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Abstract: Reliability-centered maintenance (RCM) is a well-established method for preventive mainte-
nance planning. This paper focuses on the optimization of a maintenance plan for an HVAC (heating,
ventilation and air conditioning) system located on high-speed trains. The first steps of the RCM
procedure help in identifying the most critical items of the system in terms of safety and availability
by means of a failure modes and effects analysis. Then, RMC proposes the optimal maintenance
tasks for each item making up the system. However, the decision-making diagram that leads to the
maintenance choice is extremely generic, with a consequent high subjectivity in the task selection.
This paper proposes a new fuzzy-based decision-making diagram to minimize the subjectivity of the
task choice and preserve the cost-efficiency of the procedure. It uses a case from the railway industry
to illustrate the suggested approach, but the procedure could be easily applied to different industrial
and technological fields. The results of the proposed fuzzy approach highlight the importance of an
accurate diagnostics (with an overall 86% of the task as diagnostic-based maintenance) and condition
monitoring strategy (covering 54% of the tasks) to optimize the maintenance plan and to minimize
the system availability. The findings show that the framework strongly mitigates the issues related to
the classical RCM procedure, notably the high subjectivity of experts. It lays the groundwork for a
general fuzzy-based reliability-centered maintenance method.

Keywords: condition-based maintenance; fault detection; fuzzy logic; reliability; reliability-centered
maintenance; railway

1. Introduction

Industrial production is driven by global competition, and radical advances are re-
quired in manufacturing technology if companies are to keep up. Industry 4.0 is transform-
ing industrial manufacturing through digitalization and other new technologies (see for
instance [1–5]). A main objective is the reduction of down-time by optimizing maintenance
policies [6–10]. Reliability-centered maintenance (RCM) is a method used to identify and
select failure management policies, including maintenance activities, operational changes,
design modifications or other actions to mitigate the consequences of failure [11]. RCM
provides a decision process to identify applicable and effective preventive maintenance
requirements or management actions to prevent the safety, operational and economic
consequences of failures, and to identify the degradation mechanism responsible for those
failures. The most important but challenging parts of the RCM process are failure mode
effect and criticality analysis (FMECA) and task selection. FMECA is developed using
the subjective knowledge of domain experts (for more information about FMECA, see for
instance, but not only, [12–15]).
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Meanwhile, the decision diagram proposed by the international standard IEC 60300-3-
11 [11] for task selection is very generic, and the task choice mostly relies on the experience
of the analyst that performs the RCM [16]. The classical risk priority number (RPN), the
output of the FMECA, also has many drawbacks, including gaps in the range, duplicates,
subjectivity and dispersion [17]. Despite these disadvantages, RCM is a powerful solution,
widely used in every industrial field in which service continuity represents a mandatory
requirement, and maintenance must be optimized in terms of money and time [18].

Some researchers propose an effective RCM assessment approach using reliability
software [19]. In Reference [20], the RCM is applied to the whole system under test instead
of focusing on individual components. Other papers use analytical models and a dynamic
approach [21,22], while some authors create their own framework for maintenance decision-
making [23,24]. Zakikhani et al. [25] propose an availability-based RCM, while in [26]
a whole dependability study (RAMS) is introduced to optimize maintenance policy. In
Reference [27], the variation trends of the failure rates of components under imperfect
maintenance are used to optimize the maintenance of metro trains based on the concept of
RCM. Afzali et al. [28] propose a weighted importance reliability index model to prioritize
the components in a complete RCM report. In Reference [29], a stochastic RCM is proposed,
while other papers introduce genetic algorithms to solve the mathematical problem of
RCM optimization [30,31].

Starting from a preliminary work presented in [32], this paper proposes a new ap-
proach based on fuzzy set theory to overcome the limitations of traditional FMECA and
RCM. It provides a customized decision diagram that uses fuzzy inference rules to mitigate
the subjectivity problem of the classical procedure. The three parameters of the criticality
analysis are fuzzified using appropriate membership functions; the resulting RPN given by
the product of the three indices is a fuzzy number. The proposed decision diagram for the
task selection is based on the fuzzy occurrence, severity and detection scores combined
with other failure information using a set of if–then rules, one of the most frequently used
and efficient fuzzy inference approaches [33–35].

The main contribution of this paper is the introduction of a fuzzy-based decision-
making diagram to guide the selection of the optimal maintenance task within the reliability-
centered maintenance procedure. The proposed procedure helps to rapidly, easily, uniquely,
and unambiguously identify the optimal maintenance policy, while the classical RCM pro-
cedure leads the analyst to multiple choices involving high subjectivity in the definition.
Moreover, the methodology presented in this work is a diagnostic-oriented decision dia-
gram that favors the choice of condition-based maintenance whenever possible, such as
condition monitoring and failure finding procedures.

The paper is organized as follows. Section 2 explains the classical RCM process
used by international standard IEC60300 3-11. Section 3 describes the proposed approach
to mitigate the subjectivity problems of the standard technique, and Section 4 tests and
validates the methodology on a real case study of a railway HVAC system. Finally, Section 5
offers some conclusions.

2. Reliability-Centered Maintenance

Reliability-centered maintenance is an effective way to select the appropriate mainte-
nance policies for every type of system. In compliance with the international standard IEC
60300-3-11, the classical RCM process is divided into five steps [11]:

1. Initiation and planning—establishing a plan of analysis and the operating context;
2. Functional failure analysis—identifying the failure modes, causes, effects and criticali-

ties of each component;
3. Task selection—selecting the appropriate maintenance task and interval;
4. Implementation;
5. Continuous improvement—monitor the effectiveness of the maintenance plan to

ensure continuous improvement.
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The most critical step of the classical RCM procedure is the selection of the main-
tenance task (Phase 3). In compliance with international standard IEC60300-3-11 [11],
Figure 1 shows how to guide the maintenance task selection in order to identify the opti-
mal maintenance solution for the system under test. The maintenance decision diagram
aims to simplify the assessment of the optimal maintenance tasks.
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Figure 1. Maintenance decision diagram of classical RCM procedure according to International
standard IEC 60300-3-11.

The maintenance policy choice depends on two conditions: if the failure is evident or
not, and if the failure will involve consequences for the safety level of the system under test.
However, at least four possible task options are given in each orange box; this means the
international standard gives the designer a high level of subjectivity. Overall, the diagram
is very generic and does not lead to a unique task choice; the designer is free to choose one
or another option, based only on his or her expertise.

All possible maintenance tasks taken into account by the standard are explained as follows:

• Failure finding is applicable only to hidden failure. This task can be either an inspec-
tion or a function test to determine whether an item would still perform its required
function if demanded [36];

• Scheduled maintenance is divided into scheduled restoration and scheduled replace-
ment. This task consists of the scheduled refurbishment or replacement of an item or
its components;

• Condition monitoring is a continuous task that allows users to detect the health
state of the system by monitoring some contextual parameter that could indicate
the degradation and wear-out of the monitored item. Condition monitoring is able
to indicate that the failure mode can be expected to occur if no corrective action is
taken [37,38];

• No preventive maintenance is performed if no maintenance action is required
(i.e., Run to Failure);
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• Alternative actions may be performed, as suggested by the designers and maintenance
experts.

3. Proposed Approach: Fuzzy-Based RCM

FMECA, based on the fuzzy set theory approach, has been used in a variety of engi-
neering fields to eliminate the drawbacks explained in the introduction section [17,39–41].
In this paper, fuzzy logic is used not only to enhance the features of FMECA and RPN
but also to introduce a new approach to maintenance decision-making. The first step is
to complete a classical failure modes and effects analysis (FMEA) to identify the failure
modes, failure causes and failure effects of the system. The aim of FMEA is to highlight
all the criticalities of the system, the causes that could lead to them and all the possi-
ble consequences. The second step is to define the linguistic variables of the three risk
parameters—occurrence (O), severity (S) and detection (D)—and rank them using fuzzy
numbers instead of crisp numbers. The O, S and D indices can be divided into several
linguistic terms, each identifiable by a different value. A three-linguistic scale is used in the
proposed approach, and each term is fully described in Table 1.

Table 1. Linguistic definition for occurrence (O), severity (S) and detection (D) used in the proposed method.

Occurrence (O) Severity (S) Detection (D)

Remote (R)—the mode has a remote
probability of occurring

Very low (VL)—the mode has low/no
impact on the system

Almost certain (AC)—the mode will
almost certainly be detected

Probable (P)—the mode has a medium
probability of occurring

Tolerable (T)—the mode causes
deterioration in the system

Medium (M)—the mode will
probably be detected

High (H)—the mode will likely occur Critical (C)—the mode leads to serious
damage in the system

Absolutely uncertain (AU)—the mode
will hardly be detected

The indices are transformed into fuzzy numbers via membership functions. All
membership functions are trapezoidal. Figure 2 shows the membership functions related to
occurrence, Figure 3 highlights the severity membership functions and Figure 4 illustrates
the membership functions of the detection.
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The main advantage of this approach is that instead of choosing a crisp value within
the range of 1 to 10 for each parameter, the designer can choose one of the three linguistic
terms. This leads to a better accuracy and a less subjective assessment of the risk level
because expert judgment now relies on the linguistic terms.

After the assessment of O, S, and D, the fuzzy FMECA procedure requires the evalua-
tion of the fuzzy risk priority number (RPN) using, for example, if–then rules (see, among
others, [33,35,42]), weighted geometric mean [43], OWA operator [44], TOPSIS theory [45]
or multicriteria decision method [41]. In this paper, fuzzy if–then rules are used to calculate
the fuzzy risk priority number (FRPN). Moreover, the proposed decision focuses on the
development of a new maintenance decision diagram. The new customized diagram is
shown in Figure 5. In the diagram, the membership functions of O, S and D are identified
by different colors, as in Figures 2–4. The proposed maintenance decision diagram is
a diagnostic-oriented approach that favors the choice of condition-based maintenance
whenever a diagnostic system is applicable. Therefore, the membership function of the
detection variable plays a fundamental role in the procedure. For instance, if detection
is “Almost Certain—AC” then the proposed procedure suggests the implementation of
condition monitoring to diagnose the health-state of the system, and consequently optimize
the maintenance policy based on the system’s actual conditions.
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For the sake of simplicity, the linguistic variables that define each membership function
in Figure 5 are abbreviated using only the first letter of each word, as in the captions of
Figures 2–4. Different colors have been used to identify the different membership functions.

The information necessary to carry out the proposed procedure is the following:

• Whether the failure is hidden or evident;
• Whether the failure has safety consequences on the system;
• What the membership functions of occurrence, severity and detection are.

Depending on this input information, there is a univocal output, so the set of inputs
leads to a specific maintenance task. Designer subjectivity is minimized, and the task is
selected in a more deductive and rational way. Furthermore, the proposed methodology
is still compliant to the requirements and suggestions of the RCM international standard
IEC 60300-3-11. In fact, the top side of the tree remains the same as the decision diagram
proposed in then international standard (see Figure 1). The proposed procedure improves
the bottom side of the tree introducing the fuzzy linguistic variables to provide a univocal
and unique maintenance choice for each analyzed failure mode.

The decision diagram proposed in Figure 5 could be automatized by implementing
a set of fuzzy-based if–then rules. Usually, the fuzzy “if–then” procedures presented in
the literature are solved using one of the following three types of fuzzy inferences. The
Mamdani inference first proposed in [46] results in an aggregation of fuzzy sets that must
be defuzzied to achieve the crisp output. The Sugeno inference [47] provides a polynomial
function that must be solved to obtain the crisp output value. Finally, the Tsukamoto
inference [48] is a hybrid approach based on the previous ones that has not gained much
popularity in the literature. In this paper, the Mamdani inference is used since it provides
optimal results with low computational complexity, as well as easiness of use. The proposed
fuzzy system for maintenance task assessment has five inputs and two outputs. The three
inputs (occurrence, severity and detection) are the fuzzy variables described by the three
trapezoidal membership functions illustrated in Table 1 and discussed above. The other
two inputs are simple Boolean variables with only two states, “Yes” or “No”. One is used
to divide the failure into “hidden” or “evident”; the other classifies the failure’s impact on
safety. In other words, the proposed methodology is implemented using a hybrid system
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merging Boolean and fuzzy logic through a set of fuzzy if–then rules. The two outputs of
the fuzzy system are:

• The fuzzy risk priority number (FRPN) assessed combining occurrence, severity and
detection. FRPN is described using six trapezoidal membership functions;

• The optimal maintenance task, a linguistic variable assessed using all five inputs
according to the decision diagram illustrated in Figure 5.

The proposed fuzzy logic system is illustrated in Figure 6, highlighting the inputs and
the outputs. The inference logic uses 9 rules to assess the fuzzy risk priority number and
36 rules to assess the optimal task. Obviously, this number varies if the risk rates O, S and
D are described with more membership functions. For the sake of simplicity, this paper
analyzes the parameters using only three linguistic variables each; when the number of
possible linguistic values is increased, the accuracy of the approach increases, along with
its complexity.
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Two of the implemented rules are illustrated below, the first for the FRPN output and
the second for the maintenance task selection:

If (Severity is Critical) and (Detection is Almost certain) and (Occurrence is Remote)
then (FRPN is Critical);

If (Failure evident = YES) and (Impact on Safety = NO) and (Severity is Tolera-
ble) and (Detection is Almost Certain) and (Occurrence is remote) then (Optimal task
= Condition Monitoring).

4. Case Study: RCM Assessment of HVAC for High-Speed Trains

Heating, ventilation and air conditioning (HVAC) technology is concerned with indoor
and vehicular environmental comfort. The objectives of HVAC systems are to provide an
acceptable level of occupancy comfort and process function, to maintain good indoor air
quality, and to keep system costs and energy requirements to a minimum. Furthermore,
one of the main objectives of HVAC is to ensure emergency ventilation and sufficient air
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exchange [49–52]. In summary, HVAC has to ensure four functionalities: cooling capacity,
heating capacity, ventilation capacity and emergency ventilation.

In this section, the proposed fuzzy-based RCM approach has been applied to an HVAC
system installed on high-speed trains in order to test and validate the performances of
the proposed approach. The complete RCM report is not available; however, the results
achieved for the most critical and complex components of the HVAC are illustrated in
the following.

Five components are considered in this paper, namely the compressor, the electronic
control card (ECC), the watchdog, the IGBT module (insulated gate bipolar transistor)
and the UPS (uninterruptible power supply). The compressor draws in the cold gases
exiting the evaporator battery at low pressure and compresses them, so they come out
as overheated gas at high pressure. It includes a motor, a pump, some internal valves, a
thermostat, etc. The ECC is a microprocessor-based electronic board used to manage all the
HVAC functionalities, while the watchdog is used to activate the emergency mode. The
IGBT is used to drive the compressor motor in order to ensure cooling capacity, and finally
the UPS ensures emergency power in order to guarantee emergency ventilation in the case
of breakdown of the overhead power line.

The identified failure modes and the notation used to label them are as below.

• Compressor

# FM_C1: motor does not start on demand.
# FM_C2: incorrect signal from thermostat.
# FM_C3: pump gas leakage.
# FM_C4: sticking internal valve.
# FM_C5: internal overload motor protection.

• Electronic Control Card (ECC)

# FM_E1: electronic control failure.

• Watchdog

# FM_W1: watchdog does not act when the control fails.

• IGBT module

# FM_I1: short/open circuit.
# FM_I2: parameter drift.

• UPS

# FM_U1: no output power.

Table 3 shows all the inputs required by the proposed fuzzy-based RCM approach.
Occurrence, severity and detection are expressed in linguistic terms, while the other two
inputs are Boolean variables.

Table 2 shows the failure modes and effects analysis carried out for the five components
under analysis.

The parameters shown in Table 3 are used as inputs for the proposed framework
for maintenance decisions, as illustrated in Figure 5, or the fuzzy system explained in
Figure 6 to assess the optimal maintenance task for each failure mode identified during the
preliminary FMEA.

The results of the proposed fuzzy-based approach applied to the most critical compo-
nents of an HVAC system installed in a high-speed train are summarized below.

• FM_C1: “failure finding plus scheduled maintenance”. Failure finding is implemented
every month; in this way it is possible to obtain a larger interval for the scheduled
maintenance (6 months).

• FM_C2: “no preventive maintenance (run to failure)”. The failure of the thermostat
does not represent critical damage for the system; therefore, corrective maintenance
could be implemented.
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• FM3_C3: “scheduled maintenance”. Operations on the pump are scheduled every
3 months.

• FM_C4: “condition monitoring”. The valve is monitored continuously using a position
transducer and a pressure transmitter.

• FM_C5: “condition monitoring”. Several sensors are implemented to monitor the
state of the compressor, including temperature, vibration, pressure and load sensors.

• FM_E1: “condition monitoring plus scheduled maintenance”. The electronic board is
monitored continuously by a dedicated device equipped with temperature, humidity
and vibration transducers. These parameters are extremely useful to identify the health
state of electronics. Moreover, the diagnostic device also uses interrogation algorithms
and residual life computational algorithms. Furthermore, scheduled maintenance (in
the form of visual inspection) is required once a year.

• FM_W1: “failure finding plus scheduled maintenance”. Failure finding is imple-
mented every month, while scheduled maintenance (in the form of visual inspection
and manual HW/SW testing) is required every year.

• FM_I1: “condition monitoring”. The IGBT is monitored continuously using a temper-
ature transducer and two power meters used to provide both input/output voltage
and current.

• FM_I2: “failure finding”. Failure finding is implemented every month to check the
health state of the IGBT.

• FM_U1: “condition monitoring”. The UPS is monitored continuously in order to check
the health state of the battery using voltage, and current measurements are used to
estimate the residual capacity of the battery.

The proposed approach offers a powerful solution because it allows designers to select
the optimal maintenance without the need for subjective evaluation. Moreover, it privileges
condition-based maintenance tasks, such as condition monitoring and failure finding. Most
paths of the decision diagram lead to condition-based maintenance operations. In some
cases (see the results obtained for FM_C1, FM_E1 and FM_W1), two tasks are implemented
at the same time; one is condition-based maintenance (such as condition monitoring or
failure finding), and the other is scheduled maintenance. In fact, in some circumstances,
using condition monitoring or failure finding alone is not enough to guarantee high levels
of availability. Scheduled maintenance allows designers to improve system performance,
but the interval between two consecutive scheduled restorations could be greater because
condition-based maintenance is implemented at the same time.

More generally, the proposed approach guides designers to the choice of condition
monitoring as long as it is possible to monitor the parameters that influence the compo-
nent’s wear-out. This condition is taken into account using fuzzy detection.

The complete results of the proposed fuzzy-based RCM procedure applied to the
whole HVAC system installed on a high-speed train are illustrated in the pie charts in
Figure 7.

Figure 7a shows the percentage of each assigned task with respect to the complete
HVAC maintenance plan. It is possible to see that condition monitoring and failure finding
procedures play a crucial role in the maintenance policies of the HVAC under analysis, with
44% and 25% of the tasks, respectively. On the other hand, only 3% of the failure modes are
left to corrective maintenance (Run to Failure) because of the safety implications of many
failures related to the ventilation system of the train. Due to the mechanical and hydraulic
components included in the system, scheduled maintenance remains a considerable part
of the HVAC maintenance plan. However, most of the time, scheduled maintenance is
carried out along with condition-based maintenance, such as condition monitoring (10%)
and failure finding (7%).
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Table 2. Failure modes and effects analysis (FMEA) for an HVAC system installed on high-speed trains. The five considered
components are compressor, ECC, watchdog, IGBT module and UPS.

Failure Modes Failure Causes Local Effects Global Effects

Compressor: Increases the pressure of the refrigerant gas

FM_C1

Motor seizes up

Loss of pumping capacity Loss of cooling capacity
in the cabin

Internal failure
Blocked compressor
Damaged winding

FM_C2
Overheating of compressor Loss of protection Possible damage of compressor
Thermostat dirty

FM_C3
Mechanical failure Loss of refrigerant pumping Loss of cooling capacity

in the cabinFretting compressor

FM_C4
Internal failure Loss of refrigerant gas pressure Loss of cooling capacity

in the cabinValve dirty

FM_C5
Motor short circuits Loss of pumping capacity and

shortcircuit of compressor
Loss of cooling capacity
in the cabin

Electric overload
Compressor motor protection failure

Electronic Control Card (ECC): Regulate, monitor and diagnose the HVAC

FM_E1

Short circuit
Incorrect regulation of the
temperature by the control card

Loss of cooling capacity
in the cabin

ECC dirty
Defect in printed circuit
Overload of the ECC

Watchdog: Activates the emergency regulation mode

FM_W1
Hardware failure Incorrect regulation

of temperature
Loss of emergency
regulation capacitySoftware failure

IGBT module: Electronic switch used to control the compressor

FM_I1
Overcurrent Loss of pumping capacity and

short circuit of compressor
Loss of cooling capacity
in the cabin

Overtemperature
Secondary breakdown

FM_I2
Hot carrier injection Insufficient current to drive the

compressor
Loss of cooling capacity
in the cabin

Electromigration
Temperature instability

UPS: Provides power for emergency ventilation if the overhead power line fails

FM_U1
Electric failure Complete loss of functionality Loss of emergency ventilation
Ageing battery units

Figure 7b summarizes the results comparing condition-based maintenance against
scheduled maintenance and corrective maintenance. The results confirm how the pro-
posed decision diagram privileges the choice of a diagnostic approach, with 86% of
the maintenance task in the proposed plan including condition monitoring or failure
finding procedures.

Finally, the results achieved using the proposed fuzzy-based method are compared
with the results achieved for a maintenance plan for the same HVAC using the classic RCM,
according to the international standard IEC 60300-3-11. For the sake of brevity, only an
extract of the comparison is included in Table 4. Upon analyzing Table 4, the superiority of
the proposed approach is extremely evident.
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Table 3. Input parameters of the proposed fuzzy-based RCM approach. The failure modes refer to the preliminary FMEA
report in Table 2.

Failure Modes O S D Is Failure Evident? Impact on Safety?

FM_C1 High Tolerable Absolutely
Uncertain No No

FM_C2 Remote Very low Almost
certain Yes No

FM_C3 Probable Tolerable Medium Yes No

FM_C4 Probable Tolerable Almost
certain No No

FM_C5 Remote Tolerable Almost
certain Yes No

FM_E1 Probable Tolerable Medium Yes Yes

FM_W1 Probable Tolerable Absolutely
uncertain No No

FM_I1 Remote Critical Almost
certain Yes No

FM_I2 Remote Tolerable Medium No No

FM_U1 Probable Critical Almost
certain No YesElectronics 2021, 10, x FOR PEER REVIEW 11 of 15 
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Table 4. Extract of comparison between the proposed fuzzy-based RCM and the classic RCM assessed following the
guidelines of IEC 60300-3-11.

Failure Mode
Selected Maintenance Task

Proposed Fuzzy-Based RCM Classic RCM: IEC 60300-3-11

FM_C3 Scheduled Maintenance Condition Monitoring OR Scheduled Maintenance OR
Run to Failure OR Alternative actions

FM_I2 Failure Finding Condition Monitoring OR Scheduled Maintenance OR Failure
Finding OR Run to Failure OR Alternative actions

FM_U1 Condition Monitoring Condition Monitoring OR Scheduled Maintenance
OR Failure Finding OR Alternative actions
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Using the fuzzy linguistic variables and the if–then rules, the proposed methodology
assigns a unique maintenance task to each failure mode, while the classic RCM lets the
designer select between at least four or five types of task without any further explanation
on how to choose between them.

5. Conclusions

This paper focuses on the reliability evaluation and maintenance policy optimization
of an HVAC (heating, ventilation and air conditioning) system used on high-speed trains.
The HVAC is a critical subunit because proper air ventilation is mandatory to ensure the
railway’s safety requirements.

Reliability-centered maintenance is a widely used technique to select maintenance
policies for every type of system, but the decision-making diagram included in the inter-
national standard IEC 60300-3-11 has a subjectivity problem: for each identified scenario,
the standard gives users the possibility of choosing between many different options. This
paper proposes an innovative diagnostic-oriented maintenance decision diagram based
on classical FMEA and a fuzzy system. The proposed method implements a set of if–then
rules that associate only one possible maintenance task to each failure mode identified by
the FMEA.

The results of the HVAC case study indicate that the proposed framework is a powerful
and effective solution; it can help designers determine the optimal maintenance plan for
a system. Condition-based maintenance (both condition monitoring and failure finding)
constitutes the largest part of its assessed tasks, with 86% of the tasks selected in the
maintenance plan of the HVAC under analysis being diagnostic-based maintenance. As
such, the proposed fuzzy-based approach helps to maximize availability and minimize
operational cost. Users can monitor the health state of a system with a cost-efficient and cost-
effective failure detection tool. Finally, a comparison between the proposed methodology
and the classic RCM method emphasizes how the proposed approach mitigates the problem
of subjectivity by directly assigning a unique maintenance task to each failure mode, while
the IEC 60300-3-11 gives the designer the ability to choose between several options.
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