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Abstract
In this study, we address workload balancing in Emergency Department Physician 
Rostering Problems. We propose a two-phase approach to deal with two common 
workload balancing issues: (1) the even distribution of worked weekends and week-
end night shifts across physicians in the long term, and (2) the even distribution of 
morning and afternoon shifts in the medium term. To implement such an approach, 
we have developed two Integer Linear Programming (ILP) models, one for each 
phase. In the first phase, we determine the weekends that each physician will be 
on duty over the long term planning horizon (6-months) while evenly distributing 
the workload (worked weekends and weekend night shifts) across physicians. In 
the second phase, month by month, we iteratively determine the workday shifts of 
each physician while pursuing the even distribution of workload (morning and after-
noon shifts) across physicians. The second phase relies on the solution of the first 
phase, i.e., the weekend shifts assigned to each physician in the first phase are con-
sidered preassigned shifts in the second phase. In both phases, we consider the con-
straints deriving from collective as well as individual contractual agreements (e.g. 
constraints limiting the maximum number of night shifts each physician can work 
every month, their maximum weekly and monthly workload, etc.) as well as indi-
vidual physician’s preferences and desiderata. The problems addressed in the two 
phases differ in terms of the planning horizon, objective function, and constraints, 
yet they are both modeled as multicommodity ow problems and share the same net-
work structure. Also, we define some families of simple yet effective, valid inequali-
ties that are crucial to address the computational complexity of the first-phase prob-
lem. The proposed optimization models have been tested on real data from a leading 
European Hospital and on benchmark instances from the literature. The models’ 
effectiveness has been assessed through six key performance indicators purposely 
defined. Results demonstrate that the presented models allow considering the com-
plex nature of physicians rostering problems and obtaining well-balanced and thus 
equitable work schedules.
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1 Introduction

Ensuring service quality and patient safety in Emergency Departments (EDs) 
requires accurate capacity planning. Since emergency services are labor-intense pro-
cesses (Sampson 2001), effectively managing ED capacity implies, first and fore-
most, developing well-devised staff rosters.

In general, solving a rostering problem requires creating a work schedule that: (1) 
allows meeting a time-dependent demand for service, (2) complies with regulatory 
constraints and work-place agreements, (3) attempts to satisfy individual staff con-
straints and preferences (Ernst et al. 2004a).

Dealing with rostering problems for ED staff is, in general, complex. It is even 
more so if the resource to be scheduled are physicians.

First, EDs operate 24/7 and working certain shifts is less desirable than others 
(e.g. weekend and night shifts). It creates the need to evenly distribute these undesir-
able shifts across staff members and to communicate largely in advance to the staff 
the “undesirable” shifts they are expected to cover (e.g. the weekends on duty) to 
allow them better organize their personal life.

Second, demand is highly variable and seasonal. Arrivals rates vary according to 
the season (fall/winter vs spring/summer months) with the day of the week (week-
days vs weekends) and with the hour of the day (morning, afternoon, night) (Vis-
intin et al. 2019). This makes it complex to understand the number of people that 
should be on duty for each time-shift and, again, makes certain shifts less desirable 
than others (e.g. if arrival rates are higher in the afternoons than in the mornings, 
afternoon shifts will be perceived as more stressful).

Third, the labor force in ED is made of highly skilled professionals - nurses, radi-
ologists, physicians—working in stressful conditions, under articulated work con-
tracts. These contracts set strict constraints on the number of consecutive hours that 
can be worked, on the weekly and monthly workload, on the rest hours between 
shifts, etc. Physicians, in particular, have individual contractual agreements (con-
trary to nurses who generally work under collective contracts) setting additional 
constraints e.g. on the type of shifts they can cover (weekdays vs. weekend shifts, 
night vs. day shifts) or on the number of hours they are expected to work inside or 
outside ED.

Fourth, physicians (more than other staff-members) must coordinate their activi-
ties within the ED with other activities outside the ED (outpatient clinics, operat-
ing theatre, etc.). This results in the need for accommodating physicians’ requests to 
work or not to work certain shifts, which can be formulated on short notice. Also, 
given their prominence on the hospital hierarchy, physicians may express pref-
erences (driven by work-related issues or personal needs), concerning the shift to 
cover and expect these preferences to be accommodated as much as possible.

Fifth, ED physicians’ overall capacity is usually scarce, making them bottleneck 
resources (Visintin et al. 2019).
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In the literature, staff planning problems are generally subdivided in staff 
dimensioning and staff rostering problems (Ernst et al. 2004a). The former con-
cerns the determination of the number and type of sta needed to meet the demand 
for each time-shift. The latter is based on the solution of the former and concerns 
the assignment of individual sta members to each shift.

In this study, we address the Emergency Department Physician Rostering 
Problem (EDPRP).

Hence, we assume that the number of physicians needed in each time-shift 
(morning, afternoon, pre-night and night) of a 6-month planning horizon is 
known, i.e., we assume that the staff dimensioning problem has already been 
solved. Thus, we address the problem of selecting the physicians to assign to each 
shift, with the objective of maximizing physicians’ satisfaction and perceived 
equity.

Specifically, we propose a two-phase approach to the EDPRP. To implement 
such an approach, we develop two Integer Linear Programming (ILP) models, one 
for each phase. The problems addressed in the two phases refer to different levels 
of decision-making, as such, they differ in terms of planning horizon, objective 
functions, and constraints. Yet, both of them are modeled as multicommodity ow 
problems and share the same network structure. In the first phase, we address the 
problem of determining the weekends that each physician will be on duty over a 
long term (6-months) planning horizon, with the objective of evenly distributing 
the worked weekends and the weekend night shifts across physicians. In the sec-
ond phase, we address the problem of evenly distributing morning and afternoon 
shifts across physicians over a medium term planning horizon (1 month), while at 
the same time fixing upper bounds on the number of hours worked and on the num-
ber of night shifts covered, every month, by each physician. In addressing this prob-
lem, we take into account that weekend shifts have already been assigned in the first 
phase and treat them as constraints. The solution of the first phase is used as input 
for the second phase. The model in the second phase is iteratively run six times to 
cover the whole planning horizon. In both phases we assume that physicians can 
ask, in advance, to work or not to work certain shifts. These requests may be formu-
lated in prescriptive terms (hard requests) or as desiderata (soft requests). In both 
models, hard requests are modeled as hard constraints and soft requests as soft con-
straints. The ultimate objective of this approach is to maximize shift equity while at 
the same time fulfilling all the hard requests and as many soft requests as possible. 
Shift equity and customization, in fact, are proven to drive employee satisfaction and 
motivation (Brunner et al. 2009; Stolletz and Brunner 2012; Gross et al. 2019) and, 
consequently, service quality.

The proposed two-phase approach carries several advantages: (1) physicians are 
informed, well in advance, about the weekends when they are supposed to be on 
duty; (2) it is possible to fulfill (hard and soft) physicians’ requests to work or not to 
work on certain shifts thereby helping them planning their activities outside the ED 
(e.g. the attendance of conferences and meetings); (3) it is possible to accommodate 
medium-term physicians’ requests, physiologically emerging every month, without 
incurring in schedule disruptions; (4) it is possible to obtain solutions that are well-
balanced both in the long- and in the medium-term.
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To handle the computational complexity arising in the first phase, when the plan-
ning horizon is longer and the resulting optimization problem is harder to solve, we 
have also developed a set of valid inequalities that allow strengthening the linear 
programming relaxation of the corresponding optimization model. These inequali-
ties dramatically reduce the computational time, thereby allowing us to find feasible 
solutions also for instances that would not have otherwise been possible to solve 
within the time limit.

The presented approach has been tested on real data from a leading European 
Hospital and on benchmark instances from the literature. The solutions returned by 
the optimization models have been evaluated through six key performance indicators 
purposely defined. Results demonstrate that the presented models allow considering 
the complex nature of physicians rostering problems and obtaining well-balanced 
and thus equitable work schedules.

The manuscript is organized as follows: in Sect.  2, we provide an overview of 
the relevant literature and we identify the research gaps this study aims to fill-in; in 
Sect. 3, we present the optimization models; in Sect. 4, we present the numerical 
results of the application of the proposed approach in terms of computational perfor-
mance (Sect. 4.1) and solution quality (Sect. 4.2). In Sect. 5, we discuss the appli-
cation of the optimization models to benchmark instances, both in terms of com-
putational performance and solution quality (Sect. 5.2). In Sect. 6, we draw some 
conclusions. Finally, two appendices conclude the work. Specifically, “Appendix A” 
provides a description of the KPIs used in Sect. 4, while “Appendix B” reports the 
complete descriptive statistics of the KPIs.

2  Literature overview

Rostering problems have been the object of a large number of contributions both 
in the scientific and practitioner-oriented literature (Van den Bergh et  al. 2013). 
Applications contexts include call centers, transportation systems such as airlines 
and railways, emergency services such as police, ambulance and fire brigade, and, of 
course, emergency medical services (Ernst et al. 2004a, b).

In emergency medical services, staff rostering problems usually involve nurses 
and/or physicians. However, while nurse rostering has been extensively studied 
(Burke et  al. 2004), physician rostering (Erhard et  al. 2018) has received limited 
attention (Adams et al. 2019).

This is because physician rostering has some peculiarities that make it differ-
ent and more complex than other personnel scheduling problems. As pointed out 
in the introduction, ED physicians are understaffed, highly trained, specialized, and 
thus difficult to replace (Erhard et al. 2018). They have personalized work contracts 
(Bruni and Detti 2014; Erhard 2021), they need to coordinate their activities across 
different departments within and outside the hospital (Fügener et al. 2015) and they 
tend to express, with short notice, preferences concerning the shift to work and not 
to work, and expect these preferences (Brunner et al. 2009) to be accommodated.

As for the objective to purse in defining the staff roster, the literature acknowl-
edges that ensuring shift equity is crucial, as equity drives staff satisfaction and 
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consequently service quality (Dewa et al. 2017). This is particularly true for burn-
out exposed personnel such as physicians (Adams et al. 2019; Stolletz and Brunner 
2012; Zhong et  al. 2017). Balancing personnel workload is one of the most com-
monly used approaches to guarantee equity (Cappanera and Scutellà 2011; Cap-
panera et al. 2014). Particularly demanding shifts such as night or weekend shifts 
should be fairly distributed among physicians and the same should hold for their 
desiderata. Unbalanced schedules are thus usually penalized via soft constraints as 
in Erhard et al. (2018) or upper bounds on the value of workload indicators are set, 
as is the case in Fügener et  al. (2015) for the number of night shifts. Sometimes 
(Adams et al. 2019) workload balance is considered jointly with patient-related con-
straints such as those ensuring continuity of care to patients, i.e., the same set of 
physicians assigned to the same patient. Often, cyclic schedules are used to guaran-
tee an even distribution of workload in the long run. A cyclic schedule consists of a 
fixed sequence of shifts which is rotated among a group of workers over a planning 
horizon. Thus, each worker rotates equally, through desirable and undesirable shifts 
and cyclic schedule is perceived as unbiased (Millar and Kiragu 1998). As an exam-
ple, cyclic schedules are used in Ferrand et al. (2011) for ED physicians. However, 
cyclic schedules might prevent the satisfaction of individual preferences and con-
straints (Knust and Xie 2019) consequently, they are not suitable for ED physicians. 
Alternatively, the balancing of some performance indicator, in the long run, is pur-
sued by subdividing the planning horizon into shorter time periods and dynamically 
adjusting the indicator in one period on the basis of the value the indicator assumed 
in the previous period. This is the case in Gross et  al. (2019) for individual pref-
erence satisfaction, and in Gross (2018) for both workload balance and individual 
preference satisfaction in an anesthesiology department.

The literature thus suggests that successfully addressing ED physician roster-
ing problems requires taking into account the heterogeneity of their work contracts, 
their preferences, as well as the fact that it is impossible to schedule their work shifts 
too in advance without incurring in schedule disruptions. Moreover, it suggests that 
the roster should ensure, first and foremost, shift equity.

To address the intrinsic complexity of the resulting rostering problems, many 
contributions from the recent literature address simplified versions of them, as it 
happens in two-phase approaches and relaxation-based approaches. In two-phase 
approaches, usually, shifts are organized into two groups and assigned separately 
in each phase. As an example, day-offs are assigned in the first phase, and then the 
resulting solution is used as the input of the second phase in which working shifts 
are assigned (e.g. Valouxis et al. 2012; Zhong et al. 2017). It is worth to point out, 
however, that in these studies the two-phase approach is considered as a mean to 
reduce the computational complexity of problems that would not otherwise be pos-
sible to solve in one shot, rather than, as in our study, as a tool to optimally address 
problems at a different level of decision-making and to manage balancing criteria 
with different scopes.

In relaxation-based approaches, instead, complicating constraints are relaxed and 
then introduced dynamically according to branch and cut algorithms. This is the 
case in Bard and Purnomo (2005) for nurse rostering, in Damcı-Kurt et al. (2019) 
for a physician rostering problem arising in an acute care hospital, in Brunner and 



 P. Cappanera et al.

1 3

Edenharter (2011) in an anesthesia department, and in Bruni and Detti (2014) for 
the medical guard services. Another stream of research proposes heuristic-based 
approaches: a heuristic based on assigning physicians to sets of tasks instead of to 
shifts (Gunawan and Lau 2013), a genetic algorithm for physician rostering in ED 
(Puente et al. 2009), metaheuristics (Wong et al. 2014), and matheuristics (Doi et al. 
2018; Wickert et al. 2020) are not exhaustive examples of this type of contributions. 
Interestingly, (Van Huele and Vanhoucke 2014) addresses a combined emergency 
and surgery scheduling problem.

To the best of our knowledge, however, there is no contribution proposing optimi-
zation models able to solve both long and medium-term, real-life ED physician ros-
tering problems while at the same time capturing all the features characterizing the 
EDPRP. This paper aims at filling in this gap. This paper contributes to the EDPRP 
literature in three ways:

First, it proposes a model able to solve both long and medium-term, real-life 
EDPRPs while at the same time capturing all the features characterizing them. The 
literature does propose physician rostering models rich in features but due to the 
resulting computational complexity these models are applied to short- to medium 
term, typically 1 month. On the contrary, studies considering longer planning hori-
zons, propose simpler models not considering some of the features included in our 
models. Second, this paper proposes a novel set of KPIs to measure shift equity in 
EDPRP. These KPIs allow assessing the multifaceted nature of shift equity in ED, 
both in the long and medium term. Third, this study reports the result of the applica-
tion of the proposed models to benchmark instances taken from the literature. To the 
best of our knowledge, there are no studies proposing models developed to address 
complex and real-life EDPPR, that have also been tested on publicly-available data 
relevant to settings different from the one that inspired the study.

3  The optimization models

Both the rostering problems characterizing the two-phase approach are modeled as 
multicommodity flow problems and share the same network structure, even though 
they have specific objectives and constraints.

In presenting the optimization models, we highlight their common structure. 
Specifically, they are both defined on a layered acyclic network which is a tool 
already used in the literature for rostering problems (Cappanera and Gallo 2004; 
Cappanera et al. 2020). In the layered network, layers correspond to days in the 
planning horizon, and nodes in each layer correspond to the set of shifts that must 
be covered on the corresponding day. The layered network is exemplified in Fig. 1 
for a planning horizon of one week, from Monday to Sunday. In the example, 
there are 4 shifts on each day, three of them are work shifts (shift 1, shift 2 and 
shift 3) and the last one is a rest shift. Weekday shifts (light grey) are distin-
guished from weekend shifts (dark grey). Arcs in the network connect (1) the 
source node to all the shift nodes in the layer corresponding to the first day of the 
planning horizon (Monday in the example); (2) consecutive layers in the network, 
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and (3) shift nodes in the layer corresponding to the last day of the planning hori-
zon (Sunday in the example) to the destination node.

For each physician, the sequence of activities assigned to them in the plan-
ning horizon is defined by a path in the layered network from a source dummy 
node to a destination dummy node. This path, by graph construction, visits 
exactly one node (shift) in each layer (day) and thus allows to identify the unique 
shift—either a work shift or a rest shift, assigned to them on a specific day of the 
planning horizon. There are however specific situations in which a physician is 
allowed to work more than one shift per day: in that case, the graph is modified 
accordingly by adding arcs linking shift nodes within the same day.

In network terminology, each physician corresponds to a specific flow, namely 
a commodity. Thus, individual constraints characterizing a specific physician can 
be imposed on the corresponding flow. Flows of different physicians are separated 
the one from the other, but they all share the same network structure, thus making 
it possible to guarantee global constraints in addition to individual constraints.

Besides admitting a personalized network for each physician, the multicom-
modity structure allows us to manage implicitly compatibility constraints between 
physicians and shifts and between consecutive shifts. As an example, after a night 
shift a rest shift must follow, and consequently the unique arc leaving a node cor-
responding to a night shift enters a node corresponding to a rest shift in the next 
layer. Similarly, if two shifts cannot be assigned consecutively to a physician, in 
the corresponding network the arc between the two shifts is not inserted for any 
couple of consecutive days in the planning horizon. Finally, if a physician is not 
allowed to work a specific shift, in the corresponding graph there will not be any 
arc entering that node in any of the layers. Thus, the set of nodes and arcs in the 
graph depends on the physician.

Fig. 1  The layered graph for a one-week planning horizon
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The two models corresponding to the two phases share also two additional 
features: (1) the management of desiderata expressed by physicians, and (2) the 
management of undesirable sequences of shifts. Concerning desiderata, a physi-
cian may ask that a certain shift is assigned on a certain day (to work) or not 
assigned (not to work), and that their request is strict (managed via a hard con-
straint) or granted only if it does not deteriorate the optimal solution (managed 
via a soft constraint). As usual, a penalty is associated with each soft constraint 
and the objective function minimizes the number (or weight) of not granted pref-
erences. Also, the models allow us to consider undesirable sequences of shifts. 
There are, in fact, pairs of shifts that are undesirable when worked one after the 
other. Even though their assignment to the same physician is feasible, it should be 
discouraged. As an example, the assignment of a rest shift after a night-call duty 
shift is not welcome by physicians. Then, the set of undesirable pairs of shifts is 
defined and the assignment of any couple of shifts in the set to the same physician 
is discouraged in the objective function through a penalty.

As an overview, Fig. 2 sketches the two-phase approach in terms of objective 
and constraints characterizing each phase.

The remaining part of the section is organized as follows. First, notation as 
well as common variables and constraints of the two optimization models are dis-
cussed (Sect. 3.1). Then, the two models relevant respectively to the first and the 
second phase of the approach are introduced separately (Sects. 3.2 and 3.3) high-
lighting their peculiarities in terms of objectives and constraints. These two mod-
els are referred to as base models. Finally, in Sect. 3.4, we describe a set of valid 

Fig. 2  An overview of the two-phase approach
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inequalities which can be used to strengthen the linear programming relaxations 
of the base models. The resulting models are referred to as enhanced models.

3.1  Notation and common constraints

Let us denote with:

H set of physicians

H ⊆ H subset of part-time physicians

S set of shifts

Sm ⊆ S subset of morning shifts

Sa ⊆ S subset of afternoon shifts

Sn ⊆ S subset of night shifts

Sr ⊆ S subset of rest shifts

Ss ⊆ S subset of night-call duty shifts

U = {(i, j) s.t. i, j ∈ S} set of undesirable couples of consecutive shifts

D = {1,… , |D|} set of days to be considered - extended planning horizon consisting of |D| days

L = D ∪ {0} set of levels - except the last

D ⊆ D subset of days corresponding to the planning horizon (possibly different from D

due to extension on the left and on the right)

M ⊆ D set of days corresponding to Mondays

W set of weekends in the planning horizon - each w ∈ W is a subset of D

Gh = (Nh,Ah) graph relative to physician h with node set Nh and arc set Ah

oh ∈ Nh origin node for physician h; by default oh belongs to level 0

dh ∈ Nh destination node for physician h; by default dh belongs to level |D| + 1

Δh
v,t

= {(i, l) s.t. i ∈ S, l ∈ D} with v ∈ {0, 1}, t ∈ {P,F} set of desiderata for physician h, expressed as couples

(i, l) of shift-day which have to be avoided (v = 0) or done (v = 1)

in a soft (t = P) or hard way (t = F)

n
h

maximum monthly number of night shifts physician h can work

w
h

maximum weekly workload for physician h - expressed in hours

m
h

maximum monthly workload for physician h - expressed in hours

s
h

monthly number of night-call duties for physician h

b
h

monthly number of working hours for part-time physicians

d minimum number of days that must elapse between two night shifts

cil number of physicians required in day l on duty i

wi workload of shift i ∈ S

M big-M value

𝛼c weight used in the objective functions to discriminate criterion c.
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Then, let us define the following families of variables in order to model the 
decisions:

for h ∈ H , l ∈ L , (il, jl+1) ∈ Ah , and

for h ∈ H , l ∈ D , i ∈ S.
In the following, we first describe, in terms of variables and constraints the common 

features of the two rostering problems and then their distinguishing features. Using 
the variables and notation above, the constraints common to both the models are the 
following:

xh
iljl+1

=

⎧
⎪
⎨
⎪
⎩

1 if shift i in level l and shift j in level l + 1

are assigned consecutively to physician h

0 otherwise

�
h
il
=

⎧
⎪
⎨
⎪
⎩

1 if the preference expressed by physician h for shift i

on day l is not satisfied

0 otherwise

(1)
∑

j∈S

xh
oh0j1

= 1 ∀h ∈ H

(2)
∑

j∈S

xh
j|D|dh|D|+1

= 1 ∀h ∈ H

(3)
∑

j∈S∪oh

xh
jl−1il

−
∑

j∈S∪dh

xh
iljl+1

= 0 ∀h ∈ H,∀l ∈ D,∀i ∈ S

(4)
∑

h∈H

∑

j∈S∪oh

xh
jl−1il

= cil ∀l ∈ D,∀i ∈ S

(5)
∑

j∈S∪oh

xh
jl−1il

= 0 ∀h ∈ H,∀(i, l) ∈ Δh
0F

(6)
∑

j∈S∪oh

xh
jl−1il

= 0 + �
h
il

∀h ∈ H,∀(i, l) ∈ Δh
0P

(7)
∑

j∈S∪oh

xh
jl−1il

= 1 ∀h ∈ H,∀(i, l) ∈ Δh
1F

(8)
∑

j∈S∪oh

xh
jl−1il

= 1 − �
h
il

∀h ∈ H,∀(i, l) ∈ Δh
1P
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The xh
iljl+1

 variables define the schedule for each physician h: for each physician, flow 
conservation constraints (1)–(3) impose that a path is determined from the origin oh 
to the destination dh visiting exactly one node (one shift) in each layer (each day). 
Constraints (4) guarantee demand coverage, while constraints (5)–(8) manage desid-
erata as hard constraints—(5) and (7), or as soft constraints—(6) and (8). Finally, 
the rest of the constraints define variable domain (0-1 variables).

3.2  First‑phase base model

The model in the first phase relies on a layered graph which has a layer for each 
day in the planning horizon but decisions are taken only for the days correspond-
ing to the weekend days; without loss of generality, we assume that the rest shift 
is assigned to all of the physicians on each weekday; in fact, the decisions relative 
to the activities assigned on weekdays are postponed to the second phase. Coming 
back to the example, the graph used in the first phase is shown in Fig. 3, where a 
solution for a given physician is also shown with a thick black line. Specifically, 
according to the solution of the model, that particular physician is assigned shift 2 
on Friday, a rest shift on Saturday, and shift 1 on Sunday.

In addition to variables x and � which are common to both rostering problems, the 
weekend shift management problem (first phase) makes use of the following pecu-
liar variables:

(9)xh
iljl+1

∈ {0, 1} ∀h ∈ H,∀l ∈ L,∀(il, jl+1) ∈ Ah

(10)�
h
il
∈ {0, 1} ∀h ∈ H,∀v ∈ {0, 1}∀(i, l) ∈ Δh

vP

Fig. 3  First phase
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Y the maximum number of weekends on duty assigned to a single physician
V the maximum number of night shifts assigned to a single physician

yh
w
=

{
1 if physician h is on duty in weekend w

0 otherwise
    h ∈ H , w ∈ W.

The rostering problem addressed in the first phase is the following:

The balancing criteria used in this phase hierarchically minimize the maximum 
number Y of weekends on duty and the maximum number V of night shifts among 
the physicians. The other two terms in the objective function discourage respectively 
undesirable sequences of activities and unsatisfied desiderata. Variable yh

w
 takes 

value one (see 13), if h is assigned a work shift in any day of weekend w, i.e., if h is 
on duty in weekend w. The model is characterized by the set of constraints (1)–(10) 
which are common to both the phases and by peculiar constraints explained in the 
following. Specifically, constraints (12) and (14) guarantee the correctness of the 
value assumed by variables Y and V, whereas constraints (15) assure that a physi-
cian cannot work two consecutive weekends. Constraints (16) limit the maximum 
number of night shifts to one in each weekend of the planning horizon, for each 
physician h. Constraints (17) assure that, for each physician h, on each day of each 
weekend in the planning horizon, at maximum two consecutive working shifts are 

(11)min �yY + �vV + �x

|D|−1∑

l=1

∑

(i,j)∈U

xh
iljl+1

+ �
�

∑

h∈H

∑

v∈{0,1}

∑

(i,l)∈Δh
vP

�
h
il

(12)
(1) − −(10)
∑

l∈D

∑

i∈Sn

∑

j∈S∪dh

xh
iljl+1

≤ V ∀h ∈ H

(13)
∑

l∈w

∑

i∈S⧵Sr

∑

j∈S∪dh

xh
iljl+1

≤ Myh
w

∀h ∈ H,∀w ∈ W

(14)
∑

w∈W

yh
w
≤ Y ∀h ∈ H

(15)yh
wi
+ yh

wi+1
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allowed. In fact, during the weekend more than one shift can be assigned on the 
same day, whereas during the weekdays, the maximum number of working shifts 
that can be assigned to a physician is one. In the second phase this kind of con-
straint is guaranteed implicitly by graph construction. Constraints (18) define the 
yh
w
 ’s domain.

3.3  Second‑phase base model

The model in the second phase relies on a layered graph which has a layer for each 
day in the planning horizon but decisions relative to the weekend days are fixed 
according to the solution provided by the model in the first phase. Again, coming 
back to the example, the graph used in the second phase is shown in Fig. 4 in which 
the solution of the first phase (shift 2 on Friday, a rest shift on Saturday and shift 1 
on Sunday) is fixed. The model in the second phase takes decisions on Monday to 
Thursday and it provides the solution shown with a thick black line. Specifically, 
that particular physician is assigned a rest shift on Monday, shift 3 on Tuesday and 
Wednesday, and shift 1 on Thursday.

In addition to variables x and � which are common to both rostering problems, 
the weekday shift management problem (second phase) makes use of the following 
peculiar variable:

Z the maximum difference (in absolute value) of the number of morning and 
afternoon shifts among the physicians.

The rostering problem addressed in the second phase is the following:

Fig. 4  Second phase



 P. Cappanera et al.

1 3

(1)–(10)

The balancing criterion used in the second phase guides the search towards solu-
tions in which each physician is assigned almost the same number of morning and 
afternoon shifts. Specifically, for each physician the (absolute) difference between 
morning and afternoon shifts assigned in the planning horizon is computed (see 26 
and 27) and the objective minimizes the maximum of these differences among the 
physicians. This is the leading criterion in the second phase. Then, as in the first 
phase, the other two terms manage respectively undesirable sequences of activities 
and unsatisfied desiderata. In addition to the set of constraints common to the two 
phases (constraints 1–10), the model is characterized by constraints peculiar to the 
second phase. Specifically, the rest of the constraints guarantee, for each physician, 
respectively a correct value for the monthly and weekly workloads (see 20 and 21), 

(19)min �zZ + �x
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for the number of night-call duty shifts (22), for the working time of part-time physi-
cians (23), for the number of night shifts (24), and the correct alternation between 
night shifts and other shifts (25). Specifically, constraints (25) impose that for each 
time period of d + 1 consecutive days in the planning horizon, at most one night 
shift can be assigned to a physician. The time period slides over the entire planning 
period.

3.4  The enhanced model

In this section, we describe the valid inequalities added to the base model in the first 
phase to tight its linear programming relaxation.

3.4.1  Consecutive weekends on duty

In the base model, constraints (15) guarantee that the same physician h cannot work 
two consecutive weekends. Here, we introduce an additional set of constraints which 
further link the variables x relative to working activities in the weekends to the vari-
able y. Specifically, the following sets of constraints are added:

Constraints (28) ensure that if physician h is not on duty in weekend w, i.e., 
yh
w
= 0 , then no activity i different from a rest shift can be assigned to them in any 

day of the weekend w. Then, constraints (29) impose that if physician h is on duty 
on weekend w, i.e., yh

w
= 1 , then that physician is assigned to a rest shift on every 

day of the next weekend, i.e., w + 1 . In these constraints, the constraint quantifier 
∀l ∈ w + 1 s.t. l + 1 ∈ w + 1, expresses the fact that both layer l and l + 1 must 
belong to weekend w + 1.

3.4.2  Linking constraints—weekends and nights on duty

In the first phase, as a consequence of constraints ruling consecutive weekends on 
duty (constraints 15) and the maximum number of night shifts on weekends (con-
straints 16), it is possible to add linking constraints between variables Y and V. For 
the reader’s convenience, we recall that they represent respectively the maximum 
number of weekends on duty assigned to a single physician (Y), and the maximum 
number of night shifts assigned to a single physician (V). Specifically, the new con-
straints are the following:

(28)xh
iljl+1

≤ yh
w

∀i ∈ S ⧵ Sr,∀j ∈ S,∀l ∈ w,∀w ∈ W,∀h ∈ H

(29)
yh
w
≤ xh

iljl+1
∀i ∈ Sr,∀j ∈ Sr,∀l ∈ w + 1 s.t. l + 1 ∈ w + 1,∀w = 1,… , |W| − 1,∀h ∈ H

(30)Y ≤
|W|

2
+ 1
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Trivially, constraint (30) states that the number of weekends on duty assigned to 
any physician cannot exceed the rounded-up half of the weekends in the planning 
period, while constraint (31) assures that for every physician the number of night 
shifts assigned in the weekends cannot exceed the maximum number of weekends 
worked in the planning period by physicians.

4  Numerical results

The numerical analysis presented hereafter aims at investigating: (1) the computa-
tional performance of the model(s) and (2) the quality of the model solutions. The 
investigated setting is the Emergency Department (ED) of a leading Italian Chil-
dren’s hospital, that for confidentiality reasons will be referred to as Alpha. Alpha’s 
ED is organized in 10 shifts per day (see Table 1). Some of these shifts (MO, AF, 
ENI, NI, NC) refer to the main ED while the others (MO_O, MO_T, AF_T, AF_O, 
NC_T) refer to external units (observational and trauma units) closely linked with 
the ED. These external units are assigned dedicated physicians and nurses during 
the day, while at night they still have dedicated nurses but share physicians with the 
main ED.

At Alpha, not all physicians can cover all shifts. The physicians who can cover all 
shifts are referred to as flexible (flex) and represent approximately 20% of the staff (5 
out of 27).

Not-flexible physicians may have one or more restrictions concerning the shifts 
they can or cannot cover, the day when they can work (weekdays and/or weekends), 
and the total amount of hours they can be on duty. While the majority of the not-
flexible physicians are expected to work the same amount of time as the flexible one, 
there are (two) part-time physicians working daytime shifts only and 6 hours per 
week.

(31)V ≤ Y

Table 1  Shift duration and coverage—length is expressed in hours (h)

Timeframe Shift code Shift name Length (h) Weekend 
coverage

Weekday 
coverage

Morning MO Morning 6 2 3
MO_O Morning observational unit 6 1 1
MO_T Morning trauma 6 1 1

Afternoons AF Afternoon 6 2 4
AF_O Afternoon observational unit 6 1 1
AF_T Afternoon trauma 6 1 1

Early night ENI Early night 4 1 1
Night NI Night 12 1 2

NC Night call duty 12 1 1
NC_T Night call duty trauma 12 1 1
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Each shift is characterized by a length and coverage. The coverage (i.e., param-
eter cil defined in Sect.  3.1) represents the number of physicians that must be on 
duty for each shift. In general, for any given shift, the coverage can change between 
weekends and weekdays. The weekend shifts include the Friday afternoon shift.

As pointed out in the literature review, such heterogeneity is shared by many EDs, 
as such, we decided to stick to a realistic instance in our analysis instead of creating 
stylized and easier to manage ones.

The numerical analysis has been performed on a PC equipped with an Intel i7 
3.43 GHz processor and 32 Gb of RAM. The models have been coded using Python-
Pyomo and solved using the IBM ILOG Cplex 12.6 solver.

4.1  Computational performance evaluation

In this section, we compare the base and enhanced version of the models in terms of 
computational performances. Specifically, we consider the time required to solve the 
model (CompTime) and the optimality gap (Gap) associated with the models’ solu-
tion, both in the first and the second optimization phases.

Also, we assess how these performances are influenced by (1) the length of 
the planning horizon, (2) the number and type of shifts that are preassigned to 
physicians.

4.1.1  Impact of the length of the planning horizon on the computational 
performance

Table 2 shows the computational time (Time) and optimality gap (Gap) associated 
with the solution found in correspondence of different planning horizons (1, 3, 6 
months). As can be noticed, the enhanced model outperforms the base one as the 
time horizon increases. With a realistic planning horizon (6 months) the enhanced 
model is still able to find a decent solution for the first phase (Gap = 8%) within 
the fixed time limit of 6 hours, while the base one does not find any solution. The 
computational complexity of the model in the second phase is very limited. The 
computational time (which is the sum of the times required to solve all the monthly 

Table 2  Computational performance evaluation: computational time and optimality gap (in the second 
phase, time is the sum of the times required in each month)—planning horizon length is expressed in 
months (m), time in seconds (s), gap in percentage (%)

Planning 
horizon (m)

Model First Phase Second Phase

Term. cond. Time (s) Gap (%) Term. cond. Time (s) Gap (%)

1 Base Optimal 93 0 Optimal 5 0
1 Enhanced Optimal 95 0 Optimal 5 0
3 Base Optimal 3934 0 Optimal 20 0
3 Enhanced Optimal 2964 0 Optimal 15 0
6 Base Unknown 21,600 – – – –
6 Enhanced MaxTimeLimit 21,600 8.22 Optimal 32 0
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schedules—1, 3, 6 depending on the planning horizon) even in the worst case is neg-
ligible if compared with the first phase. It is worth observing that base and enhanced 
models are identical in the second phase, nonetheless, the computational time in 
this phase can differ across models as the solutions returned in the first phase are 
different.

4.1.2  Impact of preassigned shifts on the computational performance

As pointed out in Sect. 3, the optimization models allow considering the (realistic) 
situations where physicians ask, in advance, to work or not to work certain shifts. 
These requests may be formulated in prescriptive terms or as desiderata. The form-
ers are referred to as hard requests and modeled using hard constraints, the latter’s 
are named soft requests and modeled using soft constraints. We randomly1 generated 
13 different scenarios each corresponding to a different set of requests. Each sce-
nario is characterized by the following quantities:

• H1 hard requests to work on a given shift per physician, per month
• H0 hard requests not to work on a given shift per physician per month
• S1 soft requests to work on a given shift per physician per month
• S0 soft requests not to work on a given shift per physician per month.

Table 3 reports for each scenario generated, the model used, the solver’s terminat-
ing condition, the optimality gap (Gap %) and the percentage of fulfilled requests 
(Fulfill%). The computational times and gaps refer to the first phase only (the second 
phase either does not exist when no feasible solutions are found in the first one, or 
its computational complexity is negligible compared to the one of the first phase). 
For all instances, the time limit was set to six hours and the planning horizon to 6 
months for the first phase and 1 month for the second one. Scenario 0 represents 
the situation where no shift is preassigned (same as in Table 2). The other 12 sce-
narios are paired and within each pair (1–2, 3–4, 5–6, 7–8, 9–10, 11–12) the number 
of preassigned shifts (H1, H0, S1, S0) is the same but the shifts being preassigned 
change. H1, H0 range from 0 to 1 while S1, S0 from 0 to 2. For each scenario, we 
run both the base and the enhanced model.

Compared with Scenario 0 from Table 3, emerges that the presence of soft con-
straints only (Scenarios from 1 to 4) makes the problem more complex to solve for 
the enhanced model and impossible to solve within the time limit for the base one. 
For the enhanced model the optimality gaps of scenarios 1–4 ( ≥ 16.94% ) are larger 
than the one of the scenario 0 (approx. 8% ), and the solutions fulfill, approximately, 
half of the physicians’ soft requests.

The presence of hard requests only (scenarios 5 to 10), instead, makes the model 
easier to solve, especially when H1 > 0 (scenario 5–6, 9–10). In fact, this type of 

1 A pre-processing phase tested whether the combination of hard constraints generated led to unfeasible 
solutions, whenever it happened the combination was discarded and substituted with another randomly 
generated combination.
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requests assign a specific shift to a specific physician, and the corresponding lay-
ered graph consequently shrinks. When H1 > 0 , the gaps reduce significantly for 
the enhanced model and the base model finds feasible solutions for certain scenarios 
(5, 6 and 10). When both soft and hard constraints are present (scenario 11 and 12) 
the negative effect on the computational time of the soft constraints may (scenario 
11) or may not (scenario 12) be compensated by the positive effect of the hard (H1) 
ones.

Obviously, the percentage of hard requests accommodated is 100% for all the fea-
sible solutions. In sum, the analysis of the computational performance of the mod-
els demonstrates that the enhanced one outperforms the base one and that this lat-
ter model, for realistic instances, characterized by long planning horizon and soft 

Table 3  Computational performance evaluation: sensitivity to preassigned shifts

 Time limit of 6 h 

Scenario Model Term. Cond. Gap (%) N. of requests per Fulfill (%)

month per physician

H1 H0 S1 S0

0 Base Unknown – 0 0 0 0 –
0 Enhanced MaxTimeLimit 8.22 0 0 0 0 –
1 Base Unknown – 0 0 1 1 NA
1 Enhanced MaxTimeLimit 23.23 0 0 1 1 54
2 Base Unknown – 0 0 1 1 NA
2 Enhanced MaxTimeLimit 16.94 0 0 1 1 53
3 Base Unknown – 0 0 2 2 NA
3 Enhanced MaxTimeLimit 23.23 0 0 2 2 56
4 Base Unknown – 0 0 2 2 NA
4 Enhanced MaxTimeLimit 23.33 0 0 2 2 49
5 Base MaxTimeLimit 0.08 1 0 0 0 100
5 Enhanced MaxTimeLimit 0.08 1 0 0 0 100
6 Base MaxTimeLimit 0.08 1 0 0 0 100
6 Enhanced MaxTimeLimit 0.08 1 0 0 0 100
7 Base Unknown – 0 1 0 0 NA
7 Enhanced MaxTimeLimit 15.71 0 1 0 0 100
8 Base Unknown – 0 1 0 0 NA
8 Enhanced MaxTimeLimit 9.75 0 1 0 0 100
9 Base Unknown – 1 1 0 0 NA
9 Enhanced MaxTimeLimit 0.08 1 1 0 0 100
10 Base MaxTimeLimit 15.39 1 1 0 0 100
10 Enhanced Optimal 0.00 1 1 0 0 100
11 Base MaxTimeLimit 0.08 1 1 1 1 84
11 Enhanced MaxTimeLimit 0.08 1 1 1 1 85
12 Base Unknown – 1 1 1 1 NA
12 Enhanced MaxTimeLimit 0.08 1 1 1 1 86
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constraints, it is not able to find feasible solutions within reasonable time limits. For 
these reasons the analysis presented in the next section refers to the enhanced model 
only.

4.2  Analysis of solution quality

In this section, we assess the quality of the solution returned by the (enhanced) 
model. To do so we use six Key Performance Indicators (KPIs) which depend on 
the physician (h): Weekend Ratio (WERh ), Weekend Nights Ratio (WNRh ), Nights 
Ratio (NRh ), Average Monthly Morning-Afternoon Imbalance Ratio (AMMAIRh ), 
Morning-Afternoon Imbalance Ratio (MAIRh ), and Workload Ratio (WLRh ). These 
KPIs are introduced here in an informal way and formally described in “Appendix 
A”.

• WERh = weekends on duty/max number of weekends workable
• WNRh = nights on duty on the weekends/max number of nights workable on the 

weekends
• AMMAIRh = 1

6

∑6

m=1

�MS in month m – AS in month m�

(MS in month m + AS in month m)
 , where MS and AS indicate 

respectively morning shifts on duty and afternoon shifts on duty
• NRh = nights on duty in the planning period/max number of nights workable
• MAIRh = |total MS in the planning horizon – total AS in the planning horizon|

(total MS in the planning horizon + total AS in the planning horizon)

• WLRh = hours on duty in the planning horizon/ max number of hours workable.

The maximum number of weekends, nights and hours workable (included in the 
WERh , WNRh , NRh and WLRh formulas), are calculated taking into account: (1) 
the individual employment contract of each physician (for example some physicians, 
by contract, work a limited number of weekdays, hours or shifts) and (2) the general 
rules that apply to all of them (e.g. the obligation to rest at least three nights between 
two consecutive night shifts, etc., see constraints in Sect. 3).

All the KPIs are normalized to adjust values measured on different scales to a 
common scale ranging from 0 to 1. The normalization is needed to compare per-
formance across physicians with different employment contracts and consequently 
heterogeneous availabilities. In general, the closer the KPI to 0 the more desirable 
the solution for the physician. However, as the main target of our approach is to 
produce equitable solutions, the quality of the solution returned by the models is 
assessed looking at the variability of the KPIs across physicians. The lower such a 
variability the better the solution.

The first three KPIs (WERh , WNRh , AMMAIRh ) are directly linked with the 
model objective function(s) (11, 19). In the first phase, the model objective function 
aims at hierarchically balancing the number of worked weekends and the number of 
nights worked on the weekends, across physicians, over a 6-month planning hori-
zon. The extent of this balancing can be assessed using WERh and WNRh . In the 
second phase, instead, the model’s objective function aims at balancing the morning 
and afternoon shifts worked by each operator every month. Such balancing can be 
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assessed by looking at the AMMAIRh . This latter KPI represents the average, calcu-
lated over 6 months, of the monthly values of MAIRh.

The last three KPIs (NRh , WLRh , and MAIRh ) are not directly linked with the 
model objective function. Yet, these KPIs are very useful to assess the overall desir-
ability of the solutions returned by the model. NRh measures night shift balancing 
across physicians over the entire planning period. Contrary to WNRh , NRh does not 
consider only the weekend nights but all the nights in the planning horizon. WLRh , 
instead allows measuring the overall workload balancing across physicians over 
the entire planning period. Finally, MAIRh allows measuring the overall morning-
afternoon shift imbalance. Contrary to AMMAIRh , MAIRh does not measure how 
well morning and afternoon shifts are balanced on a monthly basis, but the overall 
balance over the entire planning period. It is worth observing that, for a given phy-
sician, if AMMAIRh is low then MAIRh is low too, but not the other way around. 
For example, a physician working 10 mornings and 0 afternoons for each the first 
3 months of the planning horizon and 0 mornings and 10 afternoons for each of the 
following 3 months, will have an AMMAIRh equal to 1 and a MAIRh equal to 0.

In the remainder of this section, the variability of the KPIs is assessed looking at 
the boxplot of the KPIs. The boxplots represent, for each scenario (x-axis), the dis-
tribution of the KPIs across physicians. The tables with all the descriptive statistics 
for each KPI and scenario are reported in “Appendix B”.

4.2.1  Weekend balancing

Figure 5 shows the boxplots relevant to WERh . Each boxplot refers to one of the 
scenarios reported in Table 3. As can be noticed, for most of the scenarios the inter-
quartile range (IQR) is zero—the boxplots collapse into a horizontal segment repre-
senting the median value (ME) as well as the first (Q1) and third (Q3) quartile—and 
for all of them it is smaller than 0.05. This means that 50% of the physicians work 
approximately the same number of weekends. From the boxplots, we can notice that 

Fig. 5  Boxplots of WER
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outliers (the dots in the boxplots) are a limited number and are spread over a lim-
ited region. In the worst-case scenario, i.e., scenario 7, the overall range of varia-
tion (max(WERh)-min(WERh )) is equal to 29% meaning that the operator working 
the highest number of weekends, in relative terms, works 29% weekends more than 
the one working the smallest number. In absolute terms, this difference translates in 
approximately 5 weekends in 6 months, which is definitely acceptable.

The number of physicians included in the calculation of WERh is 26 instead of 
27. This is because one physician, by contract, does not work on weekends.

4.2.2  Night balancing

To assess whether the model succeeds in balancing the (relative number of) nights 
worked by each physician it is necessary to look at the WNRh and NRh KPIs. Look-
ing at Fig. 6 we can notice that, when no shift is preassigned (Scenario 0) the num-
ber of nights worked in the weekends (WNRh , black boxplots) is very well balanced 
across physicians, the IQR is zero and the outliers are very close (and smaller than) 
the median value. In case of hard or soft requests, such a balancing may (scenarios 
1, 2, 3, 4, 7) or may not (scenario 10) significantly worsen. This is because the sce-
narios where the variability of WNRh is higher (e.g. scenario 1, 2, 3, 4, 7) are those 
characterized by the largest optimality gap (see Table 3). Since the balancing of the 
worked weekend nights is an objective that is hierarchically subordinated to the bal-
ancing of the worked weekends, it comes at no surprise that solutions that are not 
optimal are characterized by a large value of WNRh (even when the variability of 
WERh is low).

However, if we consider the nights worked on the whole planning horizon (NRh , 
grey boxplots), we can notice that the overall balancing is indeed good. In fact, the 
IQR, as well as the overall range of variation (Range) of NRh , is limited for all the 
scenarios ( IQR ≤ 0.10 and Range ≤ 0.26 across scenarios). This is because of the 
constraint that bounds the maximum number of nights that physicians can work 

Fig. 6  Boxplot of WNR and NR
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(24). Such a constraint prevents physicians that worked a high number of nights in 
the weekends (first phase) to be assigned a high number of night shift on weekdays.

4.2.3  Morning‑afternoon balancing

To assess whether physicians are assigned with a balanced number of morning and 
afternoon shifts, it is necessary to look at the AMMAIRh and MAIRh . The lower the 
variability of these KPIs the smaller the (relative and absolute) difference between 
morning and afternoon shifts worked across physicians.

Looking at AMMAIRh (black boxplots in Fig. 7 and Table 10 in “Appendix B”) 
we can notice that for the scenario with no preassigned shifts (scenario 0) the vari-
ability of AMMAIRh is very limited (IQR < 0.06 , SD < 0.5 ) and the median and 
mean values are very low ( M = 0.13 , Q2 = 0.09 ). It implies that all the physicians, 
every month, are assigned with a very well balanced number of morning and after-
noon shifts. For all other scenarios, this imbalance is quite limited and equally dis-
tributed, except for some (one or two) physicians whose AMMAIRh , in certain sce-
narios (scenarios 1, 2, 3, 4, 11, 12) is equal to 1. These outliers are representative of 
a total imbalance, i.e., they refer to physicians, that, each month, work either morn-
ing or afternoon shifts. A closer look at the data, however, reveals that the physicians 
corresponding to the boxplots’ outliers work less than 2 shifts per month (across 
scenarios). This implies that a very limited absolute imbalance between the num-
ber of afternoon and morning shifts scheduled (e.g. 1 or 2 shifts per month) trans-
lates into a large value of AMMAIRh (e.g. from 0.5 up to 1), even if this imbalance 
does not significantly affect the value of the objective function. If we look at MAIRh 
(grey boxplots in Figure 7 and Table 11 in “Appendix B”), in fact, we can notice 
that, when considering the total number of afternoon and morning shifts worked in 
the planning horizon, regardless to the considered scenario, the median value of the 
imbalance significantly decreases, and the variability across scenarios decreases as 
well. This means that the physicians working one or two shifts per month, alternate 

Fig. 7  Boxplots of AMMAIR and MAIR
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the type of shift worked from 1 month to another (e.g. they may work two morning 
shifts 1 month, and two afternoon shifts the following one).

Hence, if we consider the whole planning horizon (i.e. MAIRh ) the solution 
returned by the model is both desirable (M < 0.15 , ME < 0.04 across scenarios) and 
equitable across physicians (IQR < 0.10 , SD < 0.9 across scenarios).

4.2.4  Overall workload balancing

To assess whether the overall workload is well balanced across physicians, we can 
look at the boxplots of WLR in Fig. 8 (and Table 12 in “Appendix B”).

From the boxplots emerges that the model obtains decently balanced solutions 
(IQR ranges between 0.08 and 0.13 across scenarios). Half of the physicians work 
between 80 and 94% of the total time they could work by contract. Yet, the over-
all range of variation for this KPI is quite large (Range > 0.37 across scenarios) 
with values that are well below the median value. This is due to two facts. First 
and foremost, the workload balancing is not included in the model’s objective func-
tion, therefore it is a (desirable) side-effect of the balancing of weekends, nights, and 
morning-afternoon shifts. Secondly, the physicians considered in the calculation of 
this KPI (the whole population composed by 27 physicians) are heterogeneous in 
terms of number and types of shifts and hours they can work.

In fact, if we split the population between flexible (black boxplots in Fig. 9 and 
Table 13 in “Appendix B”) and not-flexible physicians (grey boxplots in Fig. 9 and 
Table 14 13 in “Appendix B”) we can notice that the workload balancing is excellent 
across scenarios for the flexible physicians. All of them work between 93% and 98% 
of their available time (across scenarios).

While flexible physicians can cover all shifts, the not-flexible ones can cover 
only a limited subset. Leveling the utilization of these latter physicians is therefore 
harder. Compared with the flexible ones, not-flexible operators are characterized by 

Fig. 8  Boxplots of WLR
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a smaller median value of WLRh and by a significantly higher variability of this 
KPI. A closer look at the data reveals that the outliers in all the (grey) boxplots cor-
respond, across scenarios, to the same physicians. These physicians do not work on 
weekends or work at nights or on Sundays only.

5  Application of the models to benchmark instances 
from the literature

To generalize our findings and to demonstrate the applicability of our model in 
settings other than the Alpha hospital, in this section we report the computational 
results obtained on a set of benchmark instances from the literature (Wickert et al. 
2020). Specifically, in Sect. 5.1 we describe the structure of the instances highlight-
ing similarities and differences with the Alpha ones, while in Sect. 5.2 we report and 
discuss the computational results in terms of computational efficiency and solution 
quality.

5.1  Setting description

Instances in (Wickert et al. 2020) have been generated according to the general and 
realistic structure defined in the International Nurse Rostering competition (Ceschia 
et al. 2019). We briefly report their main features: (1) 4-week planning horizon; (2) 
5 weekdays (from Monday to Friday) and 2 weekend days (Saturday and Sunday); 
(3) 3 skills each corresponding to a different unit (Inpatient Units); (4) 3 types of 
shifts (Early, Late and Night shift); (5) 2 types of contracts (Full time or Half time 
each characterized by a minimum and maximum number of workable shifts). Shifts 
in our models correspond to all the combinations of skills and shift types above 
mentioned for a total of 9 work shifts. According to the notation used in Wickert 

Fig. 9  Boxplots of WLR for flexible (WLR_f) and not-flexible (WLR_nf) pysicians
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et al. (2020), we consider the hard (H) and soft (S) constraints listed below. For each 
one, we report in parentheses the way we model them.

H1 A physician can be assigned to at most one shift per day during weekdays 
(graph construction and constraints (1, 2, 3)
H2 Minimum number of physicians per day/shift/location (new constraints 32)
H3 Maximum number of physicians per day/shift/location (new constraints 32)
H4 A physician must be assigned to both Early and Late shifts, or a Night shift, 
or have a day off on weekend days (graph construction)
H5 Invalid shift succession (graph construction)
H6 A physician can be unavailable for some shifts or days (replaced by soft con-
straints)
H7 On weekend days a physician can work both Early and Late shifts in the same 
day. When this happens, physicians must work the two shifts at the same unit 
(graph construction)
H8 A physician must be qualified to work at specific locations (graph construc-
tion)
S3 Undesired working day or shift (soft constraints)
S6 Minimum and maximum number of assignments over the planning horizon 
according to the working contract (soft constraints).

Constraints (4) in the models are replaced by constraints (32) to reflect H2 and H3 
with c

il
 and cil defining respectively the minimum and the maximum number of phy-

sicians per day/shift.

The purpose of this section is not to compare our approach with the one proposed 
in Wickert et al. (2020). Rather, the purpose is to generalize the results discussed in 
Sects. 4.1 and 4.2 by extending the experimental tests. For this reason, on this new 
set of instances, we have retained both the two-phase approach and the respective 
objective functions and have not considered additional soft constraints from Wickert 
et al. (2020) with the exception of the soft constraint relative to workable number of 
shifts over the planning horizon.

Of the instances reported in Wickert et al. (2020) we have considered only those 
with 50 physicians (10 in total). This is because the authors show that for the larger 
instances (characterized, respectively, by 100 and 150 doctors) in their dataset Cplex 
was not able to find a solution in a reasonable amount of time.

The benchmark instances differ from the Alpha ones in terms of: (1) number and 
type of physicians; (2) the set of feasibility constraints; (3) number of (hard and soft) 
requests.

With respect to the number and type of physicians, the benchmark instances are 
characterized by 50 fully flexible physicians (i.e., all of them can work all shifts), 
while in the Alpha’s ones there are 27 physicians that can be either flexible or not-
flexible. In both instance sets, there are full-time and part-time operators and the 

(32)c
il
≤

∑

h∈H

∑

j∈S∪oh

xh
jl−1il

≤ cil ∀l ∈ D,∀i ∈ S.
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number of shifts to cover daily, is more or less the same (9 vs. 10). In the benchmark 
instances, operators are characterized by a minimum and maximum number of shifts 
to work monthly depending on their typology (Full vs Half time). However, guaran-
teeing these constraints might make it impossible to ensure adequate coverage for 
each shift. As a consequence, the constraints binding the number of shifts worked 
by each physician have been modeled as soft constraints. Specifically, for each phy-
sician, we define two variables, �h and �h , representing respectively the number of 
shifts exceeding the maximum allowed number of monthly assignments and the 
slack from the minimum. Then, the sum over all the physicians of these surplus and 
slack variables is minimized in the objective function of the second phase with a 
weight smaller than the ones used for the other criteria.

With respect to the feasibility constraints, benchmarks instances refer to a prob-
lem less constrained than the one addressed at Alpha: constraints (15, 16, 17, 24, 25) 
are not present here. In addition, the constraints limiting the maximum weekly and 
monthly workload considered in our model (constraints 20 and 21) are replaced by 
the above mentioned soft constraints binding the number of shifts worked monthly. 
Other types of constraints controlling the quality of the solution, such as those 
related to the consecutiveness of the same shit type, are managed via soft constraints 
in the benchmark instances.

With respect to the number of requests, the benchmark instances are character-
ized by a way larger number of hard and soft requests. In addition, these requests are 
all of type 0 (not to work). As for the hard ones, in the original input les about five 
physicians, every day ask not to do any of the nine shifts (equivalently they ask for 
rest), while the number of soft requests varies between 262 and 344. A description 
of the instances in terms of physician typology and requests is given in Table 4.

Specifically, Table 4, in the Requests columns, reports the number of hard and 
soft requests expressed by physicians in the original instances and the number 
of constraints they generate in our instances. Specifically, every week, overall, 

Table 4  Instances from the literature, characteristics. E, L, and N stand respectively for early, late and 
night shifts

Instance Physicians (50) Requests

FullTime HalfTime Any (H0) E(S0) L(S0) N(S0) Tot FTot

1 24 26 140 102 117 94 2199 2094
2 32 18 140 92 85 85 2046 1944
3 21 29 140 110 83 108 2163 2058
4 19 31 140 106 113 125 2292 2178
5 22 28 140 83 108 92 2109 2040
6 21 29 140 95 95 109 2157 2049
7 23 27 140 107 110 103 2220 2115
8 24 26 140 114 85 103 2166 2070
9 23 27 140 107 107 122 2268 2169
10 25 25 140 114 91 102 2181 2121
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physicians express 35 hard requests ( 140 = 35 × 4 ) not to work any of the 9 shifts 
(column Any H0). These requests give rise to 140 × 9 preassigned shifts in our mod-
els. In addition, columns Early S0, Late S0, and Night S0 report the number of soft 
requests in the original instances not to work a early, late or night shift respectively. 
Each of these requests, gives rise to 3 (one for each Inpatient Unit) soft requests in 
our model. The total number of requests to address in our models is given in col-
umn Tot. A preliminary analysis showed that some of the requests appeared in the 
inputs as both hard and soft; the total number of filtered requests to insert after dele-
tion of duplicates is reported in column FTot. In addition, Table 4 reports, for each 
instance, also the mix of physicians in terms of Full and Half time staff. Preliminary 
computational results showed that the high number of hard requests, along with the 
stringent coverage constraints, compromised problem feasibility. For this reason, we 
transformed all hard-type requests to soft and a-posteriori observed the fulfillment 
rate (Fulfill%). Regarding the coverage, every working day the number of shifts to 
cover is between 5 and 6, while for the weekend days this number is between 4 and 5 
(coefficients c

il
 and cil in Constraints 32).

5.2  Results and discussion

As for the Alpha instances, the numerical analysis presented hereafter investigates: 
(1) the computational performance of the model(s) (Table 5) and (2) the quality of 
the model solutions (6). For the first phase, the model used is the basic one and for 
both phases the time limit is set to 2 h (7200 s).

Table 5 reports separately for each phase and for each instance, the value of the 
objective function components, the computational time expressed in seconds (Time) 
and the optimality gap (Gap%). For the objective function, in the first phase, the 
maximum number of weekends worked (max Y), the maximum number of nights 
worked on weekends (max V), the penalty due to non-satisfaction of requests, i.e., 
the number of unsatisfied requests ( 

∑
� ) are reported. In the second phase instead, 

Table 5  Instances from the literature, computational efficiency

Instance First phase Second phase

maxY maxV
∑

� Time (s) Gap (%) maxZ
∑

�
∑

�
∑

� Time (s) Gap (%)

1 2 2 0 0.13 0 0 32 834 0 7200 31
2 2 2 1 0.15 0 0 33 794 0 7200 18
3 2 2 0 0.12 0 0 25 849 0 7200 0
4 2 2 0 0.10 0 0 32 859 0 7200 28
5 2 2 0 0.13 0 0 23 844 0 7200 35
6 2 2 1 0.14 0 0 37 849 0 7200 30
7 2 2 0 0.21 0 0 38 839 0 7200 45
8 2 2 0 0.13 0 0 30 834 0 7200 0
9 2 2 0 0.17 0 0 46 839 0 7200 50
10 2 2 2 0.14 0 0 67 829 0 7200 55
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the components of the objective function concern the maximum imbalance between 
early and late shifts (max Z), the number of unsatisfied requests ( 

∑
� ), the penalty 

resulting from not satisfying the maximum number of shifts allowed per month per 
physician, i.e., the total number of extra shifts ( 

∑
� ), and finally the penalty result-

ing from not satisfying the minimum number of shifts allowed per month per phy-
sician ( 

∑
� ). Looking at Table 5 it is possible to observe that: (1) the first phase is 

solved to optimality very efficiently (within 0.21 seconds in the worst case) and all 
the components of the objective function have, as desired, very small values; (2) the 
second phase is much more time consuming than the first one and in fact, the time 
limit is always reached. In addition, the satisfaction of cover constraints imposes 
that a consistent number of extra shifts is assigned (see column 

∑
� ). The optimality 

gaps are not satisfactory in the second phase. However, observing the value of the 
main component of the objective function (max Z), we observe that early and late 
shifts are very well balanced among physicians. These observations seem to suggest 
that it is the bound, rather than the solution, to be of poor quality.

Table 6 reports for each of the 10 instances the percentage of fulfilled requests 
(Fulfill%) and 5 KPIs (average value M and standard deviation SD): WER and WNR 
which refer to the solution quality in the weekends, and WLR, NR, and MAIR 
describing the quality of the overall solution (first and second phase). For all the 
physicians the maximum number of weekends workable is set to 4. the maximum 
number of nights workable on the weekends is set to 8 (2 in each weekend). and 
the maximum number of nights workable is set to the planning horizon length (30). 
From Table 6 emerges that: (1) the number of satisfied requests is very high (in the 
worst case the not granted requests are only 3.16% of the total); (2) WER and WNR 
are quite low, well balanced across physicians (very low standard deviations) and 
stable across the 10 instances; (3) the high number of shifts to be covered implies a 
high workload (WLR greater than 1), but still well balanced across physicians; (4) 
covering constraints impose also a high number of night shifts per physician (about 
10), however, differently from WLR, night shifts are not well balanced among 

Table 6  Instances from the literature, solution quality

Instance Fulfill (%) WER WNR WLR NR MAIR

M SD M SD M SD M SD M SD

1 98.47 0.50 0.04 0.24 0.03 1.5 0.27 0.3 0.15 0 0
2 98.30 0.49 0.06 0.24 0.05 1.43 0.25 0.3 0.18 0 0
3 98.79 0.50 0.00 0.24 0.04 1.52 0.22 0.3 0.13 0 0
4 98.53 0.50 0.00 0.24 0.04 1.54 0.24 0.3 0.11 0 0
5 98.87 0.50 0.00 0.24 0.04 1.52 0.28 0.3 0.13 0 0
6 98.19 0.50 0.04 0.24 0.05 1.52 0.24 0.3 0.12 0 0
7 98.20 0.50 0.00 0.24 0.04 1.50 0.23 0.3 0.12 0 0
8 98.55 0.50 0.00 0.24 0.05 1.50 0.25 0.3 0.16 0 0
9 97.88 0.49 0.05 0.24 0.04 1.51 0.26 0.3 0.12 0 0
10 96.84 0.50 0.04 0.24 0.03 1.49 0.22 0.3 0.12 0 0
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physicians as the standard deviation clearly shows; (5) the balance between early 
and late shifts is of excellent quality. The only unsatisfactory KPI is therefore NR: in 
future research, it might be interesting to include in the second phase the constraints 
of night balancing currently used in the first phase or to provide other mechanisms 
for equitable distribution of these shifts.

6  Conclusions

In this study, we have proposed a two-phase approach to the EDPRP and devel-
oped two network-based optimization models that allow implementing the proposed 
approach in a real setting. The models have been tested both on real data from a 
leading European Hospital and on benchmark instances from the literature. Their 
effectiveness has been shown using six KPIs purposely defined. The results pre-
sented in Sect. 4, demonstrate that the proposed models allow for: (1) taking into 
consideration the plurality of features characterizing the physician rostering problem 
(heterogeneity of work contract, presence of hard and soft requests); (2) obtaining 
equitable schedules, by evenly balancing undesirable shifts across operators both in 
the long and in the medium term; (3) letting physicians know, well in advance, the 
weekends when they will be expected to be on duty, and (4) accommodating the 
physicians’ hard and (most of the) soft requests. This latter type of requests, how-
ever, makes the problem significantly more complex to solve. In fact, to find feasible 
solutions in a reasonable amount of time, we needed to introduce a set of valid ine-
qualities thus strengthening the linear programming relaxations of the base models. 
Yet, in certain scenarios coming from the Alpha setting, the presence of soft con-
straints prevented us from finding optimal solutions within the fixed time limit. This 
means that an excessive number of this type of requests may hamper the quality of 
the solution even if they are not fulfilled.

Appendix A

In this section, we report the formal description of the Key Performance Indicators 
used to analyze the quality of the solutions. Such indicators are defined for each phy-
sician h and they are the followings: Weekend Ratio (WERh ), Weekend Nights Ratio 
(WNRh ), Nights Ratio (NRh ), Average Monthly Morning-Afternoon Imbalance 
Ratio (AMMAIRh ), Morning-Afternoon Imbalance Ratio (MAIRh ), and Workload 
Ratio (WLRh ). As stressed in Sect.  4.2, the computation of each KPI takes into 
account global and individual constraints of each physician. The KPIs are defined in 
terms of variables and notation introduced in Sect. 3. Hereinafter, we assume that yh

w
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and xh
iljl+1

 are the values that the variables yh
w
 and xh

iljl+1
 respectively assume in the 

best solution provided by the tho-phase algorithm.

Weekends

WERh is defined as the ratio between the total number of weekends assigned to phy-
sician h and the maximum number of weekends physician h can work. Specifically, 
the total number of weekends assigned to h is given by summing the value of all the 
0-1 weekend assignment variables yh

w
 relative to h over the planning period, whereas 

the maximum number of weekends a physician can work is the upper-rounded half 
of the weekends in the planning period (nobody can work two consecutive week-
ends). More formally,

where Hwe ⊆ H is the subset of physicians who can be on duty on weekends.

Night shifts

KPIs concerning night shifts are NRh and WNRh . NRh is defined as the total number 
of night shifts assigned to physician h in the whole programming period normalized 
over the maximum number of possible night shifts; WNRh instead accounts for the 
number of night shifts assigned during the weekends normalized over the maximum 
number of possible night shifts in the weekends. More specifically, in terms of the 
0-1 assignment variables x, the total number Kh

n
 of night shifts assigned to physician 

h is defined as

with Hn ⊆ H the subset of physicians who can be on duty on night. Thus, the KPI 
NRh is defined as:

WERh =

∑
w∈W y

h

w

⌈
�W�

2
⌉

∀h ∈ Hwe

Kh
n
=
∑

l∈D

∑

i∈Sn

∑

j∈S∪dh

x
h

iljl+1
∀h ∈ Hn
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The maximum number of possible night shifts takes into account the minimum 
number of days ( d ) that must elapse between two night shifts.

Analogously, the number WKh
n
 of night shifts assigned during the weekends to 

physician h is defined as

with Dw ⊆ D the subset of days corresponding to weekend days in the planning 
horizon. Consequently, WNRh , is defined as:

In fact, the maximum number of night shifts a physician can work on weekends is 
defined as half of the number of weekends in the planning horizon since physician h 
can work at most a night shift in a weekend and physicians cannot work on consecu-
tive weekends.

For those physicians h who can work only on weekend days NRh = WNRh.

Morning‑afternoon shifts

KPIs to evaluate the fair distribution of morning and afternoon shifts are AMMAIRh 
and MAIRh . Suppose that:

In terms of the 0-1 assignment variables x, Mh
k
 and Ah

k
 are defined respectively as:

Then, AMMAIRh sums the monthly imbalance ratios computed, month by month, 
as the absolute difference between morning and afternoon shifts assigned in the 
month over their sum, i.e.,

NRh =
Kh
n

⌈
�D�

d
⌉

∀h ∈ Hn.

WKh
n
=

∑

l∈Dw

∑

i∈Sn

∑

j∈S∪dh

x
h

iljl+1
∀h ∈ Hn

WNRh =
WKh

n

⌈
�W�

2
⌉

∀h ∈ Hn.

T is the set of months in the planning period

Tk ⊆ D is the set of days in month k with k ∈ T

Mh
k

is the number of morning shifts assigned to h in month k

Ah
k

is the number of afternoon shifts assigned to h in month k.

Mh
k
=
∑

l∈Tk

∑

i∈Sm

∑

j∈S∪dh

x
h

iljl+1
∀h ∈ H, ∀k ∈ T

Ah
k
=
∑

l∈Tk

∑

i∈Sa

∑

j∈S∪dh

x
h

iljl+1
∀h ∈ H, ∀k ∈ T .



1 3

The emergency department physician rostering problem:…

whereas MAIRh gives the overall imbalance ratio computed as the absolute differ-
ence between all the morning and afternoon shifts assigned in the planning period 
over their sum, i.e.

Workload

KPI WLRh measures the ratio between the total number of hours worked by h in the 
overall planning period over the maximum workload h may accept according to their 
individual employment contract. Specifically, WLRh is defined as

where |T| is the number of months in the planning period.

Appendix B

In Tables 7, 8, 9, 10, 11, 12, 13 and 14, separately for each KPI, descriptive sta-
tistics are given, either computed over the complete set of physicians or stratified 
by work contracts. The notation used is shown below. 

N Sample size
M Mean value
SD Standard deviation
min Minimum value
Q1 First quartile
ME Median
Q3 Third quartile
max Maximum value
IQR Inter quartile range (Q3–Q1)
range Difference between maximum 

and minimum values (max–
min)

AMMAIRh =
∑

k∈T

|Ah
k
−Mh

k
|

Ah
k
+Mh

k

∀h ∈ H

MAIRh =

�
�
�

∑
k∈T A

h
k
−
∑

k∈T M
h
k

�
�
�

∑
k∈T (A

h
k
+Mh

k
)

∀h ∈ H.

WLRh =

∑
l∈D

∑
i∈S

∑
j∈S∪dh wix

h

iljl+1

m
h
⋅ �T�

∀h ∈ H
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