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Chapter 1

Introduction

In this thesis we address the numerical solution of systems of nonlinear equations via
spectral residual methods. Our problem takes the form

F(z) =0, (1.1)

with F' : R" — R”" continuously differentiable. We focus on the square case where
the number of equations equals the number of variables and we assume that problem
admits a solution. Spectral residual methods are iterative procedures, they use
the residual vector F' evaluated at the current iterate as search direction and a spectral
steplength, i.e., a steplength that is related to the spectrum of the average matrices as-
sociated to the Jacobian matrix of F'. Such procedures are widely studied and employed
since they are derivative-free and low-cost per iteration.

This chapter is devoted to an introduction to the problem of interest and to an
overview of the methods proposed in literature in recent years. We close the chapter
summarizing the contents of the thesis.

1.1 Problem overview

Systems of nonlinear equations arise in many applications and require finding one
vector © € R™ that satisfies the relationships specified by the residual function F. Ex-
amples of applications are the Karush-Kuhn-Tucker conditions related to a nonlinear
programming problem, the discretization of partial differential equations such as heat
conduction or Navier-Stokes equations and physical or economical constraints such as
consistency principles, conservation laws, equilibrium conditions [49]. In addition, many
other applications such as the Kalker’s rolling contact model [45] or natural gas distri-
bution models [41] require the solution of a sequence of suitable nonlinear systems.
The numerical solution of has been intensively investigated and a variety of
iterative procedures has been proposed. The combination of efficiency, measured in
terms of execution time and computational cost, and robustness, that is the ability to
solve the problem successfully, is fundamental. In our context, methods are considered
robust if they are able to solve problems arising from a large number of different areas and



if the convergence does not depend critically on the choice of the starting point. Methods
with the latter property are denoted as globally convergent methods. It is worth noting
that a possible approach to consists in solving the nonlinear least-squares problem
written as the sum of the squares of the equations in (|1.1)):

1
i = min - | F(z)? 1.2
min f(z) = min S|[F(@)]" (1.2)
with f : R™ — R known as merit or objective function and || - || being the Euclidean

norm. Nonlinear least-squares problems have been a productive area of study and there
exist many software packages to solve them [14,22,132,/49]. Nevertheless, well known
important differences between nonlinear systems and optimization induce to study ade-
quate algorithms for solving in its original form [1422,|49]. In nonlinear equations
we expect all equations to be satisfied at the solution rather than just minimizing the
sum of squares, i.e. any solution of is a global minimum for but the viceversa
is not true. This means that a local minimum of f in could provide a point that is
not a solution to our problem .

Concerning the solution of the original formulation , a wide class of globally
convergent methods is based on the Newton method combined with linesearch or trust-
region approaches, see e.g., |14,49]. The main drawback of these methods is that they
require the solution of a linear system of equations at each iteration where the coeffi-
cient matrix is the Jacobian of F' or an approximation of it by finite differences. Such
calculation might be quite expensive either when the problem is of medium or large
size or when a sequence consisting of a large number of nonlinear systems has to be
solved. For this reason classes of algorithms that approximate the Jacobian, reducing
the computational cost without losing robustness and overall efficiency, are of special
interest. Quasi-Newton methods belong to this class and are particularly attractive
when the Jacobian matrix of F' is not available analytically or its computation is not
relatively easy. They showed to be effective both in the solution of one single nonlinear
system and in the solution of sequences of nonlinear systems such as those arising in
applications where sequences are generated by iterative refinement of parameters, see
e.g., [6,[14128}33},34,41.|44,58|. In the next section we will focus on the issues arising in
the context of Quasi-Newton methods and we will introduce the class of methods studied
in this thesis.

1.2 Numerical methods

The most common approach for the solution of problem (|1.1)) consists in the use of
Newton-based methods, as mentioned in the previous section. This means that, letting
xk be the current iterate, the next iterate x4 is computed solving the linear system

J(@) (@p+1 — x) = —F(xp), (1.3)

where J(xy) is the n x n Jacobian matrix of F' at iteration k. We notice that these
methods may become computationally expensive since both the computation of matrix
J and the solution of a linear system are required at each iteration.



As for the solution of , direct methods such as Gaussian elimination may be too
expensive if the system is medium or large size and the Jacobian matrix is either not
structured or no sparse. Moreover, computing the solution of at each iteration with
a high accuracy may be not necessary when the current iterate xj, is far from the solution.
Therefore, for large dimension problems, a possible approach for is using Inexact
Newton methods where the linear system is solved inexactly by means of iterative
solvers [12//1742/55]. The inexactness comes from the fact that the iterative procedure for
(1.3)) is stopped prematurely, and consequently the linear system is solved approximately
at a low computational cost per iteration. Inexact Newton methods are also matrix-free,
i.e. they access the coefficient matrix J(x) only evaluating matrix-vector products and
avoid forming and storing the whole matrix J(zy). This class of methods is particularly
convenient when the matrices are sparse but their efficiency generally depends on using
a proper preconditioner for J(x) and this calls for information on J(zy).

Quasi-Newton methods are adopted as an alternative approach replacing the matrix
J with an approximation of it. The k-th iteration matrix, denoted as By, can be formed
via least-change secant update strategies and may not involve derivatives at all [14,34./40].
In details, let us consider the following affine model for F' around zy,

My(x) = F(zi) + Bi(z — ), (1.4)

satisfying My (zr) = F(zx) for any matrix By € R™ "™ and let xp41 be such that
My (zr11) = 0. We observe that this equation reduces to the Newton’s equation ([1.3)
when By, = J(xy). If J(x1) is not available or too expensive to compute, let us consider
the secant equation stating that My (zk_1) = F(zk_1), that is

Bi(ak — wp-1) = Flag) — F(@p-1). (1.5)

If dimension n is larger than 1 then matrix Bj is not uniquely determined by
since there is an n(n — 1)-dimensional affine subspace of matrices obeying such equation.
The construction of a successful secant approximation consists in the selection of some
matrices among all these possibilities. The choice of By should either retain as much
information as possible from J(zy) and/or allow for a low cost solution of the linear
system. A possible strategy could be to require the model to interpolate F'(z) at
other past points, but this leads to a poorly posed numerical problem and is not successful
in practice [14]. The approach that leads to a successful secant approximation is the so
called Broyden’s update. It is based on the fact that we have no information either on the
Jacobian or on the model and its aim consists in preserving as much as possible of
what is already available. Therefore, matrix By, is chosen to minimize the change in the
affine model. In details, it is proved that the Broyden’s update represents the minimum
change to Bj_1 consistent with equation , measuring the change By — Bi_1 in the
Frobenius norm [14, Lemma 8.1.1]. It turns out that By is not an approximation from
scratch but it is a low rank update of Br_1. As a consequence, the solution of the
system By (a1 — xp) = —F(x) for zi11 can take advantage of the availability of the
factorization of a matrix at the previous iteration, e.g., if By_1(xx — zp—1) = —F(xg—1)



was solved for zj using the QR factorization of Bjy_; [48], such factorization can be
updated at a low computational cost to get the QR factorization of By [14].

Many further successful updating techniques have been proposed, e.g., in the Inverse
Column Update [43,48] a column of the inverse of Bk_1 is updated at each iteration
enforcing the secant equation . In so doing, the computation of the Quasi-Newton
step Tx+1 — T only requires the product between B, I and F(zy) avoiding the solution
of a linear system. A further and particular case is given by the class of methods studied
in this work where the Jacobian is approximated using a diagonal matrix. Summarizing,
in Quasi-Newton methods the computational cost for building By is considerably lower
than the cost for computing J(x) and in many implementations the cost for solving the
linear system By(zyy+1 — x) = —F(zy) is low as previously described.

In this thesis we consider spectral residual methods which belong to the class of
Quasi-Newton procedures. They are an extension of spectral gradient methods for large-
scale optimization problems to systems of nonlinear equations. Spectral gradient meth-
ods, introduced by Barzilai and Borwein in [2], are low-cost schemes for minimizing a
smooth function f : R™ — R and belong to the class of steepest descent methods, i.e.,
first-order iterative optimization algorithms which move at each iteration along —V f
at the current iterate. Barzilai and Borwein showed in [2] that a suitable choice of the
steplength greatly speeds up the convergence of the classical steepest descent method
even if it does not guarantee descent in the objective function at each iteration. Spectral
residual methods were first introduced by La Cruz and Raydan in [33] and starting from
the proposal by La Cruz, Martinez and Raydan in [34] consist of iterative procedures for
solving without the use of derivatives. They use matrices By, which are multiples of
the identity matrix, i.e. By = 3, 11, with Sy being a nonzero steplength inspired by the
Barzilai and Borwein method for unconstrained minimization problems [2]. Imposing
condition two steplengths 3 1 and ;o are derived as least-squares solutions of the
following problems:

T
. — Pr_1Pk-1
Bea = argmin |8 pr_1 — yp—1|” = 1;177 (1.6)
B Pr_1Yk-1
Ph_1Uk-1
Brz = argmin |pr—1 — Byr—1]> = . (1.7)
B Yi._1Yk-1

where py_1 = xp — xx—1 and yp_1 = F(zx) — F(xp_1).

Spectral residual methods have received a large attention since iterations are cheap
and matrix-free, see e.g. [28,133-35,141,148,/58]. In order to preserve robustness, such
methods are combined with suitable globalization strategies that control the value of
f in at each iteration and use both —fF(x) and B F(z)) as trial searches in
a systematic way. In fact if Vf(zx)T F(zg) # 0 then one of the two directions is a
descent direction for f. The linesearch techniques adopted are tipically nonmonotone
i.e., ||F(zy)| is not monotonically decreasing |21,36]. In the seminal paper [33] by La
Cruz and Raydan a variant of the nonmonotone linesearch of Grippo, Lampariello and
Lucidi [27] is used but such strategy requires the gradient of f and its computation is



as costly as the computation of J being Vf(z) = J(z)T F(z). Since spectral residual
methods do not require J(x), it is appropriate to use a nonmonotone linesearch that
does not involve derivatives; the first proposal was made in [34] by La Cruz, Martinez
and Raydan and was based on derivative-free linesearch strategies for nonlinear systems.

Starting from an early contribution by Griewank [26], derivative-free linesearches for
problem (1.1)) were defined. Given zy, let s; be the trial step and suppose that either
s = —BpF(x) or s = BpF(r) and that xp,, takes the form xp, 1 = z + vs, with
v € (0,1] chosen so that one of the nonmonotone linesearch conditions is met. Li and
Fukushima [36] presented the derivative-free linesearch

1F (zx +ys)ll < (L+m)llF (@) = o7 [lsell?, (1.8)

with p € (0,1) and 7, being a positive scalar such that {n} satisfies

an <n < oo. (1.9)
k=0

Note that ((1.8)) avoids the necessity of descent directions to guarantee that each iteration
is well defined. By virtue of the continuity of F', condition (|1.8)) holds for all v sufficiently
small and it is called an approzimate norm descent linesearch since it implies

1 (g + ysi) | < (0 ne) [ F ()], (1.10)

with n — 0 as k — oo.

La Cruz, Martinez and Raydan [34] proposed a combination and extension of the
Grippo, Lampariello and Lucidi linesearch and of the Li and Fukushima linesearch in
order to produce a robust nonmonotone linesearch that takes into account the advantages
of both schemes; it has the form

1P tysoll < max IFG@)] + - e ?IF@l (L)
with M nonnegative integer, p and {7} as in the Li and Fukushima proposal. The
first term on the right-hand side of produces the nonmonotone behaviour of the
norm of F, the second term guarantees that the strategy is well defined, and the third
term is fundamental for proving global convergence. Condition ((1.11)) is also employed
in [28] with 7, = 0 for all k£ and combined with a nonmonotone watchdog rule. An alter-
native proposal was made by Birgin, Krejic and Martinez [3| formulating the following
linesearch:

1P (o + i) < (1= py) | ()| + e (1.12)

Moreover, in [35] the following acceptance condition inspired by [50] was introduced by
La Cruz:

1 (e + ysi)1? < 1F (@)l + me — p7°llsil*. (1.13)
Finally, in [41,48] a new linesearch strategy based on a nonmonotone approximate norm

descent property of the merit function ((1.10) was adopted; such a strategy will be intro-
duced and discussed in details in the next chapter.



1.3 Contents of the thesis

Similarly to the Barzilai and Borwein method for unconstrained optimization, spectral
residual methods for (|1.1)) generate a nonmonotone sequence {||F(xy)||} and their effec-
tiveness heavily relies on the steplengths £ used.

It is well known that the performance of the Barzilai and Borwein method does
not depend on the decrease of the objective function at each iteration but relies on the
relationship between the steplengths used and the eigenvalues of the average Hessian
matrix of the objective function [4,/19,52]. Based on such feature, several strategies
for steplength selection have been proposed to enhance the performance of the method,
see e.g., [9-111|15[/19,[20]. On the other hand, to our knowledge, an analogous study of
the relationship between the steplengths originated by spectral residual methods and the
eigenvalues of the average Jacobian matrix of F' has not been carried out, and the impact
of the choice of the steplenghts on the convergence history has not been investigated in
details.

The first aim of this thesis is to analyze the properties of the spectral residual
steplengths 3y 1, Bk,2 in and and study how they affect the performance of the
methods. This aim is addressed both from a theoretical and experimental point of view.
The main contributions of this work in this direction are: the theoretical analysis of the
steplengths proposed in the literature and of their impact on the norm of F' also with
respect to the nonmonotone behaviour imposed by globalization strategies; the analysis
of the performance of spectral methods with various rules for updating the steplengths.
Rules based on adaptive strategies that suitably combine small and large steplengths
result by far more effective than rules based on static choices of 8 and, inspired by the
steplength rules proposed in the literature for unconstrained minimization problems, we
propose and extensively test adaptive steplength strategies. Numerical experience is
conducted on sequences of nonlinear systems arising from rolling contact models which
play a central role in many important applications, such as rolling bearings and wheel-
rail interaction [30,31]. Solving these models gives rise to sequences which consist of
a large number of medium-size nonlinear systems and represent a relevant benchmark
test set for the purpose of this thesis. A first set of experiments was conducted using
the globally convergent scheme proposed in [48] and later denoted as SRAND1, Spectral
Residual Approximate Norm Descent method, version 1.

The second purpose of this thesis is to propose a variant of the derivative-free spectral
residual method SRAND1 and obtain a scheme globally convergent under more general
conditions. In [4§] the sequence generated by SRAND1 was proved to be convergent un-
der mild standard assumptions; moreover, sufficient conditions were provided to ensure
that a limit point z* of the generated sequence {z} is also a solution of (L.1)). These
conditions relayed on the steplength ;1 and held for specific classes of problems. For
example, F'(z*) = 0 is guaranteed in the case where J(x*) has positive (negative) definite
symmetric part and suitably bounded condition number and in the case where J(z*) is
strongly diagonal dominant with diagonal entries of constant sign. Inspired by [34], we
propose a new linesearch strategy, which allows to obtain a more general and nontrivial



convergence result and does not rely on the specific choice of §. The resulting method
is denoted as SRAND2, Spectral Residual Approximate Norm Descent method, version
2. We prove that at every limit point z* of the sequence {z}} generated by SRAND2,
either F'(z*) = 0 or the gradient of the merit function f in is orthogonal to the
residual F":

V()T F(z*) = F(a*)TJ(z*)F(z*) = 0. (1.14)

Clearly this result gives F((z*) = 0 as long as F(z*) # 0 is not orthogonal to J(z*)7 F(z*),
and it is not related to a specific class of nonlinear systems. We further show that the
improvement with respect to SRAND1 is not only theoretical; the performed numerical
experiments show that the new linesearch has some positive impact also on the practical
ability in solving nonlinear systems. Numerical experiments are conducted both on the
previously discussed problems arising in rolling contact models and on a set of problems
commonly used for testing solvers for nonlinear systems varying the updating rules for
Bk

Our original contribution in the development and analysis of spectral residual meth-
ods for solving problem ([1.1)) is contained in the works [45,51].

The thesis is organized as follows. Chapter 2 is divided in three parts. First of all
we introduce preliminaries on spectral residual methods; then in the second section we
provide a theoretical analysis of the steplengths; finally, in the third section we present
and study the algorithms SRAND1 and SRAND2. The experimental part is developed
in Chapter 3 where we provide several strategies for selecting the steplength, introduce
our test sets and discuss the numerical results obtained. Some conclusions and research
perspectives are presented in Chapter 4. In Appendix [A] we detail the rolling contact
model from which our first problem set derives, its discretization and the algorithm for
its solution. Finally, complete results obtained with SRAND1 and SRAND2 are reported
in Appendix [B]

1.4 Notations

Throughout the thesis we use the following notation.

Unless explicitly stated, the symbol || - || denotes the Euclidean norm.

I denotes the identity matrix.

J denotes the Jacobian matrix of F.

Given a square matrix A, we let Ag = %(A + AT) be the symmetric part of A.

Given a symmetric matrix M, {\;(M)}"_; denotes the set of eigenvalues of M, Apyin (M)

and Apax(M) denote the minimum and maximum eigenvalue of M respectively, and
{vi}, denotes a set of associated orthonormal eigenvectors. Further, given a nonzero



p'M

T P be the Rayleigh quotient.
p°p

vector p, we let q(M,p) =

Given a sequence of vectors {zy}, for any function f we occasionally let fr = f(zg).



Chapter 2

Spectral residual methods:
stepsize selection and global
convergence

This chapter contains the theoretical contribution of the thesis. In particular, in the
first section we introduce the basic concepts and notation for spectral residual methods.
In the second section we provide a theoretical analysis of the steplengths and
including their impact on the behaviour of the norm of F' and on a general scheme
for nonmonotone linesearch. In the third section we present two linesearch strategies,
their use in conjunction with spectral residual methods and discuss their convergence
properties.

2.1 Preliminaries

In the seminal paper [2] Barzilai and Borwein proposed a gradient method for the un-

constrained minimization

min f(z), (2.1)

where f: R™ — R is a given differentiable function. Given an initial guess x¢ € R", the
Barzilai-Borwein (BB) iteration is defined by

Thy1 = T — gV [, (2.2)

where oy, is a positive steplength inspired by Quasi-Newton methods for unconstrained
optimization [14]. In Quasi-Newton methods, the step pp = xr11 — =k solves the linear
System

Bipr = =V fi, (2.3)

and, given By € R™ "™ as an initial data, By € R™"*™, k > 1, satisfies the secant equation,
ie.,

Bipr—1 = 21, with pyp1 =z —zp—1, 2k-1=Vf i —Vfi_1. (2.4)

9
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Letting By = a~'I and imposing condition (2.4)), Barzilai and Borwein derived two
steplengths which are the least-square solutions of the following problems:

Ph_1Pk-1
ap1 = argmin |la pp_y — 21 ||* = T (2.5)
e} Pr_1”k—1
T
. Pr_17k—1
apo = argmin |[pp_1 — aze 1| = . (2.6)
@ Zp_1”k—1

The second least-squares formulation is obtained from the first by symmetry. The final
steplength aj computed from and is then adjusted in order to be positive,
bounded away from zero and not too large, i.e., @ € [min, Qumax] for some positive aumin,
Qmax; in fact, one of the two scalars a1, a2 is used and the thresholds amin, Gmax are
applied to it, see e.g., [4,|15/19].

Choosing By, = o~ I yields a low-cost iteration while the use of the steplengths Q.15
oy, 2 yields a considerable improvement in the performance with respect to the classical
steepest descent method [2,[19]. The BB method is commonly employed in the solution
of large unconstrained optimization problems and the behaviour of the sequence
{f(z)} is typically nonmonotone, possibly severely nonmonotone, in both the cases
of quadratic and general nonlinear functions f [19,23|54]. The performance of the BB
method depends on the relationship between the steplength oy and the eigenvalues of the
average Hessian matrix fol V2 f(xp_1+tpr_1)dt; hence this approach is also denoted as
spectral method and an extensive investigation on steplength’s selection has been carried
on [9H11}/15.|19,20].

The extension of this approach to the solution of nonlinear systems of equations
was firstly proposed by La Cruz and Raydan in [33]. Here we summarize such a proposal
and the issues that were inherited by subsequent procedures falling into such framework
and designed for both general nonlinear systems [28}33-35,41,48.|58] and for monotone
nonlinear system [1,137,38.146,57,61]. Instead of applying the spectral method to the
merit function

fl@) = F@)]? (2.7)

the BB approach is specialized to the Newton equation yielding the so-called spectral
residual method. Thus, let p_ satisfy the linear system

and let By, = 71 satisfy the secant equation

Bipr—1 = yYp—1, with pr_1 =z — 21, Yp—1 = Fp — Fi—1.

*Nonlinear systems of the form (l1.1) are monotone if F' : R® — R" is monotone, ie. (F(x) —
Fy)T(x —y) >0 for any z,y € R™, see e.g., |18].
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Reasoning as in BB method, two steplengths are derived:

T
DPr_1Pk—1

Beg = —t—, (2.9)
Pr_1Yk—1
Pf 1Yk—1

Br2 = . (2.10)
Yp_1Yk—1

These scalars may be positive, negative or even null; moreover 3, 1 is not well defined if
pg_lyk_l = 0 and B2 is not well defined if y,_; = 0. In practice, the steplength f;, is
chosen equal either to B 1 or to Bi 2 as long as it results to be bounded away from zero
and |B| is not too large, i.e., |Bk| € [Amin, Bmax] for some positive Bmin, Smax- The step
resulting from turns out to be of the form p_ = — S, F}). But, once fy, is fixed, the
kth iteration of the spectral residual method employs the residual directions +F}, in a
systematic way and tests both the steps

p— = —BiF and py = +BiFy,

for acceptance using a suitable linesearch strategy. The use of both directions £F} is
motivated by the fact that, contrary to (—axV fx), ax > 0, in , (—BrFy) is not
necessarily a descent direction for at xp; the value Vfg(—Bka) = —2ﬂkaTJka
could be positive, negative or null. On the other hand, if F; E JpFy # 0, trivially either
(=B Fy) or BiFy, is a descent direction for f.

Analogously to the spectral method, the spectral residual method is characterized by
a nonmonotone behaviour of {||Fy||} and is implemented using nonmonotone linesearch
strategies. The adaptation of the spectral method to nonlinear systems is low-cost per
iteration since the computation of fj 1 and 2 is inexpensive and the memory storage
is low, and turned out to be effective in the solution of medium and large nonlinear
systems, see e.g., [28,133-35,4858].

Unlike the context of BB method for unconstrained optimization, to our knowledge
a systematic analysis of the stepsizes (1 and B2 in the context of the solution of
nonlinear systems and their impact on convergence history has not been carried out. The
steplength [, 1 has been used in most of the works on this subject [33-35//41,48]. On the
other hand, in [28] it was observed experimentally that alternating (3, and Sy o along
iterations was beneficial for the performance and in [58] it was observed experimentally
that using B2 performed better in terms of robustness with respect to using 5y 1.

In the next two subsections we will analyze the two steplengths 351 and ;2 and
provide: their expression in terms of the spectrum of average matrices associated to the
Jacobian matrix of F'; their mutual relationship; their impact on the behaviour of || Fi||
and on a standard nonmonotone linesearch.

The matrices involved in our analysis are the following. Given a square matrix A, we
let Ag = %(A + AT be the symmetric part of A, Gj_1 be the average matrix associated
to the Jacobian J of F':

def

1
Gr_1 :/ J(xp—1 +tpr_1)dt, (2.11)

0
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and (Gg)g—1 be the average matrix associated to the symmetric part Jg of J :

def

1
(Gg)g—1 = / Js(zk—1 + tpg—1) dt. (2.12)
0

Moreover, given a symmetric matrix M and a nonzero vector p, the Rayleigh quotient
q(M,p) introduced in Section satisfies the following property [24, Theorem 8.1-2]

Amin(M) < q(M, p) < Amax(M). (2.13)

2.2 Stepsize selection

2.2.1 Analysis of the steplengths 3 ; and [y

In this subsection we analyze the stepsizes i 1 and By 2 given in (2.9)) and (2.10) making
the following assumptions.

Assumption 2.2.1 The scalars B and B2 are well defined and nonzero.

Assumption 2.2.2 Given x and p, F is continuously differentiable in an open convex
set D C R™ containing x + tp with t € [0,1].

We note that Assumption holds whenever p;‘ilyk_l #0.

In the following lemma we analyze the mutual relationship between the stepsizes 5y, 1
and 2 and give their characterization in terms of suitable Rayleigh quotients for the
average matrices in (2.11]) and (2.12)). We will use repeatedly the property

p’ Ap = p* Agp, (2.14)

which holds for any square matrices A, Ag = %(A + AT), and any vector p of suitable
dimension.

Lemma 2.2.3 Let Assumption hold and Assumption hold with © = xp_1,
D = pr—1. The steplengths By 1, Br2 are such that:

P1) they have the same sign and |Br2| < |Bk.1l;
P2) either it holds 1 < Bra <0 or0 < fra < Bra1;

P3) they take the form
1

GS)k—1,Pk-1)

Br1 = o (2.15)

and

By q((G$)k—1,Pr-1)
7 CI(GZAkal,pkq)’
with q(-,-) being the Rayleigh quotient, Gx_1 and (Gg)k—1 being the matrices in

(2.11) and (2.13), respectively.

(2.16)
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Proof. By (2.9) and (2.10), we can write

Pk (p_iyk—1)?
P 1Yk—1 (Y1 9—1) (Pf_ 1 PE-1)

[Px—1 1P llyx—1]*cos®pr—1
Br.1 5 5
k=1 11* 1yx—1ll

= 108 pp_1, (2.17)

where @p_1 is the angle between pg_1 and yx_1, and P1) follows.

Property P2) follows as well since (2 # 0 by Assumption

As for property P3), by the Mean Value Theorem [14, Lemma 4.1.9] and (2.11)) we

have

Br2 =

1
Yp—1 = F — F_1 = / J(xp—1 + tpr—1)pr—1 dt = G_1pg—1.
0

Then using (2.14) and the definition of the Rayleigh quotient, 3} ; takes the form

By = Pf_lpk—l B 1
)1 - - )
i 1 Gr—ape—1 q((Gs)k—1,Pr-1)

while 3, o takes the form

Py @k k1 q((Gs)k—1,Pr-1)

B = = )
pl (GT  Gr_V)pr—1 vl o1 @(GE Gr_1,pk-1)

|

The above characterization P3) allows to derive bounds on the stepsizes (i1 and Sy 2
diversifying cases according to the spectral properties of the Jacobian matrix and the
average matrices in and . The relationship between ;1 and the spectral
information of the symmetric part of average matrix was observed in 33,34} 48]
but the following results are not contained in such references.

Lemma 2.2.4 Let Assumption hold and Assumption hold with © = xp_1,
D = pr—1. Then, the steplengths By 1 and Bi2 are such that:

(i) if the Jacobian J is symmetric and positive definite on the line segment in between
Tp—1 and Tp_1 + pp—1 then By 1 and By o are positive and

1 1

e < By <fB < 2.18
)\maX(Gk—l) - /Bk,Q - IBkJ - Amin(Gk—l) ( )
(i) if (Gg)k—1 in is positive definite, then B 1 and B2 are positive and

1 1

max Brar < B <— 2.19

{)‘max((GS)k—l) k2} w )\min((GS)k—l) ( )
)\min((GS)k—l) . )\max((GS)k—l)

< Bro < , : 2.20

A GTG_y) = oz =m0 { Aoin(GT G 1) ’“’1} (220)
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(iii) if (Gg)k—1 in is indefinite and Gp_1 in (2.11) is nonsingular, then

(iii.1) Bk, satisfies either

1 1
<mnq—-———, or > ma , ;
o < mind{ 5 e or 2 {5
(2.21)
(iii.2) Br,2 satisfies either
. Amax((GS)k—l) }
0< < , , 2.22
P = min { M GL, Gr)” ! 222
or
)\min((GS)k—la) }

, < By < 0. 2.23
max { N (GG ) Br,1 B2 (2.23)

Proof. Consider properties P1), P2) and P3) from Lemma[2.2.3]

(i) Steplengths () 1 and [y 2 are positive due to (2.15)), (2.16]). The rightmost inequality
of (2.18) follows from (2.15) and (2.13). The remaining part of (2.18)) is proved
observing that (2.16|) yields

1/2 1/2
Brg = Pg,le/_le/_lpkq B 1 (2 24)
k2= "p ek e a2 ’ :
Pr_1G_1Gk-1Gg_1Pk—1 Q( k—1, k_lpk71>

and using P2) and ({2.13]).
(ii) Using (2.15)),(2.13) and P2) we get positivity of fi 1 and (2.19)). Consequently, S 2

is positive by property P1), and bounds (2.20)) can be derived using ([2.16]), ([2.13])
and item P2) of Lemma [2.2.3

(iii) If (Gs)k—1 is indefinite then its extreme eigenvalues have opposite sign, i.e.,

/\min((Gs)k—1) < 0 and )\max((GS)k_l) > 0. Hence, , and P2) give

(2.21). Moreover, since GZ?IGk_l is symmetric and positive definite, we can use,
as before, P1) and (2.13) and get (2.22) and (2.23).

Lemma [2:2.4] easily extends to the case where matrices are negative definite.

Item (i) in Lemma includes the case where F' is strictly monotone, i.e., (F(x) —
F(y)T(z —y) > 0 for any z,y € R" with x # v, see e.g. . In fact, if the Jacobian is
positive definite in R™ then F is strictly monotone in R Preposition 2.3.2].
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2.2.2 On the impact of the steplength 5, on ||F;.:|, case J symmetric

In this subsection we investigate how the choice of the steplength S may affect ||Fyi1]|
in a spectral residual method when the Jacobian J is symmetric. Results are first derived
using a generic 3;, and discussed thereafter with respect to the choice of either 31 or
B2

Next result analyzes the residual vector Fi,; componentwise. It heavily relies on the
existence of a set of orthonormal eigenvectors for the average matrix Gy.

Lemma 2.2.5 Suppose that Assumption holds with x = z1, and p = p;, and that
the Jacobian J is symmetric. Let Pk =D- = —BiFr # 0, xpy1 = T + pr, {)\ (Gk)}? 1
be the eigenvalues of matriz Gy, in and {v;}7_, be a set of associated orthonormal

eigenvectors. Let Fy, and Fj41 be expressed as

n n
Fp = Z#i% Fry = ZMZ;HW,

where ,u};,,u}'cﬂ, i=1,...,n, are scalars. Then
Fry1 = (I = BGr) F, (2.25)

Moreover, it holds:
(a) if BAi(Gg) =1, then ”2+1 = 0;

(b) if 0 < BeXi(Gr) < 2, then |, | < |uj|; otherwise | (| > |u].
Proof. The Mean Value Theorem [14, Lemma 4.1.9] gives

1
Fip1 = Fk+/ J (1 + tpr)pr dt,
0

and pr = —BrF), and ( - yield - Moreover, since {v;}!' ; are orthonormal we
have fori =1,...,n

oy = ()" Fup
= (UZ)T(I BeGr) Fy
= /J (1 k)\ Gk))
i.e., equation (2.26 '. Consequently, Item (a) follows trivially; Item (b) follows noting
that ’1 — BiAi(Gr)| < 1if and only if 0 < B\ (Gg) < 2.

d

Lemma trivially extends to the case where py, = p = B Fy.
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If the nonlinear system represents the first-order optimality condition of the
optimization problem where f(z) = %mTAx — bz is quadratic and A is symmetric
and positive definite, then the previous lemma reduces to well known results on the
behaviour of the gradient method in terms of the spectrum of the Hessian matrix A,
see [52]. In fact, we get F(z) = Vf(z) = Az — b = 0 and its Jacobian is constant
J(x) = A, Vz. Then the following strict relationship between Fj, and the ith eigenvalue
Ai(A) of the Jacobian holds throughout the iterations

k
Hirr = pi(1 = BrAi(A H (1 =B\

where u}; 41 and ,u}%, t = 1,...n, are the eigencomponents of Fj,; and F} respectively,
with respect to the eigendecomposition of A. As a consequence, a small steplength Sy,
ie., close to 1/Amax(A), can significantly reduce the values | ;| corresponding to large
eigenvalues \;(A) while a small reduction is expected for the scalars |y | correspond-
ing to small eigenvalues \;(A). On the contrary, a large steplength [, i.e., close to
1/Amin(A), can significantly reduce the values |uj | corresponding to small eigenvalues
Ai(A) while tends to increase the scalar |, | corresponding to large eigenvalues \;(A).
This offers some intuition for choosing the steplengths by alternating in a balanced way
small and large steplengths in order to reduce the eigencomponents, see e.g., [15, p. 178].

On the other hand, if F' is a general nonlinear mapping then G changes at each
iteration and Lemma[2.2.5|suggests the expected change of F' from iteration k to iteration
k + 1 and the following guidelines. The first guideline concerns the case where J is
symmetric and positive definite. A nonmonotone behaviour of the sequence {||F||} is
expected. By Item (i) of Lemma [2 both Bk 1 or B2 are positive and B\ (Gy)

Ai(Gr) Y (Gk)

)\max(Gk—l), )\min(Gk—l)
of generality that the eigenvalues are numbered in nondecreasing order, by standard
arguments on perturbation theory for the eigenvalues it holds

lies in the interval

for ¢ = 1,...,n. Assuming without loss

INi(Gr) — Ai(Gr—1)| < |Gk — Gr—1],

i =1,...,n, |24, Theorem 8.1-6]. Thus, if the Jacobian is Lipschitz continuous in an
open convex set containing xp_1 + tpr_1 and xx + tpr with constant Ly > 0, it follows

L,
162~ Guall < 2 (sl + ).

Hence, if ||pr—1|| and/or |[py|| are large, by Item (b) of Lemma [2.2.5(no decrease of p}, |
may occur. On the contrary, for small values of ||px—1| and ||px||, as occurs if {xy}
is convergent, G undergoes small changes with respect to G;_1 and the behaviour of
,ufC 41 shows similarities with the case where J is constant. Thus, a small steplength
By close to 1/Amax(Gr—1) can significantly reduce the scalars [y | corresponding to
large eigenvalues \;(Gy), while a small reduction is expected for the values || corre-
sponding to small eigenvalues \;(Gy). A large steplength S close to 1/Amin(Gk—1) can
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significantly reduce the scalars |u}, 41| corresponding to small eigenvalues A;(Gy) while
tends to increase the eigencomponents |u;, ;| corresponding to large eigenvalues \;(Gy.).
As for the case of a constant Jacobian, these features suggest to choose the steplengths
by alternating in a balanced way small and large steplengths in order to reduce the
eigencomponents.

The second guideline concerns the case where J is symmetric and indefinite and
Amin(GE) < 0 < Apax(Gg). If B > 0, from Item (b) of Lemma it follows that
|1i, 1] corresponding to positive Ai(Gy) are smaller than |pf| if SxAi(Gy) is small enough
while all |u; ;| corresponding to negative eigenvalues increase with respect to |uj| and
the amplification depends on the magnitude of Si\;(Gy). If B < 0 similar conclusions
hold. In general, a nonmonotone behaviour of the sequence {||Fg|} is expected and
the smaller {|8;\i(Gk)|}i=1,..n are, the smaller || Fj11||/||Fg|l is. Since a small value of
{1BkAi(Gk)|}i=1,....n might be induced by a small value of |5x|, the use of ()2 might be
advisable taking into account that |Bx 2| < |Bk,1| and B 1 can arbitrarily grow in the
indefinite case (see Lemma [2.2.4]).

2.2.3 On the impact of the steplength 5, in the approximate norm
descent linesearch

In this subsection we embed the spectral residual method in a general globalization
scheme based on the so-called approximate norm descent condition in (|1.10]), which is
repeated here for the sake of clarity:

1F @+ pe) | < (14 m) [|F () [ (2.27)

with nr — 0 as k — oo [36]. Intuitively, large values of 7y allow a highly nonmonotone
behaviour of ||Fy|| while small values of 7, promote the decrease of || F'||. Several line-
search strategies in the literature fall in this scheme, see e.g., [25],36.|41,48]. The main
idea is that, given xj, the trial steps take the form

p— = —VkBrFr or py = +VBrF, (2.28)

with % € (0, 1]. The steps in are tested in a systematic way with ~; computed by
a backtracking process so that is satisfied. Enforcing condition ensures the
convergence of the sequence {||F||} [36, Lemma 2.4].

We now analyse the properties of ||Fiy1| as a function of the stepsize y;0; and
determine conditions on 8, which enforce . First of all we observe that by the
Mean Value Theorem [14, Lemma 4.1.9] and we have

Fi1 = (I & v0kGr) Fy. (2.29)
Using this equation we can write
[Fiirll® = |1 Fell® £ 2v B B (Gs)kFi + i Bi B G GiF, (2.30)

and analyze the fulfillment of either the decrease of ||F|| or (2.27) as given below.
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Theorem 2.2.6 Suppose that Assumptions(2.2.1 and[2.2.3 hold with x = 1, and p = py,.
Suppose F/ngF/,C # 0 and FgGka % 0 with Gy, given in (IQ.II ). Let A = q((Gs)k, Fk)2—|—
(i + 2m)q(G G, Fy), then

(1) If xps1 = @k + P, Pk = P— = =Bk, v € (0,1], we have that || Fyiq| < || F||
when

|a((Gs)r, Fi) |

Condition 18 satisﬁed when
G F —V A G F + V A

q(GE Gy, Fr) q(GE Gy, Fy)

(2) If Tp1 = 2k + pr, Pk = P+ = WBrFr, e € (0,1], we have that || Fiiq| < [|Fll
when

la((G$)k, Fr)|

G F; 0 d 2 . 2.33
Bra((Gs)k, Fi) < and vi|Br| < W GTCr, ) (2.33)
Condition is satisfied when
—q((G F,) —vVvA —q((G F A
a((Gs)k, Fr) — VA < b < a((Gs)k, Fr) + \F' (2.34)

Proof. Concerning Item (1), using (2.29) we get

[Fea? =

FI'(Gs)wF FIGTGLF
( (S)kk—i—’yﬁﬁﬁkkkk

1-2 g F|?
= (1= 20Bua((Gs)i, Fi) +282a(GL G, ) ) Il

Noting that by assumption ¢((Gg)x, Fi) # 0 and ¢(G} Gy, Fi,) > 0, hence || Fj11| < || Fx||
holds if

Bra((Gs)k, Fx) >0 and  — 2vkBuq((Gs)k. Fi) + 7 Bra(GE G, Fy,) < 0,

and these conditions can be rewritten as in (2.31). Condition (2.32)) follows trivially.
Item (2) follows analogously. From ([2.29) and imposing ||Fj11]| < || Fk|| we get the
condition

Bra((Gs)k, Fx) <0 and  2vBiq((Gs)k, Fi) + 12Bra(GE Gy, Fi) <0

which is equivalent to (2.33)). Condition ([2.34]) follows trivially. O

We remark that, since Gy and (Gg)r depend on Sk, conditions (2.31)—(2.34]) are
implicit in v; 8. The above theorem supports testing the two steps ([2.28)) systematically
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because of the following fact. At k-th iteration, S, q(Jk, Fk) and q(J,?Jk, F}) are given
and by continuity of the Jacobian, the Rayleigh quotients q((Gg)k, Fk) and ¢(GT Gy, Fy,)
tend to q(Jk,Fk) and q(Jng,Fk) respectively as 4 tends to zero. Hence, given € <
%min{q(Jk, Fk), q(JkTJ;C, Fy)}, if i is sufficiently small then

q(Ji: Fi) — ¢ (

q((Gs)k, Fr) < q(Jr, Fy,) + €
T i
q(JE T, Fi) + € ~ q(

te
GIGy, Fr) = q(Jl I, F) — €

q((Gs)k, Fr) q(Jy, Fr)
q(GI Gy, Fy,) q(JL Tk, Fi)
small, either condition (2.31]) or (2.33]) is fulfilled. Analogous considerations can be made
for conditions (2.32)) and (2.34)).

As a final comment, the previous theorem suggests that a small |G| promotes the
fulfillment of conditions and or and . Again, by Lemma
the use of (2 may be advisable taking into account that |8y 2| < |Bk,1| and that S can
arbitrarily grow in the indefinite case; taking the steplength equal to i ; may cause a
large number of backtracks and an erratic behaviour of {|| Fy||} as long as 7 is sufficiently
large.

and has the same sign as . Consequently, for v sufficiently

2.3 Globalization strategies

In this section we introduce two spectral residual algorithms which implement a line-
search along +Fj and enforce the approximate norm descent condition in the
framework discussed in the previous section. The two algorithms are denoted as SRAND1
and SRAND2, Spectral Residual Approximate Norm Descent method, version 1 and ver-
sion 2 respectively. SRAND] is originated by the Projected Approximate Norm Descent
algorithm with Spectral Residual step (PAND-SR) developed in [4§] for solving convexly
constrained nonlinear systems. Among its variants proposed in [41}/48] and based on
Quasi-Newton methods, we consider the spectral residual implementation for uncon-
strained nonlinear systems. SRAND2 is a variant of SRAND1 and represents one of the
contribution of this thesis.

2.3.1 The SrRAND] algorithm

The SRANDI algorithm employs a nonmonotone linesearch strategy based on the ap-
proximate norm descent property in . The idea behind such a condition is to allow
a highly nonmonotone behaviour of || Fy|| for (initial) large values of 7 while promoting
a decrease of ||F|| for small (final) values of 7. A nonmonotone behavior of the norm
of F' is crucial to avoid practical stagnation of methods based on spectral stepsizes (see
e.g. [19,34,54]); at the same time condition ensures the sequence {||F|} to be
bounded (see |36, Lemma 2.1]).

In details, given the current iterate xy, a new iterate xy4q is computed as xg11 =
) + pr with py given by either (=B, F) or (+7kBkFk), e € (0,1].
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The main phases of the algorithm are as follows. First, the scalar gy is chosen so that
|Bk| € [Bmin, Bmax]- Second, the scalar v € (0, 1] is fixed using a backtracking strategy.
Starting from v, = 1, it is progressively reduced by a factor o € (0,1) until one of the
following conditions is satisfied:

[E (@)l < (1= p(L 4+ ) F (zn)l, (2.35)

IE @)l < (1 +ne — py) | ()], (2.36)

where p € (0,1) is intended to be a small scalar which plays the same role as the Armijo
constant [14], and {n} is a positive sequence satisfying (1.9). The first condition
promotes at each iteration a sufficient decrease in ||F'|| which can be accomplished for
suitable values of £+ F}, as long as F; kT JpFy # 0, and is crucial for establishing results
on the convergence of {||Fj||} to zero. On the other hand, the second condition ([2.36)
allows for an increase of ||F|| depending on the magnitude of ng. Trivially, (2.35)) im-
plies and both imply the approximate norm descent condition . Conditions
([2.35) and (2.36) differ from (1.8)), (1.11), (1.12)), (1.13) in two aspects. First, they are
independent of the norm of the trial step which may be very large or small because of
the spectral coefficient 8. Second, n appears as a multiplicative term for ||Fy| while
the contribution of 7 is unpredictable in and because it is not adjusted to
reflect the size of || F||.

The formal description of the method is reported in Algorithm where we delib-
erately do not specify the form of the stepsize (.

Algorithm 2.3.1: The SRANDI algorithm
Given g € R™, 0 < Bmin < Bmax, 50 € [Bmin, Bmax)s P, 0 € (0, 1), a positive sequence
{nk} satistying (1.9).

If || Fo|| = 0 stop.
For k=0,1,2,... do

1. Set v =1.
2. Repeat
2.1 Set p_ = —yBiFr and p = G F.

2.2 If p_ satisfies (2.35)), set pr = p— and go to Step 3.
2.3 If p, satisfies (2.35)), set pr = p+ and go to Step 3.
2.4 If p_ satisfies (2.36)), set pr = p— and go to Step 3.
2.5 1If p satisfies (2.36)), set pr = p4 and go to Step 3.
2.6 Otherwise set v = g 1.

3. Set Yk =, Tht1 = Tg + P

4. If || Fy41|| = O stop.

5. Choose 5k+1 such that |5k+1| € [ﬁminaﬁmax] .
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The acceptance cycle of the trial steps in Step 2 terminates in a finite number of
steps [48]. Indeed, from the continuity of F' and the positivity of n, there exists a scalar
4 > 0 such that

1 (e £ B ()| < [E (@)l + (o = pr) [ F ()],

with v € (0,%]. Trivially the above inequality implies that holds for ~ small
enough, see also Theorem [2.2.6]

The following theorem collects the main convergence properties of SRAND1 method
given in [48].

Theorem 2.3.1 Let {n} be a positive sequence satisfying (1.9), {zx} and {v} be the
sequences of iterates and of linesearch stepsizes generated by the SRAND1 algorithm.
Then,

(i) the sequence {||Fy||} is convergent.
(i) lim || Fi|| = 0.
k—o0

(#i) liminf~g >0  implies that lim || Fg| = 0.
k—o0 k—o0

(i) If (2.44) is satisfied for infinitely many k, then klim | Fx|| = 0.
— 00

(v) If || Fi|| < || Fxs1]| for infinitely many iterations, then likminf Y = 0.
—00

(vi) If || Fy|| < ||Frs1ll for all k sufficiently large, then {||F||} does not converge to 0.

(vii) The sequence {xy} is convergent and, if x* is the limit point and xq is the starting
quess, then

. 1
—— ﬁmax(p N Z) IRl (2.37)

Proof. Items (i) — (vi) are proved in [48, Theorem 4.2]. Item (vii) is proved in [48,
Theorem 4.3]. O

The result in Item (vii) of the theorem above has an important consequence. In
particular, the bound on ||zg — x*|| implies that if a solution z of is such that
|zo—z|| does not satisfy (2.37)), then {x;} cannot converge to . Namely SRAND1 method
is globally convergent but the limit point of {x}} belongs to a specified neighborhood of
the initial point and may not be a zero of F.

Under specific assumptions on the Jacobian J at the limit point z* and assuming
that 8, = By,1 asin at Step b of Algorithm the next two theorems are proved
in [48]. The first result concerns the case when Jg(2*) is positive (negative) definite and
ensures that kli_)rn | F%|| = 0 when the 2-norm condition number of Jg is of order O(p~1).

oo
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Theorem 2.3.2 Let {n;} be a positive sequence satisfying (1.9) and {z;} be the se-
quence of iterates generated by the SRAND1 algorithm. Suppose B = Br1 with B
given in (@/ and pr = £YPrFr with |Bk] € (Bmin, Bmax). Assume F continuously
differentiable and J Lipschitz continuous. Moreover assume that the symmetric part Jg
of J is positive (negative) definite at the limit point x* of {xy}, and that the 2-norm
condition number K(Js(z*)) satisfies

w

X(Ts(27) < (2.38)
for some w € (0,1), and p € (0,1) as in (2.35)-(2.36). Then F(z*) = 0.
Proof. See [48, Theorem 5.2]. O

The second result concerns problems where J is strongly diagonally dominant and
the diagonal entries have constant sign. We use the following notation:

n

Ga) s X U@l =L, (2.39)
T2

m@) € min (J@)a, M) € max (J@), (2.40)

filz) € min [(J@)al,  M(z) € max |(J(2)l (2.41)

Observe that all these quantities only depend on the Jacobian matrix at x. The value
of (;(z) measures the degree of diagonal dominance of the i-th row of J(z), m(x) and

M (x) measure the signed range of its diagonal elements while m(x) and M (x) measure
the diagonals’ absolute values’ range. If J(z) has positive diagonal entries, then m(z) =
m(z) = |m(z)| and M(x) = M(x) = |M(zx)|. If the diagonal elements are negative, then

m(x) = —M(z) = |M(z)| and M (z) = —m(x) = |m(z)|. The conditions used are

e [|m(w*)!’ \M(fc*)ll ;Q( ) <1 (2.42)

M (z* 1-v\ 1
M) (¥ = (2.43)
m(x*) 2—-v)\1+v/)p
for some v € (0,1) and p € (0,1) being the constant in (2.35)-(2.36)). Such conditions
are satisfied by matrices which are close to being diagonal and have a condition number

of order p~!. In fact, for decreasing values of maxj<;<y, (;, the ratio M /m approaches
K(J(x*)) and (2.43) implies a bound on such a condition number in terms of p~!. For

example, if v = 1/2, the right-hand side of (2.42)) is 1/3 and that of (2.43]) is 1/(9p).

Theorem 2.3.3 Let {n;} be a positive sequence satisfying @ and {xy} be the se-
quence of iterates generated by the SRAND1 algorithm. Suppose B = Bri1 with B

and
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given in and pr = £YPrFr with |Bk] € (Bmin, Bmax). Assume F continuously
differentiable and J Lipschitz continuous. Suppose that J(x*) is nonsingular where z* is
the limit point of {xx}. Suppose in addition that J(x*) has diagonal entries of constant
sign and satisfies (2.44) and (2.435), for some v € (0,1) and p € (0,1) being the constant

in (2.35)-(2.36). Then F(z*) = 0.

Proof. See [48, Theorem 5.3]. O

2.3.2 SRAND2: a new spectral residual algorithm

In light of the previous discussion we consider a variant of the linesearch conditions
and which gives rise to the SRAND2 method, i.e., Spectral Residual Approximate
Norm Descent method, version 2. The SRAND2 algorithm can be sketched as SRAND1
algorithm except for the acceptance conditions of zp41. In SRAND2 conditions

and ([2.36)) are respectively replaced by
IF(zeg) [l < (1= p(L+A@)IIF ()], (2.44)

and
IF (2 )l < (14 me — pyR) | F () (2.45)

Still these conditions are derivative-free and both imply the approximate norm descent

condition (2.27)).

We observe that the change in conditions (2.44])-(2.45)) with respect to (2.35))-([2.36))
amounts to the term 77 in the right hand side of (2.44)-(2.45). This squared term is

common to other linesearch strategies as e.g. (1.8]) and (1.11]). This small change in the
linesearch conditions has a considerable impact on global convergence results as shown
below. The formal description of the method is reported in Algorithm

Analogously to SRAND1 (see [48]), we observe that the repeat loop at Step 2 terminates
in a finite number of steps: indeed, from the continuity of F' and the positivity of 7,
there exists 4 > 0 such that

1F (@ £ yBeF (@)l < 1P ()| + (ne = py*)IF (@),

with v € (0,7]; therefore, inequality holds for small enough values of 7, see also
Theorem [2.2.6]

We now provide the convergence analysis of the SRAND2 algorithm. Theorems
and analyze the sequences {7} and {||F| }; they state general results which derive
from the linesearch strategy and are analogous to Theorem their proofs follow the
lines of [48, Theorem 4.2]. Theorem constitutes the main contribution. It is related
both to the linesearch strategy and to the choice of the spectral residual steps, and it is
independent of the specific choice of F.
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Algorithm 2.3.2: The SRAND2 algorithm
Given g € R", 0 < Bunin < Bmaxs £o € [Bains Bumaxs £ @ € (0, 1), a positive sequence

{nk} satisfying (1.9).
If || Fo|| = 0O stop.
For k=0,1,2,... do

1. Set v =1.
2. Repeat
2.1 Set p_ = —yBxFy and py = vB; F.

2.2 If p_ satisfies (2.44), set pr = p— and go to Step 3.
2.3 1If p, satisfies (2.44), set pr = p4 and go to Step 3.
2.4 If p_ satisfies ([2.45)), set pp = p_ and go to Step 3.
2.5 If p4 satisfies (2.45)), set pr = p+ and go to Step 3.
2.6 Otherwise set v = g 1.

3. Set Yk =7, Tht1 = Tg + P

4. If || Fg+1]| = 0 stop.

5. Choose f4+1 such that |Skt1| € [Bmin, Pmax) -

Theorem 2.3.4 Let F : R® — R" be a continuous map, and let {xy} and {vi} be
the sequences of iterates and of linesearch stepsizes generated by the SRAND2 algorithm.
Then the sequence {||Fx||} is convergent and bounded by

[1Fxll < €"|[Foll, for all k=0, (2.46)
where > 0 is given in @ Moreover

lim 42| Fk|| = 0. (2.47)
k—o0

Proof. Convergence of {||Fy||} follows from (2.27)), recalling that any positive sequence
{ay} satisfying
ar+1 < (1 +mk)ak + g,

o0
with nr > 0 and > nx < oo, is convergent (see [13, Lemma 3.3]). Further, applying
k=0

(2.27) recursively, we get
k
1 Frsa]l < H L+ m:) || Foll, Wk > 0.

Then ([2.46) easily follows by observing that if {n;} is a sequence of positive scalars that

satisfies ((1.9)),

k
[[a+m)<e”, vE>0 (2.48)
=0
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(see [36, Lemma 2.1]). Finally, the limit in (2.47) is easily verified by rewriting (2.45)) as
0 < Pyl Fill < (U m) | Fell = 1P

and letting £ go to infinity, since klim ne = 0 and the sequence {||F||} is convergent.
—00
g

Theorem in particular identifies situations where {||Fj||} may or may not con-
verge to zero.

Theorem 2.3.5 Let F : R — R"™ be a continuous map, and let {x;} and {y} be
the sequences of iterates and of linesearch stepsizes generated by the SRAND2 algorithm.

Then
1. liminfy_ oo ’yg >0 dmplies that limg_, ||F| = 0.

2. If (2.44) is satisfied for infinitely many k, then klim |Fx|| = 0.
— 00
3. If || Fxl| < ||Fx+1]| for infinitely many iterations, then likminf 72 =0.
—00
4. If | Fll < || Frs1ll for all k sufficiently large, then {||Fx||} does not converge to 0.

Proof.

1. The statement follows directly from .

2. If the sufficient decrease condition is attained for infinitely many k&, there
exists a subsequence {||Fy,|},1 < ko < k1 < ..., such that

1Byl < (1= p— 2 )| Fiy 1l < (1= )| Fiy 1l
Furthermore, from (2.27) we obtain

kj—2
1F; 1l < (Ui —2) | Fryall < T (U)o,
i=k]'71
Consequently,
1F, | < (1= p)lIFiy 1
ey —2
<(-p) ] Q+mllF_l
i=l€j,1
ey —2
< 2 H 1+m HFk] 1— 1||
i=kj_1
<.
< (1-p)tt H + 1) || Fio 1|
i=ko
kj—2
< (L =p T T+ m)llFol
i=0

< (1= p) " Foll,
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where in the last inequality we used (2.48)). Thus lim ||F},| = 0, and since {||Fi|}
J—00
converges we also have lim ||Fy|| = 0.
k—o0

3. Let us now consider the case that || F|| does not decrease at infinitely many
iterations; then there exists a subsequence {||Fy,||} such that

1F3 1 < 1 F | < (14, = 07, )1 B -
This means that
0 < i, < M-
Since hm N = 0, we have that hmmf fyk, =0.

4. If ||Fk\| < || Fg41|| for all & sufﬁmently large, then trivially {||F||} cannot converge
to 0. O

We now provide the main convergence result, that is at every limit point x* of the
sequence {zj} generated by the SRAND2 algorithm, either F'(z*) = 0 or F(z*) # 0 and
the gradient of the merit function f in (1.2 is orthogonal to the residual F' at x*.

Theorem 2.3.6 Let F' be continuously differentiable. Let {x}} be the sequence generated
by the SRAND2 algorithm and let * be a limit point of {x}. Then either

Vi) F(z*) = F(z*)TJ(z*)F(z*) = 0. (2.49)

Proof. Let K be an infinite subset of indices such that llclnll($k = z*. By Theorem [2.3.4
€

we know that ilrr[l{ 72| Fg|l = 0. Hence there are two possibilities:
€
ither liminf~; > 0 liminf 7 = 0.
either  liminf or  liminf
The first one implies Ilgm}l( | F|| = 0. Then using the continuity of F' it follows easily that
€
lim || £ = [|F(z")]| = 0.
lim [|F(zx) | = [|F (")

In the second case we have liliréi;r(lf ’yg = h;?éi]r(lf v = 0. Let Yy = Yk /o denote the last at-

tempted value for the linesearch parameter before 7 is accepted during the backtracking
phase. Hence for sufficiently large values of & € K we have

1F (2 =, BrFi)ll > (L+m = pr)I1F (o),

1F (x4 7, BeFi) | > (L4 — oy )L F ().
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Being n; > 0, and by virtue of (2.46), there is a positive constant ¢; such that

1F (2 £ 5, B Fi)l| = I E @)l > (o = pyDIIF @)l > —pr | F (i)l > —e1ps, (2.50)

and multiplying both sides of (2.50) by ||F(xy + v, Bt Fy)|| + || F'(zk)||, we obtain

1F (@ £ v, BrFR) 1P = [1F (2|1 > —c1prf (IF (@n £ v, B Fi) | + | F(za)ll).  (2:51)

Now we observe that xy, £ 755k F) is bounded Vk € K; indeed, by hypothesis v € (0, 1],

|Bk| < Pmax, the subsequence {zj}rex is convergent to z* and hence bounded, and
| Fx|| is bounded by Theorem Then recalling the definition of v, = 7j/0 and the
continuity of F'; we have

|1 F (k£ 7, BuFi)ll + [|[F(zp)l| < c2, k€K, (2.52)

for some positive constant ca. Consequently, from (2.51)—(2.52)), there exists a constant
¢ > 0 such that

1F (zx £ 7, B6F) |1 = [F(zu) |1 > —cpry, (2.53)

for sufficiently large values of k € K.
Now, we suppose that 8, > 0 for infinitely many indices k € K; C K, and we consider
the two steps —v 0k F) and +; S Fi separately.

e Firstly, we consider —v(yF. By virtue of the Mean Value Theorem and (2.53)),
there exists & € [0,1] such that

(VI (xr— &7, B Fr), =1, B Fr) > —cps,
for sufficiently large k € K. Hence, for all large k € K; we have that:

<Vf(xk — fklkﬁka), Fk> < cp;: < cp;’f. (2.54)

e Now we consider +7jFy. Similarly there exists & € [0, 1] such that for all large

ke K 5 v
(V£ + &7, 86 Fy), Fr) > —CP?: > —CPB*kf : (2.55)
Since lillcniir(lf v, = 0, taking limits in (2.54)) and (2.55)) we get
€
(Vf(z*),F(z*)) =0.
We proceed in a quite similar way if 5, < 0 for infinitely many indices. O

Corollary 2.3.7 The orthogonality condition implies F(z*) = 0 in the following
cases:
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(a) J(x*) is positive (negative) definite;
(b) vI J(x*)v # 0, for allv € R™, v # 0.

Case (a) in Corollary includes the class of strictly monotone nonlinear systems
of equations of the form .

A general result similar to Theorem [2.3.6| was not proved for SRAND1. As reported in
Theorem m and Theorem conditions guaranteeing F'(z*) = 0, with z* being the
limit point of {z}}, were obtained for SRAND1 using [ as in and in the case where
J(z*) has positive (negative) definite symmetric part and suitably bounded condition
number, or where J(z*) is strongly diagonal dominant with diagonal entries of constant
sign.

In the forthcoming chapter we show that SRAND2 corresponds in practice to an algo-
rithm potentially more robust than SRAND1. We cannot expect strong difference in the
performance of the two methods, given the small change between the two. Nevertheless,
the new linesearch is able to recover some runs where SRAND1 does not converge to a
zero of the nonlinear system.



Chapter 3

Numerical experiments

This chapter is devoted to the experimental part of the thesis. The aim is twofold:

e verify the impact of the use of different updating rules for §; on the practical
behaviour of both SRAND1 and SRAND2. Regarding SRANDI, though sufficient
conditions for the convergence of the sequence cover a limited number of cases, see
Theorems and we remark that it has the potential to compute zeros of
F for any choice of (B, see Theorem Items (7ii) — (iv);

e investigate numerically if SRAND2 algorithm is more robust than SRAND1 in prac-
tice.

In the first section we give some details on the implemented algorithms and set the
parameters used in all the experiments. In the second section we propose some steplength
selection rules and in the third section we test them on a sequence of nonlinear systems
of equations arising from rolling contact models. In the fourth section we analyze the
numerical performance of the new linesearch strategy.

3.1 Implementation issues

SRAND1 and SRAND2 methods given in Algorithms [2.3.1] and [2.3.2] were implemented
in Matlab and the parameters were set as follows

Bo=1, Buin=10712 Brax =10 p=10"% o =0.5, n = 0.99%(100+| Fy||?) Vk > 0,

see [48]. A maximum number of iterations and F-evaluations equal to 10° was im-
posed and a maximum number of backtracks equal to 40 allowed at each iteration. The
procedures were declared successful when

| Fe|l < 1076, (3.1)

A failure was declared either because the assigned maximum number of iterations or
F-evaluations or backtracks was reached, or because ||F'|| was not reduced for 500 con-
secutive iterations. Such occurrences are denoted in the forthcoming tables as Fi¢, Fse,
Fut, Fin, respectively.

29
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The solvers were run using MATLAB R2019b and the experiments carried out on a
Intel Core i7-9700K CPU @ 3.60GHz x 8, 16 GB RAM, 64-bit.

3.2 Steplength selection

In view of our theoretical analysis and guidelines on steplength selection given in Chapter
2, we attempt to tailor Barzilai and Borwein rules for unconstrained optimization to
spectral residual methods. In this section we discuss several steplength rules for spectral
residual methods which will be tested in conjunction with SRAND1 algorithm in Section
-3 and with SRAND2 algorithm in Section [3.4]

Let us consider different rules for the choice of B at Step 5 in the SRAND1 algorithm.
Besides the straightforward choice of one of the two steplengths By 1, B2, along all
iterations, we consider adaptive strategies that suitably combine them and parallel those
used for quadratic and nonlinear optimization problems. Below, given a scalar 3, T'(3)

is the thresholding rule which projects |3| onto Ig def [Bmins Bmax], 1-€-,

T(8) = min { Buaxs max { B, |8} }. (3.2

BB1 rule. By [28,133,35,48], at each iteration let

if el
8, = B, i ’Bk,1‘| 8 (3.3)
T(Br1) otherwise.

BB2 rule. At each iteration let
B2 if |Bral €l
By, = { Bzl € 1y (3.4)

T(Br2) otherwise.

ALT rule. Following [9)28], at each iteration let us alternate between ()1 and Sy o

for k£ odd
R (35)
Bk otherwise,
s if |BpT] € I
) Bra if k even, [Bk1| € Ip, |Bra2l ¢ Ip
B = , (3.6)
B2 if k odd, |[Br2l| € Is, Bkl & Ip

T(BAET) otherwise.
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ABB rule. Following [62] and ABB rule in [20], we define the Adaptive Barzilai-Borwein
(ABB) rule as follows. Given 7 € (0,1), let
o &
&Hoif =<
B (61 &) = & (3.7)

&1 otherwise

for some given &7, £&2. Then

BABB(Bk 1, Br.2) if [Pkl B2l € Ip
if € I3, I
5, = B : 1Bkl € g, |Bra2l & I (3.9)
B2 if [Brol € I, |Br,1| & Ip

BABB(T(By1), T(Br2))  otherwise.

Observe that a large value of 7 promotes the use of ;o with respect to B 1.
The rule allows to switch between the steplengths ;1 and ;2 and was originally
motivated by the behaviour of the Barziali and Borwein method applied to convex
and quadratic minimization problems (see [20462] and our discussion below Lemma
2.2.5).

ABBm rule. This rule elaborates the ABBminmin rule given in [20], taking into account
that Bj 2 may be negative along iterations. Let m be a nonnegative integer, and

By = B2 if Bl € 1p
’ T(Br2) otherwise, (3.9)
j* = argmin{|§j72| cj=max{l,k —m},... k}.
Given 7 € (0,1), we fix i as follows
P o &
m ﬁ‘*g if =<7
BB (& ) = & (3.10)
& otherwise,
SEBm (B, Br2) if Bkl Br2l € Ig
if I I
B, — Bra 1 1Br1l € Is, [Bra2l & Is (3.11)
B2 if [Breol € I, |Br,1l & Ip

BABBY(T (8 1), T(Bk2)) otherwise.

Again, a large value of 7 promotes the use of a step from BB2 rule instead of Sy ;.

B2
Br,1

the last m + 1 iterations is taken; consequently, in general smaller steplengths are
taken with respect to ABB rule.

In case B 1|, |Br2| € I5 and <7, Ejﬁ with the smallest absolute value over
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the prefixed threshold 7 in 1} Given S, 2 and j* in (3.9)), we propose the rule
defined as

DABBm rule. Following [5|7], a dynamic threshold 7 € (0,1) can be used in place of
i

> . 2
5]'*,2 if é < Tk

BRAPPY(&1,6) = &1 (3.12)
& otherwise,
BPABBm(3, 1 Bro) it |Brl |Br2l € Ig
B, = Br,1 if Bkl € I, |Br2l ¢ Is (3.13)
Br.2 it [Brol € I, |Br1l ¢ Is
BDABBm (T (B 1), T'(By.2)) otherwise
with the dynamic threshold set as
ri = min {7, | Fy /31D, (3.14)
by = max{b; : j = max{1l,k —w},..., k}. (3.15)

Here 7 € (0, 1) is an upper bound on the value of 7%, w is a nonnegative integer and
b; denotes the number of backtracks performed at iteration j (see Step 2 of SRAND1
algorithm). If || F|| is getting small and the number of performed backtracks in the
last w41 iterations is small, then promotes the use of steplengths from BB1
rule, i.e., larger steplengths which can speed convergence to a zero of F. On the
other hand, when the number of backtracks performed along previous iterations is
large and 7 is large, the use of smaller steplengths from BB2 rule is encouraged.

The steplength rules and parameters used in our experiments are summarized in Table
We tested different dynamic thresholds 7 in (3.14]) for DABBm rule and here we
report results obtained with the best one in terms of efficiency and robustness.

Rule ‘ B
BB1 B i
BB2 B i
ALT B i
ABBO1 B i with 7 = 0.1
ABBOS B i ), (3.8) with 7 = 0.8
ABBmO1 | By i 311) with 7 = 0.1, m =5
ABBmOS | B i with =08 m=>5
DABBm | B i )-(3.15) with 7 = 0.8, m =5, w = 20

Table 3.1: Steplength’s rules in SRAND1 implementation.
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3.3 Numerical analysis of the steplength selection

In this section we present an extensive numerical validation of the steplength rules sum-
marized in Table SRAND1 algorithm is applied in conjunction to such rules for
solving sequences of nonlinear systems arising from rolling contact problems. Further,
a comparison between the best performing SRAND1 variant and a standard Newton
trust-region method is made.

3.3.1 Nonlinear systems arising from rolling contact models

Rolling contact is a fundamental issue in mechanical engineering and plays a central
role in many important applications such as rolling bearings and wheel-rail interaction
[30,131]. In order to perform simulations of complex mechanical systems with a good
tradeoff between accuracy and efficiency, three working hypotheses are usually made
in modelling rolling contact: non-conformal contact, i.e., the typical dimensions of the
contact area are negligible if compared to the curvature radii of the contact body surfaces;
planar contact, i.e., the contact area is contained in a plane; half-space contact, i.e.,
locally, the contact bodies are viewed as three-dimensional half-spaces [30,[31]. In this
framework, we focus on the Kalker’s rolling contact model which represents a relevant
and general model in contact mechanics.

The solution of Kalker’s rolling contact model can be performed using different ap-
proaches. The approach in [59}|60] calls for the solution of constrained optimization
problems while the so-called CONTACT algorithm [31] gives rise to sequences of nonlin-
ear systems. Our problem set derives from the application of CONTACT algorithm; here
we describe in which phase of the Kalker’s model solution they arise and give some of
their features. We refer to Appendix[A]for a sketch of Kalker’s model, its discretization,
and the Kalker’s CONTACT algorithm.

Kalker’s CONTACT algorithm determines the normal pressure, the tangential pres-
sure, the contact area, the adhesion area and the sliding area in the contact between
two elastic bodies and relies on the elastic decoupling between the normal contact prob-
lem and the tangential contact problem. Such problems are solved separately; first the
normal problem is solved via the the so-called NORM algorithm, second the tangential
problem is solved via the so-called TANG algorithm. Algorithms NORM and TANG are
expected to identify the elements in the contact area and in the adhesion-sliding areas,
respectively. These algorithms are applied sequentially and repeatedly until the values
of the computed pressures undergo a sufficiently small change that suggests their reli-
able approximation; in general, a few repetitions of NORM and TANG algorithms are
required. Each repetition of NORM algorithm calls for the solution of a sequence of
linear systems while each repetition of TANG algorithm calls for the solution of a se-
quence of linear and nonlinear systems. Computationally, the major bottleneck is the
numerical solution of the sequence of nonlinear systems generated in the TANG phase.
Importantly, each CONTACT iteration requires few repetitions of TANG algorithm but
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the CONTACT algorithm is performed for several time instances’]

Our tests were made on wheel-rail contact in railway systems. The benchmark ve-
hicle is a driverless subway vehicle, designed by Hitachi Rail on MLA platform (Light
Automatic Metro). The vehicle is a fixed-length train composed of four carbodies and
five bogies (four motorized and one, the third, trailer), see Figure The multibody
model has been realized in the Simpack Rail environment [56]. We considered a train
route of length 400m including a typical railway curved track characterized by three
significant parts: two straight lines (from Om to 70m and from 233m to 400m), the
curve (from 116m to 186m) and two cycloids (from 70m to 116m and from 186m to
233m) which smoothly connect the straight lines and the curve in terms of curvature
radius. The radius of the curve is 500m. In this analysis, we focused on the contact
between the first vehicle wheel and the rail; since the vehicle length is equal to 45.7m,
at the beginning of the dynamic simulation the considered wheel starts in the position
45.7m along the track. We performed a simulation in an interval of 10 seconds using
500 time steps, which amounts to 500 calls to CONTACT algorithm, for train speeds
with magnitude v taking the values: v = 10 m/s and v = 16 m/s. Accordingly, during
the whole simulation the considered wheel travels along the track a distance equal to
100m and 160m, respectively. The traveling velocities considered give a realistic lateral
acceleration along the curve according to the current regulation in force in the railway

field.
— L,[ = \@?

-
Figure 3.1: Multibody model of the benchmark vehicle.

The set of test problems was generated implementing the CONTACT algorithm in
Matlab and using a standard trust-region Newton methodlﬂ for solving the arising non-
linear systems. Afterwards, a representative subset of the nonlinear systems was selected
to form our problem set. Specifically, six sequences of nonlinear systems generated by
the CONTACT algorithm and corresponding to six consecutive time instances for each
track section (straight line, cycloid and curve) and for each velocity were selected. Such
sequences are representative of the systems arising throughout the whole simulation and
allow a fair analysis of SRAND1 on nonlinear systems from a real application. Table
summarizes the features of the sequences: magnitude of the train velocity v, section of
the route, time instances, number of nonlinear systems in the sequence, dimension n of
the systems (proportional to the number of mesh nodes in the potential contact area).

*In Appendix |A] see: for the form of normal contact problem and tangential contact problem,
for the form of the nonlinear systems to be solved, Figure for the flow of Kalker’s CONTACT
algorithm.

fThe code in [47] was applied using the default setting and dropping bound constraints on the
unknown.
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A typical feature of the contact model is that n increases as the velocity increases and
when the train curves along the route (i.e. the track curvature increases). The total
number of systems associated to v = 10m/s and v = 16m/s is 121 and 153 respectively
and forms the problem set denoted as SET-CONTACT.

v(m/s) Track Section Time Instances Number of Systems n
Straight line 100-105 10 156
10 Cycloid 300-305 56 897
Curve 450-455 55 1394
Straight line 50-55 8 156
16 Cycloid 150-155 63 1120
Curve 350-355 82 1394

Table 3.2: Sequences of nonlinear systems forming the SET-CONTACT.

3.3.2 Experimental study

We now test the performance of all the variants of SRAND1 method in the solution of
the sequences of nonlinear systems in Table Further, in light of the theoretical
investigation presented in this work, we analyze in details the results obtained with BB1
and BB2 rule and support the use of rules that switch between the two steplengths.

Figure shows the performance profiles [16] in terms of F-evaluations employed by
the SRAND1 variants for solving the sequence of systems generated both with v = 10m/s
(121 systems) (upper) and with v = 16 m/s (153 systems) (lower) and highlights that
the choice of the steplength is crucial for both efficiency and robustness. The complete
results are reported in Appendix [B]

The performance profile is a tool proposed by Dolan and Moré [16] for comparing a
group of algorithms. For each test 17" and algorithm A, let feT'A denote the number of
F-evaluations required to solve test 1" by algorithm A, and feT be the lowest number of
F-evaluations required by the algorithms under comparison to solve test 7. Then, for
algorithm A the performance profile is defined as

fel A
-

fel' T>1.
# tests ’ -

# tests s. t.

(1) =

We start observing that BB2 rule outperformed BB1 rule; in fact the latter shows the
worst behaviour both in terms of efficiency and in terms of number of problems solved.
Alternating By 1 and B2 in ALT rule without taking into account the magnitude of the
two scalars improves performance over BB1 rule but is not competitive with BB2 rule. On
the other hand, the variants of SRAND1 using adaptive strategies are the most robust,
i.e., they solve the largest number of problems, and efficient. Specifically, comparing
ABB, ABBm and DABBm rules, the most effective steplength selections are ABBm and
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F-evaluation performance profile (v = 10 m/s)

0sf :-E , y " : ——BB1

—BB2

by if Wi —ALT g
- i - = ABBO1

== ABBmMO1
ABBmMO08 [}
-=-- DABBmMO08

fraction of problems for which solver is within t of the best

——BB1
—BB2
— ALT
- = ABBO1
------- ABBO8 H
== ABBmO1
ABBmMO08 H
-+ DABBmMO8

I
35 4

T

fraction of problems for which solver is within t of the best

Figure 3.2: SET-CONTACT: F-evaluation performance profiles of SRAND1. Upper: v =
10m/s, lower: v =16 m/s.

DABBm. Using ABBmO1 rule, 97.5% (2 failures) and 94.1% (6 failures) out of the total
number of systems were solved successfully for v = 10m/s and v = 16 m/s respectively;
using ABBmO08 rule, 97.5% (1 failures) and 96.7% (5 failures) of the total number of
systems were solved successfully with v = 10 m/s and v = 16 m/s respectively; using
the dynamic selection DABBm, the largest number of systems was solved successfully,
ie., 97.5% (1 failure) and 98.7% (2 failures) out the total number of systems with
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v =10m/s and v = 16 m/s respectively. Overall, ABBm0S rule gives rise to the most
efficient algorithm for both velocity values; the profile related to BB2 rule is within a
factor 2 of it in roughly the 80% and the 70% of the runs for v = 10m/s and v = 16m/s,
respectively.

Let us now focus on the performance of SRAND1 coupled with BB1 and BB2 rules. As
a representative run of our numerical experience reported in Appendix[B] we consider the
nonlinear system arising with v = 16 m/s, at time ¢t = 150, iteration 2 of the CONTACT
algorithm and iteration 2 of the TANG algorithm (system 150-2_2 in Table .

. ||IF]| convergence history (semilog scale) Number of function evaluations
10 r

—BB1

50 100 150 200 250 50 100 150 200 250

Iterations Iterations
Number of backtracks Number of backtracks
8r 8r
6 6
5% * 5%
4 * 41 *
3 * % 3r
2 * * * ¥ * 2+ * *
1% * Ok % * Ak 1
0 0
50 100 150 200 250 20 40 60 80 100 120 140 160
Iterations Iterations

Figure 3.3: SET-CONTACT: SRAND1 with BB1 rule vs SRAND1 with BB2 rule on a single
nonlinear system.

In the upper part of Figure 3.3/ we display ||F’|| along iterations and the number of F-
evaluations performed. We note that using the stepsize ;1 causes a highly nonmonotone
behavior of ||F|| and such behaviour is not productive for convergence; using BB1 rule
276 iterations and 476 F-evaluations are performed while using BB2 rule 163 iterations
and 228 F-evaluations are required. The distinguishing feature of these runs is the high
number of backtracks performed at some iterations where 1 is used, see the bottom
part of the figure where the number of backtracks versus iterations is reported for both
SRANDI1 variants. This behaviour is in accordance with the analysis in Subsection [2.2.3
since (1 can be arbitrarily larger than ;2 in the indefinite case, the need to perform
a large number of backtracks to enforce approximate norm decrease is likely to occur in
case (1 is taken as the initial steplength. Such observation supports the use of 3 o;
the benefit from using shorter steps is further shown by the performance of ABBm over
ABB, the former tends to take shorter steps than the latter by exploiting the iteration
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history and results to be more effective.

We conclude our experimental analysis using a spectral residual method in the CON-
TACT algorithm. To this purpose, we compare two implementations of CONTACT algo-
rithm which differ only in the nonlinear solver for the nonlinear systems arising in the
TANG algorithm. The first implementation (CONTACT-NTR) uses a standard Newton
trust-region method and the second one (CONTACT-DABBm) uses DABBm which turned
out to be the more robust SRAND1 version in the analysis above (see Figure . As
a standard Newton trust-region method, we used the Matlab code proposed in [47]; de-
fault parameters were used and bound constraints on the unknown were dropped using
the setting indicated in the code. The Jacobian matrix of F' was approximated by finite
differences.

As a preliminary issue, we observe that the Jacobian matrices of F are dense through
the iterations; thus they cannot be formed as a low computational cost by finite difference
procedures for sparse matrices [8]. We also observed in the experiments that the Jacobian
matrices are nonsymmetric, do not have dominant diagonals and they are not close to
diagonal matrices. For example, let us consider the Jacobian matrix of the system
corresponding to speed v = 16 m/s, curve track section, instant ¢ = 355, iteration 2 of
the CONTACT and iteration 4 of the TANG algorithm (35524 in Table . It has
dimension 292 x 292 and, evaluated at the final iterate computed using ABBmO0S rule,
96.18% of its elements are nonzero. The structure of the Jacobian can be observed in
Figure where the absolute values of its elements are plotted in a logarithmic scale
(the surface of the full matrix on the left and a plot of the row 146 on the right).
This structure is observed along all the iterations of the nonlinear system solvers and is
common to all sequences generated by the CONTACT algorithm.

surface of the jacobian plot of the central row of the jacobian

10°

Figure 3.4: Jacobian matrix: surface of the full matrix and plot of the central row (base
10 logarithm of the absolute values).
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In our implementation, CONTACT algorithm terminated when the relative error be-
tween two successive values of the computed pressures dropped below 10™* or a max-
imum of 20 alternating cycles between NORM and TANG was reached. Both nonlin-
ear solvers were run until the stopping rule is met. We ran CONTACT-NTR and
CONTACT-DABBm over the whole track for both velocities, that is we considered the
whole sequence of 500 time steps. CONTACT-NTR, generated 3759 and 5353 nonlinear
systems for v = 10 m/s and v = 16 m/s, respectively and CONTACT-DABBm generated
4496 and 5494 nonlinear systems for the two velocities.

As a first remark, both procedures successfully solved the contact model described
above and were reliable and accurate in the numerical simulation of wheel-rail interac-
tion. Secondly, the use of the spectral residual method yields a gain in terms of time with
respect to the use of a standard Newton method where finite difference approximation of
Jacobian matrices is employed; this feature derives from the fact that spectral residual
method is derivative-free and does not ask for the solution of linear systems. Figures
and [3.6[ show the comparison of the two CONTACT implementations in terms of number
of F-evaluations (excluding those needed to approximate the Jacobian matrices) and ex-
ecution elapsed time. From the plots we observe that CONTACT-DABBm takes a larger
number of F-evaluations than CONTACT-NTR but it is faster. Over the whole time
interval, CONTACT-DABBm employed 1 hour, 19 mins and 2 hours, 28 mins to solve the
generated nonlinear systems with v = 10 m/s and v = 16 m/s, while CONTACT-NTR
took 7 hours and 49 mins and 12 hours and 41 mins, respectively.

Elapsed time (seconds)
T T T

T T
——CONTACT-NTR
——CONTACT-DABBm

0 50 100 150 200 250 300 350 400 450 500
time steps

Number of F-evaluations
T

_[|——CONTACT-NTR
1"El—— CONTACT-DABBm

0 50 100 150 200 250 300 350 400 450 500
time steps

Figure 3.5: SET-CONTACT: comparison between CONTACT-DABBm and CONTACT-
NTR, v = 10 m/s: number of F-evaluations and elapsed time in seconds (logarithmic
scale).
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Elapsed time (seconds)
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o & A —e—CONTACT-DABBm

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

time steps

Number of F-evaluations

——CONTACT-NTR
15l->~ CONTACT-DABBm| . .

150 200 250 300 350 400 450 500
time steps

Figure 3.6: SET-CONTACT: comparison between CONTACT-DABBm and CONTACT-
NTR, v = 16 m/s: number of F-evaluations and elapsed time in seconds (logarithmic
scale).

3.4 Numerical validation of SRAND2

In this section we compare the performance of SRAND1 and SRAND2 algorithms on two
problem sets. The first set (named SET-LUKSAN) contains 17 nonlinear systems from the
Luksan’s test collection described in [39]; these tests are commonly used as benchmark
for optimization algorithms. Problems in SET-LLUKSAN were solved setting n = 500 and
starting from the initial guess xo suggested in [39]. Problem lub requires an odd value
for n and therefore we set n = 501. The second set is the SET-CONTACT described in
Section [3.3.1] and detailed in Table 3.2l

Considering SET-LUKSAN, we experimented SRAND1 and SRAND2 combined with
all the rules described in Section for the choice of B;. For 16 out of 17 problems
considered, SRAND1 and SRAND2 give the same results with all the choices of 5;: Table
3.3| reports the number of F-evaluations varying the updating rule for B;. SRANDI1
and SRAND2 only differ for the kind of failure in a few runs (note that in Table
we use the symbol Fi,/Fpy to indicate that Fi, and Fyy are the failures produced by
SRAND1 and SRAND2 respectively and the symbol Fyt /Fip to indicate that Fyy and Fin
are the failures produced by SRAND1 and SRAND2 respectively). Problem lul6 reported
in Table is of interest because, though performing a large number of F-evaluations
in some cases, SRAND2 is able to successfully solve it using all the rules except for BB1,
whereas SRAND1 returns a failure with most of the attempted 3j rules.
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SRAND1 and SRAND2

Problem BBl BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=038
lul Fin 1066  Fpt Fin/Fbt 1066 Fot 1053 1288
lu2 496 376 455 852 842 252 501 9562
lu3 ) 9 5} 5 5) 5) ) 5}
lud 31 32 31 31 29 31 33 35
lub 15499 1013 2634 1632 1057 2131 1152 1147
lu6 Fin Fin 74 Fin Fin Fin Fpt Fpt
lu7 Fin Fin 417 Fin Fin Fin Fin Fin
lu& 419 Fin 266 Fin Fin/Fbt Fin/Fbt Fj_n Fin
1u9 Fin Fin 182 2852 1150 Fin 4363 4365
lul0 457 Fin 1168 Fin Fbt/ Fin Fj_n Fin/Fbt Fin/Fbt
lull Fin Fin Fin Fin Fin Fin Fin Fin
lul2 Fin Fin Fin Fin Fin Fin Fin/Fot  Fin/Fot
lul3 Fin 3 84 123 29 83 33 41
lul4 37 33 36 37 34 37 32 33
lulb 34 33 33 34 33 34 36 34
lul7 137 27 28 155 520 143 Fot Fot

Table 3.3: SET-LUKSAN: number of F-evaluations performed by SRAND1 and SRAND2

with different rules for Sg.

Problem lul6

BBl BB2  ALT ABB ABBm DABBm
| 7=01 7=08 7=01 7=08
SRAND1 ‘ Fte Fin Fot Fin Fin 2688 1674 3774
SRAND2 | Fse 45624 57432 35413 58456 2688 1674 5439

Table 3.4: SET-LUKSAN: number of F-evaluations performed by SRAND1 and SRAND2
with different rules for 8 on Problem lul6.
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In Figure we give an insight into the convergence behavior of both methods with
BB2 rule on Problem lul6. We display: |[Fj|| versus the iterations and the number
of F-evaluations (top part), the number of backtracks performed by both algorithms
(central part), and values of ||Fy| and 5 versus the iterations for both algorithms
(bottom part). All plots are obtained by disabling the stopping criterion on the number
of consecutive increases of ||F||. In this setting SRANDI1 fails after performing 3278
iterations and 56883 F-evaluations since the maximum number of backtracks is reached,
while SRAND2 converges requiring 8456 iterations and 45624 F'-evaluations. We observe
that the sequence of {|| Fx||} generated by SRAND1 does not satisfy the stopping criterion
, whereas the increasing number of backtracks along the iterations corresponds to
the fact that {7x} is going to zero. On the contrary, the sequence {||F%||} generated by
SRAND2 converges to zero and 7y, does not decrease with the iterations. Both situations
are in accordance with the theory: at least one among the sequences {||Fx||} and {~x}
converges to zero, but SRAND2 generates a sequence {| F||} that goes to zero.

" |IFll convergence history (semilog scale) _Number of function evaluations (semilog scale)
10 10*

—— SRAND1+BB2 / - ==
- - SRAND2+BB2 -

10% e -
e —— f/ —— SRAND1+BB2
- = SRAND2+BB2
10 0
s 0 1000 2000 3000 4000 5000 ©000 7000 BOOD 9000 e o 1000 2000 3000 4000 5000 ©000 7000 8000 9000
lterations lterations
Number of backtracks Number of backtracks

* SRAND1+BB2

+* SRANDZ+BB2

o G a
0 500 1000 1500 2000 2500 2000 3500 Q 1000 2000 3000 4000 5000 6000 7000 8000 9000
lterations lterations
SRAND1+BB2 (semilog scale) SRAND2+BB2 (semilog scale)

a 500 1000 1500 2000 2500 3000 3500 a 1000 2000 3000 4000 5000 6000 7000 8000 9000
lterations lterations

Figure 3.7: SET-LUKSAN: convergence history of SRAND1 and SRAND2 with BB2 rule,
Problem 1ul6.

Finally, we investigate a case of failure of SRAND2 algorithm with the aim of under-
standing the behavior of the method when the stopping criterion is not met. To
pursue this issue we considered Problem lul not solved by SRAND2 combined with ALT
rule. The experiment is carried out changing some parameters in order to emphasize the
asymptotic behaviour of the sequence generated by SRAND2. The dimension n is set to
10 and the maximum number of backtracks is raised to 60. Also the stopping criterion
on the number of consecutive increases of ||F'|| is disabled. The remaining parameters
are set as in the previous experiments. In Figure[3.§we display values of || Fj|| and of the
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scalar product V f,? F}, versus the iterations. We observe that V fkT F}, decreases along
the iterations while the norm of F' stagnates. This experiment is in line with Theorem
according to which, even if the sequence {||F||} does not converge to zero, the
sequences {V fr} and {F}} tend to become orthogonal.

SRAND2+ALT (semilog scale)

10" T

1 | 1 | Il Il Il 1
500 1000 1500 2000 2500 3000 3500 4000 4500

lterations

4o 10
a

Figure 3.8: SET-LUKSAN: a case of failure of SRAND2 combined with ALT rule, Problem
lul.

The practical advantages of the new linesearch are also confirmed by the experiments
performed with the problems in SET-CONTACT using both v = 10 m/s and v = 16 m/s
for a total of 274 problems. Results obtained for these problems are summarized in
the F-evaluations performance profiles of Figure where SRAND1 and SRAND2,
combined with rules BB2 (top plot), ALT (central plot) and DABBm (bottom plot), are
compared. In this case we tested the algorithms using these three classical rules together
with the DABBm rule that in Section [3.3] yielded the most robust version of SRAND1 on
this set of problems. Results with BB1 are not reported since the behaviour of the two
algorithms did not differ in terms of number of solved problems. The complete results
are reported in Appendix The plots clearly show that the two algorithms perform
similarly and SRAND2 is slightly more robust. In detail, SRAND1 and SRAND2 with
DABBm solves 271 and 272 problems, respectively. Also, in combination with the BB2
and ALT rules, SRAND2 solves 3 and 6 problems respectively more than SRANDI.

In the ten cases recovered by SRAND2, the behaviour of the two methods is similar
to what observed with Problem lul6. To witness, the graphs reported in Figure|3.10|are
relative to one of the cases where the BB2 rule was in use. Analogous observations as
for Figure can be drawn, regarding convergence to zero of the sequences {7x} and

{1 Fxll}-
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F-evaluations performance profile
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Chapter 4

Research perspectives

The numerical behaviour of spectral residual methods for nonlinear systems heavily
depends on the choice of the spectral steplength. Although most of the works on this
subject use the stepsize denoted in literature as (1, known results on the spectral
gradient methods for unconstrained optimization suggest that a suitable combination
of the stepsizes (1 and S 2 could be of benefit for spectral residual methods as well.
This thesis aimed to contribute to this study by providing a first systematic analysis
of the stepsizes B 1 and By2. Moreover, practical guidelines for dynamic choices of
the steplength were derived from new theoretical results in order to increase both the
robustness and the efficiency of spectral residual methods. Such findings have been
extensively tested and validated on sequences of nonlinear systems arising in the solution
of a wheel-rail contact model.

Further we showed how to modify the SRAND1 algorithm proposed in [4§] in order
to establish a more general framework, denoted as SRAND2, such that the sequence
{||Fx||} is guaranteed to converge to zero under more general conditions, and showed
experimentally practical benefits in terms of robustness on test problems from both the
literature and applications.

The SRAND1 algorithm in [48] was developed for solving constrained nonlinear sys-
tems of the form

F(z)=0, z€Q, (4.1)

where 2 C R" is a convex set whose relative interior is non-empty. SRAND2 may also be
adapted to the solution of constrained problems of the form by relying on suitable
projection operator onto the feasible set € as follows. Proceeding as in [48], feasible
iterates {x} can be defined by starting from a feasible zp, and by setting for & > 0

Tht1 = P(rp £ 70k Fr),

where P denotes a projection operator onto the considered domain and the new global
convergence result in Theorem [2.3.6] applies to limit points lying in the interior of €.
Convergence to solutions on the boundary of €2 deserves investigation.
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Appendix A

Kalker’s contact model and
CONTACT algorithm

We give an overview of the model and algorithm used to generate our set of nonlinear
systems. Bold letters represent vectors, subscript 1" denotes a vector with components
in the tangential z-y contact place, subscript N denotes the component of a vector
in the normal z contact direction. The contact problem between two elastic bodies
[30,31] determines the contact region C' inside the potential contact area A, (usually the
interpenetration area between the wheel and rail contact surfaces), its subdivision into
adhesion area H and slip area S, and the tangential pr and normal py pressures such
that the following contact conditions are satisfied:

normal problem incontact C': e=0, py=>0
in exterior F: py =0, e>0
CUE = A, CNE=10 (A1)
tangential problem in adhesion H : ||s7|| =0, |[prll<g )
in slip S : szl #0, pr=—gsr/|srl
SUH =C, SNH=0.

Above, e is the deformed distance between the two bodies and, by definition, it holds
e =0 and py > 0 in C. Referring to Figure [A] the region E where e > 0 is called
the exterior area and py = 0 therein. The potential contact area is such that A. =
C U E. The contact area C' is divided into the area of adhesion H where the tangential
component sr of the slip vanishes, and the area S of slip where st is nonzero. The
slip s is the difference between the velocities of two homologous points belonging to
the deformed wheel and rail surfaces inside the contact area and is a function of the
pressures pr and py, g is the traction bound (Coulomb friction model [30,31]). Overall,
the first three equations in model the normal contact problem (computation of py
and of the shapes of the regions C' and F), whereas the last three equations describe the
tangential contact problem (computation of pr, of local slidings sy and of the shapes of
the regions H and 95).

Let us consider the discretization of (A.I). Assuming that the contact patch is
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entirely contained in a plane, the region within which the potential contact area A. can
be located is easily discretized through a planar quadrilateral mesh, see Figure The
coordinates of the center of each quadrilateral element are denoted x; = (z1,%12,0)
where the capital index I identifies the specific element, say I = 1,..., Ng. Also, the
standard indices ¢ = 1, 2, 3, will indicate the vector components. For any element I and
any generic vector wy = (w1, wrg, wrs) associated to such mesh element, wry, wry are
the components in the x-y contact plane and wys is the component in the normal contact
direction z. Namely, wrr = (w1, wr2) and wrg are the discrete counterparts of wp and
wpy, respectively.

/:___\ L x; = (x;,9;,0)
C A; L

[/

— |1

Ay

4x

Figure A.1: Local representation of the discretized contact area.

The discrete values of the elastic deformation u on the mesh nodes (i.e. the defor-
mation of the elastic bodies in the contact area [30,31]) are defined both at the current
time instance ¢ and at the previous time instance t':

u; = (u) at (xp,t), up=(uy) at (xy+v(t—1t),t), (A.2)

where v is the rolling velocity (i.e. the longitudinal velocity of the wheel) and I is an
arbitrary mesh element). Analogously, for the contact pressures p it holds

ps=(ps;) at (x5,t), pj= (o)) at (x;+v(t—-1t), 1), (A.3)

where J is an arbitrary mesh element. According to the Boundary Element Method
Theory [30431], the discretized displacements u; can now be written as a function of the
discretized contact pressures p; through the discretized version of the problem shape
functions, that is

Ng 3

ur = Z Z Arigipgj, Wwith Ay = Bigj (X1),
J=1j=1

and B;j;j(xs) are the discrete shape functions of the problem describing the effect of
a contact pressure py applied to the element J on displacement u; of the node I (see
[30,131]). The shape function B;;; usually depends on the problem geometry and the
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characteristics of the materials. An analogous expression can be derived for u},. The
elastic penetration e can be calculated at each node x; as

er=hr+ Y Arssspss,
T

where hy is the discretization of the (known) undeformed distance between the two
bodies, see [30,31]. Similarly, the slip sp can be discretized by setting

S1,T = CI,T =+ (uI,T — u’I’T)/(t — tl), (A4)

where ¢y 7 is the discretization of the (given) rigid creep, that is the difference between
the velocities of two homologous points belonging to the undeformed wheel and rail
surfaces inside the contact area and thought of as rigidly connected to the bodies.

We observe that both u and sy depend linearly on the pressures p and p’. Therefore,
the discretization of equation e = 0 in the norm problem yields a linear system in
the discretized normal pressures (prs) while the discretization of the nonlinear equation

pr = —gsr/llszl,

in the tangential problem yields the nonlinear system

sir = —|sirllprr/gr, (A.5)

with pr.r = (pr1, pr2) being the unknow When using the Coulomb-like friction model
[30,31], the friction limit function takes the form g; = frprs, where f7 is a given constant
friction value.

The flow of Kalker’s CONTACT algorithm is displayed in Figure [30,31]. At each
time step of time integration, the inputs of the CONTACT algorithm are the potential
contact area A, (usually the interpenetration area between wheel and rail surfaces), the
rigid penetration h and the rigid local sliding ¢y (inputs calculated, on turn, from the
kinematic variables of the body: position and velocities of the gravity centers Gi, Go,
Vi, Vo, rotation matrices Ry, Ro and angular velocities wy, wo) [30,[31]. All these
kinematic quantities are calculated at each time step by the ODE solver of the Simpack
Rail multibody environment [56]. NORM algorithm solves the normal contact problem
and returns the contact area C, the non-contact area F, the normal contact pressures
pn. Then, TANG algorithm returns the sliding area S, adhesion area H, the tangential
contact pressures pr and local sliding sp. Repetitions of NORM and TANG algorithms
are then performed to approximate accurately normal and tangential pressures pr, py.
At the end of CONTACT algorithm, forces and torques exchanged by the contact bodies
(F!, F? and M!, M?) are computed by numerical integration and returned to the time
integrator for proceeding in the dynamic simulation of the multibody system.

*In the unlikely event s;r = 0, the system is nonsmooth. We regularize (A.5) replacing the term

2 7 wi 2 2 , ; it
\/ 87, + 875 With \/s7, + s7, + €, for some small positive e.
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Appendix B

Complete results

In this section we collect the complete results for the runs which gave rise to the perfor-
mance profiles in Figures[3.2] and. Results in Tables[B.I}[B.6|refer to SRAND1 method
whereas results in Tables [B refer to SRAND2. For each method, results concern
two velocities (v = 10m/s in Tables . B.3, B.5| B.7, B.9, B.11] and v = 16m/s in
Tables (B -, -, . . - and three different track sections (straight line
in Tables [B-1] B-2] [B:7] and B8] CyClOld in Tables [B:3] B.4, B9 and [B.I0] and curve
in Tables and . Given a sequence of nonlinear systems, we la-

bel a single system from the sequence as Time_Citer_Titer specifying the instant time
(Time), the CONTACT iteration (Citer) and the TANG iteration (Titer). For each run
we report the number of F-evaluations performed in case of convergence, or, in case
of failure, the corresponding flag. We recall from Section that a run is successful
when || Fy|| < 1075. A failure is declared either because the assigned maximum num-
ber of iterations or F-evaluations or backtracks was reached, or because ||F|| was not
reduced for 500 consecutive iterations. Such occurrences are denoted as Fit Fge, Fot,
Fin, respectively.
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SRANDI - v = 10 m/s - straight line

System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=038
101_1.2 69 59 74 75 59 71 57 69
10122 382 148 248 295 205 174 198 220
103_12 37 31 35 37 30 37 31 34
10322 37 31 35 37 30 37 31 34
10412 36 36 37 36 38 36 39 38
10422 36 36 37 36 38 36 39 38
105_12 39 38 39 39 38 39 39 39
105_13 77 69 82 79 70 82 67 74
10522 40 37 39 40 38 40 39 39
105-2_3 74 73 86 75 70 75 67 76

Table B.1: Number of function evaluations performed by SRAND1 variants in the solution
of nonlinear systems arising from time 100 to time 105 and corresponding to a straight
line with velocity 10 m/s. In the first column we indicate the time step, the CONTACT
and the TANG iteration.

SRAND1 - velocity 16 m/s - straight line

System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=038
50.1_2 60 45 53 52 47 52 46 49
50.2_2 53 44 51 54 48 54 48 53
50.3_2 53 44 51 48 48 48 48 53
5222 75 78 53 76 75 101 61 91
5232 89 78 53 76 88 112 61 91
5512 65 66 66 83 66 80 62 72
5522 69 79 60 76 61 73 67 71
55.32 69 79 60 80 61 73 67 71

Table B.2: Number of function evaluations performed by SRAND1 variants in the solution
of nonlinear systems arising from time 50 to time 55 and corresponding to a straight line
with velocity 16 m/s. In the first column we indicate the time step, the CONTACT and
the TANG iteration.
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SRAND1 - velocity 16 m/s - cycloid

System BB1 BB2 ALT ABB ABBm DABBm System BB1 BB2 ALT ABB ABBm DABBm

7=01 7=08 7=01 7=038 7=01 7=08 7=01 7=0.8
150_1.2 985 297 330 366 357 351 278 343 15313 Fre 1173 1181 1162 1179 735 568 596
150_.1.3 26886 569 512 612 555 487 419 437 153_1.4 Fte 991 3881 1003 1590 1044 635 771
150_1.4 Fre 967 3163 653 Fin 550 604 617 15322 21846 475 603 688 532 578 396 446
150_1.5 Fse Fin 810 647 1549 614 510 710 153.2.3 Fre 1149 3920 1316 1506 843 621 704
15022 476 228 307 295 302 277 216 301 15324 Fre 1445 5035 1262 1272 1215 602 784
15023 627 584 404 437 485 377 344 443 15325 Fre 772 4023 926 1576 1188 764 725
15024 52373 585 479 494 730 438 391 435 15332 1873 628 754 674 585 489 429 471
15032 F:e 1304 Fin Fin 1777 2707 1237 911 15333 Fte 770 4768 1187 1882 941 699 860
150.3_3 Fre 2498 Fin Fin Fin 2300 1973 1737 15334 Fre 1568 4872 923 1161 1173 678 709
15034 Ffe 6214 Fin Fin Fin 3097 2576 Fin 15335 Fre 1226 5474 1145 1118 730 688 730
15112 Fte Fin 5095 841 905 664 605 689 15412 66851 776 3124 727 1033 585 534 527
15113 Fre 1114 5312 1421 1144 810 616 829 15413 1031 386 513 467 681 433 310 346
15114 Ffe 1454 8154 1630 3755 1125 1139 1046 15414 18703 533 421 539 518 434 404 447
15115 Fre 3590 13111 2610 1435 1231 864 1043 15422 947 319 312 420 357 341 294 356
15122 Fre 1337 12656 1333 3092 973 864 856 15423 255 193 220 216 241 238 201 246
15123 Frfe 3776 9599 1983 2198 1077 949 961 15424 348 266 255 255 258 250 228 276
1512 4 Fte 3013 9073 1867 3551 1409 870 974 15432 569 403 288 336 394 302 277 354
15125 Fre 5005 18543 1831 3662 1635 1270 1345 154.3.3 248 218 249 253 276 217 206 233
15132 Fte Fin 7743 Fin 3893 Fin 939 803 15434 346 318 278 281 271 267 239 250
15133 Fre 2293 9494 1383 1689 1080 809 982 15512 Fre 1161 5470 1151 987 824 718 859
15134 Fre 1235 7622 1416 1884 1075 856 941 155.1.3 Fre Fin 31313 4192 4270 1758 1401 1193
151.3.5 Fre 4085 24983 1853 Fin 1509 1147 1330 15514 Fre 5839 19894 Fin 4182 1621 1729 1380
15212 68856 822 1395 742 661 680 473 575 155.1.5 Fte Fin Fit Fin Fin 1624 1351 1339
15213 Fre 682 4009 1153 1085 859 648 669 15522 Fre 1211 3754 1267 1275 764 651 635
15214 Ffe 725 2905 986 1423 799 646 720 15523 Fre Fin Fin 2536 Fin 1658 1328 1273
15222 21104 604 641 407 681 543 347 399 15524 Fte 1623 24770 3690 Fin 1626 1461 1427
152.2.3 80349 701 1082 636 845 632 476 610 15525 Fre Fin Fot Fin 14474 1683 1715 1559
1522 4 Fre 1748 3725 1395 1034 873 590 849 15532 Fse 877 6004 990 882 795 567 818
152.3.2 20711 567 601 382 664 453 358 420 15533 Fre Fin 23302 1784 Fin Fin 1539 1238
152.3.3 75894 966 1098 522 898 639 535 627 15534 Fre 2895 32130 1953 Fin 1539 1739 1315
1523 4 Ffe 1146 4114 848 1152 744 558 734 155.3.5 Fte Fin Fin 6554 Fin Fin Fin Fin
15312 1281 408 589 512 495 472 400 397

Table B.4: Results for each system of the sequences generated in the cycloid section of the train track with velocity v = 16 m/s.
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SRAND1 - velocity 16 m/s - curve

System BB1 BB2 ALT ABB ABBm DABBm System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=028 7=01 7=08 7=01 7=028
350_1_2 424 320 308 359 366 297 284 286 35245 Frte 1132 7322 1252 Fin 921 Fin 724
350_1_3 Fso 825 5650 826 905 771 540 687 35312 468 357 398 482 342 352 307 357
35022 308 208 220 244 261 243 197 247 353.1.3 887 640 588 557 441 508 446 456
350-2_3 Fre 1322 3384 572 Fin 501 433 497 353.14 Fse 695 4525 905 1369 781 625 656
35024 Fso Fin 6845 1204 1523 746 790 718 353.1.5 Fse 877 4670 793 1551 782 682 764
350_3_2 311 221 277 264 234 214 188 213 35322 589 357 365 461 398 426 370 386
35033 76754 Fin 885 639 666 491 416 481 35323 47619 755 572 913 812 529 459 528
35034 Fse Fin 6032 675 Fin 1141 761 647 35324 Fre 1143 3476 Fin 857 798 642 687
35042 271 207 233 229 226 220 201 218 35325 Fre 1984 8598 1370 1700 Fin 867 1111
35043 91233 764 3110 633 829 536 432 526  353.32 711 381 394 481 380 408 368 361
35044 Fre 1593 6301 722 Fin 637 Fin 751 353.3.3 65122 672 600 710 996 604 511 457
35112 Fre 1241 1625 920 913 772 597 538 353.34 Fse 837 1623 815 1111 759 588 633
351.13 Frte 1596 11134 1807 Fin 1374 1199 1090 35335 Fte 1250 6524 1233 1350 1110 915 855
35114 Fre 2272 20207 1862 Fin 1555 1217 1240 35342 575 448 505 425 360 350 341 372
35122 Fre 1088 42218 Fin 1207 1385 959 1050 353.4.3 57903 732 725 644 469 517 492 533
35123 Fre 2428 Fit Fin Fin 2185 1567 1825 35344 Fte 1030 932 873 1055 679 630 669
35124 Fre 5683 Fis Fin Fin 2421 2064 1636 35345 Fte Fin 8112 1276 1502 980 904 967
35125 Fse Fin Fit Fin Fin 3192 2052 2770 35412 313 229 219 320 261 265 187 253
35132 Fre 1261 12388 3742 1566 992 1166 876 354_1.3 502 323 369 398 337 318 267 342
351.3_3 Fre 2029 Fit Fin Fin Fin Fin 1704 354.1.4 87446 710 4042 610 716 579 536 673
351.34 Fre 2397 Fit Fin 4270 2105 2074 1630 35422 445 321 348 373 292 289 230 296
351.3.5 Fie Fin Fit Fin Fin 2833 Fin 2635 35423 1771 462 359 434 473 355 345 372
35142 Fre 1285 Fis 4846 1378 1262 1313 1028 35424 Fte 1054 4522 1052 1159 757 649 701
35143 Fsfe 1778 Fit Fin 2581 2073 2144 1764 35432 451 315 295 324 275 259 265 316
35144 Fre Fin Fit Fin Fin 2848 1794 1763 354.3.3 789 382 392 508 521 409 408 409
35145 Fre Fin Fin Fin Fin Fin 3340 4432 35434 Fte 913 3478 786 921 845 607 665
35212 Fife 1794 Fue 5760 1636 1619 1933 1728 35442 405 323 289 350 308 317 256 295
352.1.3 F:e 3141 Fpt 3787 2872 1686 1495 1524 354.4_3 1776 497 363 452 338 399 333 370
35214 Fse Fin Fis Fin Fin 2334 1657 1721 35444 Fse 991 4561 830 1141 704 553 634
35215 Fse Fin Fit Fin Fin 2318 2846 1623 355.1.2 638 226 262 264 292 268 258 266
35222 72375 676 1359 708 586 643 459 501 355.1.3 527 339 509 348 348 348 286 331
352.2.3 74955 801 878 794 718 857 481 519 355.1.4 35134 489 1201 464 525 477 382 408
35224 Fse 866 5116 1209 1071 837 648 746 35522 346 222 252 246 243 221 194 242
35225 Fso Fin 12683 1209 Fin 921 803 909 355.2.3 2303 480 396 402 357 313 261 358
35232 59157 701 1249 712 652 687 420 589 35524 41075 671 542 511 401 376 355 433
352.3.3 87628 1116 682 804 611 639 517 517 355.32 336 289 249 264 282 194 232 241
35234 Fso 808 6379 845 830 726 782 685 355.3.4 639 268 480 340 370 304 291 369
35235 Fre 1213 8333 1658 1133 863 697 781 355.3.5 24592 624 753 457 744 448 388 428
35242 48585 603 818 679 775 668 460 528 35542 363 214 268 226 261 261 203 221
35243 79649 867 628 720 876 590 470 511 355.4.3 714 463 360 369 343 383 260 314
35244 Fie Fin 4570 1046 1200 858 708 804 35544 32137 404 700 411 532 562 367 451

Table B.6: Results for each system of the sequences generated in the curve section of the train track with velocity v = 16 m/s.
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SRAND2 - v = 10 m/s - straight line
System BB1 BB2 ALT DABBm

10112 69 59 74 69
101.2.2 382 148 248 220
10312 37 31 35 34
103.2_2 37 31 35 34
10412 36 36 37 38
10422 36 36 37 38
105.1_2 39 38 39 39
105.1_3 7 69 82 74
105.2_2 40 37 39 39
105.2_3 74 73 86 76

Table B.7: Number of function evaluations performed by SRAND2 variants in the solution
of nonlinear systems arising from time 100 to time 105 and corresponding to a straight
line with velocity 10 m/s. In the first column we indicate the time step, the CONTACT
and the TANG iteration.

SRAND2 - velocity 16 m/s - straight line
System BB1 BB2 ALT DABBm

5012 60 45 93 49
5022 53 44 51 53
5032 53 44 51 53
5222 75 78 53 91
5232 89 78 93 91
95.1.2 65 66 66 72
5522 69 79 60 71
5532 69 79 60 71

Table B.8: Number of function evaluations performed by SRAND2 variants in the solution
of nonlinear systems arising from time 50 to time 55 and corresponding to a straight line
with velocity 16 m/s. In the first column we indicate the time step, the CONTACT and
the TANG iteration.
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SRAND2 - velocity 10 m/s - cycloid
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

300-1_2 178 128 137 163 30322 Fte Fin 2196 887
300_1_3 513 304 257 298  3032_3 Fte 1062 7399 798
300-1_4 569 402 290 299 30324 Fsfe 1713 12752 1054
300-2_2 343 203 266 204 303225 Fre 1424 21841 1358
300_2.3 16421 388 398 408  303.32 Fte 926 5467 821
300_3_2 357 223 248 232 303.3.3 Fsfe 1318 6284 896
300_3_3 1650 385 368 499 30334 Fre 1279 15483 1012
30112 415 281 247 248  303.3.5 Fte Fin 21781 1193
30113 503 319 351 329  304_12 39074 962 815 491
30114 582 442 281 305 304.1.3 Fte 711 2891 562
30122 1127 286 298 297  304_1.4 Fre 1524 3610 752
301_2_3 630 414 367 337 304222 725 366 381 317
30124 758 345 372 386 304.2.3 67575 558 648 548
30132 918 357 299 326 30424 56102 709 1870 523
301.3_3 750 400 320 313 304.322 415 421 370 325
30134 440 363 302 393 30433 47678 533 2376 612
302_1_2 Fte 743 3727 495 30434 87138 696 1180 488
302_1_3 Fte 844 4067 678  305.1_2 796 270 311 364
302_1.4 Fre 3545 32612 1342 305.1_3 339 293 270 310
30222 634 444 417 376 305-14 430 342 301 309
302.2.3 27293 610 508 548 30522 Fte Fin 2434 1208
30224 Fte Fin 7325 693 305.2_3 Fte 1110 2222 684
302.3_2 743 426 373 361 30524 Fte Fin 842 648
302.3.3 39825 739 502 463 305.2.5 Fte Fin 3329 597
302_3_4 Fre 2245 7598 702 305.3_2 Fte 980 6754 1518
30312 22921 554 679 460 305.3.3 Fse Fin 5805 579
303.1.3 33798 468 684 562 305.34 Fte 871 2502 648
303_1_4 Fte 965 1163 613  305.3.5 Fte Fin 1786 663

Table B.9: Results for each system of the sequences generated in the cycloid section of
the train track with velocity v = 10 m/s.
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SRAND2 - velocity 16 m/s - cycloid
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

15012 985 297 330 343 153.1.3 Fre 1173 1181 596
15013 26886 569 512 437 15314 F:e 991 3881 771
15014 Fte 967 3163 617 15322 21846 475 603 446
15015 Fte Fin 810 710 153.2_3 Fre 1149 3920 704
150-2_2 476 228 307 301 15324 Fre 1445 5035 784
15023 627 584 404 443 153225 Fte 772 4023 725
15024 52371 585 479 435 15332 1873 628 754 471
150_3_2 Fsfe 1304 93989 911 15333 Fze 770 4995 860
15033 Fre 2498 Fze 1737 15333 Fte 770 4995 860
15034 Fte 6079 Fin 2237 15334 Fre 1568 4872 709
15112 Fse Fin 5094 689 153-3.5 Fre 1226 5474 730
15113 Fee 1114 5311 829 154.1.2 65690 776 3124 527
151.1.4 Fre 1454 8154 1046 15413 1031 386 513 346
15115 F:te 3589 13663 1043 15414 18703 533 421 447
151.2.2 Fre 1337 9728 856 15422 947 319 312 356
15123 Fre 2962 9597 961 15423 255 193 220 246
15124 Fse 3013 6363 974 15424 348 266 255 276
15125 Frfe 6045 20420 1345 15432 569 403 288 354
15132 Fte Fin 7742 803 15433 248 218 249 233
15133 Fre 2293 8594 982 15434 346 318 278 250
15134 Fre 1235 7998 941  155.12 Frfe 1161 6519 859
15135 Frfe 6713 21858 1330 15513 Fte Fin Fin 1193
15212 68854 822 1395 575 155_1.4 Fre 5427 Fin 1380
15213 Fte 682 4009 669 155_1.5 Fte Fin Fin 1339
15214 Fte 725 2905 720 15522 Fre 1211 3754 635
15222 21102 604 641 399  155.2.3 Fte Fin 25875 1273
152.2.3 80349 701 1082 610 15524 Fre 1623 Fin 1427
1522 4 Fre 1748 3725 849 155.2.5 Fse Fin Fin 1559
15232 20619 567 601 420 15532 Fte 877 6004 818
15233 76611 966 1098 627 155.3_3 Fre 4924 25285 1238
15234 Fre 1146 4114 734 15534 Fre 2893 21582 1315
15312 1281 408 589 397  155.3.5 Fte Fin 33026 Fin

Table B.10: Results for each system of the sequences generated in the cycloid section of
the train track with velocity v = 16 m/s.
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SRAND2 - velocity 10 m/s - curve
System BB1 BB2 ALT DABBm System BB1 BB2 ALT DABBm

45012 386 210 246 284 453.1.3 402 319 457 316
45013 623 204 303 1627 45314 Fse Fin 2705 544
45022 29519 492 457 471 45322 536 356 379 355
450.2.3 12031 428 433 387 45323 Fte 739 872 560
450322 13879 560 403 382 45324 Fre 1772 38854 Fin
45033 11509 464 448 391 45332 566 351 355 398
45112 681 437 382 397 453.33 Fte 558 598 568
45113 Fre 1218 4314 1501 45334 Fse Fin Fin 1667
45114 F:e 4642 20768 1334 45412 147 153 165 150
45122 324 274 329 250 45413 207 175 206 175
45123 Fre 1652 1046 595 45414 2367 276 293 314
45124 F:e 1573 Fin 941 45415 861 351 250 301
45132 381 253 240 270 45422 237 172 209 207
45133 Fre 3140 4232 635 454.2_3 413 279 211 280
45134 Fze Fin Fin 888 45424 901 363 209 261
45142 358 296 321 263 45432 259 204 204 183
45143 Fre 2108 901 639 45433 469 317 329 265
45144 Fze Fin Fin 821 45434 450 302 231 270
45212 66666 638 638 522 455.12 147 137 145 136
452.1.3 72915 701 725 508  455.1.3 212 184 203 196
45214 45679 803 521 520 455.1.4 482 272 256 246
45222 498 557 887 467 45522 497 372 250 284
45223 37679 608 714 454 45523 563 393 473 348
45224 40268 718 797 501 45524 Fte 840 6926 632
45232 31282 433 451 354 45532 341 270 268 282
45233 41622 581 634 451 45533 603 432 405 353
45234 5592 477 658 470 45534 Fte 792 7505 744
45312 288 200 257 210

Table B.11: Results for each system of the sequences generated in the curve segment of
the train path with velocity v = 10 m/s.
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SRAND2 - velocity 16 m/s - curve
System BB1 BB2 ALT DABBm System BBI1 BB2 ALT DABBm

350.1_2 308 424 320 286 352.4.5 Fin F:e 1132 724
350_1_3 5650 Fse 825 687 353.1.2 398 468 357 357
350-2_2 220 308 208 247 353-13 588 887 640 456
350-2_3 3384 Fte 1322 497  353.14 4525 Fze 695 656
350-2_4 6843 Fse Fin 718  353.1.5 4670 Fee 877 764
350.3_2 277 311 221 213 35322 365 589 357 386
350.3_3 885 76752 Fin 481 35323 572 47617 755 528
350.3_4 6032 Fse Fin 647 35324 3476 Fre 1143 687
35042 233 271 207 218 35325 8657 Fre 1984 1111
35043 3110 90329 764 526  353.32 394 711 381 361
350-4_4 6301 Fse 1593 751  353.33 600 65120 672 457
35112 1625 Fze 1241 538 35334 1623 Fse 837 633
351.1.3 12677 Fte 1596 1090 353.3.5 6523 F:e 1250 855
35114 13812 Fze 2272 1240 35342 505 575 448 372
351.2.2 20454 Fie 1088 1050 35343 725 57899 732 533
35123 Fte Fte 2428 1825 35344 932 F:e 1030 669
35124 Foe Fee 5744 1636 35345 8111 Fse Fin 967
351.2.5 Fte Fse Fin 2770 35412 219 313 229 253
351.3.2 13238 Fte 1261 876 354_1.3 369 502 323 342
351.3.3 Foe Fse 2029 1704 354_14 4042 88877 710 673
351.3.4 73563 Fie 2397 1630 35422 348 445 321 296
351.3.5 Fte Fte Fin 2635 35423 359 1771 462 372
35142 25703 Fse 1285 1028 35424 4521 F:e 1054 701
351.4.3 Fte Fse 1778 1764 35432 295 451 315 316
35144 Fte Fze Fin 1763 354.3.3 392 789 382 409
351.4.5 Fte F:e 10011 2954 35434 3478 Fse 913 665
352.1.2 45932 Fse 1794 1728 35442 289 405 323 295
352_1.3 29665 Fze 3091 1524 35443 363 1776 497 370
352_1.4 Foe Fre 12749 1721 35444 4560 Fze 991 634
352.1.5 Fte Fze Fin 1623  355.12 262 638 226 266
35222 1359 72373 676 501  355.1.3 509 527 339 331
352.2_3 878 74649 801 519 355.1.4 1201 35134 489 408
35224 5116 Fze 866 746 35522 252 346 222 242
352.2.5 10426 Fze Fin 909 355.2.3 396 2303 480 358
352.32 1249 59153 701 589 35524 542 40681 671 433
352.3.3 682 87783 1116 517 355.322 249 336 289 241
35234 5575 Fze 808 685 355.3.4 480 639 268 369
352.3.5 8716 Fse 1213 781  355.3.5 753 24591 624 428
35242 818 48584 603 528 35542 268 363 214 221
35243 628 79081 867 511 35543 360 714 463 314
35244 4545 Fse Fin 804 35544 700 32137 404 451

Table B.12: Results for each system of the sequences generated in the curve section of
the train track with velocity v = 16 m/s.






Bibliography

1]

2]

[3]

[4]

[5]

[6]

Awwal, A. M., Kumam, P., Abubakar, A. B., Wakili, A., Pakkaranang, N.: A
new hybrid spectral gradient projection method for monotone system of nonlinear
equations with convex constraints. Thai J. Math. 66-88 (2018).

Barzilai, J., Borwein, J.: Two point step gradient methods. IMA J. Numer. Anal. 8,
141-148 (1988).

Birgin, E. G., Krejic, N., Martinez, J. M.: Globally convergent inexact quasi-Newton
methods for solving nonlinear systems. Numer. Algorithms. 32, no. 2-4, 249-260
(2003).

Birgin, E. G., Martinez, J. M., Raydan, M.: Spectral Projected Gradient Methods:
review and Perspectives. J. Stat. Softw. 60(3) (2014).

Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for con-
strained image deblurring. Inverse Probl. 25(1), 015002-015002 (2009).

Carcasci, C., Marini, L., Morini, B., Porcelli, M.: A new modular procedure for
ndustrial plant simulations and its reliable implementation. Energy 94, 380-390
(2016).

Crisci, S., Ruggiero, V., Zanni, L.: Steplength selection in gradient projection meth-
ods for box-constrained quadratic programs. Appl. Math. Comput. 356(1), 312-327
(2019).

Curtis, A.R., Powell, M.J.D., Reid, J.K.: On the estimation of sparse Jacobian
matrices, IMA J. Appl. Math., 13, 117-119 (1974).

Dai, Y. H., Fletcher R.: Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming, Numer. Math. 100, 21-47 (2005)

Dai, Y. H., Hager, W., W., Schittkowski, K., Zhang, H.: The cyclic Barzilai-
Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26(3), 604-
627 (2006).

De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of
steepest descent methods. IMA J. Numer. Anal. 33(4), 1416-1435 (2013).

65



66

[12]

[13]

[14]

[15]

[16]

[17]

Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. STAM J.
Numer. Anal. 19(2), 400-408 (1982).

Dennis Jr., J. E., Moré, J. J.: A characterization of superlinear convergence and its
application to quasi-Newton methods. Math. Comput. 28, 549-560 (1974).

Dennis Jr., J. E., Schnabel., R. B.: Numerical methods for unconstrained optimiza-
tion and nonlinear equations. Prentice Hall Series in Computational Mathematics,
Prentice Hall, Inc., Englewood Cliffs, NJ (1983).

di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in
gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176-
195 (2018).

Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical Programming 91, 201-213 (2002).

FEisenstat, S. C., Walker, H. F.: Globally convergent inexact Newton methods. STAM
J. Opt. 4, 393-422 (1994).

Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Volume I. Springer Series in Operations Research, Springer,
New York (2003).

Fletcher, R.: On the Barzilai-Borwein method. Optimization and control with ap-
plications, Appl. Optimizat. 96, 235-256, Springer, New York (2005).

Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gra-
dient methods. J. Ind. Manag. Optim. 4(2), 299-312 (2008).

Gasparo, M.: A nonmonotone hybrid method for nonlinear systems. Optim. Method
Softw. 13, 79-94 (2000).

Gill, P. E., Murray, W., Wright, M. H.: Practical Optimization. Academic Press
(1981).

Glunt, W., Hayden, T., L., Raydan, M.: Molecular conformations from distance
matrices. J. Comput. Chem. 14(1), 114-120 (1993).

Golub, G. H., Van Loan, C. F.: Matriz computations. Johns Hopkins Series in the
Mathematical Sciences 3, Johns Hopkins University Press, Baltimore, MD (1983).

Gongalves, M.L.N., Oliveira, F.R.: On the global convergence of an inexact quasi-
Newton conditional gradient method for constrained nonlinear systems. Numerical
Algorithms 84, 609-631 (2020).

Griewank, A.: The “global” convergence of Broyden-like methods with a suitable
line search. J. Austral. Math. Soc. Ser. B 28. 1, 75-92 (1986).



[27]

[28]

[29]

[35]

[36]

[38]

[39]

[40]

67

Grippo, L., Lampariello, S., Lucidi, S.: A nonmonotone linesearch technique for
Newton’s methods. STAM J. Numer. Anal. 23, 707-716 (1986).

Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for monlinear
equations. Comput. Optim. Appl. 37, 297-328 (2007).

Gu, G. Z., Li, D. H., Qi, L., Zhou, S. Z.: Descend directions of quasi-Newton
methods for symmetric nonlinear equations. STAM J. Numer. Anal. 40, 1763-1774
(2002).

Kalker, J.: Three-Dimensional elastic bodies in rolling contact. Kluwer Academic
Print, Delft (1990).

Kalker, J., Jacobson, B,: Rolling contact phenomena. Springer Verlag, Wien (2000).

Kelley, C. T.: Iterative Methods for optimization. Frontiers in Applied Mathematics,
STAM (1999).

La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear
systems. Optim. Method Softw. 18, 583-599 (2003).

La Cruz, W., Martinez, J. M., Raydan, M.: Spectral residual method without gradi-
ent information for solving large-scale nonlinear systems of equations. Math. Com-
put. 75, 1429-1448 (2006).

La Cruz, W.: A projected derivative-free algorithm for nonlinear equations with
convez constraints. Optim. Method Softw. 29, 24-41 (2014).

Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of
Broyden-like method for nonlinear equations. Optim. Method Softw. 13(3), 181-
201 (2000).

Li, Q., Li, D. H.: A class of derivative-free methods for large-scale nonlinear mono-
tone equations. IMA J. Numer. Anal. 31, 1625-1635 (2011).

Liu, J., Li, S.: Multivariate spectral dy-type projection method for convex constrained
nonlinear monotone equations. J. Ind. Manag. Optim. 13, 283-295 (2017).

Luksan, L. : Inezxact trust region method for large sparse systems of nonlinear
equations. J. Optimiz. Theory App. 81(3), 569-590 (1994).

Luksan, L., Vicek, J.: Computational experience with globally convergent descent
methods for large sparse systems of nonlinear equations. Optim. Methods Softw. 8,
201-223 (1998).

Marini, L. , Morini, B., Porcelli, M.: Quasi-Newton methods for constrained non-
linear systems: complexity analysis and applications. Comput. Optim. Appl. 71,
147-170 (2018).



68

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Martinez, J. M.: Local convergence theory of ineract Newton methods based on
structured least change secant updates. Math. Comp. 55, 143-167 (1990).

Martinez, J. M, Zambaldi, M..: An inverse column-updating method for solving
large-scale nonlinear systems of equations. Optim. Methods Softw. 1 (2), 129-140
(1992).

Martinez, J. M.: Practical quasi-Newton methods for solving nonlinear systems. J.
Comput. Appl. Math. 124, 97-121 (2000).

Meli E., Morini, B., Porcelli, M., Sgattoni, C.: Solving nonlinear systems of equa-
tions via spectral residual methods: stepsize selection and applications, pp. 1-28,
arXiv:2005.05851 (2020).

Mohammad, H., Abubakar A.,B.: A positive spectral gradient-like method for large-
scale monlinear monotone equations. Bull Comput. Appl. Math. 5, 99-115 (2017).

Morini, B., Porcelli, M.: TRESNEI, a Matlab trust-region solver for systems of
nonlinear equalities and inequalities. Comput. Optim. Appl. 51, 27-49 (2012).

Morini, B., Porcelli, M., Toint, P.: Approzimate norm descent methods for con-
strained nonlinear systems. Math. Comput. 87, 1327-1351 (2018).

Nocedal, J., Wright, S. J.: Numerical Optimization. Math. Comput. 87. Springer
Series in Operations Research (1999).

Ortega, J., Rheinboldt, W.: [terative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York (1970).

Papini, A., Porcelli, M., Sgattoni, C.: On the global convergence of a new spectral
residual algorithm for nonlinear systems of equations. B. Unione Mat. Ital. (2020).
10.1007/s40574-020-00270-5.

Raydan, M.: Convergence properties of the Barzilai and Borwein Gradient Method.
PhD Thesis, Rice University (1991).

Raydan, M.: On the Barzilai and Borwein choice of step length for the gradient
method. IMA J. Numer. Anal. 13, 321-326 (1993).

Raydan, M.: The Barzilai and Borwein gradient method for the large scale uncon-
strained minimization problem. SIAM J. Optimiz. 7, 26-33 (1997).

Sherman, A. H.: On Newton-Iterative methods for the solution of systems of non-
linear equations. STAM J. Numer. Anal. 15, 755-771 (1978).

Simpack Multibody Simulation Software. Dassault Systemes GmbH.

Yu, Z., Lin, J., Sun, J., Xiao, Y., Liu, L., Li, Z.: Spectral gradient projection method
for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59,
2416-2423 (2009).



69

[58] Varadhan, R., Gilbert, P. D.: BB: an R package for solving a large system of non-
linear equations and for optimizing a high-dimensional nonlinear objective function.
J. Stat. Softw. 32 (4) (2010).

[59] Vollebregt, E. A. H.: Refinement of Kalker’s rolling contact model. Bracciali, Pro-
ceedings of the 8th International Conference on Contact Mechanics and Wear of
Rail-Wheel Systems (CM2009), Firenze, 2009.

[60] Vollebregt, E. A. H.: User guide for CONTACT, Rolling and sliding contact with
friction. Technical Report TR09-03, version v15.1.1 (2015).

[61] Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear
monotone equations. J. Comput. Appl. Math. 196, 478-484 (2006).

[62] Zhou, B., Gao, L., Dai, Y. H.: Gradient methods with adaptive step-sizes. Comput.
Optim. Appl. 35(1), 69-86 (2006).



	List of Figures
	Introduction
	Problem overview
	Numerical methods
	Contents of the thesis
	Notations

	Spectral residual methods: stepsize selection and global convergence
	Preliminaries
	Stepsize selection
	Analysis of the steplengths k,1 and k,2
	On the impact of the steplength k on  Fk+1,  case J symmetric 
	On the impact of the steplength k in the approximate norm descent linesearch

	Globalization strategies
	The Srand1 algorithm
	Srand2: a new spectral residual algorithm


	Numerical experiments
	Implementation issues
	Steplength selection
	Numerical analysis of the steplength selection
	Nonlinear systems arising from rolling contact models
	Experimental study

	Numerical validation of Srand2 

	Research perspectives
	Kalker's contact model and CONTACT algorithm
	Complete results
	Bibliography

