
CANCER RESEARCH | METABOLISM AND CHEMICAL BIOLOGY

DNA Damage Response Protein CHK2 Regulates
Metabolism in Liver Cancer
Matteo Lulli1, Laura Del Coco2, Tommaso Mello3, Caecilia Sukowati4, Stefania Madiai5, Laura Gragnani5,
Paolo Forte3, Francesco Paolo Fanizzi2,6, Antonio Mazzocca7, Krista Rombouts8, Andrea Galli3, and
Vinicio Carloni5

ABSTRACT
◥

Defective mitosis with chromosome missegregation can have a
dramatic effect on genome integrity by causing DNA damage,
activation of the DNA damage response (DDR), and chromosomal
instability. Although this is an energy-dependent process, mechan-
isms linking DDR to cellular metabolism are unknown. Here we
show that checkpoint kinase 2 (CHK2), a central effector of DDR,
regulates cellular energy production by affecting glycolysis and
mitochondrial functions. Patients with hepatocellular carcinoma
(HCC) had increased CHK2mRNA in blood, which was associated
with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2
controlled expression of succinate dehydrogenase (SDH) and inter-
vened with mitochondrial functions. DNA damage and CHK2
promoted SDH activity marked by increased succinate oxidation

through the TCA cycle; this was confirmed in a transgenic model of
HCCwith elevated DNAdamage.Mitochondrial analysis identified
CHK2-controlled expression of SDH as key in sustaining reactive
oxygen species production. Cells with DNA damage and elevated
CHK2 relied significantly on glycolysis for ATP production due to
dysfunctional mitochondria, which was abolished by CHK2 knock-
down. This represents a vulnerability created by the DNA damage
response that could be exploited for development of new therapies.

Significance: This study uncovers a link between a central
effector of DNA damage response, CHK2, and cellular metabolism,
revealing potential therapeutic strategies for targeting hepatocellu-
lar carcinoma.

Introduction
Abnormal chromosome number termed aneuploidy is an aspect of

cancer cells, a state in which cells do not contain an exact multiple of
the haploid DNA content (1). Aneuploidy is not synonymous with
chromosomal instability (CIN); some tumors are stably aneuploid
with a highly abnormal but fairly uniform karyotype. In other tumors,
an increased rate of CIN generates diverse karyotypes within a
tumor (2). CIN affects chromosome number and structure and is a
characteristic of many cancer types including hepatocellular carcino-
ma; it is also associated with the formation of extranuclear bodies that
contain damaged chromosome fragments or whole chromosomes.
Such micronuclei were identified in regenerative and dysplastic

nodules of the liver, indicating that CIN can be acquired already
in early stage of hepatocarcinogenesis. CIN generates diverse karyo-
types within a tumor thus yielding a heterogeneously tumor cell
population that has the ability to undergo selective evolution in terms
of drug resistance and tumor escape from the immune system
surveillance (3–5). We now appreciate that defective mitoses with
chromosome missegregation can have a dramatic effect on genome
integrity by causing DNA damage and activation of DNA damage
response proteins (DDR; refs. 6–8). The effects of DDR activation
during mitosis have remained obscure; however, it has been recently
recognized that activation of the DDR may be an insidious phenom-
enon in chromosomally unstable cancer due to the intrinsic and
enduring level of DNA damage during mitosis (9). Cancer cells may
have lost the fine tuning of DDR proteins, which links mitosis and
DNA damage to numerical and structural chromosomal aberra-
tions (10). In this context, how genome instability of cancer cells
regulates the generation of energy and the role of DDR pathway in
cancer cell metabolism is unknown. Here, we establish that checkpoint
kinase 2 (CHK2), a central effector of DDR pathway, controls mito-
chondrial functions and glycolysis. The majority of patients with
cancer that undergo curative therapy have extremely high recurrence
rates including those treated with innovative immune checkpoint
inhibitors. Therefore, an urgent need for new therapies is justified.
The results of this study provide new findings on DNA damage/CIN
and cellular metabolism that offer helpful diagnostic and therapeutic
tools in the management of cancer.

Materials and Methods
Cell cultures and antibodies

HCT116 were analyzed by karyotyping (see Supplementary Fig. S1)
and RNA sequencing (RNA-seq; see Fig. 6), Huh7 were previously
characterized by karyotyping (7) and analyzed by RNA-seq. Human
hepatocytes immortalized with TERT gene (HuS) were provided by
Makoto Hijikata (Laboratory of Human Tumor Viruses, Institute of
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Virus Research, Kyoto University, Kyoto, Japan) and characterized by
karyotyping (7) and RNA-seq. HCT116 and Huh7 were grown in
DMEM supplemented with 10% FBS, 1% penicillin/streptomycin,
and 1% glutamine at 37�C and 95% humidity and 5% CO2. HuS cells
were cultured in DMEM supplemented with 5% FBS, 5% normal
human serum frommale type AB serum (Sigma-Aldrich), 1% DMSO,
0.1 mL/mL insulin, 0.1 mL/mL hydrocortisone, and 2 ng/mL EGF
(Calbiochem). Cells were routinely assayed for Mycoplasma contam-
ination. Antibodies employed were anti-CHK2 (Cell Signaling Tech-
nology, # 3440), anti-phospho-Histone H2AX (Ser139; Cell Signaling
Technology, #9718), anti-PKM2 (Cell Signaling Technology, #4053),
anti-SDHA (Cell Signaling Technology, #11998), anti-CENPA
(Abcam, #13939), anti-PGK1 (Abcam, #154613), anti-CHK2 (Abcam,
#47433), anti-b-actin (clone AC-15; Sigma-Aldrich). Secondary anti-
bodies conjugated toAlexa Fluor 488 and 594 (Molecular Probes) were
used in immunofluorescence analysis. Secondary antibodies used in
immunoblot analysis were IRDye 800CW anti-rabbit (#926–32210,
Lycor Bioscience) and IRDye 800CW anti-mouse (#926–32211, Lycor
Bioscience). DNA was stained with Hoechst 33342 (ThermoFisher
Scientific).

Measurements of extracellular vesicle–derived CHK2 mRNA in
human blood

Blood samples from patients were obtained with written informed
consent according to the procedures approved by the Institutional
Review Board. After collection and centrifugation, serumwas frozen at
�80�C forCHK2 andmetabolomic analysis. Purification of total RNA
from extracellular vesicles (EV), including mRNA, was performed by
using the exoRNeasy Serum/Plasma Maxi Kit (Qiagen) according to
the manufacturer’s instructions. Total RNA was quantified using a
Nanodrop 2000 UV-visible spectrophotometer. cDNA was prepared
using 20–50 ng/mL total RNA by a RT-PCR using a High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems), according to
themanufacturer’s instructions. qPCRwas performed on cDNA using
TaqMan probes specific for CHK2 (Hs 01007282_m1, Thermo Fisher
Scientific) and the human GAPDH FAM/MGB probe, qPCR was
performed on a 7900 HT Fast Real-Time PCR System (Applied
Biosystems). Fold changes in expression were calculated by the
DDCt method using GAPDH as an endogenous control for mRNA
expression.

We considered patient samples CHK2 negative, those samples with
a value of 2–DCt[CtCHK2�CtGAPDH] ≤ to mean 2–DCt of healthy subjects.

HBV-transgenic mouse model
An HBV-transgenic mouse strain was used as a model of hepato-

carcinogenesis (11, 12). Male C57BL/6J-TG(ALB1HBV)44BRI/J
transgenic mice (TG) and its normal C57BL/6J (WT) weremaintained
at the animal facility of the University of Trieste (Trieste, Italy). At
15 months, the incidence and the size of the macroscopic tumoral
masses were evident and most of the tumors were vascularized. In
transgenic mice, the appearance of ground glass hepatocytes, clear
cells, ballooning, and necrosis characterized the process. Moreover,
nuclear alteration, cellular polymorphism, intracellular acidophilic
bodies, Mallory bodies, and nucleoli were documented. The transgenic
livers were also characterized by the presence of inflammation and
activated resident immunologic cells, perivascular fibrosis, and several
degree of steatosis. Furthermore, serum alanine aminotransferase
(ALT) level was more than two times higher in transgenic mice
compared with wild-type mice. Animal experimentation was carried
out in accordance with the Guide for the Care and Use of Laboratory
Animals. The protocol of animal study were approved by the ethical

committee of the University of Trieste and by the responsible admin-
istration of theMinistry ofHealth (D.M. 57/2012-B). Liver tissues were
collected during animal sacrifice at age of 3, 6, 9, 12, and >15 months
for both TG andWTmice. Upon collection, tissues were immediately
fixed in formalin and included in paraffin block. Paraffinated slices
(3.5 mm) were then subjected to hematoxylin and eosin for histologic
analysis and immunostaining. PKM2 and SDHA expression were
scored according to the percentage of hepatocytes (n¼ 100) or tumor
cells (n¼ 100) stained positive for PKM2 or SDHA. Scoring included
only cells with cytoplasmic staining intensity 3þ at 10� and 25�
magnifications.

Retroviral infections
The following shRNAs (OriGene Technologies) were delivered into

HCT116, Huh7 cells by retroviral infection according to the manu-
facturer’s instructions.TF320655 is a set of plasmids containing four
shRNA constructs in retroviral vector (pRFP-C-RS) to knockdown
human CHK2. TR30015 is a noneffective 29-mer scrambled shRNA
used as control. Retroviral particles were generated by transient
transfection of the Phoenix-amphotropic packaging cell line as
described previously (13).

Western blot analysis
Standard procedures were used (7). Briefly, protein lysates were

quantified by the Bradford method (Bio-Rad) and fifty micrograms of
total protein were denaturated and separated on MiniProtean TGX
precast gels (Bio-Rad).

Cell-cycle analysis
HuS0gen, HuS30gen, HCT116shCTL, HCT116shCHK2,

Huh7shCTL, and Huh7shCHK2 cells were trypsinized, pelleted,
and resuspended in a solution containing 50 mg/mL propidium
iodide, 0.1% w/v trisodium citrate, and 0.1% NP40. Samples
were then incubated for 30 minutes at 4�C in the dark and
nuclei analyzed with a FACS Canto II flow cytometer (Becton
Dickinson).

NMR measurements
Cells were cultured in complete DMEM or labeled in media

supplemented with 10 mmol/L of [U-13C6] glucose for 13C tracer
experiments (Cambridge Isotope Laboratories). The concentration
is based on the standard DMEM formulation. At the time of
collection, the cells were washed twice with ice cold PBS and lysed
in ice-cold PBS by sonication. After removing the insoluble particles
by centrifugation, the supernatants were immediately frozen at
�80�C. Both cell lysates and culture media (500 mL samples) were
added to 100 mL D2O buffer (0.1 M K2HPO4, 0.5 mmol/L DSS and 2
mmol/L sodium azide, pH 7.4) and transferred in 5-mm outer
diameter NMR tubes (14, 15, 16).

NADþ/NADH and GSH measurements
Cells were plated at 1.0 � 106 cells/mL in 10-cm non–cell culture-

treated dishes (10 mL/dish) and treated as required. NADþ/NADH
and GSH were assayed using a quantification colorimetric kit (BioVi-
sion) according to the manufacturer’s instructions.

ATP levels dynamics measured by a fluorescence resonance
energy transfer-biosensor

Free ATP levels were quantified by using a fluorescence reso-
nance energy transfer (FRET)-based indicator, namely ATeam1.03
(AT1.03; ref. 17). This sensor is comprised of the e subunit of the
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bacterial Fo F1-ATP synthase sandwiched by cyan fluorescent
protein (CFP) and yellow fluorescent protein (YFP) variants.
Cells were plated on a glass-bottom dish and transfected with
plasmid coding AT1.03 cDNA by using Lipofectamine 2000 trans-
fection reagent. Forty-eight hours after transfection, cells (HuS0gen,
HuS30gen, HCT116shCTRL, HCT116shCHK2, Huh7shCTRL,
Huh7shCHK2) cultured in glucose-, glutamine-, and pyruvate-
free DMEM were subjected to imaging. Preliminary experiments
were done to define the dependence of cells studied on glucose and
glutamine. All the cell lines evaluated were strongly dependent on
glucose metabolism for proliferation and ATP production. Further-
more, we added 2-DG to block glucose metabolism derived from
intracellular glycogen stores. Cells were maintained in an incuba-
tion chamber that was placed on the temperature-controlled (37�C)
stage of Nikon Eclipse TE2000-U (Nikon) inverted confocal micro-
scope 405-nm laser source and 450/35 (for CFP) or 515/30 (for
YFP) emission filters were used for dual-emission ratio imaging of
AT1.03. The collected images were analyzed by ImageJ software; in
particular, the YFP/CFP emission ratio was calculated by dividing
pixel by-pixel a YFP image with a CFP image. We monitored the
dynamics of ATP levels in living cells after the addition of 2-DG. In
immunofluorescence experiments, colocalization was quantified
using ImageJ with Pearson correlation coefficient (Pearson r),
which ranges between 1 and �1. A value of 1 represents perfect
correlation, 0 means no correlation and �1 represents perfect
negative correlation.

ROS quantification
Cells were incubated with 5 mmol/L 29,79-dichlorodihydrofluor-

escein diacetate (DCFDA, Invitrogen) for 30 minutes. Excess DCFDA
was removed by washing the cells twice with PBS, and labeled cells
were then trypsinized, rinsed, and resuspended in PBS. Oxidation of
DCFDA to the highly fluorescent 29,79-dichloro-fluorescein (DCF) is
proportionate to ROS generation and was analyzed by flow cytometry.

Mitochondrial membrane potential
Cells were plated at 0.1 � 106 cells/mL in DMEM containing 10%

FBS. TMRMcell-permeable fluorescent dye was either added before or
after stimulation depending on the length and nature of treatment. In
the case of inhibitor-treated cells, media were removed and replaced
with TMRM-containingmedia (100 nmol/L) and incubated at 37�C in
the dark for 30 minutes. Oligomycin or CCCP was added after the
addition of TMRM for 1 hour or 2 minutes, respectively. The cell-
permeable MitoTracker Green FM (Molecular Probes) was employed
to label mitochondria. Cells were imaged on a confocal microscope
with an excitation laser of 550 nm and detection set for 560–650 nm
using a 40x oil-objective lens. A number of images were taken for each
treatment

Transcriptomics analysis
RNA was isolated from HuS0gen, HuS30gen, HCT116shCTL,

HCT116shCHK2, Huh7shCTL, and Huh7shCHK2 using the RNeasy
Mini kit (QIAGEN) according to the manufacturer’s instructions
and quantified using a Nanodrop 2000UV-visible spectrophotometer.
RNA integrity was confirmed using Agilent’s 2200 Tape station.
Samples were processed using the KAPA mRNA HyperPrep Kit (p/
nKK8580) according to manufacturer’s instructions at the UCL
Genomics core facility, University College London (London, United
Kingdom). Differential gene expression in the cells HuS0gen versus
HuS30gen, HCT116shCTL versusHCT116shCHK2, andHuh7shCTL
versusHuh7shCHK2was compared (n¼ 1 biological sample). A list of

genes with log2FoldChange, dispGeneEst, and P value of 0.05 was
obtained (18, 19).

Statistical analysis
The data are presented mean� SD from at least three independent

experiments with similar results. All presented immunofluorescence
images are representative images from three representative experi-
ments. For the quantification of immunofluorescence images, the
number of cells used for each representative experiment is indicated
and P values between two groups were determined using unpaired
t tests. For results encompassing multiple groups, one-way ANOVA
was employed. For other experiments statistical significance was
determined using an unequal variance t test. P values of less than
0.05 were considered significant. Plots and statistical analysis were
constructed using software GraphPad Prism Version 7.0.

Detailed methods are provided in the Supplementary Methods
section.

Results
Circulating extracellular vesicles-CHK2mRNAandmetabolomic
profile in HCC patients

We previously reported that the expression levels of CHK2
are increased in human HCC (7). In this study, we explored the
feasibility of measuring CHK2 mRNA in the blood to investigate
the presence of DNA damage/chromosomal instability in liver
patients. To this end, we employed sera from 22 patients with HCC,
14 patients with liver cirrhosis, and 20 healthy subjects, Supplementary
Table S1. To avoid the possibility that the presence of CHK2 mRNA
may be linked to necrotic/apoptotic phenomena or mRNA been
degraded by blood RNases, we extracted the extracellular vesicle–
associated total RNA from the blood. We found a significant increase
of CHK2 mRNA derived from HCC compared with healthy subjects
(Fig. 1A). Remarkably, CHK2mRNAwas increased in 7 of 14 patients
with cirrhosis, thus suggesting the presence of DNA damage in
hyperplastic/dysplastic nodules. Next, we investigated the metabolic
changes occurring in patients with HCC/cirrhosis with increased
CHK2 mRNA expression. We therefore performed a metabolomic
analysis by using 1H-NMR spectroscopy to characterize and compare
the serum fingerprints of patients (20). The results showed differences
in themetabolomic profile ofCHK2-positive patientswith significantly
increase of citrate, fumarate, and formate in comparison with CHK2-
negative patients (Fig. 1B). In addition, lactate levels were significantly
increased in CHK2-positive patients compared with CHK2-negative
patients (Fig. 1B). Metabolomic data revealed an association of CHK2
with glycolysis and TCA cycle. In particular, we investigated the link of
CHK2 with the remarkable increase of fumarate compared with other
TCA cycle metabolites, and glycolytic intermediates as well. We
focused our attention on PKM2, which is a rate-limiting glycolytic
enzyme, and the M2 isoform of PK predominantly expressed in
proliferating cells and tumors (21, 22). Succinate dehydrogenase
(SDH) is a highly conserved mitochondrial heterotetrameric (SDHA,
SDHB, SDHC, SDHD) and functions as complex II of the electron
transport chain (ETC), catalyzing the oxidation of succinate to fuma-
rate. In recent years, several studies have highlighted the role of
the SDH, succinate, fumarate in biological processes other than
metabolism. For this reason, SDH has now been involved in tumor-
igenesis and both succinate and fumarate are considered oncometa-
bolites (23). To clarify the role of glycolysis andmitochondrial activity
in dysplastic/neoplastic tissues marked with DNA damage, we
employed a transgenic model of HCC that overproduces the HBV
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Figure 1.

CHK2 andmetabolomic profile in patients with HCC and IHC detection of CHK2, PKM2, and SDHA in a transgenic model of HCC.A, Box plots of fold change values for
the CHK2mRNA in patients with liver cirrhosis (LC), HCC, and healthy subjects (HS) serum samples. Data were analyzed by using one-way ANOVA (P¼ 0.0153; F¼
5.133). B, Comparison of metabolite serum levels between CHK2-positive patients and CHK2-negative patients, and all the values were normalized and displayed
relative to metabolite levels of healthy subjects, which were arbitrarily set at 1. � , P < 0.05; �� , P < 0.01, by two-tailed t test. C–J, Representative image of livers of
15-month-old wild-typemice (n¼ 10) used as control (left) and 15-month-old HBV transgenic mice (n¼ 20; right). Scale bar, 1 mm. C andD, CHK2 immunoreactivity.
See nuclear staining in the right panels. E and F, Interphase and metaphase nuclear gH2AX immunoreactivity in HBV transgenic mice (right). G and H, PKM2 protein
expression. Wild-type mice express PKM2 in hepatic sinusoids. HBV transgenic mice express PKM2 in hepatic sinusoids and hepatocytes (red arrow, metaphase of
mitotic cells). I and J, Liver tissue of wild-type mice is characterized by amoderate, diffuse cytoplasmic SDHA staining (left). SDHA immunoreactivity in liver of HBV
transgenic mice shows a clear and strong cytoplasmic staining (right). K, PKM2 and SDHA expression was scored according to the percentage of hepatocytes (n¼
100) or tumor cells (n¼ 100) stained positive for PKM2 or SDHA. Scoring included only cells with cytoplasmic staining intensity 3þ at�10 and�25 magnifications.
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large envelope polypeptide, namely C57BL/6J-TG(ALB1-HBV)
44BRI/J. In this transgenic model, mice developed hepatocyte
damage and inflammation early, generating dysplastic nodules by the
age of 9 months with macroscopic HCC nodules by the age of
≥12 months (12). In this setting the expression of CHK2, phospho-
histone H2AX (gH2AX, a marker of DNA double-stranded breaks),
PKM2 and SDHAcatalytic subunit was evaluated by IHC.We detected
the presence of numerous mitoses in dysplastic/neoplastic lesions of

15-month-old transgenic mice, where hepatocytes exhibited nuclear
upregulation of CHK2 (Fig. 1C andD) and gH2AX (Fig. 1E and F) in
comparison with wild-type mice, thus confirming the presence of
DNA damage (24). Liver tissue of wild-type mice showed PKM2
expression exclusively localized in the cells of hepatic sinusoids
(Fig. 1G). Conversely, dysplastic/neoplastic tissue showed high
expression of PKM2 protein in both hepatic sinusoids and cytoplasm
of hepatocytes (Fig. 1H). SDHA was strongly overexpressed in

Figure 2.

Loss of CHK2 does not impair normal growth. A, Representative immunoblot out of three independent experiments demonstrating the protein levels of CHK2 and
gH2AX in culturedHCT116, Huh7, HuS0gen cells, andHuS0gen cells after 30 generations in culture (HuS30gen); HCT116 cellswere retrovirally transduced eitherwith a
control shRNA (shCTL) or shRNA targeting CHK2 (shCHK2). B, Representative immunoblot out of three independent experiments showing the PKM2 and
SDHA protein expression in cultured Huh7 and HCT116 cells, or in HuS0gen and HuS30gen cells. C, HCT116 and Huh7 cells were retrovirally transduced either
with a scrambled shRNA (shCTL) or shRNA targeting CHK2. The protein levels of CHK2, PKM2, and SDHA were determined by immunoblotting and a
representative example is shown. D, Asynchronously growing HCT116, Huh7, CHK2-deficient HCT116, and Huh7 cells were subjected to FACS analyses. Typical
FACS profiles show normal growth in parental cells and in CHK2-deficient cells. HuS30gen cells display a delay in generating cells with a 2N DNA content
compared with HuS0gen.

CHK2 as a Sensor of Cellular Metabolic Requirements

AACRJournals.org Cancer Res; 81(11) June 1, 2021 2865

on June 3, 2021. © 2021 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst March 24, 2021; DOI: 10.1158/0008-5472.CAN-20-3134 

http://cancerres.aacrjournals.org/


dysplastic/neoplastic tissue of transgenic mice compared with the age-
matched wild type mice (Fig. 1I–K).

Glycolytic enzymes PGK1 and PKM2 compartmentalize ATP
production colocalizing with mitotic spindle components

To gain further mechanistic insight into the role of DNA damage
and CHK2 in glycolysis and oxidative metabolism an analysis in vitro
was conducted. We used HuS (human hepatocytes cell line immor-
talized with telomerase reverse transcriptase (hTERT), andHuh7 cells.
Huh7 is a chromosomally stable HCC cell line. HuS cells just estab-
lished in culture (0 generation), hereafter referred to as HuS0gen,
showed a karyotype with a distribution of 46 chromosomes. On the
contrary, HuS cells maintained in culture and after 30 consecutive
generations, hereafter referred to as HuS30gen, showed a distribution
near triploid, with many structural chromosomal defects (7). We also
generated a chromosomally unstable version of the colon carcinoma
HCT116 cell line by continuously culturing cells, hereafter referred to
as HCT116. These cells exhibited a distribution near-diploid with
many structural chromosomal rearrangements as shown in Supple-
mentary Fig. S1A and S1B. To evaluate the establishment of DNA
damage, we tested the expression and localization of gH2AX
and CHK2 (25, 26). As shown in Fig. 2A, HuS30gen showed higher
levels of gH2AX and CHK2 in comparison with HuS0gen. Several
foci of DNA damage were evident in HuS30gen cells with lagging
chromosomes and in HCT116 (Supplementary Fig. S2A and S2B).
Silencing of CHK2 in HCT116 cells (HCT116shCHK2) determined
the reduction of gH2AX and CHK2 levels. In contrast, HuS0gen
and Huh7 showed low levels of gH2AX and CHK2 (Fig. 2A).
Next, we examined the expression levels of PKM2 and SDHA in
HCT116, Huh7, HuS0gen, HuS30gen, and HCT116 cells. HCT116
cells revealed high levels of PKM2 and SDHA as well as HuS30gen
showed increased SDHA and PKM2 levels in comparison with HuS0-
gen (Fig. 2B). Furthermore, CHK2-depleted HCT116 and Huh7
(HCT116shCHK2 and Huh7shCHK2, respectively) showed a marked
reduction of both SDHA and PKM2 levels, compared with their
controls (HCT116shCTL and Huh7shCTL; Fig. 2C). To uncover
possible defects in mitosis induced by loss of CHK2, we performed
cell-cycle analysis. No modification of cell cycle was observed in
CHK2-depleted HCT116 and Huh7 cells. HuS30gen showed a delay
in mitosis progression in comparison with HuS0gen (Fig. 2D). We
hypothesized that under conditions of DNA damage/CHK2 expres-
sion, glycolytic ATP-producing enzymes such as PKM2 and phos-
phoglycerate kinase 1 (PGK1), the first ATP-generating enzyme that
catalyzes the transfer of the high-energy phosphate from the 1 position
of 1,3-diphosphoglycerate to ADP, redistribute from a diffuse local-
ization in the cytoplasm to a localization in the mitotic spindle (27).
Our hypothesis was verified by immunofluorescence experiments,
indeed PKM2 and PGK1 colocalized with CENP-A, a constitutive
component of kinetochores and CHK2 expression was required
(Fig. 3A and C; Supplementary Fig. S3A and S3B). The most inter-
esting aspect was that, in bothHuS30gen andHCT116 cells, PGK1 and
PKM2 colocalized with CHK2 (Supplementary Fig. S4A–S4D)
suggesting the ad hoc formation of a glycolysis compartment able to
maintain effective local levels of ATP. This result was confirmed also in
living HuS30gen cells, where we verified colocalization of RFP-CHK2
with EGFP-PKM2 (Fig. 3D).

DDR activation promotes a defective ATP mitochondrial
production

To assess the relationship between CHK2 expression, the glyco-
lytic pathway and oxidative metabolism, we measured glycolysis

(through measurements of the extracellular acidification rate,
ECAR) and oxidative metabolism (oxygen consumption rate, OCR)
by using Seahorse extracellular flux (XF-96) analyzer. HuS30gen
and HCT116shCTL exhibited a significant increase of ECAR (Fig.
4A and B) and O2 consumption (Fig. 4D and E) compared with
HuS0gen and HCT116shCHK2. Interestingly, Huh7 cells, after
knockdown of CHK2, did not exhibit significant modifications in
metabolic activity (Fig. 4C and F). Taken together, these data
indicate that cells with DDR activation are characterized by
increased glycolysis and oxidative metabolism.

ATP is the energy currency utilized by organisms in normal
conditions and by cancer cells (28). To address the role of DNA
damage/CHK2, glycolysis, and oxidativemetabolism in the generation
of ATP, we measured intracellular ATP in single living cells by using a
FRET-based biosensor, namely ATeam. Our results showed that
HuS30gen and HCT116shCTL cells significantly rely on glycolysis
for the production of ATP. In addition, these cells exhibited an
ostensibly defective function of mitochondria in the production of
ATP. This impairment was rescued by gene knockdown of CHK2;
again, Huh7 cells did not exhibit significant CHK2-depentent ATP
production (Fig. 4G–I; Supplementary Fig. S5A–S5D).

CHK2 controls glycolysis and TCA cycle intermediates
production

To further corroborate these findings, we performed steady-
state metabolomic profiling by 1H NMR spectroscopy of HuS0gen,
HuS30gen, HCT116shCTL, HCT116shCHK2, Huh7shCTL, and
Huh7shCHK2. As shown in Fig. 5A, HuS0gen and HCT116shCHK2
cells, showed a decreased intracellular lactate production, compared
with HuS30gen and HCT116shCTL. Furthermore, HuS0gen and
HCT116shCHK2 exhibited reduced levels of fumarate, a product of
succinate oxidation. Interestingly, we observed that intracellular levels
of aspartate and glutamate were significantly abundant in HuS0gen
while HCT116shCHK2 showed a significant increase of only gluta-
mate (Fig. 5B). Of note, these effects were inconsistent in CHK2-
depleted Huh7. To further elucidate the effect of CHK2 activity on
glucose metabolism, we used [U-13C6] glucose to trace the amount
of 13C-alanine and 13C-lactate (in both medium and cell lysates
(Supplementary Tables S2 and S3). HCT116shCTL and HuS30gen
cell lysates exhibited an increased concentration of 13C-lactate.
In particular, the enrichment percentage of 13C-lactate directly
measured in the 1H NMR spectra resulted of 25.13 and 24.49%
for HCT116shCTL and HuS30gen, respectively (Supplementary
Table S3). In addition, HCT116shCHK2 showed a significant higher
concentration of 13C-alanine and the glycolytic intermediate phos-
phoenolpyruvate (13C-PEP; Fig. 6A and B; Supplementary Figs.
S6A–S66C and S7A–S7C). Moreover, we observed that the glucose
oxidation via the TCA cycle in HCT116shCTL and HuS30gen
produced increased concentration of 13C-fumarate, simultaneously
high levels of 13C-glutamate in HCT116shCHK2 cell lysates were
measured. Glutamate was significantly labeled at the C4 position
and to a lesser extent at the C2 and C3 positions (Supplementary
Fig. S6B). There are two ways of labeling from [U-13C6]glucose into
glutamate. One way involves the pyruvate dehydrogenase (PDH)
enzyme, which leads to the production of 13C-4,5-glutamate. The
other way utilizes the anaplerotic reaction of pyruvate carboxylase
to produce oxaloacetate directly from pyruvate, which generates
13C-2,3-glutamate. The presence of 13C-2,3-glutamate was consis-
tent with activity of pyruvate carboxylase.

Next, we measured the glucose consumption of stable Huh7cells
lacking significant levels of DNA damage. Huh7shCHK2 cells showed
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an increased intracellular concentration of 13C-glucose and 13C-lactate
(Fig. 6C). Furthermore, Huh7shCHK2 exhibited a raised glucose
consumption up to 70%, with increased 13C-lactate secretion
(92.95%; Supplementary Table S2). These results revealed a different
function and specificity of CHK2 in HuS and HCT116 in comparison
with Huh7 cells. To gain further insight into how CHK2 regulates
cellular metabolism, we determined the effects of CHK2 silencing on
theHCT116 andHuh7cells, by performing RNA-seq analysis (29).We
focused on sets of genes that were related to the glycolytic processes,
pentose phosphate pathway, TCA cycle, one-carbon unit metabolism,
glutathione metabolism, and antioxidant pathways (Fig. 6D–F). Of
particular relevance was that TCA-linked genes were for the most part
downregulated in HCT116shCHK2 and reciprocally upregulated in
Huh7shCHK2 (Fig. 6E and F). Furthermore, we evaluated the gene
expression in HuS0gen and Hus30gen, confirming that the accumu-
lating levels of DNA damage/CHK2 were able to control important
pathways of cell metabolism such as glycolysis, pentose phosphate
pathway, and TCA cycle (Fig. 6D). Overall, the metabolites changes
were highly concordant with the gene expression changes from the
RNA-seq profiles (Supplementary Fig. S8).

Increased succinate oxidation induces the generation of
mitochondrial ROS

Next, we further investigated how CHK2 could affect mitochon-
drial functions. To this end, we took advantage of the previously
obtained results regarding O2 consumption and ATP measure-
ments. We observed that HuS30gen and HCT116shCTL cells dis-
played a higher OCR in comparison with HuS0gen and
HCT116shCHK2 (Fig. 4D and E). However, the ability to produce
ATP by mitochondria was not equivalent to O2 consumption in
these cells. Hence, we deduced that the cellular redox homeostasis
could be altered. Therefore, we tested the production of ROS and
found that HuS30gen and HCT116shCTL had increased levels of
ROS in comparison to HuS0gen and HCT116shCHK2 (Fig. 7A).
Huh7 cells did not show any significant variations in ROS levels.
Our findings indicated a significant oxidative stress occurred
when the demand of ATP increased. To corroborate these findings,
we measured the levels of GSH, the most abundant nonprotein
antioxidative stress thiol (30). HuS30gen, HCT116shCTL, and
Huh7shCHK2 expressed a significant reduction of GSH as shown
in Fig. 7B. Mitochondrial ATP production and mitochondrial

Figure 3.

Loss of CHK2 impairs colocalization of PKM2 with kinetochore component CENP-A. A and B, HuS0gen, HCT116shCHK2 and HuS30gen, HCT116shCTL cells were
synchronizedby thymidine treatment and then released intomedium. Bipolar spindle assembly and chromosomealignmentweremonitoredby immunofluorescence
and typical examples are given. CENP-A (green), PKM2 (red), and chromosomes were stained with Hoechst 33342 (blue). C, Colocalization of PKM2 and PGK1 with
CENP-A (see also Supplementary Fig. S3)was quantified using Pearson r. Data aremean� SD; n¼ 20 cells from representative experiments. �, P <0.0001.D, Images
of PKM2 colocalization with CHK2 in living cells. HuS30gen were cotransfected with EGFP-tagged PKM2 (green) and RFP-tagged CHK2 (red); examples of
colocalization in living cells are given. Scale bar, 10 mm.
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Figure 4.

HuS30gen and HCT116 cells exhibit increased ECAR and OCR and rely on glycolysis the production of ATP. A–C, Seahorse XF glycolysis stress test profile of the key
parameters of glycolytic function. In this stress test, cells are exposed sequentially to glucose, oligomycin (ATP synthase inhibitor), and 2-DG (hexokinase inhibitor).
D–F, Seahorse XF cell Mito Stress Test profile of the key parameters ofmitochondrial respiration. In this stress test, cells are exposed sequentially to oligomycin, FCCP
(protonophoric uncoupler), rotenone, and antimycinA (complex I and complex III of electron transport chain inhibitors). Representative graphic of three independent
experiments.G–I,Cells expressingATeam1.03were generated by transfectionwith plasmids carryingATeam 1.03 cDNA. The transfected cellswere assayedbetween
1 and 3 days after transfection. Cells expressing ATeamwere seeded into m-dish 35mm, high glass bottom, in phenol red-free DMEMwithout glucose, glutamine, and
pyruvate. Intracellular ATP depletion in the cells treated with 20mmol/L 2-DGwasmonitored starting at time¼0 (min). Cytosolic ATP levels in individual living cells
were imaged with ATeam 1.03 using a confocal microscope (see also Supplementary Fig. S5). Sequential confocal images of YFP (top), CFP (middle), and YFP/CFP
emission ratio (bottom, pseudocolored) of a HuS30gen cells expressing ATeam1.03. Inhibitor of glycolysis, 20 mmol/L 2-deoxyglucose (2-DG), was added at time
0 (min). Elapsed time (in minutes) after addition of the inhibitor is shown at the top left of the cells. Images were obtained at 37�C (scale bar, 20 mm).
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membrane potential require NADþ as energy storage. NADþ

gains two electrons and a proton from glycolysis and TCA cycle
substrates being reduced to NADH. By measuring NADþ/NADH
ratio, we found that HuS30gen, HCT116shCTL, and Huh7shCHK2

exhibited a higher NADþ/NADH ratio, in comparison with HuS0-
gen, HCT116shCHK2, and Huh7shCTL (Fig. 7C). Taken together,
these data establish that DDR/CHK2 exert a control on mitochon-
drial function and increased SDH-driven oxidation provides a

Figure 5.

CHK2 and gH2AXexpressionpromotes glycolysis and succinate oxidation.A andB,HuS0gen andHuS30gen andCHK2-depletedHCT116 andHuh7 cellswere cultured
in DMEMwith 10% FBS for 24 hours. 1H NMR spectrawere acquired on cell lysates. The relative concentration levels of indicatedmetabolites calculated by integrating
the signal area in the respective 1H NMR spectra are represented as histograms. The experiments were repeated three times. Error bars, mean � SD of triplicates.
� , P < 0.05 by unequal variance t test.
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significant contribution toward the high rates of ROS production by
mitochondria. Remarkably, CHK2 gene knockdown did reduce
mitochondrial production of ROS (30). Furthermore, we address
the role of succinate in cell proliferation. Rotenone, a NADH-
ubiquinone oxidoreductase inhibitor, caused a significant reduction
of cell proliferation by using 1 mmol/L concentration. Adding
diethylsuccinate (1 mmol/L), a cell-permeable succinate, induced
a toxic effect partially attenuated in the HCT116shCHK2 and
HuS0gen cells. To confirm the role of SDH, we treated HuS,
HCT116, and Huh7 cells with dimethylmalonate (DMM), a potent
competitive inhibitor of succinate oxidation by SDH. DMM treat-
ment significantly inhibited the growth of HuS30gen and
HCT116shCTL cells, whereas Huh7 cells resulted less sensitive to
growth inhibitory effects of DMM (Fig. 7D–F; Supplementary
Fig. S9A–S9F). Therefore, we conclude that DDR/CHK2 activation
is involved in SDH-dependent ROS production. A high mitochon-
drial membrane potential (Dcm) is expected in cells demanding

elevated ATP production, as in the case of DDR/CHK2 activation.
This is because the Dcm, is generated by NADH oxidation and
released Hþ crossing through complexes I, III, and IV of the
mitochondrial inner membrane. Indeed, to determine a potential
requirement of SDH activity for increased Dcm, we explored the
effect of rotenone (Rot), and 2-thenoyltrifluoroacetone (TTFA), a
ubiquinone analogue and inhibitor of SDH. The treatment of
HuS30gen and HCT116 cells expressing high levels of SDH with
Rot increased Dcm, whereas TTFA significantly reduced Dcm. The
addition of Rot in Huh7 increased the Dcm, whereas TTFA did not
exert any significant reduction of Dcm in these cells. Inhibition of
SDH alone or NADH-ubiquinone oxidoreductase þ SDH, reduced
the mitochondrial TMRM fluorescence at the same extension
(Supplementary Fig. S10A–S10E). We, therefore, conclude that
SDH effectively plays a key role in sustaining Dcm hyperpolariza-
tion and ROS production in Rot-treated cells by fueling electron
transport to oxygen.

Figure 6.

Metabolomic and transcriptomic eva-
luations indicate that CHK2 manages
glycolysis and glucose flux through
the TCA cycle. A–C, Cells were incu-
bated in DMEM with 10 mmol/L of
[U-13C6] glucose for 24 hours and
the percentage of enrichment of the
indicated metabolites in cell lyates
was determined by 1H-13C NMR as
described in Materials and Methods.
13C-enriched metabolites levels in
CHK2-depleted HCT116 and Huh7
are represented as histograms. 13C
enrichment of metabolites was also
evaluated in HuS0gen and HuS30gen
cells. The experiments were repeated
three times. Error bars, mean� SD of
triplicates (� , P < 0.05, by unequal
variance t test). D, RNA was isolated
and RNA-seq was performed to
determine genes significantly down-
regulated or upregulated in HuS cells.
E and F, RNA was isolated and RNA-
seq was performed to determine
genes significantly downregulated
or upregulated in CHK2-depleted
HCT116 and Huh7. The strength of the
color refers to how strongly upregu-
lated (red) or downregulated (blue)
the various genes are. The heat maps
colored black and white represent
the statistical significance (adjusted
P value) of the indicated genes, with
the darker colors denoting higher
confidence (see also Supplementary
Fig. S8).
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Discussion
In this study, we extend the relevance of DNA damage response

protein CHK2 and identify its role in mitochondria functions
and glycolysis (31–33). Indeed, our in vivo results indicate that
dysplastic/neoplastic hepatocytes, which harbor DNA damage,
exhibit high energy demand in terms of glycolysis and oxidative
metabolism. Moreover, our data in vitro reveal that cells over-
expressing g-H2AX/CHK2 own a high oxidative state causing a
SDH-dependent ROS production. Furthermore, we provide evi-

dence that cells with mitotic-linked DNA damage/CHK2 activation
rely on glycolysis for ATP production, and glycolytic ATP-
producing enzymes PGK1and PKM2 redistribute from a diffuse
localization in the cytoplasm to the mitotic spindle and colocalize
with protein CHK2. Therefore, we propose that in conditions of
elevated energy demands, as a consequence of mitosis-linked DNA
damage, a metabolic compartment is formed within the mitotic
spindle to locally implement ATP and accomplish DNA repair and
chromosome segregations (34).

Figure 7.

The presence of DNA damage/CHK2 promotes ROS production through succinate dehydrogenase activity. A, Relative ROS levels in HuS, HCT116, and Huh7 cells
under conditions indicated as determined by DCFDA (29,79-dichlorodihydrofluorescein diacetate) staining. B, GSH levels were measured in lysates of HuS0gen,
Hus30gen, HCT116shCTL, and HCT116shCHK2 cells using a colorimetric assay kit. C, NADþ/NADH ratio measured in lysates of HuS0gen, Hus30gen, HCT116shCTL,
HCT116shCHK2, Huh7shCTL, and Huh7shCHK2 using an NADþ/NADH assay kit. D–F, Proliferation rate was determined in the absence (Untr) or in the presence of
cell-permeable diethylsuccinate (Suc, 1mmol/L), NADHoxidoreductase inhibitor rotenone (Rot, 1mmol/L), and succinate dehydrogenase inhibitor dimethylmalonate
(DMM, 20 mmol/L). After 4 days, cells were fixed in 3% formaldehyde and stained with 0.1% crystal violet. Dye was extracted with 10% acetic acid and the relative
proliferation was determined by OD at 595 nm (see also Supplementary Fig. S9). Error bars, mean � SD of triplicate wells from five independent experiments.
� , P < 0.05 by two-tailed Student t test.
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Several studies indicate that dysregulation of mitochondrial func-
tions characterized by TCA cycle disruptions are associated with
overproduction of ROS, which may participate in oncogenic signaling
and/or tumor progression by modification of DNA (35). We demon-
strate that the presence of DNA damage and DDR promotes an
enhanced TCA cycle activity, and CHK2 depletion reduces TCA cycle
activity. In this situationmost amino acids enter the TCA cycle as 4- or
5-carbon compounds, only acetyl-CoA produced from their catabo-
lism can be fully oxidized in the cycle. Therefore, it is important to
remove 4-and 5-carbon TCA cycle intermediates to avoid the accu-
mulation in the mitochondrial matrix. These reactions use TCA cycle
intermediates as substrate that is converted to a product (e.g., aspar-
tate, glutamate, alanine) that effectively removes intermediates from
the cycle (36). In metabolism build-up of metabolites can occur not
only due to increased production, but also due to decreased consump-
tion, a process known as cataplerosis (Supplementary Fig. S6C). In
addition, we demonstrated that SDH overexpression funnels succinate
oxidation to ROS production. For a long time, SDH has not been
considered a relevant contributor to ROS production, however, recent-
ly, several studies have established that SDH can produce superoxide
anion or H2O2 at rates similar to complex I and complex III of the
ETC (37, 38). Our findings support this view with the following
observations: (i) the intracellular levels of GSH, the most important
antioxidant synthesized in the cells were reduced; (ii) the low levels of
cytosolic GSH are directly linked to the overexpression of CHK2/SDH
and ROS, and (iii) CHK2 knockdown restores the cytosolic levels of
GSH and reduces ROS production. In this context, ROS could be
responsible for creating an imbalance of redox status inducing cells to
consume antioxidants such as GSH. Indeed, ROS are essential to cell
function, and their role is well established as well as their involvement
in many signaling pathways and also in cell growth, but their levels
need to be accurately tuned to avoid toxic effects. In this context,
gH2AX may serve as a signal for the timely recruitment and/or
retention of DDR proteins in the vicinity of DNA lesions (39, 40).
Although little is known about themechanism regulating the exchange
of variant histoneH2AXwith conventional histoneH2A in the context
of the nucleosome, here we reveal that CHK2 is involved inH2AXgene
expression (41, 42). The central role ofmitochondria inDDR signaling
is further corroborated by data on formate production (43, 44). Recent
work has shown that the mitochondrial folate flux exceeds one-carbon

demand for biosynthesis, producing surplus formate that is excreted
from the cell (45). In our study, this pathway seems to be involved
supporting the production of glycine to maintain GSH levels to
counteract the ROS production elicited by DNA damage/CHK2
activation.

In summary, this study provides the first demonstration of a link
between a central effector of DNAdamage response such as CHK2 and
cellular metabolism. In addition to the increasingly energy demand
triggered by DNA damage, activation of CHK2 turns cancer cells into
an uncontrollable energetic short circuit. This mechanism can, how-
ever, be interrupted by targeting the determinants involved in this
process; for example, SDH could be an optimal druggable target to
block the energy short circuit required by replication stress-related
DNA damage. Furthermore, in this study we have identified a mech-
anism of ROS production originated by dysfunctional mitochondria.
This aspect might represent a vulnerability created by DNA damage
response that could be exploited for development of new tools for
current and novel therapies.
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