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Abstract: Ischemic stroke is a leading cause of death and disability worldwide. The only pharmaco-
logical treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the
search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood
flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway,
which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible
for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation
and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have
shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological
agents for the management of brain ischemia. In the present review we summarized pharmacological,
preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential
protective mechanisms.

Keywords: carbonic anhydrase; inhibitors; sulfonamide; cerebral ischemia; middle cerebral artery
occlusion; ischemic acidosis

1. Introduction

Ischemic stroke is the second most common cause of death and a major cause of
long-term disability worldwide and it is thus considered a global burden. It is character-
ized by early glutamate-mediated excitotoxicity, followed by a chronic secondary damage
caused by the activation of resident immune cells, i.e., microglia, and the production of
inflammatory mediators [1]. Unfortunately, despite advances in understanding of the
pathophysiology of cerebral ischemia and the development of more than 1000 molecules
with brain-protective effects in animal models, drugs so far have failed to be efficacious
during clinical trials [2]. The only successful pharmacological strategy approved to date
consists in the intravascular administration of tissue plasminogen activator (t-PA), a throm-
bolytic treatment to dissolve the intravascular clot. However, t-PA must be administered
within the first 4–4.5 h after stroke onset and can result in increased risk of hemorrhagic
transformation [3]. Because of its narrow therapeutic time-window and its important side
effects, thrombolytic application is very limited in clinical practice [4]. Therefore, the search
for successful therapeutic strategies for acute ischemic stroke still remains one of the major
challenges in clinical medicine. Ischemic stroke accounts for 80% of all stroke cases [5]
and is caused by the occlusion of a major cerebral artery by a thrombus or an embolism.
The occlusion leads to a reduction of cerebral blood flow rate, a condition of hypoxia and
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glucose deprivation (oxygen, glucose deprivation: OGD) and subsequent tissue damage in
the affected region [6].

In this hypoxic/ischemic condition, the oxidative phosphorylation of glucose is im-
paired, thus most energy derives from the anaerobic glycolytic pathway which leads to
protons and lactate accumulation and consequent ambient acidification [7,8]. Indeed, dur-
ing cerebral ischemia, brain pH falls from ~7.2 to below 6.5 within minutes after stroke
onset [9,10]. In hypoxic/anoxic conditions, in vitro studies have shown a decrease in pH in
neurons and glial cells [11]. Brain acidosis itself causes neuronal injury by generating free
radicals, affecting glutamate reuptake, glial cell activation and neuronal apoptosis [12,13]
and exacerbates ischemic brain injury [14,15] leading to cerebral infarction such as edema
and blood-brain barrier (BBB) dysfunction [16,17].

Since the role of carbonic anhydrases (CAs) is to catalyze the reversible hydratation
of carbon dioxide into a bicarbonate ion and a proton (CO2 + H2O
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thus playing a pivotal role in pH regulation and metabolism [18,19], this review will
highlight the role of carbonic anhydrase as a possible therapeutic target in brain ischemia.
In particular, the role of carbonic anhydrase inhibitors (CAIs) for the maintenance of pH
homeostasis following an ischemic insult will be discussed.

2. Carbonic Anhydrase Inhibitors (CAIs) as Possible Therapeutics in the Central
Nervous System Pathologies

CAs are a family of ubiquitous metalloenzymes present in most organisms all over
the phylogenetic tree [19]. To date, eight CA classes are known: α-, β-, γ-, δ-, ζ-, η-, θ-,
and ι-CAs [20], the last three recently discovered [21–23]. CAs present in animals belong
to α-class, and a large number of α-CA isoforms has been described: 15 in humans and
other primates, and 16 in other mammals, with different catalytic activity and subcellular
localization [19]. The three-dimensional (3D) fold of the main CA mammalian isoform (in
this specific case the human (h) isoform hCA II) is shown in Figure 1, with the hydrophobic,
hydrophilic and proton transfer regions highlighted (Figure 1A), whereas the zinc coordi-
nation and the amino acid residues crucial for catalysis and inhibition are shown in detail
in Figure 1B [18–20]. Indeed, the active site architecture of α-CAs is unique, with half of
the cavity being lined with hydrophobic and the opposite half with hydrophilic amino acid
residues, as observed from Figure 1. The metal ion is placed at the bottom of this cavity,
and the water molecule coordinated to it plays a crucial role in the catalytic process, being
activated by the zinc ion for the nucleophilic attack on the various substrates on which the
CAs act, but the physiological one seems to be only CO2, which is hydrated to bicarbonate
and protons [18–20].

This particular, rather large, type of active site probably is also responsible for the fact
that these enzymes are inhibited by many classes of very diverse inhibitor [18]. The classical
ones are the primary sulfonamides and their isosteres, such as the sulfamides and the sulfa-
mates. They coordinate to the zinc ion as anions, in deprotonated form and some of them
show low nanomolar affinity for the various CA isoforms present in vertebrates, including
humans [18–20]. In the last decade, a variety of new chemotypes with CA inhibitory activ-
ity and with new inhibition mechanisms were discovered, some of which are independent
of the metal ion found within the enzyme active site [20–22]. They include the anchoring
to the zinc-coordinated water (for phenols, polyphenols, polyamines, sulfocoumarins,
thioxocoumarins) [20–22]; the occlusion of the active site entrance, for coumarins and their
derivatives [20–22]; and even compounds which bind outside the active site cavity, such
as some benzoic acid derivatives [22]. The inhibition mechanisms with some of these
compounds are shown in Figure 2, as determined by X-ray crystallography [20–22].
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Figure 1. (A) Surface representation of human (h) isoform carbonic anhydrase (hCA II) (pdb 3KKX). The hydrophobic half 
of the active site is colored in red (Ile91, Val121, Phe131, Val135, Val143, Leu198, Pro201, Pro202, Leu204), the hydrophilic 
one in blue (Asn62, Asn67, Glu69, Gln92, His94). His64, the proton shuttle residue, is in green. (B) Active site view of hCA 
II. The zinc ion, represented as grey sphere, is tetrahedrally coordinated to residues His94, His96 and His119 and to a 
water molecule/hydroxide ion as fourth ligand. 
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II. The zinc ion, represented as grey sphere, is tetrahedrally coordinated to residues His94, His96 and His119 and to a water
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new CA inhibitory chemotyes which bind by anchoring to the zinc-coordinated water molecule. The metal ion is shown as
a gold or gray sphere with its three histidine ligands and the coordinated water molecule. Amino acid residues involved
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The mammalian central nervous system (CNS) has the highest number of CA isoforms
(at least 9) among all investigated organs [19]. One of the most abundant ones is hCA
II, but isoforms I, VB, VII, VIII, X, XI, XII and XIV are also present [19]. Given the wide
range of CA isoform expression in the brain, CAIs have been exploited for therapeutic
application in several pathological conditions of the CNS [24]. Inhibition by CAIs proved
clinically useful in epilepsy [25–27] and in idiopathic intracranial hypertension (IIH),
where the acetazolamide (ACTZ, Compound 1, Figure 2) is one of the drugs currently
used clinically [19,28]. Other possible pharmacological applications of CAIs targeting
CNS isoforms include neuropathic pain [29,30], diabetes-induced BBB disruption [31,32],
migraine [33], and amyloid β-induced mitochondrial dysfunction typical of Alzheimer’s
disease [34–36].
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A relationship between brain hypoxia and CA has been highlighted. It has been
reported that CA II-deficient mice are more resistant to hypoxia-induced neuronal dam-
age [37], and that blocking CA leads to a reduced neuronal apoptosis via pH stabiliza-
tion [38]. Moreover, hypoxic conditions elicit the overexpression of two CA isoforms
(IX and XII), through the hypoxia inducible factor [39,40]. All these findings led to the
hypothesis of a possible CA relevance in brain ischemia, with CA inhibition contributing
to pH homeostasis [19,41].

3. Role of CAIs in Brain Ischemia Preclinical Models

The first paper assessing the effect of CAIs in cerebral ischemia demonstrated that
cats undergoing middle cerebral artery occlusion (MCAo) and treated with ACTZ (in
five doses for a total of 500 mg intramuscularly in two days after ischemia), 8 days after
ischemia induction, generated a more severe neurological deficit, larger areas of infarction
and more brain swelling with respect to untreated cats. In a model of collagenase-induced
striatal hemorrhage in rats, ACTZ, 50 mg/kg intraperitoneally (i.p.) administered, starting
3 h after inducing intracerebral hemorrhage, despite reducing the spike of increased
intracranial pressure by presumably reducing cerebrospinal fluid production, did not
improve behavioral function or did not affect lesion size up to 28 days thereafter [42].

In contrast, several investigations support a potential therapeutic role of low doses of
new CAIs in strokes [43].

There are many classes of CAI, but the most investigated ones are the sulfonamides
and the coumarins [18]. Examples of some of these derivatives (Compounds 1–7), which
have also been investigated for their effects in various pathologies, including brain ischemia,
are shown in Figure 2.

Di Cesare Mannelli et al. (2016) evaluated the effect of several newly synthetized
sulphonamide and coumarin CAIs (Compounds 2–5, Figure 2) in the permanent MCAo
(pMCAo) model of cerebral ischemia in the rat. They found that repeated subcutaneous
injections (5 and 20 min after surgery) of CAIs at the dose of 1 mg/kg were able to
significantly reduce the neurological deficit 24 h after pMCAo, whereas the prototypical
CAI, ACTZ, 30 mg/kg subcutaneously was ineffective in reducing the neurological deficit.
In addition, it has been reported that ACTZ at the dose of 100 mg/kg injected into the
femoral vein 30 min after transient (1.5 h) MCAo, 22 h thereafter, reduced the infarct
volume in male Wistar rats [44].

Recently, Dettori et al. (2021) demonstrated that ACTZ and a lipophilic CA inhibitor of
new generation (Compound 7, Figure 3) [45–47] administered i.p. at the dose of 4.4 mg/kg
and 1.0 mg/kg respectively, 5 min, 6 and 20 h after starting pMCAo in the rat, 24 h thereafter,
significantly reduced the neurological deficit and the infarct volume within the cortex and
striatum. At the same time after MCAo, CAIs re-established the cytoarchitecture of the
ischemic cortex and striatum, counteracted neuronal loss, reduced microglia activation and
partially counteracted the loss of astrocytes in the cortical and striatal ischemic areas. In
the in vitro model of ischemia in hippocampal slices exposed to a severe (30 min) OGD,
the same CAIs significantly delayed the appearance of anoxic depolarization (AD) induced
by OGD [45]. AD is a robust neuronal depolarization demonstrated both in vivo [48] and
in vitro [49,50]. AD gives rise to recurrent peri-infarct depolarization that arises at the
border of the ischemic core during the first 3–4 h post-stroke [51–55]. AD spreading to the
ischemic penumbra represents an early and critical event after ischemia that contributes
to lactate accumulation [56] and reduction of tissue pH [57], thereby prolonging tissue
acidosis and increasing the risk of neuronal injury [58]. AD is considered a clear sign of
excitotoxic damage [48] because the sustained activation of N-methyl-d-aspartate (NMDA)-
type glutamate receptors is essential to AD initiation and propagation in the ischemic
penumbra. Since the ischemic penumbra is considered the most salvageable area soon after
ischemia, it is well accepted that a pharmacological treatment that postpones the onset of
AD helps to protect brain tissue after ischemia.
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4. Role of CAIs in Stroke Clinical Models

Up until now, CAIs are not used in the management of cerebral ischemia. The
only available clinical study exploring protection by CA inhibitors has been made in
hemorrhagic stroke patients. ACTZ treatment (750 mg/day administered every 8 h),
proved protective 72 h and 3 weeks after intracerebral haemorrhage improving neurological
functionalities and decreasing the mortality rate in treated patients [59].

5. Protective Mechanisms of CAIs in Cerebral Ischemia

One of the most likely mechanisms by which CAIs can be protective in brain ischemia
is the reduction of hydrogen ions and thus the maintenance of pH homeostasis. Under
physiological conditions, extracellular and intracellular pH are generally maintained at
~7.3 and ~7.0, respectively [9]. Glial cells, in particular astrocytes, express high levels of
CA [60,61] in order to convert neuron-derived CO2 into bicarbonate and protons, which are
then extruded from the glial cell by a Na+/HCO3

− cotransporter and by monocarboxylate
transporters [62]. Astrocytes have, therefore, a key role in pH regulation in the brain [63].
Extracellularly, CA is pivotal in buffering extracellular pH by recycling CO2 in bicarbonate
and protons [61]. Cerebral ischemia causes tissue acidosis, and it is known that low pH
augments the vulnerability of glia to injury induced by OGD [64]. Intracellular lactate-
induced acidification of astrocytes is reduced in the presence of a non-specific CAI [60].
Moreover, neurons are particularly sensitive to pH decrease [11]. Indeed, changes in the
intracellular pH may affect neurotransmitter release. Lowering pH results in increased
release of dopamine [65,66], noradrenaline and serotonin from rat brain synaptosomes [66].
Glial acidosis has been shown to trigger also glial glutamate release [67] and it is well
established that sustained activation of NMDA-type glutamate receptors is essential in
leading to early excitotoxic neuronal death in stroke [68]. Results from Dettori et al.
(2021) demonstrating that, in hippocampal OGD slices, CAIs significantly delayed the
phenomenon of AD, which is strictly dependent on NMDA receptor activation, strongly
supports the assertion that CAIs, by reestablishing H+ concentration during ischemia and
reducing the ensuing excitatory amino acid efflux, protect from glutamate-induced early
excitotoxic damage.

Moreover, since multiple CA isoforms are expressed in cerebral arteries, CAIs, by
decreasing intracellular acidosis, may protect the ischemia-induced BBB breakdown in the
cerebrovascular wall during MCAo. Indeed, it has been found that ACTZ (100µM) reduces
the rate of intracellular acidification in the cerebrovascular wall of isolated rat middle
cerebral arteries [69] and that CAIs decrease hypoxic-mediated brain vascular leakage in a
rat model of high-altitude sickness [70,71].

Although protection in vivo by CAIs against brain hypoxic/ischemic damage may be
due to reduction of tissue acidosis and early glutamate excitotoxicity, protection by CAIs
may also be related to different effects.
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Gao et al. (2007) have demonstrated that subdural infusion of CA in rats increases
cerebral vascular permeability, suggesting that it might have relevance in brain edema. In
agreement, intracaudate injection of CA increases brain water content and neuronal death,
whereas intracerebral injection of ACTZ (5 µL, 1 mM) reduces brain edema, neuronal death
and neurological deficit 24 h after intracerebral hemorrhage in Sprague–Dawley rats [72].

ACTZ is also known to reduce the permeability of the predominant water channel
in the brain, aquaporin-4, known to be involved in cerebral edema [73–75]. The reduction
of brain edema after ischemia could also be due to the diuretic action of CAIs [24]. Ac-
tually, CAIs are currently clinically used to reduce body fluid volume in pathologies like
glaucoma [76], idiopathic intracranial hypertension [28], congestive heart failure induced-
or drug-induced edema [77], and to prevent high-altitude cerebral edema [78]. CAIs, by
regulating the volume of body fluids and thus brain water content, may therefore alleviate
cerebral edema, which contributes to poor outcomes in ischemic strokes leading to high
intracranial pressure and to compression of the nervous tissue [79,80].

CAIs may be protective in ischemic stroke also by regulating the vascular tone, leading
to vasodilatation of cerebral arterioles and thus to increased cerebral blood flow and oxygen
supply [81,82]. Indeed, CAIs have been related to increased production of nitric oxide (NO),
a vasodilator molecule [83]. Even if, in cerebral circulation, the vasodilating effect of ACTZ
appears independent of NO [84], its vasodilator effect might be mediated by vascular
calcium-activated potassium (KCa) channel activation [85]. Moreover, ACTZ inhibits
vasoconstriction during intracellular acidification, as occurs during cerebral ischemia [69].

Finally, reduction of ischemic brain injury by CAIs may also be related to other
mechanisms, since ACTZ has been reported to reduce inflammation and the production
of pro-inflammatory cytokines [86,87]. Indeed, in rats exposed to high altitude and thus
to hypoxic injury, ACTZ decreases mRNA expression of IL-1β, TNF-α and IFN-γ in the
lung [87]. During epileptogenesis, ACTZ reduces the IL-1β, IL-6, and TNF-α mRNA levels
in rat hippocampus, and diminishes proinflammatory cytokines in rat serum [86].

6. Conclusions

Many CA isoforms are present in the brain, where they play various functions con-
nected with a variety of physiological and pathological processes. This is certainly due
to the fact that the pH homeostasis, the signalling role of bicarbonate and the metabolic
roles of these enzymes modulate a variety of such processes. Thus, considering the fact
that some isoforms are overexpressed as a consequence of hypoxia, the idea of using their
inhibition as a new approach for the management of cerebral ischemia has led to careful in-
vestigations over the last few years. These recent results indicate that CAIs could represent
an innovative pharmacological tool for the treatment of cerebral ischemia, and may comple-
ment t-PA-based therapy in its therapeutic time-window. Although ACTZ is able to reach
the nervous tissue [88], more lipophilic CAIs such as those discussed in the present review
could be particularly relevant for clinical translatability, because crossing the BBB soon after
ischemia may induce early neuroprotection [45]. Drug design studies of isoform-selective
CAIs able to easily cross the BBB are recommended in order to develop more effective
pharmacological agents. However, the main limitation at present is poor understanding of
the differential role/s of various brain CA isoforms in this pathology, as there are at least 9
CAs present in the brain. Further and more detailed pharmacological studies are needed
to assess if CAIs can be protective at a later time after ischemia induction.
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