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Abstract – This paper demonstrates that heartbeat complex dynamics is modulated by differ-
ent pathological mental states. Multiscale entropy analysis was performed on R-R interval series
gathered from the electrocardiogram of eight bipolar patients who exhibited mood states among
depression, hypomania, and euthymia, i.e., good affective balance. Three different methodolo-
gies for the choice of the sample entropy radius value were also compared. We show that the
complexity level can be used as a marker of mental states being able to discriminate among the
three pathological mood states, suggesting to use heartbeat complexity as a more objective clinical
biomarker for mental disorders.

Copyright c© EPLA, 2014

Introduction. – Nonlinear analysis of human phys-
iological signals has been widely recognized to provide
relevant information on psychophysiological and patho-
logical states [1]. Many physiological processes, in fact,
involve nonlinear frequency modulation or multifeedback
interactions associated to long-range correlations [2,3].
Accordingly, many evidences in the literature on nonlin-
ear dynamics of physiological signals show that complexity
is a marker of health status of biological systems, and it
is modulated by external stimuli, aging and presence of
disease [1,3–9].

A paradigmatic application of this methodological ap-
proach is given by the cardiovascular control dynamics,
mediated by the Autonomic Nervous System (ANS). This
system is very often investigated through the analysis of
the series obtained by the time intervals between two
consecutive R-waves detected from the electrocardiogram,
i.e. the R-R intervals, whose variability is defined as Heart
Rate Variability (HRV). In the last decades, HRV stud-
ies using both linear and nonlinear modeling have been
characterizing the influence of the ANS on the heartbeat,
revealing the various nonlinear neural interactions and in-
tegrations occurring at the sinoatrial node and receptor
levels [10]. Such phenomena include multiscale and frac-
tal properties and much of nonlinear and non-stationary

dynamics analysis provides significant cues for diagnostic
and prognostic use [3,4].

Among others, MultiScale Entropy (MSE) is a power-
ful tool to quantify the nonlinear information of a time
series over multiple time scales [11] through sample en-
tropy (SampEn) [12] algorithms. In the literature it can
be found that MSE analysis has been applied to character-
ize human gait dynamics [13], Alzheimer’s disease through
EEG signals [14], drug-naive schizophrenia [15] and autism
spectrum conditions [16]. Recently, MSE has been also ap-
plied to HRV data to study patients with type 1 diabetes
mellitus [17] or with aortic stenosis subjects [18], effects
of orthostatic stress [19]. Other studies involving healthy
subjects point out some typical behaviors of MSE: entropy
increases from small to large scales and then stabilizes its
value at constant values; in patients with arrhythmia, the
entropy decreases and then remains constant; in patients
with congestive heart failure, the entropy decreases at the
beginning and then gradually increases [11].

A recent frontier of nonlinear analysis on HRV data
is represented by the assessment of psychiatric disor-
ders. Most of the known mental disorders, in fact, are
currently diagnosed relying on the clinicians’ experience,
who is supported only by verbal interviews and scores
from specific questionnaires. Moreover, mental assessment
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through non-invasive, easy-to-record, and robust series
such as HRV could open dramatic clinical perspectives
in objectively managing the illness, helping patients, fa-
cilitating the interaction between patient and physician
as well as to alert professionals in case of critical patho-
logical episodes. In this study, we describe how to ef-
fectively characterize different pathological mental states
using MSE analysis of HRV series gathered from bipo-
lar patients. Bipolar disorder can be described as an ill-
ness in which patients experience depressive or maniacal
states. Depression is characterized by sadness and hope-
lessness (including suicidal ideation), whereas mania leads
to euphoria or irritability, excessive energy, hyperactivity,
hypertrophic self-esteem, and reduction of sleeping need.
The moderate form of mania is called hypomania. Periods
in which patients do not show any pathological signs are
called euthymic states.

We have been inspired by several works relating ANS
marker to depression [20–24]. In a previous work [25] it
has been shown that linear-derived parameters are inade-
quate to discern healthy subjects and patients with major
depressive disorder as they have a variance as high as to
not be able to infer an appreciable difference between the
two groups, so only intra-subject evaluations have been
possible. On the contrary, nonlinear measures such as
MSE allowed the discrimination of depressive patients and
healthy subjects always showing a significant decrease of
the complexity in the pathological group [26,27]. Accord-
ingly, in this work we hypothesize that MSE analysis on
HRV series gathered from bipolar patients can provide in-
formation about the clinical mood state. Moreover, we
investigate whether this analysis is able to perform an
inter-subject analysis, distinguishing among three differ-
ent pathological mental states, i.e. depression, hypoma-
nia, and euthymia. As methodological contribution, we
exploit three different approaches by choosing the most
fundamental and sensible parameter of MSE analysis: the
radius of the sample entropy. Long-term night monitor-
ing was performed using ad hoc wearable monitoring sys-
tems developed in the framework of the European project
PSYCHE (Personalized monitoring SYstems for Care in
mental HEalth), whose details are reported in [25,28].

Materials and methods. –

Experimental protocol. Next, we briefly describe the
recruitment of eligible subjects, the experimental protocol,
and data acquisition, whose details are reported in [25,28].
We analyzed the nonlinear heartbeat dynamics of 8 bipo-
lar patients selected according to the following features:
age between 18 and 65, presence of a mood state between
depressive and hypomanic at the moment of the recruit-
ment, low risk of suicidality (as assessed as no thoughts of
death and no previous attempts), no somatic or neurologic
disorders that might be related to bipolar disorders (e.g.
thyroid alterations), absence of cognitive impairment, ab-
sence of substance abuse disorders, necessity of a change in
treatment (treatment change is defined as a augmentation

of doses, introduction of or switch to other drugs, intro-
duction of physical treatments), all the patients will sign
the informed consent for the PSYCHE project already ap-
proved by the Ethical Committee of Strasbourg. The pro-
tocol planned a study entry visit when the patient was
experiencing a depressive or hypomanic phase. Patients
were studied with an average frequency of 2–3 times a
month. Each patient was evaluated and monitored from
the day of the hospital admission toward remission, i.e.,
until the reaching of an euthymic state as long as such
a condition was presented within 3 months after the first
visit. In any case, in this study no more than six evalu-
ations per patient were performed. Accordingly, we ana-
lyzed a total amount of 16 night recordings, 6 out of which
were associated to the label depression, 5 to label hypoma-
nia, and 5 to label euthymia. All clinical states have been
evaluated according DSM-IV-TR criteria [29] and all pa-
tients were recruited in the out-patient University clinic
of Strasbourg, France. The PSYCHE wearable system
has been given to the patients in the afternoon and recol-
lected the morning after. HRV data were collected from
each acquisition of each patient using the core system of
the PSYCHE wearable monitoring platform. It consists
in a comfortable, textile-based sensorized T-shirt devel-
oped by Smartex s.r.l., embedded with electrodes which
are able to acquire electrocardiogram (ECG), from which
the HRV signals are extracted after ad hoc pre-processing
and R-peak extraction steps [25,28]. During all the acqui-
sitions, the ECG sampling frequency was set to 250Hz.

Multiscale entropy (MSE) methodology and influence
of the r parameter. Concerning the analysis, first we
briefly describe the theory behind the MSE methodol-
ogy emphasizing the issue of choosing the optimal value
of the SampEn radius. MSE is based on the calcula-
tion of the SampEn over several time series, which are
constructed from the original discrete time series by av-
eraging the data points within non-overlapping windows
of increasing length, τ . Formally, given a time series
{x1, . . . , xi, . . . , xN} and a scale factor τ , each element
of a course-grained series

{
y(τ)

}
is calculated as y

(τ)
j =

1
τ

∑jτ
i=(j−1)τ+1 xi, 1 ≤ j ≤ N/τ and, for each of the se-

ries, y
(τ)
j , SampEn is computed as suggested by [12,30].

SampEn estimation on each series starts with the calcula-
tion of the distance between two vectors x1 and xj on the
phase space x(1), x(2), . . . , x(N − m + 1), which is defined
in R

m, where m ≤ N is a positive integer associated to the
embedding dimension of the series [31,32]. Then, all the
distances within a radius r are counted and normalized
by the quantity N − m + 1. This procedure is performed
twice considering the chosen value of m and m + 1.

Therefore, two parameters are mainly involved in the
MSE estimation: the embedding dimension m of the se-
ries [31,32], and r, a positive real number representing
the margin of tolerance, i.e., the radius. Previous studies
suggest a fixed straightforward choice of the parameters
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Fig. 1: (Colour on-line) Heartbeat dynamics gathered from a
representative patient while experiencing the pathological men-
tal state such as hypomania.

as m = 2, and r = 0.15σ where σ is the standard de-
viation of the series [11]. While such a choice could be
reasonable for the m values, it could be pretty hazardous
for the r value. Inter-subject variability, in fact, can lead
to non-effective results whether the parameters involved
in the analysis are not adaptive and personalized. More-
over, some researchers recently pointed out that the rec-
ommended r does not fit all situations and may lead to
wrong results [33–35].

Therefore, in order to study the influence of the r value
on the MSE estimation and to improve the objectivity
of the experimental results, we tested three r-choosing
methodologies:

MSE-Method I consists in the previously mentioned tra-
ditional choice for physiological data of r = 0.15σ [13,27]
evaluated for each acquisition of each subject.

MSE-Method II considers the grouped standard devia-
tion of the series belonging to all patients [36,37]. Such
a series is obtained by concatenation of the series of each
acquisition/mood state.

MSE-Method III considers different r values for each
acquisition of each subject so as to maximize the calcula-
tion of the Approximate Entropy (ApEn) [30] in the range
0.01σ ≤ r ≤ 1.2σ [33–35,38–43]. This popular method
considers that the highest value ApEn(rk) is interpolated
with the preceding and the following values, ApEn(rk−1)
and ApEn(rk+1), with a parabola. The position of the
vertex of the parabola gives rmax.

It is straightforward to notice that the MSE-Method III
ensures a more objective selection of the r value than the
previous two methods. As both methodological and clin-
ical advances, in this paper we investigated all the three
mentioned methods on the MSE estimation to replicate
the previous findings on the complexity changes in psycho-
pathologies [26,27], looking for complexity modulations
among different mood/mental states.

On all the analysis, Kruskal-Wallis non-parametric
tests were used to test the null hypothesis of having
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Fig. 2: (Colour on-line) MSE of heart rate dynamics in noc-
turnal period with Method I, values are expressed as median±
MAD.

no statistical difference in complexity indices among pa-
tients acquisition groups (euthymic, depressed, hypo-
manic). Mann-Whitney non-parametric U-tests were used
to compare two samples belonging to two different groups
on the post hoc statistical analysis. The use of such non-
parametric tests is justified by having non-Gaussian distri-
bution of the samples (p < 0.05 given by the Shapiro-Wilk
test having the null hypothesis of Gaussian-distributed
samples).

Results. – MSE, estimating up to the twentieth scale
factor, was calculated on the longest segment of consec-
utive artifact-free samples of each acquisition of each pa-
tient. Such a longest HRV series lasted for no less than
53 minutes and no more than 4 hours and 24 minutes.
All results are expressed as median and its respective ab-
solute deviation (i.e. for a feature X, X = Median(X) ±
MAD(X) where MAD(X) = Median(|X − Median(X)|)).
The m value is fixed for all cases to the standard value
m = 2. Experimental results on using the MSE methods
follow below. Figure 1 shows the HRV data for a repre-
sentative patient while experiencing hypomania.

MSE-Method I. This method uses r = 15σ, where
σ is the standard deviation of each HRV series, for the
MSE calculation. The Kruskal-Wallis non-parametric test
showed no statistical difference among the three patholog-
ical groups (p > 0.05). Figure 2 shows the MSE results
over all the scale factors.

MSE-Method II. This method chooses the radius as
15% of the standard deviation of all series. Likewise the
previous method, the Kruskal-Wallis non-parametric test
showed no statistical difference among the three patho-
logical mental states (p > 0.05). Figure 3 shows the MSE
results over all the scale factors.

MSE-Method III. This method searches the objective
rmax value which maximizes ApEn of each HRV series.
We found that the maximum value of entropy was always
within the range from 0.001σ to 0.30σ. The Kruskal-Wallis
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Fig. 3: (Colour on-line) MSE of heart rate dynamics in noctur-
nal period with Method II, values are expressed as median ±
MAD.

test revealed statistical differences between the groups at
all scales. In particular, when scale is equal to 1 and for
scale values comprised between 7 and 19, the null hypoth-
esis of having no difference was rejected with p < 0.01. At
scales 2, 3, 4 and 6 the null hypothesis was rejected with
p < 0.05, while at the remaining scale 5, the obtained
p value is less than 0.06. Moreover, the post hoc anal-
ysis, performed using the Tukey procedure for the cor-
rection of the statistical significance, showed significant
differences between the hypomanic and euthymic states
with (p < 0.05) at scales 1,2 and from 4 to 20. At scales
1,9,10 hypomanic group data was also different from de-
pressed. Figure 4 shows the MSE results over all the scale
factors.

MSE - Complexity Index Analysis. As a complemen-
tary feature, we evaluated the Complexity Index (CI) [27]
of each series as the area under the curve of the MSE
graph. CI is calculated on short time scales, from 1 to
8, and on higher time scales, from 1 to 20. Results of
the CI index, referring to the best MSE estimations which
are given by the MSE-Method III, are shown in table 1 for
the three considered pathological mental states (euthymic,
depressed, hypomanic). The Kruskal-Wallis test revealed
statistical differences between the three mood states on
both short (p < 0.03) and higher time scales (p < 0.001).
Concerning the post hoc analysis, also performed using
the Tukey correction, the depressive group showed sta-
tistical difference with respect to the hypomanic group
(p < 0.02) on short time scales, whereas significant vari-
ations were found between the hypomanic and euthymic
states on both short and higher time scales (p < 0.03).
It is worthwhile noting that the CI results are not bi-
ased by significant changes of the chosen r values of each
considered recording. As a matter of fact, the following
rmax statistics were found: 0.0024 ± 0.0012 seconds for
the manic state, 0.0032± 0.0014 seconds for the euthymic
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Fig. 4: (Colour on-line) MSE of heart rate dynamics in
nocturnal period with Method III, values are expressed as
median ± MAD.

Table 1: CI values estimated from the MSE analysis of HRV
series gathered during nocturnal recordings. Values are ex-
pressed as median and its respective absolute deviation.

Short time Higher time
Euthymic 15.18 ± 3.85 38.11 ± 2.40
Depressed 11.71 ± 1.50 31.39 ± 3.26
Hypomanic 9.14 ± 1.18 22.17 ± 4.17

state, 0.0023 ± 0.0006 seconds for the depressed. A prob-
ability of 0.4252 was associated to the null hypothesis of
having no difference among the three mood states, accord-
ing to the Kruskal-Wallis non-parametric test.

Complementary analyses. In order to further inves-
tigate how heartbeat dynamics is modulated during dif-
ferent pathological mental states, a multiscale Detrended
Fluctuation Analysis (mDFA) was applied. According to
the MSE processing, the mDFA, estimating up to the
twentieth scale factor, was calculated on the longest seg-
ment of consecutive artifact-free samples of each acqui-
sition of each patient. On both α1 and α2 indices, the
Kruskal-Wallis non-parametric test showed no statistical
difference among the three pathological groups (p > 0.05)
for each of the twenty scales. These results suggest that
heartbeat dynamics displays similar long- and short-range
correlations between different pathological mental states.

As mood states could be associated to changes in the
sympatho-vagal balance of ANS, we also tested the null
hypothesis that standard HRV parameters defined in the
frequency domain, as the power in the Low-Frequency
(LF) and High-Frequency (HF) bands along with their
ratio, are significantly altered among the three patholog-
ical mood states. Earlier studies, in fact, have shown a
significant change in complexity measures and in the DFA
scaling behavior of HRV in response to sympathetic or
parasympathetic activation due to rest and exercise [44],
sleep-wake and sleep-stage transitions [45,46], circadian
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phases [47], beta-blockers and atropine drug administra-
tion [48], aging [49,50]. By calculating the HRV power
spectra within non-overlapped moving time windows of
5 minutes of length and averaging on each observation,
we found that no statistical difference is associated to the
LF, HF, and LF/HF indices different mood states, accord-
ing to the Kruskal-Wallis non-parametric tests (p > 0.05).
Concerning the aging effects, we report that a probabil-
ity value of 0.435 (from the Kruskal-Wallis non-parametric
test) is associated to the null hypothesis of having no sig-
nificant difference in age among the pathological mood
states.

Finally, in order to investigate whether the heartbeat
complexity modulation is due to a loss of nonlinear prop-
erties of the cardiovascular system or changes in the pa-
rameters of the system (which would remain governed by
nonlinear equations), we further applied an established
time domain method [51] to the RR interval series in or-
der to test the presence of nonlinearity among the different
mood states, as suggested by [52,53]. The outcomes from
the nonlinearity test demonstrate that all the considered
long-term recordings are characterized by a relevant pres-
ence of nonlinearity, over all the considered states (with
p < 0.05).

Conclusion. – We studied the complexity of the heart-
beat dynamics in bipolar patients through MSE analysis
of HRV series. The choice of such a specific analysis is
justified by the fact that MSE has been proven a powerful
tool in translational psychiatry discerning patients with
major depressive syndrome from healthy subjects [27], in
spite of a high inter-subject variability. In particular, sig-
nificant lower complexity has been found in the depressive
patients with respect to the healthy subjects. Accordingly,
our experimental hypothesis was to extend the discerning
capability of these analysis by studying multiple patho-
logical mental states associated to mood states. Bipolar
patients, in fact, experience different mood states among
depression, hypomania, and euthymia, which is the good
affective balance. We processed sixteen HRV series gath-
ered from eight patients during night recordings by using a
comfortable wearable monitoring system developed within
the PSYCHE project [25,28]. The major methodological
issue in estimating the SampEn of MSE over the scale
factors, which involves the choice of the r value, has been
deeply exploited comparing three different approaches.

Using the objective estimation given by the so-called
MSE-Method III, which searches maximum ApEn val-
ues in a parabola interpolating values 0.01σ ≤ r ≤
1.2σ [33–35,43], we found an interesting complexity modu-
lation coherent with both the current literature and differ-
ent mood states. We found that higher complexity at all
scales is associated to the euthymic state, whereas the de-
pressive and hypomanic states show decreased complexity
values (p < 0.01). Moreover, the complementary mDFA
analysis suggests that pathological mental states modulate
the pattern of signal complexity throughout different time

scales without affecting patterns of signal amplitude with
changing time scale. The nonlinearity tests also suggest
that a loss of nonlinearity does not occur in case of mood
disorders, as previously observed in the presence of, e.g.,
heart failure [54]. The HRV power spectral analysis also
suggests that, although sympatho-vagal dynamics can be
affected by pathological mental states, the inter-subject
variability is too high to allow such changes to be revealed
through a simple analysis in the frequency domain. From
this point of view, the complexity analysis resulted to be
a much more powerful tool. We also state that the dif-
ferences in heartbeat complexity found among the three
pathological mood states are not biased neither by the
age of the patients enrolled in the study nor by the rmax

values that are a function of the HRV standard deviation.
As in the current clinical practice the diagnosis of mental
disorders does not rely on objective psycho-physiological
markers, in agreement with the outcomes of this study,
it could be possible to exploit HRV complexity indices to
give a viable support to the clinical decision. Our findings
confirm the importance of nonlinear temporal patterns in
mood recognition [26,27]. Although the detailed physiol-
ogy behind the complex dynamics of heartbeat variations
has not been completely clarified, previous studies sug-
gest that β-adrenoceptor system has little involvement in
the generation of nonlinear HRV whereas α-adrenoceptors
strongly influence the scaling properties of the time se-
ries [55]. Moreover, cholinergic iper-driving also induces
changes in the complexity measures such as the MSE com-
plexity index (seen in rats) [55]. This study has been
performed in the frame of the PSYCHE project, where
a multidisciplinary and multiparametric analysis of bipo-
lar disorder through the processing of several behavioral,
biochemical, and electrophysiological variables has been
carried out. Other key variables such as the postural sway
can also be taken into account as suggested in [56]. Patient
monitoring includes constant feedback which interests the
physician and which supports the patient. The ultimate
goal of the PSYCHE project is to provide the physician
with a basis for a more precise diagnosis and possibly a
prediction of an imminent change in mental state, indi-
cated by an alteration of the studied parameters.
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