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Let T be a complete, model complete o-minimal theory extending the theory RCF of real
closed ordered fields in some appropriate language L. We study derivations δ on models
M |= T . We introduce the notion of a T -derivation: a derivation which is compatible
with the L(∅)-definable C1-functions on M. We show that the theory of T -models with
a T -derivation has a model completion T δ

G. The derivation in models (M, δ) |= T δ
G

behaves “generically”, it is wildly discontinuous and its kernel is a dense elementary
L-substructure of M. If T = RCF, then T δ

G is the theory of closed ordered differential
fields (CODFs) as introduced by Michael Singer. We are able to recover many of the
known facts about CODF in our setting. Among other things, we show that T δ

G has T
as its open core, that T δ

G is distal, and that T δ
G eliminates imaginaries. We also show

that the theory of T -models with finitely many commuting T -derivations has a model
completion.
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1. Introduction

Let M = (M ; +, ·, 0, 1, . . .) be a structure expanding a field. A derivation on M is
a function δ : M →M such that

δ(x+ y) = δx+ δy, δ(xy) = xδy + yδx.

∗Corresponding author.
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If M has extra structure besides the field operations, the derivation may have noth-
ing to do with this extra structure. For instance, if M = Rexp := (R; +, ·, 0, 1, exp)
then it may not be the case that δ exp(x) �= exp(x)δx.

In this paper, we consider the case when M is an o-minimal structure (expanding
a real closed ordered field) and we study derivations on M which are compatible
with the structure M in the following sense: for every C1-function f : Mn → M

which definable in M without parameters, we require that

δf(x̄) =
n∑

i=1

∂f

∂xi
(x̄)δxi.

For instance, when M = Rexp, we impose, among other conditions, that δ exp(x) =
exp(x)δx. We show that if M is a pure ordered field then every derivation on M
is already compatible with M (Proposition 2.8).

There are many natural examples where the above compatibility condition is
met. For instance, it is well known that the germs at infinity of unary functions
definable in any o-minimal expansion R̃ of the real field form a Hardy field H(R̃)
with a natural derivation d

dx . There is a natural way to expand H(R̃) so that
H(R̃) ≡ R̃, and d

dx is compatible with this expansion. Another natural example
is the ordered field TLE of logarithmic–exponential transseries (see [3]). There is
a natural expansion of TLE which makes it an elementary extension of the real
field with restricted analytic functions and an exponential function. The natural
derivation on TLE is compatible with this expansion.

In [29], Singer showed that the theory of ordered differential fields has a model
completion: the theory of closed ordered differential fields (CODFs). He provided
an axiomatization of CODF and proved that it has quantifier elimination. Since
then, many others have contributed to the model theory of CODFs. Among these
contributions is a cell decomposition theorem and a corresponding dimension func-
tion [7] as well as a proof that CODF has o-minimal open core and eliminates
imaginaries [24].

Let T be a model complete o-minimal theory in some language L and set Lδ :=
L ∪ {δ}. Let T δ be the Lδ-theory which extends T by axioms asserting that δ
is compatible in the way defined above. In Sec. 4, we show that T δ has a model
completion which we denote by T δ

G. A simple axiomatization for T δ
G extends T δ by

the following axiom scheme:

(G) If X ⊆Mn×n is L(M)-definable and the projection onto the first n coordinates
has nonempty interior, then there exists ā ∈Mn such that (ā, δā) ∈ X .

We go on to explore the properties of T δ
G: we show that it does not have prime

models in general, it has NIP (or is dependent), it is distal, and it is not strongly
dependent. We end Sec. 4 by showing RCFδ

G = CODF and that T δ
G can be seen as

a distal extension of the theory of dense pairs of models of T , which is not itself dis-
tal [18]. The fact that CODF itself is a distal extension of the theory of dense pairs of
real closed ordered fields was first established by Cubides Kovacsics and Point [11].
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In Sec. 5, we show that any model (M, δ) |= T δ
G has a (unique) dimension

function in the sense of [13] and a kind of cell decomposition in the sense of [7]. We
go on to show that T is the open core of T δ

G (that is, every open Lδ(M)-definable
subset of Mn is already L(M)-definable). We use this open core result to show that
T δ

G eliminates imaginaries and that it eliminates the quantifier ∃∞.
Section 6 is dedicated to the study of several commuting derivations which are

compatible with models of T . The model completion of the theory of fields of char-
acteristic zero with several commuting derivations was axiomatized by McGrail [22]
and the model completion of the theory of ordered fields with several commuting
derivations was axiomatized by Rivière [25] (see also [30]). Let Δ = {δ1, . . . , δp} be
a finite set of derivations and let TΔ be the L ∪ Δ-theory which asserts that each
δi is compatible and that each δi and δj commute. We show that TΔ has a model
completion TΔ

G . The main difficulty is giving an axiomatization for TΔ
G : while the

axiom scheme (G) for one derivation is quite simple, an axiomatization for TΔ
G is

quite complicated when n ≥ 2. We go on to define a dimension function in models
of TΔ

G and we show that TΔ
G has T as its open core.

In Appendix A, we use work of Loi [21] to prove a result about Ck-functions
definable in o-minimal structures. This result, Corollary A.4, generalizes a known
fact about definable continuous functions and it may be of independent interest. We
initially proved our main results without this corollary, but it does simplify things
significantly, especially in Sec. 6. Also of independent interest may be Sec. 3.1 on
“quasi-endomorphisms” of a finitary matroid.

1.1. Notation and conventions

In this paper, T denotes a complete, model complete o-minimal theory extending
the theory RCF of real closed ordered fields in some appropriate language L. We
always use M and N to denote models of T and we use M and N to denote the
underlying sets of M and N .

We will always use k,m and n to denote non-negative integers. We view tuples
in Mn as column vectors and if ā ∈ Mn and b̄ ∈ Mm, we use (ā, b̄) to denote
the column vector

(
ā
b̄

) ∈ Mn+m. We view elements of Mm×n as matrices and if
A ∈ Mm×n and b̄ ∈ Mn, we let Ab̄ ∈ Mm be the usual product of the matrix A

and the vector b̄.
Let A ⊆ M and D ⊆ Mn. We say that D is L(A)-definable if there is some

(m+ n)-ary L-formula ϕ(x̄, ȳ) and some tuple ā ∈ Am such that

D = {ȳ ∈Mn : M |= ϕ(ā, ȳ)}.
Given a function f : D → M , we let Γ(f) ⊆ Mn+1 denote the graph of f and we
say that f is L(A)-definable if Γ(f) is. Note that this means that D is also L(A)-
definable. Given k ≤ n, we denote the projection of D onto the first k coordinates
by πk(D). For b̄ ∈ Mk, we let Db̄ denote the set {ȳ ∈ Mn−k : (b̄, ȳ) ∈ D} and we
let fb̄ : Db̄ →M denote the function ȳ �→ f(b̄, ȳ).
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We let dclL(A) be the definable closure of A (in M, implicitly, but this does
not change if we pass to elementary extensions of M). If b ∈ dclL(A), then there
is an L(∅)-definable function f : Mn →M and a tuple ā ∈ An such that b = f(ā).
A set B ⊆ M is said to be dclL(A)-independent or dclL-independent over A if
b �∈ dclL(A∪(B\{b})) for all b ∈ B. A tuple (bi)i∈I is said to be dclL(A)-independent
if its set of components {bi : i ∈ I} is dclL(A)-independent and if no components
are repeated. It is well known that (M, dclL) is a finitary matroid (also called a
pregeometry). We let rkL be the cardinal-valued rank function associated to this
finitary matroid.

The cell decomposition theorem gives rise to a well-behaved dimension function
on L(M)-definable sets: for an L(M)-definable set A ⊆Mn, we let

dimL(A) := max{i1 + · · · + in : A contains a cell of type (i1, . . . , in)}.
This dimension interacts nicely with the rank rkL: let ā ∈ Mn and B ⊆ M . If
rkL(ā |B) = m ≤ n then ā is contained in some L(B)-definable set of dimension m
and ā is not contained in any L(B)-definable set of dimension < m.

We say that M �L N if M is an elementary L-substructure of N . For a subset
A ⊆ N , we denote by M〈A〉 the substructure of N with underlying set dclL(M∪A).
As T has definable Skolem functions, M〈A〉 is an elementary substructure of N . We
say that A is a basis for N over M if A is dclL(M)-independent and N = M〈A〉.
If A = {a1, . . . , an}, we write M〈a1, . . . , an〉 instead of M〈A〉. Given an L(M)-
definable set D ⊆ Mn, we let DN denote the subset of Nn defined by the same
formula as D. Since M �L N , the set DN does not depend on the choice of defining
formula. We sometimes refer to this as the natural extension of D to N and we drop
the superscript when it is clear from context. If f : D → M is an L(M)-definable
function, then we let fN : DN → N be the L(M)-definable function with graph
Γ(fN ) = Γ(f)N .

Since T has definable Skolem functions, T has a prime model which we denote
by P. This prime model is always canonically isomorphic to dclL(∅) in any model of
T . By a monster model of T , we mean a κ-saturated and strongly κ-homogeneous
model of T for some κ > |T | := max{|L|, ω}. When working in a monster model,
we use small to mean of cardinality < κ.

If L′ is another language, then we use the conventions above where they make
sense. For example, dclL′ will be the definable closure operator in a given L′-
structure.

An L(M)-definable function f : D → M with D ⊆ Mn is said to be a Ck-
function if there is an L(M)-definable open U ⊇ D and an L(M)-definable Ck-
function F : U → M with F |D = f . This extension is not unique. A map g =
(g1, . . . , gm) : D → Mm is said to be a Ck-map if each gi is a Ck-function. If g is a
C1-function of ȳ = (y1, . . . , yn), then we let Jg denote the Jacobian matrix

Jg :=
(
∂gi

∂yj

)
1≤i≤m,1≤j≤n
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viewed as a function from D to Mm×n. We also denote this function by ∂g
∂ȳ if we

want to indicate the dependence on the variables.

2. T -derivations

In this section, we fix a map δ : M →M . Given a tuple x̄ = (x1, . . . , xn) ∈Mn, we
denote by δ(x̄) the tuple (δ(x1), . . . , δ(xn)). We often use δx̄ instead of instead of
δ(x̄). We let Lδ be the language L ∪ {δ} and we view (M, δ) as an Lδ-structure.

2.1. T -derivations

Given an L(∅)-definable C1-function f : U → M with U ⊆Mn open, we say that δ
is compatible with f if we have

δf(ū) = Jf (ū)δū

for each ū ∈ U . If g : U → Mm is an L(∅)-definable C1-map, we say that δ is
compatible with g if

δg(ū) = Jg(ū)δū

for each ū ∈ U or, equivalently, if δ is compatible with each component function gi.

Definition 2.1. We say that δ is a T -derivation (on M) if δ is compatible with
every L(∅)-definable C1-function with open domain. Let T δ be the Lδ-theory which
extends T by axioms stating that δ is a T -derivation. That is, (M, δ) |= T δ if and
only if M |= T and δ is a T -derivation on M.

To justify the use of the name T -derivation, recall that δ is a derivation (on M)
if δ(x+ y) = δx+ δy and if δ(xy) = xδy + yδx for all x, y ∈M .

Lemma 2.2. Any T -derivation is a derivation.

Proof. Use that δ is compatible with the functions (x, y) �→ x+y and (x, y) �→ xy.

It is a well-known fact that if (K, δ) is a differential field, then ker(δ) = {a ∈
K : δ(a) = 0} is a subfield of K, known as the constant field. The constant field of
K is algebraically closed in K. In the case of T -derivations, more is true:

Lemma 2.3. Suppose that (M, δ) |= T δ and let C be the constant field of (M, δ).
Then C is the underlying set of an elementary L-substructure of M.

Proof. Since T has definable Skolem functions, it suffices to show that C is dclL-
closed in M . Given an L(∅)-definable function f : Mn → M be a tuple c̄ ∈ Cn,
we need to show that f(c̄) ∈ C. By passing to a subtuple, we may assume that c̄
is dclL(∅)-independent, so f is C1 on some L(∅)-definable open neighborhood of c̄.
Then δf(c̄) = Jf (c̄)δc̄ = 0, so f(c̄) ∈ C.

The following is a useful test to see if δ is a T -derivation.
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Lemma 2.4. The following are equivalent :

(1) (M, δ) |= T δ;
(2) δc = 0 for all c ∈ dclL(∅) and δf(ū) = Jf (ū)δū for all dclL(∅)-independent

tuples ū and all L(∅)-definable functions f which are C1 in a neighborhood
of ū.

Proof. Clearly (1) implies (2), as the constant function x �→ c is L(∅)-definable
for each c ∈ dclL(∅). Now suppose (2) holds, fix an L(∅)-definable C1-function
f : U →M with U open and fix a tuple ū ∈ U . If each component of ū is in dclL(∅),
then f(ū) ∈ dclL(∅), so δf(ū) = Jf (ū)δū = 0 by (2). If there is some component of
ū which is not in dclL(∅), then let ū′ be a maximal dclL(∅)-independent subtuple of
ū and fix an L(∅)-definable map g such that g(ū′) = ū. As ū′ is dclL(∅)-independent,
there is an open set V containing ū′ such that g is C1 on V and such that g(V ) ⊆ U .
We have

δf(ū) = δ(f ◦ g)(ū′) = Jf◦g(ū′)δū′ = Jf (g(ū′))Jg(ū′)δū′

= Jf (ū)δg(ū′) = Jf (ū)δū

as required, where the second and fourth equality use (2) and the dclL(∅)-
independence of ū′.

By Lemma 2.4, the zero map (denoted by 0) is the only T -derivation on P. Thus,
we have the following.

Corollary 2.5. (P, 0) is the prime substructure for T δ.

It is not true in general that any derivation on M is a T -derivation, see
Lemma 2.10. However, this is true when T = RCF. To prove this, we first need
to establish two preservation results for compatibility.

Lemma 2.6. Let U ⊆Mn, V ⊆Mm be L(∅)-definable, open sets. Let f : U →M

be a C1, L(∅)-definable function and let g : V → U be a C1, L(∅)-definable map. If
δ is compatible with f and g, then δ is compatible with the composition f ◦ g.

Proof. For ū ∈ V , we have

δf(g(ū)) = Jf(g(ū))δ(g(ū)) = Jf(g(ū))(Jg(ū)δū) = Jf◦g(ū)δū.

Lemma 2.7. Let f : V → Mn be an L(M)-definable C1-map on V ⊆ Mm+n in
variables (x̄, ȳ) and suppose that δ is compatible with f . Let g : U → Mn be an
L(M)-definable map on an open set U ⊆Mm such that Γ(g) ⊆ V . Suppose that for
all ū ∈ U we have f(ū, g(ū)) = 0 and that the determinant of the matrix ∂f

∂ȳ (ū, g(ū))
is nonzero. Then g is C1 and δ is compatible with g.
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Proof. The map g is C1 by the implicit function theorem. Define the map h : U →
Kn by h(x̄) = f(x̄, g(x̄)), so h(u) is identically zero on U . We have

∂f

∂x̄
(ū, g(ū)) +

∂f

∂ȳ
(ū, g(ū))Jg(ū) = Jh(ū) = 0̄,

thus,

∂f

∂ȳ
(ū, g(ū))Jg(ū)δū = −∂f

∂x̄
(ū, g(ū))δū.

We also have
∂f

∂x̄
(ū, g(ū))δū +

∂f

∂ȳ
(ū, g(ū))δg(ū) = δh(ū) = 0̄.

We therefore have
∂f

∂ȳ
(ū, g(ū))δg(ū) =

∂f

∂ȳ
(ū, g(ū))Jg(ū)δū.

It remains to use the invertibility of ∂f
∂ȳ (ū, g(ū)).

Proposition 2.8. If δ is a derivation on M, then δ is an RCF-derivation on M.

Proof. By quantifier elimination for RCF (in the language Lring of ordered rings)
and by Lemma 2.7, it suffices to show that δ is compatible with every polynomial
in Z[X ]. By repeated applications of Lemma 2.6, this amounts to showing that δ
is compatible with addition, multiplication and the maps x �→ nx for n ∈ Z. These
facts all follow readily from the definition of a derivative.

The proof of Proposition 2.8 can often be adapted to check whether a derivation
on M is a T -derivation, at least when T admits quantifier elimination in some
natural language. If T also has a universal axiomatization then checking whether
or not a derivation is a T -derivation is even more simple since each L(∅)-definable
function is given piecewise by L-terms. We give two examples as follows.

Lemma 2.9. (1) Let Ran be the expansion of the real field by restricted analytic
functions and let Tan be its theory. Let M |= Tan and let δ be a derivation
on M. Then (M, δ) |= T δ

an if and only if δ is compatible with every restricted
analytic function (restricted to the open unit disk).

(2) Let Ran,exp be the expansion of Ran by the total exponential function and let
Tan,exp be its theory. Let M |= Tan,exp and let δ be a derivation on M. Then
(M, δ) |= T δ

an,exp if and only if δ is compatible with every restricted analytic
function and with the exponential function.

Note that in (1) and (2) above, the model M necessarily contains R.

Proof. For (1), let Lan be the language of ordered fields extended by function sym-
bols for each restricted analytic function. Let L∗

an extend Lan by function symbols
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for multiplicative inversion and each nth root. As δ is a derivation, it is compatible
with addition, multiplication, multiplicative inversion and nth roots. Therefore, if
δ is compatible with every restricted analytic function then δ is compatible with
every L∗

an-term by repeated applications of Lemma 2.6. By [32, Corollary 2.15],
each Lan(∅)-definable function is given piecewise by L∗

an-terms.
For (2), let Lan,exp be the language of ordered fields extended by function sym-

bols for the exponential function and each restricted analytic function. Let L∗
an,exp

extend Lan,exp by a function symbol for the logarithm function.
If δ is compatible with exp, then

δx

x
=
δ exp(log(x))

x
=

exp(log(x))δ log(x)
x

= δ log(x)

for all x > 0, so δ is also compatible with log. By [32, Corollary 4.7], each Lan,exp(∅)-
definable function is given piecewise by L∗

an,exp-terms. By the same reasoning as
above, if δ is compatible with every restricted analytic function and with the expo-
nential function then δ is a Tan,exp-derivation.

Lemma 2.10. There is an o-minimal theory T � RCF, a model M |= T and a
derivation δ on M such that δ is not a T -derivation.

Proof. Let ξ ∈ R be transcendental over Q and let M be the smallest real-closed
subfield of R containing ξ. Set L = Lring∪{ξ} where ξ is a new constant symbol, so
M admits a natural expansion to an L-structure M where ξ is interpreted in the
obvious way. Let T be the complete L-theory of M, so T is o-minimal. Basic facts
about derivations tell us that there is a derivation δ on M with δξ = 1. However
ξ ∈ dclL(∅), so if δ were a T -derivation, we would have δξ = 0 by Lemma 2.4.

Lemmas 2.9 and 2.10 raise a natural question (suggested by the anonymous
referee), which is open at this time.

Question 2.11. Let Rexp be the expansion of the real field by the total exponential
function and let Texp be its theory. Let M |= Texp and let δ be a derivation on M
which is compatible with the exponential function. Is δ necessarily a Texp-derivation
on M?

An answer to Question 2.11 likely requires an understanding of the definable
closure in models of Texp.

Lemma 2.12. Suppose that (M, δ) |= T δ. Let k > 0 and let f be an L(M)-definable
Ck-function on an open set U ⊆Mn. Then there is a unique L(M)-definable Ck−1-
function f [δ] : U → M such that

δf(ū) = f [δ](ū) + Jf (ū)δū

for all ū ∈ U . Moreover, if f is L(A)-definable where A ⊆ ker(δ), then f [δ] = 0.
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Proof. If such a function f [δ] exists, then it is uniquely determined by f [δ](ū) =
δf(ū) − Jf (ū)δū. We show existence: fix ā ∈ Mm, an L(∅)-definable function F

such that f = Fā and an L(∅)-definable set W such that Wā = U . By replacing W
with the subset

{x̄ ∈ W : Wx̄ is open and Fx̄ is Ck on Wx̄ for all x̄ ∈ πm(W )},
we may assume that F and W satisfy the hypotheses of Corollary A.4. Thus, we
can conclude that ā is contained in an L(∅)-definable Ck-cell D ⊆ Mm such that
F |W∩(D×Mn) is Ck. By replacing W with W ∩ (D ×Mn), we may assume that F
is Ck on W . Take an open set W̃ ⊇ W and a Ck-function G = G(x̄, ȳ) : W̃ → M

such that G|W = F |W , so Gā(ū) = f(ū) for all ū ∈ U . Since G is L(∅)-definable,
we have for ū ∈ U that

δf(ū) = δG(ā, ū) = JG(ā, ū)(δā, δū) = f [δ](ū) + Jf (ū)δū,

where f [δ](ȳ) := ∂G
∂x̄ (ā, ȳ)δā. Clearly, f [δ] is a Ck−1-function and if δā = 0 then

f [δ] = 0.

As is the case for derivations, one can extend a T -derivation δ on M to N �L M
by specifying the values of δ on a dclL-basis for N over M.

Lemma 2.13. Suppose that (M, δ) |= T δ. Let N �L M and suppose that N =
M〈A〉 where A is a dclL(M)-independent subset of N .Then for any map s : A→ N,

there is a unique extension of δ to a T -derivation on N (also denoted by δ) such
that δa = s(a) for all a ∈ A.

Proof. We need to determine the value of δf(ā) for each n, each L(M)-definable
function f : Nn → N and each n-tuple ā of distinct elements from A. Since ā is a
dclL(M)-independent tuple, f is C1 on some open L(M)-definable open neighbor-
hood U of ā. By Lemma 2.12, there is an L(M)-definable function f [δ] : U → M

such that δf(ū) = f [δ](ū)+Jf (ū)δū for all ū ∈ UM. For δ to satisfy the uniqueness
condition in this lemma, we only have one choice, so we set

δf(ā) := f [δ](ā) + Jf (ā)s(ā).

Clearly, δa = s(a) for each a ∈ A. This assignment is also well defined, for if f
and g are L(M)-definable functions such that f(ā) = g(ā) for some tuple ā of
distinct elements from A, then by L(M)-independence of ā, there is some L(M)-
definable open neighborhood of ā on which f = g and thus, on which f [δ] = g[δ] and
Jf = Jg.

We claim that δ is a T -derivation. We need to show that δg(ū) = Jg(ū)δu for
all ū ∈ Nm and all L(∅)-definable C1-functions g : U → N where U is an open
neighborhood of ū. Take an n-tuple ā of distinct elements from A and an L(M)-
definable map f : Nn → Nm such that ū := f(ā) and take an open L(M)-definable
set V containing ā such that f is C1 on V and such that f(V ) ⊆ U . Set h := g ◦ f
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and set s̄ := s(ā). By definition, we have

δg(ū) = δh(ā) = h[δ](ā) + Jh(ā)s̄, δū = δf(ā) = f [δ](ā) + Jf (ā)s̄. (2.1)

For all x̄ ∈ VM, we have that

h[δ](x̄) + Jh(x̄)δx̄ = δh(x̄) = δg(f(x̄)) = Jg(f(x̄))(f [δ](x̄) + Jf (x̄)δx̄).

Using also that Jh(x̄) = Jg◦f (x̄) = Jg(f(x̄))Jf (x̄), we see that h[δ](x̄) =
Jg(f(x̄))f [δ](x̄) for all x̄ ∈ VM. As every object we have considered since (2.1)
has been L(M)-definable, we have by elementarity that

h[δ](ā) = Jg(f(ā))f [δ](ā) = Jg(ū)f [δ](ā),

Jh(ā) = Jg(f(ā))Jf (ā) = Jg(ū)Jf (ā).

This along with the identities in (2.1) gives that

δg(ū) = Jg(ū)f [δ](ā) + Jg(ū)Jf (ā)s̄ = Jg(ū)δū.

2.2. Examples of T -derivations

Given any M |= T , the map δ : M → M which takes constant value 0 is a
T -derivation. In this section, we explore some nontrivial T -derivations.

Example 2.14 (Power series). Let R((tQ)) be the field of formal power series
with coefficients in R, exponents in Q and well-ordered support. By [32, Corollary
2.1], R((tQ)) admits a canonical expansion to a model of Tan where restricted ana-
lytic functions are defined via Taylor series expansion. Let d

dt be the usual formal
derivation on R((tQ)). Since d

dt commutes with infinite sums, it is compatible with
restricted analytic functions. By Lemma 2.9, d

dt is a Tan-derivation on R((tQ)).

Example 2.15 (Surreal numbers). Let No be the class-sized ordered field of
surreal numbers. Then No admits a canonical expansion to a model of Tan,exp;
see [16, Theorem 2.1]. Berarducci and Mantova have defined a derivation D on the
surreal numbers which is compatible with the exponential function and commutes
with infinite sums [5, Theorem 6.30]. Thus, D is a Tan,exp-derivation, again by
Lemma 2.9.

Example 2.16 (Transseries). Let T be the ordered field of logarithmic–
exponential transseries and let d

dx be the usual derivation on T (see [3] for a detailed
definition). By [33, Corollary 2.8], T admits a canonical expansion to a model of
Tan,exp and by Lemma 2.9, d

dx is a Tan,exp-derivation on T.

Example 2.17 (Hardy fields). Let R be an arbitrary o-minimal expansion of
the real field in a language L. Let T be the elementary L-theory of R. We define an
equivalence relation on L(R)-definable functions f, g : R → R by setting f ∼ g if
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there is some a ∈ R such that f |(a,∞) = g|(a,∞). If f ∼ g, we say that f and g have
the same germ at infinity. We let [f ]∼ be the equivalence class of f and we set

M := {[f ]∼ : f : R → R is L(R)-definable}.
There is a natural expansion of M to an L-structure M. For example, if R is an
n-ary relation symbol in L, we interpret R in M by

M |= R([f1]∼, . . . , [fn]∼) :

⇔ R |= R(f1(x), . . . , fn(x)) for all sufficiently large x,

where this is well defined by o-minimality. Under this expansion, we have R �L M,
where R is identified with the germs of constant functions, see [32]. Now, we define
δ : M →M by setting

δ[f ]∼ := [f ′]∼.

We note that above, f may not be everywhere differentiable, but it is differentiable
at all sufficiently large x so it makes sense to talk about the germ of f ′. Then (M, δ)
is a Hardy field and it is easy to check that δ is a T -derivation on M (just use the
chain rule from elementary calculus).

Remark 2.18. Let (M, δ) be as in any of the four examples above. Then the con-
stant field of (M, δ) is R and the pair (M,R) is a tame pair, as defined in [31, Sec. 5].
In [4, Sec. 2], the authors construct derivations on the real exponential field. These
derivations can be taken to be Texp-derivations, but we are not sure if these deriva-
tions are necessarily Texp-derivations, see Question 2.11. Also relevant to Ques-
tion 2.11 are the “E-derivations” used by Kirby to study exponential algebraicity
in [19].

2.3. The Lie algebra of T -derivations

Let DerT (M) be the set of T -derivations on M. Given δ, ε ∈ DerT (M) and a1, a2 ∈
M , one can easily check that a1δ+ a2ε ∈ DerT (M), so DerT (M) naturally has the
structure of an M -vector space. In this section, we show that it has the structure
of a Lie algebra. We define a Lie bracket on DerT (M) by

[δ, ε] := δε− εδ

(where δε is the composition of δ with ε). It is routine to verify that this operation
formally satisfies the Lie bracket axioms, so we only have to ensure that [δ, ε] is
indeed a T -derivation.

Lemma 2.19. If δ, ε ∈ DerT (M) then [δ, ε] ∈ DerT (M).

Proof. Set γ := [δ, ε]. By Lemma 2.4, we only need to check that γ(c) = 0 for all
c ∈ dclL(∅) and that γf(ū) = Jf (ū)γū for all dclL(∅)-independent tuples ū ∈ Mn

and all L(∅)-definable functions f which are C1 in a neighborhood of ū. The fact
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that γc = 0 for all c ∈ dclL(∅) follows from the fact that δc = εc = 0. Fix f and a
dclL(∅)-independent tuple ū. By dclL-independence, we may assume that f = f(ȳ)
is C2 in an open neighborhood U of ū. We have

δεf(ū) = δ(Jf (ū)εū) =
n∑

j=1

δ

(
∂f

∂yj
(ū)

)
εuj + Jf (ū)δεū

=
n∑

i,j=1

∂2f

∂yi∂yj
(ū)δuiεuj + Jf (ū)δεū.

Likewise, we have

εδf(ū) =
n∑

i,j=1

∂2f

∂yi∂yj
(ū)εuiδuj + Jf (ū)εδū,

so by symmetry of second derivatives, we have

γf(ū) = δεf(ū) − εδf(ū) = Jf (ū)δεū− Jf (ū)εδū = Jf (ū)γū.

Let K be a subfield of M . We say that δ is a T -derivation over K if δ(c) = 0
for all c ∈ K.

Lemma 2.20. The set of T -derivations over K is a Lie subalgebra of DerT (M).

Proof. Set L(K) extend L by constant symbols for each c ∈ K and let TK be the
complete L(K)-theory of M. Clearly, any TK-derivation on M is a T -derivation
over K. Conversely, if δ is a T -derivation over K then δ is a TK-derivation by the
“moreover” part of Lemma 2.12. Thus, the set of T -derivations over K is exactly
the DerTK (M), which is a Lie subalgebra of DerT (M).

3. The δ-Closure Operator

Let (M, δ) |= T δ. In this section, we develop a δ-closure operator on M . First, some
notation: given a ∈M , we define the jets of a:

Jn
δ (a) := (a, δa, . . . , δna), J∞δ (a) := (δia)i<ω.

Given ā ∈Mm, B ⊆Mm and α ∈ N ∪ {∞}, we set

Jα
δ (ā) := (Jα

δ (a1), . . . , Jα
δ (am)), Jα

δ (B) := {Jα
δ (b̄) : b̄ ∈ B}.

For simplicity of notation, we let J−1
δ (ā) be the empty tuple and we let J−1

δ (B) be
the empty set.

Definition 3.1. Given a ∈M and B ⊆M , we say that a is in the δ-closure of B,
written a ∈ c�δ(B), if

rkL(J∞δ (a) | J∞δ (B)) < ℵ0.

This section is devoted to showing that (M, c�δ) is a finitary matroid and explor-
ing the corresponding rank function.
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3.1. Quasi-endomorphisms

In this section, we fix a set X and a closure operator c� : P(X) → P(X) such
that (X, c�) is a finitary matroid. Let rk denote the associated cardinal-valued rank
function. We say that a map δ : X → X is a quasi-endomorphism of (X, c�) if

rk(δA |ABδB) ≤ rk(A |B)

for all A,B ⊆ X . Fix a quasi-endomorphism δ. Throughout this section, A, B and
C denote subsets of X and a, b and c denote elements of X . We continue to use
the Jn

δ and J∞δ notation introduced in the beginning of this section. Though we are
working with an abstract finitary matroid, the example to keep in mind is of course
the case where (X, c�) = (M, dclL) and where δ is a T -derivation on M.

We define c�δ : P(X) → P(X) as in Definition 3.1:

a ∈ c�δ(B) :⇔ rk(J∞δ (a)|J∞δ (B)) < ℵ0.

Note that c�(B) ⊆ c�δ(B) and that J∞δ (B) ⊆ c�δ(B).

Lemma 3.2. The following are equivalent :

(1) a ∈ c�δ(B);
(2) rk(Jn

δ (a) | J∞δ (B)) ≤ n for some n;
(3) δna ∈ c�(Jn−1

δ (a)J∞δ (B)) for some n;
(4) there are n and m such that δka ∈ c�(Jn−1

δ (a)Jm+k
δ (B)) for all k ≥ n.

Proof. Suppose that (1) holds and set n := rk(J∞δ (a) | J∞δ (B)). Then
rk(Jn

δ (a) | J∞δ (B)) ≤ n.
Now suppose that (2) holds and let n be least such that rk(Jn

δ (a) | J∞δ (B)) ≤ n.
We have that

rk(Jn−1
δ (a) | J∞δ (B)) = n

by minimality of n. Thus, δna ∈ c�(Jn−1
δ (a) | J∞δ (B)).

Suppose that (3) holds. As c� is finitary, there is some m such that δna ∈
c�(Jn−1

δ (a)Jm+n
δ (B)). Set B′ := Jn−1

δ (a)Jm+n
δ (B), so δna ∈ c�(B′). Since δ is a

quasi-endomorphism, we have that

rk(δn+1a | δnaB′δB′) ≤ rk(δna |B′) = 0

so δn+1a ∈ c�(δnaB′δB′). Since δna ∈ c�(B′), we have that δnaB′δB′ ⊆
c�(Jn−1

δ (a)Jm+n+1
δ (B)), so δn+1 ∈ c�(Jn−1

δ (a)Jm+n+1
δ (B)). By induction, we have

that δka ∈ c�(Jn−1
δ (a)Jm+k

δ (B)) for all k ≥ n.
The final implication, (4) implies (1), is clear.

We will use the following fact frequently, often without mentioning it. It follows
from (3) of Lemma 3.2.

Fact 3.3. a �∈ c�δ(B) if and only if J∞δ (a) is c�(J∞δ (B))-independent.
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Proposition 3.4. (X, c�δ) is a finitary matroid.

Proof. It is clear that if A ⊆ B then A ⊆ c�δ(A) ⊆ c�δ(B). The fact that c�δ is
finitary follows from (3) of Lemma 3.2 and the fact that c� is finitary. We will show
that c�δ(c�δ(B)) = c�δ(B). Fix a ∈ c�δ(c�δ(B)) and fix a finite set C ⊆ c�δ(B) such
that a ∈ c�δ(C). Then

rk(J∞δ (a) | J∞δ (B)) ≤ rk(J∞δ a | J∞δ (C)) + rk(J∞δ (C) | J∞δ (B)).

Since C is finite, both summands on the right-hand side of the above inequality are
finite.

It remains to show that c�δ satisfies the exchange property. Fix a, b and B such
that a ∈ c�δ(Bb)\ c�δ(B). By (2) of Lemma 3.2, there is a natural number n such
that rk(Jn

δ (a) | J∞δ (Bb)) ≤ n. Since c� is finitary, we may find a natural number m
such that rk(Jn

δ (a) | J∞δ (B)Jm
δ (b)) ≤ n. We have

rk(Jm
δ (b)Jn

δ (a) | J∞δ (B)) = rk(Jn
δ (a) | Jm

δ (b)J∞δ (B))

+ rk(Jm
δ (b) | J∞δ (B)) ≤ n+m+ 1. (3.1)

On the other hand,

rk(Jm
δ (b)Jn

δ (a) | J∞δ (B)) = rk(Jm
δ (b) | Jn

δ (a)J∞δ (B)) + rk(Jn
δ (a) | J∞δ (B)).

Since a �∈ c�δ(B), we have rk(Jn
δ (a) | J∞δ (B)) = n+ 1. This gives us

rk(Jm
δ (b)Jn

δ (a) | J∞δ (B)) = rk(Jm
δ (b) | Jn

δ (a)J∞δ (B)) + n+ 1. (3.2)

Combining (3.1) and (3.2), we get

rk(Jm
δ (b) | Jn

δ (a)J∞δ (B)) ≤ m,

so b ∈ c�δ(Ba), again by (2) of Lemma 3.2.

As (X, c�δ) is a finitary matroid, it has an associated rank function which we
call the δ-rank and which we denote by rkδ. The next proposition gives a method
of computing the δ-rank of finite sets.

Proposition 3.5. Let A be finite and suppose that δB ⊆ B. Then

rkδ(A |B) = lim
k→∞

rk(Jk
δ (A) |B)
k + 1

.

In particular, this limit exists.

Proof. Given a finite set A and an element a, set

r(A) := lim
k→∞

rk(Jk
δ (A) |B)
k + 1

, r(a |A) := lim
k→∞

rk(Jk
δ (a) | Jk

δ (A)B)
k + 1

(assuming that these limits exist). We prove this proposition by induction on |A|.
Clearly, rkδ(∅ |B) = r(∅) = 0. Fix A and suppose that r(A) = rkδ(A |B). We
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want to show that r(Aa) = rkδ(Aa |B) for some arbitrary a ∈ X\A. Note that
r(Aa) = r(A) + r(a |A) = rkδ(A |B) + r(a |A) by our induction hypothesis, so it
suffices to show that r(a |A) = rkδ(a |AB).

If a �∈ c�δ(AB), then rk(Jk
δ (a) | Jk

δ (A)B) = k+1 for each k by (2) of Lemma 3.2,
so r(a |A) = 1 = rkδ(a |AB). Suppose that a ∈ c�δ(AB). By (4) of Lemma 3.2,
there are m and n such that δka ∈ c�(Jn−1

δ (a)Jm+k
δ (A)B) for all k ≥ n. For these

k, we have

rk(Jm+k
δ (a) | Jm+k

δ (A)B) ≤ rk(Jn−1
δ (a) | Jm+k

δ (A)B)

+ rk({δk+1a, . . . , δk+ma} | Jm+k
δ (A)B) ≤ n+m.

Therefore, we have that

r(a |A) = lim
k→∞

rk(Jm+k
δ (a) | Jm+k

δ (A)B)
m+ k + 1

≤ lim
k→∞

n+m

m+ k + 1
= 0 = rkδ(a |AB).

It remains to note that r(a |A) ≥ 0.

Corollary 3.6. If A is finite and δB ⊆ B, then

rkδ(A |B) = lim
k→∞

rk(δkA | Jk−1
δ (A)B).

Proof. Note that rk(Jk
δ (A)gB) =

∑k
n=0 rk(δnA | Jn−1

δ (A)B). Since δ is a quasi-
endomorphism, we have that rk(δn+1A | Jn

δ (A)B) ≤ rk(δnA | Jn−1
δ (A)B). This

means that the map

n �→ rk(δn+1A | Jn
δ (A)B) : N → N

is decreasing, so it is eventually constant. From this, it easily follows that

lim
k→∞

rk(Jk
δ (A) |B)
k + 1

= lim
k→∞

∑k
n=0 rk(δnA | Jn−1

δ (A)B)
k + 1

= lim
k→∞

rk(δkA | Jk−1
δ (A)B).

The result then follows from Proposition 3.5.

3.2. The δ-closure in models of T δ

In order to apply the results to Sec. 3.1 to (M, δ) |= T δ, we need to show the
following.

Lemma 3.7. If (M, δ) |= T δ, then δ is a quasi-endomorphism of (M, dclL).

Proof. Fix A,B ⊆ M and let A′ ⊆ A be a dclL(B)-independent set such that
A ⊆ dclL(A′B). If we can show that δA ⊆ dclL(A′BδA′δB), then we would have
that

rkL(δA |ABδB) ≤ |δA′| ≤ |A′| = rkL(A |B).

2150007-15



June 4, 2021 17:34 WSPC/S0219-0613 153-JML 2150007

A. Fornasiero & E. Kaplan

Thus, by replacing B with A′B, we assume that A ⊆ dclL(B) and we will show
that δA ⊆ dclL(BδB). Given a ∈ A, we may write a = f(b̄) for some b̄ from
B and some L(∅)-definable function f . By passing to a subtuple, we may assume
that b̄ is dclL(∅)-independent. Therefore, there is an open, L(∅)-definable set U
such that b̄ ∈ U and such that f |U is C1. Then we have δa = Jf (b̄)δb̄, so
δa ∈ dclL(BδB).

We summarize the results from Sec. 3.1 in this context as follows.

Corollary 3.8. If (M, δ) |= T δ, then (M, c�δ) is a finitary matroid and for any
finite set A ⊆M and any B ⊆M with δB ⊆ B, we have

rkδ(A |B) = lim
k→∞

rkL(Jk
δ (A) |B)
k + 1

= lim
k→∞

rkL(δkA | Jk−1
δ (A)B),

where rkδ is the rank function corresponding to c�δ.

4. Generic T -Derivations

In this section, we show that T δ has a model completion and we study the prop-
erties of this model completion. For the remainder of this section, we fix a model
(M, δ) |= T δ.

Definition 4.1. We say that the T -derivation δ is generic if for every n and every
L(M)-definable set A ⊆Mn+1, if dimL(πn(A)) = n then there is some a ∈M such
that Jn

δ (a) ∈ A. Let T δ
G be the Lδ-theory extending T δ by the axiom scheme which

asserts that δ is generic.

4.1. Expanding models of T and T δ to models of T δ
G

In this section, we show that (M, δ) extends to a model of T δ
G. We also investigate

which models of T admit an expansion to a model of T δ
G.

Lemma 4.2. Let N be an elementary extension of M with rkL(N |M) = n. Let
A ⊆ Nn+1 be an L(M)-definable set with dimL(πn(A)) = n. Then there is b ∈ N

and an extension of δ to a T -derivation on N such that Jn
δ (b) ∈ A.

Proof. We claim that there is some dclL(M)-independent tuple ā ∈ Nn such that
ā ∈ πn(A). We construct ā coordinate by coordinate. Fix i ∈ {1, . . . , n} and suppose
we have already chosen a dclL(M)-independent tuple ā′ = (a1, . . . , ai−1) ∈ πi−1(A).
We need to find ai ∈ N\dclL(Mā′) with (ā′, ai) ∈ πi(A). We have that πi(A)ā′ is
an open interval with endpoints r1 < r2 ∈ dclL(Mā′). Take b ∈ N\dclL(Mā′) with
b > 0. Set

ai := r1 +
1

1
r2−r1

+ b
.

Then ai �∈ dclL(Mā′) and r1 < ai < r2, as required.
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With the claim proven, we may assume that N = M〈ā〉 for some ā ∈ Nn with
ā ∈ πn(A). By definable choice, there is an L(M)-definable map f : πn(A) → N such
that Γ(f) ⊆ A. By Lemma 2.13, there is a unique extension of δ to a T -derivation
on M〈ā〉 such that δai = ai+1 for i ∈ {1, . . . , n − 1} and such that δan = f(ā).
Then Jn

δ (a1) ∈ A.

Proposition 4.3. Let N be an elementary extension of M and suppose that
rkL(N |M) = |N | ≥ |T |. Then there is an extension of δ to a T -derivation on
N such that (N , δ) |= T δ

G.

Proof. Set κ := |N | and take a dclL(M)-independent set B ⊆ N such that N =
M〈B〉. Then |B| = κ by assumption. Let B1, B2, . . . be disjoint subsets of B of
cardinality κ such that

⋃
k>0 Bk = B. We will construct Lδ-structures (Nk, δ) |= T δ

such that

• (N0, δ) = (M, δ) and Nk+1 = Nk〈Bk+1〉 for k ≥ 0;
• (Nk, δ) ⊆ (Nk+1, δ) and

⋃
k(Nk, δ) |= T δ

G.

Suppose that we have already constructed (Nk, δ). Let ((Aρ, nρ))ρ<κ be an enu-
meration of all pairs (A, n) such that A ⊆ Nn+1

k is an L(Nk)-definable set with
dimL(πn(A)) = n. Let (Bρ)ρ<κ be an enumeration of pairwise disjoint finite sub-
sets of Bk+1 such that |Bρ| = nρ and

⋃
ρ<κBρ = Bk+1. We define ((Nk,ρ, δ))ρ<κ as

follows:

• set (Nk,0, δ) := (Nk, δ);
• if ρ is a limit ordinal, set (Nk,ρ, δ) :=

⋃
γ<ρ(Nk,γ , δ);

• set Nk,ρ+1 := Nk,ρ〈Bρ〉 and use Lemma 4.2 to extend δ to a T -derivation on
Nk,ρ+1 such J

nρ

δ (b) ∈ Aρ for some b ∈ Nk,ρ+1.

Finally, set (Nk+1, δ) :=
⋃

ρ<κ(Nk,ρ, δ).
We note that

⋃
k Nk = N , so we define δ on N by (N , δ) =

⋃
k(Nk, δ). We claim

that δ is generic. Let A ⊆ Nn+1 be an L(N)-definable set with dimL(πn(A)) =
n. Then A is L(Nk)-definable for some k, so there is b ∈ Nk+1 such that
Jn

δ (b) ∈ A.

Corollary 4.4. (M, δ) can be extended to a model of T δ
G.

Proof. Let N be an elementary extension of M with rkL(N |M) = |N | ≥ |T |
(such an extension exists, if |N | > |M | then rkL(N |M) = |N |). Now apply
Proposition 4.3.

Corollary 4.5. Any N |= T with rkL(N) ≥ |T | admits an expansion to a model
of T δ

G. In particular, if T is countable and has an Archimedean model then there is
an expansion of R to a model of T δ

G.
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Proof. Apply Proposition 4.3 with (P, 0) in place of (M, δ). If T is countable and
has an Archimedean model then by [31, Corollary 2.17], there is a unique expansion
of R to a model of T . Since T is countable, we have rkL(R) = |R|.

Corollary 4.5 generalizes a result of Brouette, who showed that R admits a
derivation making it a CODF [8].

Remark 4.6. We would conjecture that a partial converse to Corollary 4.5 holds
as well: if a model N |= T admits an expansion to a model of T δ

G, then rkL(N) ≥ ℵ0.
This is true for T = RCF, since by results of Rosenlicht [26], any sequence of distinct
elements (an) in a differential field of characteristic 0 with a′n = a3

n − a2
n �= 0 are

necessarily algebraically independent. One can easily show that infinitely many such
elements must exist in any model of T δ

G. It remains to note that the dclL-rank and
the transcendence degree agree when T = RCF.

4.2. The model completion of T δ

In this section, we show that T δ
G is the model completion of T δ. We have already

shown in Corollary 4.4 that every model of T δ extends to a model of T δ
G. It remains

to establish an embedding lemma.

Lemma 4.7. Let (M, δ) ⊆ (N , δ) |= T δ, let (M, δ) ⊆ (M∗, δ) |= T δ
G and suppose

that (M∗, δ) is |N |+-saturated. Then there is an Lδ-embedding ι : (N , δ) → (M∗, δ)
over (M, δ).

Proof. Take a ∈ N\M . We note that M〈J∞δ (a)〉 is closed under δ by Lemma 2.12,
so it is a model of T δ. Without loss of generality, we assume that N = M〈J∞δ (a)〉,
as the general case follows by transfinite induction. We first consider the case that
a ∈ c�δ(M). By Lemma 3.2, there is some minimal n such that N = M〈Jn−1

δ (a)〉.
Let f : Mn → M be an L(M)-definable function such that δna = f(Jn−1

δ (a)). We
need to find b ∈M∗ such that

(1) δnb = f(Jn−1
δ (b)) and

(2) Jn−1
δ (b) ∈ BM∗

for every L(M)-definable set B with Jn−1
δ (a) ∈ BN .

If we can do this, then we can construct the embedding ι by sending Jn−1
δ (a) to

Jn−1
δ (b). By saturation, we may relax condition (2) and show that such a b exists

for an arbitrary L(M)-definable set B. Fix such a set B and set A := Γ(f |B).
By minimality of n, the tuple Jn−1

δ (a) is dclL(M)-independent, so dimL(πn(A)) =
dimL(B) = n. Since (M∗, δ) |= T δ

G, there is some b ∈M∗ with Jn
δ (b) ∈ A.

Now consider the case that a �∈ c�δ(M). We need to find b ∈ M∗ such that
Jn

δ (b) ∈ AM∗
for every n and every L(M)-definable setA with Jn

δ (a) ∈ AN . If we can
do this, then we can construct the embedding ι by sending J∞δ (a) to J∞δ (b). Again by
saturation, it suffices to do this for an arbitrary n and an arbitrary L(M)-definable
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set A. If Jn
δ (a) ∈ AN , then dimL(A) = n + 1 since Jn

δ (a) is dclL(M)-independent.
Since (M∗, δ) |= T δ

G, there is some b ∈M∗ with Jn
δ (b) ∈ A.

We can now prove our main theorem.

Theorem 4.8. T δ
G is the model completion of T δ. If T has quantifier elimination

and a universal axiomatization, then T δ
G has quantifier elimination.

Proof. The fact that T δ
G is the model completion of T δ follows from Corollary 4.4,

Lemma 4.7 and Blum’s criterion (see [27, proof of Theorem 17.2]; Lemma 4.7 shows
that T δ

G has the stronger embedding property in that proof, allowing us to bypass
the assumption that T δ is universal).

If T has quantifier elimination and a universal axiomatization, then each L(∅)-
definable function is given piecewise by L-terms. The statement that δ is compatible
with a given L-term t is universal, so T δ has a universal axiomatization. Thus, T δ

G

has elimination of quantifiers, by [27, Theorem 13.2].

Theorem 4.8 allows us to prove that T δ
G has an alternative axiomatization.

Corollary 4.9. The following are equivalent :

(1) (M, δ) |= T δ
G.

(2) For each n and each L(M)-definable set X ⊆ M2n, if dimL(πn(X)) = n, then
there is ā ∈Mn with (ā, δā) ∈ X.

Proof. Suppose that (M, δ) |= T δ
G and fix an L(M)-definable set X ⊆ M2n

with dimL(πn(X)) = n. Since πn(X) has nonempty interior, there is an extension
N �L M which contains a dclL(M)-independent tuple b̄ ∈ πn(X)N . By definable
choice, there is an L(M)-definable map f : πn(X) → Mn such that Γ(f) ⊆ X .
By Lemma 2.13, there is a unique extension of δ to a T -derivation on M〈b̄〉 such
that δb̄ = f(b̄). Since (M, δ) is existentially closed in M〈b̄〉 by Theorem 4.8 there
is ā ∈ πn(X) such that δā = f(ā). Then (ā, δā) ∈ X .

For the other direction, fix an L(M)-definable set A ⊆ Mn+1 with
dimL(πn(A)) = n. Define X ⊆M2n by

X := {(x̄, ȳ) ∈M2n : yi = xi+1 for i = 1, . . . , n− 1 and (x̄, yn) ∈ A}.
Then πn(X) = πn(A) and (ā, δā) ∈ X if and only if Jn

δ (a1) ∈ A for any ā =
(a1, . . . , an) ∈Mn.

Corollary 4.10. T δ
G is complete.

Proof. By extending L by function symbols for all L(∅)-definable functions and
by extending T correspondingly, we may assume that T has quantifier elimination
and a universal axiomatization. Thus, T δ

G has quantifier elimination, so it suffices
to show that it has a prime substructure. This follows from Corollary 2.5.
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Despite the fact that T δ
G has a prime substructure, it does not have a prime

model. To prove this, we first show that each Lδ-formula is equivalent to a formula
of a special form.

Lemma 4.11. For every Lδ-formula ϕ there is some m and some L-formula ϕ̃

such that

T δ
G � ∀ x̄(ϕ(x̄) ↔ ϕ̃(Jm

δ (x̄))).

Proof. Again by extending L, we may assume that T has quantifier elimination
and a universal axiomatization. Then T δ

G has quantifier elimination, so we may
assume that ϕ is quantifier-free. Let e(ϕ) be the number of times in ϕ that δ is
applied to a term that is not of the form δkxi. We proceed by induction on e(ϕ). If
e(ϕ) = 0 then we are done. If e(ϕ) > 0, then ϕ is of the form

ϕ(x̄) = ψ(x̄, δf(Jn
δ (x̄)))

for some n, where f(ȳ) is an L(∅)-definable function and where ψ is an Lδ-formula.
Let D be an L(∅)-definable C1-cell decomposition for f (see Appendix A for a
precise definition). Then for each D ∈ D, there is an L(∅)-definable C1-function fD,
defined in an open neighborhood of D, such that the fD(ȳ) = f(ȳ) for all ȳ ∈ D.
Define f̃ by setting f̃(ȳ) := JfD (ȳ) whenever ȳ in D. Then f̃ is L(∅)-definable and
δf(ȳ) = f̃(ȳ)δȳ in any model of T δ. Set ϕ′(x̄) := ψ(x̄, f̃(Jn

δ (x̄))δ(Jn
δ (x̄))). Then

e(ϕ′) < e(ϕ) and

T δ � ∀ x̄(ϕ(x̄) ↔ ϕ′(x̄)).

Note that m and ϕ̃ in the lemma above are not unique. The following corollary
was established for T = RCF by Singer in [29]. Our proof is essentially the same.

Corollary 4.12. Suppose that T is countable. Then T δ
G does not have a prime

model.

Proof. Note that T δ
G is also countable. We use the fact that if the isolated types are

not dense in the unary type space S1(T δ
G), then T δ

G does not have a prime model
(see [27, Proposition 32.1]). Given an Lδ-formula ϕ(x), we let [ϕ(x)] denote the
clopen subset of S1(T δ

G) consisting of all unary types containing ϕ. We claim that
[δx = 1] contains no isolated types. Suppose towards contradiction that [ψ(x)] is a
basic clopen set contained in [δx = 1] which isolates a type. By Lemma 4.11, we
may assume that ψ(x) is of the form ψ̃(Jm

δ (x)) for some m, where ψ̃ is a quantifier-
free L-formula. Since ψ(x) implies that δx = 1, we may replace δx by 1 and δkx

by 0 for all k > 1. Thus, we may assume that ψ(x) is actually an L-formula, so ψ
defines a finite union of points and open intervals. Since [ψ] is assumed to isolate a
type, the set defined by ψ is just one point. However, this point lies in dclL(∅) in
any model of T , so ψ(x) implies δ(x) = 0, a contradiction.

Using Lemma 4.11, we have a nice description of Lδ(M)-definable sets.
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Corollary 4.13. Let (M, δ) |= T δ
G and let B ⊆ M with δB ⊆ B. Then for any

Lδ(B)-definable set A ⊆ Mn, there is some m and some L(B)-definable set Ã ⊆
Mn(m+1) such that

A = {x̄ ∈Mn : Jm
δ (x̄) ∈ Ã}.

Proof. Take a tuple b̄ from B and an Lδ-formula ψ(x̄, ȳ) such that A = ψ(M, b̄).
By Lemma 4.11, we have some m and some L-formula ψ̃ such that

(M, δ) |= ∀ x̄(ϕ(x̄, b̄) ↔ ψ̃(Jm
δ (x̄), Jm

δ (b̄)).

Set Ã := ψ̃(M, Jm
δ (b̄)).

4.3. Distality and NIP

Distal theories were introduced by Simon [28] as a subclass of NIP theories. The
goal in this section is to show that T δ

G is distal. Fix a monster model (M, δ) |= T δ
G.

Definition 4.14. T δ
G is distal if whenever b̄ is a tuple from M and (āi)i∈I is an

Lδ(∅)-indiscernible sequence from M such that

(1) I = I1 + (c) + I2 where I1 and I2 are infinite without endpoints and
(2) (āi)i∈I1+I2 is Lδ(b̄)-indiscernible,

then (āi)i∈I is Lδ(b̄)-indiscernible.

Theorem 4.15. T δ
G is distal.

Proof. Fix an infinite linear order I = I1 + (c) + I2 where I1 and I2 are infinite
without endpoints and take an Lδ(∅)-indiscernible sequence (āi)i∈I from Mm and
a tuple b̄ ∈ Mn such that (āi)i∈I1+I2 is Lδ(b̄)-indiscernible. Let ϕ(x̄1, . . . , x̄n, ȳ) be
an Lδ-formula. It suffices to show that

M |= ϕ(āi1 , . . . , āin , b̄) ↔ ϕ(āj1 , . . . , ājn , b̄)

for any indices i1 < · · · < in and j1 < · · · < jn in I. By Lemma 4.11 there is some
m and some L-formula ϕ̃ such that

T δ
G � ∀ x̄1 . . .∀ x̄n(ϕ(x̄1, . . . , x̄n, ȳ) ↔ ϕ̃(Jm

δ (x̄1), . . . , Jm
δ (x̄n), Jm

δ (ȳ))).

Since (āi)i∈I is Lδ(∅)-indiscernible, we have that (Jm
δ (āi))i∈I is also Lδ(∅)-

indiscernible so, in particular, (Jm
δ (āi))i∈I is L(∅)-indiscernible. Likewise,

since (āi)i∈I1+I2 is Lδ(b̄)-indiscernible, we have that (Jm
δ (āi))i∈I is L(Jm

δ (b̄))-
indiscernible. Since o-minimal theories are distal, we have that

M |= ϕ̃(Jm
δ (āi1), . . . , J

m
δ (āin), Jm

δ (b̄)) ↔ ϕ̃(Jm
δ (āj1 ), . . . , J

m
δ (ājn), Jm

δ (b̄)).

It is well known that distality implies NIP (see [10, Remark 2.6]).

Corollary 4.16. T δ
G has NIP.

2150007-21



June 4, 2021 17:34 WSPC/S0219-0613 153-JML 2150007

A. Fornasiero & E. Kaplan

The following negative result was first shown by Brouette [8], who constructs a
type of dp-rank ≥ ℵ0. Our proof, which was suggested to us by Itay Kaplan, differs
from the proof in [8].

Proposition 4.17. T δ
G is not strongly dependent.

Proof. An NIP theory is strong if and only if it is strongly dependent, so we
will show that T δ

G is not strong. By [1], it is enough to find formulas ϕk(x, y) and
parameters bm from M such that

(i) ϕk(M, bm) ∩ ϕk(M, bn) = ∅ for all k and all m �= n and
(ii)

⋂
k ϕk(M, bf(k)) �= ∅ for any function f : N → N.

Let ϕk be the formula

ϕk(x, y) := y < δkx < y + 1

and let (bm) be any increasing sequence such that bm+1 − bm > 1 for all m. Then
clearly, ϕk(x, bm) and ϕk(x, bn) are incompatible for all k and all m �= n. Fix a
function f : N → N. By saturation,

⋂
k ϕk(M, bf(k)) is nonempty so long as any

finite intersection
⋂

k≤n ϕk(M, bf(k)) is nonempty. Set

A := (bf(0), bf(0) + 1) × (bf(1), bf(1) + 1) × · · · × (bf(n), bf(n) + 1).

Then πn(A) is open and so there is b ∈ M with Jn
δ (b) ∈ A. Thus, b ∈⋂

k≤n ϕk(M, bf(k)).

Remark 4.18. When T = RCF, Theorem 4.15 was first noticed by Chernikov and
has been employed to construct a distal extension of the theory of differentially
closed fields of characteristic zero, see [2]. Corollary 4.16 was shown in [23].

4.4. Dense pairs and closed ordered differential fields

Let R |= RCF. In [29], Singer axiomatizes the theory of CODFs as follows.

Definition 4.19. (R, δ) is a CODF if δ is a derivation on R and if the following
holds for each n > 0 and each P,Q1, . . . , Qk ∈ R[X1, . . . , Xn]: if Xn does not appear
in any of the Qi and if there is ā ∈ Rn such that

P (ā) = 0,
∂P

∂Xn
(ā) �= 0, and each Qi(ā) > 0,

then there is b ∈ R such that P (Jn
δ (b)) = 0 and Qi(Jn

δ (b)) > 0. Let CODF be the
Lδ-theory axiomatizing CODFs.

Singer goes on to show that CODF is the model completion of ordered differ-
ential fields and, thus, of real CODFs. Note that by Lemmas 2.2 and 2.8, δ is an
RCF-derivation if and only if it is a derivation, so RCFδ

G is the model completion of
real CODFs as well. By the uniqueness of model completions, we have the following.
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Proposition 4.20. (R, δ) |= RCFδ
G if and only if (R, δ) |= CODF.

The fact that Singer’s axioms are equivalent to our more geometric axioms was
first shown in [23].

In [14], van den Dries introduced the theory of dense pairs of o-minimal
structures.

Definition 4.21. (N , P ) is a dense pair of models of T if N |= T and if P (N ) is
the underlying set of a proper dense elementary substructure of N . Let T dense be
the L ∪ {P} theory axiomatizing dense pairs of models of T .

If (M, δ) |= T δ
G, then the constant field C is dense in M . To see this, let I ⊆M

is an open interval. By the axioms of T δ
G, there is some c ∈ I with δc = 0. By

Lemma 2.3, C is the underlying set of an elementary L-substructure of M . Thus,
(M, P ) |= T dense where P is interpreted to pick out C. Note that (M, P ) is a
reduct of (M, δ) in the sense of definability. In [18], Hieronymi and Nell show that
dense pairs are not distal. However, since distality is not preserved under reducts,
the question remains open as to whether models of T dense have distal expansions.
In light of Theorem 4.15, we are able to give a partial answer.

Corollary 4.22. There is a distal theory extending T dense.

It is worth noting that we do not have a method of expanding a given dense
pair to a model of T δ

G. Indeed, by Remark 4.6 and the fact that there are models
(N , P ) |= RCFP with rkL(N) < ℵ0, there are dense pairs which do not admit an
expansion to a model of T δ

G. Moreover, while dense pairs are defined for o-minimal
theories extending the theory of divisible ordered abelian groups, Corollary 4.22
is only a statement about o-minimal theories extending the theory of ordered
fields.

In the case that T = RCF, Corollary 4.22 was first observed by Cubides Kovac-
sics and Point [11]. They study the expansions of dp-minimal fields by generic
derivations and they show that distality is preserved in these expansions, using a
method quite similar to ours. All o-minimal theories are dp-minimal, but Cubides
Kovacsics and Point do not require that their derivations are T -derivations and so
the only common theory considered in this paper and [11] is CODF.

In [14], van den Dries goes on to study the induced structure on P (N ) when
(N , P ) |= T dense. He shows that the only new sets introduced are the traces of
L(N)-definable sets. We can show that if (M, δ) |= T δ

G then the induced structure
on the constant field is nothing more than this.

Lemma 4.23. Let (M, δ) be a model of T δ
G and let C be its constant field. For

every Lδ(M)-definable set A ⊆ Cn, there is an L(M)-definable set B ⊆ Mn such
that A = B ∩ Cn.
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Proof. By Corollary 4.13, there is some m and some L(M)-definable set Ã ⊆
Mn(m+1) such that

A = {x̄ ∈Mn : Jm
δ (x̄) ∈ Ã}.

Since A ⊆ Cn, δka = 0 for any a ∈ A and any k > 0. Thus,

A = Cn ∩ {x̄ ∈Mn : (x1, 0, 0, . . . ;x2, 0, 0, . . . ; . . . ;xn, 0, 0, . . .) ∈ Ã}.

5. Geometric and Topological Properties of T δ
G

In this section, we establish a dimension theory for models of T δ
G and a cell decom-

position result. We show that T δ
G has T as its open core and we use this to analyze

the definable closure in models of T δ
G. We also show that T δ

G eliminates imaginar-
ies. For the remainder of this section, let (M, δ) be a monster model of T δ

G and let
(M, δ) be a small elementary substructure of (M, δ).

5.1. Dimension in models of T δ
G

In [17], the first author introduces the notion of an existential matroid and shows
how these matroids induce a dimension function on definable sets. In this section,
we apply these results.

Lemma 5.1. Let B ⊆ M. If c�δ(B) = B then (B, δ|B) |= T δ
G.

Proof. Since dclL(B) ⊆ c�δ(B) = B, we have that B �L M. Since δB ⊆ c�δ(B) =
B we also see that B is closed under δ, so (B, δ|B) |= T δ. Fix n and some L(B)-
definable set A ⊆ Mn+1 with dimL(πn(A)) = n. We need to show that there is
some a ∈ B such that Jn

δ (a) ∈ A. By definable choice, there is an L(B)-definable
function f : πn(A) → M such that Γ(f) ⊆ A, so we may replace A by Γ(f). As
(M, δ) |= T δ

G, there is some a ∈ M such that Jn
δ (a) ∈ A. Thus, δna ∈ dclL(Jn−1

δ (a)B)
so a ∈ c�δ(B) = B.

The converse of Lemma 5.1 does not hold as c�δ(M) �= M . To see this, let C be
the constant field of M. Then C ⊆ c�δ(M), but by saturation, |C| > |M |, so C is
not contained in M .

Proposition 5.2. (M, c�δ) is an existential matroid.

Proof. (M, c�δ) is a finitary matroid and, by [17, Lemma 3.23] and Lemma 5.1,
c�δ satisfies existence. It remains to show that c�δ is nontrivial and that c�δ is
definable. To show that c�δ is nontrivial, we use saturation to find some a ∈ M

such that J∞δ (a) is dclL(∅)-independent. Then a �∈ c�δ(∅), so c�δ(∅) �= M. To show
that c�δ is definable, it is enough to show for any a ∈ M and B ⊆ M that if
a ∈ c�δ(B) then there is an Lδ(B)-definable set A such that a ∈ A ⊆ c�δ(B).
To see that this is true, we use (3) in 3.2 to find some L(∅)-definable function f
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such that δna = f(Jn
δ (a), Jm

δ (b̄)) for some n,m and some tuple b̄ from B. Then the
Lδ(b̄)-definable set

A := {x ∈ M : δnx = f(Jn
δ (x), Jm

δ (b̄))}
contains a and is contained in c�δ(B).

We now define a dimension function on the algebra of Lδ(M)-definable sets.

Definition 5.3. Let A ⊆ Mn be a nonempty Lδ(M)-definable set. We set

dimδ(A) := max{rkδ(ā |M) : ā ∈ A}
and we call this the δ-dimension of A. For completeness, we set dimδ(∅) := −∞.

By [17, Theorem 4.3], this δ-dimension satisfies the following axioms in [13]:

(D1) dimδ({a}) = 0 for each a ∈M and dimδ(M) = 1;
(D2) dimδ(A∪B) = max{dimδ(A), dimδ(B)} for Lδ(M)-definable sets A,B ⊆Mn;
(D3) dimδ is invariant under permutation of coordinates;
(D4) If A ⊆Mn+1 is Lδ(M)-definable, then the sets

Ai := {x̄ ∈Mn : dimδ(Ax̄) = i}
are Lδ(M)-definable for i ∈ {0, 1} and dimδ({(x̄, y) ∈ A : x̄ ∈ Ai}) =
dimδ(Ai) + i.

By [13, Proposition 1.7], this dimension does not change if we pass to an ele-
mentary extension of M, so this dimension does not depend on the choice of M and
is invariant under elementary embeddings. We collect the following consequences,
all of which are from [13].

Corollary 5.4. Let A ⊆Mm and B ⊆Mn be Lδ(M)-definable sets. The following
hold :

(a) dimδ(Mn) = n;
(b) dimδ(A×B) = dimδ(A) + dimδ(B);
(c) If m = n and A ⊆ B, then dimδ(A) ≤ dimδ(B);
(d) If A is finite and nonempty, then dimδ(A) = 0;
(e) f : A→Mn is an Lδ(M)-definable map, then for each i ∈ {0, . . . ,m}, the set

Bi := {x̄ ∈Mn : dimδ(f−1(x̄)) = i}
is Lδ(M)-definable and dimδ(f−1(Bi)) = dimδ(Bi) + i. In particular,
δ-dimension is preserved under definable bijections.

Finite sets are not the only sets of δ-dimension 0. For example, the constant
field of (M, δ) has δ-dimension 0. To see this, we fix a ∈ M with δa = 0. Then for
all k, the dclL-rank rkL(Jk

δ (a) |M) = 0 if a ∈M and rkL(Jk
δ (a) |M) = 1 otherwise.
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In either case, we have by Corollary 3.8 that

rkδ(a |M) = lim
k→∞

rkL(Jk
δ (a) |M)
k + 1

= 0.

5.2. Cell decomposition

In [7], Brihaye et al. prove a cell decomposition result for definable sets in CODFs.
As they remark in the final section of this paper, the only results that they use
are quantifier elimination for CODF, o-minimal cell decomposition for real closed
ordered fields and the fact that the graph of x �→ Jn

δ (x) is dense in any model of
CODF. Thus, their results also apply to our case in light of the following lemma.

Lemma 5.5. Jm
δ (Mn) is dense in Mn(m+1) for any (M, δ) |= T δ

G.

Proof. Let U1, . . . , Un ⊆Mm+1 be basic (hence definable) open sets. Then by the
axioms of T δ

G, there is some ai ∈ M such that Jm
δ (ai) ∈ Ui for each i = 1, . . . , n.

Thus, Jm
δ (ā) ∈ U1 × · · · × Un where ā = (a1, . . . , an).

Brihaye, Michaux and Rivière say that a set D ⊆ Mn is a δ-cell if there is m
and an L(M)-definable cell D̃ ⊆Mn(m+1) such that

D = {x̄ ∈Mn : Jm
δ (x̄) ∈ D̃}.

Note that D is Lδ(M)-definable. They call D̃ as above a source cell for D. They
assign to D a binary sequence (i1; . . . ; in) ∈ {0, 1}n, which they call the δ-type of
D, as follows: let D̃ be a source cell for D and let

(i1,0, i1,1, . . . , i1,m; i2,0, . . . , i2,m; . . . ; in,0, . . . , in,m)

be the binary sequence associated to D̃. For k = 1, . . . , n, set ik := 1 if ik,j = 1
for all j = 0, . . . ,m and set ik := 0 otherwise. In [7, Lemma 4.5], it is shown that
this δ-type is well defined, i.e. it is independent of the choice of m and D̃. A δ-cell
decomposition of Mn is a finite collection D of disjoint δ-cells such that

⋃D = Mn

and such that {πn−1D : D ∈ D} is a δ-cell decomposition of Mn−1.

Theorem 5.6 (Brihaye, Michaux, Rivière, Theorem 4.9). For any B ⊆ M

with δB ⊆ B and any Lδ(B)-definable sets A1, . . . , Ap ⊆ Mn there is an Lδ(B)-
definable δ-cell decomposition D of Mn partitioning A1, . . . , Ap.

Brihaye, Michaux and Rivière use their cell decomposition theorem to define a
dimension function (which they also call the δ-dimension) on each Lδ(M)-definable
subset A of (M, δ). They go on to show that this dimension is equal to the maximum
differential transcendence degree of a point contained in AM. Their argument can
be adapted with virtually no change in proof to show that this dimension is equal
to our δ-dimension.
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Proposition 5.7 (Brihaye, Michaux, Rivière, Theorem 5.23). Let A ⊆Mn

be an Lδ(M)-definable set and let dimδ(A) be as in Definition 5.3. Then

dimδ(A) = max{i1 + · · · + in : A contains a δ-cell of δ-type (i1; . . . ; in)}.
As in the o-minimal case, this maximum is always realized in any δ-cell decom-

position partitioning A. This correspondence gives us another way to compute the
δ-dimension of certain sets. For example, the constant field C of (M, δ) is of the
form

C = {x ∈M : (x, δx) ∈M × {0}}.
Thus, C is a δ-cell sinceM×{0} is a cell. The binary sequence associated to M×{0}
is (1, 0), so the δ-type of C is (0) and dimδ(C) = 0.

5.3. Open core

Using a theorem of Dolich et al. [12], Point shows that CODF has o-minimal open
core [24]. While Point’s proof works in our case as well, we can gather more infor-
mation about the definable open sets by using a criterion developed by Boxall and
Hieronymi [6]. To use this criterion, we note that for each open U ⊆ Mn and each
ū ∈ U , the set

{(ā, b̄) ∈ M2n : ai < bi for each i and ū ∈ (a1, b1) × · · · × (an, bn) ⊆ U}
clearly has nonempty interior, so “Assumption (I)” in [6] is satisfied in our setting.
For the remainder of this section, let ā ∈ Mn and let B ⊆ M be a small set with
δB ⊆ B. Set

ΞL(ā |B) := {b̄ ∈ Mn : tpL(b̄|B) = tpL(ā |B)}, ΞLδ (ā |B)

:= {b̄ ∈ Mn : tpLδ (b̄ |B) = tpLδ(ā |B)}.
Lemma 5.8. Suppose that rkδ(ā |B) = n and let X ⊆ Mn be an Lδ(B)-definable
set containing ā. Then there is an L(B)-definable open set A ⊆ Mn such that ā ∈ A

and X ∩A is dense in A.

Proof. By Corollary 4.13, there is some m and some L(B)-definable set X̃ ⊆
Mn(m+1) such that

X = {x̄ ∈ Mn : Jm
δ (x̄) ∈ X̃}.

Let Ã ⊆ X̃ be an L(B)-definable cell containing Jm
δ (ā). Then Ã must be open, since

rkδ(ā |B) = n. Let π : Mn(m+1) → Mn be the projection map which maps

(x1,0, x1,1, . . . , x1,m;x2,0, . . . , x2,m; . . . ;xn,0, . . . , xn,m) �→ (x1,0;x2,0; . . . ;xn,0).

Then π(Jm
δ (x̄)) = x̄ for all x̄ ∈ Mn, so

X = π(Jm
δ (Mn) ∩ X̃) ⊇ π(Jm

δ (Mn) ∩ Ã).
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By Lemma 5.5, we have that Jm
δ (Mn) is dense in Mn(m+1), so Jm

δ (Mn)∩ Ã is dense
in Ã. This gives us that X ∩ π(Ã) is dense in π(Ã), so we may set A := π(Ã).

Lemma 5.9. rkδ(ā |B) < n if and only if ā is contained in some Lδ(B)-definable
set of δ-dimension < n.

Proof. One direction follows immediately from our definition of δ-dimension. For
the other direction, suppose that rkδ(ā |B) < n. Then there is some k ∈ {1, . . . , n}
and some m such that

δmak ∈ dclL({Jm
δ (a1), . . . , Jm

δ (ak−1), Jm−1
δ (ak)} ∪B).

Let f : Mk(m+1)−1 → M be an L(B)-definable function such that

f(Jm
δ (a1), . . . , Jm

δ (ak−1), Jm−1
δ (ak)) = δm(ak).

Then ā is contained in the set

A := {x̄ ∈ Mn : Jm
δ (x̄) ∈ Γ(f) × M(n−k)(m+1)}.

It remains to note that dimδ(A) ≤ n− 1.

Lemma 5.10. rkL(ā |B) = n if and only if ΞL(ā |B) is open if and only if
ΞL(ā |B) is somewhere dense.

Proof. If rkL(ā |B) = n, then any L(B)-definable set X containing ā contains an
open neighborhood of ā. Let (Xi)i∈I be a list of all L(B)-definable sets containing
ā, so ΞL(ā |B) =

⋂
i∈I Xi. Fix b̄ ∈ ΞL(ā |B). Since I is small and since

⋂
i∈I0

Xi

contains an open neighborhood of b̄ for each finite I0 ⊆ I, we can use saturation to
find an open neighborhood U of b̄ contained in

⋂
i∈I Xi. Thus, b̄ is in the interior

of ΞL(ā |B). This shows that ΞL(ā |B) is open and this of course implies that
ΞL(ā |B) is somewhere dense.

Now suppose that rkL(ā |B) < n and take some L(B)-definable setX containing
ā with dimL(X) < n. Then X is nowhere dense and ΞL(ā |B) ⊆ X , so ΞL(ā |B) is
nowhere dense.

Lemma 5.11. If rkδ(ā |B) = n, then ΞLδ(ā |B) is dense in ΞL(ā |B).

Proof. Fix b̄ ∈ ΞL(ā |B). We need to show that if U ⊆ Mn is an open set containing
b̄, then ΞLδ (ā |B)∩U is nonempty. By saturation, it suffices to show that U∩X �= ∅
for any Lδ(B)-definable set X ⊆ Mn containing ā. By Lemma 5.8, there is an
L(B)-definable open set A ⊆ Mn such that ā ∈ A and X ∩ A is dense in A. Since
b̄ ∈ ΞL(ā |B) ⊆ A, the intersection U ∩ A is nonempty and open, so U ∩ X is
nonempty by density of X ∩A in A.

Proposition 5.12. T δ
G has T as its open core. More precisely, any open Lδ(B)-

definable set is L(B)-definable.
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Proof. Let An be the set of all ā ∈ Mn such that ΞL(ā |B) is somewhere dense
and let A′

n be the set of all ā ∈ An such that ΞLδ (ā |B) is dense in ΞL(ā |B).
By [6, Theorem 2.2], the proposition follows if we can show that A′

n is dense in Mn.
Set

D := {ā ∈ Mn : rkδ(ā |B) = n}.
If ā ∈ D, then rkL(ā |B) = n and so D ⊆ An by Lemma 5.10. By Lemma 5.11
we even have that D ⊆ A′

n, so it is enough to show that D is dense in Mn. By
Lemma 5.9, we have that

D = Mn

∖ ⋃
{X ⊆ Mn : X is Lδ(B)-definable and dimδ(X) < n}.

Let U ⊆ Mn be a basic open set. By saturation, it suffices to show that U\X �= ∅
for an arbitrary Lδ(B)-definable set X of δ-dimension < n. However, this follows
easily from the fact that dimδ(U) = n.

We list below two standard consequences of having o-minimal open core. See [12]
for proofs.

Corollary 5.13. T δ
G eliminates ∃∞ and every model of T δ

G is definably complete.

Moreover, we can use Proposition 5.12 to analyze the definable closure in models
of T δ

G.

Corollary 5.14. Let A ⊆M . Then

dclLδ (A) = dclL(J∞δ (A)).

Thus, A is dclLδ -closed if and only if (A, δ|A) |= T δ.

Proof. Since J∞δ (A) ⊆ dclLδ(A) and since dclLδ(A) is dclL-closed, we have
dclL(J∞δ (A)) ⊆ dclLδ (A). For the other direction, fix a ∈ dclLδ(A). Since
{a} is closed and Lδ(A)-definable, we have that {a} is L(J∞δ (A))-definable by
Proposition 5.12.

As is usual, this allows us to understand the Lδ(B)-definable functions.

Corollary 5.15. For any Lδ(B)-definable function f : Mn → M there is m, k and
L(B)-definable functions f̃1, . . . , f̃k : Mn(m+1) → M such that for each x̄ ∈ Mn,

there is some i ∈ {1, . . . , k} such that

f(x̄) = f̃i(Jm
δ (x̄)).

5.4. Elimination of imaginaries

In this section, use the fact that T δ
G has T as its open core and the fact that

T eliminates imaginaries to show that T δ
G eliminates imaginaries. This proof was
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communicated to us by Marcus Tressl. In [24], Point used that CODF has o-minimal
open core to prove that CODF eliminates imaginaries. Our method differs slightly,
but her method also works in our case. Yet another proof of elimination of imagi-
naries for CODF can be found in [9].

Fix an Lδ(M)-definable set A ⊆ Mn. We need to find a canonical base for A, i.e.
a tuple ā such that each Lδ-automorphism σ : (M, δ) → (M, δ) fixes A setwise if and
only if σ fixes ā componentwise. Let σ be an arbitrary Lδ-automorphism of (M, δ).
By Corollary 4.13, there is some m and some L(M)-definable set B ⊆ Mn(m+1)

such that

A = {x̄ ∈Mn : Jm
δ (x̄) ∈ B}.

By Proposition 5.12, we have that Jm
δ (A) is L(M)-definable, where Jm

δ (A) denotes
the topological closure of Jm

δ (A). By replacing B with B ∩ Jm
δ (A), we arrange that

Jm
δ (A) ⊆ B ⊆ Jm

δ (A). We associate to A two other Lδ(M)-definable sets:

Acl := {x̄ ∈Mn : Jm
δ (x̄) ∈ Jm

δ (A)}, Afr := {x̄ ∈Mn : Jm
δ (x̄) ∈ Jm

δ (A)\B}.
Note that A∪Afr = Acl and that A∩Afr = ∅. Note also that Jm

δ (σ(b̄)) = σ(Jm
δ (b̄))

for all b̄ ∈ Mn.

Lemma 5.16. dimL(Jm
δ (Afr)) < dimL(Jm

δ (A)).

Proof. Set B0 := Jm
δ (A)\B, so Jm

δ (Afr) ⊆ B0. Since B = Jm
δ (A), we have that

dimL(B0) < dimL(Jm
δ (A)). Since the dimension of an L(M)-definable set does not

increase when we take its closure, we get that

dimL(Jm
δ (Afr)) ≤ dimL(B0) = dimL(B0) < dimL(Jm

δ (A)).

Lemma 5.17. σ(A) = A if and only if σ(Acl) = Acl and σ(Afr) = Afr.

Proof. Suppose that σ(A) = A. Then σ(Jm
δ (A)) = Jm

δ (A) and so σ(Jm
δ (A)) =

Jm
δ (A). We have

b̄ ∈ Acl ⇔ Jm
δ (b̄) ∈ Jm

δ (A) ⇔ σ(Jm
δ (b̄)) ∈ σ(Jm

δ (A)) ⇔ σ(b̄) ∈ Acl,

since Jm
δ (A) is σ-invariant. Thus, σ(Acl) = Acl and so σ(Afr) = σ(Acl\A) =

Acl\A = Afr. For the other direction, we use that σ(A) = σ(Acl\Afr) =
σ(Acl)\σ(Afr).

Lemma 5.18. If A = Acl, then A has a canonical base.

Proof. We first note that since Jm
δ (A) is L(M)-definable and since T eliminates

imaginaries, there is a canonical base ā for Jm
δ (A). We claim that ā is also a canonical

base for A. We need to show that

σ(A) = A⇔ σ(Jm
δ (A)) = Jm

δ (A).
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First, if σ(A) = A then σ(Jm
δ (A)) = Jm

δ (A) and so σ(Jm
δ (A)) = Jm

δ (A). Now,
suppose that σ(Jm

δ (A)) = Jm
δ (A) and fix b̄ ∈ A. Then Jm

δ (b̄) ∈ Jm
δ (A) and so

σ(Jm
δ (b̄)) ∈ σ(Jm

δ (A)) = Jm
δ (A), so σ(b̄) ∈ Acl = A.

Theorem 5.19. T δ
G eliminates imaginaries.

Proof. By Lemma 5.17, it is enough to find canonical bases for Acl and for Afr.
By Lemma 5.18, there is a canonical base for Acl. By Lemma 5.16, we have
dimL(Jm

δ (Afr)) < dimL(Jm
δ (A)), so by induction on dimL(Jm

δ (A)), we may assume
that there is a canonical base for Afr as well.

6. Several Commuting T -Derivations

Let Δ = {δ1, . . . , δp} be a set of unary function symbols, let LΔ = L ∪ Δ and let
TΔ be the LΔ theory extending T by the following axiom schema:

(i) each δi is an T -derivation;
(ii) each δi and δj commute.

The goal of this section is to show that TΔ has a model completion. When T =
RCF, this was shown by Rivière [25]. Rivière’s proof relies heavily on properties of
differential polynomials, so we have to prove this another way. For the remainder
of this section, we fix a model (M,Δ) |= TΔ.

6.1. The monoid of derivative operators

We use the notation in [20] and denote by Θ the free abelian monoid generated by
Δ. That is

Θ = {δe1
1 · · · δep

p : e1, . . . , ep ≥ 0}.
We denote the identity element δ01 · · · δ0p by id. We view each θ ∈ Θ as a func-
tion a �→ θa : M → M in the obvious way and, for a tuple ā ∈ Mn, we let
θā := (θa1, . . . , θan). To each θ = δe1

1 · · · δep
p ∈ Θ, we set ord(θ) :=

∑p
i=1 ei and we

associate to θ the tuple (ord(θ), e1, . . . , ep) ∈ N1+p. We put a (total) ordering <
on Θ by setting θ < φ if the tuple corresponding to θ is less than the tuple corre-
sponding to φ in the lexicographic order on N1+p. We note that (Θ, <) has order
type ω.

We put another (partial) ordering ≺ on Θ by setting θ ≺ φ if there is ξ ∈ Θ
with ξθ = φ. Note that if θ ≺ φ then θ < φ, but the reverse does not hold. Both
(Θ, <) and (Θ,≺) are (partially) ordered monoids. We use � to denote the non-
strict version of ≺. We note that (Θ,≺) is in fact a lattice and for θ, φ ∈ Θ, we let
θ∨φ and θ∧φ denote the ≺-supremum and ≺-infimum of θ and φ, respectively. For
any finite subset P ⊆ Θ, we let

∨
P denote the ≺-supremum all θ ∈ P , respectively.

We let Pr(θ) denote the set of immediate ≺-predecessors of θ. Then Pr(θ) is finite
and nonempty so long as θ �= id.

2150007-31



June 4, 2021 17:34 WSPC/S0219-0613 153-JML 2150007

A. Fornasiero & E. Kaplan

For each θ ∈ Θ, we introduce new variables yθ
1 , . . . , y

θ
n and zθ. We use yj and z

in place of yid
j and zid. Given J ⊆ Θ, we denote by yJ

i the (possibly infinite) tuple of
multivariables (yθ

i )θ∈J and we define zJ analogously. We also set ȳ := (y1, . . . , yn)
and set ȳJ := (yJ

1 , . . . , y
J
n). Given a ∈ M , we set aJ := (θa)θ∈J and given a tuple

b̄ ∈Mn, we set b̄J := (bJ1 , . . . , b
J
n). We let J∗ = J\{id} and for φ ∈ Θ, we let

φJ := {φθ : θ ∈ J}, J<φ := {θ ∈ J : θ < φ}, J≺φ := {θ ∈ J : θ ≺ φ}.
We view each subset J of Θ as an ordered subset with ordering <. For example if
J is finite, then zJ · zφJ =

∑
θ∈J z

θzφθ. We often write a definable function f as
a function of infinitely many variables, i.e. f = f(ȳΘ). Of course, this just means
that there is some finite set J ⊆ Θ such that f only depends on the variables ȳJ .

Lemma 6.1. Let (N ,Δ) ⊇ (M,Δ) and let A ⊆ N be a dclL(M)-independent set
with N = M〈A〉. Then (N ,Δ) |= TΔ if and only if δεa = εδa for all δ, ε ∈ Δ and
for all a ∈ A.

Proof. One direction is trivial. For the other, fix δ, ε ∈ Δ. Then γ := δε − εδ is
a T -derivation on N by Lemma 2.19, so we need to show that γ is trivial. Any
element in N is of the form f(ā) where f is some L(M)-definable function and
where ā is a tuple from A. Since ā is dclL(M)-independent, there is some open set
U containing ā such that f is C1 on U . We have that

γf(ā) = f [γ](ā) + Jf (ā)γā.

By the assumption that δ and ε commute on A, we have that γā = 0 and since
M ⊆ ker(γ), we also have that f [γ] = 0 by Lemma 2.12. Therefore, γf(ā) = 0.

Lemma 6.2. Let k ≥ 1. Given δ ∈ Δ and an L(M)-definable Ck-function f :
U → M with U ⊆ Mn open, there is an L(M)-definable Ck−1-function function
f δ : U ×Mn →M such that :

(1) If (M, δ) ⊇ (N , δ) |= T δ and ū ∈ UN , then

δf(ū) = f δ(ū, δū).

(2) If k ≥ 2, then

(f δ)ε(ȳ, ȳδ, ȳε, ȳεδ) = (fε)δ(ȳ, ȳε, ȳδ, ȳεδ)

for all ε ∈ Δ.
(3) If g : V → U is an L(M)-definable Ck-map with V ⊆ Mm open, then for

h := f ◦ g, we have

hδ(ȳ, ȳδ) = f δ(g(ȳ), gδ(ȳ, ȳδ)),

where gδ = (gδ
1, . . . , g

δ
n).

2150007-32



June 4, 2021 17:34 WSPC/S0219-0613 153-JML 2150007

Generic derivations on o-minimal structures

Proof. We define f δ by

f δ(ȳ, ȳδ) := f [δ](ȳ) + Jf (ȳ)ȳδ.

Then (1) follows immediately from Lemma 2.12. For (2), fix ε ∈ Δ and suppose
that f is Ck for some k ≥ 2. By the proof of Lemma 2.12, there is an L(∅)-definable
Ck-function F (x̄, ȳ) with open domain and a tuple ā such that F (ā, ū) = f(ū) for
all ū ∈ U . By the proof of Lemma 2.19, we have that

(f δ)ε(ȳ, ȳδ, ȳε, ȳεδ) − (fε)δ(ȳ, ȳε, ȳδ, ȳδε) = JF (ā, ȳ)(δεā− εδā, ȳδε − ȳδε) = 0.

As for (3), let F and ā be as above and take an L(∅)-definable Ck-map G with
open domain and a tuple b̄ such that G(b̄, ū) = g(ū) for all ū ∈ V . By shrinking the
domain of G, we may assume that the range of G is contained in the domain of F .
Then F (ā, G(b̄, ū)) = h(ū) for all ū ∈ V . We have

hδ(ȳ, ȳδ) = JF (ā, G(b̄, ȳ))(δā,JG(b̄, ȳ)(δb̄, ȳδ))

=
∂F

∂x̄
(ā, g(ȳ))δā+

∂F

∂ȳ
(ā, g(ȳ))

(
∂G

∂x̄
(b̄, ȳ)δb̄+

∂G

∂ȳ
ȳδ

)

= f [δ](g(ȳ)) + Jf (g(ȳ))(g[δ](ȳ) + Jg(ȳ)ȳδ) = f δ(g(ȳ), gδ(ȳ, ȳδ)).

6.2. Coherent conditions

Let P ⊆ Θ∗ be a (possibly empty) set of pairwise ≺-incomparable elements. We set

B := {θ ∈ Θ : β � θ for some β ∈ P}.
Then P is precisely the set of ≺-minimal elements of B, hence finite by Dickson’s
Lemma. We set I := Θ\B. A condition (on M) is a tuple C = (P,U, (fβ)β∈P ) where
P is as above such that:

(i) U ⊆M I is a nonempty, open, L(M)-definable set and
(ii) each fβ : U →M is an L(M)-definable continuous function which only depends

on the variable zθ if θ < β.

Given a ∈ M , we say that a satisfies C if aI ∈ U and if βa = fβ(aI) for all
β ∈ P . We note that all but finitely coordinate projections of U are not all of M , so
this is a finitary statement even though I may be infinite. We think of a condition as
describing the algebraic dependencies among components of the tuple aΘ: the tuple
aI is seen as being independent and aB is seen as being bounded. The dependencies
of the components of aB are uniquely determined by requiring that βa = fβ(aI)
whenever β ∈ P . Of course, most conditions simply cannot be satisfied in a model
of TΔ, so we must put some extra compatibility requirements on our conditions.

Fix a condition C. We will assign to each θ ∈ Θ an L(M)-definable open set Uθ ⊆
M I , a set Ωθ of L(M)-definable continuous functions on Uθ and a distinguished
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function gθ ∈ Ωθ. We require that the following properties are satisfied:

• Uθ is a dense open subset of U and Uθ ⊆ Uφ whenever θ < φ;
• each h ∈ Ωθ only depends on the variable zφ if φ ≤ θ;
• each Ωθ is finite.

We define Ωθ, Uθ and gθ inductively. For J ⊆ Θ, we let gJ = (gφ)φ∈J , assuming that
each gφ has been defined. Set Uid := U and set Ωid := {z}, so gid = z. Suppose that
Uφ, Ωφ and gφ are defined for each φ < θ and let θ′ be the immediate <-predecessor
of θ.

(1) If θ ∈ I, set Uθ := Uθ′ and set Ωθ := {zθ}, so gθ = zθ.
(2) If θ ∈ P , then we have a distinguished function fθ given by the condition C.

Set Uθ := Uθ′ and set Ωθ := {fθ|Uθ
}, so gθ := fθ|Uθ

.
(3) If θ ∈ B\P , then Pr(θ) ∩B is nonempty and finite. Set

Uθ := {ū ∈ Uθ′ : gφ is C1 at ū for all φ ∈ Pr(θ) ∩B}.
Then Uθ is a dense open subset of Uθ′ . Now fix φ ∈ Pr(θ) ∩ B, so θ = δφ for
some δ ∈ Δ. Set J := I≤φ = I<φ, so gφ only depends on zJ . Then δJ < δφ = θ,
so gδJ has already been defined. We define gθ,φ : Uθ →M by

gθ,φ(zI) := gδ
φ(zI , gδJ(zI)).

We set Ωθ := {gθ,φ : φ ∈ Pr(θ) ∩ B} and we let gθ be an arbitrary element
of Ωθ.

Definition 6.3. We say that C is coherent if Ωθ is a singleton for all θ ≤ ∨
P .

Proposition 6.4. If C is coherent, then Ωθ is a singleton for all θ.

Proof. Suppose toward contradiction that there is θ ∈ Θ such that Ωθ is not a
singleton. Let θ be <-minimal with this property. Then θ is in B\P and there are
distinct φ1, φ2 ∈ Pr(θ) ∩ B such that gθ,φ1 �= gθ,φ2. We first claim that there is
φ0 ∈ Pr(θ) ∩B such that φ0 ∧ φi ∈ B for i = 1, 2. Since φ1 and φ2 are elements of
B, there are β1, β2 ∈ P such that βi � φi for i = 1, 2. If β1 = β2, then φ1 ∧φ2 � β1

so we are done (let φ0 := φ1). Thus, we assume that β1 and β2 are distinct. Since
β1, β2 ≺ θ and since θ >

∨
P , we have that β1 ∨ β2 ≺ θ. Therefore, there is

φ0 ∈ Pr(θ) with β1∨β2 � φ0. It remains to observe that φ0∧φi � βi, so φ0∧φi ∈ B

for i = 1, 2.
We will now show that gθ,φ0 = gθ,φ1 . Fix δ, ε ∈ Δ such that θ = δφ0 = εφ1 and

set γ := φ0 ∧ φ1. Then φ0 = εγ and φ1 = δγ. Set J := I<γ , so εδJ < θ and, by
minimality of θ, we have that Ωα is a singleton whenever α is in δJ , εJ or εδJ . We
set

V := {ū ∈ Uθ : gγ is C2 at ū and gδJ , gεJ are C1 at ū}.
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Then V is an open dense subset of Uθ and since both gθ,φ0 and gθ,φ1 are continuous,
it suffices to show that they are equal on V . We work in V for the remainder of the
proof. We have

gφ0 = gφ0,γ = gε
γ(zI , gεJ(zI))

and so, by Lemma 6.2(3), we have gδ
φ0

(zI , zδI) = (gε
γ)δ(zI , gεJ(zI), zδI , gδ

εJ(zI , zδI)).
Thus,

gθ,φ0(z
I) = (gε

γ)δ(zI , gεJ(zI), gδJ (zI), gδ
εJ (zI , gδJ(zI)))

= (gε
γ)δ(zI , gεJ(zI), gδJ (zI), gεδJ (zI)).

Likewise, we have

gθ,φ1(z
I) = (gδ

γ)ε(zI , gδJ (zI), gεJ (zI), gεδJ (zI)),

and so gθ,φ0 = gθ,φ1 by Lemma 6.2(2). The same argument shows that gθ,φ0 = gθ,φ2,
a contradiction.

Lemma 6.5. If C is coherent, then gδθ(zI) = gδ
θ(z

I , gδI(zI)) for all θ ∈ Θ and all
δ ∈ Δ.

Proof. This follows from Proposition 6.4 if θ ∈ B. If θ ∈ I, then gθ(zI) = zθ so
gδ

θ(z
I , zδI) = zδθ. Thus, gδ

θ(z
I , gδI(zI)) = gδθ(zI).

6.3. The model completion of TΔ

We say that Δ is a set of generic commuting derivations if every coherent condition
on M is satisfied by some a ∈ M . Let TΔ

G be the LΔ-theory extending TΔ by the
axiom scheme which asserts that Δ is a generic set of commuting derivations. This
section is dedicated to showing that TΔ

G is the model completion of TΔ. We need
two lemmas.

Lemma 6.6. Any model of TΔ can be extended to a model of TΔ
G .

Proof. Let C = (P,U, (fβ)β∈P ) be a coherent condition on M and let I, B ⊆ Θ
and (Uθ)θ∈Θ, (gθ)θ∈Θ be as in Sec. 6.2. We will construct a model (N ,Δ) |= TΔ

extending (M,Δ) such that there is a ∈ N satisfying C. First, let N �L M be an
elementary extension which contains a dclL(M)-independent tuple aI := (aθ)θ∈I

with aI ∈ UN . We may assume that N = M〈aI〉. Using Lemma 2.13, we extend
each δ ∈ Δ to a T -derivation on N such that

δaθ := gδθ(aI)

for all θ ∈ I. Since a := aid satisfies C, it remains to show that our extended
T -derivations commute. Let δ, ε ∈ Δ and θ ∈ I be arbitrary. By Lemma 6.1, it
suffices to show that δεaθ = εδaθ. We have εaθ = gεθ(aI) and so δεaθ = gδ

εθ(aI , δaI).
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Since δaφ = gδφ(aI) for each φ ∈ I, we have

δεaθ = gδ
εθ(aI , gδI(aI)) = gδεθ(aI)

by Lemma 6.5. Likewise, εδaθ = gδεθ(aI).

Lemma 6.7. Let (M,Δ) ⊆ (N ,Δ) |= TΔ, let (M,Δ) ⊆ (M∗,Δ) |= TΔ
G and sup-

pose that (M∗,Δ) is |N |+-saturated. Then there is an LΔ-embedding ι : (N ,Δ) →
(M∗,Δ) over (M,Δ).

Proof. We may assume that N = M〈aΘ〉 for some a ∈ N\M . Let θ0, θ1, . . . , θn, . . .

be the enumeration of Θ with respect to <. We build an increasing chain of subsets
In ⊆ Θ as follows:

• Set I0 = {θ0} = {id}.
• If In has already been defined and if θn+1a �∈ dclL(MaIn), then set In+1 :=
In ∪ {θn}. If θn+1a ∈ dclL(aIn), then set In+1 := In.

Set I :=
⋃

n In. By construction, we have that aI is a maximal dclL(M)-independent
subtuple of aΘ. If θ �∈ I then δθ �∈ I for all δ ∈ Δ, so I is ≺-downward closed. Set
B := Θ\I and let P be the (finite) set of ≺-minimal elements of B. If θn ∈ P for
some n, then θn �∈ In, so we have θna ∈ dclL(MaIn). We let fθn : M In →M be an
L(M)-definable function such that θna = fθn(aIn) and we view fθn as a function
on all of M I . Note that the quantifier-free LΔ-type of a over (M,Δ) is completely
characterized by the L(M)-definable sets which contain aI and by the fact that
βa = fβ(aI) for β ∈ P .

Let U ⊆ M I be an L(M)-definable set with aI ∈ UN . Then U has nonempty
interior, so by shrinking U we may assume that U is open and that fβ is continuous
on U for all β ∈ P . Thus, (P,U, (fβ)β∈P ) is a condition on M which is satisfied
by a, but this condition may not be coherent. We resolve this issue as follows: let
(Ωθ)θ∈Θ be as in Sec. 6.2. A quick inductive argument shows that θa = h(aI) for
any θ ∈ Θ and any h ∈ Ωθ. Thus, all of the functions on Ωθ agree at aI and, by
the dclL(M)-independence of aI , they all agree on some L(M)-definable open set
Uθ ⊆ U . Set

V :=
⋂

θ<
W

P

Uθ.

Then (P, V, (fβ)β∈P ) is a coherent condition on M which is satisfied by a and, as
(M∗,Δ) |= TΔ

G , it is also satisfied by some element of M∗. Since U was arbitrary,
we may use the saturation of (M∗,Δ) to find some b ∈M∗ such that bI is contained
in exactly the same L(M)-definable sets as aI (in their respective models) and such
that βb = fβ(bI) for β ∈ P .

Arguing as in the proof of Theorem 4.8, we have the following.
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Theorem 6.8. TΔ
G is the model completion of TΔ. If T has quantifier elimination

and a universal axiomatization, then TΔ
G has quantifier elimination.

We can immediately reprove some of our previous results in this more general
setting. The proof of the following is virtually the same as the proof of Lemma 4.11.

Lemma 6.9. For every LΔ-formula ϕ there is some finite J ⊆ Θ and some
L-formula ϕ̃ such that

TΔ
G � ∀ ȳ(ϕ(ȳ) ↔ ϕ̃(ȳJ )).

We may substitute the above lemma in place of Lemma 4.11 in the proof of
Theorem 4.15 to the following proposition.

Proposition 6.10. TΔ
G is distal.

One potentially interesting structure is the reduct (M, P1, . . . , Pp) of a model
(M,Δ) |= TΔ

G , where Pi is interpreted to pick out the constant field ker(δi). We
have (M, Pi) |= T dense for each i, but to our knowledge, no work has been done on
(M, P1, . . . , Pp).

6.4. Dimension in models of TΔ
G

In this section, we define and examine the Δ-closure in analogy with the δ-closure
in Sec. 3. Given B ⊆M and J ⊆ Θ, we set BJ := {bJ : b ∈ B}.

Definition 6.11. Given a ∈ M and B ⊆ M , we say that a is in the Δ-closure of
B, written a ∈ c�Δ(B), if aΘ is not dclL(BΘ)-independent.

The next fact follows from the finitary nature of dclL.

Fact 6.12. a ∈ c�Δ(B) if and only if there is some finite J ⊆ Θ such that

rkL(aJ |BΘ) < |J |.
We can examine the Δ-closure by induction on |Δ|. The following lemma serves

as an induction step.

Lemma 6.13. Let δ ∈ Δ and set Δ0 := Δ\{δ}. Then δ is a quasi-endomorphism
of (M, c�Δ0).

Proof. Fix A,B ⊆ M . Making the same reduction as in Lemma 3.7, it suffices to
show that if A ⊆ c�Δ0(B) then δA ⊆ c�Δ0(BδB). Fix a ∈ A and let Θ0 ⊆ Θ be the
submonoid of Θ generated by Δ0. Since a ∈ c�Δ0(B), there is some finite J ⊆ Θ0

such that

rkL(aJ |BΘ0) < |J |.
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Since δ is a quasi-endomorphism of (M, dclL) by Lemma 3.7, we have that

rkL(δ(aJ )|aJBΘ0δ(BΘ0)) < |J |.

Since δ commutes with all θ ∈ Θ0, we have δ(aJ ) = (δa)J . Likewise, δ(BΘ0) =
(δB)Θ0 , so

rkL((δa)J |aJ(BδB)Θ0) = rkL((δa)J |(BδB)Θ0) < |J |.

Thus, δa ∈ c�Δ0(BδB).

Proposition 6.14. (M, c�Δ) is a finitary matroid.

Proof. By induction on |Δ|. Fix δ ∈ Δ and set Δ0 := Δ\{δ}. Then by our induc-
tion hypothesis, (M, c�Δ0) is a finitary matroid and by Lemma 6.13, δ is a quasi-
endomorphism of (M, c�Δ0). Fix a ∈ M and B ⊆ M . We claim that a �∈ c�Δ(B)
if and only if J∞δ (a) is c�Δ0(J∞δ (B))-independent. To see this, let Θ0 be as in
the proof of Lemma 6.13. Then J∞δ (a) is c�Δ0(J∞δ (B))-independent if and only if
J∞δ (a)Θ0 is dclL(J∞δ (B)Θ0)-independent if and only if aΘ is dclL(BΘ)-independent,
as J∞δ (a)Θ0 = aΘ. Thus, we may apply Proposition 3.4 to (X, c�) = (M, c�Δ0) to
deduce that (M, c�Δ) is a finitary matroid.

We can leverage this to define a dimension function as in Sec. 5.1. Let (M,Δ) be
a monster model of TΔ

G and suppose that (M,Δ) is a small elementary substructure
of (M,Δ).

Lemma 6.15. Let B ⊆ M. If c�Δ(B) = B then (B,Δ|B) |= TΔ
G , where Δ|B =

{δ|B : δ ∈ Δ}.

Proof. Since dclL(B) ⊆ c�Δ(B) = B, we have that B �L M. Since δB ⊆ c�Δ(B) =
B for each δ ∈ Δ, we have that (B,Δ|B) |= T δ. Let C = (P,U, (fβ)β∈P ) be a
coherent condition on B. We first consider the case that P �= ∅. Since (M,Δ) |= TΔ

G ,
there is some a ∈ M which satisfies C. If β ∈ P , then aβ = fβ(aI) where I is as in
Sec. 6.2. Thus, aΘ is not dclL(B)-independent so a ∈ c�Δ(B) = B.

Now consider the case that P = ∅. Since U is an open L(B)-definable sub-
set of MΘ there is some <-closed subset J ⊆ Θ and some open L(B)-definable
subset V ⊆ MJ such that U = V × MΘ\J . Let β be the <-minimal element of
Θ\J , set fβ := 0 and set C′ := ({β}, V, fβ). Since

∨{β} = β, we have that C′ is
coherent. By the previous case, C′ is satisfied by some a ∈ B. Then aΘ ∈ U , so a
satisfies C.

Let rkΔ be the rank function associated to c�Δ. By the proof of Proposition 5.2
(with Lemma 6.15 in place of Lemma 5.1) and by the remarks after Definition 5.3,
we have the following.
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Proposition 6.16. (M, c�Δ) is an existential matroid in the sense of [17]. Thus,
we have a dimension function on the algebra of LΔ(M)-definable sets given by

dimΔ(A) := max{rkΔ(ā|M) : ā ∈ A}
for each nonempty LΔ(M)-definable set A ⊆ Mn. This dimension function satisfies
the axioms in [13].

Using this dimension function, one can make the obvious changes in Sec. 5.3 to
show the following.

Proposition 6.17. TΔ
G has T as its open core. More precisely, for B ⊆ M, any

open LΔ(B)-definable set is L(BΘ)-definable.
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Appendix A. Ck-Cells and Ck-Functions

In this section, we establish a fiberwise result about definable families of Ck-
functions, which generalizes in [15, Corollary 6.2.4]. Given a C1-manifold X and
a point c̄ ∈ X , we let Tc̄X denote the tangent space of X at c̄.

A Ck-cell is a special type of definable Ck-submanifold of Mn with an associated
binary sequence (i1, . . . , in) ∈ {0, 1}n. The cells and their sequences are defined by
induction on n:

(ii) A (1)-cell in M is an open interval and a (0)-cell is a singleton.
(ii) Given an (i1, . . . , in)-cell D ⊆Mn and an L(M)-definable Ck-function f : D →

M , Γ(f) is an (i1, . . . , in, 0)-cell and the following are (i1, . . . , in, 1)-cells:

• {(x̄, y) ∈ D ×M : y < f(x̄)};
• {(x̄, y) ∈ D ×M : y > f(x̄)};
• D ×M.

Given an L(M)-definable Ck-function g : D → M with f(x̄) < g(x̄) on D, the
set

{(x̄, y) ∈ D ×M : f(x̄) < y < g(x̄)}
is also an (i1, . . . , in, 1)-cell.
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Note that a Ck-cell is open if and only if it is a (1, . . . , 1)-cell. We call the binary
sequence associated to a Ck-cell D the type of D. We refer to C0-cells just as cells.

The inductive construction of Ck-cells makes them very easy to work with. For
example, the next lemma fails for C1-submanifolds in general, but it holds for C1-
cells.

Lemma A.1. Let D ⊆Mm+n be a C1-cell. Then

πm(Tā,b̄D) = Tā(πmD)

for all (ā, b̄) ∈ D.

Proof. We first handle the case n = 1. Fix ā ∈ Mm and b ∈ M with (ā, b) ∈ D

and set D′ := πmD. Let (i1, . . . , im, im+1) be the type of D. If im+1 = 1, then
Tā,bD = TāD

′ × M , proving the lemma. If im+1 = 0, then D = Γ(g) for some
L(M)-definable C1-function g : D′ → M . Take an L(M)-definable C1-function
G : U →M with U ⊇ D′ open and with G|D′ = g. Let P ⊆Mm+1 be hyperplane

{(x̄, y) ∈Mm+1 : y = JG(ā)x̄}.

Then Tā,b̄D = (TāD
′×M)∩P and πm(Tā,b̄D) = TāD

′ as desired. The general case
follows easily by induction on n.

One of the most useful tools in the study of o-minimal fields is the Ck-cell decom-
position theorem below. See [15] for the cases k = 0 or 1. A Ck-cell decomposition
of Mn is a finite collection D of disjoint Ck-cells such that

⋃D = Mn and such
that {πn−1D : D ∈ D} is a Ck-cell decomposition of Mn−1.

Proposition A.2 (Ck-cell decomposition). (i) For any L(M)-definable sets
A1, . . . , Ap ⊆ Mn there is a Ck-cell decomposition D of Mn partitioning
A1, . . . , Ap, i.e. each D ∈ D is disjoint from or contained in each Ai.

(ii) For every L(M)-definable map f : A → Mm with A ⊆ Mn, there is a Ck-cell
decomposition of Mn partitioning A such that the restriction f |D is C1 for each
cell D ∈ D contained in A.

(iii) Given an L(M)-definable map f : A→ Mm with A ⊆ Mn, let A′ := {x̄ ∈ A :
Jf is defined at x̄}. Then A\A′ has empty interior.

If D is a cell decomposition as in (i), we say that D partitions A1, . . . , Ap and
if D is a cell decomposition as in (ii), we say that D is a Ck-cell decomposition for
f . By taking refinements, we can always find a Ck-cell decomposition for f which
partitions A1, . . . , Ap. Suppose that f and each Ai are L(B)-definable for some
B ⊆ M . Then by passing to the elementary substructure with universe dclL(B),
we see that we can take an L(B)-definable Ck-cell decomposition D for f which
partitions A1, . . . , Ap (i.e. each cell is L(B)-definable).
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Appendix A.1. Definable families of Ck-functions

In this section, fix B ⊆ M and an L(B)-definable function F : U → M where
U ⊆Mm+n. Set U ′ := πm(U) and suppose that Uā is open in Mn for each ā ∈Mm.

Lemma A.3. Suppose that there is a dclL(B)-independent tuple ā ∈ U ′ such that
Fā : Uā → M is C1. Then there is an L(B)-definable open cell D ⊆ U ′ containing
ā such that F |U∩(D×Mn) is C1.

Proof. We view F as a function of the variables x̄ = (x1, . . . , xm) and ȳ =
(y1, . . . , yn). Set

A := {x̄ ∈ U ′ : Fx̄ is C1 on Ux̄}.
Then ā ∈ A, so by [15, Corollary 6.2.4], there is a definable set A′ ⊆ A containing
ā such that the function F and the map ∂F

∂ȳ are continuous on U ∩ (A′ × Mn).
Take an L(B)-definable C1-cell decomposition D for F partitioning A′ ×Mn. Let
D′ ⊆ D be the cells in D which are contained in U and which intersect {ā} ×Mn.
We let D be the common projection of these cells onto Mm and we claim that
D satisfies the conditions in the statement of the lemma. Since D contains the
independent tuple ā, it must be open and contained in A′, so both F and ∂F

∂ȳ are
continuous on U ∩ (D×Mn). It remains to show that the map ∂F

∂x̄ is continuous on
U ∩ (D ×Mn).

For each d ∈ {0, 1, . . . , n}, we let D′
d be the set of all cells in D which have

codimension at least d in the ambient space Mm+n. We set Ud :=
⋃D′

d. We remark
that Ud is open for each d and that Un =

⋃D′ = U ∩ (D ×Mn). We will show by
induction on d that ∂F

∂x̄ is continuous on Ud. The d = 0 case follows by our choice
of cell decomposition. Fix d > 0 and suppose that ∂F

∂x̄ is continuous on Ud−1. Let
C ∈ D′ be a cell of codimension d. After a permutation of variables, we may assume
that C′ := πm+n−d(C) is open and that C is of the form

C = {(x̄, ȳ) : (x̄, ȳ′) ∈ C′ and ȳ′′ = G(x̄, ȳ′)},
where ȳ′ = (y1, . . . , yn−d), ȳ′′ = (yn−d+1, . . . , yn) and where G : C′ → Md is an
L(B)-definable C1-map. We will show that ∂F

∂x̄ is continuous at each point in C.
Note that any point in C is contained in a small open ball which only intersects C
and cells of codimension larger than d.

Define the function F̃ by

F̃ (x̄, ȳ) := F (x̄, ȳ′, ȳ′′ +G(x̄, ȳ′)) − F (x̄, ȳ′, G(x̄, ȳ′)).

This function is defined on C′ × (−ε, ε)d for some sufficiently small positive ε ∈M .
By replacing F by F̃ , we may assume that

C = {(x̄, ȳ) : (x̄, ȳ′) ∈ C′ and ȳ′′ = 0̄}
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and that the restrictions of F , ∂F
∂x̄ and ∂F

∂ȳ′ to C are all identically zero. Thus, it
remains to show that

lim
ȳ′′→0̄

∂F

∂x̄
(x̄, ȳ′, ȳ′′) = 0̄

for all (x̄, ȳ′) ∈ C′. By [15, Lemma 6.4.2], it suffices to show that

lim
t→0

∂F

∂x̄
(x̄, ȳ′, γ(t)) = 0̄

for an arbitrary L(B)-definable curve γ : (0, 1) → (−ε, ε)d with limit γ(t) → 0̄ as
t→ 0. Fix (ā, b̄′) ∈ C′ and for each t, set

ft := F (ā, b̄′, γ(t)).

By [21] there exists an L(B)-definable C2 Verdier stratification V of Mm+n+1 which
is compatible with both Γ(F ) and with C×M (Loi works in an o-minimal expansion
of R, but his proof generalizes with minor changes to any o-minimal structure
expanding an ordered field). Let X ∈ V be the submanifold containing (ā, b̄′, 0̄, 0)
and X ′ ∈ V be the submanifold such that (ā, b̄′, γ(t), ft) ∈ X ′ for t sufficiently
small. Note that X ⊆ X ′\X ′ and that

Ta,b′,γ(t),ft
X ′ ⊆ Γ(Dt),

where Dt : Mm+n →M is the linear function given by

Dt(ū, v̄) =
∂F

∂x̄
(ā, b̄′, γ(t))ū+

∂F

∂ȳ
(ā, b̄′, γ(t))v̄.

Since the projection πmX contains ā, it must be open, so Tā(πmX) = Mm.
By Lemma A.1, we have that πm(Tā,b̄′,0̄,0X) = Tā(πmX), so (Tā,b̄′,0̄,0X)ū �= ∅ for
each ū ∈ Mm. Let ū0 ∈ Mm be arbitrary and take λ ∈ M �= and v̄′0 ∈ Mn−d such
that (λū0, v̄

′
0, 0̄, 0) ∈ Tā,b̄′,0̄,0X and such that

∥∥(λū0, v̄
′
0, 0̄, 0)

∥∥ = 1. By the Verdier
condition, we have that

lim
t→0

δ(Tā,b̄′,0̄,0X,Tā,b̄′,γ(t),ft
X ′) = 0,

where

δ(V, V ′) = sup
v̄∈V,‖v̄‖=1

d(v̄, V )

is the distance between vector subspaces V, V ′ ⊆ Mn. Thus, for every sufficiently
small t, we can find ūt ∈Mm and v̄t ∈Mn such that

∥∥(ūt, v̄t, Dt(ūt, v̄t))
∥∥ = 1 and

such that as t→ 0, we have

ūt → λū0, v̄t → (v̄′0, 0̄), Dt(ūt, v̄t) → 0.

Note that

lim
t→0

∂F

∂ȳ
(ā, b̄′, γ(t))v̄t =

∂F

∂ȳ
(ā, b̄′, 0̄)(v̄′0, 0̄) =

∂F

∂ȳ′
(ā, b̄′, 0̄)v̄0 = 0̄,
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so we have

lim
t→0

Dt(ūt, v̄t) = lim
t→0

∂F

∂x̄
(ā, b̄′, γ(t))ūt =

(
lim
t→0

∂F

∂x̄
(ā, b̄′, γ(t))

)
λū0 = 0̄.

Since ū0 is arbitrary, this shows that ∂F
∂x̄ (ā, b̄′, γ(t)) → 0̄ as t→ 0.

Corollary A.4. Suppose that Fā is Ck on Uā for all ā ∈ U ′. Then there exists an
L(B)-definable Ck-cell decomposition D of Mm such that F |U∩(D×M) is Ck for each
D ∈ D.

Proof. This follows from [15, Corollary 6.2.4] if k = 0, so we assume k ≥ 1. We
proceed by induction on m. If m = 0, the result is clear. Assume now that m > 0
and that we have already proved the result for every m′ < m. Define

A := {x̄ ∈ U ′ : F |U∩(V ×Mn) is Ck for some open neighborhood V of x̄}.

By Lemma A.3 applied to F and all its derivatives of order ≤ k− 1, we see that A
is L(B)-definable and that dimL(U ′\A) < m. Let D̃ be a Ck-cell decomposition for
F partitioning A. If D ∈ D̃ is contained in A, then F |U∩(D×M) is Ck by definition.
If D ∈ D̃ is disjoint from A, then set d := dimL(D) and fix an L(M)-definable
Ck-diffeomorphism g : Md → D. Set UD := {(x̄, ȳ) ∈Md+n : ȳ ∈ Ug(x̄)} and define
H : UD →M by

H(x̄, ȳ) := F (g(x̄), ȳ).

Since d < m, we may apply our induction hypothesis to H and take an L(B)-
definable Ck-cell decomposition {D1, . . . , Dp} of Md such that H |UD∩(Di×Mn) =
F |U∩(g(Di)×Mn) is Ck. We refine D̃ by replacing D with Ck-cells refining
g(D1), . . . , g(Dp). Repeating this process for each cell D ∈ D̃ which is not con-
tained in U , we arrive at the promised decomposition D.
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