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We propose to couple finite element simulations and wavelet-based post-
processing analysis to explore deeply the interaction degree of microscopic
events on the gross behavior of complex bodies (which class includes metamate-
rials), above all around material or load discontinuities. After summarizing the
theoretical structures our procedure refers to, as a sample case we select a special
class of complex materials, namely, quasicrystals, and show how the proposed
scheme works. As a result, we point out the effects of atomic rearrangements
characterizing the quasicrystal structure on the stress field around a crack tip
in static and dynamical setting. Our procedure can be also used for the analysis
of dynamic experimental data. In this case, it allows us to detect discontinuities
at least along directions selected within the body. In turn, our procedure can be
used for monitoring purposes.
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1 INTRODUCTION

We call complex those bodies in which microstructural events influence the gross behavior in a way hardly detectable
by using only the traditional format of continuum mechanics (the one referred to Cauchy and later Truesdell's school
axiomatization1–3). In that approach, in fact, a body is taken to be a set of so-called material elements, each identi-
fied with a point in the Euclidean space, so thought to be an indistinct piece of matter. Material complexity, in the
sense sketched above, requires a more refined view on material elements: they behave as (and are in fact) systems,
although at a microscopic scale. Their peculiar morphology, then, requires to be described through appropriate observable
entities—call them morphological descriptors or phase fields (the latter a syntagma pertaining more specifically to Landau's
theory of second-specie phase transitions). These descriptors can be vectors (as, e.g., in the case of quasicrystals, ferro-
electrics, and magnetostrictive materials), elements of the projective plane (nematic liquid crystals), second-rank tensors
(e.g., micromorphic and Casserat's materials), scalars (e.g., porous and multi-phase bodies), and so forth. In general, we
may construct a model-building framework for the mechanics of complex materials by requiring that such descriptors
belong to a differentiable manifold, taken commonly to have finite dimension,4–6 which we often require to be complete
and Riemannian when we explore existence of energy minimizers (i.e., equilibrium configurations) without embedding
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 into a linear space,7 otherwise the embedding is necessary8—it exists by Whitney's and Nash's theorems, but it is
not unique.

Every descriptor 𝜈 ∈  transfers at macroscopic level information on the microscopic (micro to be defined for each
specific) material texture. The general theoretical structure we may build up in this way requires to be specified when we
look at specific material classes. Experimental evidences drive at least partially the process but, in turn, such a theoretical
view addresses the design of metamaterials when they are constituted at least by two superposed and connected lattices
(see,9,10 although in the second reference the two-level lattice considered mimics a natural material11–13).

Computations help in visualizing and quantifying the mechanical behavior. Finite elements,14,15 their extended
version,16 variational integrators,17–19 and other methods may be profitably used, although even strong uncertainties in
the result interpretation may appear, due to uncertain material parameter knowledge for the lack of appropriate experi-
ments designed according to the multi-field approach we refer to here. In addition, we find at times problematic the exact
assignment of boundary and initial conditions pertaining to the microstructure.

Then, such uncertainties render at times just of qualitative character the offspring of computations. Post-processing
the resulting data may help at least in deepening their interpretation. For this reason, here we propose a mixing between
finite elements and wavelet analyses. In particular, we propose to explore through wavelets micro-to-macro interactions
at points where we have material or load discontinuities, such as tips (in the former case) or concentrated forces (in the
latter). We follow a view introduced in Bosi20 and Bosi et al.21 to detect mechanical discontinuities through the analysis
of wavelet spikes, a view investigated further in other studies22–24 and references therein.

We show the procedure by referring in static and dynamic setting to a sample family of complex materials: quasicrys-
tals. They are Aluminum-based alloys, with natural and synthetic origin, characterized by quasi-periodic arrangement of
atoms, at variance of the basic requirements of classical crystallography.25,26 Atomic rearrangements assure quasi-periodic
structure by annihilating and reforming topological alterations of a periodic structure, the so-called worms. Such rear-
rangements exploit inner degrees of freedom. They are locally collected in a vector. Then, the manifold of microstructural
shapes  coincides with R3, so in the sample case considered here, 𝜈 is a three-dimensional (3D) vector, reducing itself
to two dimensions when we consider two-dimensional bodies.

We organize the present paper as follows: Section 2 collects basic elements on wavelets. Section 3describes the essential
structure of the model-building framework for the mechanics of complex bodies. Section 4 introduces the special class
considered here, namely, quasicrystals, in its physical and modeling peculiarities. Section 5 collects the finite element
scheme and pertinent analyses in static and dynamic setting. Sections 6 includes wavelet post-processing of finite element
results.

2 BASIC NOTIONS ON WAVELETS

We recall here a few general remarks on wavelets; an extensive review can be found in the treatise.27 For 𝔲, s ∈ R

(with 𝔲 called a translation parameter and s a scale parameter), and 𝜓 ∈ L2(R;C), we define a function family
parameterized through 𝔲 and s, each element indicated by 𝜓𝔲,s and defined by

𝜓𝔲,s(t) ∶= |s|− 1
2 𝜓

( t − 𝔲
s

)
.

We consider 𝜓 such that

C𝜓 ∶= ∫
R

|�̂�(𝜔)|2
𝜔

d𝜔 < +∞, (1)

where �̂� is the Fourier transform of 𝜓 , while t and 𝜔 indicate, respectively, time and circular frequency. The bound (1),
called an admissibility condition, implies that

(i) 𝜓 is oscillatory with null average, i.e., �̂�(0) = 0 and ∫
R
𝜓(t) dt = 0;

(ii) |�̂�(𝜔)|2 decays at least as 𝜔−1 and 𝜓(t) → 0 when |t| → ∞.

We consider 𝜓 as a mother wavelet. From it, we obtain so-called daughter wavelets by varying 𝔲 and s, tuning in this way
frequency and time resolution.



BOSI ET AL. 3

For every 𝑓 ∈ L2(R;C), we define the so-called continuous wavelet transform W𝜓 f by

(W𝜓𝑓 )(𝔲, s) ∶= ∫
R

𝑓 (t)�̄�𝔲,s(t) dt,

where the overbar indicates complex conjugation. W𝜓 f is similar to a windowed Fourier transform in which the win-
dow length can change by varying s. Such a peculiar aspect makes wavelets well suited to analyze signals with sharp
discontinuities and sudden changes.

With 𝑗, k ∈ Z, by setting s = s𝑗0 and 𝔲 = k𝔲0s𝑗0, with s0 fixed once and for all, we may define a discrete version of the
wavelet transform by

(W𝜓𝑓 )( 𝑗, k) ∶= ∫
R

𝑓 (t)�̄�𝑗,k(t) dt,

where
𝜓𝑗,k(t) ∶= s

− 𝑗

2
0 𝜓(s−𝑗0 t − k𝔲0s𝑗0).

Such a transform decomposes the function f in the discrete set of coefficients (W𝜓 f)(j, k). By restricting s to the dyadic
scale 2n, and assuming 𝔲0 = 1, we reduce 𝜓 j, k to

𝜓𝑗,n ∶= 2−
𝑗

2 𝜓

(
t − 2𝑗n

2𝑗

)
,

which is commonly used as essential tool for multiresolution analysis in which the main idea is to reconstruct f as a limit
of successive approximations, each smoother than the preceding one, corresponding to a different level of resolution. The
family

{
𝜓𝑗,n

}
( 𝑗,n)∈Z2 is an orthonormal basis in L2(R,R).

Several mother wavelets can be defined provided that the admissibility condition is satisfied. Their properties vary
depending on symmetry (useful in avoiding de-phasing, above all in image processing), regularity (which is essential in
signal reconstruction), and orthogonality (allowing fast algorithm and space-saving coding). Here, we select the Haar
wavelet, which is largely used in crack detection, and the biorthogonal one; both show symmetry (see Mallat27). Haar's is
the simplest family of wavelets with compact support. The functional basis is obtained by a multiresolution of piecewise
constant functions. Biorthogonal wavelets have an explicit expression only in terms of piecewise splines. This latter family
has symmetry, good numerical stability, and produces small wavelet coefficients in regular domains (for an extended
treatment, see also Mallat27).

In previous definition, we have identified t as time. However, we can think of one-dimensional space domains, and the
same definitions work. Wavelets on higher dimensional spatial domains can be also defined, but we do not explore their
use here. Instead, we'll focus on time histories along appropriate (one-dimensional) sections in the body under analysis
in the sample case considered.

3 MULTI-FIELD VIEW ON THE MECHANICS OF COMPLEX BODIES: A
SUMMARY

We have already defined above the way we speak of material complexity. In that sense, we have the need of describing
the geometry of matter at low spatial scales, those pertaining to the microstructural events we refer to in each specific
case considered. So, the construction of a framework for the mechanics of complex bodies starts from the representation
of body morphology.

3.1 Deformations and microstructural descriptors
We distinguish between gross configuration and microstructural shapes. The former is identified by a fit region  in the
Euclidean space  (typical dimension may be 1, 2, or 3), which we take as reference and paragon setting to define the
shapes we consider deformed with respect to it. Points in  are labeled by x.  is an arcwise connected domain with
surface-like boundary, oriented by the normal n everywhere but a finite number of corners and edges. For the sake of gen-
erality, we define a non-singular metric g in  (i.e., the second-rank symmetric tensor g has non-null determinant at every
point). g coincides with the identity tensor Ī when the frame (or frames) of reference considered is (or are) orthonormal.
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We record gross shapes that we consider deformed with respect to  into a copy ̃ (itself endowed with a non-singular
metric g̃) of  through deformations, that is, orientation preserving differentiable maps x → 𝑦 ∶= �̃�(x) ∈ ̃ , with derivative
D�̃�(x) indicated by F. Take a basis {eA} in a neighborhood of x ∈ , with dual counterpart

{
eA}, defined by eA · eB = 𝛿A

B ,
with 𝛿A

B the Kronecker delta, A and B running from 1 to the dimension of  ; the dot indicates from now on duality pairing.
Take another basis {ẽi} in a neighborhood of 𝑦 ∶= �̃�(x), with dual counterpart {ẽi}. With respect to these bases, g reads as
g = gABeA⊗eB while g̃ = g̃i𝑗 ẽi⊗ẽ𝑗 , and the linear operator F has the form F = Fi

Aẽi⊗eA, where⊗ indicates tensor product
and we assume summation over repeated indices. We adopt for F the standard nomenclature and call it as a deformation
gradient, although the gradient of �̃�, namely, ∇�̃�(x) in the same bases reads ∇�̃�(x) = (∇�̃�(x))iAẽi ⊗ eA. The metric g estab-
lishes a link between the two; in fact, F = ∇�̃�(x)g, or, more explicitly, Fi

A = (∇�̃�(x))iBgBA. When the frames of reference
are orthonormal, that is, metrics coincide with the second-rank identity tensor, we may identify F with ∇�̃�(x); otherwise,
the role of the metric needs to be considered. This happens also when we define two linear operators associated with F,
namely, its transpose FT and its formal adjoint F*. In terms of components, the former reads FT = FA

ieA ⊗ ẽi, while the
latter F∗ = F i

A eA⊗ ẽi. The metric links FT and F*: in fact, we have FT = g−1F∗g̃, that is, in components FA
i = gABF 𝑗

B g̃𝑗i,
where gAB is the standard notation for the ABth component of the inverse metric g−1. When both g and g̃ coincide with the
second-rank identity tensor, FT and F* may be identified with each other. In the present setting, the deformation tensor E
for finite strain is defined by E = 1

2
(C−g), where C is the so-called right Cauchy–Green tensor and is given by C = F∗g̃F, that

is, in components C = CABeA⊗eB = F i
A g̃i𝑗F𝑗

BeA⊗eB, namely, C is the pull-back in reference place, through deformation
�̃�, of the spatial metric g̃, so that E takes the role of a difference between the two metrics. More common is a version of E
given by Ẽ ∶= g−1E = 1

2
(g−1C−I) = 1

2
(g−1F∗g̃F−g−1g) = 1

2
(FTF−Ī), with Ī = 𝛿A

BeA⊗eB. With 𝜄 ∶  → ̃ the identification
map between  and its copy ̃ , we commonly define a displacement as the vector field ũ with values u ∶= ũ(x) = �̃�(x)−𝜄(x).
Consequently, F = Du + I, with I = 𝛿i

Aẽi ⊗ eA the shifter between  and ̃ , so that ITI = Ī, and Ẽ becomes
Ẽ = sym(Dū) + 1

2
(Du)TDu, where ū ∶= ITu = 𝛿A

iu
i and sym extracts the symmetric part of its argument. The condition|Du| << 1 defines, as usual, the small-strain regime, which we will refer to in the specific analyses reported below. In

such a regime, we do not distinguish between the reference gross shape  and its deformed counterpart c = �̃�(), so
that we'll not distinguish between uppercase and lowercase indices, opting for the latter writing.

We describe microstructural shapes coarsely by assigning a differentiable map x → 𝜈 ∶= �̃�(x) ∈ , with x ranging in
. At each x, the (observable) variable 𝜈 summarizes the essential features of the microstructural shape we are interested
in, those we consider to be essential. Its choice is a matter of modeling when we tackle the analysis of a specific class
of complex bodies. In general, we say that 𝜈 belongs to a finite-dimensional differentiable manifold , and we call it
manifold of microstructural shapes. Such a choice does not depend on a sense for abstraction, which could appear useless
for applications at a first glance. Rather it is a matter of simplicity. In other words, we clearly say that to construct a
general model-building framework for the mechanics of complex materials we need just that the set  where we select
morphological descriptors be a differentiable manifold—this property is the minimal need. Such a choice allows us to
construct a unified theory. Precisely,  is a set endowed with a topology allowing us to distinguish between two of its
elements whatever their choice be, which is locally Euclidean. This means that we may select possibly intersecting subsets
able to cover  and we can assign coordinate charts in each of them in a way that we can change frames going from one
subset to another. Locally, the dimensions of coordinate charts define a dimension of the manifold. When differentiable
functions of class Ck describe the change of frames, we affirm that the manifold is differentiable of class Ck; when k = +∞
we do not specify the class. Over , we find naturally the notion of tangent at 𝜈, as an equivalent class of smooth curves
agreeing in a neighborhood of 𝜈, and indicate the pertinent tangent space collecting all the possible tangent elements at
𝜈, indicating it by T𝜈. We write T∗

𝜈 for its dual, that is, the space of all linear maps over T𝜈. It is not a linear space,
but the union T ∶ =

⋃
𝜈∈T𝜈, called a tangent bundle, is not a linear space, unless  itself is a linear space. As a

matter of fact,  is itself a differentiable manifold, one embedded in the Euclidean space  . A basic difference with the
manifold of microstructural shapes is that we consider  in general not embedded in any linear space, although it could
be, being finite-dimensional. We indicate by N the derivative D�̃�(x). With ê𝛼 the 𝛼th element of the basis in a coordinate
chart pertaining to a neighborhood of 𝜈 = �̃�(x), the linear operator N takes the form N = N𝛼

Aê𝛼 ⊗ eA = 𝜕𝜈𝛼

𝜕xA ê𝛼 ⊗ eA. The
map �̃� describes microstructural morphology in Lagrangian representation because it is defined over the reference shape.
We could choose a Eulerian representation by defining a map �̃�c ∶= �̃�◦�̃�−1. We do not explore further this option because
in the linear setting we refer to for the explicit analyses collected below, we do not distinguish between Lagrangian and
Eulerian representation. Itself 𝜈 could contribute to the definition of strain measures, depending on its physical meaning
selected in specific circumstances. The Cosserat scheme is a paradigmatic example: in that case, 𝜈 describes a local rigid
rotation—every material element is intended as a small rigid body able to rotate independently of its neighbors—which
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affects strain measures, as it occurs in direct models of rods (see Ericksen and Truesdell28). In general, we can just say
that for complex bodies, gross strain measures are symmetric-tensor-valued maps depending on �̃�, g̃, g, �̃�, F, N, or even
g, the metric on , when we consider it to be Riemannian, which vanish when F = I (see for additional details
Mariano6,29). Less uncertain is the definition of motions, which have to be considered here, in extended sense, as pairs of
time-parameterized differentiable maps: (x, t) → (𝑦, 𝜈) ∶= (�̃�(x, t), �̃�(x, t)) ∈ ̃ ×, with the possibility of substituting �̃�

with the displacement map ũ. Pertinent velocities are then .
𝑦 ∶= d�̃�(x,t)

dt
and .

𝜈 ∶= d�̃�(x,t)
dt

in Lagrangian representation, that
is, as fields defined over . We may consider the Eulerian velocity field v ∶= ṽ(𝑦, t), and we know that .

𝑦 = v at every point
and instant. The same property does not hold for .

𝜈. In Eulerian representation, the microstructure descriptor time rate
is, in fact, 𝜐 ∶= d�̃�c(𝑦,t)

dt
= 𝜕�̃�c(𝑦,t)

𝜕t
+ D𝑦�̃�c(𝑦, t) .

𝑦 = 𝜕�̃�c(𝑦,t)
𝜕t

+ D𝑦�̃�c(𝑦, t)v.

3.2 Rules for changes in observers
The present setting requires a view on observers a bit more extended than usual because with consider 𝜈 as an observable
entity. According to a proposal in Mariano,30 we define an observer to be the set of frames of reference (frames in short)
assigned on all spaces necessary to describe the shape of a body and its motion. So, an observer is composed by an atlas
of coordinates over the physical ̃ , another over the reference space  , one over the manifold of microstructural shapes
, a time scale. Once we accept such a definition, a key point is the choice of changes in observers. For the purposes
of this summary, we just select changes in observers that leave invariant the time scale, the reference space, and alter
coordinate frames in ̃ by a rigid-body motion. Write  and ′ for two different observers. A place y for  becomes y′

for ′, with 𝑦′ ∶= 𝔞(t) + Q(t) (𝑦 − 𝑦0), where 𝔞(t) and Q(t) are the values at t of time-differentiable maps t → 𝔞(t) ∈ R3,
t → Q(t) ∈ SO(3), with t running in the selected time interval, and y0 an arbitrary point in space. The velocities in
Lagrangian representation are then .

𝑦 for the first observer and .
𝑦′ = .𝔞 +

.
Q (𝑦 − 𝑦0) +

.
𝑦 for the second. By rotating back

through the action of Q−1 = QT the rate .
𝑦′ into the frame defining , and indicating by .

𝑦⋄ the rotated velocity, that is,
.
𝑦⋄ ∶= QT .

𝑦′, we get
.
𝑦⋄ ∶= 𝔠 + q × (𝑦 − 𝑦0) +

.
𝑦,

where 𝔠 ∶= QT .𝔞 is a translational rigid velocity, q the axial vector of the skew-symmetric tensor QT .
Q, both depending

on time only, and × indicates the vector product. In terms of displacement, we have .u⋄ = 𝔠(t) + q(t) × (𝑦 − 𝑦0) +
.u. Since

.
𝑦(x, t) = .u(x, t) = v(𝑦, t), we can also write v⋄ ∶= 𝔠(t) + q(t) × (𝑦 − 𝑦0) + v.

The choice of representing the body morphology in two distinct spaces—gross configuration selected ̃ and microstruc-
tural shapes described through the introduction of —is just matter of modeling. Microstructures are, in fact, in the
physical space. When we translate frames of reference in that space, the representation of microstructures does not
change. Microstructural changes are relative to the material element they occur within. In this sense, they are inner
degrees of freedom, but not internal variables in the sense of non-equilibrium thermodynamics, that is, non-observable
entities measuring the detachment from thermodynamic equilibrium through dissipation. They contribute to the (con-
servative) equilibrium, so they are observable. And although translation does not change their description, the frame of
reference rotations may alter microstructure representation. However, not always the action of SO(3) over the manifold
 is defined. For this reason, we introduce a link between observer changes in  and the group of diffeomorphisms (i.e.,
one-to-one differentiable maps with differentiable inverse) of  onto itself, namely, Diff (,), through a family of dif-
ferentiable homomorphisms {𝜆}, each being a map 𝜆 ∶ SO(3) → Diff (,), a family which can be even empty. At the
moment, we do not need to specify the nature of 𝜆. We just need to render explicit the rule linking .

𝜈, as measured by a
given observer, to the value .

𝜈⋄, which is the pull-back to first observer of 𝜈 time rate measured by another one. It reads

.
𝜈⋄ = .

𝜈 +(𝜈)q.

(𝜈) is at each 𝜈 ∈  a linear operator mapping vectors of R3 onto elements of the tangent space T𝜈 of  at 𝜈. When
SO(3) does not act on and the set {𝜆} is not empty, with 𝜈𝜆(Q), the value of 𝜈 after the action of 𝜆 (Q) ∈ Diff (,),
the linear operator (𝜈) is given by (𝜈) = d𝜈𝜆(Q)

d𝜆
d𝜆(Q)

dq
|||q=0

, where q(𝜏) ∈ R3 is at instant 𝜏 the rotational speed of observer
change in the physical space.Finally, when SO(3) is a subgroup of Diff (,) (typical examples occur when coincides
with R3, the unit ball in R3, or a tensor space modeled over R3), we write (𝜈) = d𝜈q

dq
|||q=0

.
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3.3 Macro and micro interactions
In the traditional format of continuum mechanics, we presume that interactions among material elements of a body and
with the external environment are classified into contact and bulk ones, say 𝔱 and b‡, respectively, the latter being sum
of inertial (indicated by a superscript in) and non-inertial components, namely, b‡ = b + bin, say in Lagrangian repre-
sentation. According to Capriz,4 we assume the same classification for interactions at microstructural level, so we write
𝜏 for microstructural contact interactions and 𝛽‡ for the bulk ones, presuming even in this case additive decomposition
into inertial and non-inertial components, namely, 𝛽‡ = 𝛽 + 𝛽 in. By following the proposals in Mariano5 (further refined
in Mariano6), we define such interactions on a generic part 𝔟 of , so in the reference configuration, through the external
power  ext

𝔟 performed on 𝔟 in all mechanisms altering gross and microstructural body shapes. Then, we write  ext
𝔟 as

 ext
𝔟 ( .

𝑦,
.
𝜈) ∶= ∫𝔟

(
b‡ · .

𝑦 + 𝛽‡ · .
𝜈
)

d𝜇(x) + ∫𝜕𝔟
(𝔱𝜕 ·

.
𝑦 + 𝜏𝜕 ·

.
𝜈) d2(x),

where d𝜇(x) is the standard volume measure and d2(x) the surface one. Subscript 𝜕 associated with the contact
actions indicates that we presume dependence of 𝔱 and 𝜏 on the boundary 𝜕𝔟. We subordinate  ext

𝔟 to invariance under
isometry-based changes in observers as defined above, taking it as a basic axiom. Precisely, we ask that  ext

𝔟 ( .
𝑦,

.
𝜈) =

 ext
𝔟

( .
𝑦⋄,

.
𝜈⋄
)

for any choice of 𝔟, 𝔠, and q. The axiom implies a more specific representation of interactions at macro-
scopic and microscopic scale, and their balance. In the proposition below, we avoid to write explicitly time for the sake of
conciseness, but the fields considered have to be intended as time dependent when motions enter into play.

Proposition 1.

(1) The integral balances

∫𝔟
b‡ d𝜇(x) + ∫𝜕𝔟

𝔱𝜕 d2(x) = 0,

∫𝔟

(
(𝑦 − 𝑦0) × b‡ +∗𝛽‡

)
d𝜇(x) + ∫𝜕𝔟

((𝑦 − 𝑦0) × 𝔱𝜕 +∗𝜏𝜕) d2(x) = 0

hold. ∗ is the formal adjoint of , that is, ∗(𝜈) is a linear operator from T∗
𝜈 to R3.

(2) If ||b‡|| is bounded over , and 𝔱 is a continuous function of x, the standard traction 𝔱 satisfies the action-reaction
principle and depends on 𝜕𝔟 only through the normal n to it in all points where it is well-defined. Then, we can
write 𝔱𝜕 = 𝔱 ∶= �̃�(x,n) = −�̃� (x,−n). Also, as a function of n, �̃� is homogeneous and additive, that is, there exists a
second-rank tensor field x → P (x) such that �̃�(x,n) = P(x)n(x), where

P(x) =
3∑

K=1
�̃� (x, eK)⊗ eK ∈ Hom(T∗

x,T∗
u(x)u())

is the so-called first Piola–Kirchhoff stress.
(3) If in addition ||∗𝛽‡|| is bounded over  and 𝜏𝜕 is a continuous function of x, the microstructural contact action

𝜏𝜕 satisfies a non-standard action-reaction principle and depends on 𝜕𝔟 only through the normal n to it in all
points where it is well-defined, namely, ∗ (𝜏(x,n) + 𝜏 (x,−n)) = 0. Also, as a function of n, 𝜏 is homogeneous and
additive, that is, there exists a second-rank tensor field x →  (x) such that 𝜏(x,n) = (x)n(x). We call

(x) =
3∑

K=1
𝜏 (x, eK)⊗ eK ∈ Hom(T∗

x,T∗
𝜈)

a microstress in Lagrangian representation.
(4) If the fields x → P and x →  are in C1() ∩ C

(̄) and the fields x → b, x → 𝛽‡ are continuous over , the
pointwise balance of forces

Div P + b‡ = 0 (3)

holds, and there exists a field x → z(x) ∈ T∗
𝜈 such that

Div  + 𝛽‡ − z = 0 (4)
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and

skw PF∗ = 1
2

e (∗z + (D∗)) . (5)

(5) The identity

 ext
𝔟 ( .

𝑦,
.
𝜈) = ∫𝔟

(
P ·

.
F + z · .

𝜈 +  ·
.

N
)

d𝜇(x) (6)

holds, and we call internal(or inner) power the right-hand side term.

The previous proposition is a refinement of results in other studies.5,6,29 It can be proven also in less stringent conditions.
Precisely, we could only require that the bulk terms in the integral balances at item (1) be Radon measures and that the
contact interactions be bounded. In this case, pointwise balances would hold just in weak sense, which is eventually what
we require in constructing finite elements.

The inner bulk action z is a microstructural self-action. It is strictly due to the insensitivity of 𝜈 to rigid translations of
material elements into the physical space ̃ . In the traditional format of continuum mechanics, a self-action does not
appear at macroscopic scale because v is sensitive to translations of reference frames, as dictated by the rule determining v⋄.
The existence of z at microstructural level is a peculiarity of the mechanics of complex bodies. Besides formal aspects just
recalled, it emerges because the description of microstructures within a material element is relative to the gross behavior
of the material element itself.

3.4 A priori restrictions on constitutive structures: Considering the elastic case and a
special form of dissipation
Consider here isothermal setting. The standard use of a mechanical dissipation inequality furnishes a priori restrictions
on constitutive structures. The only variation with respect to the version adopted in the traditional format of continuum
mechanics is the presence of right-hand side term in equation (6). With 𝜓 the free energy density (and some abuse of
notation with respect to Section 2), for the mechanical dissipation inequality we write

d
dt∫𝔟

𝜓 d𝜇(x) − ∫𝔟

(
P ·

.
F + z · .

𝜈 +  ·
.

N
)

d𝜇(x) ≤ 0

for any choice of the rate fields involved. Equality holds in the conservative case in which 𝜓 reduces to the elastic energy
density e. Assume, for example, that 𝜓 = �̃�(F, 𝜈,N), P = P̃(F, 𝜈,N), z = z̃(F, 𝜈,N), and  = ̃(F, 𝜈,N). By computing
the time derivative of 𝜓 (the part 𝔟) is in , which is here fixed once and for all), and exploiting the arbitrariness of

.
F, .

𝜈,
and

.
N, we get

P = 𝜕𝜓

𝜕F
, z = 𝜕𝜓

𝜕𝜈
,  = 𝜕𝜓

𝜕N
.

Their counterparts in the current configuration c are given by

𝜎 = 1
det F

𝜕𝜓

𝜕F
F∗, zc =

1
det F

𝜕𝜓

𝜕𝜈
, c =

1
det F

𝜕𝜓

𝜕N
F∗,

where 𝜎 is the standard Cauchy stress.
Dissipation can be accounted for in various ways. Here we just make an example pertinent to the special case consid-

ered below. We consider dissipation at microstructural level just inside each material element. We maintain the same
constitutive choices above with the exception of z = z̃(F, 𝜈,N), replaced now by the assumption that z is the sum of
energetic-type (ze) and dissipative (zd) components, namely, z = z̃e(F, 𝜈,N) + z̃d(F, 𝜈,N,

.
𝜈). The procedure above implies

the same results with the exception of z, which is given by

z = 𝜕𝜓

𝜕𝜈
+ z̃d(F, 𝜈,N,

.
𝜈),

with zd satisfying the inequality zd · .
𝜈 ≥ 0, for any choice of .

𝜈; it implies

zd = a(… ) .
𝜈

with a(… ) a real-positive-valued state function, often chosen to be a scalar.
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4 THE SPECIAL CLASS OF COMPLEX MATERIALS CONSIDERED IN
SIMULATIONS DEVELOPED HERE: QUASICRYSTALS

4.1 Physical structure
In 1991, the International Union of Crystallography changed the definition of crystal, considered currently just as
“any solid having an essentially discrete diffraction diagram.”31 This definition cancels the traditional requirement
of periodicity for the distribution of Bragg's peaks in the diffraction diagram. Then, it accepts quasi-periodic struc-
tures, those discovered by D. Shechtman in 1982, who realized that rapid cooled Aluminium-based alloys diffract
electrons in a way such that they generate Bragg's peak patterns incompatible with lattice translations, a discovery
disseminated 2 years later in Shechtman et al.25 This result influenced the definition of crystal after it was clear that
such quasi-periodicity was not due to complicated twin structures, those presumed by L. Pauling in a strong criticism
to Shechtman's results. Presently, we know the existence of natural quasi-periodic crystals, called quasicrystals,
discovered in meteorites.32 Long-range incompatible order with periodic tessellation of 3D ambient space characterizes
their structure, for example, icosahedral phases in 3D space or pentagonal ones in the plane.

When we consider a 3D quasi-periodic lattice and we expand in Fourier series the mass density, we find a
six-dimensional wave vector strictly induced by the quasi-periodic nature of the underlying lattice. It can be viewed,
in fact, as the orthogonal projection of a higher dimensional periodic lattice onto an incommensurate subspace of
the space including it (see, e.g., Dubois26). Specifically, a one-dimensional quasi-periodic lattice emerges by taking a
two-dimensional periodic atomic array with square symmetry, a straight line inclined by an irrational angle with respect
to the main axes of the square symmetry, and projecting atoms over the line in orthogonal direction. More in general,
a quasi-periodic lattice in n−dimensional space can be viewed as a projection of a periodic lattice in space with double
dimension over an incommensurate subspace of it. The circumstance suggested to construct quasicrystal mechanics as
a standard continuum mechanics in a higher dimensional space (see, e.g., other studies33–35). Projection on the incom-
mensurate subspace gives rise to the common displacement field, with related standard bulk and contact actions, while
what remains in the orthogonal space is depicted by a vector field containing degrees of freedom called phasons, with
associated bulk and contact actions. A question is whether such a view on quasicrystal continuum mechanics is complete
or requires a deeper analysis. The question stands on what we really do when we construct a continuum description of
quasicrystals (i.e., we analyze them in long wavelength approximation), or better, and more precisely, what we think that
phason degrees of freedom are. Currently, we consider phasons as atomic flips, that is, localized atom rearrangements
that assure quasi-periodicity in space (see other studies36–38) through the construction of atomic clusters with symme-
try different from the prevailing one—the so-called worms (see, e.g., Penrose's tiling to have a figurative appearance of
such structures). This view suggests us that the phason vector attached at a point can be, in fact, interpreted as an entity
collecting the degrees of freedom exploited by atomic flips within the patch of matter (a material element in continuum
mechanics jargon) the properties of which are associated with that point. The interpretation has non-trivial consequences.
As relative changes within every material element (i.e., every characteristic structural entity defining the quasi-periodic
lattice—an icosahedron, a pentagon, etc.), phasons are insensitive to rigid translations of frames in the physical space,
and this implies the existence of a phason self-action, as proven in Mariano and Planas.39 Then, the representation of
quasicrystal mechanics falls naturally in the general model-building framework for the mechanics of complex bodies as
summarized in the previous section. Special choices are necessary in the general model-building framework. In the limit
case of vanishing phason self-action, the analysis in elastic setting reduces to consider standard elasticity in a space with
dimension higher than the ambient one (see other studies among several references in this reduced setting40–44).

4.2 Mechanics of quasicrystals, a special class of complex bodies
4.2.1 General modeling choices for quasicrystals
We choose the manifold of microstructural shapes  to be coincident with R3. Then, 𝜈 is for quasicrystals a vector. The
differentiable map (x, t) → 𝜈 ∶= �̃�(x, t) ∈ Rn is the so-called phason field.

In this case, (𝜈) = −q×, with q ∈ R3 the rotation velocity vector pertaining to the change of frame in the ambient
space ̃ . In fact, since here 𝜈 is a vector, say recorded by an observer ; another observer, say ′, registers a value 𝜈′ = Q𝜈,
with Q ∈ SO(3). The pertinent rates are then .

𝜈 and .
𝜈′ = Q .

𝜈+
.

Q𝜈, respectively. By writing .
𝜈∗ for QT .

𝜈′, we get .
𝜈⋄ = .

𝜈+q×𝜈,
with q the characteristic vector of the skew-symmetric second-rank tensor QT .

Q. Consequently, by comparison with the
general expression of 𝜈⋄ in Section 3.2, we get the explicit form of (𝜈) mentioned above.
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We refer to gross deformation in terms of displacement field u, which is also called phonon field in the jargon of
quasicrystal mechanics (see, e.g., Fan34 and all references therein) because it is a natural descriptor for the propaga-
tion of elastic waves, while the word phason referred to the microstructural descriptor recalls that 𝜈 describes locally a
rearrangement of atoms, that is, a possible change of the local symmetry phase.

As regards inertia, we have already claimed additive decomposition of bulk actions into inertial and non-inertial com-
ponents. The former can be identified by imposing the equality between their power and the negative of kinetic energy for
every choice of the rate fields involved (here .u) and .

𝜈. The presence of phason-type kinetic energy seems to be questionable
(see, e.g., Schmicker and van Smaalen45 and Rochal and Lorman46). For this reason, we write

d
dt∫𝔟

1
2
𝜌

.u♭ · .udx + ∫𝔟

(
bin · .u + 𝛽 in · .

𝜈
)

dx = 0, (7)

with 𝜌 the constant referential mass density and .u♭ the covector associated naturally with .u by the metric in ambient
space. Arbitrariness of .u and 𝔟 implies the standard identification bin = −𝜌ü♭, the right-hand side term being the rate
of the macroscopic momentum, and 𝛽‡ · .

𝜈 = 0, which implies the possibility of rotational inertia, that is, for any vector
h ∈ R3, a form for 𝛽‡ of the type 𝛽‡ ∼ h × .

𝜈. A proposal in Mariano and Planas39 is to identify h with −curl .u. It is a
physically motivated choice (see once again Mariano and Planas39 for pertinent explanations) that is, in turn, a source of
non-trivial analytical difficulties tackled in Bisconti and Mariano.47

We take the non-inertial component 𝛽 to be null because we do not know any bulk action exerted directly from the
environment on phason degrees of freedom. Perhaps exception could be attributed to the presence of radiative fields in
extreme conditions, a case not yet investigated, as far as we know, and not considered here.

4.2.2 Specific constitutive choices adopted here for computations
We consider orthonormal frames, so we do not distinguish between covariant and contravariant components of tensors.
The duality pairing product indicated by a dot above coincides then with the standard scalar product.

We reduce the analysis to small-strain regime and consider linear constitutive setting for 𝜎 ≈ P and c ≈  . Precisely,
we select

𝜎 = CDu +K
′D𝜈,

S = K
′TDu +KD𝜈.

More specifically, in computations described below, we consider two-dimensional samples, with five-fold symmetry, so
that the constitutive tensors take the explicit form

Ci𝑗hk = 𝜆𝛿i𝑗𝛿hk + 𝜇
(
𝛿ih𝛿𝑗k + 𝛿ik𝛿𝑗h

)
,

K
′
i𝑗hk = k1𝛿ih𝛿𝑗k + k2

(
𝛿i𝑗𝛿hk − 𝛿ik𝛿𝑗h

)
,

Ki𝑗hk = k3 (𝛿i1 − 𝛿i2)
(
𝛿i𝑗𝛿hk − 𝛿ih𝛿𝑗k + 𝛿ik𝛿𝑗h

)
,

where i, 𝑗, h, k = 1, 2; 𝛿ij is the Kronecker symbol, 𝜆 and 𝜇 are the Lamé constants, and k1, k2, and k3 are constants
characterizing the microstructural behavior; no summation is assumed over repeated indices in the last expression above.

As regards the phason self-action z, we presume here that it accounts just for dissipative effects inside each material
element, so that in the decomposition z = ze + zd we consider here (and just for the sake of simplicity), ze = 0 and

zd = c .
𝜈,

with c a positive constant. This choice is consistent with a proposal in Dubois46; for a more general constitutive structures
for elastic quasicrystals, see Mariano and Planas.39

To assure non-negativity of the associated free energy density—a requirement of material stability—and that it vanishes
over rigid-body motions, constitutive constants introduced above must satisfy the following bounds48:

𝜆 + 𝜇 > 0, k1 > k2, k1 + k2 + 2𝜇 >

√
(k1 + k2 − 2𝜇)2 + (4k3)2.

For the sake of simplicity, we also neglect possible rotational inertia associated with phasons (a possibility mentioned
above).



10 BOSI ET AL.

4.2.3 Boundary conditions
We consider a mixed boundary value problem in small-strain regime (so that we write  for the domain in space consid-
ered but also use Cauchy's stress because we do not distinguish between reference and current shapes). We subdivide the
body boundary 𝜕 into non-intersecting regions. We make two such choices. The first is 𝜕u ∪ 𝜕𝔱 = 𝜕, where 𝜕u is a
region where the displacement u (also called phonon field in the pertinent jargon) is prescribed, while 𝜕𝔱 sustains stan-
dard traction. The second choice deals with the phason field and is analogous. Namely, we write 𝜕𝜈 ∪ 𝜕𝜏 = , where
𝜕𝜈 indicates where we (at least in principle) prescribe 𝜈, and 𝜕𝜏 has the same meaning for 𝜏. However, we actually do
not know any loading device able to assign 𝜈 and/or 𝜏 independently of the macroscopic deformation. Consequently, our
final choice of boundary conditions is as follows:

u = û, x ∈ 𝜕u,
𝜈 = 0, x ∈ 𝜕𝜈 ,

𝜎n = �̂�, x ∈ 𝜕𝔱,
Sn = 0, x ∈ 𝜕𝜏 ,

where û and �̂� are prescribed values of u and 𝔱, respectively.

5 FINITE ELEMENT SCHEME

We select test fields 𝛿u and 𝛿𝜈 both in H1 (). They vanish on 𝜕u and 𝜕𝜈) respectively. Equation (6) allows us to write

∫
D𝛿u · 𝜎dx + ∫

D𝛿𝜈 · Sdx − ∫
𝛿𝜈 · zdx = ∫

𝛿u · 𝜌üdx

+ ∫
𝛿u · bdx + ∫𝜕𝔱

𝛿u · 𝔱d2 + ∫𝜕𝜏

𝛿𝜈 · 𝜏d2,

where we use the standard volume measure for the sake of simplicity and write d𝜇(x) = dx.
With U and V the vectors collecting nodal values of u and 𝜈, which we write as u and 𝜈 in column form, respectively,

we write interpolations in space as follows:

u(x, t) = Nu(x)U(t), 𝜈(x, t) = N𝜈(x)V(t),

with Nu and N𝜈 matrices of shape functions. For test fields, we choose the same form:

𝛿u(x, t) = Nu(x)𝛿U(t), 𝛿𝜈(x, t) = N𝜈 (x) 𝛿V(t).

Consequently, the weak balance above writes in matrix form as

[
Muu 0

0 0

] [
Ü
V̈

]
+
[

0 0
0 D𝜈𝜈

] [ .
U.
V

]
+
[

Kuu Ku𝜈
KT

u𝜈 K𝜈𝜈

] [
U
V

]
=
[

Fu(t)
F𝜈(t)

]
,

where, with 𝔟 the single finite element,

Muu = ∫𝔟
NT

u𝜌Nudx,

D𝜈𝜈 = ∫𝔟
(N𝜈)TcN𝜈dx.

Kuu = ∫𝔟
(DNu)TC (DNu) dx,
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Ku𝜈 = ∫𝔟
(DNu)TK′ (DN𝜈) dx,

K𝜈𝜈 = ∫𝔟
(DN𝜈)TK (DN𝜈) dx,

Fu = ∫𝔟
NT

ubdx + ∫𝜕𝔟
NT

utd2,

F𝜈 = ∫𝜕𝔟
NT

𝜈 𝜏d2.

with b and t the column counterparts of b and 𝔱.
In the two-dimensional setting considered in the computations we develop here, matrices C, K, and K′ are given by

C =
⎡⎢⎢⎢⎣
𝜆 + 2𝜇 0 0 𝜆

0 𝜇 𝜇 0
0 𝜇 𝜇 0
𝜆 0 0 𝜆 + 2𝜇

⎤⎥⎥⎥⎦
,

K′ =
⎡⎢⎢⎢⎣

k3 0 0 k3
0 −k3 k3 0
0 −k3 k3 0

−k3 0 0 −k3

⎤⎥⎥⎥⎦
,

K =
⎡⎢⎢⎢⎣

k1 0 0 k2
0 k1 −k2 0
0 −k2 k1 0
k2 0 0 k1

⎤⎥⎥⎥⎦
.

In the same setting, the column vectors appearing in the equations above are explicitly

u =
[

u1
u2

]
, 𝜈 =

[
𝜈1
𝜈2

]
,

Du =
⎡⎢⎢⎢⎣
𝜕1u1
𝜕2u1
𝜕1u2
𝜕2u2

⎤⎥⎥⎥⎦
, D𝜈 =

⎡⎢⎢⎢⎣
𝜕1𝜈1
𝜕2𝜈1
𝜕1𝜈2
𝜕2𝜈2

⎤⎥⎥⎥⎦
,

𝜎 =
⎡⎢⎢⎢⎣
𝜎11
𝜎12
𝜎21
𝜎22

⎤⎥⎥⎥⎦
, S =

⎡⎢⎢⎢⎣
S11
S12
S21
S22

⎤⎥⎥⎥⎦
,

t =
[
𝔱1
𝔱2

]
, 𝜏 =

[
𝜏1
𝜏2

]
,

b =
[

b1
b2

]
.



12 BOSI ET AL.

6 ANALYSES

6.1 Preliminaries
Table 1 summarizes the values of the constitutive coefficients considered in the analyses.

TABLE 1 Numerical values of the constitutive
coefficients (see other studies49–51) Lamé constants 𝜆 0.75 × 1011 N/m2

𝜇 0.65 × 1011 N/m2

Phason elastic constants k1 0.81 × 1011 N/m2

k2 −0.42 × 1011 N/m2

Phonon–phason coupling constant
(ratio to k1) k3∕k1 0.1
Mass density 𝜌 5100 kg/m3

Phason friction c exp 18, exp 23 N/(m/s)/m3

(A) (B)

FIGURE 1 (A,B) Cantilever beam under static load: numerical convergence of displacement and phason field

FIGURE 2 Scheme for static
analyses with incremental
loading
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FIGURE 3 Displacement and
phason field for the four-point
bending test. Values magnified
by a factor equal to 5 × 105
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We test the finite element scheme by checking numerical convergence in the case of a simple cantilever beam under a
static load uniformly distributed at one end, as depicted in Figure 1. Statics implies a reduction of the numerical scheme to

[
Kuu Ku𝜈
KT

u𝜈 K𝜈𝜈

] [
U
V

]
=
[

Fu
F𝜈

]
,

with F𝜈 = 0 along the external body boundary.

6.2 Static analysis: Phason localization around a crack tip
Looking always at the previous static setting, we consider a four-point bending test of a notched beam, as depicted in
Figure 2.

We consider a characteristic dimension of the beam a = 1.0 m and a unit thickness (1.0 m). The load is F = 1000 N. We
neglect body forces (b = 0). We adopt a structured mesh for the sake of simplicity, as the wavelet analysis presented in
the following sections requires that the data be organized over a regular grid. We consider two different mesh levels: one
of grid dimension equal to a∕25—and we use it for the static analysis—and a coarser mesh with grid dimension equal to
a∕5 (the one represented in Figure 2), which is adopted for the dynamic analyses described in the following section.

Such an analysis evidences localization of the phason field around the crack tip (Figure 3). This type of phenomenon
occurs also in other types of materials with vector-type representation of the material microstructure.10

6.3 Dynamic setting
Under the same beam, we consider an impulsive load controlled by the function 𝜆(t) described in Figure 4.

As initial conditions, we assume

u(x, 0) = 0; .u(x, 0) = 0; 𝜈(x, 0) = 0; .
𝜈(x, 0) = 0.

Impulse duration is timp = 0.125×10−3. We have chosen such a value considering that the time necessary for a compression
sound wave to travel across the sample height (= 2a = 2.0 m) would be of 0.35 × 10−3 s if the sample would be made
of a simple body with Young's modulus E = 𝜇(3𝜆+2𝜇)

𝜆+𝜇
, Lamé constants from Table 1, so that the wave speed would be

v ≃
√

E
𝜌
≃ 5700 m/s, with 𝜌 value once again from Table 1.

Simulation duration is T = 5.0 × 10−3s. For it, we adopt a Newmark scheme with pure trapezoidal rule and a
time step Δt = 2.0 × 10−6 s. We consider two values of the phason friction coefficient: c = exp(18)N/(m/s)/m3 and
c = exp(23)N/(m/s)/m3. Pertinent snapshots at 0.1 × 10−3 s are shown in Figure 5. The discrepancy between displacement
and phason field, above all around geometric (crack tip) and load discontinuities is visually evident. Wavelets furnish us
a more detailed analysis.

FIGURE 4 Load multiplier 𝜆(t)
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FIGURE 5 Snapshots at 0.1 × 10−3 s under impulsive loading

6.4 Wavelet analyses

We apply wavelets (in space and time) along two sections of the beam, those indicated in Figure 6. The touch points where
geometric and load discontinuities are located.
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FIGURE 6 Sections involved in wavelet analysis

FIGURE 7 Wavelet coefficients along Section 1: (A) displacement, (B) phason field

6.4.1 Static data
In the static case, the analysis in terms of wavelets refers just to space variables. This type of analysis can be used to identify
singularities.

Wavelets coefficients pertaining to the two sections appear in Figures 7–9.
First we refer to biorthogonal wavelets. They produce small coefficients in domains of regularity for the fields considered

and higher coefficients when singularities occur, so that they are well suited for singularity detection.
As shown in Figure 7, the analysis in terms of biorthogonal wavelets for the displacement field along Section 1 in

Figure 6 reveals that u receives a direct crack tip influence over the boundary. This is not so for phasons 𝜈, which suffer
just the influence of applied load power conjugated with u, as evidenced in Panel (B) of the same figure.

Wavelets offer different descriptive possibilities. This is evident in the analysis along Section 2. In Panel (A) of Figure 8,
we see how biorthogonal wavelets allow just to detect the most critical point (let us say) of a geometric discontinuity. The
wavelet coefficients evidence just the crack tip. At variance, the Haar wavelets, applied to the analysis of u, individualize
the whole crack path, as shown in Panel (B) of the same figure. Such a difference does not clearly appear when we analyze
the field �̃� along Section 2, as shown in Figure 9. The reason is that phasons are mainly localized around the crack tip and
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FIGURE 8 Wavelet coefficients of the displacement along Section 2: (A) biorthogonal wavelet detects crack tip; (B) the Haar wavelet
evidences the whole crack

FIGURE 9 Wavelet coefficients of the phason field along Section 2: (A) biorthogonal wavelet, (B) the Haar wavelet. Both choices allow us
to detect only the crack tip for this field because phasons are localized there

do not receive a prominent influence from crack edges. Consequently, if we think of a monitoring process, the use of the
Haar wavelets helps us in detecting localization of fields around known geometric discontinuities.

Notice that we have used different scales in the figures. Wavelet coefficients of u are 10 times smaller than those of 𝜈.
Also, coefficients of the wavelet transform of 𝜈 along Section 2 are 10 times bigger than the ones along Section 1.

6.4.2 Dynamic data
In the dynamic case, we use wavelets referring to both time and space variables.

We first consider a friction coefficient value c = exp(23)N/(m/s)m3. Wavelet coefficients of u show that the perturbation
induced by applied load and crack (the counterparts of those described in Figure 7 for the static setting) do not remain
localized and tend to disappear in time. A few large spikes initially present evolve into several smaller spikes distributed
along the section considered (Figure 10A).
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The effects shown in Figure 7B, do not propagate in time under an impulsive load (Figure 10B). Just after load
application, wavelet coefficients decrease and remain localized, due to the presence of phason friction.

FIGURE 10 Time histories of wavelet coefficients u (A) and 𝜈 (B) along Section 1. c = exp(23)N/(m/s)m3

FIGURE 11 Time histories of wavelet coefficients of u along Section 2. Panel (A): biorthogonal wavelet. Panel (B): the Haar wavelet.
c = exp(23)N/(m/s)m3

FIGURE 12 Time histories of wavelet coefficients of 𝜈 along Section 2. Panel (A): biorthogonal wavelet. Panel (B): the Haar wavelet.
c = exp(23)N/(m/s)m3
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Analyses along Section 2 indicate how the crack influences in the same way, for a qualitative point of view,
wavelet coefficients in both displacement (Figure 11) and phason field (Figure 12), with both the biorthogonal and
Haar wavelets.

FIGURE 13 Time histories of biorthogonal wavelet coefficients of u (Panel A) and 𝜈 (Panel B) along Section 2. c = exp(18)N/(m/s)m3

FIGURE 14 Time histories of u along Section 2. Panel (A): analysis in terms of biorthogonal wavelets. Panel (B): analysis in terms of the
Haar wavelets. c = exp (18) N/(m/s)m3

FIGURE 15 Time histories of 𝜈 along Section 2. Panel (A): analysis in terms of biorthogonal wavelets. Panel (B): analysis in terms of the
Haar wavelets. c = exp(18)N/(m/s)m3
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Since experimental values of c seem to be not available with certainty (and the same situation affects the coupling
coefficient here fixed at 0.1k1), we have performed parametric analyses by varying c. Here we report and compare just the
results for c = exp(18)N/(m/s)m3 A comparison between Figures 10A and 13A shows a scarce influence on u. We find
the same large localized peaks, which propagate in time.

At variance, by comparing Figures 10B and 13B, we see how lower friction allows a propagation of perturbations
along the section considered, while with c = exp(23)N/(m/s)m3 load effects remain well localized. When c =
exp(18)N/(m/s)m3, load effects are characterized by smaller wavelet coefficients uniformly distributed along the section.
Also, in this case, the qualitative behavior of 𝜈 is similar to the one of u.

Analyses along Section 2 (see Figures 14–16) reveal once again the influence of friction coefficient variation mainly
on the phason field: while wavelet coefficients associated with u are of the same order in both friction coefficient values
considered (Figures 12 and 15), those associated to 𝜈 in Figure 13 are two order smaller of those in Figure 16. Results
obtained by the Haar and biorthogonal wavelets do not differ prominently.

FIGURE 16 Variations of u along Section 1 between considering and not considering phasons. Panel (A): static setting. Panel (B):
dynamics (biorthogonal wavelets). c = exp(18)N/(m/s)m3

FIGURE 17 Variations of u along Section 2 between considering and not considering phasons in statics. Panel (A): biorthogonal wavelets.
Panel (B): the Haar wavelets
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FIGURE 18 Variations of u along Section 2 between considering and not considering phasons in dynamics. Panel (A): biorthogonal
wavelets. Panel (B): the Haar wavelets. c = exp(18)N/(m/s)m3

6.4.3 When we do not consider phasons: Comparison with a simple body
What changes if we neglect phasons and consider a quasicrystal as a simple body, assigning it just the experimental
values of the Lamé constants listed in Table 1? Answering this gives indications for a more general question on the
appropriateness of describing simple bodies in terms of the multi-field scheme summarized in Section 3.

To better estimate the microstructural effects, we repeat the analyses described above, by neglecting phasons. Then,
we compare results with those including phasons and the lowest phason friction value, that is, c = exp(18)N/(m/s)m3,
among those considered in previous computations.

We report in Figures 16–18 differences between the two cases (and we indicate by some abuse of notation such differ-
ences by du and d𝜈 in the graphs), in both static and dynamic cases, by considering always Sections 1 and 2 in the sample
structure analyzed so far.

Figure 16 refers to the static setting and Section 1. We see how considering phasons influences u in both the points
where loads are applied and the middle point, which belong to the vertical line including the crack. When we refer to
dynamics (Figure 17), we see that such influence remains in time and is not negligible.

Figures 17 and 18 refer to Section 2. Both biorthogonal and the Haar wavelets identify differences between considering
and neglecting phasons (Figure 17). The effect is more evident in dynamics (Figure 18). There is also something more:
in finite element analyses, we have noticed that phasons localize around the crack tip and seem to be indifferent to crack
edges. The wavelet analysis (Figures 17 and 18) shows how phasons have an indirect influence on u along crack edges.

7 ADDITIONAL REMARKS

The procedure we have suggested here can be interpreted in two ways:

(1) Wavelets can be used in a post-processing protocol after finite-element-type analyses on mechanical processes. In
this sense, they may help, as in the case of quasicrystals shown here, in developing a detailed characterization of
across-scale interactions in complex materials.

(2) In the case we have at disposal data emerging from experiments (let us say essentially in dynamic setting), wavelets
may be used in a monitoring protocol for they are able to individualize geometric discontinuities, which can be a
source of material instabilities and failure.

What we proposed in this paper is naturally open to further developments. Specifically, it might be referred to
stress-based dual computational schemes (as those in Bruggi and Venini52), extended finite element method (X-FEM)
adapted to the multi-field scheme (as done in Mariano and Stazi16), also variational integrators in the same setting (as
those discussed in Focardi and Mariano19).
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