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Chapter 1

Introduction

In this thesis we address the numerical solution of systems of nonlinear equations via
spectral residual methods. Our problem takes the form

F (x) = 0, (1.1)

with F : Rn → Rn continuously differentiable. We focus on the square case where
the number of equations equals the number of variables and we assume that problem
(1.1) admits a solution. Spectral residual methods are iterative procedures, they use
the residual vector F evaluated at the current iterate as search direction and a spectral
steplength, i.e., a steplength that is related to the spectrum of the average matrices as-
sociated to the Jacobian matrix of F . Such procedures are widely studied and employed
since they are derivative-free and low-cost per iteration.

This chapter is devoted to an introduction to the problem of interest and to an
overview of the methods proposed in literature in recent years. We close the chapter
summarizing the contents of the thesis.

1.1 Problem overview

Systems of nonlinear equations (1.1) arise in many applications and require finding one
vector x ∈ Rn that satisfies the relationships specified by the residual function F . Ex-
amples of applications are the Karush-Kuhn-Tucker conditions related to a nonlinear
programming problem, the discretization of partial differential equations such as heat
conduction or Navier-Stokes equations and physical or economical constraints such as
consistency principles, conservation laws, equilibrium conditions [49]. In addition, many
other applications such as the Kalker’s rolling contact model [45] or natural gas distri-
bution models [41] require the solution of a sequence of suitable nonlinear systems.

The numerical solution of (1.1) has been intensively investigated and a variety of
iterative procedures has been proposed. The combination of efficiency, measured in
terms of execution time and computational cost, and robustness, that is the ability to
solve the problem successfully, is fundamental. In our context, methods are considered
robust if they are able to solve problems arising from a large number of different areas and
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if the convergence does not depend critically on the choice of the starting point. Methods
with the latter property are denoted as globally convergent methods. It is worth noting
that a possible approach to (1.1) consists in solving the nonlinear least-squares problem
written as the sum of the squares of the equations in (1.1):

min
x∈Rn

f(x) = min
x∈Rn

1

2
‖F (x)‖2, (1.2)

with f : Rn → R known as merit or objective function and ‖ · ‖ being the Euclidean
norm. Nonlinear least-squares problems have been a productive area of study and there
exist many software packages to solve them [14, 22, 32, 49]. Nevertheless, well known
important differences between nonlinear systems and optimization induce to study ade-
quate algorithms for solving (1.1) in its original form [14,22,49]. In nonlinear equations
we expect all equations to be satisfied at the solution rather than just minimizing the
sum of squares, i.e. any solution of (1.1) is a global minimum for (1.2) but the viceversa
is not true. This means that a local minimum of f in (1.2) could provide a point that is
not a solution to our problem (1.1).

Concerning the solution of the original formulation (1.1), a wide class of globally
convergent methods is based on the Newton method combined with linesearch or trust-
region approaches, see e.g., [14, 49]. The main drawback of these methods is that they
require the solution of a linear system of equations at each iteration where the coeffi-
cient matrix is the Jacobian of F or an approximation of it by finite differences. Such
calculation might be quite expensive either when the problem is of medium or large
size or when a sequence consisting of a large number of nonlinear systems has to be
solved. For this reason classes of algorithms that approximate the Jacobian, reducing
the computational cost without losing robustness and overall efficiency, are of special
interest. Quasi-Newton methods belong to this class and are particularly attractive
when the Jacobian matrix of F is not available analytically or its computation is not
relatively easy. They showed to be effective both in the solution of one single nonlinear
system and in the solution of sequences of nonlinear systems such as those arising in
applications where sequences are generated by iterative refinement of parameters, see
e.g., [6, 14,28,33,34,41,44,58]. In the next section we will focus on the issues arising in
the context of Quasi-Newton methods and we will introduce the class of methods studied
in this thesis.

1.2 Numerical methods

The most common approach for the solution of problem (1.1) consists in the use of
Newton-based methods, as mentioned in the previous section. This means that, letting
xk be the current iterate, the next iterate xk+1 is computed solving the linear system

J(xk)(xk+1 − xk) = −F (xk), (1.3)

where J(xk) is the n × n Jacobian matrix of F at iteration k. We notice that these
methods may become computationally expensive since both the computation of matrix
J and the solution of a linear system are required at each iteration.
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As for the solution of (1.3), direct methods such as Gaussian elimination may be too
expensive if the system is medium or large size and the Jacobian matrix is either not
structured or no sparse. Moreover, computing the solution of (1.3) at each iteration with
a high accuracy may be not necessary when the current iterate xk is far from the solution.
Therefore, for large dimension problems, a possible approach for (1.1) is using Inexact
Newton methods where the linear system (1.3) is solved inexactly by means of iterative
solvers [12,17,42,55]. The inexactness comes from the fact that the iterative procedure for
(1.3) is stopped prematurely, and consequently the linear system is solved approximately
at a low computational cost per iteration. Inexact Newton methods are also matrix-free,
i.e. they access the coefficient matrix J(xk) only evaluating matrix-vector products and
avoid forming and storing the whole matrix J(xk). This class of methods is particularly
convenient when the matrices are sparse but their efficiency generally depends on using
a proper preconditioner for J(xk) and this calls for information on J(xk).

Quasi-Newton methods are adopted as an alternative approach replacing the matrix
J with an approximation of it. The k-th iteration matrix, denoted as Bk, can be formed
via least-change secant update strategies and may not involve derivatives at all [14,34,40].
In details, let us consider the following affine model for F around xk

Mk(x) = F (xk) +Bk(x− xk), (1.4)

satisfying Mk(xk) = F (xk) for any matrix Bk ∈ Rn×n and let xk+1 be such that
Mk(xk+1) = 0. We observe that this equation reduces to the Newton’s equation (1.3)
when Bk = J(xk). If J(xk) is not available or too expensive to compute, let us consider
the secant equation stating that Mk(xk−1) = F (xk−1), that is

Bk(xk − xk−1) = F (xk)− F (xk−1). (1.5)

If dimension n is larger than 1 then matrix Bk is not uniquely determined by (1.5)
since there is an n(n−1)-dimensional affine subspace of matrices obeying such equation.
The construction of a successful secant approximation consists in the selection of some
matrices among all these possibilities. The choice of Bk should either retain as much
information as possible from J(xk) and/or allow for a low cost solution of the linear
system. A possible strategy could be to require the model (1.4) to interpolate F (x) at
other past points, but this leads to a poorly posed numerical problem and is not successful
in practice [14]. The approach that leads to a successful secant approximation is the so
called Broyden’s update. It is based on the fact that we have no information either on the
Jacobian or on the model (1.5) and its aim consists in preserving as much as possible of
what is already available. Therefore, matrix Bk is chosen to minimize the change in the
affine model. In details, it is proved that the Broyden’s update represents the minimum
change to Bk−1 consistent with equation (1.5), measuring the change Bk −Bk−1 in the
Frobenius norm [14, Lemma 8.1.1]. It turns out that Bk is not an approximation from
scratch but it is a low rank update of Bk−1. As a consequence, the solution of the
system Bk(xk+1 − xk) = −F (xk) for xk+1 can take advantage of the availability of the
factorization of a matrix at the previous iteration, e.g., if Bk−1(xk − xk−1) = −F (xk−1)
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was solved for xk using the QR factorization of Bk−1 [48], such factorization can be
updated at a low computational cost to get the QR factorization of Bk [14].

Many further successful updating techniques have been proposed, e.g., in the Inverse
Column Update [43, 48] a column of the inverse of B−1k is updated at each iteration
enforcing the secant equation (1.5). In so doing, the computation of the Quasi-Newton
step xk+1 − xk only requires the product between B−1k and F (xk) avoiding the solution
of a linear system. A further and particular case is given by the class of methods studied
in this work where the Jacobian is approximated using a diagonal matrix. Summarizing,
in Quasi-Newton methods the computational cost for building Bk is considerably lower
than the cost for computing J(xk) and in many implementations the cost for solving the
linear system Bk(xk+1 − xk) = −F (xk) is low as previously described.

In this thesis we consider spectral residual methods which belong to the class of
Quasi-Newton procedures. They are an extension of spectral gradient methods for large-
scale optimization problems to systems of nonlinear equations. Spectral gradient meth-
ods, introduced by Barzilai and Borwein in [2], are low-cost schemes for minimizing a
smooth function f : Rn → R and belong to the class of steepest descent methods, i.e.,
first-order iterative optimization algorithms which move at each iteration along −∇f
at the current iterate. Barzilai and Borwein showed in [2] that a suitable choice of the
steplength greatly speeds up the convergence of the classical steepest descent method
even if it does not guarantee descent in the objective function at each iteration. Spectral
residual methods were first introduced by La Cruz and Raydan in [33] and starting from
the proposal by La Cruz, Martinez and Raydan in [34] consist of iterative procedures for
solving (1.1) without the use of derivatives. They use matrices Bk which are multiples of
the identity matrix, i.e. Bk = β−1k I, with βk being a nonzero steplength inspired by the
Barzilai and Borwein method for unconstrained minimization problems [2]. Imposing
condition (1.5) two steplengths βk,1 and βk,2 are derived as least-squares solutions of the
following problems:

βk,1 = argmin
β
‖β−1pk−1 − yk−1‖2 =

pTk−1pk−1

pTk−1yk−1
, (1.6)

βk,2 = argmin
β
‖pk−1 − βyk−1‖2 =

pTk−1yk−1

yTk−1yk−1
, (1.7)

where pk−1 = xk − xk−1 and yk−1 = F (xk)− F (xk−1).

Spectral residual methods have received a large attention since iterations are cheap
and matrix-free, see e.g. [28, 33–35, 41, 48, 58]. In order to preserve robustness, such
methods are combined with suitable globalization strategies that control the value of
f in (1.2) at each iteration and use both −βkF (xk) and βkF (xk) as trial searches in
a systematic way. In fact if ∇f(xk)

TF (xk) 6= 0 then one of the two directions is a
descent direction for f . The linesearch techniques adopted are tipically nonmonotone
i.e., ‖F (xk)‖ is not monotonically decreasing [21, 36]. In the seminal paper [33] by La
Cruz and Raydan a variant of the nonmonotone linesearch of Grippo, Lampariello and
Lucidi [27] is used but such strategy requires the gradient of f and its computation is
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as costly as the computation of J being ∇f(x) = J(x)TF (x). Since spectral residual
methods do not require J(x), it is appropriate to use a nonmonotone linesearch that
does not involve derivatives; the first proposal was made in [34] by La Cruz, Martinez
and Raydan and was based on derivative-free linesearch strategies for nonlinear systems.

Starting from an early contribution by Griewank [26], derivative-free linesearches for
problem (1.1) were defined. Given xk, let sk be the trial step and suppose that either
sk = −βkF (xk) or sk = βkF (xk) and that xk+1 takes the form xk+1 = xk + γsk with
γ ∈ (0, 1] chosen so that one of the nonmonotone linesearch conditions is met. Li and
Fukushima [36] presented the derivative-free linesearch

‖F (xk + γsk)‖ ≤ (1 + ηk)‖F (xk)‖ − ργ2‖sk‖2, (1.8)

with ρ ∈ (0, 1) and ηk being a positive scalar such that {ηk} satisfies

∞∑
k=0

ηk < η <∞. (1.9)

Note that (1.8) avoids the necessity of descent directions to guarantee that each iteration
is well defined. By virtue of the continuity of F , condition (1.8) holds for all γ sufficiently
small and it is called an approximate norm descent linesearch since it implies

‖F (xk + γsk)‖ ≤ (1 + ηk)‖F (xk)‖, (1.10)

with ηk → 0 as k →∞.
La Cruz, Martinez and Raydan [34] proposed a combination and extension of the

Grippo, Lampariello and Lucidi linesearch and of the Li and Fukushima linesearch in
order to produce a robust nonmonotone linesearch that takes into account the advantages
of both schemes; it has the form

‖F (xk + γsk)‖ ≤ max
0≤j≤min{k,M}

‖F (xk−j)‖+ ηk − ργ2‖F (xk)‖, (1.11)

with M nonnegative integer, ρ and {ηk} as in the Li and Fukushima proposal. The
first term on the right-hand side of (1.11) produces the nonmonotone behaviour of the
norm of F , the second term guarantees that the strategy is well defined, and the third
term is fundamental for proving global convergence. Condition (1.11) is also employed
in [28] with ηk = 0 for all k and combined with a nonmonotone watchdog rule. An alter-
native proposal was made by Birgin, Krejic and Martinez [3] formulating the following
linesearch:

‖F (xk + γsk)‖ ≤ (1− ργ)‖F (xk)‖+ ηk. (1.12)

Moreover, in [35] the following acceptance condition inspired by [50] was introduced by
La Cruz:

‖F (xk + γsk)‖2 ≤ ‖F (xk)‖2 + ηk − ργ2‖sk‖2. (1.13)

Finally, in [41,48] a new linesearch strategy based on a nonmonotone approximate norm
descent property of the merit function (1.10) was adopted; such a strategy will be intro-
duced and discussed in details in the next chapter.
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1.3 Contents of the thesis

Similarly to the Barzilai and Borwein method for unconstrained optimization, spectral
residual methods for (1.1) generate a nonmonotone sequence {‖F (xk)‖} and their effec-
tiveness heavily relies on the steplengths βk used.

It is well known that the performance of the Barzilai and Borwein method does
not depend on the decrease of the objective function at each iteration but relies on the
relationship between the steplengths used and the eigenvalues of the average Hessian
matrix of the objective function [4, 19, 52]. Based on such feature, several strategies
for steplength selection have been proposed to enhance the performance of the method,
see e.g., [9–11, 15, 19, 20]. On the other hand, to our knowledge, an analogous study of
the relationship between the steplengths originated by spectral residual methods and the
eigenvalues of the average Jacobian matrix of F has not been carried out, and the impact
of the choice of the steplenghts on the convergence history has not been investigated in
details.

The first aim of this thesis is to analyze the properties of the spectral residual
steplengths βk,1, βk,2 in (1.6) and (1.7) and study how they affect the performance of the
methods. This aim is addressed both from a theoretical and experimental point of view.
The main contributions of this work in this direction are: the theoretical analysis of the
steplengths proposed in the literature and of their impact on the norm of F also with
respect to the nonmonotone behaviour imposed by globalization strategies; the analysis
of the performance of spectral methods with various rules for updating the steplengths.
Rules based on adaptive strategies that suitably combine small and large steplengths
result by far more effective than rules based on static choices of βk and, inspired by the
steplength rules proposed in the literature for unconstrained minimization problems, we
propose and extensively test adaptive steplength strategies. Numerical experience is
conducted on sequences of nonlinear systems arising from rolling contact models which
play a central role in many important applications, such as rolling bearings and wheel-
rail interaction [30, 31]. Solving these models gives rise to sequences which consist of
a large number of medium-size nonlinear systems and represent a relevant benchmark
test set for the purpose of this thesis. A first set of experiments was conducted using
the globally convergent scheme proposed in [48] and later denoted as Srand1, Spectral
Residual Approximate Norm Descent method, version 1.

The second purpose of this thesis is to propose a variant of the derivative-free spectral
residual method Srand1 and obtain a scheme globally convergent under more general
conditions. In [48] the sequence generated by Srand1 was proved to be convergent un-
der mild standard assumptions; moreover, sufficient conditions were provided to ensure
that a limit point x∗ of the generated sequence {xk} is also a solution of (1.1). These
conditions relayed on the steplength βk,1 and held for specific classes of problems. For
example, F (x∗) = 0 is guaranteed in the case where J(x∗) has positive (negative) definite
symmetric part and suitably bounded condition number and in the case where J(x∗) is
strongly diagonal dominant with diagonal entries of constant sign. Inspired by [34], we
propose a new linesearch strategy, which allows to obtain a more general and nontrivial
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convergence result and does not rely on the specific choice of βk. The resulting method
is denoted as Srand2, Spectral Residual Approximate Norm Descent method, version
2. We prove that at every limit point x∗ of the sequence {xk} generated by Srand2,
either F (x∗) = 0 or the gradient of the merit function f in (1.2) is orthogonal to the
residual F :

∇f(x∗)TF (x∗) = F (x∗)TJ(x∗)F (x∗) = 0. (1.14)

Clearly this result gives F (x∗) = 0 as long as F (x∗) 6= 0 is not orthogonal to J(x∗)TF (x∗),
and it is not related to a specific class of nonlinear systems. We further show that the
improvement with respect to Srand1 is not only theoretical; the performed numerical
experiments show that the new linesearch has some positive impact also on the practical
ability in solving nonlinear systems. Numerical experiments are conducted both on the
previously discussed problems arising in rolling contact models and on a set of problems
commonly used for testing solvers for nonlinear systems varying the updating rules for
βk.

Our original contribution in the development and analysis of spectral residual meth-
ods for solving problem (1.1) is contained in the works [45,51].

The thesis is organized as follows. Chapter 2 is divided in three parts. First of all
we introduce preliminaries on spectral residual methods; then in the second section we
provide a theoretical analysis of the steplengths; finally, in the third section we present
and study the algorithms Srand1 and Srand2. The experimental part is developed
in Chapter 3 where we provide several strategies for selecting the steplength, introduce
our test sets and discuss the numerical results obtained. Some conclusions and research
perspectives are presented in Chapter 4. In Appendix A we detail the rolling contact
model from which our first problem set derives, its discretization and the algorithm for
its solution. Finally, complete results obtained with Srand1 and Srand2 are reported
in Appendix B.

1.4 Notations

Throughout the thesis we use the following notation.

Unless explicitly stated, the symbol ‖ · ‖ denotes the Euclidean norm.

I denotes the identity matrix.

J denotes the Jacobian matrix of F .

Given a square matrix A, we let AS = 1
2(A+AT ) be the symmetric part of A.

Given a symmetric matrix M , {λi(M)}ni=1 denotes the set of eigenvalues of M , λmin(M)
and λmax(M) denote the minimum and maximum eigenvalue of M respectively, and
{vi}ni=1 denotes a set of associated orthonormal eigenvectors. Further, given a nonzero



8

vector p, we let q(M,p) =
pTMp

pT p
be the Rayleigh quotient.

Given a sequence of vectors {xk}, for any function f we occasionally let fk = f(xk).



Chapter 2

Spectral residual methods:
stepsize selection and global
convergence

This chapter contains the theoretical contribution of the thesis. In particular, in the
first section we introduce the basic concepts and notation for spectral residual methods.
In the second section we provide a theoretical analysis of the steplengths (1.6) and (1.7)
including their impact on the behaviour of the norm of F and on a general scheme
for nonmonotone linesearch. In the third section we present two linesearch strategies,
their use in conjunction with spectral residual methods and discuss their convergence
properties.

2.1 Preliminaries

In the seminal paper [2] Barzilai and Borwein proposed a gradient method for the un-
constrained minimization

min
x∈Rn

f(x), (2.1)

where f : Rn → R is a given differentiable function. Given an initial guess x0 ∈ Rn, the
Barzilai-Borwein (BB) iteration is defined by

xk+1 = xk − αk∇fk, (2.2)

where αk is a positive steplength inspired by Quasi-Newton methods for unconstrained
optimization [14]. In Quasi-Newton methods, the step pk = xk+1 − xk solves the linear
system

Bkpk = −∇fk, (2.3)

and, given B0 ∈ Rn×n as an initial data, Bk ∈ Rn×n, k ≥ 1, satisfies the secant equation,
i.e.,

Bkpk−1 = zk−1, with pk−1 = xk − xk−1, zk−1 = ∇fk −∇fk−1. (2.4)

9
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Letting Bk = α−1 I and imposing condition (2.4), Barzilai and Borwein derived two
steplengths which are the least-square solutions of the following problems:

αk,1 = argmin
α
‖α−1pk−1 − zk−1‖2 =

pTk−1pk−1

pTk−1zk−1
, (2.5)

αk,2 = argmin
α
‖pk−1 − αzk−1‖2 =

pTk−1zk−1

zTk−1zk−1
. (2.6)

The second least-squares formulation is obtained from the first by symmetry. The final
steplength αk computed from (2.5) and (2.6) is then adjusted in order to be positive,
bounded away from zero and not too large, i.e., αk ∈ [αmin, αmax] for some positive αmin,
αmax; in fact, one of the two scalars αk,1, αk,2 is used and the thresholds αmin, αmax are
applied to it, see e.g., [4, 15,19].

Choosing Bk = α−1 I yields a low-cost iteration while the use of the steplengths αk,1,
αk,2 yields a considerable improvement in the performance with respect to the classical
steepest descent method [2, 19]. The BB method is commonly employed in the solution
of large unconstrained optimization problems (2.1) and the behaviour of the sequence
{f(xk)} is typically nonmonotone, possibly severely nonmonotone, in both the cases
of quadratic and general nonlinear functions f [19, 23, 54]. The performance of the BB
method depends on the relationship between the steplength αk and the eigenvalues of the
average Hessian matrix

∫ 1
0 ∇

2f(xk−1 + t pk−1) dt; hence this approach is also denoted as
spectral method and an extensive investigation on steplength’s selection has been carried
on [9–11,15,19,20].

The extension of this approach to the solution of nonlinear systems of equations (1.1)
was firstly proposed by La Cruz and Raydan in [33]. Here we summarize such a proposal
and the issues that were inherited by subsequent procedures falling into such framework
and designed for both general nonlinear systems [28,33–35,41,48,58] and for monotone
nonlinear systems* [1, 37, 38, 46, 57, 61]. Instead of applying the spectral method to the
merit function

f(x) = ‖F (x)‖2, (2.7)

the BB approach is specialized to the Newton equation yielding the so-called spectral
residual method. Thus, let p− satisfy the linear system

Bkp− = −Fk, (2.8)

and let Bk = β−1I satisfy the secant equation

Bkpk−1 = yk−1, with pk−1 = xk − xk−1, yk−1 = Fk − Fk−1.

*Nonlinear systems of the form (1.1) are monotone if F : Rn → Rn is monotone, i.e. (F (x) −
F (y))T (x− y) ≥ 0 for any x, y ∈ Rn, see e.g., [18].
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Reasoning as in BB method, two steplengths are derived:

βk,1 =
pTk−1pk−1

pTk−1yk−1
, (2.9)

βk,2 =
pTk−1yk−1

yTk−1yk−1
. (2.10)

These scalars may be positive, negative or even null; moreover βk,1 is not well defined if
pTk−1yk−1 = 0 and βk,2 is not well defined if yk−1 = 0. In practice, the steplength βk is
chosen equal either to βk,1 or to βk,2 as long as it results to be bounded away from zero
and |βk| is not too large, i.e., |βk| ∈ [βmin, βmax] for some positive βmin, βmax. The step
resulting from (2.8) turns out to be of the form p− = −βkFk. But, once βk is fixed, the
kth iteration of the spectral residual method employs the residual directions ±Fk in a
systematic way and tests both the steps

p− = −βkFk and p+ = +βkFk,

for acceptance using a suitable linesearch strategy. The use of both directions ±Fk is
motivated by the fact that, contrary to (−αk∇fk), αk > 0, in (2.2), (−βkFk) is not
necessarily a descent direction for (2.7) at xk; the value ∇fTk (−βkFk) = −2βkF

T
k JkFk

could be positive, negative or null. On the other hand, if F Tk JkFk 6= 0, trivially either
(−βkFk) or βkFk is a descent direction for f .

Analogously to the spectral method, the spectral residual method is characterized by
a nonmonotone behaviour of {‖Fk‖} and is implemented using nonmonotone linesearch
strategies. The adaptation of the spectral method to nonlinear systems is low-cost per
iteration since the computation of βk,1 and βk,2 is inexpensive and the memory storage
is low, and turned out to be effective in the solution of medium and large nonlinear
systems, see e.g., [28, 33–35,48,58].

Unlike the context of BB method for unconstrained optimization, to our knowledge
a systematic analysis of the stepsizes βk,1 and βk,2 in the context of the solution of
nonlinear systems and their impact on convergence history has not been carried out. The
steplength βk,1 has been used in most of the works on this subject [33–35,41,48]. On the
other hand, in [28] it was observed experimentally that alternating βk,1 and βk,2 along
iterations was beneficial for the performance and in [58] it was observed experimentally
that using βk,2 performed better in terms of robustness with respect to using βk,1.

In the next two subsections we will analyze the two steplengths βk,1 and βk,2 and
provide: their expression in terms of the spectrum of average matrices associated to the
Jacobian matrix of F ; their mutual relationship; their impact on the behaviour of ‖Fk‖
and on a standard nonmonotone linesearch.

The matrices involved in our analysis are the following. Given a square matrix A, we
let AS = 1

2(A+AT ) be the symmetric part of A, Gk−1 be the average matrix associated
to the Jacobian J of F :

Gk−1
def
=

∫ 1

0
J(xk−1 + t pk−1) dt, (2.11)
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and (GS)k−1 be the average matrix associated to the symmetric part JS of J :

(GS)k−1
def
=

∫ 1

0
JS(xk−1 + t pk−1) dt. (2.12)

Moreover, given a symmetric matrix M and a nonzero vector p, the Rayleigh quotient
q(M,p) introduced in Section 1.4 satisfies the following property [24, Theorem 8.1-2]

λmin(M) ≤ q(M,p) ≤ λmax(M). (2.13)

2.2 Stepsize selection

2.2.1 Analysis of the steplengths βk,1 and βk,2

In this subsection we analyze the stepsizes βk,1 and βk,2 given in (2.9) and (2.10) making
the following assumptions.

Assumption 2.2.1 The scalars βk,1 and βk,2 are well defined and nonzero.

Assumption 2.2.2 Given x and p, F is continuously differentiable in an open convex
set D ⊂ Rn containing x+ tp with t ∈ [0, 1].

We note that Assumption 2.2.1 holds whenever pTk−1yk−1 6= 0.
In the following lemma we analyze the mutual relationship between the stepsizes βk,1

and βk,2 and give their characterization in terms of suitable Rayleigh quotients for the
average matrices in (2.11) and (2.12). We will use repeatedly the property

pTAp = pTASp, (2.14)

which holds for any square matrices A, AS = 1
2(A + AT ), and any vector p of suitable

dimension.

Lemma 2.2.3 Let Assumption 2.2.1 hold and Assumption 2.2.2 hold with x = xk−1,
p = pk−1. The steplengths βk,1, βk,2 are such that:

P1) they have the same sign and |βk,2| ≤ |βk,1|;

P2) either it holds βk,1 ≤ βk,2 < 0 or 0 < βk,2 ≤ βk,1;

P3) they take the form

βk,1 =
1

q
(
(GS)k−1, pk−1

) , (2.15)

and

βk,2 =
q
(
(GS)k−1, pk−1

)
q(GTk−1Gk−1, pk−1)

, (2.16)

with q(·, ·) being the Rayleigh quotient, Gk−1 and (GS)k−1 being the matrices in
(2.11) and (2.12), respectively.
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Proof. By (2.9) and (2.10), we can write

βk,2 =
pTk−1pk−1

pTk−1yk−1

(pTk−1yk−1)
2

(yTk−1yk−1)(p
T
k−1pk−1)

= βk,1
‖pk−1‖2‖yk−1‖2cos2ϕk−1
‖pk−1‖2‖yk−1‖2

= βk,1 cos2 ϕk−1, (2.17)

where ϕk−1 is the angle between pk−1 and yk−1, and P1) follows.
Property P2) follows as well since βk,2 6= 0 by Assumption 2.2.1.
As for property P3), by the Mean Value Theorem [14, Lemma 4.1.9] and (2.11) we

have

yk−1 = Fk − Fk−1 =

∫ 1

0
J(xk−1 + tpk−1)pk−1 dt = Gk−1pk−1.

Then using (2.14) and the definition of the Rayleigh quotient, βk,1 takes the form

βk,1 =
pTk−1pk−1

pTk−1Gk−1pk−1
=

1

q
(
(GS)k−1, pk−1

) ,
while βk,2 takes the form

βk,2 =
pTk−1(G)k−1pk−1

pTk−1(G
T
k−1Gk−1)pk−1

pTk−1pk−1

pTk−1pk−1
=

q
(
(GS)k−1, pk−1

)
q(GTk−1Gk−1, pk−1)

.

2

The above characterization P3) allows to derive bounds on the stepsizes βk,1 and βk,2
diversifying cases according to the spectral properties of the Jacobian matrix and the
average matrices in (2.11) and (2.12). The relationship between βk,1 and the spectral
information of the symmetric part of average matrix (2.11) was observed in [33, 34, 48]
but the following results are not contained in such references.

Lemma 2.2.4 Let Assumption 2.2.1 hold and Assumption 2.2.2 hold with x = xk−1,
p = pk−1. Then, the steplengths βk,1 and βk,2 are such that:

(i) if the Jacobian J is symmetric and positive definite on the line segment in between
xk−1 and xk−1 + pk−1 then βk,1 and βk,2 are positive and

1

λmax(Gk−1)
≤ βk,2 ≤ βk,1 ≤

1

λmin(Gk−1)
; (2.18)

(ii) if (GS)k−1 in (2.12) is positive definite, then βk,1 and βk,2 are positive and

max

{
1

λmax

(
(GS)k−1

) , βk,2} ≤ βk,1 ≤ 1

λmin

(
(GS)k−1

) , (2.19)

λmin

(
(GS)k−1

)
λmax(GTk−1Gk−1)

≤ βk,2 ≤ min

{
λmax

(
(GS)k−1

)
λmin(GTk−1Gk−1)

, βk,1

}
; (2.20)
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(iii) if (GS)k−1 in (2.12) is indefinite and Gk−1 in (2.11) is nonsingular, then

(iii.1) βk,1 satisfies either

βk,1 ≤ min

{
1

λmin ((GS)k−1)
, βk,2

}
or βk,1 ≥ max

{
1

λmax ((GS)k−1)
, βk,2

}
;

(2.21)

(iii.2) βk,2 satisfies either

0 < βk,2 ≤ min

{
λmax

(
(GS)k−1

)
λmin(GTk−1Gk−1)

, βk,1

}
, (2.22)

or

max

{
λmin

(
(GS)k−1,

)
λmax(GTk−1Gk−1)

, βk,1

}
≤ βk,2 < 0. (2.23)

Proof. Consider properties P1), P2) and P3) from Lemma 2.2.3.

(i) Steplengths βk,1 and βk,2 are positive due to (2.15), (2.16). The rightmost inequality
of (2.18) follows from (2.15) and (2.13). The remaining part of (2.18) is proved
observing that (2.16) yields

βk,2 =
pTk−1G

1/2
k−1G

1/2
k−1pk−1

pTk−1G
1/2
k−1Gk−1G

1/2
k−1pk−1

=
1

q(Gk−1, G
1/2
k−1pk−1)

, (2.24)

and using P2) and (2.13).

(ii) Using (2.15),(2.13) and P2) we get positivity of βk,1 and (2.19). Consequently, βk,2
is positive by property P1), and bounds (2.20) can be derived using (2.16), (2.13)
and item P2) of Lemma 2.2.3.

(iii) If (GS)k−1 is indefinite then its extreme eigenvalues have opposite sign, i.e.,
λmin

(
(GS)k−1

)
< 0 and λmax

(
(GS)k−1

)
> 0. Hence, (2.15), (2.13) and P2) give

(2.21). Moreover, since GTk−1Gk−1 is symmetric and positive definite, we can use,
as before, P1) and (2.13) and get (2.22) and (2.23).

2

Lemma 2.2.4 easily extends to the case where matrices are negative definite.

Item (i) in Lemma 2.2.4 includes the case where F is strictly monotone, i.e., (F (x)−
F (y))T (x− y) > 0 for any x, y ∈ Rn with x 6= y, see e.g. [18]. In fact, if the Jacobian is
positive definite in Rn then F is strictly monotone in Rn [18, Preposition 2.3.2].
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2.2.2 On the impact of the steplength βk on ‖Fk+1‖, case J symmetric

In this subsection we investigate how the choice of the steplength βk may affect ‖Fk+1‖
in a spectral residual method when the Jacobian J is symmetric. Results are first derived
using a generic βk and discussed thereafter with respect to the choice of either βk,1 or
βk,2.

Next result analyzes the residual vector Fk+1 componentwise. It heavily relies on the
existence of a set of orthonormal eigenvectors for the average matrix Gk.

Lemma 2.2.5 Suppose that Assumption 2.2.2 holds with x = xk and p = pk and that
the Jacobian J is symmetric. Let pk = p− = −βkFk 6= 0, xk+1 = xk + pk,

{
λi
(
Gk
)}n

i=1
be the eigenvalues of matrix Gk in (2.11) and {vi}ni=1 be a set of associated orthonormal
eigenvectors. Let Fk and Fk+1 be expressed as

Fk =

n∑
i=1

µikvi, Fk+1 =

n∑
i=1

µik+1vi,

where µik, µ
i
k+1, i = 1, . . . , n, are scalars. Then

Fk+1 = (I − βkGk)Fk, (2.25)

µik+1 = µik
(
1− βkλi(Gk)

)
, i = 1, . . . , n. (2.26)

Moreover, it holds:

(a) if βkλi(Gk) = 1, then µik+1 = 0;

(b) if 0 < βkλi(Gk) < 2, then |µik+1| < |µik|; otherwise |µik+1| ≥ |µik|.

Proof. The Mean Value Theorem [14, Lemma 4.1.9] gives

Fk+1 = Fk +

∫ 1

0
J(xk + tpk)pk dt,

and pk = −βkFk and (2.11) yield (2.25). Moreover, since {vi}ni=1 are orthonormal we
have for i = 1, . . . , n

µik+1 = (vi)
TFk+1

= (vi)
T (I − βkGk)Fk

= µik
(
1− βkλi(Gk)

)
,

i.e., equation (2.26). Consequently, Item (a) follows trivially; Item (b) follows noting
that

∣∣1− βkλi(Gk)∣∣ < 1 if and only if 0 < βkλi(Gk) < 2.
2

Lemma 2.2.5 trivially extends to the case where pk = p+ = βkFk.
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If the nonlinear system (1.1) represents the first-order optimality condition of the
optimization problem (2.1) where f(x) = 1

2x
TAx− bTx is quadratic and A is symmetric

and positive definite, then the previous lemma reduces to well known results on the
behaviour of the gradient method in terms of the spectrum of the Hessian matrix A,
see [52]. In fact, we get F (x) = ∇f(x) = Ax − b = 0 and its Jacobian is constant
J(x) = A, ∀x. Then the following strict relationship between Fk and the ith eigenvalue
λi(A) of the Jacobian holds throughout the iterations

µik+1 = µik(1− βkλi(A)) = µi0

k∏
j=0

(1− βjλi(A)),

where µik+1 and µik, i = 1, . . . n, are the eigencomponents of Fk+1 and Fk respectively,
with respect to the eigendecomposition of A. As a consequence, a small steplength βk,
i.e., close to 1/λmax(A), can significantly reduce the values |µik+1| corresponding to large
eigenvalues λi(A) while a small reduction is expected for the scalars |µik+1| correspond-
ing to small eigenvalues λi(A). On the contrary, a large steplength βk, i.e., close to
1/λmin(A), can significantly reduce the values |µik+1| corresponding to small eigenvalues
λi(A) while tends to increase the scalar |µik+1| corresponding to large eigenvalues λi(A).
This offers some intuition for choosing the steplengths by alternating in a balanced way
small and large steplengths in order to reduce the eigencomponents, see e.g., [15, p. 178].

On the other hand, if F is a general nonlinear mapping then Gk changes at each
iteration and Lemma 2.2.5 suggests the expected change of F from iteration k to iteration
k + 1 and the following guidelines. The first guideline concerns the case where J is
symmetric and positive definite. A nonmonotone behaviour of the sequence {‖Fk‖} is
expected. By Item (i) of Lemma 2.2.4, both βk,1 or βk,2 are positive and βkλi(Gk)

lies in the interval

[
λi(Gk)

λmax(Gk−1)
,

λi(Gk)

λmin(Gk−1)

]
for i = 1, . . . , n. Assuming without loss

of generality that the eigenvalues are numbered in nondecreasing order, by standard
arguments on perturbation theory for the eigenvalues it holds

|λi(Gk)− λi(Gk−1)| ≤ ‖Gk −Gk−1‖,

i = 1, . . . , n, [24, Theorem 8.1-6]. Thus, if the Jacobian is Lipschitz continuous in an
open convex set containing xk−1 + tpk−1 and xk + tpk with constant LJ > 0, it follows

‖Gk −Gk−1‖ ≤
LJ
2

(
‖pk−1‖+ ‖pk‖

)
.

Hence, if ‖pk−1‖ and/or ‖pk‖ are large, by Item (b) of Lemma 2.2.5 no decrease of µik+1

may occur. On the contrary, for small values of ‖pk−1‖ and ‖pk‖, as occurs if {xk}
is convergent, Gk undergoes small changes with respect to Gk−1 and the behaviour of
µik+1 shows similarities with the case where J is constant. Thus, a small steplength
βk close to 1/λmax(Gk−1) can significantly reduce the scalars |µik+1| corresponding to
large eigenvalues λi(Gk), while a small reduction is expected for the values |µik+1| corre-
sponding to small eigenvalues λi(Gk). A large steplength βk close to 1/λmin(Gk−1) can
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significantly reduce the scalars |µik+1| corresponding to small eigenvalues λi(Gk) while
tends to increase the eigencomponents |µik+1| corresponding to large eigenvalues λi(Gk).
As for the case of a constant Jacobian, these features suggest to choose the steplengths
by alternating in a balanced way small and large steplengths in order to reduce the
eigencomponents.

The second guideline concerns the case where J is symmetric and indefinite and
λmin(Gk) < 0 < λmax(Gk). If βk > 0, from Item (b) of Lemma 2.2.5 it follows that
|µik+1| corresponding to positive λi(Gk) are smaller than |µik| if βkλi(Gk) is small enough
while all |µik+1| corresponding to negative eigenvalues increase with respect to |µik| and
the amplification depends on the magnitude of βkλi(Gk). If βk < 0 similar conclusions
hold. In general, a nonmonotone behaviour of the sequence {‖Fk‖} is expected and
the smaller {|βkλi(Gk)|}i=1,...,n are, the smaller ‖Fk+1‖/‖Fk‖ is. Since a small value of
{|βkλi(Gk)|}i=1,...,n might be induced by a small value of |βk|, the use of βk,2 might be
advisable taking into account that |βk,2| ≤ |βk,1| and βk,1 can arbitrarily grow in the
indefinite case (see Lemma 2.2.4).

2.2.3 On the impact of the steplength βk in the approximate norm
descent linesearch

In this subsection we embed the spectral residual method in a general globalization
scheme based on the so-called approximate norm descent condition in (1.10), which is
repeated here for the sake of clarity:

‖F (xk + pk)‖ ≤ (1 + ηk)‖F (xk)‖, (2.27)

with ηk → 0 as k → ∞ [36]. Intuitively, large values of ηk allow a highly nonmonotone
behaviour of ‖Fk‖ while small values of ηk promote the decrease of ‖F‖. Several line-
search strategies in the literature fall in this scheme, see e.g., [25, 36, 41, 48]. The main
idea is that, given xk, the trial steps take the form

p− = −γkβkFk or p+ = +γkβkFk, (2.28)

with γk ∈ (0, 1]. The steps in (2.28) are tested in a systematic way with γk computed by
a backtracking process so that (2.27) is satisfied. Enforcing condition (2.27) ensures the
convergence of the sequence {‖Fk‖} [36, Lemma 2.4].

We now analyse the properties of ‖Fk+1‖ as a function of the stepsize γkβk and
determine conditions on γkβk which enforce (2.27). First of all we observe that by the
Mean Value Theorem [14, Lemma 4.1.9] and (2.28) we have

Fk+1 = (I ± γkβkGk)Fk. (2.29)

Using this equation we can write

‖Fk+1‖2 = ‖Fk‖2 ± 2γkβkF
T
k (GS)kFk + γ2kβ

2
kF

T
k G

T
kGkFk, (2.30)

and analyze the fulfillment of either the decrease of ‖F‖ or (2.27) as given below.
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Theorem 2.2.6 Suppose that Assumptions 2.2.1 and 2.2.2 hold with x = xk and p = pk.
Suppose F Tk JkFk 6= 0 and F Tk GkFk 6= 0 with Gk given in (2.11). Let ∆ = q

(
(GS)k, Fk

)2
+

(η2k + 2ηk)q(G
T
kGk, Fk), then

(1) If xk+1 = xk + pk, pk = p− = −γkβkFk, γk ∈ (0, 1], we have that ‖Fk+1‖ < ‖Fk‖
when

βkq
(
(GS)k, Fk

)
> 0 and γk

∣∣βk∣∣ < 2

∣∣q((GS)k, Fk
)∣∣

q(GTkGk, Fk)
. (2.31)

Condition (2.27) is satisfied when

q
(
(GS)k, Fk

)
−
√

∆

q(GTkGk, Fk)
≤ γkβk ≤

q
(
(GS)k, Fk

)
+
√

∆

q(GTkGk, Fk)
. (2.32)

(2) If xk+1 = xk + pk, pk = p+ = γkβkFk, γk ∈ (0, 1], we have that ‖Fk+1‖ < ‖Fk‖
when

βkq
(
(GS)k, Fk

)
< 0 and γk

∣∣βk∣∣ < 2

∣∣q((GS)k, Fk
)∣∣

q(GTkGk, Fk)
. (2.33)

Condition (2.27) is satisfied when

−q
(
(GS)k, Fk

)
−
√

∆

q(GTkGk, Fk)
≤ γkβk ≤

−q
(
(GS)k, Fk

)
+
√

∆

q(GTkGk, Fk)
. (2.34)

Proof. Concerning Item (1), using (2.29) we get

‖Fk+1‖2 =
(

1− 2γkβk
F Tk (GS)kFk
‖Fk‖2

+ γ2kβ
2
k

F Tk G
T
kGkFk
‖Fk‖2

)
‖Fk‖2

=
(

1− 2γkβkq
(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk)

)
‖Fk‖2.

Noting that by assumption q
(
(GS)k, Fk

)
6= 0 and q(GTkGk, Fk) > 0, hence ‖Fk+1‖ < ‖Fk‖

holds if

βkq
(
(GS)k, Fk

)
> 0 and − 2γkβkq

(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk) < 0,

and these conditions can be rewritten as in (2.31). Condition (2.32) follows trivially.
Item (2) follows analogously. From (2.29) and imposing ‖Fk+1‖ < ‖Fk‖ we get the

condition

βkq
(
(GS)k, Fk

)
< 0 and 2γkβkq

(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk) < 0

which is equivalent to (2.33). Condition (2.34) follows trivially. 2

We remark that, since Gk and (GS)k depend on γkβk, conditions (2.31)–(2.34) are
implicit in γkβk. The above theorem supports testing the two steps (2.28) systematically
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because of the following fact. At k-th iteration, βk, q
(
Jk, Fk

)
and q(JTk Jk, Fk) are given

and by continuity of the Jacobian, the Rayleigh quotients q
(
(GS)k, Fk

)
and q(GTkGk, Fk)

tend to q
(
Jk, Fk

)
and q(JTk Jk, Fk) respectively as γk tends to zero. Hence, given ε <

1
2 min{q

(
Jk, Fk

)
, q(JTk Jk, Fk)}, if γk is sufficiently small then

q
(
Jk, Fk

)
− ε

q
(
JTk Jk, Fk

)
+ ε
≤
q
(
(GS)k, Fk

)
q
(
GTkGk, Fk

) ≤ q
(
Jk, Fk

)
+ ε

q
(
JTk Jk, Fk

)
− ε

,

and
q
(
(GS)k, Fk

)
q
(
GTkGk, Fk

) has the same sign as
q
(
Jk, Fk

)
q
(
JTk Jk, Fk

) . Consequently, for γk sufficiently

small, either condition (2.31) or (2.33) is fulfilled. Analogous considerations can be made
for conditions (2.32) and (2.34).

As a final comment, the previous theorem suggests that a small |βk| promotes the
fulfillment of conditions (2.31) and (2.33) or (2.32) and (2.34). Again, by Lemma 2.2.4,
the use of βk,2 may be advisable taking into account that |βk,2| ≤ |βk,1| and that βk,1 can
arbitrarily grow in the indefinite case; taking the steplength equal to βk,1 may cause a
large number of backtracks and an erratic behaviour of {‖Fk‖} as long as ηk is sufficiently
large.

2.3 Globalization strategies

In this section we introduce two spectral residual algorithms which implement a line-
search along ±Fk and enforce the approximate norm descent condition (2.27) in the
framework discussed in the previous section. The two algorithms are denoted as Srand1
and Srand2, Spectral Residual Approximate Norm Descent method, version 1 and ver-
sion 2 respectively. Srand1 is originated by the Projected Approximate Norm Descent
algorithm with Spectral Residual step (Pand-SR) developed in [48] for solving convexly
constrained nonlinear systems. Among its variants proposed in [41, 48] and based on
Quasi-Newton methods, we consider the spectral residual implementation for uncon-
strained nonlinear systems. Srand2 is a variant of Srand1 and represents one of the
contribution of this thesis.

2.3.1 The Srand1 algorithm

The Srand1 algorithm employs a nonmonotone linesearch strategy based on the ap-
proximate norm descent property in (2.27). The idea behind such a condition is to allow
a highly nonmonotone behaviour of ‖Fk‖ for (initial) large values of ηk while promoting
a decrease of ‖F‖ for small (final) values of ηk. A nonmonotone behavior of the norm
of F is crucial to avoid practical stagnation of methods based on spectral stepsizes (see
e.g. [19, 34, 54]); at the same time condition (2.27) ensures the sequence {‖Fk‖} to be
bounded (see [36, Lemma 2.1]).

In details, given the current iterate xk, a new iterate xk+1 is computed as xk+1 =
xk + pk with pk given by either (−γkβkFk) or (+γkβkFk), γk ∈ (0, 1].
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The main phases of the algorithm are as follows. First, the scalar βk is chosen so that
|βk| ∈ [βmin, βmax]. Second, the scalar γk ∈ (0, 1] is fixed using a backtracking strategy.
Starting from γk = 1, it is progressively reduced by a factor σ ∈ (0, 1) until one of the
following conditions is satisfied:

‖F (xk+1)‖ ≤ (1− ρ(1 + γk))‖F (xk)‖, (2.35)

or
‖F (xk+1)‖ ≤ (1 + ηk − ργk)‖F (xk)‖, (2.36)

where ρ ∈ (0, 1) is intended to be a small scalar which plays the same role as the Armijo
constant [14], and {ηk} is a positive sequence satisfying (1.9). The first condition (2.35)
promotes at each iteration a sufficient decrease in ‖F‖ which can be accomplished for
suitable values of ±γβkFk, as long as F Tk JkFk 6= 0, and is crucial for establishing results
on the convergence of {‖Fk‖} to zero. On the other hand, the second condition (2.36)
allows for an increase of ‖F‖ depending on the magnitude of ηk. Trivially, (2.35) im-
plies (2.36) and both imply the approximate norm descent condition (2.27). Conditions
(2.35) and (2.36) differ from (1.8), (1.11), (1.12), (1.13) in two aspects. First, they are
independent of the norm of the trial step which may be very large or small because of
the spectral coefficient βk. Second, ηk appears as a multiplicative term for ‖Fk‖ while
the contribution of ηk is unpredictable in (1.12) and (1.13) because it is not adjusted to
reflect the size of ‖Fk‖.

The formal description of the method is reported in Algorithm 2.3.1 where we delib-
erately do not specify the form of the stepsize βk.

Algorithm 2.3.1: The Srand1 algorithm

Given x0 ∈ Rn, 0 < βmin < βmax, β0 ∈ [βmin, βmax], ρ, σ ∈ (0, 1), a positive sequence
{ηk} satisfying (1.9).

If ‖F0‖ = 0 stop.
For k = 0, 1, 2, . . . do

1. Set γ = 1.
2. Repeat

2.1 Set p− = −γβkFk and p+ = γβkFk.
2.2 If p− satisfies (2.35), set pk = p− and go to Step 3.
2.3 If p+ satisfies (2.35), set pk = p+ and go to Step 3.
2.4 If p− satisfies (2.36), set pk = p− and go to Step 3.
2.5 If p+ satisfies (2.36), set pk = p+ and go to Step 3.
2.6 Otherwise set γ = σ γ.

3. Set γk = γ, xk+1 = xk + pk.
4. If ‖Fk+1‖ = 0 stop.
5. Choose βk+1 such that |βk+1| ∈ [βmin, βmax] .
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The acceptance cycle of the trial steps in Step 2 terminates in a finite number of
steps [48]. Indeed, from the continuity of F and the positivity of ηk, there exists a scalar
γ̄ > 0 such that

‖F (xk ± γβkF (xk))‖ ≤ ‖F (xk)‖+ (ηk − ργ)‖F (xk)‖,

with γ ∈ (0, γ̄]. Trivially the above inequality implies that (2.36) holds for γ small
enough, see also Theorem 2.2.6.

The following theorem collects the main convergence properties of Srand1 method
given in [48].

Theorem 2.3.1 Let {ηk} be a positive sequence satisfying (1.9), {xk} and {γk} be the
sequences of iterates and of linesearch stepsizes generated by the Srand1 algorithm.
Then,

(i) the sequence {‖Fk‖} is convergent.

(ii) lim
k→∞

γk‖Fk‖ = 0.

(iii) liminf
k→∞

γk > 0 implies that lim
k→∞

‖Fk‖ = 0.

(iv) If (2.44) is satisfied for infinitely many k, then lim
k→∞

‖Fk‖ = 0.

(v) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many iterations, then liminf
k→∞

γk = 0.

(vi) If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then {‖Fk‖} does not converge to 0.

(vii) The sequence {xk} is convergent and, if x∗ is the limit point and x0 is the starting
guess, then

‖x0 − x∗‖ ≤ βmax

(
1

ρ
+
η

ρ
eη
)
‖F0‖. (2.37)

Proof. Items (i) − (vi) are proved in [48, Theorem 4.2]. Item (vii) is proved in [48,
Theorem 4.3]. 2

The result in Item (vii) of the theorem above has an important consequence. In
particular, the bound on ‖x0 − x∗‖ implies that if a solution x̄ of (1.1) is such that
‖x0−x̄‖ does not satisfy (2.37), then {xk} cannot converge to x̄. Namely Srand1 method
is globally convergent but the limit point of {xk} belongs to a specified neighborhood of
the initial point and may not be a zero of F .

Under specific assumptions on the Jacobian J at the limit point x∗ and assuming
that βk = βk,1 as in (2.9) at Step 5 of Algorithm 2.3.1, the next two theorems are proved
in [48]. The first result concerns the case when JS(x∗) is positive (negative) definite and
ensures that lim

k→∞
‖Fk‖ = 0 when the 2-norm condition number of JS is of order O(ρ−1).
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Theorem 2.3.2 Let {ηk} be a positive sequence satisfying (1.9) and {xk} be the se-
quence of iterates generated by the Srand1 algorithm. Suppose βk = βk,1 with βk,1
given in (2.9) and pk = ±γkβkFk with |βk| ∈ (βmin, βmax). Assume F continuously
differentiable and J Lipschitz continuous. Moreover assume that the symmetric part JS
of J is positive (negative) definite at the limit point x∗ of {xk}, and that the 2-norm
condition number K(JS(x∗)) satisfies

K(JS(x∗)) <
ω

ρ
, (2.38)

for some ω ∈ (0, 1), and ρ ∈ (0, 1) as in (2.35)-(2.36). Then F (x∗) = 0.

Proof. See [48, Theorem 5.2]. 2

The second result concerns problems where J is strongly diagonally dominant and
the diagonal entries have constant sign. We use the following notation:

ζi(x)
def
=

1

|(J(x))ii|

n∑
j = 1
j 6= i

|(J(x))ij | i = 1, . . . , n, (2.39)

m(x)
def
= min

1≤i≤n
(J(x))ii, M(x)

def
= max

1≤i≤n
(J(x))ii, (2.40)

m̃(x)
def
= min

1≤i≤n
|(J(x))ii|, M̃(x)

def
= max

1≤i≤n
|(J(x))ii|. (2.41)

Observe that all these quantities only depend on the Jacobian matrix at x. The value
of ζi(x) measures the degree of diagonal dominance of the i-th row of J(x), m(x) and

M(x) measure the signed range of its diagonal elements while m̃(x) and M̃(x) measure
the diagonals’ absolute values’ range. If J(x) has positive diagonal entries, then m̃(x) =

m(x) = |m(x)| and M̃(x) = M(x) = |M(x)|. If the diagonal elements are negative, then

m̃(x) = −M(x) = |M(x)| and M̃(x) = −m(x) = |m(x)|. The conditions used are

max

[
M̃(x∗)

|m(x∗)|
,
M̃(x∗)

|M(x∗)|

]
n∑
i=1

ζi(x
∗) ≤ 1− ν

1 + ν
, (2.42)

and
M̃(x∗)

m̃(x∗)
<

(
ν

2− ν

)(
1− ν
1 + ν

)
1

ρ
, (2.43)

for some ν ∈ (0, 1) and ρ ∈ (0, 1) being the constant in (2.35)-(2.36). Such conditions
are satisfied by matrices which are close to being diagonal and have a condition number
of order ρ−1. In fact, for decreasing values of max1≤i≤n ζi, the ratio M̃/m̃ approaches
K(J(x∗)) and (2.43) implies a bound on such a condition number in terms of ρ−1. For
example, if ν = 1/2, the right-hand side of (2.42) is 1/3 and that of (2.43) is 1/(9ρ).

Theorem 2.3.3 Let {ηk} be a positive sequence satisfying (1.9) and {xk} be the se-
quence of iterates generated by the Srand1 algorithm. Suppose βk = βk,1 with βk,1
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given in (2.9) and pk = ±γkβkFk with |βk| ∈ (βmin, βmax). Assume F continuously
differentiable and J Lipschitz continuous. Suppose that J(x∗) is nonsingular where x∗ is
the limit point of {xk}. Suppose in addition that J(x∗) has diagonal entries of constant
sign and satisfies (2.42) and (2.43), for some ν ∈ (0, 1) and ρ ∈ (0, 1) being the constant
in (2.35)-(2.36). Then F (x∗) = 0.

Proof. See [48, Theorem 5.3]. 2

2.3.2 Srand2: a new spectral residual algorithm

In light of the previous discussion we consider a variant of the linesearch conditions (2.35)
and (2.36) which gives rise to the Srand2 method, i.e., Spectral Residual Approximate
Norm Descent method, version 2. The Srand2 algorithm can be sketched as Srand1
algorithm except for the acceptance conditions of xk+1. In Srand2 conditions (2.35)
and (2.36) are respectively replaced by

‖F (xk+1)‖ ≤ (1− ρ(1 + γ2k))‖F (xk)‖, (2.44)

and

‖F (xk+1)‖ ≤ (1 + ηk − ργ2k)‖F (xk)‖. (2.45)

Still these conditions are derivative-free and both imply the approximate norm descent
condition (2.27).

We observe that the change in conditions (2.44)-(2.45) with respect to (2.35)-(2.36)
amounts to the term γ2k in the right hand side of (2.44)-(2.45). This squared term is
common to other linesearch strategies as e.g. (1.8) and (1.11). This small change in the
linesearch conditions has a considerable impact on global convergence results as shown
below. The formal description of the method is reported in Algorithm 2.3.2.

Analogously to Srand1 (see [48]), we observe that the repeat loop at Step 2 terminates
in a finite number of steps: indeed, from the continuity of F and the positivity of ηk,
there exists γ̄ > 0 such that

‖F (xk ± γβkF (xk))‖ ≤ ‖F (xk)‖+ (ηk − ργ2)‖F (xk)‖,

with γ ∈ (0, γ̄]; therefore, inequality (2.45) holds for small enough values of γk, see also
Theorem 2.2.6.

We now provide the convergence analysis of the Srand2 algorithm. Theorems 2.3.4
and 2.3.5 analyze the sequences {γk} and {‖Fk‖}; they state general results which derive
from the linesearch strategy and are analogous to Theorem 2.3.1; their proofs follow the
lines of [48, Theorem 4.2]. Theorem 2.3.6 constitutes the main contribution. It is related
both to the linesearch strategy and to the choice of the spectral residual steps, and it is
independent of the specific choice of βk.
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Algorithm 2.3.2: The Srand2 algorithm

Given x0 ∈ Rn, 0 < βmin < βmax, β0 ∈ [βmin, βmax], ρ, σ ∈ (0, 1), a positive sequence
{ηk} satisfying (1.9).

If ‖F0‖ = 0 stop.
For k = 0, 1, 2, . . . do

1. Set γ = 1.
2. Repeat

2.1 Set p− = −γβkFk and p+ = γβkFk.
2.2 If p− satisfies (2.44), set pk = p− and go to Step 3.
2.3 If p+ satisfies (2.44), set pk = p+ and go to Step 3.
2.4 If p− satisfies (2.45), set pk = p− and go to Step 3.
2.5 If p+ satisfies (2.45), set pk = p+ and go to Step 3.
2.6 Otherwise set γ = σ γ.

3. Set γk = γ, xk+1 = xk + pk.
4. If ‖Fk+1‖ = 0 stop.
5. Choose βk+1 such that |βk+1| ∈ [βmin, βmax] .

Theorem 2.3.4 Let F : Rn → Rn be a continuous map, and let {xk} and {γk} be
the sequences of iterates and of linesearch stepsizes generated by the Srand2 algorithm.
Then the sequence {‖Fk‖} is convergent and bounded by

‖Fk‖ ≤ eη‖F0‖, for all k ≥ 0, (2.46)

where η > 0 is given in (1.9). Moreover

lim
k→∞

γ2k‖Fk‖ = 0. (2.47)

Proof. Convergence of {‖Fk‖} follows from (2.27), recalling that any positive sequence
{ak} satisfying

ak+1 ≤ (1 + ηk)ak + ηk,

with ηk > 0 and
∞∑
k=0

ηk < ∞, is convergent (see [13, Lemma 3.3]). Further, applying

(2.27) recursively, we get

‖Fk+1‖ ≤
k∏
i=0

(1 + ηi)‖F0‖, ∀k ≥ 0.

Then (2.46) easily follows by observing that if {ηk} is a sequence of positive scalars that
satisfies (1.9),

k∏
i=0

(1 + ηi) ≤ eη, ∀k ≥ 0 (2.48)
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(see [36, Lemma 2.1]). Finally, the limit in (2.47) is easily verified by rewriting (2.45) as

0 ≤ ργ2k‖Fk‖ ≤ (1 + ηk)‖Fk‖ − ‖Fk+1‖,

and letting k go to infinity, since lim
k→∞

ηk = 0 and the sequence {‖Fk‖} is convergent.
2

Theorem 2.3.5 in particular identifies situations where {‖Fk‖} may or may not con-
verge to zero.

Theorem 2.3.5 Let F : Rn → Rn be a continuous map, and let {xk} and {γk} be
the sequences of iterates and of linesearch stepsizes generated by the Srand2 algorithm.
Then

1. liminfk→∞ γ
2
k > 0 implies that limk→∞ ‖Fk‖ = 0.

2. If (2.44) is satisfied for infinitely many k, then lim
k→∞

‖Fk‖ = 0.

3. If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many iterations, then liminf
k→∞

γ2k = 0.

4. If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then {‖Fk‖} does not converge to 0.

Proof.
1. The statement follows directly from (2.47).
2. If the sufficient decrease condition (2.44) is attained for infinitely many k, there

exists a subsequence {‖Fkj‖}, 1 ≤ k0 < k1 < . . . , such that

‖Fkj‖ ≤ (1− ρ− ργ2kj )‖Fkj−1‖ ≤ (1− ρ)‖Fkj−1‖.

Furthermore, from (2.27) we obtain

‖Fkj−1‖ ≤ (1 + ηkj−2)‖Fkj−2‖ ≤
kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1
‖.

Consequently,

‖Fkj‖ ≤ (1− ρ)‖Fkj−1‖

≤ (1− ρ)

kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1
‖

≤ (1− ρ)2
kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1−1‖

≤ . . .

≤ (1− ρ)j+1

kj−2∏
i=k0

(1 + ηi)‖Fk0−1‖

≤ (1− ρ)j+1

kj−2∏
i=0

(1 + ηi)‖F0‖

≤ (1− ρ)j+1eη‖F0‖,
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where in the last inequality we used (2.48). Thus lim
j→∞

‖Fkj‖ = 0, and since {‖Fk‖}

converges we also have lim
k→∞

‖Fk‖ = 0.

3. Let us now consider the case that ‖F‖ does not decrease at infinitely many
iterations; then there exists a subsequence {‖Fkj‖} such that

‖Fkj‖ ≤ ‖Fkj+1‖ ≤ (1 + ηkj − ργ
2
kj

)‖Fkj‖.

This means that

0 ≤ ργ2kj ≤ ηkj .

Since lim
k→∞

ηk = 0, we have that liminf
k→∞

γ2k = 0.

4. If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then trivially {‖Fk‖} cannot converge
to 0. 2

We now provide the main convergence result, that is at every limit point x∗ of the
sequence {xk} generated by the Srand2 algorithm, either F (x∗) = 0 or F (x∗) 6= 0 and
the gradient of the merit function f in (1.2) is orthogonal to the residual F at x∗.

Theorem 2.3.6 Let F be continuously differentiable. Let {xk} be the sequence generated
by the Srand2 algorithm and let x∗ be a limit point of {xk}. Then either

F (x∗) = 0,

or

∇f(x∗)TF (x∗) = F (x∗)TJ(x∗)F (x∗) = 0. (2.49)

Proof. Let K be an infinite subset of indices such that lim
k∈K

xk = x∗. By Theorem 2.3.4

we know that lim
k∈K

γ2k‖Fk‖ = 0. Hence there are two possibilities:

either liminf
k∈K

γ2k > 0 or liminf
k∈K

γ2k = 0.

The first one implies lim
k∈K
‖Fk‖ = 0. Then using the continuity of F it follows easily that

lim
k∈K
‖F (xk)‖ = ‖F (x∗)‖ = 0.

In the second case we have liminf
k∈K

γ2k = liminf
k∈K

γk = 0. Let γ
k

= γk/σ denote the last at-

tempted value for the linesearch parameter before γk is accepted during the backtracking
phase. Hence for sufficiently large values of k ∈ K we have

‖F (xk − γkβkFk)‖ > (1 + ηk − ργ2k)‖F (xk)‖,

‖F (xk + γ
k
βkFk)‖ > (1 + ηk − ργ2k)‖F (xk)‖.
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Being ηk > 0, and by virtue of (2.46), there is a positive constant c1 such that

‖F (xk ± γkβkFk)‖ − ‖F (xk)‖ > (ηk − ργ2k)‖F (xk))‖ > −ργ2k‖F (xk)‖ > −c1ργ2k, (2.50)

and multiplying both sides of (2.50) by ‖F (xk ± γkβkFk)‖+ ‖F (xk)‖, we obtain

‖F (xk ± γkβkFk)‖
2 − ‖F (xk)‖2 > −c1ργ2k

(
‖F (xk ± γkβkFk)‖+ ‖F (xk)‖

)
. (2.51)

Now we observe that xk ± γkβkFk is bounded ∀k ∈ K; indeed, by hypothesis γk ∈ (0, 1],
|βk| ≤ βmax, the subsequence {xk}k∈K is convergent to x∗ and hence bounded, and
‖Fk‖ is bounded by Theorem 2.3.4. Then recalling the definition of γ

k
= γk/σ and the

continuity of F , we have

‖F (xk ± γkβkFk)‖+ ‖F (xk)‖ ≤ c2, k ∈ K, (2.52)

for some positive constant c2. Consequently, from (2.51)–(2.52), there exists a constant
c > 0 such that

‖F (xk ± γkβkFk)‖
2 − ‖F (xk))‖2 > −cργ2k, (2.53)

for sufficiently large values of k ∈ K.
Now, we suppose that βk > 0 for infinitely many indices k ∈ K1 ⊆ K, and we consider

the two steps −γkβkFk and +γkβkFk separately.

� Firstly, we consider −γβkFk. By virtue of the Mean Value Theorem and (2.53),
there exists ξk ∈ [0, 1] such that〈

∇f(xk − ξkγkβkFk),−γkβkFk
〉
> −cργ2

k
,

for sufficiently large k ∈ K. Hence, for all large k ∈ K1 we have that:〈
∇f(xk − ξkγkβkFk), Fk

〉
< cρ

γ
k

βk
≤ cρ

γ
k

βmin
. (2.54)

� Now we consider +γβkFk. Similarly there exists ξ′k ∈ [0, 1] such that for all large
k ∈ K1 〈

∇f(xk + ξ′kγkβkFk), Fk
〉
> −cρ

γ
k

βk
≥ −cρ

γ
k

βmin
. (2.55)

Since liminf
k∈K

γk = 0, taking limits in (2.54) and (2.55) we get

〈
∇f(x∗), F (x∗)

〉
= 0.

We proceed in a quite similar way if βk < 0 for infinitely many indices. 2

Corollary 2.3.7 The orthogonality condition (2.49) implies F (x∗) = 0 in the following
cases:
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(a) J(x∗) is positive (negative) definite;

(b) vTJ(x∗)v 6= 0, for all v ∈ Rn, v 6= 0.

Case (a) in Corollary 2.3.7 includes the class of strictly monotone nonlinear systems
of equations of the form (1.1).

A general result similar to Theorem 2.3.6 was not proved for Srand1. As reported in
Theorem 2.3.2 and Theorem 2.3.3 conditions guaranteeing F (x∗) = 0, with x∗ being the
limit point of {xk}, were obtained for Srand1 using βk as in (2.9) and in the case where
J(x∗) has positive (negative) definite symmetric part and suitably bounded condition
number, or where J(x∗) is strongly diagonal dominant with diagonal entries of constant
sign.

In the forthcoming chapter we show that Srand2 corresponds in practice to an algo-
rithm potentially more robust than Srand1. We cannot expect strong difference in the
performance of the two methods, given the small change between the two. Nevertheless,
the new linesearch is able to recover some runs where Srand1 does not converge to a
zero of the nonlinear system.



Chapter 3

Numerical experiments

This chapter is devoted to the experimental part of the thesis. The aim is twofold:

� verify the impact of the use of different updating rules for βk on the practical
behaviour of both Srand1 and Srand2. Regarding Srand1, though sufficient
conditions for the convergence of the sequence cover a limited number of cases, see
Theorems 2.3.2 and 2.3.3, we remark that it has the potential to compute zeros of
F for any choice of βk, see Theorem 2.3.1, Items (iii)− (iv);

� investigate numerically if Srand2 algorithm is more robust than Srand1 in prac-
tice.

In the first section we give some details on the implemented algorithms and set the
parameters used in all the experiments. In the second section we propose some steplength
selection rules and in the third section we test them on a sequence of nonlinear systems
of equations arising from rolling contact models. In the fourth section we analyze the
numerical performance of the new linesearch strategy.

3.1 Implementation issues

Srand1 and Srand2 methods given in Algorithms 2.3.1 and 2.3.2 were implemented
in Matlab and the parameters were set as follows

β0 = 1, βmin = 10−10, βmax = 1010, ρ = 10−4, σ = 0.5, ηk = 0.99k(100+‖F0‖2) ∀k ≥ 0,

see [48]. A maximum number of iterations and F -evaluations equal to 105 was im-
posed and a maximum number of backtracks equal to 40 allowed at each iteration. The
procedures were declared successful when

‖Fk‖ ≤ 10−6. (3.1)

A failure was declared either because the assigned maximum number of iterations or
F -evaluations or backtracks was reached, or because ‖F‖ was not reduced for 500 con-
secutive iterations. Such occurrences are denoted in the forthcoming tables as Fit, Ffe,
Fbt, Fin, respectively.

29
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The solvers were run using MATLAB R2019b and the experiments carried out on a
Intel Core i7-9700K CPU @ 3.60GHz x 8, 16 GB RAM, 64-bit.

3.2 Steplength selection

In view of our theoretical analysis and guidelines on steplength selection given in Chapter
2, we attempt to tailor Barzilai and Borwein rules for unconstrained optimization to
spectral residual methods. In this section we discuss several steplength rules for spectral
residual methods which will be tested in conjunction with Srand1 algorithm in Section
3.3 and with Srand2 algorithm in Section 3.4.

Let us consider different rules for the choice of βk at Step 5 in the Srand1 algorithm.
Besides the straightforward choice of one of the two steplengths βk,1, βk,2, along all
iterations, we consider adaptive strategies that suitably combine them and parallel those
used for quadratic and nonlinear optimization problems. Below, given a scalar β, T (β)

is the thresholding rule which projects |β| onto Iβ
def
= [βmin, βmax], i.e.,

T (β) = min
{
βmax,max

{
βmin,

∣∣β∣∣}}. (3.2)

BB1 rule. By [28,33,35,48], at each iteration let

βk =

{
βk,1 if |βk,1| ∈ Iβ
T (βk,1) otherwise.

(3.3)

BB2 rule. At each iteration let

βk =

{
βk,2 if |βk,2| ∈ Iβ
T (βk,2) otherwise.

(3.4)

ALT rule. Following [9, 28], at each iteration let us alternate between βk,1 and βk,2:

βALT
k =

{
βk,1 for k odd

βk,2 otherwise,
(3.5)

βk =


βALT
k if |βALT

k | ∈ Iβ
βk,1 if k even, |βk,1| ∈ Iβ, |βk,2| /∈ Iβ
βk,2 if k odd, |βk,2| ∈ Iβ, |βk,1| /∈ Iβ
T (βALT

k ) otherwise.

(3.6)
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ABB rule. Following [62] and ABB rule in [20], we define the Adaptive Barzilai-Borwein
(ABB) rule as follows. Given τ ∈ (0, 1), let

βABB
k (ξ1, ξ2) =

 ξ2 if
ξ2
ξ1
< τ

ξ1 otherwise
(3.7)

for some given ξ1, ξ2. Then

βk =


βABB
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ, |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ, |βk,1| /∈ Iβ
βABB
k (T (βk,1), T (βk,2)) otherwise.

(3.8)

Observe that a large value of τ promotes the use of βk,2 with respect to βk,1.
The rule allows to switch between the steplengths βk,1 and βk,2 and was originally
motivated by the behaviour of the Barziali and Borwein method applied to convex
and quadratic minimization problems (see [20,62] and our discussion below Lemma
2.2.5).

ABBm rule. This rule elaborates the ABBminmin rule given in [20], taking into account
that βk,2 may be negative along iterations. Let m be a nonnegative integer, and

β̃k,2 =

{
βk,2 if |βk,2| ∈ Iβ
T (βk,2) otherwise,

j∗ = argmin{|β̃j,2| : j = max{1, k −m}, . . . , k}.

(3.9)

Given τ ∈ (0, 1), we fix βk as follows

βABBm
k (ξ1, ξ2) =

 β̃j∗,2 if
ξ2
ξ1
< τ

ξ1 otherwise,
(3.10)

βk =


βABBm
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ, |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ, |βk,1| /∈ Iβ
βABBm
k (T (βk,1), T (βk,2)) otherwise.

(3.11)

Again, a large value of τ promotes the use of a step from BB2 rule instead of βk,1.

In case |βk,1|, |βk,2| ∈ Iβ and
βk,2
βk,1

< τ , β̃j,2 with the smallest absolute value over

the last m+ 1 iterations is taken; consequently, in general smaller steplengths are
taken with respect to ABB rule.
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DABBm rule. Following [5,7], a dynamic threshold τk ∈ (0, 1) can be used in place of
the prefixed threshold τ in (3.10). Given β̃k,2 and j∗ in (3.9), we propose the rule
defined as

βDABBm
k (ξ1, ξ2) =

 β̃j∗,2 if
ξ2
ξ1
< τk

ξ1 otherwise,
(3.12)

βk =


βDABBm
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ, |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ, |βk,1| /∈ Iβ
βDABBm
k (T (βk,1), T (βk,2)) otherwise

(3.13)

with the dynamic threshold set as

τk = min
{
τ, ‖Fk‖1/(2+b

2
t )
}
, (3.14)

bt = max{bj : j = max{1, k − w}, . . . , k}. (3.15)

Here τ ∈ (0, 1) is an upper bound on the value of τk, w is a nonnegative integer and
bj denotes the number of backtracks performed at iteration j (see Step 2 of Srand1
algorithm). If ‖Fk‖ is getting small and the number of performed backtracks in the
last w+1 iterations is small, then (3.14) promotes the use of steplengths from BB1

rule, i.e., larger steplengths which can speed convergence to a zero of F . On the
other hand, when the number of backtracks performed along previous iterations is
large and τ is large, the use of smaller steplengths from BB2 rule is encouraged.

The steplength rules and parameters used in our experiments are summarized in Table
3.1. We tested different dynamic thresholds τ in (3.14) for DABBm rule and here we
report results obtained with the best one in terms of efficiency and robustness.

Rule βk

BB1 βk in (3.3)
BB2 βk in (3.4)
ALT βk in (3.5), (3.6)
ABB01 βk in (3.7), (3.8) with τ = 0.1
ABB08 βk in (3.7), (3.8) with τ = 0.8
ABBm01 βk in (3.9)-(3.11) with τ = 0.1, m = 5
ABBm08 βk in (3.9)-(3.11) with τ = 0.8, m = 5
DABBm βk in (3.9), (3.12)-(3.15) with τ = 0.8, m = 5, w = 20

Table 3.1: Steplength’s rules in Srand1 implementation.
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3.3 Numerical analysis of the steplength selection

In this section we present an extensive numerical validation of the steplength rules sum-
marized in Table 3.1. Srand1 algorithm is applied in conjunction to such rules for
solving sequences of nonlinear systems arising from rolling contact problems. Further,
a comparison between the best performing Srand1 variant and a standard Newton
trust-region method is made.

3.3.1 Nonlinear systems arising from rolling contact models

Rolling contact is a fundamental issue in mechanical engineering and plays a central
role in many important applications such as rolling bearings and wheel-rail interaction
[30, 31]. In order to perform simulations of complex mechanical systems with a good
tradeoff between accuracy and efficiency, three working hypotheses are usually made
in modelling rolling contact: non-conformal contact, i.e., the typical dimensions of the
contact area are negligible if compared to the curvature radii of the contact body surfaces;
planar contact, i.e., the contact area is contained in a plane; half-space contact, i.e.,
locally, the contact bodies are viewed as three-dimensional half-spaces [30, 31]. In this
framework, we focus on the Kalker’s rolling contact model which represents a relevant
and general model in contact mechanics.

The solution of Kalker’s rolling contact model can be performed using different ap-
proaches. The approach in [59, 60] calls for the solution of constrained optimization
problems while the so-called CONTACT algorithm [31] gives rise to sequences of nonlin-
ear systems. Our problem set derives from the application of CONTACT algorithm; here
we describe in which phase of the Kalker’s model solution they arise and give some of
their features. We refer to Appendix A for a sketch of Kalker’s model, its discretization,
and the Kalker’s CONTACT algorithm.

Kalker’s CONTACT algorithm determines the normal pressure, the tangential pres-
sure, the contact area, the adhesion area and the sliding area in the contact between
two elastic bodies and relies on the elastic decoupling between the normal contact prob-
lem and the tangential contact problem. Such problems are solved separately; first the
normal problem is solved via the the so-called NORM algorithm, second the tangential
problem is solved via the so-called TANG algorithm. Algorithms NORM and TANG are
expected to identify the elements in the contact area and in the adhesion-sliding areas,
respectively. These algorithms are applied sequentially and repeatedly until the values
of the computed pressures undergo a sufficiently small change that suggests their reli-
able approximation; in general, a few repetitions of NORM and TANG algorithms are
required. Each repetition of NORM algorithm calls for the solution of a sequence of
linear systems while each repetition of TANG algorithm calls for the solution of a se-
quence of linear and nonlinear systems. Computationally, the major bottleneck is the
numerical solution of the sequence of nonlinear systems generated in the TANG phase.
Importantly, each CONTACT iteration requires few repetitions of TANG algorithm but
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the CONTACT algorithm is performed for several time instances*.
Our tests were made on wheel-rail contact in railway systems. The benchmark ve-

hicle is a driverless subway vehicle, designed by Hitachi Rail on MLA platform (Light
Automatic Metro). The vehicle is a fixed-length train composed of four carbodies and
five bogies (four motorized and one, the third, trailer), see Figure 3.1. The multibody
model has been realized in the Simpack Rail environment [56]. We considered a train
route of length 400m including a typical railway curved track characterized by three
significant parts: two straight lines (from 0m to 70m and from 233m to 400m), the
curve (from 116m to 186m) and two cycloids (from 70m to 116m and from 186m to
233m) which smoothly connect the straight lines and the curve in terms of curvature
radius. The radius of the curve is 500m. In this analysis, we focused on the contact
between the first vehicle wheel and the rail; since the vehicle length is equal to 45.7m,
at the beginning of the dynamic simulation the considered wheel starts in the position
45.7m along the track. We performed a simulation in an interval of 10 seconds using
500 time steps, which amounts to 500 calls to CONTACT algorithm, for train speeds
with magnitude v taking the values: v = 10 m/s and v = 16 m/s. Accordingly, during
the whole simulation the considered wheel travels along the track a distance equal to
100m and 160m, respectively. The traveling velocities considered give a realistic lateral
acceleration along the curve according to the current regulation in force in the railway
field.

Figure 3.1: Multibody model of the benchmark vehicle.

The set of test problems was generated implementing the CONTACT algorithm in
Matlab and using a standard trust-region Newton method� for solving the arising non-
linear systems. Afterwards, a representative subset of the nonlinear systems was selected
to form our problem set. Specifically, six sequences of nonlinear systems generated by
the CONTACT algorithm and corresponding to six consecutive time instances for each
track section (straight line, cycloid and curve) and for each velocity were selected. Such
sequences are representative of the systems arising throughout the whole simulation and
allow a fair analysis of Srand1 on nonlinear systems from a real application. Table 3.2
summarizes the features of the sequences: magnitude of the train velocity v, section of
the route, time instances, number of nonlinear systems in the sequence, dimension n of
the systems (proportional to the number of mesh nodes in the potential contact area).

*In Appendix A see: (A.1) for the form of normal contact problem and tangential contact problem,
(A.5) for the form of the nonlinear systems to be solved, Figure A.2 for the flow of Kalker’s CONTACT
algorithm.

�The code in [47] was applied using the default setting and dropping bound constraints on the
unknown.
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A typical feature of the contact model is that n increases as the velocity increases and
when the train curves along the route (i.e. the track curvature increases). The total
number of systems associated to v = 10m/s and v = 16m/s is 121 and 153 respectively
and forms the problem set denoted as set-contact.

v(m/s) Track Section Time Instances Number of Systems n

Straight line 100-105 10 156
10 Cycloid 300-305 56 897

Curve 450-455 55 1394

Straight line 50-55 8 156
16 Cycloid 150-155 63 1120

Curve 350-355 82 1394

Table 3.2: Sequences of nonlinear systems forming the set-contact.

3.3.2 Experimental study

We now test the performance of all the variants of Srand1 method in the solution of
the sequences of nonlinear systems in Table 3.2. Further, in light of the theoretical
investigation presented in this work, we analyze in details the results obtained with BB1

and BB2 rule and support the use of rules that switch between the two steplengths.
Figure 3.2 shows the performance profiles [16] in terms of F -evaluations employed by

the Srand1 variants for solving the sequence of systems generated both with v = 10m/s
(121 systems) (upper) and with v = 16 m/s (153 systems) (lower) and highlights that
the choice of the steplength is crucial for both efficiency and robustness. The complete
results are reported in Appendix B.

The performance profile is a tool proposed by Dolan and Moré [16] for comparing a
group of algorithms. For each test T and algorithm A, let feTA denote the number of
F -evaluations required to solve test T by algorithm A, and feT be the lowest number of
F -evaluations required by the algorithms under comparison to solve test T . Then, for
algorithm A the performance profile is defined as

π(τ) =

# tests s. t.
feTA

feT
≤ τ

# tests
, τ ≥ 1.

We start observing that BB2 rule outperformed BB1 rule; in fact the latter shows the
worst behaviour both in terms of efficiency and in terms of number of problems solved.
Alternating βk,1 and βk,2 in ALT rule without taking into account the magnitude of the
two scalars improves performance over BB1 rule but is not competitive with BB2 rule. On
the other hand, the variants of Srand1 using adaptive strategies are the most robust,
i.e., they solve the largest number of problems, and efficient. Specifically, comparing
ABB, ABBm and DABBm rules, the most effective steplength selections are ABBm and
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Figure 3.2: set-contact: F -evaluation performance profiles of Srand1. Upper: v =
10m/s, lower: v = 16m/s.

DABBm. Using ABBm01 rule, 97.5% (2 failures) and 94.1% (6 failures) out of the total
number of systems were solved successfully for v = 10m/s and v = 16m/s respectively;
using ABBm08 rule, 97.5% (1 failures) and 96.7% (5 failures) of the total number of
systems were solved successfully with v = 10 m/s and v = 16 m/s respectively; using
the dynamic selection DABBm, the largest number of systems was solved successfully,
i.e., 97.5% (1 failure) and 98.7% (2 failures) out the total number of systems with
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v = 10 m/s and v = 16 m/s respectively. Overall, ABBm08 rule gives rise to the most
efficient algorithm for both velocity values; the profile related to BB2 rule is within a
factor 2 of it in roughly the 80% and the 70% of the runs for v = 10m/s and v = 16m/s,
respectively.

Let us now focus on the performance of Srand1 coupled with BB1 and BB2 rules. As
a representative run of our numerical experience reported in Appendix B, we consider the
nonlinear system arising with v = 16m/s, at time t = 150, iteration 2 of the CONTACT

algorithm and iteration 2 of the TANG algorithm (system 150 2 2 in Table B.4).
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Figure 3.3: set-contact: Srand1 with BB1 rule vs Srand1 with BB2 rule on a single
nonlinear system.

In the upper part of Figure 3.3 we display ‖F‖ along iterations and the number of F -
evaluations performed. We note that using the stepsize βk,1 causes a highly nonmonotone
behavior of ‖F‖ and such behaviour is not productive for convergence; using BB1 rule
276 iterations and 476 F -evaluations are performed while using BB2 rule 163 iterations
and 228 F -evaluations are required. The distinguishing feature of these runs is the high
number of backtracks performed at some iterations where βk,1 is used, see the bottom
part of the figure where the number of backtracks versus iterations is reported for both
Srand1 variants. This behaviour is in accordance with the analysis in Subsection 2.2.3:
since βk,1 can be arbitrarily larger than βk,2 in the indefinite case, the need to perform
a large number of backtracks to enforce approximate norm decrease is likely to occur in
case βk,1 is taken as the initial steplength. Such observation supports the use of βk,2;
the benefit from using shorter steps is further shown by the performance of ABBm over
ABB, the former tends to take shorter steps than the latter by exploiting the iteration
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history and results to be more effective.

We conclude our experimental analysis using a spectral residual method in the CON-

TACT algorithm. To this purpose, we compare two implementations of CONTACT algo-
rithm which differ only in the nonlinear solver for the nonlinear systems arising in the
TANG algorithm. The first implementation (CONTACT-NTR) uses a standard Newton
trust-region method and the second one (CONTACT-DABBm) uses DABBm which turned
out to be the more robust Srand1 version in the analysis above (see Figure 3.2). As
a standard Newton trust-region method, we used the Matlab code proposed in [47]; de-
fault parameters were used and bound constraints on the unknown were dropped using
the setting indicated in the code. The Jacobian matrix of F was approximated by finite
differences.

As a preliminary issue, we observe that the Jacobian matrices of F are dense through
the iterations; thus they cannot be formed as a low computational cost by finite difference
procedures for sparse matrices [8]. We also observed in the experiments that the Jacobian
matrices are nonsymmetric, do not have dominant diagonals and they are not close to
diagonal matrices. For example, let us consider the Jacobian matrix of the system
corresponding to speed v = 16 m/s, curve track section, instant t = 355, iteration 2 of
the CONTACT and iteration 4 of the TANG algorithm (355 2 4 in Table B.6). It has
dimension 292 × 292 and, evaluated at the final iterate computed using ABBm08 rule,
96.18% of its elements are nonzero. The structure of the Jacobian can be observed in
Figure 3.4 where the absolute values of its elements are plotted in a logarithmic scale
(the surface of the full matrix on the left and a plot of the row 146 on the right).
This structure is observed along all the iterations of the nonlinear system solvers and is
common to all sequences generated by the CONTACT algorithm.

Figure 3.4: Jacobian matrix: surface of the full matrix and plot of the central row (base
10 logarithm of the absolute values).
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In our implementation, CONTACT algorithm terminated when the relative error be-
tween two successive values of the computed pressures dropped below 10−4 or a max-
imum of 20 alternating cycles between NORM and TANG was reached. Both nonlin-
ear solvers were run until the stopping rule (3.1) is met. We ran CONTACT-NTR and
CONTACT-DABBm over the whole track for both velocities, that is we considered the
whole sequence of 500 time steps. CONTACT-NTR generated 3759 and 5353 nonlinear
systems for v = 10m/s and v = 16m/s, respectively and CONTACT-DABBm generated
4496 and 5494 nonlinear systems for the two velocities.

As a first remark, both procedures successfully solved the contact model described
above and were reliable and accurate in the numerical simulation of wheel-rail interac-
tion. Secondly, the use of the spectral residual method yields a gain in terms of time with
respect to the use of a standard Newton method where finite difference approximation of
Jacobian matrices is employed; this feature derives from the fact that spectral residual
method is derivative-free and does not ask for the solution of linear systems. Figures 3.5
and 3.6 show the comparison of the two CONTACT implementations in terms of number
of F -evaluations (excluding those needed to approximate the Jacobian matrices) and ex-
ecution elapsed time. From the plots we observe that CONTACT-DABBm takes a larger
number of F -evaluations than CONTACT-NTR but it is faster. Over the whole time
interval, CONTACT-DABBm employed 1 hour, 19 mins and 2 hours, 28 mins to solve the
generated nonlinear systems with v = 10 m/s and v = 16 m/s, while CONTACT-NTR

took 7 hours and 49 mins and 12 hours and 41 mins, respectively.
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Figure 3.5: set-contact: comparison between CONTACT-DABBm and CONTACT-

NTR, v = 10 m/s: number of F -evaluations and elapsed time in seconds (logarithmic
scale).
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Figure 3.6: set-contact: comparison between CONTACT-DABBm and CONTACT-

NTR, v = 16 m/s: number of F -evaluations and elapsed time in seconds (logarithmic
scale).

3.4 Numerical validation of Srand2

In this section we compare the performance of Srand1 and Srand2 algorithms on two
problem sets. The first set (named set-Luksan) contains 17 nonlinear systems from the
Luksan’s test collection described in [39]; these tests are commonly used as benchmark
for optimization algorithms. Problems in set-Luksan were solved setting n = 500 and
starting from the initial guess x0 suggested in [39]. Problem lu5 requires an odd value
for n and therefore we set n = 501. The second set is the set-contact described in
Section 3.3.1 and detailed in Table 3.2.

Considering set-Luksan, we experimented Srand1 and Srand2 combined with
all the rules described in Section 3.2 for the choice of βk. For 16 out of 17 problems
considered, Srand1 and Srand2 give the same results with all the choices of βk: Table
3.3 reports the number of F -evaluations varying the updating rule for βk. Srand1
and Srand2 only differ for the kind of failure in a few runs (note that in Table 3.3
we use the symbol Fin/Fbt to indicate that Fin and Fbt are the failures produced by
Srand1 and Srand2 respectively and the symbol Fbt/Fin to indicate that Fbt and Fin
are the failures produced by Srand1 and Srand2 respectively). Problem lu16 reported
in Table 3.4 is of interest because, though performing a large number of F -evaluations
in some cases, Srand2 is able to successfully solve it using all the rules except for BB1,
whereas Srand1 returns a failure with most of the attempted βk rules.
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Srand1 and Srand2
Problem BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

lu1 Fin 1066 Fbt Fin/Fbt 1066 Fbt 1053 1288
lu2 496 376 455 852 842 252 501 562
lu3 5 5 5 5 5 5 5 5
lu4 31 32 31 31 29 31 33 35
lu5 15499 1013 2634 1632 1057 2131 1152 1147
lu6 Fin Fin 74 Fin Fin Fin Fbt Fbt
lu7 Fin Fin 417 Fin Fin Fin Fin Fin
lu8 419 Fin 266 Fin Fin/Fbt Fin/Fbt Fin Fin
lu9 Fin Fin 182 2852 1150 Fin 4363 4365
lu10 457 Fin 1168 Fin Fbt/ Fin Fin Fin/Fbt Fin/Fbt
lu11 Fin Fin Fin Fin Fin Fin Fin Fin
lu12 Fin Fin Fin Fin Fin Fin Fin/Fbt Fin/Fbt
lu13 Fin 31 84 123 29 83 33 41
lu14 37 33 36 37 34 37 32 33
lu15 34 33 33 34 33 34 36 34
lu17 137 27 28 155 520 143 Fbt Fbt

Table 3.3: set-Luksan: number of F -evaluations performed by Srand1 and Srand2
with different rules for βk.

Problem lu16
BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

Srand1 Ffe Fin Fbt Fin Fin 2688 1674 3774

Srand2 Ffe 45624 57432 35413 58456 2688 1674 5439

Table 3.4: set-Luksan: number of F -evaluations performed by Srand1 and Srand2
with different rules for βk on Problem lu16.
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In Figure 3.7 we give an insight into the convergence behavior of both methods with
BB2 rule on Problem lu16. We display: ‖Fk‖ versus the iterations and the number
of F -evaluations (top part), the number of backtracks performed by both algorithms
(central part), and values of ‖Fk‖ and γk versus the iterations for both algorithms
(bottom part). All plots are obtained by disabling the stopping criterion on the number
of consecutive increases of ‖F‖. In this setting Srand1 fails after performing 3278
iterations and 56883 F -evaluations since the maximum number of backtracks is reached,
while Srand2 converges requiring 8456 iterations and 45624 F -evaluations. We observe
that the sequence of {‖Fk‖} generated by Srand1 does not satisfy the stopping criterion
(3.1), whereas the increasing number of backtracks along the iterations corresponds to
the fact that {γk} is going to zero. On the contrary, the sequence {‖Fk‖} generated by
Srand2 converges to zero and γk does not decrease with the iterations. Both situations
are in accordance with the theory: at least one among the sequences {‖Fk‖} and {γk}
converges to zero, but Srand2 generates a sequence {‖Fk‖} that goes to zero.

Figure 3.7: set-Luksan: convergence history of Srand1 and Srand2 with BB2 rule,
Problem lu16.

Finally, we investigate a case of failure of Srand2 algorithm with the aim of under-
standing the behavior of the method when the stopping criterion (3.1) is not met. To
pursue this issue we considered Problem lu1 not solved by Srand2 combined with ALT
rule. The experiment is carried out changing some parameters in order to emphasize the
asymptotic behaviour of the sequence generated by Srand2. The dimension n is set to
10 and the maximum number of backtracks is raised to 60. Also the stopping criterion
on the number of consecutive increases of ‖F‖ is disabled. The remaining parameters
are set as in the previous experiments. In Figure 3.8 we display values of ‖Fk‖ and of the
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scalar product ∇fTk Fk versus the iterations. We observe that ∇fTk Fk decreases along
the iterations while the norm of F stagnates. This experiment is in line with Theorem
2.3.6 according to which, even if the sequence {‖Fk‖} does not converge to zero, the
sequences {∇fk} and {Fk} tend to become orthogonal.

Figure 3.8: set-Luksan: a case of failure of Srand2 combined with ALT rule, Problem
lu1.

The practical advantages of the new linesearch are also confirmed by the experiments
performed with the problems in set-contact using both v = 10 m/s and v = 16 m/s
for a total of 274 problems. Results obtained for these problems are summarized in
the F -evaluations performance profiles [16] of Figure 3.9, where Srand1 and Srand2,
combined with rules BB2 (top plot), ALT (central plot) and DABBm (bottom plot), are
compared. In this case we tested the algorithms using these three classical rules together
with the DABBm rule that in Section 3.3 yielded the most robust version of Srand1 on
this set of problems. Results with BB1 are not reported since the behaviour of the two
algorithms did not differ in terms of number of solved problems. The complete results
are reported in Appendix B. The plots clearly show that the two algorithms perform
similarly and Srand2 is slightly more robust. In detail, Srand1 and Srand2 with
DABBm solves 271 and 272 problems, respectively. Also, in combination with the BB2

and ALT rules, Srand2 solves 3 and 6 problems respectively more than Srand1.
In the ten cases recovered by Srand2, the behaviour of the two methods is similar

to what observed with Problem lu16. To witness, the graphs reported in Figure 3.10 are
relative to one of the cases where the BB2 rule was in use. Analogous observations as
for Figure 3.7 can be drawn, regarding convergence to zero of the sequences {γk} and
{‖Fk‖}.
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Figure 3.9: set-contact: F -evaluation performance profile of Srand1 and Srand2
with BB2 rule (top), ALT rule (center) and DABBm rule (bottom) (v = 10 m/s and
v = 16m/s).
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Figure 3.10: set-contact: convergence history generated by Srand1 and Srand2
with BB2 rule, problem 155 3 3 in Table B.4.





Chapter 4

Research perspectives

The numerical behaviour of spectral residual methods for nonlinear systems heavily
depends on the choice of the spectral steplength. Although most of the works on this
subject use the stepsize denoted in literature as βk,1, known results on the spectral
gradient methods for unconstrained optimization suggest that a suitable combination
of the stepsizes βk,1 and βk,2 could be of benefit for spectral residual methods as well.
This thesis aimed to contribute to this study by providing a first systematic analysis
of the stepsizes βk,1 and βk,2. Moreover, practical guidelines for dynamic choices of
the steplength were derived from new theoretical results in order to increase both the
robustness and the efficiency of spectral residual methods. Such findings have been
extensively tested and validated on sequences of nonlinear systems arising in the solution
of a wheel-rail contact model.

Further we showed how to modify the Srand1 algorithm proposed in [48] in order
to establish a more general framework, denoted as Srand2, such that the sequence
{‖Fk‖} is guaranteed to converge to zero under more general conditions, and showed
experimentally practical benefits in terms of robustness on test problems from both the
literature and applications.

The Srand1 algorithm in [48] was developed for solving constrained nonlinear sys-
tems of the form

F (x) = 0, x ∈ Ω, (4.1)

where Ω ⊂ Rn is a convex set whose relative interior is non-empty. Srand2 may also be
adapted to the solution of constrained problems of the form (4.1) by relying on suitable
projection operator onto the feasible set Ω as follows. Proceeding as in [48], feasible
iterates {xk} can be defined by starting from a feasible x0, and by setting for k > 0

xk+1 = P (xk ± γkβkFk),

where P denotes a projection operator onto the considered domain and the new global
convergence result in Theorem 2.3.6 applies to limit points lying in the interior of Ω.
Convergence to solutions on the boundary of Ω deserves investigation.
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Appendix A

Kalker’s contact model and
CONTACT algorithm

We give an overview of the model and algorithm used to generate our set of nonlinear
systems. Bold letters represent vectors, subscript T denotes a vector with components
in the tangential x-y contact place, subscript N denotes the component of a vector
in the normal z contact direction. The contact problem between two elastic bodies
[30,31] determines the contact region C inside the potential contact area Ac (usually the
interpenetration area between the wheel and rail contact surfaces), its subdivision into
adhesion area H and slip area S, and the tangential pT and normal pN pressures such
that the following contact conditions are satisfied:

normal problem in contact C : e = 0, pN ≥ 0
in exterior E : pN = 0, e > 0
C ∪ E = Ac, C ∩ E = ∅

tangential problem in adhesion H : ‖sT ‖ = 0, ‖pT ‖ ≤ g
in slip S : ‖sT ‖ 6= 0, pT = −g sT /‖sT ‖
S ∪H = C, S ∩H = ∅.

(A.1)

Above, e is the deformed distance between the two bodies and, by definition, it holds
e = 0 and pN ≥ 0 in C. Referring to Figure A.1, the region E where e > 0 is called
the exterior area and pN = 0 therein. The potential contact area is such that Ac =
C ∪E. The contact area C is divided into the area of adhesion H where the tangential
component sT of the slip vanishes, and the area S of slip where sT is nonzero. The
slip sT is the difference between the velocities of two homologous points belonging to
the deformed wheel and rail surfaces inside the contact area and is a function of the
pressures pT and pN , g is the traction bound (Coulomb friction model [30,31]). Overall,
the first three equations in (A.1) model the normal contact problem (computation of pN
and of the shapes of the regions C and E), whereas the last three equations describe the
tangential contact problem (computation of pT , of local slidings sT and of the shapes of
the regions H and S).

Let us consider the discretization of (A.1). Assuming that the contact patch is
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entirely contained in a plane, the region within which the potential contact area Ac can
be located is easily discretized through a planar quadrilateral mesh, see Figure A.1. The
coordinates of the center of each quadrilateral element are denoted xI = (xI1, xI2, 0)
where the capital index I identifies the specific element, say I = 1, . . . , NE . Also, the
standard indices i = 1, 2, 3, will indicate the vector components. For any element I and
any generic vector wI = (wI1, wI2, wI3) associated to such mesh element, wI1, wI2 are
the components in the x-y contact plane and wI3 is the component in the normal contact
direction z. Namely, wI,T = (wI1, wI2) and wI3 are the discrete counterparts of wT and
wN , respectively.

Figure A.1: Local representation of the discretized contact area.

The discrete values of the elastic deformation u on the mesh nodes (i.e. the defor-
mation of the elastic bodies in the contact area [30,31]) are defined both at the current
time instance t and at the previous time instance t′:

uI = (uIi) at (xI , t) , u′I =
(
u′Ii
)

at
(
xI + v

(
t− t′

)
, t′
)
, (A.2)

where v is the rolling velocity (i.e. the longitudinal velocity of the wheel) and I is an
arbitrary mesh element). Analogously, for the contact pressures p it holds

pJ = (pJj) at (xJ , t) , p′J =
(
p′Jj
)

at
(
xJ + v

(
t− t′

)
, t′
)
, (A.3)

where J is an arbitrary mesh element. According to the Boundary Element Method
Theory [30,31], the discretized displacements uI can now be written as a function of the
discretized contact pressures pJ through the discretized version of the problem shape
functions, that is

uIi =

NE∑
J=1

3∑
j=1

AIiJjpJj , with AIiJj := BiJj (xI) ,

and BiJj(xI) are the discrete shape functions of the problem describing the effect of
a contact pressure pJ applied to the element J on displacement uI of the node I (see
[30, 31]). The shape function BiJj usually depends on the problem geometry and the
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characteristics of the materials. An analogous expression can be derived for u′Ii. The
elastic penetration e can be calculated at each node xI as

eI = hI +
∑
J

AI3J3pJ3,

where hI is the discretization of the (known) undeformed distance between the two
bodies, see [30,31]. Similarly, the slip sT can be discretized by setting

sI,T = cI,T + (uI,T − u′I,T )/(t− t′), (A.4)

where cI,T is the discretization of the (given) rigid creep, that is the difference between
the velocities of two homologous points belonging to the undeformed wheel and rail
surfaces inside the contact area and thought of as rigidly connected to the bodies.

We observe that both u and sT depend linearly on the pressures p and p′. Therefore,
the discretization of equation e = 0 in the norm problem (A.1) yields a linear system in
the discretized normal pressures (pI3) while the discretization of the nonlinear equation

pT = −g sT /‖sT ‖,

in the tangential problem yields the nonlinear system

sI,T = −‖sI,T ‖pI,T /gI , (A.5)

with pI,T = (pI1, pI2) being the unknown*. When using the Coulomb-like friction model
[30,31], the friction limit function takes the form gI = fIpI3, where fI is a given constant
friction value.

The flow of Kalker’s CONTACT algorithm is displayed in Figure A.2 [30,31]. At each
time step of time integration, the inputs of the CONTACT algorithm are the potential
contact area Ac (usually the interpenetration area between wheel and rail surfaces), the
rigid penetration h and the rigid local sliding cT (inputs calculated, on turn, from the
kinematic variables of the body: position and velocities of the gravity centers G1, G2,
VG1, VG2, rotation matrices R1, R2 and angular velocities ω1, ω2) [30, 31]. All these
kinematic quantities are calculated at each time step by the ODE solver of the Simpack
Rail multibody environment [56]. NORM algorithm solves the normal contact problem
and returns the contact area C, the non-contact area E, the normal contact pressures
pN . Then, TANG algorithm returns the sliding area S, adhesion area H, the tangential
contact pressures pT and local sliding sT . Repetitions of NORM and TANG algorithms
are then performed to approximate accurately normal and tangential pressures pT , pN .
At the end of CONTACT algorithm, forces and torques exchanged by the contact bodies
(F1, F2 and M1, M2) are computed by numerical integration and returned to the time
integrator for proceeding in the dynamic simulation of the multibody system.

*In the unlikely event sI,T = 0, the system is nonsmooth. We regularize (A.5) replacing the term√
s2I1 + s2I2 with

√
s2I1 + s2I2 + ε, for some small positive ε.
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Figure A.2: The architecture of the Kalker’s CONTACT algorithm.



Appendix B

Complete results

In this section we collect the complete results for the runs which gave rise to the perfor-
mance profiles in Figures 3.2 and 3.9. Results in Tables B.1-B.6 refer to Srand1 method
whereas results in Tables B.7-B.12 refer to Srand2. For each method, results concern
two velocities (v = 10m/s in Tables B.1, B.3, B.5, B.7, B.9, B.11 and v = 16m/s in
Tables B.2, B.4, B.6, B.8, B.10, B.12) and three different track sections (straight line
in Tables B.1, B.2, B.7 and B.8, cycloid in Tables B.3, B.4, B.9 and B.10 and curve
in Tables B.5, B.6, B.11 and B.12). Given a sequence of nonlinear systems, we la-
bel a single system from the sequence as Time Citer Titer specifying the instant time
(Time), the CONTACT iteration (Citer) and the TANG iteration (Titer). For each run
we report the number of F -evaluations performed in case of convergence, or, in case
of failure, the corresponding flag. We recall from Section 3.1 that a run is successful
when ‖Fk‖ ≤ 10−6. A failure is declared either because the assigned maximum num-
ber of iterations or F -evaluations or backtracks was reached, or because ‖F‖ was not
reduced for 500 consecutive iterations. Such occurrences are denoted as Fit Ffe, Fbt,
Fin, respectively.
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Srand1 - v = 10 m/s - straight line
System BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

101 1 2 69 59 74 75 59 71 57 69
101 2 2 382 148 248 295 205 174 198 220
103 1 2 37 31 35 37 30 37 31 34
103 2 2 37 31 35 37 30 37 31 34
104 1 2 36 36 37 36 38 36 39 38
104 2 2 36 36 37 36 38 36 39 38
105 1 2 39 38 39 39 38 39 39 39
105 1 3 77 69 82 79 70 82 67 74
105 2 2 40 37 39 40 38 40 39 39
105 2 3 74 73 86 75 70 75 67 76

Table B.1: Number of function evaluations performed by Srand1 variants in the solution
of nonlinear systems arising from time 100 to time 105 and corresponding to a straight
line with velocity 10 m/s. In the first column we indicate the time step, the CONTACT

and the TANG iteration.

Srand1 - velocity 16 m/s - straight line
System BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

50 1 2 60 45 53 52 47 52 46 49
50 2 2 53 44 51 54 48 54 48 53
50 3 2 53 44 51 48 48 48 48 53
52 2 2 75 78 53 76 75 101 61 91
52 3 2 89 78 53 76 88 112 61 91
55 1 2 65 66 66 83 66 80 62 72
55 2 2 69 79 60 76 61 73 67 71
55 3 2 69 79 60 80 61 73 67 71

Table B.2: Number of function evaluations performed by Srand1 variants in the solution
of nonlinear systems arising from time 50 to time 55 and corresponding to a straight line
with velocity 16 m/s. In the first column we indicate the time step, the CONTACT and
the TANG iteration.
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Srand2 - v = 10 m/s - straight line
System BB1 BB2 ALT DABBm

101 1 2 69 59 74 69
101 2 2 382 148 248 220
103 1 2 37 31 35 34
103 2 2 37 31 35 34
104 1 2 36 36 37 38
104 2 2 36 36 37 38
105 1 2 39 38 39 39
105 1 3 77 69 82 74
105 2 2 40 37 39 39
105 2 3 74 73 86 76

Table B.7: Number of function evaluations performed by Srand2 variants in the solution
of nonlinear systems arising from time 100 to time 105 and corresponding to a straight
line with velocity 10 m/s. In the first column we indicate the time step, the CONTACT

and the TANG iteration.

Srand2 - velocity 16 m/s - straight line
System BB1 BB2 ALT DABBm

50 1 2 60 45 53 49
50 2 2 53 44 51 53
50 3 2 53 44 51 53
52 2 2 75 78 53 91
52 3 2 89 78 53 91
55 1 2 65 66 66 72
55 2 2 69 79 60 71
55 3 2 69 79 60 71

Table B.8: Number of function evaluations performed by Srand2 variants in the solution
of nonlinear systems arising from time 50 to time 55 and corresponding to a straight line
with velocity 16 m/s. In the first column we indicate the time step, the CONTACT and
the TANG iteration.
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Srand2 - velocity 10 m/s - cycloid
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

300 1 2 178 128 137 163 303 2 2 Ffe Fin 2196 887
300 1 3 513 304 257 298 303 2 3 Ffe 1062 7399 798
300 1 4 569 402 290 299 303 2 4 Ffe 1713 12752 1054
300 2 2 343 203 266 204 303 2 5 Ffe 1424 21841 1358
300 2 3 16421 388 398 408 303 3 2 Ffe 926 5467 821
300 3 2 357 223 248 232 303 3 3 Ffe 1318 6284 896
300 3 3 1650 385 368 499 303 3 4 Ffe 1279 15483 1012
301 1 2 415 281 247 248 303 3 5 Ffe Fin 21781 1193
301 1 3 503 319 351 329 304 1 2 39074 962 815 491
301 1 4 582 442 281 305 304 1 3 Ffe 711 2891 562
301 2 2 1127 286 298 297 304 1 4 Ffe 1524 3610 752
301 2 3 630 414 367 337 304 2 2 725 366 381 317
301 2 4 758 345 372 386 304 2 3 67575 558 648 548
301 3 2 918 357 299 326 304 2 4 56102 709 1870 523
301 3 3 750 400 320 313 304 3 2 415 421 370 325
301 3 4 440 363 302 393 304 3 3 47678 533 2376 612
302 1 2 Ffe 743 3727 495 304 3 4 87138 696 1180 488
302 1 3 Ffe 844 4067 678 305 1 2 796 270 311 364
302 1 4 Ffe 3545 32612 1342 305 1 3 339 293 270 310
302 2 2 634 444 417 376 305 1 4 430 342 301 309
302 2 3 27293 610 508 548 305 2 2 Ffe Fin 2434 1208
302 2 4 Ffe Fin 7325 693 305 2 3 Ffe 1110 2222 684
302 3 2 743 426 373 361 305 2 4 Ffe Fin 842 648
302 3 3 39825 739 502 463 305 2 5 Ffe Fin 3329 597
302 3 4 Ffe 2245 7598 702 305 3 2 Ffe 980 6754 1518
303 1 2 22921 554 679 460 305 3 3 Ffe Fin 5805 579
303 1 3 33798 468 684 562 305 3 4 Ffe 871 2502 648
303 1 4 Ffe 965 1163 613 305 3 5 Ffe Fin 1786 663

Table B.9: Results for each system of the sequences generated in the cycloid section of
the train track with velocity v = 10 m/s.



61

Srand2 - velocity 16 m/s - cycloid
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

150 1 2 985 297 330 343 153 1 3 Ffe 1173 1181 596
150 1 3 26886 569 512 437 153 1 4 Ffe 991 3881 771
150 1 4 Ffe 967 3163 617 153 2 2 21846 475 603 446
150 1 5 Ffe Fin 810 710 153 2 3 Ffe 1149 3920 704
150 2 2 476 228 307 301 153 2 4 Ffe 1445 5035 784
150 2 3 627 584 404 443 153 2 5 Ffe 772 4023 725
150 2 4 52371 585 479 435 153 3 2 1873 628 754 471
150 3 2 Ffe 1304 93989 911 153 3 3 Ffe 770 4995 860
150 3 3 Ffe 2498 Ffe 1737 153 3 3 Ffe 770 4995 860
150 3 4 Ffe 6079 Fin 2237 153 3 4 Ffe 1568 4872 709
151 1 2 Ffe Fin 5094 689 153 3 5 Ffe 1226 5474 730
151 1 3 Ffe 1114 5311 829 154 1 2 65690 776 3124 527
151 1 4 Ffe 1454 8154 1046 154 1 3 1031 386 513 346
151 1 5 Ffe 3589 13663 1043 154 1 4 18703 533 421 447
151 2 2 Ffe 1337 9728 856 154 2 2 947 319 312 356
151 2 3 Ffe 2962 9597 961 154 2 3 255 193 220 246
151 2 4 Ffe 3013 6363 974 154 2 4 348 266 255 276
151 2 5 Ffe 6045 20420 1345 154 3 2 569 403 288 354
151 3 2 Ffe Fin 7742 803 154 3 3 248 218 249 233
151 3 3 Ffe 2293 8594 982 154 3 4 346 318 278 250
151 3 4 Ffe 1235 7998 941 155 1 2 Ffe 1161 6519 859
151 3 5 Ffe 6713 21858 1330 155 1 3 Ffe Fin Fin 1193
152 1 2 68854 822 1395 575 155 1 4 Ffe 5427 Fin 1380
152 1 3 Ffe 682 4009 669 155 1 5 Ffe Fin Fin 1339
152 1 4 Ffe 725 2905 720 155 2 2 Ffe 1211 3754 635
152 2 2 21102 604 641 399 155 2 3 Ffe Fin 25875 1273
152 2 3 80349 701 1082 610 155 2 4 Ffe 1623 Fin 1427
152 2 4 Ffe 1748 3725 849 155 2 5 Ffe Fin Fin 1559
152 3 2 20619 567 601 420 155 3 2 Ffe 877 6004 818
152 3 3 76611 966 1098 627 155 3 3 Ffe 4924 25285 1238
152 3 4 Ffe 1146 4114 734 155 3 4 Ffe 2893 21582 1315
153 1 2 1281 408 589 397 155 3 5 Ffe Fin 33026 Fin

Table B.10: Results for each system of the sequences generated in the cycloid section of
the train track with velocity v = 16 m/s.
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Srand2 - velocity 10 m/s - curve
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

450 1 2 386 210 246 284 453 1 3 402 319 457 316
450 1 3 623 204 303 1627 453 1 4 Ffe Fin 2705 544
450 2 2 29519 492 457 471 453 2 2 536 356 379 355
450 2 3 12031 428 433 387 453 2 3 Ffe 739 872 560
450 3 2 13879 560 403 382 453 2 4 Ffe 1772 38854 Fin
450 3 3 11509 464 448 391 453 3 2 566 351 355 398
451 1 2 681 437 382 397 453 3 3 Ffe 558 598 568
451 1 3 Ffe 1218 4314 1501 453 3 4 Ffe Fin Fin 1667
451 1 4 Ffe 4642 20768 1334 454 1 2 147 153 165 150
451 2 2 324 274 329 250 454 1 3 207 175 206 175
451 2 3 Ffe 1652 1046 595 454 1 4 2367 276 293 314
451 2 4 Ffe 1573 Fin 941 454 1 5 861 351 250 301
451 3 2 381 253 240 270 454 2 2 237 172 209 207
451 3 3 Ffe 3140 4232 635 454 2 3 413 279 211 280
451 3 4 Ffe Fin Fin 888 454 2 4 901 363 209 261
451 4 2 358 296 321 263 454 3 2 259 204 204 183
451 4 3 Ffe 2108 901 639 454 3 3 469 317 329 265
451 4 4 Ffe Fin Fin 821 454 3 4 450 302 231 270
452 1 2 66666 638 638 522 455 1 2 147 137 145 136
452 1 3 72915 701 725 508 455 1 3 212 184 203 196
452 1 4 45679 803 521 520 455 1 4 482 272 256 246
452 2 2 498 557 887 467 455 2 2 497 372 250 284
452 2 3 37679 608 714 454 455 2 3 563 393 473 348
452 2 4 40268 718 797 501 455 2 4 Ffe 840 6926 632
452 3 2 31282 433 451 354 455 3 2 341 270 268 282
452 3 3 41622 581 634 451 455 3 3 603 432 405 353
452 3 4 5592 477 658 470 455 3 4 Ffe 792 7505 744
453 1 2 288 200 257 210

Table B.11: Results for each system of the sequences generated in the curve segment of
the train path with velocity v = 10 m/s.
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Srand2 - velocity 16 m/s - curve
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

350 1 2 308 424 320 286 352 4 5 Fin Ffe 1132 724
350 1 3 5650 Ffe 825 687 353 1 2 398 468 357 357
350 2 2 220 308 208 247 353 1 3 588 887 640 456
350 2 3 3384 Ffe 1322 497 353 1 4 4525 Ffe 695 656
350 2 4 6843 Ffe Fin 718 353 1 5 4670 Ffe 877 764
350 3 2 277 311 221 213 353 2 2 365 589 357 386
350 3 3 885 76752 Fin 481 353 2 3 572 47617 755 528
350 3 4 6032 Ffe Fin 647 353 2 4 3476 Ffe 1143 687
350 4 2 233 271 207 218 353 2 5 8657 Ffe 1984 1111
350 4 3 3110 90329 764 526 353 3 2 394 711 381 361
350 4 4 6301 Ffe 1593 751 353 3 3 600 65120 672 457
351 1 2 1625 Ffe 1241 538 353 3 4 1623 Ffe 837 633
351 1 3 12677 Ffe 1596 1090 353 3 5 6523 Ffe 1250 855
351 1 4 13812 Ffe 2272 1240 353 4 2 505 575 448 372
351 2 2 20454 Ffe 1088 1050 353 4 3 725 57899 732 533
351 2 3 Ffe Ffe 2428 1825 353 4 4 932 Ffe 1030 669
351 2 4 Fbt Ffe 5744 1636 353 4 5 8111 Ffe Fin 967
351 2 5 Ffe Ffe Fin 2770 354 1 2 219 313 229 253
351 3 2 13238 Ffe 1261 876 354 1 3 369 502 323 342
351 3 3 Fbt Ffe 2029 1704 354 1 4 4042 88877 710 673
351 3 4 73563 Ffe 2397 1630 354 2 2 348 445 321 296
351 3 5 Ffe Ffe Fin 2635 354 2 3 359 1771 462 372
351 4 2 25703 Ffe 1285 1028 354 2 4 4521 Ffe 1054 701
351 4 3 Ffe Ffe 1778 1764 354 3 2 295 451 315 316
351 4 4 Ffe Ffe Fin 1763 354 3 3 392 789 382 409
351 4 5 Ffe Ffe 10011 2954 354 3 4 3478 Ffe 913 665
352 1 2 45932 Ffe 1794 1728 354 4 2 289 405 323 295
352 1 3 29665 Ffe 3091 1524 354 4 3 363 1776 497 370
352 1 4 Fbt Ffe 12749 1721 354 4 4 4560 Ffe 991 634
352 1 5 Ffe Ffe Fin 1623 355 1 2 262 638 226 266
352 2 2 1359 72373 676 501 355 1 3 509 527 339 331
352 2 3 878 74649 801 519 355 1 4 1201 35134 489 408
352 2 4 5116 Ffe 866 746 355 2 2 252 346 222 242
352 2 5 10426 Ffe Fin 909 355 2 3 396 2303 480 358
352 3 2 1249 59153 701 589 355 2 4 542 40681 671 433
352 3 3 682 87783 1116 517 355 3 2 249 336 289 241
352 3 4 5575 Ffe 808 685 355 3 4 480 639 268 369
352 3 5 8716 Ffe 1213 781 355 3 5 753 24591 624 428
352 4 2 818 48584 603 528 355 4 2 268 363 214 221
352 4 3 628 79081 867 511 355 4 3 360 714 463 314
352 4 4 4545 Ffe Fin 804 355 4 4 700 32137 404 451

Table B.12: Results for each system of the sequences generated in the curve section of
the train track with velocity v = 16 m/s.
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