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Abstract. We consider a nonlocal boundary value problem for a semilinear differential inclusion

of a fractional order in a Banach space assuming that its linear part is a non-densely defined Hille-
Yosida operator. We apply the theory of integrated semigroups, fractional calculus and the fixed

point theory of condensing multivalued maps to obtain a general existence principle (Theorem 3.2).

Theorem 3.3 gives an example of a concrete realization of this result. Some important particular
cases including a nonlocal Cauchy problem, periodic and anti-periodic boundary value problems are

presented.
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1. Introduction

Starting from the paper [31], nonlocal boundary value problems for differential
inclusions in a Banach space are the subject of investigation for many researchers,
see for example the works of Ding and Kartsatos [12], Kravvaritis and Papageorgiou
[19], Marino [20], Obukhovskii and Zecca [25], Papageorgiou [27, 28]. Some nonlocal
problems for fractional differential equations and inclusions were considered recently
in the works of Agarwal, Baleanu, Nieto, Torres and Zhou [2], Ahmad, Nieto, Alsaedi
and Aqlan [3], Anh and Ke [4], Benedetti, Obukhovskii and Taddei [9] and others.
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In the last decades the interest to the theory of differential equations and inclusions
of fractional order essentially strengthened due to important applications to control
theory, variational principles, Lagrangian and Hamiltonian dynamics, physics, engi-
neering, biology, economics and other branches of natural sciences (among others see,
e.g., monographs of Kilbas, Srivastava and Trujillo [18], Podlubny [29], Zhou [33] and
references therein). It should be mentioned that one of the most valuable advantages
of fractional order models in comparison with integer order ones is that fractional
order derivative of a function depends on the past values of such function and hence
it becomes a powerful tool for the description of memory and hereditary properties of
some systems. From the other side, it is well known that the study of systems with
distributed parameters leads to the corresponding problems in infinite dimensional
Banach spaces. The analysis of such problems (for the case of an ordinary semilin-
ear differential inclusion) by the methods of the theory of condensing operators was
developed in the monograph of Kamenskii, Obukhovskii and Zecca [15]. The use of
this technique allows to overcome the difficulty lying in the fact that in these prob-
lems compactness assumptions are not posed neither on a semigroup generated by
the linear part of the inclusion nor on a multivalued nonlinearity.

At the same time it is worth noting that in most publications concerning semi-
linear inclusions it is assumed that their linear part is densely defined on the whole
phase space. Meantime in many situations this assumption looks rather onerous: for
example, from restrictions on the space on which the linear part is defined (periodic
continuous functions, Hölder continuous functions, etc.) or from boundary conditions
(e.g., the space of smooth functions vanishing on the boundary of a domain is not
dense in the space of continuous functions) (see [11, 22] et al.) In this case the no-
tions of an integrated semigroup introduced by Arendt [5] and a mild (or integral)
solution of an equation with a non-densely defined operator considered by Da Prato
and Sinestrari [11] turned out to be very useful. In particular, in the paper [26] for a
semilinear differential inclusion with a linear part satisfying the Hille-Yosida condition
some existence and continuous dependence results were obtained. Existence results
for nondensely defined fractional differential inclusions in a Banach space were proved
in [32, 33] and some other works.

In the present paper we study a general nonlocal boundary value problem for a
fractional-order semilinear differential inclusion in a Banach space. It is organized
as follows. In the next section we give necessary preliminaries from the theory of
integrated semigroups and their generators as well as from the theory of measures
of noncompactness and multivalued analysis. In Section 3 we describe the class of
considered differential inclusions in a Banach space and present the general boundary
value problem which we are going to study. We introduce a multivalued operator in
a functional space whose fixed points are mild solutions of the considered problem
and investigate its properties. In particular, it is shown that it is so called quasi-Rδ
multioperator that allows to apply to it the corresponding topological degree theory
(see [15]). This application yields a general existence principle (Theorem 3.2) and
an example of a concrete realization of this principle which gives Theorem 3.3. In
the last section we consider some particular cases of the considered boundary value
problem including a nonlocal Cauchy problem and a periodic problem.
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2. Preliminaries

2.1. Integrated Semigroups and Nondensely Defined Operators. In this sec-
tion we recall some necessary facts about integrated semigroups and their generators.
For more details, we refer the reader to [5, 6, 7, 17, 21, 22, 30]. We start with the
following notions (see [5, 7]).

Let E be a Banach space.

Definition 2.1. A family {V (t)}t≥0 of bounded linear operators on E is called an
integrated semigroup if:

(V 1) V(0) = 0;
(V 2) V (·) is strongly continuous, i.e., the function t → V (t)x, t ≥ 0 is continuous

for each x ∈ E;
(V 3) V (s)V (t) =

∫ s
0

(V (t+ τ)− V (τ))dτ for each t, s ≥ 0.

Definition 2.2. A family of linear operators {V (t)}t≥0 is called exponentially
bounded if there exist constants C ≥ 0 and ω ≥ 0 such that

‖V (t)‖ ≤ Ceωt for t ≥ 0.

In this case we will denote V (·) ∈ G(C, ω).

Definition 2.3. A linear operator A on E is called the generator of an integrated
semigroup if there exists ω ≥ 0 such that (ω,+∞) ⊂ ρ(A) (the resolvent set of A) and
there exists a strongly continuous exponentially bounded family {V (t)}t≥0 of bounded
linear operators such that V (0) = 0, V ∈ G(M,ω), and the following representation
for the resolvent of A holds:

R(λ,A) := (λI −A)−1 = λ

∫ +∞

0

e−λtV (t)dt (λ > ω).

In this case, V (·) is said to be the integrated semigroup generated by A.

Notice the following relations between an integrated semigroup and its generator.

Proposition 2.1. (see [5, 7]) Let A be the generator of an integrated semigroup
{V (t)}t≥0. Then,

(i) for all x ∈ E and t ≥ 0 :∫ t

0

V (τ)xdτ ∈ D(A) and V (t)x = A(

∫ t

0

V (τ)dτ) + tx;

(ii) for all x ∈ D(A) and t ≥ 0 :

V (t)x ∈ D(A), AV (t)x = V (t)Ax,

and

V (t)x =

∫ t

0

V (τ)Axdτ + tx;

(iii) R(λ,A)V (t) = V (t)R(λ,A) for all t ≥ 0, λ > ω.
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Definition 2.4. ([17]) An integrated semigroup {V (t)}t≥0 is called locally Lipschitz
continuous if for each r > 0 there exists a constant Lr > 0 such that

‖V (t)− V (s)‖ ≤ Lr|t− s| for all t, s ∈ [0, r].

It is known (see [17]) that a Lipschitz continuous integrated semigroup is exponen-
tially bounded.

Definition 2.5. A linear (not necessarily densely defined) operator A : D(A) ⊂ E →
E is said to be the Hille-Yosida operator if there exist M ≥ 0 and ω ≥ 0 such that
(ω,+∞) ⊂ ρ(A) and

(λ− ω)n‖R(λ,A)n‖ ≤M for all n = 1, 2, ... and λ > ω. (2.1)

Proposition 2.2. ([17]) The following assertions are equivalent:

(i) A is a Hille-Yosida operator;
(ii) A is the generator of a locally Lipschitz continuous integrated semigroup.

It is known (see [17, 30]) that if A is a Hille-Yosida operator and {V (t)}t≥0

is the locally Lipschitz integrated semigroup generated by A, then the function
t → V (t)x, t ≥ 0 is differentiable for each x ∈ D(A) and, moreover, the deriva-

tive {V ′(t)}t≥0 is a C0-semigroup on D(A) generated by the part A0 of the operator
A which is defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)},

A0x = Ax for x ∈ D(A0).

In the what follows we will denote

E0 = D(A).

Proposition 2.3. ([17, 30]) Let {V (t)}t≥0 be a locally Lipschitz continuous integrated
semigroup on E and f : [0, T ] → E be a Bochner integrable function. Then the
function B : [0, T ]→ E,

B(t) =

∫ t

0

V (t− s)f(s)ds

is continuously differentiable and, moreover,

‖ d
dt
B(t)‖ ≤ 2LT

∫ t

0

‖f(s)‖ds for all t ∈ [0, T ], (2.2)

where LT is the Lipschitz constant of V on [0, T ].

Let A be a Hille-Yosida operator generating a locally Lipschitz continuous inte-
grated semigroup {V (t)}t≥0, function B : [0, t]→ E be defined as in Proposition 2.3.
Then, by applying Proposition 2.1 (iii) and using the Lipschitz continuity of V (·), one
may verify the following relation (see [1]):

R(λ,A)
d

dt
B(t) =

∫ t

0

V ′(t− s)R(λ,A)f(s)ds. (2.3)
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Moreover, taking into account that limλ→+∞ λR(λ,A)x = x for each x ∈ E0 (see,
e.g. [7]), we come to the following equality:

d

dt
B(t) = lim

λ→+∞

∫ t

0

V ′(t− s)λR(λ,A)f(s)ds. (2.4)

2.2. Measures of Noncompactness and Multivalued Maps. We will need some
notions from the multivalued analysis and topological degree theory for condensing
maps (see, e.g., [8, 10, 13, 15, 24]). Let X be a metric space; E a normed space; P (E)
denote the collection of all nonempty subsets of E . By symbols K(E) and Kv(E)
we denote the collections of all nonempty compact and, respectively, compact convex
subsets of E .

For Ω ∈ K(E) we denote

‖Ω‖ = max{‖ω‖ : ω ∈ Ω}.

Definition 2.6. A multivalued map (multimap) F : X → P (E) is said to be:

(i) upper semicontinuous (u.s.c. for short) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is
an open subset of X for every open V ⊂ E ;

(ii) closed if its graph GrF = {(x, y) ∈ X × E : y ∈ F(x)} is a closed subset of
X × E .

Definition 2.7. A multivalued map (multimap) F : X → K(E) is said to be:

(i) compact if its range F(X) is a relatively compact subset of E ,
(ii) quasicompact if its restriction to each compact set is compact.

If a u.s.c. multimap F is compact on bounded subsets of X it is called completely
u.s.c.

Proposition 2.4. ([15], Theorem 1.1.12). A closed and quasicompact multimap
F : X → K(E) is u.s.c.

Definition 2.8. Let E be a normed space; (A,≥ 0) a (partially) ordered set. A
function β : P (E)→ A is called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω)

for every Ω ∈ P (E).

A MNC β is called:

(a) monotone if Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);
(b) nonsingular if β(Ω ∪ {a}) = β(Ω) for every a ∈ E , Ω ∈ P (E);
(c) invariant with respect to union with compact sets if β(Ω∪K) = β(Ω) for every

Ω ∈ P (E), K is relatively compact in E ;
(d) invariant with respect to reflection through the origin if β(−Ω) = β(Ω) for

every Ω ∈ P (E);
(e) real if A = [0,+∞] with natural ordering.

If A is a cone in a Banach space, we say that the MNC β is:

(f) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1)
for every Ω0, Ω1 ∈ P (E);

(g) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.
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As the example of the MNC possessing all these properties, we may consider the
Hausdorff MNC :

χ(Ω) = inf{ε > 0 : Ω has a finite ε - net }.

Definition 2.9. A multimap F : X ⊆ E → K(E) is called condensing w.r.t. a MNC
β in E (or β-condensing), if for every Ω ⊆ X, that is not relatively compact, we have

β(F(Ω)) 6≥ β(Ω).

As examples of real MNCs defined on the space of continuous functions C([a, b];E)
with values in a Banach space E we may consider:

(i) the module of fiber noncompactness

ϕC(D) = sup
t∈[a,b]

χ(D(t))

and

(ii) the module of equicontinuity

modC(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖

for each bounded D ⊂ C([a, b];E).
These MNCs possess all the above properties except regularity. Moreover if we

denote by χC the Hausdorff MNC in the space C([a, b];E), we have the following
relation (see [15], Example 2.1.3):

ϕC(D) ≤ χC(D). (2.5)

Let E , E ′ be normed spaces with the Hausdorff MNCs χE and χE′ respectively and
L : E → E ′ a bounded linear operator. The number

‖L‖(χ) := χE′(LS),

where S ⊂ E is a unit sphere, is called the (χ)-norm of the operator L.
It is easy to verify the following properties:

‖L‖(χ) ≤ ‖L‖ (2.6)

and

χE′(LΩ) ≤ ‖L‖(χ)χE(Ω) (2.7)

for each bounded Ω ⊂ E .
Let E be a Banach space, L : E → C([a, b];E) a bounded linear operator and ϕC

the module of fiber noncompactness in C([a, b];E).

Definition 2.10. The value ‖L‖(χ,ϕ) equal to the infimum of all such C ≥ 0 for
which

ϕC(LΩ) ≤ CχE(Ω)

for all bounded Ω ⊂ E is called the (χ, ϕ)-norm of L.
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From (2.5) it follows that

‖L‖(χ,ϕ) ≤ ‖L‖(χ). (2.8)

Recall (see, e.g., [13]) that a metric space X is an absolute neighborhood retract
(or an ANR-space) if for every homeomorphism h that maps it onto a closed subset
h(X) of a metric space Y , the set h(X) is a retract of its certain neighborhood. The
class of ANR-spaces is sufficiently large: in particular, any union of a finite number
of convex closed subsets of a normed space is an ANR-space.

Definition 2.11. (See [13, 14]) A nonempty compact subset A of an ANR-space is
called an Rδ-set if there exists a decreasing sequence {An} of compact contractible
sets such that

A =
⋂
n≥1

An.

It is clear that compact convex or, more generally, contractible sets present ex-
amples of Rδ-sets. At the same time, an Rδ-set needs not be contractible (see an
example in [13]).

Let X be a subset of E .

Definition 2.12. A u.s.c. multimap F : X → K(E) is called: (i) an Rδ-multimap
(or J-multimap) if every value F(x), x ∈ X is an Rδ-set; (ii) quasi-Rδ-multimap (or
CJ-multimap) if there exists a normed space E1, an Rδ-multimap F1 : X → K(E1)
and a continuous map g : E1 → E such that F = g ◦ F1.

This definition and continuity properties of multimaps (see, e.g., [15]) imply the
following assertion.

Proposition 2.5. If F ,G : X→ K(E) be quasi-Rδ-multimaps then their sum F +G :
X→ K(E), (

F + G
)
(x) = F(x) + G(x)

is also quasi-Rδ.

Let β be a monotone nonsingular MNC in E , U an open bounded subset of E and
F : U → K(E) be a β-condensing quasi-Rδ-multimap, moreover, let x /∈ F(x) for
all x ∈ ∂U, where ∂U denote the boundary of the set U. In this situation for the
corresponding multifield i−F the characteristic

deg (i−F ,U),

called the topological degree, having all standard properties, is defined (see [15], Chap-
ter 3.4). In particular, the difference of this characteristic from zero implies the exis-
tence of at least one fixed point x ∈ U, x ∈ F(x).

As the consequence of this topological degree theory we get the following fixed
point principle (see [15], Corollary 3.4.2).

Proposition 2.6. Let M be a closed bounded subset of E and F : M → K(M) a
β-condensing quasi-Rδ-multimap. Then F has a fixed point x? ∈M, x? ∈ F(x?).

Recall some notions (see, e.g., [15, 24]). Let E be a separable Banach space.

Definition 2.13. For a given p ≥ 1, a multifunction G : [0, T ]→ K(E) is called:
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• Lp–integrable if it admits an Lp–Bochner integrable selection, i.e., there exists
a function g ∈ Lp ([0, T ];E) such that g(t) ∈ G(t) for a.e. t ∈ [0, T ];
• Lp–integrably bounded if there exists a function ξ ∈ Lp([0, T ]) such that

‖G(t)‖ ≤ ξ(t)
for a.e. t ∈ [0, T ].

The set of all Lp–Bohner integrable selections of a multifunction G : [0, T ]→ K(E)
is denoted by Sp(G).

Proposition 2.7. (see [23, 15]). Let G : [0, T ] → P (E) be an L1-integrable and L1-
integrably bounded multifunction. If there exists an L1-function υ : [0, T ] → R+ such
that

χE(G(t)) ≤ υ(t)

for a.e. t ∈ [0, T ] then

χE

(∫ t

a

G(s)ds

)
≤
∫ t

a

υ(s)ds, t ∈ [0, T ],

where ∫ t

a

G(s)ds =

{∫ t

a

g(s)ds : g ∈ S1(G)

}
.

3. Generalized Boundary Value Problems

Recall some notions from the fractional analysis (details can be found, e.g., in
[18, 29, 33]).

Let E be a real Banach space.

Definition 3.1. The Riemann–Liouville fractional derivative of the order q ∈ (0, 1)
of a continuous function g : [0, T ]→ E is the function Dqg of the following form:

Dqg(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qg(s) ds

provided the right-hand side of this equality is well defined.

Here Γ is the Euler gamma-function

Γ(r) =

∫ ∞
0

sr−1e−sds.

Definition 3.2. The Caputo fractional derivative of the order q ∈ (0, 1) of a contin-
uous function g : [0, T ]→ E is the function CDqg defined in the following way:

CDqg(t) =
(
Dq(g(·)− g(0))

)
(t)

provided the right-hand side of this equality is well defined.

We will consider some boundary value problems for a semilinear differential inclu-
sion in a separable Banach space E of a fractional order 0 < q < 1 :

CDqx (t) ∈ Ax (t) + F (t, x (t)) , t ∈ [0, T ] . (3.1)

It will be supposed that:
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(A1) A : D (A) ⊂ E → E is a Hille-Yosida operator generating a locally Lipschitz
integrated semigroup {V (t)}t≥0;

(A2) the semigroup {V ′(t)}t≥0 is uniformly bounded, i.e.,

sup
t≥0
‖V ′(t)‖ ≤ D

for some D > 0.

We assume that the multimap F : [0, T ] × E → Kv(E) obeys, for a given p > 1
q ,

the following conditions:

(F1) for each x ∈ E, the multifunction F (·, x) : [0;T ]→ Kv(E) admits a measur-
able selection;

(F2) for a.e. t ∈ [0;T ], the multimap F (t, ·) : E → Kv(E) is u.s.c.;
(F3) for each r > 0, there exists a function αr ∈ Lp+[0, T ] such that for each

x ∈ E, ‖x‖ ≤ r we have

‖F (t, x)‖E ≤ αr(t)

for a.e. t ∈ [0, T ];
(F4) there exists a function µ ∈ Lp+[0, T ] such that for each nonempty bounded set

Ω ⊂ E
χ(F (t,Ω)) ≤ µ(t)χ(Ω)

for a.e. t ∈ [0, T ], where χ is the Hausdorff MNC in E.

Remark 3.1. From the Kuratowski – Ryll-Nardzewski selection theorem (see, e.g.,
[8, 13, 15, 24]) it is known that condition (F1) is fulfilled if the multifunction F (·, x)
is measurable for each x ∈ E.

Remark 3.2. Condition (F4) is fulfilled in case when the multimap F may be repre-
sented as

F (t, x) = F1(t, x) + F2(t, x),

where multimaps F1, F2 : [0, T ] × E → K(E) are such that F1 is completely u.s.c.
in the second argument and F2 is µ(t)-Lipschitz in the second argument in the sense
that

h (F2 (t, x′) , F2 (t, x′′)) ≤ µ (t) ‖x′ − x′′‖ for a.e. t ∈ [0, T ]

for each x′, x′′ ∈ E, where h is the Hausdorff metric on K(E) (see [24], Theorem
2.3.4).

From conditions (F1) − (F3) it follows (see, e.g. [15], Theorem 1.3.5) that the
superposition multioperator PF : C([0, T ];E)→ P (Lp((0, T );E)), given by

PF (x) = {f ∈ Lp((0, T );E) : f(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ]}

is well defined. Moreover, PF is weakly closed in the sense that {xn} ⊂ C([0, T ];E),
xn → x0, {fn} ⊂ Lp((0, T );E), fn ⇀ f0 in L1((0, T );E) imply f0 ∈ PF (x0) (see [15],
Lemma 5.1.1).
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Definition 3.3. (see, e.g., [32, 33]). A mild solution of inclusion (3.1) with an initial
value

x(0) = x0 ∈ E0 (3.2)

is a function x ∈ C([0, T ];E) such that:

(i)
∫ t

0
(t− s)q−1x(s) ds ∈ D(A) for t ∈ [0, T ];

(ii) x(t) = x0 + 1
Γ(q)A

∫ t
0
(t− s)q−1x(s) ds+ 1

Γ(q)

∫ t
0
(t− s)q−1f(s) ds,

wheref ∈ PF (x).

Remark 3.3. From condition (i) it follows that x(t) ∈ E0 = D(A), t ∈ [0, T ] (see
[32, 33]).

Proposition 3.1. (see [32, 33]). A mild solution to problem (3.1) - (3.2) may be
represented in the following form:

x(t) = G(t)x0 + lim
λ→∞

∫ t

0

(t− s)q−1T (t− s)λR(λ,A)f(s)ds, t ∈ [0, T ], (3.3)

where f ∈ PF (x) and

G(t) =

∫ ∞
0

ξq(θ)V
′(tqθ)dθ, T (t) = q

∫ ∞
0

θξq(θ)V
′(tqθ)dθ,

where ξq is the Wright function defined as

ξq(θ) =
1

q
θ−1− 1

q Ψq(θ
−1/q),

Ψq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)

n!
sin(nπq), θ ∈ R+.

Lemma 3.1. (see, e.g., [33]) The operators G and T possess the following properties:

1) For each t ∈ [0, T ], G(t) and T (t) are linear bounded operators, more precisely,
for each x ∈ E0 we have

‖G(t)x‖E ≤ D ‖x‖E ; (3.4)

‖T (t)x‖E ≤
qD

Γ(1 + q)
‖x‖E ; (3.5)

2) the operator functions G(·) and T (·) are strongly continuous, i.e., functions
t ∈ [0, T ]→ G(t)x and t ∈ [0, T ]→ T (t)x are continuous for each x ∈ E0.

We will study the problem of existence of mild solutions of the above differential
inclusion satisfying the following general boundary value condition:

Q (x) ∈ S (x) , (3.6)

where Q : C([0, T ];E0)→ E0 is a bounded linear operator, S : C([0, T ];E0)→ K(E0)
is a completely u.s.c. quasi-Rδ-multioperator.

To search our problem, consider the linear operator

G : Lp([0, T ];E)→ C([0, T ];E0),



BOUNDARY VALUE PROBLEMS 289

defined as

(Gf) (t) = lim
λ→∞

t∫
0

(t− s)q−1T (t− s)λR(λ,A)f (s) ds. (3.7)

Denote by C0 the subspace of C([0, T ];E0), consisting of functions of the form

x(t) = G (t)x (0) , t ∈ [0, T ]

and denote by Q0 the restriction of Q to C0.
Our main assumption on boundary operators Q and S is the following:

(QS) There exists a continuous linear operator Λ : E0 → C0 such that

(I −Q0Λ) (z −QGf) = 0

for each x ∈ C([0, T ];E0), z ∈ S(x), f ∈ PF (x).

To present an example of the realization of condition (QS), consider the continuous
linear operator r : E0 → C0 defined in the following way:

r(ς)(t) = G (t) ς, t ∈ [0;T ].

Assume that

(Q̃) The linear continuous operator Q̃ : E0 → E0 defined as Q̃ς = Q(r(ς)) has the

continuous inverse Q̃−1.

It is easy to see that under condition (Q̃) the operator Λ may be presented in the
following explicit form:

Λς = r[Q̃−1(ς)]. (3.8)

Supposing that condition (QS) is fulfilled, consider the multioperator

Θ : C([0, T ];E0)→ K(C([0, T ];E0))

defined in the following way:

Θ(x) = ΛS(x) + (I − ΛQ)GPF (x).

The main property of the multioperator Θ is described by the following assertion.

Theorem 3.1. Every fixed point of Θ, i.e., a function x(·) satisfying

x = Λz + (I − ΛQ)Gf (3.9)

for some z ∈ S(x), f ∈ PF (x) is a mild solution of problem (3.1), (3.6).

Conversely, under condition (Q̃), if x is a mild solution of (3.1), (3.6) then it is a
fixed point of Θ.

Proof. (i) Since the function x may be represented in the form

x = Λ (z −QGf) +Gf

we obtain that x satisfies integral equation (3.3).
Let us verify the fulfilment of the boundary condition. Using condition (QS) we

get
Qx = Q0Λz +Q (I − ΛQ)Gf = z − (z −Q0Λz) +QGf +Q0ΛQGf

= z − (I −Q0Λ) (z −QGf) = z ∈ Sx.
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(ii) Now, let x be a mild solution of (3.1), (3.6). Then it satisfies the relation

x = r(x(0)) +Gf

for some f ∈ PF (x). Then

Qx = Q̃(x(0)) +QGf
from where we get

x(0) = Q̃−1
(
Qx−QGf

)
implying

r(x(0)) = Λ
(
Qx−QGf

)
.

Therefore,

x = Λ
(
Qx−QGf

)
+Gf = ΛQx+ (I − ΛQ)Gf ∈ Θ(x).

�

To describe subsequent properties of the multioperator Θ we need the following
notion.

Definition 3.4. (cf. [15], Definition 4.2.1). For 1 ≤ p ≤ ∞, a sequence of functions
{ξn} ⊂ Lp((0, t);E) is called Lp-semicompact if it is Lp-integrably bounded, i.e.,

‖ξn(t)‖ ≤ ζ(t) a.e. t ∈ [0, T ], n ≥ 1,

where ζ ∈ Lp(0, T ) and the set {ξn(t)} is relatively compact in E for a.e. t ∈ [0, T ].

Proposition 3.2. (cf. [15], Proposition 4.2.1). Every Lp-semicompact sequence {ξn}
is weakly compact in L1((0, T );E).

Following the lines of [16] one can verify the following property of the operator G
defined in (3.7).

Proposition 3.3. (i) If 1
q < p <∞, then there exists a constant Cp > 0 such that

‖G(ξ)(t)−G(η)(t)‖pE ≤ Cp
∫ t

0

‖ξ(s)− η(s)‖pEds, ξ, η ∈ Lp((0, T );E);

(ii) Let {ξn} be an Lp-semicompact sequence in Lp((0, T );E). Then the sequence
{Gξn} is relaively compact in C([0, T ];E0) and moreover, the weak convergence ξn ⇀
ξ0 in L1((0, T );E) implies Gξn → Gξ0 in C([0, T ];E0).

Lemma 3.2. The multioperator Θ is quasi-Rδ.

Proof. Decompose Θ in the sum

Θ = Θ1 + Θ2,

where Θ1 = ΛS and Θ2 = (I − ΛQ)GPF .
From conditions imposed on the multimap S it follows that Θ1 is quasi-Rδ.
Consider the multimap Θ2. It is clear that it is convex-valued. Let sequences

{xn}, {zn} ⊂ C([0, T ];E0) be such that xn → x0, zn ∈ Θ2(xn), n ≥ 1. Then we have

zn = (I − ΛQ)G(fn), n ≥ 1,
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where fn ∈ PF (xn), n ≥ 1. According to conditions (F3) and (F4), the sequence {fn}
is Lp-semicompact and, due to Proposition 3.2 it is weakly compact in L1((0, T );E)
and hence we may assume, w.l.o.g., that fn ⇀ f0 ∈ PF (x0) in L1((0, T );E). Applying
Proposition 3.3 (ii) we get G(fn)→ G(f0) and hence, by the continuity of the linear
operator I − ΛQ we have that

zn → z0 = (I − ΛQ)G(f0) ∈ Θ2(x0).

This reasoning shows that the multimap Θ2 is closed and quasicompact and hence
u.s.c. (Proposition 2.4). This means that Θ2 is quasi-Rδ.

It remains to apply Proposition 2.5. �

Now our goal is to show that the multioperator Θ is condensing with respect
to an appropriate measure of noncompactness. To do so, we need some additional
assumptions.

Let χ be the Hausdorff MNC in E0. Denote

d = sup
0≤t≤T

‖T (t)‖(χ).

Notice that from (3.5) and (2.6) it follows that

0 ≤ d ≤ qD

Γ(1 + q)
.

Let ϕ be the module of fiber noncompactness in the space C([0, T ];E0) (see Section
2.2). Assume that

(H1) there exists ρ ≥ 0 such that for each bounded Ω ⊂ C([0, T ];E0) we have

χ(QΩ) ≤ ρϕ(Ω)

(H2) d sup
0≤t≤T

∫ t

0

(t− s)q−1µ(s) ds <
1

1 + ‖Λ‖(χ,ϕ)ρ
,

where µ is the function from condition (F4).

Remark 3.4. Condition (H2) is fulfilled if, in particular, the semigroup V ′ is compact
(in this case d = 0, see [33], Lemma 2.9) or the multimap F is completely u.s.c. in
the second argument (µ = 0).

Define the vector measure of noncompactness in the space C([0, T ];E0)

ν : P (C([0, T ];E0))→ R2
+

with the values in the cone R2
+ given as

ν(Ω) = (ϕ(Ω),modC(Ω)) ,

where modC(Ω) is the module of equicontinuity in the space C([0, T ];E0) (see Section
2.2).

Lemma 3.3. The multioperator Θ is ν-condensing.
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Proof. Since the multioperator Θ1 is completely u.s.c. and the MNC ν is monotone,
algebraically semiadditive and invariant with respect to union with a compact set (see
[15]) it is sufficient to prove the assertion for the multioperator Θ2, i.e., to demonstrate
that for any bounded set Ω ⊂ C([0, T ];E0) the relation

ν(Θ2(Ω)) ≥ ν(Ω) (3.10)

(taken in the sense of the partial order in R2 induced by the cone R2
+) implies the

relative compactness of Ω. This can be done by following the reasonings.
From (3.10) it follows that

ϕ(Θ2(Ω)) ≥ ϕ(Ω). (3.11)

Take an arbitrary t ∈ [0, T ] and estimate χ(Θ2(Ω)(t)). We have

χ
(
ΛQGPF (Ω)(t)

)
≤ ϕ

(
ΛQGPF (Ω)

)
≤ ‖Λ‖(χ,ϕ)χ

(
QGPF (Ω)

)
≤ ‖Λ‖(χ,ϕ)ρϕ

(
GPF (Ω))‖Λ‖(χ,ϕ)ρ sup

τ∈[0,T ]

χ
(
GPF (Ω)(τ)

)
.

To estimate χ
(
GPF (Ω)(t)

)
introduce the family of operators

Gλ : Lp((0, T );E)→ C([0, T ];E0), λ > ω

defined as

(Gλf) (t) =

t∫
0

(t− s)q−1T (t− s)λR(λ,A)f (s) ds.

Then for any λ > ω and 0 ≤ s ≤ t by using the Hille-Yosida condition we get

χ
(
(t− s)q−1T (t− s)λR(λ,A)F (s,Ω(s))

)
≤ (t− s)q−1‖T (t− s)‖(χ)λ‖R(λ,A)‖χ(F (s,Ω(s))

≤ d λ

λ− ω
(t− s)q−1µ(s)χ(Ω(s)) ≤ d λ

λ− ω
(t− s)q−1µ(s)ϕ(Ω).

Then according to Proposition 2.7 we have

χ
(
GλPF (Ω)(t)

)
≤ d λ

λ− ω

∫ t

0

(t− s)q−1µ(s)ds · ϕ(Ω).

Passing to the limit as λ→∞ yields

χ
(
GPF (Ω)(t)

)
≤ d

∫ t

0

(t− s)q−1µ(s)ds · ϕ(Ω).

and, by using the property of algebraic subadditivity of χ we obtain

χ
(
(I − ΛQ)GPF (Ω)(t)

)
≤ d

(
1 + ‖Λ‖(χ,ϕ)ρ

)
sup
t∈[0,T ]

∫ t

0

(t− s)q−1µ(s)ds · ϕ(Ω)

= κ · ϕ(Ω),

where

κ = d
(

1 + ‖Λ‖(χ,ϕ)ρ
)

sup
t∈[0,T ]

∫ t

0

(t− s)q−1µ(s)ds < 1

by assumption (H2).
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But then also

ϕ(Θ2(Ω)) ≤ κ · ϕ(Ω)

implying

ϕ(Ω) = 0. (3.12)

Now we will show that the set Ω is equicontinuous. Notice that from the relation

modC(Θ2(Ω)) ≥ modC(Ω)

it follows that it is sufficient to prove the equicontinuity of the set Θ2(Ω). This is
equivalent to the fact that this property holds for any sequence

{zn} ⊂ (I − ΛQ)GPF (Ω).

Take sequences {xn} ⊂ Ω and {fn}, fn ∈ PF (xn) such that

zn = (I − ΛQ)Gfn, n = 1, 2, ...

From condition (F3) it follows that the sequence {fn} is Lp-integrably bounded.
Relation (3.12) yields the equality

χ({xn(t)}) = 0, ∀t ∈ [0, T ]

and hence by condition (F4) we get

χ({fn(t)}) = 0, a.e. t ∈ [0, T ].

From Proposition 3.3(ii) it follows that the sequence {Gfn} and hence zn is relatively
compact and hence equicontinuous. Now the relative compactness of the set Ω follows
from the Arzelà–Ascoli theorem. �

We see that the properties of the multioperator Θ open the possibility to apply
the topological degree theory described in Section 2.2 for its investigation. We can
formulate the following general principle for the existence of mild solutions to problem
(3.1), (3.6).

Theorem 3.2. Under above conditions, let an open bounded set Ω ⊂ C([0, T ];E0)
does not have mild solutions of problem (3.1), (3.6) on its boundary ∂Ω and let

deg(i−Θ,Ω) 6= 0.

Then the set of mild solutions of problem (3.1), (3.6) is non empty.

As an example of application of this principle consider the following assertion.

Theorem 3.3. Under above conditions, let us assume, in addition, that

(H3) there exists a sequence of functions ωn ∈ Lp+(0;T ), n = 1, 2, ... such that:

lim inf
n→∞

1

n
‖ωn‖p = 0;

and

sup
‖x‖≤n

‖F (t, x)‖ ≤ ωn(t) for a.e. t ∈ (0;T ),
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(H4) the following asymptotic condition holds:

lim inf
‖x‖→∞

‖S(x)‖
‖x‖

= 0.

Then the set of mild solutions to problem (3.1), (3.6) is non empty.

Proof. Let us show that there exists a closed ball BR ⊂ C([0, T ];E0) such that
Θ(BR) ⊆ BR.

Supposing the contrary we have sequences {xn}, {zn} ⊂ C([0, T ];E0) such that
zn ∈ Θ(xn), ‖xn‖ ≤ n, ‖zn‖ > n. From conditions posed on operators Q,S, condition
(F3) and Proposition 3.3 (i) it follows that the multimap Θ transforms bounded sets
into bounded ones. This means that, passing to a subsequence if necessary, we may
assume, w.l.o.g. that ‖xn‖ → ∞. Then we obtain

‖zn‖ ≤ ‖ΛSxn‖+ ‖I − ΛQ‖ · ‖Gfn‖

for some fn ∈ PF (xn). Applying Proposition 3.3 (i) we get

‖zn‖ ≤ ‖Λ‖‖̇Sxn‖+ ‖I − ΛQ‖ p
√
Cp‖fn‖p.

Then we have

1 <
‖zn‖
n
≤ ‖Λ‖‖Sxn‖

n
+ ‖I − ΛQ‖ p

√
Cp

1

n
‖fn‖p

≤ ‖Λ‖‖Sxn‖
‖xn‖

+ ‖I − ΛQ‖ p
√
CpT

1

n
‖ωn‖p

contrary to assumptions (H3) and (H4).
It remains to apply Proposition 2.6 to the restriction of Θ to BR. �

4. Some particular cases

4.1. A nonlocal Cauchy problem. Consider differential inclusion (3.1) with the
following boundary condition

x(0) ∈ x0 + S(x), (4.1)

where x0 ∈ E0 and S : C([0, T ];E0)→ K(E0) is a completely u.s.c. quasi-Rδ-multi-
operator.

Notice that in this case the operator Q has the form Q(x) = x(0) and hence

condition (H1) is fulfilled with ρ = 1. Further, the operator Q̃ is the identity, so

condition (Q̃) is fulfilled and moreover, the operator Λ coincides with r. Denoting

d′ = sup
0≤t≤T

‖G(t)‖(χ)

we get the estimate

‖Λ‖(χ,ϕ) ≤ d′ ≤ D
(the last inequality follows from (3.4) and (2.6)).

As a result, we get the following corollary of Theorem 3.3.
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Proposition 4.1. Under conditions (A1), (A2), (F1), (F2), (F4),

(H2′) d sup
0≤t≤T

∫ t

0

(t− s)q−1µ(s) ds <
1

1 + d′
,

(H3) and (H4) (with the replacement of S(x) with S(x)) problem (3.1), (3.6) has
a mild solution.

4.2. A periodic boundary value problem. A periodic boundary value problem
for differential inclusion (3.1)

x(0) = x(T ) (4.2)

may be written in the form of a boundary condition

Qx = 0, (4.3)

where Qx = x(T )− x(0).
Notice that for this operator condition (H1) is fulfilled with the constant ρ = 2.
In fact, for every bounded Ω ⊂ C([0, T ];E0) we have:

χ(Q(Ω)) ≤ χ
(
Ω(T )− Ω(0)

)
≤ χ

(
Ω(T )

)
+ χ

(
Ω(0)

)
≤ 2ϕ(Ω).

We will assume that the following condition holds:

(AT ) the linear operator G (T )− I has a continuous inverse on E0.

Under condition (AT ) condition (Q̃) is fulfilled. In fact, for any ς ∈ E0

Q̃ς = G(T )ς − G(0)ς = (G(T )− I)ς

and hence

Q̃−1 = (G(T )− I)−1

and

(Λς)(t) = G(t)(G(T )− I)−1ς.

So, we have the following estimate

‖Λ‖(χ,ϕ) ≤ d′ ‖(G(T )− I)−1‖(χ).

The multioperator Θ for the periodic problem has the form

Θ(x) = (I − ΛQ)GPF (x).

To present it in a more explicit form, take x ∈ C([0, T ];E0). Then Θ(x) consists
of all functions z ∈ C([0, T ];E0) which, for any f ∈ PF (x) have the form

z = (I − ΛQ)Gf,

i.e.,

z(t) =

∫ t

0

(t− s)q−1T (t− s)f(s)ds+ Λ
( ∫ T

0

(T − s)q−1T (T − s)f(s)ds
)

= G(t)(I − G(T ))−1

∫ T

0

(T − s)q−1T (T − s)f(s)ds+

∫ t

0

(t− s)q−1T (t− s)f(s)ds

(cf. [15], Section 6.1).
Again, by applying Theorem 3.3 we obtain the following assertion.
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Proposition 4.2. Under conditions (A1), (A2), (AT ), (F1), (F2), (F4), (H3) and

(H2′′) d sup
0≤t≤T

∫ t

0

(t− s)q−1µ(s) ds <
1

1 + 2d′‖(G(T )− I)−1‖(χ)

problem (3.1), (4.2) has a mild solution.

Notice in conclusion that by using the same methods we can solve the anti-periodic
boundary value problem

x(0) = −x(T ). (4.4)
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