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Abstract In complex geochemical aqueous systems, chemical species are concep-
tually distinct but empirically related thanks to a large number of interactions taking
place at different spatial and/or temporal scales. In this condition, common elements
are shared,multiplicative interactions arise, and feedbackmechanismsmay be able to
maintain the system far from the thermodynamical equilibrium, bearingwide fluctua-
tions. Chemical species can have alternative stable states and transitions among them
that could produce important consequences for the stability and the resilience of the
solutions, also forced by climate changes andwith impact on human health.Under the
Compositional Data Analysis (CoDA) methodology, it is possible to appreciate the
power of some tools able to take a look at the whole instead of the constituting parts,
enhancing the understanding of the nature of mutual interactions. In this research
work, the role of the perturbation operator governing addition/subtraction in the sim-
plex geometry is explored as a way to trace compositional changes and investigate
the system dynamics. The results of our approach on the chemistry of the Arno River
waters (Central Italy) highlight the possibility to discover the resilience of chemical
species under the pressure of the environmental drivers affecting the catchment. Geo-
chemical mobility (e.g., ionic potential, ionic strength) can be associated with new
tools that provide information on either the resistance to change, predisposing the sys-
tem to critical shifts, or its adaptive capacity, which instead favors gradual changes.
This information appears to be fundamental since river water chemistry enables to
decipher processes at the boundaries among lithosphere, biosphere, hydrosphere, and
atmosphere, all key reservoirs involved in the dynamics of the Earth. This knowledge
will be particularly relevant if the pressure of the climatic changes on our planet will
continue to increase.
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1 Introduction

Compositional Data Analysis (CoDA) has been considered, at first, only as a way
to open constrained data with the aim of working in the correct sample space. At
the beginning, this idea has generated some misunderstanding since data that do not
close to a given constant were assumed not to be compositional (Aitchison 1982).
Subsequently, the idea of proportionality among the terms of a composition has
gained ground and it was clear that the total to which a composition is closed is
irrelevant (Aitchison 1986). What really counts in CoDA are the reciprocal relation-
ships among the parts of the composition that are intimately linked to each other
(Egozcue et al. 2011). This framework appears to well describe simultaneous chem-
ical reactions that occur in natural processes. A geochemical system comprises, at
least, an aqueous solution in which the species of many elements are dissolved,
include one or more minerals, a buffering condition with a gas reservoir, and the
atmosphere in the surficial environment (Bethke 2008). Water geochemists work
daily with equations that describe the equilibrium of several simultaneous chemical
reactions among dissolved species, minerals, and gases. Each mass action equation
relates the activities of the species to the reaction equilibrium constants. How can we
describe the state of such a system? A direct approach would be to write the single
reactions among the species of the system, minerals, and gases. To solve equilib-
rium problems a set of concentrations that simultaneously satisfy the mass action
equation should be written for each possible reaction. It is clear that such a system
is multicomponent and due to the relationships among the parts and the presence
of feedback mechanisms, its dynamics become complex. Reactions and concentra-
tions cannot be decoupled and the reaction rates, relating sink and source terms, can
induce nonlinearity (Sanchez-Vila et al. 2007). The evolution of an aqueous system
is characterized by the migration of the chemical species between phases in innu-
merable cycles that form all together a larger, more complex interconnected whole
(Kleidon 2010). The interconnections generate properties of the whole that cannot be
wholly understood by examining the parts of the system in isolation. Thus, complex
systems have properties that depend on the integrity of the whole. In this context,
most of the geological systems are complex systems since they are dissipative and
self-organizing systems, working in open and dynamic conditions and consisting of
a great number of components (e.g., rocks, minerals, and elements) which interact
in a nonlinear region far from the equilibrium (Shvartsev 2009). A way to take into
account the simultaneous relationships among all the components of a system is to
apply methods of multivariate analysis (Krzanowski 2000). If this path is followed,
it is necessary to consider the appropriateness of the sample space in which data
move, since it determines the variance-covariance structure. Detecting in a correct
manner how variability moves is fundamental to intercept the dynamics of a com-
plex system and to understand the response to environmental perturbations. In these
terms, the CoDA approach appears to be the theoretical framework to abandon single
variables and to focus our attention on the properties of the whole. The treatment of
compositional data requires two possible strategies (Aitchison 1986). The first one,
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called “stay in the simplex” approach, adopts the Aitchison geometry to work in a
constrained sample space. The second one is based on the transformation of the data
to move cases out from the simplex in the real Euclidean space and it is known as
“working in coordinates” (Egozcue et al. 2003; Pawlowsky-Glahn et al. 2015). In
this work, our interest focused on the first approach and, in particular, on the use
of the perturbation operator. It represents one of the basic tools required to give to
the simplex a vector space structure and it could have a strategic role in monitoring
changes, giving useful information about the dynamics of a system. An application
example to the waters of the Arno (Central Italy) riverine geochemical system will
be used to illustrate the procedure. The research question is whether the perturbation
operator is able to provide insight about similarity among chemical elements and the
coherence in their behavior within the dynamics of the system, thus offering a new
geochemical tool of investigation.

2 Material and Methods

2.1 Tracing Change Through Perturbations

The vector x = (x1, x2, . . . , xD) indicates a D-part composition in the simplex:

SD =
[

x = (x1, x2, . . . , xD) : xi > 0(i = 1, 2, . . . , D),

D∑

i = 1

xi = κ

]

(1)

where κ is a given positive constant whose value depends on the measure unit. Two
basic operations on the simplex, called perturbation and powering that are able to
induce a real vector space structure on the simplex, have been introduced (Aitchison
1986). Furthermore, the introduction of an inner product, with its associated norm
and distance, has been used to obtain a D − 1-dimensional Hilbert space structure
(Billheimer et al. 2001; Pawlowsky-Glahn and Egozcue 2001). In this framework,
a perturbation p = (p1, p2, . . . , pD) is a differential scaling operator that, when
applied to the composition x = (x1, x2, . . . , xD), yields the composition:

y = p ⊕ x = C(p1x1, . . . , pDxD) (2)

where C is the closure operator that scales elements to remain in the simplex sample
space:

C(x) =
[

κ · x1∑D
i = 1 xi

,
κ · x2∑D
i = 1 xi

, . . . ,
κ · xD∑D
i = 1 xi

]

. (3)



256 A. Buccianti and C. Gozzi

Fig. 1 Steps of the procedure to rank the cases by increasing Aichison’s distance from the spring
composition and to calculate the perturbation difference for subsequent compositions, xi+1 − xi

Asany composition canbe expressed as a result of a perturbationon anyother com-
position, the operator acquires a fundamental role in tracing compositional changes.
This is especially true if a reference composition is available and differences with
respect to this one can be calculated or when compositions are linked each other
by a subsequent evolutive pattern. Thus, if y = p ⊕ x corresponds to addition in
the R, the y = p ⊖ x corresponds to the perturbation difference when obtained by a
component-wise division of the elements of the x and y vectors (Aitchison 1986).
Our approach is based on the transformation of the original dataset n × D, related to
the chemistry of waters collected in a river, in a perturbations matrix n − 1 × D. In
this matrix, each row is related to the perturbation difference among two subsequent
compositions, corresponding to the difference xi+1 − xi , after having ranked cases
under some geochemical hypothesis. Thus, in order to calculate the perturbation
matrix, the original dataset was first ranked by considering the increasing value of
the Aitchison distance from the chemical composition of the spring, to be considered
as a pristine water. The procedure is illustrated in Fig. 1. The (squared) Aitchison
distance is a simplicial metric given by

d2
a (x, y) =

D∑

i = 1

[
ln

xi
gm(x)

− ln
yi

gm(y)

]2

(4)

where gm(·) is the geometric mean of the components, calculated considering the
parts of the vectors x and y (Pawlowsky-Glahn and Egozcue 2001). The explorative
map of the Aitchison distance could show where the compositional difference with
respect to the spring is higher at the catchment scale. This permits the identification
of homogeneous areas or spatial patterns to be related to other non-compositional
environmental factors. On the other hand, the perturbation matrix informs, for each
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sample, about the chemical species that mostly take charge of the change offering
an interesting tool to trace and interpret the behavior of the composition as a whole.

2.2 The Dataset

The catchment area of the Arno River Basin is entirely located in Tuscany, Central
Italy and has a surface of 8,228 km2 with an average elevation of 353 m. The river’s
headwater spring is in the Northern Apennines at 1650m, and flows for about 242 km
toward the Ligurian Sea, 10 km West of Pisa and 110 km of Florence, respectively.
The drainage network followsNW-SE trending tectonic structures that form sixmain
sub-basins from East to West: (1) Casentino, (2) Chiana Valley, (3) Sieve, (4) Upper
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Fig. 2 Lithological map of the Arno River catchment (Tuscany, central Italy). Geological layer
modified from SINAnet (ISPRA Ambiente 2019)
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Valdarno, (5) Middle Valdarno, and (6) Lower Valdarno. The outcropping rocks are
predominantly sedimentary folded and faulted Mesozoic and Tertiary units derived
from the weathering of the Apennine Mountains. A schematic lithological map is
shown in Fig. 2. The database is related to a 2-year sampling campaign (2002–2003)
performed by taking into account the seasonal variability. However, no significant
influence on compositional changes compared to other environmental factors (Nisi
et al. 2008) appears to be attributable to seasonality. The main determined chemi-
cal species were Na+, K+, Ca2+, Mg2+, Cl−, HCO−

3 , SO
2−
4 , and SiO2(aq ). The

Arno River Basin, similarly to other European watersheds (Berner and Berner 1996),
has suffered from the past century an increased industrial and agricultural develop-
ment, so that the contribution of chemical weathering is mixed with anthropic inputs
(Arrighi et al. 2018). Further details about sampling and analytical methodologies
can be found in Nisi et al. (2008).

3 Results and Discussion

The analyzed dataset is given by 474 cases and 8 variables (Na+, K+, Ca2+, Mg2+,
Cl−, HCO−

3 , SO
2−
4 , SiO2(aq )) measured in mg/L. The chemical composition of the

spring is characterized by a low conductivity of about 0.12mS/cm and a TDS (total
dissolved solids) equal to 315 mg/L. Values higher than 6.0mS/cm are related to
polluted areas of the catchment, while the maximum value of about 27.66mS/cm is
measured near the rivermouthwhere seawater interactswith the fresh one (TDSequal
to 8700mg/L). Aitchison’s distance values of each sample from the composition of
the spring, considered representative of a pristine water, have been calculated. The
hypothesis is that, starting from this point, weathering processes begin to modify the
chemistry of the solution. The spring water with few dissolved constituents interacts
with atmospheric air, minerals, and solid organic matter generating a disequilibrium
condition. In this situation, dissolution reactions occur and new components are
added to the water modifying its composition step by step. Typical reactions that can
develop are given by

CaCO3(calci te)+ H+ → Ca2+ + HCO−
3 (5)

2K Fe3AlSi3O10(OH)2(bioti te)+ 14H+ + H2O →
2K+ + 6Fe2++ 4H4SiO0

4 + Al2Si2O5(OH)4(kaolini te)
(6)

CH2O(organicmatter)+ O2(aq ) → CO2(gas)+ H2O (7)

representing the weathering of carbonate, silicate minerals, and the oxidation of the
organic matter, respectively. The effectiveness of Aitchison’s distance in capturing
what is occurring during weathering processes is revealed by its clear positive rela-
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Fig. 3 Map of Aitchison’s distance values of each sample from the spring water considered repre-
sentative of a pristine condition

tionship with the conductivity, thus representing a possible marker of geochemical
changes. The spatial distribution of the distance values is reported in Fig. 3. Aswe can
see from the map, its values increase along the course of the main river mainly start-
ing from the Middle Valdarno where natural processes began to mix with anthropic
ones and near to the mouth due to the marine ingression and mixing processes.

After the calculus of Aitchison’s distance, the data were ranked for its increasing
values and the perturbation difference between subsequent compositions xi+1 − xi
was determined. This step is important to highlight the different behavior of sin-
gle chemical components inside the composition. In this way, similar Aitchison’s
distance values could be attributed to different processes depending on the associ-
ation of variables in the perturbation. The results, as unclosed perturbation factors,
are reported in Fig. 4 (Egozcue and Pawlowsky-Glahn 2011) while the histogram
of Aitchison’s distance values, with the associated kernel density estimation curve,
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Fig. 4 Comparative box plots for the unclosed perturbation factors for each chemical species for
data ranked by considering the increasing values of Aitchison’s distance from the spring water.
Perturbation difference represents the difference xi+1 − xi

Fig. 5 Histogram and kernel density estimation of Aitchison’s distance values from the spring
composition considered as a pristine water
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Fig. 6 Complementary cumulative distribution function for unclosed perturbation factors. The
continuous line is related to the log-normal model

is shown in Fig. 5. The distance presents a positive asymmetrical distribution with
rare high values in the right tail, indicating that most of the data are characterized
by a distance lower than 3 with respect to the pristine condition. High values are
related to the mouth (marine ingression) and to peculiar pollution conditions (e.g.,
Usciana and Chiana Channels) or to the presence of lenses of CaSO4 and NaCl in
clays in the valleys of Elsa and Era Tributaries (Fig. 2). The unclosed perturbation
factors of Fig. 4 provide information about the contribution of each variable to the
compositional changes. SiO2(aq ), Cl−, Na+, K+, and SO2−

4 show a more scattered
contribution while HCO−

3 , Ca2+, and Mg2+ exhibit a more stable signal. Hence,
this procedure appears to be able to divide the variables into two different groups, one
more sensible to environmental changes, perhaps related to an intermittent spatial
behavior, and the other more resilient. The result indicates that monitoring plans for
a long temporal range, with the aim of intercepting important changes in the catch-
ment, also related to climatic variations, should be based on the sub-composition
related to the cycle of carbonates (HCO−

3 ,Ca2+, and Mg2+). To investigate in more
detail the nature of the contribution of the variables to the compositional changes,
the complementary cumulative distribution function for the unclosed perturbation
factors was determined and plotted (Mitzenmacher 2004; Egozcue and Pawlowsky-
Glahn 2011). Results are reported in Fig. 6 with the continuous line related to the
description of the patterns by the log-normal model. The comparison between exper-
imental data and the log-normal distribution indicates that in no case it is possible to
adopt it to describe the behavior of the chemical species. On the other hand, some
portions of the curves are clearly linear highlighting the possible presence of more
than one power law or a multifractal behavior (Seely and Macklem 2012).
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The consequence is that an interaction-dominant dynamics is no longer exhaustive
and the typical multiplicative processes of a log-normal model would be associated
with interdependent feedback transactions covering different time or space scales
(van Rooij et al. 2013). Thus, compositional changes that enrich riverine water in
solutes starting from its pristine condition are apparently described by features that
are typical of a complex system such as the occurrence of multifractality. This prop-
erty characterizes dynamical systems in which energy dissipation can no longer be
neglected.However, in this general framework, considering the unclosed perturbation
factors of Fig. 4, species such as HCO−

3 ,Ca2+, andMg2+ appear to bemore efficient
in stabilizing fluctuations. In fact, they reveal the presence of a sub-system charac-
terized by homogeneity and connectivity which is particularly resistant to change
but also subjected to critical transitions (Scheffer et al. 2012; Sauro Graziano et al.
2020). The cause–effect relationship able to govern this situation could be related at
the catchment scale to: (i) the spatial diffusion of the lithologies from which these
chemical species migrate; (ii) their homogeneity and connections; and (iii) the effi-
ciency of geochemical processes, affecting the way in which a system, with potential
local alternative states, can respond to changing conditions. The behavior of all the
other chemical species, SiO2(aq ), Cl−, Na+, K+, and SO2−

4 , could instead indicate:
(i) an heterogeneous distribution of the lithologies from which they came from; (ii)
incomplete connectivity with presence of modularity; and (iii) less diffused (inter-
mittency) or less efficient geochemical processes, all features that lead to a higher
adaptive capacity and favor gradual changes. The values of the saturation indices, cal-
culated for some fundamental minerals such as calcite, dolomite, and quartz, appear
stationary when cases are ranked for increasing Aitchison’s distance as well as box
plots equilibrated around the median values, with the exception of some anomalous
data (Zhu and Anderson 2002). Thus, chemical equilibria, able to limit the concen-
tration of the ions in water, have a buffering effect in the compositional changes as
registered by the perturbation difference from a pristine water. The result indicates
this compositional tool to be very useful as an explorative aid in water geochemistry
to check for different evolutive geochemical hypothesis. Therefore it is important to
stress that Aitchison’s distance is a compositional distance between different com-
positions and only the association with the perturbation difference will help us to
discriminate different situations characterized by similar distance values. In our case
study, the distance values are not associated with an anomalous behavior of the per-
turbation factors (e.g., presence of trends and pluri-modality), indicating that similar
processes appear to have affected the evolutive path of the water starting from the
pristine reference.

4 Conclusions and Future Developments

The research on complexity theory and nonlinear dynamics involves concepts such
as dissipative structures and fractal patterning, as well as instability, resilience, adap-
tive cycles, and uncertainty. Such promising concepts are still developing but CoDA
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appears to offer the tools to investigate chemical compositions as awhole and to probe
the system dynamics based on the nature of the interactions of the components under
the forcing effects of different environmental drivers. In this framework, the pertur-
bation operator seems to present powerful features able to discover the resiliency of
chemical variables versus intermittency and instability. This opens important paths
to reveal warning signals for relevant changes, also related to climatic variations.
The results obtained for the river chemistry of the Arno catchment are very com-
forting. Further investigation would be performed to link perturbation differences to
non-compositional variables, or environmental drivers, characterizing the catchment
(e.g. slope, structure of the drainage network, erodibility, runoff, and discharge). The
joint analysis would help to point out the nature of the interactions and feedback
mechanisms able to govern the development of chemical reactions, thus determining
the chemistry of the waters (Gozzi et al. 2019a, b). The proposed approach gives a
potential basis to expand this research since Aitchison’s distance and compositional
changes from a pristine water synthesize the complexity of the system from the
chemical point of view. Other non-compositional variables can be then called into
question and interrelated with the previous ones.
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