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Modal stability and Squire’s theorem for an
inhomogeneous viscoelastic suspension

Lorenzo Fusia, Antonio Giovinettoa

aDipartimento di Matematica e Informatica “U. Dini”, Viale Morgagni 67/a, 50134
Firenze, Italy

Abstract

We study the linear stability of the Poiseuille flow of a viscoelastic upper con-

vected Maxwell fluid in which the rheological parameters depend on the con-

centration of particles suspended in the fluid (dense suspension with negligible

diffusion). After determining the basic flow and basic concentration profile we

consider a temporal three dimensional perturbation in the form of a stream-wise

and cross-wise wave. We derive the linearized perturbed equation and prove the

validity of Squire’s theorem, extending the result of [13] in which the theorem

was proved for constant rheological parameters. We discuss the relation between

the Weissenberg and the Reynolds numbers. We finally study the 2D eigenvalue

problem for the case of constant coefficients and for non-constant coefficients

with low Weissenberg number. We solve the problem numerically by means of a

spectral collocation method and we plot the marginal stability curves discussing

how stability depends on the fluid rheology.

Keywords: Dense suspension, Viscoelastic fluid, Linear Stability, Neutral

stability curves

1. Introduction

One of the first investigation on the rheology of suspensions is probably the

pioneering work of Einstein [3] on the viscosity of a hard sphere suspension at low

concentration. Since then the rheological behavior of suspensions has attracted
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the interest of a considerable number of scientists and many studies have been5

carried out to investigate the characteristics of these materials. Many papers

have focussed on highly-concentrated (or dense) suspensions, where the mean

distance between particles is less than the average particle size, [12]. Others

are concerned with the so-called dilute or semi-dilute suspensions, where the

attraction between particles is negligible and the system is essentially governed10

by hydrodynamic forces and Brownian diffusion, [1].

Suspensions are of great importance in many applications such as biochem-

ical systems (blood), industrial products (paints, foams) and industrial pro-

cessing (oils, slurries). Dense suspensions are characterized by strong effects of

particle interactions occurring at the microscopic level. The macroscopic re-15

sponse is determined by the microstructure dynamics of the particles and by

the suspending fluid around them. Dense suspensions have negligible diffusive

effects and multiple-body interactions contribute significantly to the rheology of

the system. In particular, in many cases one can also observe non-Newtonian

behaviors such as shear thinning, memory and first and second normal stress20

differences.

The rheology of the suspension in a non-Newtonian medium must be taken

into account when one models applications as filled polymer processing, fiber

extrusion, ceramic processing, drilling muds in oil recovery, slurry and oil trans-

portation in pipelines. Studies on suspensions in non-Newtonian media are25

available in the literature, but the vast majority consider only homogeneous

dilute/dense suspensions, [9]. In [10] the authors obtain a reliable prediction

for the stress in a suspension of spherical particles in a viscoelastic fluid. Un-

fortunately, the result is confined to a homogeneous suspension and to a linear

velocity field. The extension of theoretical models to non-homogeneous sus-30

pensions is extremely important when modeling processes as the ones we have

mentioned previously. The heterogeneity of the particles distribution may play

a significant role in the dynamics of the system and transport mechanisms such

as advection or diffusion of the solid particles must be taken into account.

In this paper we are interested in studying the linear stability of an isother-35
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mal dense suspension modeled as a upper convected Maxwell fluid flowing be-

tween parallel plates (Poiseuille flow). In particular, we investigate the stability

assuming that the suspension is not homogeneous, i.e. the particle concentration

may change in space and time. The rheological parameters in the constitutive

equations are supposed to depend on the particles distribution, so that they are40

no longer constant. Since we are considering a dense suspension, we neglect

diffusion and assume that the evolution of the particle density is governed by a

simple transport equation. The linear stability of the Poiseuille flow of a dense

Newtonian and generalized Newtonian suspension has been studied in [6], [7].

The present work can be seen as a follow up of the paper [13] in which the45

linear stability of an upper convected Maxwell fluid with constant rheology is

investigated.

2. The mathematical model

We consider an inhomogeneous incompressible upper convected Maxwell

fluid with constitutive equation given by (the starred quantities are dimensional)

T∗ + λ∗(ϕ)
O
T∗ = 2µ∗(ϕ)D∗, (1)

where ϕ ∈ [0, 1] is the concentration (volume fraction) of the suspended particles

in the fluid that does not affect the density, but whose variation strongly affects

the rheology of the fluid (e.g. RBCs in blood flow). The quantities λ∗, µ∗ are

the relaxation time and the viscosity of the fluid respectively, both depending

on ϕ. The tensor T∗ represents the deviatoric part of the Cauchy stress tensor

σ∗ = −p∗I+T∗, where p∗ is the Lagrange multiplier due to the incompressibility

constraint (pressure). The upper convected time derivative is given by

O
T∗ =

∂T∗

∂t∗
+ (v∗ · ∇∗)T∗ − L∗T∗ −T∗L∗

T

, (2)
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where L∗ = ∇∗v∗ and v∗ is the velocity field. In the absence of body forces the

system is governed by 

∂ϕ

∂t∗
+ v∗ · ∇∗ϕ = 0,

∇∗ · v∗ = 0,

ρ∗
Dv∗

Dt∗
= −∇∗p∗ +∇∗ ·T∗,

(3)

where ρ∗ is the constant density of the fluid, D/Dt∗ is material differentiation

and T∗ is given by (1), (2). Equation (3)1 represents the evolution equation of

the particles concentration. Here we assume that the only transport mechanism

is advection with no diffusive phenomena (dense suspension). The rheological

parameters appearing in (1) depend on ϕ so that we can write

λ∗(ϕ) = λ∗pλ(ϕ), µ∗(ϕ) = µ∗pµ(ϕ), (4)

where λ, µ are positive smooth functions of ϕ such that λ(0) = µ(0) = 1 and

where λ∗p, µ
∗
p are the constant relaxation time and viscosity when ϕ = 0 (zero50

particle concentration).

The system (3) is put in a dimensionless form scaling x∗ with L∗, v∗ with U∗,

t∗ with L∗U∗
−1

, p∗ with ρ∗U∗
2

and T∗ with µ∗pU
∗L∗

−1

, D∗ and L∗ with U∗L∗
−1

.

The selection of the reference pressure is made to follow the one adopted in [13].

We find 

∂ϕ

∂t
+ v · ∇ϕ = 0,

∇ · v = 0,

R Dv

Dt
= −R∇p+∇ ·T,

(5)

where R = (ρ∗U∗L∗µ∗
−1

p ) is the Reynolds number. The dimensionless consti-
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tutive equation becomes
T +W λ(ϕ)

O
T = 2µ(ϕ)D,

O
T =

∂T

∂t
+ (v · ∇)T− LT−TLT ,

(6)

where W = (λ∗pU
∗L∗

−1

) is the Weissenberg number. We observe that

W
R

=
λ∗pµ

∗
p

ρ∗L∗2
=
λ∗pν

∗
p

L∗2
=
λ∗p
λ∗k

= E , (7)

where ν∗p is the kinematic viscosity, λ∗k = L∗
2

/ν∗p is the kinematical diffusion

characteristic time and E is the so-called “elasticity number”. From (7) we

realize that E is a non dimensional parameter that depends only on the material

characteristics of the fluid and on the geometrical setting (not on the kinematics,55

i.e. not on U∗). The Weissenberg numberW = (λ∗pU
∗L∗

−1

), on the other hand,

depends on U∗ and hence on the kinematics. This means that, when studying

linear stability of shear flows where R = (U∗L∗/ν∗p) is progressively increased

to detect the critical Reynolds number that marks the appearance of unstable

modes, the number W cannot be treated as a fixed constant, unless we assume60

that the variation of R is due to a change in the kinematic viscosity ν∗p and not

in the characteristic velocity U∗. There are some works in which the marginal

stability curves are computed assuming thatW and R are independent, see [2],

[8], [13], [14].

To better explain the relation between W and R let us consider the classi-65

cal way in which marginal stability curves are obtained in 2D modal stability

analysis for confined flows. The shear flow is perturbed by a disturbance in

the form of a streamwise wave with velocity c ∈ C, wave number α and wave

amplitude that depends on the transversal coordinate. The balance equations

are then linearized and the system is reduced to an eigenvalue problem whose70

numerical solution provides a discrete set of complex eigenvalues for the selected

pair (R , α). The maximum of the imaginary part of the complex eigenvalues

ci(R , α), which is clearly a function or R and α, is finally computed. If this

value is negative the relative mode is stable, if it is positive the mode is unsta-
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ble. The marginal stability curve is therefore the zero level set of the function75

ci(R , α), a curve that can be computed varying the Reynolds number R and

the wave number α in the eigenvalue problem. If we takeW as a fixed constant

in this process, then for each different R we must have a different E in order to

ensure that W = E R = const. This means that changing R implies a change

in E , i.e. a change in the material properties of the fluid. In this paper we80

consider the case in which W and R are independent (and hence E is not a

fixed constant) and the case in which W varies with R (and hence E is a fixed

constant).

3. Basic solution

Let us consider the flow taking place in the layer y ∈ [−1, 1] (in dimensional

variables [−L∗, L∗]) driven by a known constant pressure gradient −G (the

dimensional pressure gradient is thus G∗ = ρ∗U∗
2

L∗
−1

G). We impose no-slip

boundary conditions v|y=±1 = 0 on the plates and we look for a basic solution

of the form

vo = uo(y)i, To = To(y), ϕo = ϕo(y), po = po(x). (8)

We note that a solution like (8) automatically satisfies equation (5)1 and hence

the quantity ϕo(y) is now a datum of the problem. For simplicity we assume

that such a function is symmetric with respect to y = 0 but minor changes allow

to treat the non-symmetric case. We write

λo(y) = λ(ϕo(y)), µo(y) = µ(ϕo(y)). (9)

The only non-zero component of the tensor Lo is (Lo)12 = u′o(y) (the prime

denotes differentiation with respect to y) and

∂To

∂t
= (vo · ∇)To = 0. (10)

Equations (5)1,2 are automatically satisfied. On substituting (8)-(10) into (6)

we find T13 = T23 = T22 = T33 = 0 and

T11 = 2W λoµou
′2
o , T12 = µou

′
o. (11)
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The momentum balance reduces to

−R ∂po
∂x

=
∂

∂y

[
µou

′
o

]
, (12)

where po(x) = −Gx + const. Focusing only on the upper part of the channel

we integrate (12) using the no-slip condition obtaining

uo(y) =

1∫
y

RGη
µo(η)

dη. (13)

Selecting the reference velocity as

U∗ = G∗
L∗∫
0

η∗

µ∗o(η
∗)
dη∗

(
−→ 1 =

1∫
0

RGη
µo(η)

dη
)
, (14)

the basic velocity in the upper layer (in the lower part the solution is symmetric)

can be rewritten as

uo(y) =

1−

∫ y
0

η

µo(η)
dη∫ 1

0

η

µo(η)
dη

 ∈ [0, 1]. (15)

We notice that (15) has a flex point only if there exists a ȳ ∈ (0, 1) such that85

µ′o(ȳ)ȳ−µo(ȳ) = 0. Therefore, whenever µo is decreasing with y the basic profile

is always concave.

Remark 1. The basic solution (15) does not contain the relaxation function

λo(y). This means that when the steady-state is reached the elastic effects are

no longer observable and the flow is equivalent to the one of a linear fluid in90

which the viscosity depends on the volume fraction ϕo. Moreover, when µo is

constant we recover the classical parabolic profile of a viscous fluid.

4. Modal perturbation and Squire’s theorem generalization

Let us consider the following 3D perturbation

v = vo(y) + v̂(y)eiαx+iβz+σt, p = po(x) + p̂(y)eiαx+iβz+σt,

ϕ = ϕo(y) + ϕ̂(y)eiαx+iβz+σt, T = To(y) + T̂(y)eiαx+iβz+σt,

(16)
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where (̂.) are complex functions such that |(̂.)| � 1, α, β are the streamwise

and the spanwise wave numbers and σ is the wave frequency. The velocity field

is written component-wise as v = (u, v, w). Let us insert (16) into (5), (6) and

linearize the equations. The equations for the transport of ϕ and for the mass

balance become

ϕ̂(σ + iαuo) + ϕ′ov̂ = 0, (17)

iαû+ iβŵ + v̂′ = 0. (18)

For simplicity of notation we introduce Υ = eiαx+iβz+σt. To linearize the per-

turbed equation (6) we expand the functions λ and µ around ϕo up to the first

order

λ(ϕ) ∼= λ(ϕo) +
dλ

dϕ

∣∣∣∣
ϕo

ϕ̂Υ =: λo(y) + λϕ(y)ϕ̂Υ, (19)

µ(ϕ) ∼= µ(ϕo) +
dµ

dϕ

∣∣∣∣
ϕo

ϕ̂Υ =: µo(y) + µϕ(y)ϕ̂Υ. (20)

The constitutive relation (6) becomes

(
To + T̂Υ

)
+W

(
λo +λϕϕ̂Υ

)(O
To +

O

T̂Υ
)

= 2
(
µo +µϕϕ̂Υ

)(
Do + D̂Υ

)
. (21)

Notice that the upper convected derivative is

O
(.) =

∂(.)

∂t
+
[(
vo + v̂Υ

)
· ∇
]
(.)−

(
Lo + L̂Υ

)
(.)− (.)

(
Lo + L̂Υ

)T
, (22)

so that linearization yields

O
To =

(
v̂ · ∇

)
ToΥ−

(
LoTo + ToL

T
o

)
−
(
L̂To + ToL̂

T
)
Υ (23)

and
O

T̂Υ = σT̂Υ + iαuoT̂Υ−
(
LoT̂ + T̂LTo

)
Υ. (24)

Furthermore, it is easy to check that
(
v̂ ·∇

)
To = v̂T′o so that inserting (23)-(24)

into (21) and rearranging we find

T̂g −W λo

(
LoT̂ + T̂LTo

)
=W λϕϕ̂

(
LoTo + ToL

T
o

)
,
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−W λo

[
v̂T′o −

(
L̂To + ToL̂

T
)]
− 2µϕϕ̂Do + 2µoD̂, (25)

where we have set

σ = −iαc, c ∈ C, g =
[
1 +W λoiα

(
uo − c

)]
. (26)

Equation (25) provides the link between the perturbed stress tensor T̂ and95

the kinematics of the perturbation expressed in terms of v̂, L̂, D̂, ϕ̂. Notice

that ϕ̂ can be expressed in terms of v̂ exploiting (17). Equation (25) is a linear

system for the unknowns T̂ij(y) that can be easily solved, for instance, by simple

Gaussian elimination. The tensor T̂ is linear in v̂ and in the first derivatives of

v̂, with coefficients depending on y through the functions uo, µo, λo and their100

derivatives and through the basic flow. In the Appendix we have reported the

exact expressions of the tensor components obtained from (25).

We now introduce the perturbed flow (16) into the momentum equation and

linearize the system. We get

iα(uo − c)û+ u′ov̂ = −iαp̂+
1

R

[
iαT̂11 + T̂ ′12 + iβT̂13

]
,

iα(uo − c)v̂ = −p̂′ + 1

R

[
iαT̂12 + T̂ ′22 + iβT̂23

]
,

iα(uo − c)ŵ = −iβp̂+
1

R

[
iαT̂13 + T̂ ′23 + iβT̂33

]
.

(27)

Substituting the expressions for T̂ij that are reported in the appendix into (27)

we find

R
[
iα(uo − c)û+ u′ov̂

]
= −iαR p̂+

[
Lα,W −

µo(α
2 + β2)

g

]
û+

+

[
Mα,W +

(
iαµ′o
g

+
α2µoλ

′
oW (uo − c)
g2

− (α2 + β2)
W λoµou

′
o

g2

)]
v̂, (28)

R iα(uo − c)v̂ =

[
Nα,W −

µo(α
2 + β2)

g

]
v̂, (29)
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R iα(uo − c)ŵ = −iβR p̂+

[
Lα,W −

µo(α
2 + β2)

g

]
ŵ+

+

(
iβµ′o
g

+
αβµoλ

′
oW (uo − c)
g2

)
v̂, (30)

where Lα,W , Mα,W , Nα,W are the linear differential operators

Lα,W =

(
µo
g

)
D2 +

[(
µo
g

)′
+
iαW λoµou

′
o

g
+
iαW λoµo(1 + g)u′o

g2

]
D+

+

[(
iαW λoµou

′
o

g

)′
− α2W 2λ2oµo(2g + 1)u′

2

o

g2

]
, (31)

Mα,W =

(
λoµoW u′o

g2

)
D2 +

[
2iαW 2λ2oµo(2 + g)u′

2

o

g3
+

(
W λoµo(2 + g)u′o

g2

)′
+

−W λoµogu
′′
o − iαW 2λ2oµou

′2
o +W λoµ

′
ogu
′
o

g2
− W λou

′
oϕ
′
oµϕ

g(g − 1)

]
D+

[
−2W λou

′
o

g3

(
iαW λoµog(2g + 1)u′′o + 2α2W 2λ2oµo(g + 1)u′

2

o +

+iαW gu′o
(
λo(g + 1)µ′o + λ′ogµo

))
− 2iαW 2λoϕ

′
o(λµϕ + λϕgµo)u

′2
o

g2(g − 1)
+

−

(
W λoµogu

′′
o − 2iαW 2λ2oµo(g + 1)u′

2

o +W λoµ
′
ogu
′
o

g2
+
W λoµϕϕ

′
ou
′
o

g(g − 1)

)′]
,

(32)

Nα,W =

(
µo
g

)
D2+

[(
2µo
g

)′
+

2iαW λoµo(1 + g)u′o
g2

]
D+

[(
2iαW λoµou

′
o

g

)′
+

− iαW λoµogu
′′
o + 2α2W 2λ2oµo(g + 1)u′

2

o + iαW λoµ
′
ogu
′
o

g2
− iαW µϕu

′
oϕ
′
oλo

g(g − 1)

]
,

where D = d/dy. We now define the following Squire’s transformation

α2 = α2 + β2, α u = αû+ βŵ, c = c, v = v, (33)
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αW = αW , αR = αR , R p = R p̂ (34)

and we notice that

Lα,W = Lα,W , αMα,W = αMα,W , Nα,W = Nα,W .

Let us now multiply equation (28) by iα, equation (30) by iβ and then add the

two equations. The system (28)-(30) reduces to

R
[
iα(uo − c)u+ u′ov

]
= −iαR p+

[
Lα,W −

α2µo
g

]
u+

+

[
Mα,W +

(
iαµ′o
g

+
α2µoλ

′
oW (uo − c)
g2

− α2W λoµou
′
o

g2

)]
v, (35)

R iα(uo − c)v =

[
Nα,W −

µoα
2

g

]
v. (36)

The system (35)-(36) has the same structure of the system (28)-(30) with w =

β = 0. The classical no-slip boundary conditions are transformed accordingly105

to the Squire’s transformation (33)-(34). Thus, we have proved the following:

Theorem 1. (Squire) In the case of non constant relaxation time and molec-

ular viscosity, if a three-dimensional mode is unstable, a two-dimensional mode

is unstable at a lower Reynolds number.

We recall that the validity of Squire’s theorem for constant λ and µ was110

proved in [13]. As a consequence, it follows that for the study of linear modal

stability it is sufficient to consider only a two dimensional perturbation, which

shall lead to a generalization of the Orr-Sommerfeld equation.

Remark 2. We believe that the substitution of the rate-type model with one

based on a different objective time derivative (e.g. Jaumman or Oldroyd) does115

not invalidate Squire’s theorem. The type of calculations leading to (35)-(36)

remains essentially the same, so we expect that Squire’s theorem remains valid

also for other rate-type models. Of course, this is true as long as the rheological
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parameters do not depend on the strain rate. Indeed, when this is the case it

is sufficient to consider the constant power law model (which can be obtained120

setting the relaxation time to zero and assuming that the viscosity is a function

of the second invariant of the strain-rate only) for which Squire theorem does

not hold, [5].

5. Generalized Orr-Sommerfeld equation

We consider the perturbation (16) with β = w = 0. In this case T̂13 =

T̂23 = T̂33 = 0 and the system reduces to (27)1,2, in which we set β = w = 0.

Eliminating the pressure and recalling that v̂′ = −iαû we find

−R
[
(uo − c)(D2 − α2)− u′′o

]
v̂ =

[
iαD(T̂11 − T̂22) + (D2 + α2)T̂12

]
. (37)

Substituting the expressions for the stress components (with β = w = 0 and125

with v̂′ = −iαû) given in the appendix we get a polynomial eigenvalue problem

of the type

Lv̂ = 0,

where Lj are the differential operators

L =

5∑
m=0

Lmcm, Lj =

4∑
k=0

Ljk(y)Dk (38)

and where Ljk(y) are coefficients depending on the basic solution, the Weis-

senberg and Reynolds numbers and on the wave number α.

5.1. Constant coefficients130

As a benchmark problem we consider the one in which ϕo = 0 (no dispersed

particles), which implies λo = µo = 1, ϕ′o = 0. This is exactly the case in-

vestigated in [13]. Exploiting the expressions of the stress components with

β = w = 0 given in the appendix and substituting into (37) we find:

iαgR
[
(uo− c)(D2−α2)−u′′o

]
v̂ = D4v̂+ b3(y)D3v̂+ b2(y)D2v̂+ b1(y)Dv̂+ bo(y),

(39)
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which is equal to equation (15) of [13] and where the basic velocity profile (15)

is now uo(y) = 1− y2. The no-slip condition implies v̂(±1) = Dv̂(±1) = 0 while

the coefficients bj(y) are given by

b3(y) = 2g′
(

1− 1

g

)
, b2(y) = −2α2 + 3g′′

(
1− 1

g

)
+ 2g′

2

(
1− 1

g

)2

,

b1(y) = −2α2g′
(

1− 1

g

)
+ 2g′′′

(
1− 1

g

)
+ 4g′g′′

(
1− 1

g

)2

− 4g′
3

g

(
1− 1

g

)
,

bo(y) = α4 + g(iv) − α2g′′
(

1− 1

g

)
− 2α2g′

2

(
1 +

1

g2

)
− 4

g′g′′′

g
− 3g′′

2

g

+
4g′

4

g2
− 6g′

2

g′′

g

(
1− 1

g

)
.

We recall that the quantity g is given by (26). The coefficients above present

some differences if compared to those of [13]. Indeed, the bj(y) determined

in [13] are not correct and this can be easily proved deriving the perturbation

equation and exploiting equations (10), (11) of [13]. The correctness of the

coefficients presented here has also been checked using the symbolic software135

wxMaxima. Problem (39) is solved using a spectral collocation method based

on Chebyshev modes [11].

In Fig. 1a, 1b we show the marginal stability curves obtained solving the

eigenvalue problem (39) numerically and considering W and R as independent

(E is thus not a fixed constant). Because of the discrepancy in the coefficients140

we obtain curves that are slightly different from the one of [13]. Looking at Fig.

1a we observe that the increase of the Weissenberg number has a destabilizing

effect, since the critical Reynolds number is reduced whenW is increased. From

Fig. 1b we see that the increase of the Reynolds number results in a decrease of

the critical Weissenberg number. In Fig. 2a, 2b we show the marginal stability145

curves in the plane (R , α) and in the plane (W , α) assuming that E is a fixed

constant. In this caseW andR are not independent. As one can see the critical

Reynolds number is a decreasing function of E , while the critical Weissenberg

13



(a) W = 0, 0.5, 1.5. (b) R = 4200, 4800, 5300.

Figure 1: Marginal stability curves for λo = µo = 1, ϕ′o = 0,

(W independent of kinematics).

(a) E = 0, 10−4, 10−3. (b) E = 10−5, 10−4, 10−3.

Figure 2: Marginal stability curves for λo = µo = 1, ϕ′o = 0,

(W dependent on kinematics).
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number is an increasing function of E . We may conclude that the increase of

the relaxation time λ∗p (i.e. the time needed to gradually release the stress in150

the fluid) or reduction of the kinematical diffusion time λ∗k has a destabilizing

effect on the flow.

5.2. Low Weissenberg number

In this section we investigate the general 2D problem with non constant

coefficients. Due to the remarkable complexity of this problem we limit ourselves155

to consider the case in which the Weissenberg number is “small” and in which

the quantities µ′ou
′
o, λ
′
ou
′
o are negligible. In practice we linearize the components

of the stress tensor given in the appendix around W = 0 so that

T̂11 = −
[

4λoµou
′
oW

iα

]
D2v̂ −

[
2iαµo + 2λoα

2µo(uo − c)W
iα

]
Dv̂

+

[
2i
(
λoµ

′
ou
′
o + λ′ou

′
oµo
)
u′o

α(uo − c)
+ 2iαλoµou

′
o

]
W v̂,

T̂12 = −
[
µo − iαλoµo(uo − c)W

iα

]
D2v̂ +

[
3λoµou

′
oW −

iαλoµou
′
oW

iα

]
Dv̂

[(
iµ′ou

′
o

α(uo − c)
+ iαµo

)
+
(
− λoµou′′o + λoα

2µo(uo − c)
)
W
]
v̂,

T̂22 =
[
2µo − 2iαλoµo(uo − c)W

]
Dv̂ +

[
2iαλoµou

′
oW

]
v̂.

We see that the presence of the term α(uo − c) at the denominator introduces

a possible singularity in the perturbed stress components. As observed in [4],

the singular factor is essentially due to the nature of the transport equation for

the particle concentration (transport equation (17) with no diffusion, infinite

Péclet number). Although the absence of diffusion allows one to consider any

arbitrary even function ϕo(y) as the base particle distribution, the transport

equation introduces the possible singularity in the perturbation equation. In

15



[6], [7] we have proved that, for a Newtonian suspension and for a generalized

Newtonian suspension, the absence of diffusion is responsible for unconditional

instability, i.e. unstable modes exist for all R . Here the situation is analogous,

i.e. using the expressions that contain the singular factor α(uo − c) in the

perturbation equation (37) we end up finding unstable modes for each choice of

R . On the other hand, if we neglect the singular terms, which is possible only

if µ′ou
′
o, λ

′
ou
′
o are “sufficiently small”, we may determine stability regions and

neutral stability curves. So let us suppose to neglect all the terms containing

α(uo − c) in the stress components above and insert the latter into (37). We

end up with the following eigenvalue problem[
cA + B

]
v̂ = 0, (40)

where

A =
[
αλoµoW

]
D4 +

[
2α(λoµo)

′W
]
D3 +

[
α(λoµo)

′′W −2α3λoµoW +αR
]
D2+

−
[
2α3(λoµo)

′W
]
D +

[
α3(λoµo)

′′W + α5λoµoW − α3R
]
,

B =
[
− αλoµouoW − iµo

]
D4 +

[
− 2α(λoµo)

′uoW − 2iµ′o

]
D3+[

−2αu′o
(
λoµo

)′W −α(λoµo)′′uoW +2α3λoµouoW −αuoR−iu′′o+2iα2µo

]
D2+[

− 2α
(
u′oλoµo

)′W + 2α3uo
(
λoµo

)′W + 2iα2µ′o

]
D+[

α
(
λoµou

′′
o

)′′W +
(
u′′o + α3uo

)
R − 2α3u′o

(
λoµo

)′W − α3uo
(
λoµo

)′′W +

−α5λoµouoW − iα2µ′′o − iα4µo

]
.

We consider the following non-constant functions µo(y) and λo(y)

µo(y) = 1 + δy2, λo(y) = 1 + δy2, (41)

for δ = −0.05, 0, 0.05, 0.1. This choice, that is not dictated by any specific

practical application, allows us to investigate how stability is influenced by the160

basic particle distribution across the channel. In particular we shall see that

the most stable flows are the ones in which the concentration of solid particles
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Figure 3: Marginal stability curves for λo, µo given by (41).

W independent of R (varying E ).

is reduced towards the channel walls. Once again, we solve problem (40) nu-

merically using a spectral collocation method based on Chebyshev modes [11]

and we plot the neutral stability curves for different values of the Weissenberg165

number. As done in the previous section, we treat the cases W independent

and dependent of R separately. In Fig. 3 we plot the marginal stability curves

forW independent of R with the material coefficients given in (41) for different

values of δ and for W = 0.2, 0.5. In both cases the decrease of the coefficient δ

results in an increase of the critical Reynolds number, indicating that flows in170

which the particle distribution is increasing towards the wall are less stable that

the ones in the opposite case. This type of behavior is in accordance with the

one observed in [6] and [7], where it was shown that flows with larger particle

concentration in the center of the channel are more stable than the ones in which

the larger concentration is near the wall. Finally, as observed in the constant175

case, we note that the Weissenberg number has a destabilizing effect on the

flow, as the critical Reynolds number is reduced for largerW . In Figs 4 we plot

the neutral stability curves assuming that W depends on R and we use E as a

variable parameter. Looking at Fig. 4b, 4a we observe that the reduction of δ

produces an increase of the critical Reynolds number, thus enhancing stability.180

Further, we see that, for a fixed δ, a lower E results in a smaller value of the
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Figure 4: Marginal stability curves for λo, µo given by (41). W = E R .

critical Reynolds number, showing once again that the flow is more stable for

larger values of E (i.e. for larger values of the ratio between the relaxation time

and the characteristic time of kinematical diffusion).

6. Conclusions185

We study the linear stability of an isothermal non-homogeneous dense sus-

pension flowing between parallel plates (Poiseuille flow). The suspension is

modeled as a a viscoelastic upper convected Maxwell fluid with rheological pa-

rameters depending on the particles concentration. The density of the particles

evolves according to a transport equation with negligible diffusion.190

We determine the basic unidirectional flow driven by a given pressure gradi-

ent and we perturb such a flow with a three dimensional wave-like disturbance,

proving the validity of Squire’s theorem (in the case of non constant relaxation

time and molecular viscosity). The latter allows us to consider only a two-

dimensional perturbation in the stream-wise direction. In this case the problem195

reduces to a generalization of the Orr-Sommerfeld equation which we solve nu-

merically via a spectral collocation method based on Chebyshev polynomials.

As a benchmark problem we initially study the case with constant rheologi-

cal moduli, showing the agreement with the results of [13]. Subsequently we

consider the case of low Weissenberg number and non constant parameters.200
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We distinguish between two different situations: i) the Weissenberg number

W and the Reynolds number R are independent (W does not depends on

the kinematics); ii) the Weissenberg number W and the Reynolds number R

are dependent. In our opinion hypothesis i) is less significant from a physical

stand-point since it implies that a change in the Reynolds number is due to a205

variation of the material properties of the fluid. We show that flows in which

the particle distribution is concentrated in the proximity of the channel walls

are less stable that those showing opposite behavior. This latter result is in line

with the findings of [6] and [7].
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Appendix210

The tensor components obtained solving the linear system (25) are

T̂11 =

[
2λoW (1 + g)µou

′
o

g2

]
Dû+

[
2λ2oW 2(2 + g)µou

′2
o

g3

]
Dv̂

+

[
2iαµo

(
λ2oW 2(2g + 1)u′

2

o + g
)

g2

]
û+H11v̂,

T̂12 =

[
µo
g

]
Dû+

[
λoW (2 + g)µou

′
o

g2

]
Dv̂ +

[
iλoW αµou

′
o

g

]
û+H12v̂,

T̂13 =

[
λoW (g + 1)µou

′
o

g2

]
Dŵ +

[
iβµo
g

]
û+

[
iλoW βµou

′
o

g2

]
v̂

+

[
iαµo

(
λ2oW 2(2g + 1)u′

2

o + g
)

g2

]
ŵ,

T̂22 =

[
2µo
g

]
Dv̂ +

[
2iλoW αµou

′
o

g

]
v̂,

T̂23 =

[
µo
g

]
Dŵ +

[
iβµo
g

]
v̂ +

[
iλoW αµou

′
o

g

]
ŵ,

T̂33 =

[
2iβµo
g

]
ŵ,

where

H11 = −
[
λoW g(2g + 1)µou

′′
o − 2iαλ2oW 2(g + 1)µou

′2
o +

+W gu′o

(
λo(g + 1)µ′o + λ′ogµo

)
− iαgµo

](2λoW u′o
g3

)
−

2λoW 2ϕ′o
(
λoµϕ + λϕgµo

)
u′

2

o

g2(g − 1)
,

H12 =

[
−λoW gµou

′′
o + 2iαλ2oW 2(g + 1)µou

′2
o − λoW gµ′ou

′
o

g2
+
iαµo
g

]
−λoW ϕ′oµϕu

′
o

g(g − 1)
.

We recall that the function g is given by

g =
[
1 +W λoiα

(
uo − c

)]
.
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