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Abstract: In recent years, interferometric radars have been extensively used as sensors for static
and dynamic monitoring of bridges. Generally speaking, a radar can only detect the displacement
component along its view direction. As the movement of a real bridge or a large structure can be
rather complex, this limitation can be a significant drawback in engineering practice. In order to
overcome this limitation, in this article, a multi-monostatic interferometric radar with radio link is
proposed. This radar is able to detect a second component of displacement using a transponder. The
transponder is connected to the radar through a radio link. The radio link allows the installation of
the transponder far away from the radar, and even in the opposite direction. The equipment is based
on a MIMO radar, two transceivers for the radio link, and a transponder. The transceivers and the
transponder are essentially two antennas and an amplifier system. The equipment is experimentally
tested in controlled scenarios and in the case study of Indiano Bridge, Florence, Italy.

Keywords: bridge monitoring; displacement vector; interferometry; MIMO; multi-monostatic radar;
radio link; vibration measurement

1. Introduction

In the last two decades, bridge monitoring by terrestrial interferometric radar has
become a relatively popular technique [1–5]. In a typical installation, the radar is positioned
under the deck and detects the displacement of the scatter points of the bridge. The
displacement is retrieved by radar interferometry, a well-known technique used in different
contexts [6,7].

Since a radar can only detect the displacement component along the range direction,
the effective movement is retrieved by supposing the displacement in the vertical direction.
This assumption is often reasonable but is potentially incorrect when the detected scatter
point is far from the so-called “neutral axis” of the bridge. Figure 1 pictorially shows how
the effective displacement can have a vectorial direction that differs considerably from the
vertical one. The detection of a single component can be misleading as experimentally
shown by Dei et al. in 2013 [8].

Recently, several authors proposed radar techniques for detecting two or three com-
ponents. Monti-Guarnieri et al. [9] operated two radars simultaneously to detect the
displacement vector of corner reflectors fixed to a pipe. The recent introduction of multiple
input, multiple output (MIMO) for spaceborne radar [10], for ground-based radar [11–13],
and in biomedical contexts [14] has prompted the creation of new solutions. Deng et al. [15]
deployed three ground-based multiple input, multiple output (GB-MIMO) radar systems
to measure 3D deformation of a movable corner reflector. All of these approaches have
evident drawbacks in terms of complexity of the installation.

Pieraccini et al. [16–18] proposed a radar technique that uses a transponder in a bistatic
configuration for detecting a further component of the displacement of a corner reflector.
However, this approach can pose two issues: (1) the bistatic image can differ notably from
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the monostatic image (so it can be difficult to recognize the same physical targets in the
two images), and (2) the bistatic angle is half of the angle between radar and transponder,
which can lead to geometric configurations that are hardly deployable in the field.
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In 2021, Miccinesi et al. [19] proposed a multi-monostatic radar for bridge monitoring 
using a MIMO radar: the two channels of the MIMO radar were located in different posi-
tions in the same side of the river. This method allows for simple measurement of two 
components of displacement, but the baseline (distance between the two MIMO channels) 
was not enough for long bridges. 

In this article, the authors propose an advanced technique based on [19]. The two 
channels are in the opposite banks of the river, and they are connected through a radio 
link as shown in Figure 2. 

 

Figure 2. Working principle of multi-monostatic interferometric radar with radio link (the figure 
and the displacements are not in scale). 

Figure 1. The blue arrows are the displacements of the points of the neutral axis (the dotted lines in
the figure) of the bridge; the red arrows are the displacements of the points far from the neutral axis
(the figure and the displacements are not to scale).

In 2021, Miccinesi et al. [19] proposed a multi-monostatic radar for bridge monitoring
using a MIMO radar: the two channels of the MIMO radar were located in different
positions in the same side of the river. This method allows for simple measurement of two
components of displacement, but the baseline (distance between the two MIMO channels)
was not enough for long bridges.

In this article, the authors propose an advanced technique based on [19]. The two
channels are in the opposite banks of the river, and they are connected through a radio link
as shown in Figure 2.
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2. Materials and Methods
2.1. Methods

The proposed technique is schematically shown in Figure 3. The radar is connected to
an additional interferometric channel through a radio link.

The transponder is basically composed of a transmitting channel and a receiving
channel. Each channel is composed of a horn antenna in vertical polarization and an
amplifier system.

The radio link is composed of two transceiver units connected to the radar and the
transponder. The transceiver unit is composed of two cross-polarized horn antennas and an
amplifier system. The cross-polarization increases the isolation between the two channels
to prevent possible self-oscillation.



Electronics 2021, 10, 2777 3 of 12

Electronics 2021, 10, x FOR PEER REVIEW 3 of 12 
 

 

2. Materials and Methods 
2.1. Methods 

The proposed technique is schematically shown in Figure 3. The radar is connected 
to an additional interferometric channel through a radio link. 

The transponder is basically composed of a transmitting channel and a receiving 
channel. Each channel is composed of a horn antenna in vertical polarization and an am-
plifier system. 

The radio link is composed of two transceiver units connected to the radar and the 
transponder. The transceiver unit is composed of two cross-polarized horn antennas and 
an amplifier system. The cross-polarization increases the isolation between the two chan-
nels to prevent possible self-oscillation.  

 

Figure 3. Scheme of a working principle of multi-monostatic interferometric radar with radio link 
(view form above). 

Figure 4 shows the geometry used for retrieving two components of displacement. 
The target is located between the two measurement points (radar and transponder). The 
two measurement points are able to detect two different components of displacement. It 
is possible to move from the radar/transponder coordinate system to the Euclidean coor-
dinate system by using the following relationship: ൬ΔrଵΔrଶ൰ = ൬uොଵ ⋅ eොଶ uොଵ ⋅ eොଷuොଶ ⋅ eොଶ uොଶ ⋅ eොଷ൰ ቀΔyΔzቁ = M ⋅ ቀΔyΔzቁ, (1) 

whereΔy and Δz are the displacement components along the y and z axes, and Δrଵ, Δrଶ 
are the displacement measured by the radar and by the transponder. The displacement 
can be measured using the interferometric phase, Δϕ: Δr = λ4π 	Δ߶ (2) 

 

Figure 4. Measurement geometry for retrieving the yz components of displacement (side view). 
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(view form above).

Figure 4 shows the geometry used for retrieving two components of displacement.
The target is located between the two measurement points (radar and transponder). The
two measurement points are able to detect two different components of displacement.
It is possible to move from the radar/transponder coordinate system to the Euclidean
coordinate system by using the following relationship:(

∆r1
∆r2

)
=

(
û1 · ê2 û1 · ê3
û2 · ê2 û2 · ê3

)(
∆y
∆z

)
= M ·

(
∆y
∆z

)
, (1)

where ∆y and ∆z are the displacement components along the y and z axes, and ∆r1, ∆r2
are the displacement measured by the radar and by the transponder. The displacement can
be measured using the interferometric phase, ∆φ:

∆r =
λ

4π
∆φ (2)
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In order to perform a preliminary assessment of the theoretical uncertainty, we can
consider the following equation:(

σy
σz

)
= abs

(
M−1

)
·
(

σr1

σr2

)
(3)

where σr1 and σr1 are the measurement uncertainty on ∆ r1 and ∆ r2, and σy and σz are
the uncertainty of the yz components. The abs operation of M−1 is performed element
by element. Equation (3) can be calculated from Equation (1) and by using the linear
properties of matrix calculus. Furthermore, we suppose the radar and the transponder
operate with the same signal-to-noise ratio, i.e., σr1 = σr1 = σr . This is not always true, but
it is a reasonable assumption for a preliminary assessment of uncertainty.
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Figure 5 shows the calculated σy\σr and the σz\σr as functions of y. The radar is
located in Rradar = (0, 0, 0) m, the transponder in Rtransponder = (0, 140, 0) m, and the
target at x = 0 m, z = 20 m. The uncertainty along y (σy\σr) is maximum close to the radar
and transponder and minimum in the middle of the bridge. Conversely, the uncertainty
along z (σz\σr) is maximum in the middle of the bridge and minimum close to the pillars.
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2.2. Power Budget of Radio Link

The power budget of radio link is a key point of this method. Indeed, the signal-to-
noise ratio of the transponder has to be almost the same as that of the radar. Generally,
the power budget can be estimated combining radar equation, free-space geometrical
attenuation, and RF cables losses.

In reference to Figure 3, the power budget (PB) can be estimated as follows:

PB =
PRX

Transponder

PRX
Radar

=

PTXAcableG6
Antenna

(
λ

4πR2
0T

)2(
1

4πR2
Link

)2(
λ2

4π

)2 1
4πσ

Transponder
RCS

PTXG2
Antenna

(
λ

4πR2
0R

)2
1

4πσ
Radar
RCS

(4)

where PRX
Transpoder and PRX

Radar are the received power of the transponder and radar, re-

spectively; PTX is the transmitting power; Acable is the cumulative RF cable attenuation;
GAntenna is the antenna gain (supposed almost equal for all antennas); λ is the wavelength;
and σ

Transponder
RCS and σRadar

RCS are the radar cross-sections. If the distance R0R is equal to the
distance R0T and the radar cross-sections are supposed similar, the PB strongly depends on
the radio link distance (RLink).

The amplifiers of the transceivers and transponder must compensate the PB to obtain
almost the same value of received power in the two channels.

2.3. Equipment

The radar used is a modified version of IBIS-FM MIMO [12], developed by IDS
Georadar, Pisa, Italy. Figure 6a shows the IBIS-FM MIMO with four antennas connected.
This radar provides a continuous wave frequency modulated signal with central frequency
of fC = 17.2 GHz and maximum bandwidth of B = 400 MHz. The transmitting power is
about PTX = 14 dBm. The radar has two TX channels and two RX channels that are acquired
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sequentially. The acquisition frequency depends on the radar parameters (unambiguous
range, range resolution, etc.).
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Figure 6. Pictures of the equipment used for testing of the multi-monostatic interferometric radar
with radio link: (a) the IBIS-FM MIMO radar [12], (b) an example of transponder.

The antennas used are standard horn antennas with the same gain of about 15 dB.
An example transponder is shown in Figure 6b. The amplifiers are ZX60-183-A,

produced by Mini Circuits, New York, USA. The gain of these amplifiers is about 30 dB.

3. Results

The multi-monostatic interferometric radar with radio link was tested in controlled
scenarios and in the case study of Indiano Bridge, Florence, Italy.

In controlled scenarios, we tested the system to verify the multi-monostatic method sum-
marized in Equation (1) and to verify the power budget in Equation (4). Equations (1) and (4)
were tested separately.

3.1. Test of Multi-Monostatic Interferometric Radar (without Radio Link)

Figure 7 shows the setup and the block scheme used to verify the working principle
(i.e., Equation (1)). The target was a metallic bar connected to the roof of the building
at 2.61 m height in respect to the radar. The bar could oscillate freely along the vertical
axis. Two identical corner reflectors were fixed at the bar extremity. The radar was in
Rradar = (0, 0, 0) m, the target was in Rtarget = (0, 6.61, 2.61) m, and the transponder was
in Rtransponder = (0, 13.74,−0.05) m.
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The power budget of the system can be calculated according to Figure 7b. In this case,
we used two amplifiers with gain of 30 dB. The signal of the transponder was almost equal
to the signal of the radar (PB ∼= 0dB).

The radar image is shown in Figure 8. The targets were in the expected positions
both for the radar and transponder. The signal of transponder is 8 dB higher than that
of the radar. This discrepancy is not critical and could be due to misalignment of the
radar or differences in target reflectivity. The interferometry was performed using the
interferometric phase of the peaks. Figure 9 shows the displacements measured by the
radar and the transponder.
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Figure 9. Displacement measured by the radar and the transponder.

The two signals in Figure 9 are in phase, and they appear very similar. Using
Equation (1), it is possible to convert the displacements along radar and transponder
directions into the displacement vector.

Figure 10 shows the two components retrieved using Equation (1). The main displace-
ment is along the z axis. There is a residual displacement along the y axis with maximum
elongation of about 0.5 mm and standard deviation of 0.11 mm. This displacement along y
is considerably lower than the displacement along z (20 mm).



Electronics 2021, 10, 2777 7 of 12

Electronics 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 9. Displacement measured by the radar and the transponder. 

Figure 10 shows the two components retrieved using Equation (1). The main dis-
placement is along the z axis. There is a residual displacement along the y axis with max-
imum elongation of about 0.5 mm and standard deviation of 0.11 mm. This displacement 
along y is considerably lower than the displacement along z (20 mm). 

Figure 11 shows the natural frequency retrieved by calculating the Fourier transform 
of the zy components. The natural frequency of the target along z is 2.093 Hz. The residual 
displacement along y has the same frequency (meaning that the y-displacement is not 
given by a different vibration mode); therefore, this signal can be considered as a residual 
artefact of the geometrical projection.  

 
Figure 10. Displacement components retrieved using Equation (1). Figure 10. Displacement components retrieved using Equation (1).

Figure 11 shows the natural frequency retrieved by calculating the Fourier transform
of the zy components. The natural frequency of the target along z is 2.093 Hz. The residual
displacement along y has the same frequency (meaning that the y-displacement is not
given by a different vibration mode); therefore, this signal can be considered as a residual
artefact of the geometrical projection.
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3.2. Test of Multi-Monostatic Interferometric Radar with Radio Link

The power level of the radio link was tested in a scaled scenario as shown in Figure 12a.
A target was located between the radar and transponder. The radio link was located on the
right in respect to the radar, and it was 25.65 m long.
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The power budget evaluated using Equation (4), with reference to Figure 12b, was
about PB ∼= −200 dB without amplifiers. We used seven amplifiers of 30 dB gain to
compensate the PB. The resulting power budget was about PB ∼= 10 dB.

Figure 13 shows the image obtained using the radar and transponder. The signal of
the transponder was about 14 dB larger than the signal of the radar. This value almost
corresponds to the PB estimated using Equation (4) and the scheme of Figure 12b.
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3.3. Case Study—Indiano Bridge, Florence, Italy

The multi-monostatic interferometric radar with radio link was tested at Indiano
Bridge, Florence, Italy. This bridge is an earth-anchored, cable-stayed bridge, and it was
built between 1972 and 1978.

The radar was installed on the right bank of the bridge as shown in Figure 14. The
radio link was 141.7 m long. The distance of radio link was evaluated using a corner
reflector located with the radio link transceiver on the bank of the transponder. The
block scheme used was almost the same as in Figure 12b with two more amplifiers on the
receiving channel.

During the test, the bridge was subjected only to vehicular traffic.
The radar was located in Rradar = (0, 0, 0) m, and the transponder was in Rtransponder =

(0, 140.78, 1.14) m. The bridge was 14.40 m high in respect to the radar. In order to identify
the target position along the y axis, the radar and the transponder images were focused
along the bridge span as described in [17]. Figure 15 shows the focused image. For the
sake of conciseness, we report only the displacements of the targets at y = 85.9 m and at
y = 99 m, but the method can be applied to all peaks between 70 m to 120 m.
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The displacements measured by the radar and the transponder for the two targets are
reported in Figure 16.
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The displacement components retrieved using Equation (1) are shown in Figure 17.
Most of the displacement is along z, even if it is possible to detect y components during the
impulsive stimulus (for example, at t = 11 min).
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As a further application of this technique, we retrieved the direction of the displace-
ment vector. Figure 18a,b show the retrieved direction of the two targets for the spotlighted
stimulus (Figure 17). The displacement direction of the target at y = 85.9 m was inclined by
an angle α = −87.5◦ with respect to the y axis. The displacement direction of the target at
y = 99 m was at α = −87.9◦.
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4. Conclusions

In this paper, a multi-monostatic radar with radio link was presented. The authors
verified in a controlled environment both the methodology described in Section 2.1 and the
power budget of the radio link described in Section 2.2.

The method was verified using a horizontal oscillating bar without the radio link. The
system was able to detect vertical and horizonal displacements. The main component was
along the vertical axis, although there was a small horizontal residual component (probably
a geometrical projection artifact).

The power budget of the radio link was evaluated using Equation (4) for each case,
and the power loss was compensated with a suitable number of amplifiers.

The multi-monostatic interferometric radar was tested in a case study with a radio
link of about 140 m long. The case study was the Indiano Bridge in Florence, Italy. The
equipment was able to detect the displacement of several targets. The number of targets
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detected by the radar and by the transponder was not equal (the radar detected more targets
than the transponder). This fact is probably due to a misalignment of the radio link, which
caused power losses that were larger than we expected. In a practical implementation of
this technique, this problem could be solved using a power detector for optimization of the
alignment of the radio link.

Another point worth discussing for a practical implementation of this technique is the
maximum length of the bridge. The radar was designed to operate up to 5 km, but in this
specific application, we must consider the ratio between length and height of the bridge.
As rule of thumb, the length has to be no larger than 20/30 times the height in order to
have a reasonable component of the displacement along the view direction.
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