
\begin{equation*}
k=\underset{o}{\operatorname{argmin}}\left\|\mu_{\mathcal{R}_{a}}-\mu_{\mathcal{R}_{o}}\right\| \tag{31}
\end{equation*}
$$

6) Linear Color Propagation (LCP): This is the first of the two PAs specially designed for this work. This PA completes and refines the blending scheme of [1], applying color correction into non overlapping image areas as the weighted combination of propagated local color maps with a global color map.

The bounding box of $I_{s} \cup I_{t}$ is divided by a $g_{1} \times g_{2}$ grid into overlapping 64×64 pixel regions; the grid step is 32 pixels (see Fig. 4). We denote the b-th square region by \mathcal{R}_{b} and its central 32×32 grid cell by $\overline{\mathcal{R}}_{b}$. The local color maps $C_{\mathcal{P}_{b}}$ are derived for each $\overline{\mathcal{R}}_{b}$ in the overlapping area, where $\mathcal{P}_{b}=\left\{\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right): \mathbf{x} \in \mathcal{R}_{b}, \mathcal{R}_{b} \subset I_{s} \cap I_{t}\right\}$. In order to improve method robustness especially in the case of bad image registration, $C_{\mathcal{P}_{b}}$ is discarded if the average rms error between I_{c} and I_{t} in $\overline{\mathcal{R}}_{b}$ exceeds a threshold of 32 . Surviving local color maps are then propagated into the non-overlapping area by smoothly mixing them with a global color map.

This global color map, referred to as C_{g}, is obtained by a weighted average of the local color maps with a channelwise monotone piecewise Hermite cubic spline. In detail, indicating with superscript k the k-th color channel, internal knots $\left(x, f^{k}(x)\right)$ for the spline f^{k} are such that

$$
\begin{equation*}
f^{k}(x)=\frac{1}{\left|\left\{I_{s}^{k}(\mathbf{x})=x\right\}\right|} \sum_{b} \sum_{\substack{x \in \overline{\mathcal{F}}_{b}, s \\ I_{t}^{f}(\mathbf{x})=x}} C_{\mathcal{P}_{b}}^{k}\left(I_{s}(\mathbf{x})\right) \tag{32}
\end{equation*}
$$

where $\mathrm{x} \in I_{s} \cap I_{t}$ and $|\cdot|$ denotes the set cardinality. Note that in the case of a zero denominator in Eq. (32), no knot is defined for x.

Color maps $C_{\mathcal{P}_{b}}$ are propagated as illustrated in Fig. 5 and discussed hereafter. The grid of Fig. 4 is employed to create a $g_{1} \times g_{2}$ binary mask, with values 1 if the corresponding grid cells include pixels from I_{t}, and 0 otherwise. Successive expansions of the binary mask are then carried out using the dilation morphology operator [30] with a square 3×3 kernel, until the resulting area covered by 1 's is three times the initial area. At each dilation step, color maps $C_{\mathcal{P}_{b}}$ for the grid cells $\overline{\mathcal{R}}_{b}$ corresponding to new 1 's into the mask are computed by interpolation. For this purpose, assuming from Eq. 1 that $C_{\mathcal{P}_{b}}=U \circ \mathrm{M}_{b} \circ T$ with $\mathrm{M}_{b} \in \mathbb{R}^{m_{1} \times m_{2}}$, a three-dimensional matrix $\mathfrak{M} \in \mathbb{R}^{g_{1} \times g_{2} \times\left(m_{1} m_{2}\right)}$ is created, by stacking the matrices M_{b}, according to the grid. That is, if $C_{\mathcal{P}_{b}}$ is defined, $\mathfrak{M}_{b_{1}, b_{2}, m}$ is the m-th element of M_{b}, considered as a column vector, with b_{1}, b_{2} the grid indexes of $\overline{\mathcal{R}}_{b}$, otherwise $\mathfrak{M}_{b_{1}, b_{2}, m}=0$. Color map values corresponding to the grid cells added at the current mask dilation step are obtained by convolution of each two-dimensional slice of size $g_{1} \times g_{2}$ obtained from \mathfrak{M} by iterating over index m, with a 5×5 reweighted binomial kernel. The kernel is re-normalized after setting to zero the weight values corresponding to zeros in the binary mask.

Once the global and local color maps have been obtained, they are combined to produce the color corrected image. A weight $z=(\bar{l}-l) / \bar{l}$ is associated to each grid cell, where l is the dilation step at the time the cell was included into the binary mask, and \bar{l} is the final number of dilations made (l is set to zero for all the cells in the overlapping area). The weight map z as well as all slices of \mathfrak{M} are resized $32 \times$ to the original image size through bicubic interpolation, thus obtaining for each pixel location \mathbf{x} a weight $z(\mathbf{x})$ and a color $\operatorname{map} C_{\mathcal{P}_{\mathbf{x}}}$. Finally, the corrected source image is computed as

$$
\begin{equation*}
I_{c}(\mathbf{x})=(1-z(\mathbf{x})) C_{g}\left(I_{s}(\mathbf{x})\right)+z(\mathbf{x}) C_{\mathcal{P}_{\mathbf{x}}}\left(I_{s}(\mathbf{x})\right) \tag{33}
\end{equation*}
$$

i.e. as the combination of the local propagated color maps $C_{\mathcal{P}_{b}}$ and the global color map C_{g}, weighted according to the distance from I_{t}. An example of the final output I_{c} can be found in Fig. 6.
7) Best Local to Global (BLG): The second original PA computes an interpolated color palette as in [2]. Grid-wise color maps $C_{\mathcal{P}_{b}}$ are obtained as for LCP and the best cell index

$$
\begin{equation*}
d(\mathbf{x})=\underset{b}{\operatorname{argmin}}\left\|C_{\mathcal{P}_{b}}\left(I_{s}(\mathbf{x})\right)-I_{t}(\mathbf{x})\right\| \tag{34}
\end{equation*}
$$

is associated to each pair of corresponding color values $\left(I_{s}(\mathbf{x}), I_{t}(\mathbf{x})\right)$ in the overlapping area. Note that d can differ from the cell index the pixel belongs to.

The color palette is computed explicitly by quantizing the RGB color space. In particular, each color channel is quantized into $q=21$ levels so that $q^{3}=9261$ quantized colors are obtained. Color similarity $p\left(\mathbf{c}_{i}, \mathbf{x}\right)$ between the i-th quantized color \mathbf{c}_{i} and the RGB value of the pixel in I_{s} is defined as

$$
p\left(\mathbf{c}_{i}, \mathbf{x}\right)= \begin{cases}1-\frac{\left\|\mathbf{c}_{i}-I_{s}(\mathbf{x})\right\|}{Q} & \text { if }\left\|\mathbf{c}_{i}-I_{s}(\mathbf{x})\right\| \leq Q \tag{35}\\ 0, & \text { otherwise }\end{cases}
$$

where $Q=255 \sqrt{3} / q$ is the maximal Euclidean distance between two quantized color neighbors in the three-dimensional

Fig. 5. The binary mask on the target image I_{t} (red boundaries) is expanded sequentially through morphological dilation, and its intersection with the source image I_{s} (blue boundaries) is used for propagating color maps and computing the weight mask z (lighter red corresponds to later expansion steps and lower weight values for z). Given the initial \mathfrak{M} (see text) including only color maps for the intersection area $I_{s} \cap I_{t}$ (yellow), at each dilation step convolution is applied to each \mathfrak{M} slice (dark green) to propagate color maps. For each slice, only values present at the previous iteration (colors darker than the kernel center on the right) are used. Kernel weights for slice values not included at the previous dilation step are set to zero (white entries) and the kernel is re-normalized (best viewed in color and zoomed in).

Fig. 6. (a) The source input image I_{s} and (b) the final corrected image I_{c} obtained by using the LCP unit in combination with the AM unit. Both images are superimposed on the input target image I_{t} for a better understating (best viewed in color and zoomed in).

RGB color space. The color map C_{i} associated to a quantized color \mathbf{c}_{i} is the weighted sum of the best color maps $C_{\mathcal{P}_{d(\mathbf{x})}}$ for pixels inside the overlapping area

$$
\begin{equation*}
C_{i}=\sum_{\mathbf{x} \in I_{s} \cap I_{t}} \frac{p\left(\mathbf{c}_{i}, \mathbf{x}\right) C_{\mathcal{P}_{d(\mathbf{x})}}}{\sum_{\overline{\mathbf{x}} \in I_{s} \cap I_{t}} p\left(\mathbf{c}_{i}, \overline{\mathbf{x}}\right)} \tag{36}
\end{equation*}
$$

where linear combinations of color maps are intended in the space induced by the transformation T of ME (see Eq. (1)), i.e.

$$
\begin{equation*}
a C_{\mathcal{P}_{x}}+b C_{\mathcal{P}_{y}}=U \circ\left(a \mathrm{M}_{x}+b \mathrm{M}_{y}\right) \circ T \tag{37}
\end{equation*}
$$

Finally, the color value of a pixel \mathbf{x}, even not in the intersection area of the input images is computed as

$$
\begin{equation*}
I_{c}(\mathbf{x})=C_{v}\left(I_{s}(\mathbf{x})\right) \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\underset{1 \leq i \leq q^{3}}{\operatorname{argmin}}\left\|\mathbf{c}_{i}-I_{s}(\mathbf{x})\right\| \tag{39}
\end{equation*}
$$

is the index of the quantized color closest to $I_{s}(\mathbf{x})$.

IV. Evaluation

A. Experimental Setup

Following the recent literature on the subject [3], [4], [31], [32], stitching can be regarded as an extension of image mosaicing to the case where homography constraints are relaxed and hold only locally, so that registered images are just coarsely aligned.

For our evaluation, we relied mainly on the protocol described in [6] (the most complete comparison of color correction methods for stitching to date, here significantly extended), which assumes no known color transform model, this being the most general and realistic way to address the problem. Indeed, most recent datasets avoid to refer to any particular image acquisition conditions, i.e. operating setups (e.g. single vs multiple cameras, fixed vs changing camera parameters), due to the impossibility for the common user to have a fully controlled environment and the right level of knowledge and expertise. Nevertheless, we verified experimentally that the results of the best color correction methods are virtually uncorrelated with the acquisition setup and therefore with the associated color alteration (see Sec. IV-B).

The protocol of [6] was suitably modified so as (a) to take advantage from the improved image quality metrics published later, and (b) to better handle coarsely registered images. We used image pairs from three different existing datasets, plus a novel dataset specifically designed to investigate the behavior of the color correction methods under different acquisition conditions. The first dataset [6] is subdivided into two classes of 30 real and 40 synthetic scenes. The real scene images of this dataset have been obtained from various sources, including image frames from multi-view video applications, photos with or without flash lighting or under different capture modes, and aerial image clips taken in the same place at different times. In the case of synthetic scenes, a perfect image alignment exists and color alterations have been obtained by software editing. The second dataset [2] contains 15 already registered image pairs mainly taken with different camera types and setups, or undergoing palette recoloring. The third dataset [7] is made up of 38 color image pairs, belonging to 6 real and almost planar scenes, obtained by varying image exposure only. The reader may refer to [2], [6], [7] for further details about the transformations involved in the related datasets. The novel dataset, explicitly created for this work, contains 127 image pairs taken from real image stitching application scenarios. These image pairs are divided into four groups of almost equal size, containing respectively image pairs obtained with (1) distinct cameras (NVIDIA Shield Tablet, Huawei P8, Huawei P9 light, SONY SLT-A37), (2) same camera (NVIDIA Shield Tablet) with locked setup parameters or (3) varying ISO, exposure and white balance, and (4) fixed parameters but different environmental illumination conditions. For all datasets, image pairs were registered through planar homographies according to the method described in [33] if the registration was not already available. The overall set of 250 image pairs was manually split into two working datasets, referred to as D_{1} and D_{2}. Specifically, D_{1} contains 158 realistic stitching image pairs with relevant image misalignments

Fig. 7. Input images (top row) and the actual overlapping area used in tests \mathcal{T}_{1} and \mathcal{T}_{2}. (best viewed in color).
or other color inconsistencies (e.g. a shadow is present in the source image image but not in the target image), while D_{2} contains the remaining images, mostly exhibiting a very accurate geometric registration and artificial color alterations (see the additional material). Notice that D_{1} incorporates all the 127 new image pairs from the four groups corresponding to different acquisition conditions, respectively denoted as $D_{1.1-4}$, while D_{2} includes all the synthetic images from [6] and all the repainting images from [2].

On each image pair, we performed two distinct tests in which, given the input source and target images I_{s} and I_{t}, the corrected image I_{c} is output and evaluated accordingly. In the first test, named \mathcal{T}_{1}, we evaluated both the combinations $\left(I_{a}, I_{b}\right)$ and $\left(I_{b}, I_{a}\right)$ as input image pairs $\left(I_{s}, I_{t}\right)$ that can be obtained by inverting the role between the source and target images, according to a chosen image quality metric. In particular, the recent iCID measure [8] and FSIM_{C} index [9] (i.e. the FSIM index extended to color images) were selected as the closest to human judgment. These quality metrics work better than simpler measures as PSNR [34] and SCIELAB [35] and, in contrast to the SSIM index [36], can deal with color images, which is an essential requirement in our case. Additionally, in the second test \mathcal{T}_{2}, only the image pairs with an overlap greater than 25% were selected, and I_{t} was set to 50% of its overlapping area when computing I_{c} (of course, the whole I_{t} is used for the comparison against I_{c}), thus gaining a further insight into the sensitivity of the algorithms with respect to input data size and outliers (see Fig. 7).

We ran all the possible ME/PA combinations, listed in Table I, for a total of $\mathcal{M}=14 \times 7=98$ different color correction algorithms. Matlab code, datasets and low-resolution output images are freely available ${ }^{1}$. Implementations of P and TS were derived respectively from [22] and [6]. Parameters for the Edison mean shift implementation [28] used by CIM and MSS were tuned on a dataset sample to get the best results.

Since, whatever the quality metric used, absolute errors may vary dramatically from an image pair $\left(I_{1}, I_{2}\right)$ to another, in order to better appreciate the relative differences between the different methods \mathcal{A}_{i} under examination, $i=1, \ldots, \mathcal{M}$, we

[^1]TABLE II
Soft rank on dataset D_{1}, TESt \mathcal{T}_{1}, best five ME/PA pairs are in bold, darker values are better (best viewed in color).

	$r_{g} / \mathrm{FSIM}_{C}(\%)$							$r_{g} / \mathrm{iCID}(\%)$							$r_{t} / \mathrm{FSIM}_{C}(\%)$							$r_{t} / \mathrm{iCID}(\%)$						
	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P
R	0.457	0.429	0.538	0.586	0.672	0.475	$\mathbf{0 . 4 2 8}{ }_{g}$	0.745	0.620	0.583	0.976	0.835	0.693	0.660	0.546	0.384	0.300	0.671	0.653	0.522	0.500	0.875	0.514	0.359	1.174	0.868	0.766	0.748
CS	0.501	0.573	0.513	0.706	2.761	1.392	0.970	0.769	0.699	0.566	1.208	2.683	1.739	1.424	0.755	0.601	0.272	0.822	3.104	1.687	1.217	0.994	0.647	0.315	1.418	3.158	2.095	1.736
GC	0.719	0.697	0.506	0.648	0.722	1.117	1.182	0.830	0.714	0.580	0.901	0.783	1.239	1.335	0.846	0.709	0.317	0.710	0.758	1.281	1.370	1.181	0.754	0.427	1.075	0.920	1.618	1.782
3M	0.728	0.715	0.790	1.332	0.781	0.753	0.760	0.735	0.652	0.728	1.494	0.743	0.747	0.750	0.836	0.557	0.489	1.473	0.702	0.793	0.831	1.046	0.494	0.466	1.842	0.737	0.939	0.997
PM	0.612	1.333	0.789	1.819	0.777	0.693	0.694	0.647	0.920	0.691	1.961	0.687	0.683	0.683	0.485	1.072	0.441	1.846	0.495	0.496	0.509	0.482	0.519	0.326	2.084	0.355	0.455	0.466
AM	0.610	0.987	0.744	1.377	0.729	0.615	0.608	0.692	0.721	0.674	1.515	0.692	0.690	0.687	0.730	0.793	0.430	1.447	0.585	0.648	0.689	0.726	0.351	0.327	1.602	0.470	0.659	0.700
PR	2.101	1.437	0.693	2.529	2.300	4.015	4.064	2.056	1.529	0.658	2.609	2.236	3.734	3.899	2.520	1.410	0.405	3.000	2.833	4.720	4.767	2.485	1.571	0.378	3.182	2.772	4.379	4.580
HM	0.468	$\mathbf{0 . 4 2 3}_{h}$	0.618	0.598	0.659	0.566	0.554	0.663	$0^{0.538}{ }_{h}$	0.620	0.835	0.801	0.690	0.669	0.425	0.295	0.384	0.724	0.526	0.487	0.471	0.657	0.453	0.447	1.168	0.727	0.633	0.605
TG	0.575	0.734	0.748	1.362	0.739	3.950	4.871	0.656	0.571	0.657	1.427	0.686	2.513	2.978	0.560	0.465	0.453	1.354	0.657	4.394	5.520	0.602	0.175 k	0.322	1.467	0.539	2.618	3.154
G	0.677	0.879	0.769	1.586	0.899	4.433	5.377	0.698	0.629	0.666	1.585	0.748	2.763	3.248	0.681	0.621	0.472	1.617	0.830	4.948	6.116	0.635	0.219l	0.329	1.664	0.587	2.883	3.452
MS	0.618	0.557	0.630	0.701	0.686	0.686	0.695	0.711	$\mathbf{0 . 4 9 5}_{j}$	0.594	0.877	0.678	0.708	0.712	0.567	0.336	0.361	0.695	0.525	0.572	0.580	0.670	$0.163{ }_{j}$	0.307	0.944	0.487	0.535	0.532
3 MS	0.665	0.592	0.726	0.952	0.743	0.703	0.710	0.742	$\mathbf{0 . 5 1 4}_{i}$	0.663	1.172	0.691	0.704	0.715	0.559	0.304	0.420	0.935	0.518	0.553	0.565	0.609	$\mathbf{0 . 1 0 3}_{i}$	0.335	1.249	0.414	0.492	0.506
GPS	0.466	$\mathrm{0.303}_{f}$	0.483	0.472	0.559	0.510	0.497	0.767	$0^{0.487}{ }_{f}$	0.546	0.796	0.788	0.776	0.774	0.488	0.222 ${ }_{f}$	$\mathbf{0 . 2 5 4}_{d}$	0.562	0.512	0.524	0.519	0.840	0.358	0.324	1.014	0.776	0.844	0.856
FGPS	0.528	$0.315{ }_{e}$	0.506	0.515	0.583	0.578	0.598	0.865	0.498e	0.551	0.874	0.849	0.877	0.889	0.554	0.232 ${ }^{\text {e }}$	0.268 ${ }_{c}$	0.625	0.534	0.605	0.637	0.948	0.374	0.320	1.142	0.835	0.947	0.979

TABLE III
Soft rank on dataset D_{2}, $\operatorname{TEST} \mathcal{T}_{1}$, BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER (BEST VIEWED IN COLOR).

	$r_{g} /$ FSIM $_{C}(\%)$							$r_{g} / \mathrm{iCID}(\%)$							$r_{t} / \mathrm{FSIM}_{C}(\%)$							r_{t} /iCID (\%)						
	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P	GL	LCP	BLG	CIM	MSS	TS	P
R	0.989	0.629	0.397e	0.706	0.872	0.736	1.011	1.108	0.781	0.482	0.967	0.906	0.799	0.961	0.967	0.507	0.151	0.635	0.783	0.652	0.932	\|1.178	0.619	0.187	0.906	0.768	0.674	0.944
CS	0.638	1.248	0.522	0.617	0.829	7.646	1.665	0.784	1.090	0.578	1.014	0.908	6.079	2.616	0.838	1.421	0.310	0.654	0.857	9.294	2.096	0.822	1.112	0.288	0.960	0.773	7.979	3.329
GC	1.307	1.310	0.560	1.040	1.486	1.176	2.265	1.204	1.104	0.593	1.118	1.161	1.043	2.455	1.518	1.445	0.398	1.136	1.675	1.328	2.677	1.776	1.341	0.425	1.386	1.383	1.266	3.408
3M	1.270	0.933	0.630	1.027	1.144	1.023	1.324	1.004	0.761	0.606	0.982	0.871	0.827	1.064	1.520	0.963	0.471	1.135	1.199	1.098	1.536	1.536	0.857	0.404	1.270	0.955	0.945	1.500
PM	$0.398{ }_{f}$	0.832	0.423	0.519	0.413	$0.399{ }_{j}$	0.434	0.494	0.735	0.502	0.688	$0.465{ }_{h}$	0.472 ${ }_{j}$	0.502	0.237	0.702	0.135	0.349	$\mathrm{0}^{\mathbf{0}} \mathbf{1 2 1}{ }_{\text {h }}$	0.160	0.229	0.222	0.531	0.160	0.510	$\mathrm{0}^{0.064}{ }_{h}$	0.147	0.201
AM	0.497	0.645	0.379 c	0.435	0.453	0.443	0.500	0.560	0.580	0.472 ${ }_{\text {c }}$	0.662	0.498	0.520	0.553	0.628	0.647	0.126 ${ }_{\text {c }}$	0.387	0.356	0.341	0.564	0.526	0.404	$\mathbf{0 . 1 4 4}{ }_{c}$	0.484	0.235	0.296	0.475
PR	2.062	1.642	0.425	1.996	3.546	5.387	9.791	2.150	1.686	0.502	2.447	2.674	4.317	8.922	2.342	2.030	0.185	2.395	4.350	7.168	12.26	2.619	2.066	0.218	3.013	3.249	5.935	11.95
HM	0.464	0.547	0.636	0.595	0.494	0.472	0.634	0.591	0.561	0.640	0.652	0.578	0.584	0.641	0.237	0.377	0.411	0.521	0.193	0.236	0.405	0.368	0.382	0.445	0.720	0.249	0.334	0.387
TG	0.408	0.475	0.471	0.737	0.448	0.437	2.219	0.505	0.496	0.515	0.854	0.485	0.513	1.556	0.170	0.259	0.201	0.602	$0^{0.119}{ }_{\text {i }}$	0.193	2.242	0.266	0.210	0.205	0.738	$0.119{ }_{i}$	0.264	1.525
G	0.412	0.490	0.478	0.768	0.460	0.446	2.382	0.504	0.501	0.520	0.887	0.485	0.514	1.639	0.179	0.280	0.212	0.641	0.134_{g}	0.207	2.420	0.266	0.220	0.215	0.786	$0.119{ }_{g}$	0.267	1.620
MS	0.709	0.572	0.513	0.596	0.650	0.637	0.607	0.747	0.595	0.545	0.695	0.657	0.673	0.618	0.633	0.447	0.283	0.508	0.457	0.511	0.409	0.656	0.411	0.271	0.648	0.404	0.513	0.357
3MS	0.690	0.529	0.478	0.581	0.612	0.592	0.573	0.725	0.540	0.519	0.681	0.621	0.602	0.596	0.568	0.363	0.225	0.442	0.347	0.420	0.350	0.514	0.269	0.198	0.526	0.254	0.335	0.310
GPS	0.824	0.513	${ }^{0.399}{ }_{d}$	0.614	0.742	0.623	0.929	1.088	0.594	0.478 ${ }_{\text {d }}$	0.843	0.846	0.748	1.037	0.853	0.444	0.153	0.598	0.650	0.548	0.937	1.133	0.451	0.185	0.927	0.697	0.630	1.020
FGPS	1.010	0.632	0.403	0.888	1.039	0.817	1.137	1.380	0.685	0.479	1.099	1.181	0.974	1.267	1.045	0.593	0.153	0.934	1.026	0.794	1.162	1.524	0.608	0.185	1.384	1.177	0.951	1.308

define and use the soft rank

$$
\begin{equation*}
r\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)=\frac{\left|\varepsilon\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)-b\left(I_{1}, I_{2}\right)+\epsilon\right|}{\sum_{j=1}^{\mathcal{M}}\left|\varepsilon\left(\mathcal{A}_{j}, I_{1}, I_{2}\right)-b\left(I_{1}, I_{2}\right)+\epsilon\right|} \tag{40}
\end{equation*}
$$

where $\varepsilon\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)$ is the error, in terms of either iCID or FSIM_{C} in the overlapping area $I_{1} \cap I_{2}$, obtained when the color correction method \mathcal{A}_{i} is used with the image pair $\left(I_{1}, I_{2}\right), \epsilon$ is a small constant value avoiding a zero denominator, and

$$
\begin{equation*}
b\left(I_{1}, I_{2}\right)=\min _{j=1, \ldots, \mathcal{M}} \varepsilon\left(\mathcal{A}_{j}, I_{1}, I_{2}\right) \tag{41}
\end{equation*}
$$

is the best value among all methods for the image pair $\left(I_{1}, I_{2}\right)$ in the case of the iCID metric. When FSIM_{C} is employed, the min function in Eq. (41) must be replaced by the max function, since FSIM_{C} is a similarity measure. The soft rank $r\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)$ ranges in $[0,1]$, since

$$
\begin{equation*}
\sum_{i=1}^{\mathcal{M}} r\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)=1 \tag{42}
\end{equation*}
$$

and achieves lower values for better methods. Notice that the soft rank of Eq. (40) is proportional (by the constant \mathcal{M}) to the error $\Delta_{i}=\left|\varepsilon\left(\mathcal{A}_{i}, I_{1}, I_{2}\right)-b\left(I_{1}, I_{2}\right)+\epsilon\right|$ normalized with respect to its average μ_{Δ}

$$
\begin{equation*}
r\left(\mathcal{A}_{i}, I_{1}, I_{2}\right) \propto \frac{\Delta_{i}}{\mu_{\Delta}} \tag{43}
\end{equation*}
$$

This is more robust and stable than normalizing by the maximum error (e.g. removing the worst method does not change significantly the rank). Notice also from Eq. (42) that the average soft rank value is $\frac{1}{\mathcal{M}}=\frac{1}{98} \approx 1 \%$.

A quantitative and exhaustive evaluation of all the possible ME/PA combinations requires a careful selection of the evaluation protocol to avoid results in contrast with the common
human perception. In order to evaluate a given method \mathcal{A}_{i}, we compare, as it is usual in the literature [6], the corrected and target images, i.e.

$$
\begin{equation*}
r_{t}=r\left(\mathcal{A}_{i}, I_{c}, I_{t}\right) \tag{44}
\end{equation*}
$$

Nevertheless, since in the real case of mosaicing and more general stitching applications we are dealing with coarsely registered input images, such straightforward comparison, requiring an almost perfect registration, may lead to erroneous evaluations whatever the image quality measure used [37]. For instance, if an object moves between the two input images I_{s} and I_{t}, a color correction method that simply copies I_{t} pixel data into I_{s} to get the corrected image I_{c} would achieve the best score with r_{t}, notwithstanding the fact that the object in the corrected image is in the wrong location. This is due to the fact that Eq. (44) ignores altogether the structural content of the source image I_{s} for the sake of comparison. Therefore, to avoid erroneous comparative results especially in the case of images from dataset D_{1}, composed of real scene data, the methods were tested not only with r_{t}, but also with the average between the results of the comparison of I_{c} with both the input images I_{s} and I_{t}, i.e.

$$
\begin{equation*}
r_{g}=\frac{r_{t}+r_{s}}{2} \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{s}=r\left(\mathcal{A}_{i}, I_{c}, I_{s}\right) \tag{46}
\end{equation*}
$$

B. Results

Tables II-III show the soft ranks r_{g} and r_{t} (expressed as percentages, the average error being about 1%, see Sec. IV-A) for test \mathcal{T}_{1} with both FSIM_{C} and iCID, on datasets D_{1} and

Fig. 8. Results on an example image pair (a-b) for the first four top ranked ME/PA pairs (c-l) on dataset D_{1}, test \mathcal{T}_{1}, according to r_{t} and r_{g} for FSIM C and iCID. I_{s} and I_{c} are superimposed on I_{t} for a better understanding (best viewed in color and zoomed in).
D_{2}, respectively. Each table entry corresponds to a different ME/PA pair under test. The five best results obtained for each soft rank are shown in bold. Subscripts in Table II(III) refer to the associated result examples of Fig. 8(9).

According to Table II, GPS/LCP and its faster counterpart FGPS/LCP (both assembled with new CUs proposed in this work), followed by HM/LCP, are the only methods that rank among the best top five in r_{g} with both iCID and FSIM_{C}. Figure 8 shows color correction results obtained by the four best ME/PA pairs of Table II on an example image pair of dataset D_{1}. Visual inspection of Figs. 8(c-l) confirms that these three methods provide the least number of artifacts and the most natural color of all. Therefore, numerical results are in good accordance with human judgment. However, the top five ranked ME/PA pairs with $r_{t} / \mathrm{FSIM}_{C}$ are completely different from those obtained with r_{t} / iCID. There is no method that performs clearly better than the others on D_{1} images with both error metrics. This corroborates our observation of Sec. IV-A that, in the presence of image misalignments, the soft rank r_{t} may not be appropriate for comparing color correction results, nor be in agreement with perceptual evidence. Nevertheless, notice that both GPS/LCP and FGPS/LCP are also top-ranked for $r_{t} / \mathrm{FSIM}_{C}$.

On the other hand, results with both soft ranks r_{t} and r_{g} on dataset D_{2}, containing image pairs with accurate geometric registration and artificial color alterations, are more similar and consistent (see Table III). In particular, the AM/BLG pair (BLG being one of the new PAs proposed in this paper) achieves the top ranked results with all four combinations
of soft ranks and quality metrics. Additionally, GPS/BLG and $\mathrm{PM} / \mathrm{TS}$ are among the top ranked pairs with r_{g} and both quality metrics, the latter being also top-ranked for $r_{t} /$ iCID. Finally, PM/MSS, TG/MSS and G/MSS are among the five top ranked pairs with r_{t} and both quality metrics (note that PM/MSS is composed of CUs never considered together before). From the visual example of Fig. 9, it is worth noting that, unlike the D_{1} dataset case, there are no strongly noticeable perceptual differences among the best performing methods for the D_{2} dataset, so that any of the above methods would give visually similar results.

The contrasting conclusions drawn out from the D_{1} and D_{2} datasets are compatible with the different input data employed in the datasets. In particular, images from D_{1} from realistic scenarios contain more wrong color correspondences and have less content overlap to reconstruct the whole color mapping function. For this kind of images, working (as done e.g. in the GPS/LCP method) on robust characteristics, such as the average color values and image gradient, yields the most satisfactory results. This said, it is not true, as one may hypothesize, that approaches with fewer parameters are most robust and therefore should do better than others. Actually, despite of their apparently simple model formulation, GPS and FGPS (the best MEs for D_{1}) have more implicit hidden parameters than others. As a matter of fact, error minimization with these methods is so complex that we gave up finding an analytical, yet approximate, solution, and decided to perform a brute force space search. On the other hand, when color correspondences are more complete and correct, and color

Fig. 9. Results on an example image pair (a-b) for the first four top ranked ME/PA pairs (c-j) on dataset D_{2}, test \mathcal{T}_{2}, according to r_{t} and r_{g} for FSIM and iCID. I_{s} and I_{c} are superimposed on I_{t} for a better understanding (best viewed in color and zoomed in).

TABLE IV
TOP FIVE ME/PA PAIRS FOR SOFT RANK r_{g} ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEW CUS ONLY.

		$r_{g} / \mathrm{FSIM}_{C}$										$r_{g} /$ iCID									
		$1^{\text {st }}$	\%	$2^{\text {nd }}$	\%	$3^{\text {rd }}$	\%	$4^{t h}$	\%	$5^{\text {th }}$	\%	$1^{\text {st }}$	\%	$2^{\text {nd }}$	\%	$3^{\text {rd }}$	\%	$4^{\text {th }}$	\%	$5^{\text {th }}$	\%
	D_{1}	GPS/LCP	0.303	FGPS/LCP	0.315	HM/LCP	0.423	R/P	0.428	R/LCP	0.429	GPS/LCP	0.487	FGPS/LCP	0.498	MS/LCP	0.495	3MS/LCP	0.514	HM/LCP	0.538
	D_{2}	AM/BLG	0.380	PM/GL	0.398	R/BLG	0.398	GPS/BLG	0.399	PM/TS	0.400	PM/MSS	0.463	PM/TS	0.470	AM/BLG	0.471	GPS/BLG	0.476	FGPS/BLG	0.477
\mathcal{T}_{1}	$D_{1.1}$	GPS/LCP	0.255	FGPS/LCP	0.271	CS/GL	0.315	HM/GL	0.334	HM/LCP	0.335	GPS/LCP	0.533	GPS/BLG	0.540	FGPS/LCP	0.540	FGPS/BLG	0.552	MS/LCP	0.569
1	$D_{1.2}$	HM/LCP	0.122	GPS/LCP	0.131	FGPS/LCP	0.155	R/TS	0.158	R/P	0.158	HM/LCP	0.216	GPS/LCP	0.222	GC/LCP	0.234	FGPS/LCP	0.254	R/LCP	0.255
	$D_{1.3}$	FGPS/LCP	0.411	GPS/LCP	0.413	FGPS/BLG	0.446	GPS/BLG	0.451	CS/BLG	0.474	TG/LCP	0.558	FGPS/BLG	0.562	GPS/BLG	0.567	3MS/LCP	0.578	CS/BLG	0.588
	$D_{1.4}$	GPS/LCP	0.342	FGPS/LCP	0.342	3MS/LCP	0.449	MS/LCP	0.451	R/LCP	0.458	MS/LCP	0.449	3MS/LCP	0.456	GPS/LCP	0.497	FGPS/LCP	0.502	TG/LCP	0.532
	D_{1}	GPS/LCP	0.319	FGPS/LCP	0.333	R/P	0.385	R/GL	0.412	GPS/GL	0.417	GPS/LCP	0.498	FGPS/LCP	0.516	GPS/BLG	0.523	MS/LCP	0.532	GC/BLG	0.538
	D_{2}	AM/BLG	0.385	PM/TS	0.390	PM/GL	0.394	R/BLG	0.407	GPS/BLG	0.408	PM/TS	0.457	AM/BLG	0.469	GPS/BLG	0.473	FGPS/BLG	0.476	PM/BLG	0.476
	$D_{1.1}$	GPS/LCP	0.256	FGPS/LCP	0.274	HM/GL	0.322	GPS/TS	0.323	GPS/P	0.323	GPS/BLG	0.515	GPS/LCP	0.519	FGPS/LCP	0.536	GC/BLG	0.537	FGPS/BLG	0.543
T_{2}	$D_{1.2}$	GC/GL	0.077	R/TS	0.093	R/P	0.093	GC/CIM	0.099	R/GC	0.106	3M/GL	0.125	GC/GL	0.127	3M/TS	0.139	3M/P	0.139	GC/MSS	0.154
	$D_{1.3}$	GPS/LCP	0.391	FGPS/LCP	0.395	GPS/BLG	0.456	HM/GL	0.461	FGPS/BLG	0.472	GPS/BLG	0.558	TG/LCP	0.565	FGPS/BLG	0.569	GPS/LCP	0.581	FGPS/LCP	0.591
	$D_{1.4}$	GPS/LCP	0.411	FGPS/LCP	0.412	GPS/GL	0.458	R/GL	0.471	CS/GL	0.491	MS/LCP	0.564	GPS/LCP	0.572	3MS/LCP	0.573	GPS/BLG	0.578	FGPS/LCP	0.584

TABLE V
TOP FIVE ME/PA PAIRS FOR SOFT RANK r_{t} ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEW CUS ONLY.

		$r_{t} / \mathrm{FSIM}_{C}$										r_{t} / iCID									
		$1^{\text {st }}$	\%	$2^{\text {nd }}$	\%	$3^{\text {rd }}$	\%	$4^{\text {th }}$	\%	$5^{\text {th }}$	\%	$1^{\text {st }}$	\%	$2^{\text {nd }}$	\%	$3^{\text {rd }}$	\%	$4^{\text {th }}$	\%	$5^{\text {th }}$	\%
	D_{1}	GPS/LCP	0.222	FGPS/LCP	0.232	GPS/BLG	0.254	FGPS/BLG	0.268	CS/BLG	0.272	3MS/LCP	0.103	MS/LCP	0.163	TG/LCP	0.175	G/LCP	0.219	MS/BLG	0.307
	D_{2}	TG/MSS	0.119	PM/MSS	0.121	AM/BLG	0.126	G/MSS	0.134	PM/BLG	0.135	PM/MSS	0.064	TG/MSS	0.119	G/MSS	0.119	AM/BLG	0.144	PM/TS	0.147
	$D_{1.1}$	GPS/LCP	0.208	FGPS/LCP	0.214	HM/LCP	0.238	GPS/BLG	0.264	CS/BLG	0.282	3MS/LCP	0.118	TG/LCP	0.138	MS/LCP	0.153	G/LCP	0.172	AM/LCP	0.329
\mathcal{T}_{1}	$D_{1.2}$	HM/LCP	0.056	GPS/LCP	0.126	FGPS/LCP	0.139	R/LCP	0.161	MS/LCP	0.198	3MS/LCP	0.049	MS/LCP	0.050	AM/LCP	0.161	3M/LCP	0.164	HM/LCP	0.179
	$D_{1.3}$	GPS/BLG	0.144	FGPS/BLG	0.149	CS/BLG	0.180	3MS/LCP	0.189	GPS/LCP	0.194	3MS/LCP	0.117	TG/LCP	0.124	G/LCP	0.178	CS/BLG	0.198	FGPS/BLG	0.200
	$D_{1.4}$	3MS/LCP	0.118	MS/LCP	0.187	GPS/LCP	0.260	FGPS/LCP	0.264	TG/LCP	0.283	3MS/LCP	0.043	MS/LCP	0.081	TG/LCP	0.111	G/LCP	0.135	GPS/LCP	0.289
	D_{1}	GPS/LCP	0.210	FGPS/LCP	0.223	GPS/BLG	0.273	HM/LCP	0.287	FGPS/BLG	0.305	3MS/LCP	0.225	MS/LCP	0.252	GPS/BLG	0.274	TG/LCP	0.283	MS/BLG	0.292
	D_{2}	PM/BLG	0.127	PM/TS	0.136	AM/BLG	0.139	R/BLG	0.161	GPS/BLG	0.167	PM/TS	0.104	PM/BLG	0.113	AM/BLG	0.129	GPS/BLG	0.168	FGPS/BLG	0.173
	$D_{1.1}$	GPS/LCP	0.191	FGPS/LCP	0.201	HM/LCP	0.227	HM/GL	0.262	GC/BLG	0.266	3MS/LCP	0.222	MS/LCP	0.233	TG/LCP	0.282	MS/BLG	0.305	G/LCP	0.315
\mathcal{T}_{2}	$D_{1.2}$	HM/LCP	0.070	GPS/LCP	0.123	GC/GL	0.133	GC/CIM	0.136	HM/GL	0.136	MS/LCP	0.127	HM/LCP	0.135	GC/BLG	0.146	3M/GL	0.156	3MS/GL	0.157
	$D_{1.3}$	GPS/LCP	0.145	HM/GL	0.152	FGPS/LCP	0.158	GPS/BLG	0.159	3MS/LCP	0.183	TG/LCP	0.176	GPS/BLG	0.182	3MS/LCP	0.185	FGPS/BLG	0.207	G/LCP	0.236
	$D_{1.4}$	GPS/LCP	0.290	3MS/LCP	0.295	FGPS/LCP	0.305	MS/LCP	0.306	TG/LCP	0.359	3MS/LCP	0.244	MS/LCP	0.255	TG/LCP	0.280	GPS/BLG	0.289	FGPS/BLG	0.303

alteration less realistic, such as with the D_{2} input images, CUs that "overfit" the data (e.g. the AM and PM MEs and the BLG and MSS PAs) achieve the best accuracy. Notice also that segmentation-based PAs such as MSS and TS are unlikely to give good results in D_{1}, especially in the non-overlapping area, yet are expected to do quite well in D_{2}. Similar ranking considerations hold in the case of test \mathcal{T}_{2} (more detailed results are reported as additional material), but clearly the quality of the final corrected image is lower, as less data correspondences are available as input for the algorithms.

An additional observation must be made about MEs working channel-wise (i.e. GC, HM, TG, G, GPS, FGPS and MS) in the presence of some limited, application-specific color transformations, such as those employed for palette recoloring (see Fig. 10). These MEs, when combined with PAs based on
linear combinations (e.g. GL and LCP), are mostly unable to handle intra-channel color transformations such as those from red to green. This does not hold for non-linear PAs (e.g. BLG and MSS).

Concerning image pairs from realistic image stitching scenarios, we further evaluated the color correction methods according to datasets $D_{1.1-4}$ given by splitting the novel 127 image pairs created from this work, representing four main sources of color alterations (see Sec. IV-A). Tables IV-V report the top five soft ranks ME/PA pairs for each evaluated test and dataset (detailed results can be found in the additional material). According to the previous observations, we focus our attention only on soft rank r_{g} due to the nature of considered images. Results show that for $D_{1.1}$, containing input images from distinct cameras, GPS/LCP and FGPS/LCP

(e) $I_{c}-\mathrm{GPS} / \mathrm{BLG}$

(g) $I_{c}-\mathrm{TG} / \mathrm{BLG}$

(f) $I_{c}-\mathrm{GPS} / \mathrm{LCP}$

(h) $I_{c}-\mathrm{TG} / \mathrm{LCP}$

Fig. 10. Example of different outputs for intra-channel color transformations (best viewed in color and zoomed in).
are still the best methods. In the case $D_{1.2}$ of stitching images from the same camera with a locked setup, the same results as for the whole dataset D_{1} hold for test \mathcal{T}_{1}, while GC/GL is the best method for test \mathcal{T}_{2}. This is not surprising, as in test \mathcal{T}_{2} the number of color correspondence outliers is really high due to the low image overlap, and in the case of a single camera and a locked setup the true color transformation is close to the identity map. Therefore, GC/GL, which we found generally to alter the original colors of I_{s} less than other methods, performs best. On the other hand, for $D_{1.3}$, where images come from the same camera but with varying ISO, exposure and white balance, GPS/BLG and FGPS/BLG do better than GPS/LCP and FGPS/LCP, which nevertheless are still among the best top-ranked methods. This is probably due to some recoloring effects caused by the white balance adjustment, which alters intra-channel color relations as discussed above. Finally, for $D_{1.4}$, having images from a fixed camera and varying environmental illumination, GPS/LCP and FGPS/LCP are still the best methods, followed by 3MS/LCP and MS/LCP.

To summarize, referring again to Tables IV-V, GPS and FGPS are the best MEs in the case of real stitching input images, either paired with LCP (bold black entries) or, in the case of intra-channel transformation, with BLG (bold red entries). Moreover, LCP and BLG are generally the best PAs for other MEs. For what concerns real stitching applications, we can conclude that there is no evidence that a given source of color distortion noticeably affects the output of the best color correction methods. Conversely, in the case of artificial

TABLE VI
Spearman Rank-Order Correlation Coefficient (\%) for DIFFERENT SOFT RANKS AND IMAGE QUALITY METRICS.

	FSIM_{C}			iCID					FSIM_{C}			iCID		
	r_{g}	r_{t}	r_{s}	r_{g}	r_{t}	r_{s}			r_{g}	r_{t}	r_{s}	r_{g}	r_{t}	r_{s}
	100	81	90	65	43	82	気		100	97	89	96	94	57
	81	100	53	84	78	50		r_{t}	97	100	77	95	97	47
	90	53	100	42	14	90			89	77	100	80	74	65
$\underset{\sim}{\hat{U}} \underset{\sim}{r_{g}} \begin{gathered} r_{t} \\ r_{s} \end{gathered}$	65	84	42	100	88	51		r_{g}	96	95	80	100	98	61
	43	78	14	88	100	21	-	r_{t}	94	97	74	98	100	48
	82	50	90	51	21	100	-	r_{s}	57	47	65	61	48	100
(a) D_{1}							(b) D_{2}							

color alterations and finer image registration, BLG and MSS are the best PAs, combined with PM followed by AM, TG, G and GPS.

C. More about soft ranks and quality metrics

Table VI reports the Spearman rank-order correlation coefficient (SROCC) [38] between soft ranks r_{t}, r_{s} and r_{g}, obtained by comparing the corrected image I_{c} respectively against the target I_{t}, the source I_{s} or both input images. Both FSIM_{C} and iCID on the D_{1} and D_{2} datasets (see Sec. IV-A) are considered. SROCC is often used for the analysis of image quality metrics [8], [9], [36], [39].

In the case of iCID vs iCID (bottom right block matrices), r_{g} is strongly correlated with r_{t}, less with r_{s}, on both D_{1} and D_{2}. Similarly, r_{t} and r_{s} are strongly uncorrelated. This implies that r_{g} is unlikely to be minimum when I_{c} is half way between I_{t} and I_{s} for iCID. Note also that ranks on D_{2} are more correlated to each other than ranks on D_{1}, as accurate image alignment implies anyway a higher structural similarity inside image pairs.
In the case of FSIM_{C} vs FSIM_{C} (top left block matrices), r_{t} and r_{s} have a good correlation on D_{2} but not on D_{1}, while r_{g} has a strong correlation with both r_{t} and r_{s}. This is likely due to the fact that, differently to $\mathrm{iCID}, \mathrm{FSIM}_{C}$ relies more on image structural content than on color intensities, as geometric transformations become stronger.

Further evidence of this behavior can be observed by inspecting SROCC for FSIM_{C} vs iCID (top right and bottom left block matrices). On D_{1} (see Table VI(a)), r_{g} / iCID is not strongly correlated with $r_{g} / \mathrm{FSIM}_{C}$, and is more correlated with $r_{t} / \mathrm{FSIM}_{C}$ than with $r_{s} / \mathrm{FSIM}_{C}$. The opposite happens for $r_{g} / \mathrm{FSIM}_{C}$, which is less correlated with r_{t} / iCID than with r_{s} / iCID. This does not happen on D_{2} (see Table VI(b)), where in any case r_{g} is more correlated with r_{t} than with r_{s}, thanks to the accurate geometric registration of the images.

To summarize, for accurately registered images, r_{g} gives similar results whatever the error quality metric used (FSIM C_{C} or iCID), and is more in accordance with r_{t} than with r_{s}, as quality metrics are designed to privilege more color content than structural context. On the other hand, for coarsely registered images, $r_{g} / \mathrm{FSIM}_{C}$ tends to emphasize someway more than r_{g} / iCID the structural context of I_{s} (taken into account by r_{s}), than the color content of I_{t} (taken into account by r_{t}). As a result, special care should be taken when using Table II to

TABLE VII
AVERAGE RUNNING TIME (S), DARKER VALUES ARE BETTER (BEST VIEWED IN COLOR).

	GL	LCP	BLG	CIM	MSS	TS	P
R	0.38	2.41	18.44	9.56	12.84	334.08	9.04
CS	1.02	2.11	5.51	7.94	11.63	336.18	4.04
GC	1.13	1.87	5.13	7.58	11.27	335.18	3.82
3M	1.05	2.11	5.40	7.67	11.65	337.18	4.37
PM	1.14	2.40	5.97	7.88	11.64	336.70	5.63
AM	1.21	2.09	5.51	7.83	11.63	337.03	4.66
PR	1.26	2.92	19.40	9.48	13.17	334.54	11.60
HM	1.47	11.77	9.20	8.10	11.87	334.41	19.83
TG	9.16	107.99	101.92	59.28	26.42	343.08	297.52
G	1.46	15.08	12.28	9.89	12.13	320.46	24.80
MS	1.62	16.43	13.83	10.29	13.36	336.06	29.95
3MS	1.73	16.66	14.81	10.51	13.48	322.88	31.04
GPS	42.76	50.62	47.75	685.12	501.15	446.37	2318.54
FGPS	13.55	31.43	28.70	192.05	134.81	368.25	763.54

select a good color correction method for coarsely registered images. To be sure that the chosen method works reasonably well, it should have a high rank with both $r_{g} /$ FSIM $_{C}$ and r_{g} / iCID, and not with only one of them. Following this observation, we can conclude that, as already emerged from the analysis of Table II, both GPS/LCP and FGPS/LCP are ideal candidates for color correction with coarsely registered images, as they rank among the first with r_{g} whatever the quality metric, and are also visually in accordance with human judgment.

D. Running Time

Table VII shows the average running time for input images of about 800×600 pixels. Times refer to our 6 core multithreaded Matlab implementation on a Intel i7 at 4 GHz .

Concerning the running time for PAs, GL is obviously the fastest with any ME, followed by LCP and BLG, both working block-wise on the images. CIM and MSS, which are based on mean shift segmentation, come next, followed by P, when combined with all but GPS, FGPS and TG. The worst running times are obtained with TS whichever ME, and by P when combined with either GPS, FGPS and TG.

An insight into the time performance of MEs is given by the GL column of Table VII, dealing with the simplest PA. Data show that almost all MEs run in less than 2 seconds, except for GPS, FGPS and TG, whose running times are still reasonable. In addition, both GPS and FGPS, when coupled with LCP and BLG, that provide the most promising visual results (see Sec. IV-B), are still conveniently usable with respect to GL. Notice also that FGPS provides a remarkable running time improvement over GPS, with a speedup of about $4 \times$.

V. Conclusions and Future Work

In this paper, we introduced a new compositional framework for classifying color correction methods in terms of ME/PA pairs. This framework is completely general and comprehensive, and allows for a clearer analysis of color correction methods, providing a deeper insight into their properties.

We revisited and categorized 15 of the existing color correction methods according to this framework, identifying and combining pairwise their MEs and PAs to design new methods never considered before. We also designed four novel CUs (2 MEs and 2 PAs), that were found to be the building material for the best performing algorithms.

In order to evaluate all possible 98 color correction methods that arise from the proposed framework, image pairs from several distinct datasets were used. Differently from previous evaluations, our tests focused on performance evaluation in the presence of image misalignments, bearing in mind real world applications such as image mosaicing and stitching. To the best of our knowledge, this is the first evaluation on so big a dataset, explicitly takes into account coarse image registration issues, and is also the first to employ the latest state-of-the-art image quality metrics, known to be the closest to human judgment. According to our comparative evaluations, the GPS/LCP and FGPS/LCP methods, built upon our proposed CUs, achieved the top ranking and obtained the most robust results in the case of real stitching scenarios. In the presence of accurate image registration and artificial color alterations, AM/BLG, whose PA was also proposed in this paper, obtained the most accurate results, followed by PM/MSS, which is an original combination of existing CUs.

Our compositional framework is quite general. Therefore, we plan as future work to add further CUs from existing color correction methods which were not considered in this paper. We also plan to extend the datasets and the quality assessment metrics employed, for instance by applying on accurate registered images known geometric transformations to mimic a coarse image alignment, thus making the choice of the ground-truth and of the error metrics more reliable. Even more importantly, we think that an interesting direction for future research is the investigation of computational chains composed of more than one pair of ME and PA, which could prove effective at overcoming the weaknesses of a given single ME/PA pair.

Acknowledgments

We would like to thank the authors of [2] and [6] for granting access to their datasets and Giosuè Lo Bosco, Domenico Tegolo and Cesare Valenti for granting access to the computational resources of the University of Palermo.

This work was supported by the SUONO project (Safe Underwater Operations iN Oceans), SCN_00306, ranked first in the challenge on "Sea Technologies" of the competitive call named "Smart Cities and Communities" issued by the Italian Ministry of Education and Research.

REFERENCES

[1] M. Brown and D. G. Lowe, "Automatic panoramic image stitching using invariant features," International Journal of Computer Vision, vol. 74, no. 1, pp. 59-73, 2007.
[2] Y. Hwang, J. Lee, I. Kweon, and S. Kim, "Color transfer using probabilistic moving least squares," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[3] J. Zaragoza, T. J. Chin, Q. H. Tran, M. S. Brown, and D. Suter, "As-projective-as-possible image stitching with moving DLT," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1285-1298, 2014.
[4] H. R. Su and S. H. Lai, "Non-rigid registration of images with geometric and photometric deformation by using local affine fourier-moment matching," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[5] H. Faridul, T. Pouli, C. Chamaret, J. Stauder, E. Reinhard, D. Kuzovkin, and A. Tremeau, "Colour mapping: A review of recent methods, extensions and applications," Computer Graphics Forum, vol. 35, no. 1, pp. 59-88, 2016.
[6] W. Xu and J. Mulligan, "Performance evaluation of color correction approaches for automatic multi-view image and video stitching," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 263-270.
[7] F. Bellavia and C. Colombo, "Color correction for image stitching by monotone cubic spline interpolation," in Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 2015.
[8] J. Preiss, F. Fernandes, and P. Urban, "Color-image quality assessment: from prediction to optimization," IEEE Transactions on Image Processing, vol. 23, no. 3, pp. 1366-1378, 2014.
[9] L. Zhang, L. Zhang, X. Mou, and D. Zhang, "FSIM: a feature similarity index for image quality assessment," IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378-2386, 2011.
[10] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, "Color transfer between images," IEEE Computer Graphics and Applications, vol. 21, no. 5, pp. 34-41, 2001.
[11] X. Xiao and L. Ma, "Color transfer in correlated color space," in Proceedings of the ACM International Conference on Virtual Reality Continuum and Its Applications, 2006, pp. 305-309.
[12] J. Yin and J. R. Cooperstock, "Color correction methods with applications to digital projection environments," Journal of Winter School of Computer Graphics, vol. 12, no. 3, pp. 499-506, 2004.
[13] M. Oliveira, A. Sappa, and V. Santos, "Unsupervised local color correction for coarsely registered images," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 201-208.
[14] Y. Taiand, J. Jia, and C. Tang, "Local color transfer via probabilistic segmentation by expectation-maximization," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, 2005, pp. 747-754.
[15] M. Uyttendaele, A. Eden, and R. Szeliski, "Eliminating ghosting and exposure artifacts in image mosaics," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2001, pp. 509-516.
[16] A. Ilie and G. Welch, "Ensuring color consistency across multiple cameras," in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2005, pp. 1268-1275.
[17] H. Faridul, J. Stauder, J. Kervec, and A. Tremeau, "Approximate cross channel color mapping from sparse color correspondences," in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2013, pp. 860-867.
[18] M. Grogan and R. Dahyot, "Robust registration of gaussian mixtures for colour transfer," in arXiv, 2017.
[19] D. Liao, Y. Qian, and Z. Li, "Semisupervised manifold learning for color transfer between multiview images," in International Conference on Pattern Recognition (ICPR), 2016, pp. 259-264.
[20] U. Fecker, M. Barkowsky, and A. Kaup, "Histogram-based prefiltering for luminance and chrominance compensation of multiview video," IEEE Transactions on Circuits Systems and Video Techniques, vol. 18, no. 9, pp. 1258-1267, 2008.
[21] M. Oliveira, A. Sappa, and V. Santos, "A probabilistic approach for color correction in image mosaicking applications," IEEE Transactions on Image Processing, vol. 24, no. 2, pp. 508-523, 2015.
[22] F. Pitié, A. Kokaram, and R. Dahyot, "Automated colour grading using colour distribution transfer," Computer Vision and Image Understanding, vol. 107, no. 1-2, pp. 123-137, Jul. 2007, http://www.mee.tcd.ie/ ~sigmedia/Research/ColourGrading.
[23] M. Zhang and N. Georganas, "Fast color correction using principal regions mapping in different color spaces," Real-Time Imaging, vol. 10, no. 1, pp. 23-30, 2004.
[24] J. Jia and C. Tang, "Tensor voting for image correction by global and local intensity alignment," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 36-50, 2005.
[25] S. Kim and M. Pollefeys, "Robust radiometric calibration and vignetting correction," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 562-576, 2008.
[26] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski, "Nonrigid dense correspondence with applications for image enhancement," ACM Transactions on Graphics, vol. 30, no. 4, p. 70, 2011.
[27] F. N. Fritsch and R. E. Carlson, "Monotone piecewise cubic interpolation," SIAM Journal on Numerical Analysis, vol. 17, no. 2, pp. 238-246, 1980.
[28] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, 2002, http://coewww. rutgers.edu/riul/research/code/EDISON/.
[29] Y. Tai, J. Jia, and C. Tang, "Soft color segmentation and its applications," IEEE Transactions on Pattern Analysis and Machince Intelligence, vol. 29, no. 9, pp. 1520-1537, 2007.
[30] P. Soille, Morphological Image Analysis: Principles and Applications, 2nd ed. Springer-Verlag, 2003.
[31] C. C. Lin, S. U. Pankanti, K. N. Ramamurthy, and A. Y. Aravkin, "Adaptive as-natural-as-possible image stitching," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 11551163.
[32] G. Zhang, Y. He, W. Chen, J. Jia, and H. Bao, "Multi-viewpoint panorama construction with wide-baseline images," IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3099-3111, 2016.
[33] F. Bellavia and C. Colombo, "Estimating the best reference homography for planar mosaics from videos," in Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), 2015.
[34] D. Salomon, Data Compression: The Complete Reference. SpringerVerlag, 2006.
[35] X. Zhang and B. A. Wandell, "A probabilistic approach for color correction in image mosaicking applications," Journal of the Society for Information Display, vol. 5, no. 1, pp. 61-64, 1997.
[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.
[37] Y. Niu, H. Zhang, W. Guo, and R. Ji, "Image quality assessment for color correction based on color contrast similarity and color value difference," IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, pp. 1-1, 2017.
[38] C. Spearman, "The proof and measurement of association between two things," The American journal of psychology, vol. 15, pp. 72-101, 1904.
[39] I. Lissner, J. Preiss, P. Urban, M. S. Lichtenauer, and P. Zolliker, "Imagedifference prediction: From color to spectral," IEEE Transactions on Image Processing, vol. 23, no. 5, pp. 2058-2068, 2014.

[^0]: F. Bellavia and C. Colombo are with the Department of Information Engineering, Università degli Studi di Firenze, Via di S. Marta, 3, 50139 Firenze, Italy, e-mail: name.surname@unifi.it .

[^1]: ${ }^{1}$ https://drive.google.com/open?id=0B_3Nh0OK9BclQkt4empQVU5yVE0

