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Abstract

Masonry represents the material used in the great majority of the world
building heritage structures. Reliable tools for analysis of masonry struc-
tures are needed not only for seismic vulnerability assessment but also to
properly design interventions to restore and strengthen existing buildings,
which deserve to be preserved.

Masonry is a nonlinear, heterogeneous, and anisotropic material whose
properties strongly depend on its microstructure, tipically composed of two
phases, blocks and mortar, and on the way it is assembled. To simulate the
mechanical behavior of masonry structures, numerous models have been de-
veloped, characterized by different detailing levels. For large structures, the
need for computational efficiency leads to simplified models characterized by
the subdivision of masonry walls in macro-elements. A notable example of
this group of models is the equivalent-frame method, which consists of iden-
tifying the masonry wall with an ideal frame, where panels are modeled as
beams characterized by proper mechanical behavior. The detailing level can
be increased by considering each macro-element as a homogenized contin-
uum, assuming that, at the scale of representation, masonry can be treated
as a continuum having mechanical properties that reproduce the overall
response of a certain portion of the heterogeneous microstructure. How-
ever, the formulation of a suitable constitutive law is not an easy task. It
should phenomenologically reproduce the material mechanics, including ten-
sion cracking, shear sliding, compressive crushing, and many other aspects.
Moreover, this approach requires a cumbersome identification of mechanical
parameters that are not always easy to determine from basic experimental
tests on the material. To consider the role of each constituent and the effects
of their interactions, a microscale model can be set up, where blocks, mortar
joints, and mortar-block interfaces are represented explicitly.

In this work, masonry structures are studied at several detailing levels.
An issue affecting equivalent-frame models, namely the presence of irregular-
ity in the wall opening layout, is addressed by comparing equivalent-frame
results with finite-element ones, which are assumed to better represent the
actual behavior of irregular walls. A parametric analysis on masonry piers,
modeled as a homogenized continuum, is carried out, aimed to assess the
influence of the heigth-to-width ratio and the vertical compression load on
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the nonlinear static behavior. The focus is then shifted to finer scales. The
localization analysis of an orthotropic macro-scale model in the framework
of multi-surface plasticity is presented, deriving analytical localization con-
ditions corroborated by finite element simulations. Finally, a microscale
model for regular masonry is developed to analyze the localization proper-
ties of the representative volume element, also by investigating the role of
its size and periodicity directions.



Sommario

La muratura rappresenta il materiale utilizzato nella grande maggioranza
delle strutture del patrimonio edilizio mondiale. Strumenti affidabili per
l’analisi delle strutture in muratura sono necessari non solo per la valu-
tazione della vulnerabilità sismica ma anche per progettare adeguatamente
gli interventi di ripristino e rafforzamento degli edifici esistenti, che meritano
di essere preservati.

La muratura è un materiale non lineare, eterogeneo e anisotropo le cui
proprietà dipendono fortemente dalla sua microstruttura, tipicamente com-
posta da due fasi, blocchi e malta, e dalle modalità di assemblaggio. Per
simulare il comportamento meccanico delle strutture in muratura sono stati
sviluppati numerosi modelli, caratterizzati da diversi livelli di dettaglio. Per
strutture di grandi dimensioni l’esigenza di efficienza computazionale porta a
modelli semplificati caratterizzati dalla suddivisione delle pareti in muratura
in macroelementi. Un importante esempio di questo gruppo di modelli è il
metodo del telaio equivalente, che consiste nell’associare alla parete in mu-
ratura un corrispondente telaio ideale, dove i pannelli sono modellati come
travi caratterizzate da un opportuno comportamento meccanico. Il livello
di dettaglio può essere incrementato considerando ogni macroelemento come
un continuo omogeneizzato, assumendo che, alla scala di rappresentazione,
la muratura possa essere trattata come un continuo avente proprietà mec-
caniche che riproducono la risposta complessiva di una certa porzione della
microstruttura eterogenea. Tuttavia, la formulazione di una legge costi-
tutiva adeguata non è un compito facile. Dovrebbe riprodurre fenomeno-
logicamente la meccanica del materiale, comprese la rottura a trazione per
fessurazione, la rottura per scorrimento a taglio, lo schiacciamento per com-
pressione e molti altri aspetti. Inoltre, questo approccio richiede una macchi-
nosa identificazione di parametri meccanici che non sono sempre facilmente
determinabili da prove sperimentali di base sul materiale. Per considerare
il ruolo di ciascun costituente e gli effetti delle loro interazioni, è possibile
realizzare un modello alla microscala, in cui i blocchi, i giunti di malta e le
interfacce tra blocchi e malta sono rappresentati in modo esplicito.

In questo lavoro, le strutture in muratura vengono studiate a diversi
livelli di dettaglio. Una questione aperta che riguarda i modelli a telaio
equivalente, vale a dire la presenza di irregolarità nella geometria delle aper-
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ture delle pareti murarie, viene affrontato confrontando i risultati ottenuti
con il metodo del telaio equivalente con quelli di un’analisi ad elementi
finiti, che si presume rappresenti meglio il comportamento effettivo delle
pareti irregolari. Inoltre, viene eseguita un’analisi parametrica su pilastri
in muratura, modellati come un continuo omogeneizzato, finalizzata a val-
utare l’influenza del rapporto altezza-larghezza e del carico di compressione
verticale sul comportamento statico non lineare. L’attenzione viene quindi
spostata su modellazioni con maggiore livello di dettaglio. Viene presen-
tata l’analisi di localizzazione di un modello alla macroscala sviluppato nel
framework della plasticità multi-superficie ortotropa, derivando condizioni
analitiche di localizzazione, sucessivamente corroborate da simulazioni agli
elementi finiti. Infine, viene sviluppato un modello alla microscala per mu-
rature regolari per analizzare le proprietà di localizzazione di volumi rappre-
sentativi di muratura, indagando anche il ruolo della dimensione del volume
rappresentativo e delle sue direzioni di periodicità.



Abstrakt

Zdivo je materiál použitý ve většině stavebńıch památek na celém světě.
Spolehlivé nástroje pro analýzu zděných konstrukćı jsou zapotřeb́ı nejen
pro vyhodnoceńı jejich seismické zranitelnosti, ale také při návrhu opatřeńı
směřuj́ıćıch k obnoveńı či zvýšeńı únosnosti existuj́ıćıch budov, které si za-
slouž́ı ochranu.

Zdivo je nelineárńı, heterogenńı a anizotropńı materiál, jehož vlastnosti
silně závisej́ı na základńıch stavebńıch jednotkách, tedy bloćıch (cihlách)
a maltě, a na jejich prostorovém uspořádáńı. Pro simulaci mechanického
chováńı zděných konstrukćı byla vyvinuta řada model̊u, které se lǐśı mı́rou
rozlǐseńı. Pro velké konstrukce vede snaha o výpočetńı efektivitu ke
zjednodušeným model̊um, charakterizovaným rozděleńım zděných stěn na
makroprvky. Významným zástupcem této skupiny model̊u je metoda ek-
vivalentńıho rámu. Jej́ı podstatou je nahrazeńı zděné stěny idealizovaným
rámem, přičemž panely jsou modelovány jako nosńıky charakterizované
odpov́ıdaj́ıćım mechanickým chováńım. Mı́ra rozlǐseńı může být zvýšena
t́ım, že se každý makroprvek uvažuje jako homogenizované kontinuum s
vlastnostmi, které reprodukuj́ı celkovou odezvu určitého výseku heterogenńı
mikrostruktury. Formulace vhodného konstitutivńıho zákona ale neńı lehkou
úlohou. Tento zákon by měl fenomenologicky reprodukovat mechanické
chováńı materiálu, včetně vzniku tahových trhlin, smykového pokluzu, drceńı
v tlaku a daľśıch jev̊u. Nav́ıc tento př́ıstup vyžaduje těžkopádnou identifikaci
mechanických parametr̊u, které neńı vždy snadné určit na základě běžných
laboratorńıch test̊u materiálu. K popisu role základńıch stavebńıch jednotek
a jejich interakce může posloužit model formulovaný na mikroúrovni, který
explicitně bere v úvahu jednotlivé bloky, maltu a rozhrańı mezi nimi.

Tato práce se zabývá zděnými konstrukcemi na několika úrovńıch ro-
zlǐseńı. Problémy s formulaćı model̊u ekvivalentńıho rámu v př́ıpadě
nepravidelného rozmı́stěńı otvor̊u se zkoumaj́ı na základě porovnáńı výsledk̊u
pro ekvivalentńı rámy s výsledky źıskanými metodou konečných prvk̊u, o
které lze předpokládat, že lépe postihuje skutečné chováńı nepravidelných
stěn. Provedená parametrická analýza zděných piĺı̌r̊u modelovaných jako
homogenizované kontinuum je zaměřena na posouzeńı vlivu tvaru a svislého
tlakového zat́ıžeńı na nelineárńı statické chováńı. Pozornost se pak přesouvá
na jemněǰśı úrovně rozlǐseńı, na nichž se zkoumá lokalizace nepružného
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přetvářeńı, která ovlivňuje konstitutivńı zákony pro modelováńı zdiva na
makro a mikroúrovni. Provád́ı se lokalizačńı analýza ortotropńıho
makroskopického modelu formulovaného podle teorie plasticity s v́ıce plochami
plasticity, v jej́ımž rámci jsou odvozeny analytické podmı́nky lokalizace
potvrzené simulacemi metodou konečných prvk̊u. V závěru je vyvinut mikrome-
chanický model pro pravidelné zdivo a pomoćı něj se na reprezentativńım
objemu materiálu analyzuj́ı lokalizačńı vlastnosti, ovlivněné velikost́ı tohoto
objemu a předpokládanými směry periodicity.
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Chapter 1

Introduction

Masonry is among the first structural materials used by humankind, and it
constitutes the great majority of structures of the world’s building heritage.

Nevertheless, the modern mechanics of structures has been interested
in studying two other materials that, after the industrial revolution, have
strongly come on the scene as protagonists among building materials, namely
steel and concrete. An in-depth study of masonry as a structural material
has been developed only recently, starting from Heyman’s pioneering work in
1966 (Heyman 1966). Previously, the masonry structure design was based on
empirical rules, e.g., prescriptions on the maximum number of floors or the
minimum thickness of walls. In contrast, only some isolated cases, notably
the study of the cracking of the dome of San Pietro in Rome by Poleni in
the mid-1700s (Poleni 1748), testify the use of rational procedures.

In the past, masonry buildings have always been conceived to carry only
vertical loads, while the lateral actions induced by earthquakes were ne-
glected. Consequently, the building heritage is fragile to seismic actions,
as highlighted by recent earthquakes, e.g., the October 2016 Central Italy
earthquake, or the most recent one in Durrës, Albania, in November 2019,

In Italy, the seismic issue awareness started to grow after the catastrophic
events of the 1976 Friuli and 1980 Irpinia earthquakes. The need to address
the problem of retrofitting and assessing the earthquake resistance of ex-
isting masonry buildings leads to a significant interest in studying masonry
building mechanics under lateral forces. Many efforts have been made to de-
termine efficient strengthening techniques to protect the building heritage
and define a correct procedure for the seismic vulnerability assessment.

One of the first rational approaches was the POR method (Tomaževič
1978), which was extensively used for repair and strengthening work after
the 1976 Friuli earthquake. This method adopted strong and simplistic
assumptions by performing separate analyses for each building story and by
checking the strength threshold on piers, modeled as beams. In parallel to
this simplified modeling approach, other refined techniques arise. The most
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common approach, starting from the work by Page et al. 1985, has been
to consider masonry as a fictitious homogeneous continuum discretized by
finite elements. Later, many attempts have been spent to find a suitable
constitutive law for the macroscopic modeling of masonry.

In view of the large number of scientific publications in international
journals, research on masonry mechanics is still an active field, especially in
high-seismicity countries such as Greece, Portugal, and Italy. The scientific
community is recently focused either on refining the existing methods and
exploring new detailed ways of modeling the masonry mechanics. The refine-
ment of simplified models leads to the formulation of the Equivalent-Frame
method (Magenes 2000; Lagomarsino et al. 2013). On the other hand, the
need for accounting for the material microstructure leads to the develop-
ment of models at the microscale (Salvatori and Spinelli 2018), where the
masonry constituents are explicitly modeled.

Nowadays, many modeling techniques of masonry structures involving
different representation scales have spread in the scientific literature. The
choice of the detailing level of representation depends on the dimensions and
characteristics of the specimen to test or the purpose of the analysis. Each
modeling approach still presents open issues, some of which will be discussed
in the following paragraph.

1.1 Objectives of the research

The study of the effectiveness of the global analysis methods of masonry
buildings is of key importance for their seismic vulnerability assessments.
Therefore, reliable tools for analysis of masonry structures are also needed
to properly design interventions to restore and improve existing building
performances.

Analyses of large structures require simplified models able, at the same
time, to effectively reproduce masonry mechanics and to speed up compu-
tation time. A widely-used approach is to consider walls as an assembly
of macroelements, tipically the vertical elements, i.e., the piers, which bear
vertical and horizontal loads; the horizontal elements, i.e., the spandrels,
which couple the pier response; and the portions at the pier-spandrel inter-
sections, namely the node panels. The effectiveness of these models relies
on the proper mechanical behavior assigned to each macroelement.

Among the macroelement models, the Equivalent-Frame (EF) method
is the most used model for practical computations. It relies on modeling
a masonry wall with openings as an idealized frame composed of columns
and beams, representing the masonry piers and spandrels, respectively. The
material nonlinearities are accounted for by prescribing proper moment-
curvature or shear-displacement constitutive laws, which define the strength
and failure properties of each EF element. This method has many advan-
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tages:

� The low computational burden, for the limited number of degrees of
freedom of the computational model;

� The readability of the results, due to the familiarity that designers
have with framed structures;

� The explicit endorsements by many building codes.

However, it is well known that the EF method suffers from several draw-
backs. The strength and failure criteria for piers and spandrels provided
by building codes are questionable. They do not account explicitly for rel-
evant aspects, such as the applied vertical compression, the aspect ratio,
or the material characteristics. Moreover, the EF model has difficulties in
its application to buildings characterized by geometric irregularities in the
distribution of openings since, in this case, the EF idealization of a given
wall is more arbitrary. The objective is to find a rational way to overcome
the EF model limits and keep using this simplified method for the seismic
vulnerability assessment of masonry buildings.

Alternatively, the study of masonry structures can be performed through
a homogenized continuum approach, where masonry is treated as a contin-
uum having mechanical properties that reproduce the overall response of a
certain portion of the heterogeneous microstructure. This approach is used
for buildings characterized by geometric irregularity or, in general, when-
ever the masonry structure cannot be outlined as an equivalent frame. The
key point is to define a constitutive model at the material point of the ho-
mogenized continuum. The stress-strain relationship should phenomenolog-
ically reproduce the mechanics of the underlying microstructure in terms of
stiffness, strength, failure mechanisms, and localization properties. Numer-
ous attempts have been made for simulating macroscopic masonry behavior
by using stress-strain relations in the framework of plasticity (Lourenço,
De Borst, et al. 1997), damage mechanics (Berto et al. 2002), smeared
crack models (Lotfi and Shing 1991), or coupled damage-plasticity (Addessi,
Marfia, et al. 2002). The main drawbacks of the homogenized continuum
approach are

� The difficulties in reproducing the microstructural response with a
single stress-strain relationship;

� The fact that it requires the definition of many mechanical parameters
that are not easily evaluable in practice.

Lourenço’s constitutive model is one notable example of macroscopic
models for masonry structure analysis. Although it is one of the most widely
used models, a thorough study of its localization properties lacks in litera-
ture. The study of the localization properties of a constitutive model is a
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key aspect to assess its reliability in capturing the failure properties of the
material that is supposed to simulate. The Lourenco’s model assessment
needs to be done on several stress scenarios, e.g. uniaxial stresses varying
the stress angles, or shear tests varying the compression level. Since a such
thorough experimental campaign is obviously missing, the reliability assess-
ment can be performed only by comparing Lourenco’s model response to
the one of a detailed numerical model where the microstructure is explicitly
represented.

In summary, the objectives of the research are:

� To study the drawbacks of simplified models for the seismic assess-
ments of large masonry structure, and to propose a strategy to over-
come their limits of application;

� To assess Lourenço’s constitutive model for masonry through the study
of its localization properties, and comparing them to the ones of a
numerical model at the microscale.

1.2 Original contributions

A study on masonry structures at each level of representation, starting from
the global building to the masonry microscale (Figure 1.1), is reported in
this thesis, which is organized as follows.

In this Chapter, the motivation and the objectives of the work is pre-
sented, and the importance of the development of reliable mechanical models
for masonry structures is highlighted.

In Chapter 2, a study of masonry mechanics at different detailing lev-
els is reported. At the microstructural level, masonry response to basic
stress states, namely vertical and horizontal tension and compression, shear
stresses, and biaxial stresses, is discussed with reference to experimental
tests taken from the literature. Then, we move the attention to the macroele-
ment level, studying the masonry pier mechanics. The pier response under
cyclic lateral actions is interpreted according to a novel procedure developed
by the author. Finally, we analyze masonry mechanics at the global level,
choosing as reference three experimental tests on full-scale masonry build-
ings, which allows us to discuss the strength mechanisms involved in a whole
masonry building.

Chapter 3 is devoted to a review of mechanical models for masonry struc-
ture analysis at different detailing levels. For the wall level, the Equivalent-
Frame and the articulated quadrilaterals method are discussed, considering
their advantages and drawbacks. A review of pier models to be used within
the Equivalent-Frame method is then reported. Subsequently, a series of
constitutive laws suitable for the macroscopic representation of masonry is
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Figure 1.1: Overview of the representation scales for masonry structures
analysis: a) global scale; b) wall scale; c) panel scale; d) macroscale; e)
microscale.

discussed. Finally, we report some of the literature attempts for microstruc-
tural modeling, where the masonry constituents are explicitly modeled.

In Chapter 4, we report a study of an issue afflicting the Equivalent-
Frame (EF) method applied to seismic analysis of masonry wall, namely
the reliability of its results in the presence of irregularities in the opening
layout. EF results are compared with finite-element ones, which are assumed
to represent the actual behavior of irregular walls better. An EF solver
is developed using more refined failure criteria for the masonry piers and
strength criterion for the spandrels than the oversimplified ones suggested by
building codes. Automated procedures are used to perform a large number
of analyses, in which EF results and finite-element ones are compared. The
difference in terms of predicted seismic vulnerability between the two models
is correlated with a measure of the degree of irregularity of the walls. A
geometric “confidence factor”, increasing with the degree of irregularity, is
proposed to account for the epistemic uncertainties in the EF modeling.

In Chapter 5, the nonlinear static behavior of masonry pier is studied
through numerical analyses on a finite element model which treats masonry
as a homogenized continuum. A parametric analysis, varying the aspect
ratio and the actual compression-to-compressive strength ratio, is performed
in order to explore pier response in a large range of conditions, and the
relations between the nonlinear static quantities, namely lateral stiffness,
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shear strength, and displacement capacity, and the parameters that influence
them. The aim is to assess the reliability of the strength and failure criteria
proposed by building codes on masonry piers and to provide a benchmark
for the design of simplified pier models to be used as elements in the EF
method.

In Chapter 6, the detailing level moves to the material point. We report
a study on the localization properties of a macroscopic constitutive law
suitable for masonry structures, namely a model in the framework of multi-
surface orthotropic plasticity (Lourenço’s model, Lourenço, De Borst, et al.
1997). The localization properties of Lourenço’s model are determined under
uniaxial stress and some biaxial stress states. The theoretical predictions
are compared to numerical simulations, showing a perfect match in terms of
localization surface directions.

In Chapter 7, the representation level of masonry further increases to the
microstructural level. A microstructural model for regular masonry is set
up, modeling its constituent explicitly as continua through a Rankine plas-
ticity constitutive law. The model is able to reproduce the typical failure
mechanisms. The localization angles computed within the RVE are com-
pared to those of Lourenço’s macroscopic model. Moreover, the variations
of the RVE localization properties with its size and periodicity directions
are assessed.

Finally, some general conclusions are drawn in Chapter 8.
The original scientific results of the present work can be outlined as

follows:

� Wall scale:

– Development of a new Equivalent-Frame model with more refined
strength and failure criteria;

– Proposal of a geometric confidence factor for the Equivalent-
Frame model in case of irregular masonry walls;

� Panel scale:

– Calibration of a finite element model on an experimental cam-
paign on masonry piers;

– Parametric study of the lateral behavior of masonry piers;

� Material point scale:

– Characterization of the localization properties of a macroscopic
model suitable for masonry, confirmed by numerical results;

� Microscale:

– Development of an RVE model that reproduces the microstruc-
tural mechanics of masonry;
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– Assessment of the influence of the RVE size and the change of
periodicity directions.
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Chapter 2

Mechanics of Masonry

Abstract

Masonry is a composite material formed as an assembly of blocks and
mortar. The relevant size of its microstructure makes the masonry
material as a structure within a structure. Therefore, a proper me-
chanical characterization of masonry needs to focus primarily at the
microstructural level, whose properties influences masonry mechanics
at greater scales. This chapter contains a review of the mechanical
properties of masonry at different scales, namely the microscale, the
macroelement level, and the building level.

A study of masonry mechanics at the microstructural level has been
reported with reference to basic stress states, namely vertical and hor-
izontal tension and compression, shear stresses, and biaxial states.
Then, we moved the attention to the macroelement level, studying
the masonry pier mechanics. We focused on the interpretation of the
pier response under cyclic lateral actions according to a novel pro-
cedure developed by the author. The procedure is aimed to retrieve
some relevant quantities describing the pier cyclic response from exper-
imental shear-displacement graphs. The procedure is applied to three
experimental tests exhibiting different failure modes and leads signifi-
cant results regarding the characterization of the stiffness and strength
degradation and energy dissipation. Finally, we analyze masonry me-
chanics at the global level, choosing as reference three experimental
tests on full-scale masonry buildings, which allow us to discuss the
strength mechanisms involved in a whole masonry building.

2.1 Introduction

Masonry is constituted by an arrangement of blocks, which can be natural or ar-
tificial, linked to each other by mortar joints. Two main kinds of masonry can
be distinguished depending on the regularity of the block dimensions and arrange-
ment. Regular-textured masonry is made of rows of identical blocks placed next
to each other. Head and bed mortar joints fill respectively vertical and horizontal
interspaces between blocks. On the other hand, irregular masonry is a disordered as-
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sembly of blocks whose dimensions and possibly shapes are not equal to each other.
Surveys on the building heritage show a great variety of masonry typologies based
on composition (block and mortar materials), texture and building techniques.

Moreover, since the standard dimensions of blocks are in the range of 5÷50 cm,
the microstructural size is relevant compared to the structure dimensions. This fact
leads to the consideration that the microstructure, namely the material structure
within the building structure, cannot be neglected. The existence of nested struc-
tures within a material is not a peculiarity of masonry only; however, unlike other
materials, the microstructural dimensions are relevant for masonry.

Regarding its mechanical properties, masonry is characterized by:

� Low or null tensile strength in the direction orthogonal to mortar bed joints;

� Significant vertical compression strength;

� Shear strength based on a frictional mechanism or brick cracking due to
induced tensile stresses.

Although failure can occur due brick failure, mortar layers represent the masonry
planes of weakness. For regular masonry, mortar layer orientations represent its
privileged direction, so that masonry can be considered an orthotropic material.
Therefore, the stress inclination with respect to material axes acquires importance.

Obviously, the described microstructure properties have consequences in ma-
sonry response at higher scales. At the wall scale, the masonry facade can be
subdivided into three kinds of panels according to their structural function. By
virtually extending the lines of opening edges, we can identify vertical and horizon-
tal stripes of masonry, defined respectively as “piers” and “spandrels”. The panels
at the intersection of piers and spandrels are defined as “node panels”. Restricting
our attention to pier panels, which are the ones that bear vertical and horizon-
tal loads, it is worth studying its behavior under lateral actions. Different failure
mechanisms can be recognized. The pier response under flexure is characterized by
base section partialization due to the absence of vertical tensile strength. In the
case of low vertical compression, the panel tends to overturn around its toe, and it
is said to fail due to rocking. On the other hand, for high compression loads, com-
pression stresses localize in the panel’s toe, and the failure mechanism is associated
with toe crushing. Alternatively, the crack pattern at failure can be characterized
by a stepped localized path or a diagonal crack. The latter cases belong to the
category of shear failure mechanisms. The failure mode determination depends on
the relative values of the internal actions (vertical compression, bending moment,
shear force) and its mechanical parameters (compression strength, cohesion, friction
coefficient, etc.).

Regarding the lateral behavior of masonry piers, it is particularly worth study-
ing its cyclic response. Experimental tests show that piers under cyclic lateral
loading exhibit

� Lateral stiffness degradation;

� Shear strength degradation;

� Permanent lateral displacements;

� Energy dissipation.
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Despite the importance of the assessment of these quantities, the literature lacks its
thorough study. In this chapter, we report a novel proposal to interpret cyclic test
results on masonry piers. The procedure aims to define the evolution of the relevant
quantities describing the cyclic behavior and give them a physical interpretation.

Extending our attention at the global scale, it is interesting to evaluate the
overall behavior of the wall panels and see how they collaborate in the strength
mechanism of a whole masonry building. Several experimental campaigns have
been performed to study the seismic response of full-scale masonry buildings in
recent years. From their observation, we can get many information and suggestions
to interpret masonry building behavior.

The chapter is organized as follows. The mechanics of masonry at the microscale
subjected to elementary stress states is viewed in Section 2.2. The discussion is re-
stricted to regular masonry, although similar reasonings could also be derived in
the case of irregular masonry. The response of regular masonry structures in terms
of compression, tension, and shear is described respectively in Sections 2.2.1, 2.2.2,
and 2.2.3, while the behavior towards biaxial stress states is reported in Section
2.2.4. In Section 2.3, we report the interpretation of masonry pier mechanics under
lateral cyclic loading, according to a new procedure developed by the author. The
evolution of the relevant quantities describing the cyclic behavior and their differ-
ences among piers with different failure modes will be shown. Then, Section 2.4
is devoted to studying the mechanics of masonry walls. We report three experi-
mental tests made on full-scale masonry buildings, which allow us to express some
significant considerations. Finally, concluding remarks are discussed in Section 2.5.

2.2 Masonry mechanics at the microscale

2.2.1 Compression strength

The compressive strength of masonry has been the subject of systematic investiga-
tions since the second half of the twentieth century. Since masonry structures are
mainly stressed by compression, the interest of scientific community was primarily
directed to the study of compressive strength (Hilsdorf 1969; McNary and Abrams
1985; Binda et al. 1988).

The main aspects that influence compression strength are (Hendry 1981; Tassios
1986):

� Compression strength and the geometry of blocks;

� Compression strength of mortar;

� Stiffness of blocks and mortar;

� Thickness of bed joints;

� Arrangement of blocks;

� Hygroscopicity of blocks.

Experimental tests show that the stress-strain curve in compression for brick-
work lies in between the two curves related to bricks and mortar (Hendry 1981).
Units exhibit high stiffness and strength and brittle behavior. In contrast, mortar
shows low stiffness and strength but high strain capacity until its failure.
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Figure 2.1: Masonry behavior under vertical compression.

As Figure 2.1a shows, the behavior of masonry in compression is intermediate in
terms of stiffness, strength, and ductility compared to the ones of its constituents.
The stiffness of the composite material can be intuitively determined as a weighted
average of its constituents. On the other hand, failure mechanisms are more com-
plex and need a detailed description since, in this case, the interactions between
blocks and mortar play a key role.

In fact, if we consider a couple of bricks with a mortar layer between them
subjected to compression orthogonal to the bed joint, they tend to expand laterally
due to the Poisson effect. This expansion is greater for mortar since it is softer
than blocks. The differential lateral expansion is prevented by friction between
the constituents and horizontal actions arise to recover lateral strain compatibility.
Therefore, mortar joints turn out to be in a triaxial compression state, while lateral
tension stresses rise in blocks. Compression tests on masonry specimens show the
formation of vertical cracks due to the failure of bricks in tension in the orthogonal
direction to external compression (Figure 2.1b).

The horizontal tensile stresses in bricks due to vertical compression can be
quantified analytically. In the following reasoning, two hypotheses are assumed: (i)
linear elastic behavior of constituents and (ii) non-shifted vertical arrangements of
blocks. Although they are not realistic, the actual nonlinear behavior is not far
from what is obtained using these simplifications, as confirmed by experimental
tests.

Let us consider a portion of masonry constituted by blocks of length lb and
height hb, and bed joints of thickness hj , subjected to uniaxial compression stress
orthogonal to the bed joints. Let x and y be, respectively, the horizontal and
vertical axis. We restrict our attention to the plane xy for the sake of simplicity.

The system is subjected to vertical compression σy, that generate horizontal
stress σb,x in blocks, considered positive if tensile, and σj,x in mortar, considered
positive if compressive, see Figure 2.2.

Lateral strains in blocks and mortar are given by

εb,x =
1

Eb
σb,x +

νb
Eb
σy (2.1)

εm,x = − 1

Ej
σj,x +

νj
Ej
σy (2.2)

where the subscripts b and j indicate the Young moduli E and Poisson ratios ν for
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Figure 2.2: Stresses on a portion of masonry due to external compression
stress.

blocks and mortar respectively.
The lateral strains of bricks and mortar must be equal for compatibility, namely

εb,x = εj,x (2.3)

Moreover, the equilibrium in x direction reads

σb,x hb tb = σj,x tb hj (2.4)

Combining the preceding equations we obtain the relation between the hori-
zontal stress in blocks σb,x and the vertical compression σz, that is

σb,x = ς σy (2.5)

where

ς =

νb
hj
hb

(
νj
νb
− Ej
Eb

)
1− νj +

Ej
Eb

hj
hb

(1− νb)
(2.6)

The horizontal stress in mortar σj,x is determined through (2.4) as

σj,x =
hb
hj
σb,x (2.7)

Typical values of the ratio between elastic moduli of mortar and bricks range from
1:3 to 1:10 for high to low-quality mortar, while the ratio between Poisson ratios
range from 1 to 3. Therefore, the coefficient ς is always positive and the predicted
sign of stresses in bricks and mortar are correct. It is worth observing the de-
pendence of the coefficient ς on the ratio between the thickness of bed joints hj
and the height of blocks hb. Figure 2.3a shows this relation for three different
Young modulus ratios (1:3, 1:5, and 1:10) and given Poisson ratios (νb=0.15 and
νm=0.30). We can see that the coefficient ς, and thus the horizontal tension in
blocks for a given vertical compression, increases for increasing thickness ratio and
for low values of Young modulus ratios (for instance, in case of low-quality mortar).
Therefore, we can conclude that, in linear elasticity, vertical compression induces
horizontal tensile stresses in blocks that increase when the thickness of bed joints
increases, keeping fixed the height of the blocks.
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Figure 2.3: Influence of the ratio between bed joint thickness hj and block
height hb (with νb = 0.15, νj = 0.30, and λ=1:10).
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Figure 2.4: Brickwork failure in compression along bed joint direction.

Experimental compression tests on masonry prisms (McNary and Abrams 1985)
show that mortar induces tensile stresses in bricks, representing the main cause
of failure in compression. These stresses increase in a non-proportional way with
compression stresses due to the nonlinear deforming properties of mortar bed joints.

Further analytical results regarding the compression strength of masonry could
be obtained by means of other simplifying hypotheses. Let us assume that failure
of masonry in compression occurs when a suitable failure criterion is reached in
bricks, for instance

σy
fb,c

+
σb,x
λfb,c

= 1 (2.8)

where a simplified Mohr-Coulomb criterion is assumed, and

λ =
fb,t
fb,c

(2.9)

is the ratio between the strength in tension ft and compression fc for bricks. Sub-
stituting (2.5) into (2.8) we get

σy =
1

1 +
ς

λ

fb,c (2.10)

When the compression stress σy reaches the compression strength of masonry fm,c,
we obtain

fm,c
fb,c

=
1

1 +
ς

λ

(2.11)

from which we can analyze the influence of geometric and elastic parameters of
masonry on its compression strength. Figure 2.3b shows the negative influence
on masonry compression strength of high ratio hj/hb between thicknesses of the
constituents. High values of the ratio hj/hb generates higher transversal tension
which reduces the overall compression strength compared to the one of the blocks.
The strength reduction is greater with softer mortar.

In case of uniaxial compression in the horizontal direction (Figure 2.4), failure
occurs by bed-joints splitting due to lateral expansion of the masonry panel (Page
1981; Dhanasekar et al. 1985). The behavior is explained analogously to the case
of compression in the vertical direction.

2.2.2 Tensile strength

The strength mechanism of masonry in tension depends on the tensile direction
relative to the bed joints.
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Figure 2.5: Portion of masonry subjected to tension orthogonal to bed joints.

s
0

f
m,t

h
b

h
j

l
b
/2

(a) Shear sliding of blocks on bed
joints.

f
m,t

h
b

h
j

(b) Tensile cracking of blocks.

Figure 2.6: Strength mechanisms in horizontal tension.

If tension acts orthogonally to bed joints (Figure 2.5), failure is determined
when the tensile strength in mortar joints is reached. Hence, the tensile strength
of masonry fm,t could be expressed as a percentage of mortar tensile strength fj,t,
namely

fm,t = αfj,t (2.12)

The parameter α strongly depends on the quality of mortar joints, and it can
greatly vary both in time and space. Its value depends on time because mortar is
affected by degradation caused by weathering or temperature variations; it depends
on space since the workforce cannot guarantee uniformity of mortar quality in
the whole structure and temperature and humidity conditions during curing may
affect mortar properties. Moreover, the tensile strength of mortar is, generally, a
factor of ten lower than other strength parameters, and it shows a great scatter in
experimental tests (Van der Pluijm 1999). Due to its strong variability and low
value, vertical tensile strength is not reliable, and it is preferably not taken into
account in structural computations. The parameter α is, therefore, considered as
zero.

If the tensile direction is oriented along bed joints, two different mechanisms
can be activated (Tassios 1986):

� shear sliding of blocks on bed joints (Figure 2.6a);

� block cracking in tension (Figure 2.6b).
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In the first case, the horizontal tensile strength of masonry is given by the fric-
tion mechanism on the interface between bricks and mortar. The strength derived
by this mechanism is usually called “pseudo”-tensile strength since it is not related
to the tensile strength of any of its constituents (see Figure 2.6a).

If we consider a Coulomb friction strength mechanism and we neglect the tensile
strength of mortar head joints, we can write the equilibrium in the horizontal
direction as

2(hb + hj)fm,t = lb (c+ µσ0) (2.13)

where c and µ represent the cohesion and the friction coefficient, and σ0 is the
vertical compression.

The horizontal tensile strength of masonry is then

fm,t = c̃+ µ̃ σ0 (2.14)

where

c̃ =
c

tanφ
, µ̃ =

µ

tanφ
(2.15)

and

tanφ =
2(hb + hj)

lb
(2.16)

The angle φ is the average inclination angle of the stair-shaped crack forming in
the head joint and in the superposition zone between two consecutive blocks (half
the brick length in the case depicted).

It is worth noting that this mechanism is similar to failure due to shear sliding,
that will be discussed later in Section 2.2.3.

In case of failure due to block cracking in tension (Figure 2.6b), masonry
strength is strictly related to the brick tensile strength. Neglecting tensile strength
of head joints, the horizontal equilibrium reads

2(hb + hj)fm,t = hb fb,t (2.17)

and then

fm,t =
1

2(1 +
hj

hb
)
fb,t (2.18)

Hence, the strength of masonry in horizontal tension decreases if the thickness of
bed joints increases and reduces to

fm,t =
fb,t
2

(2.19)

in case of thin bed joints, namely hj � hb.

In the case of uniaxial tension inclined by a generic angle relative to mortar
bed joints, experimental tests (Dhanasekar et al. 1985) show mixed failure modes
between bed-joint separation, typical of vertical tension, and shear sliding/brick
cracking, distinctive of horizontal tension. It is worth noting that, since many
different mechanisms can occur depending on the tensile direction and transversal
compression, it not possible to define a fixed tensile strength for the material.



40 CHAPTER 2. MECHANICS OF MASONRY

s

tab
c

d

Figure 2.7: Shear failure modes of masonry (from Mann and Müller 1977).

2.2.3 Shear strength

Normal stresses to mortar bed joints influence the masonry shear strength, as shown
by several experimental campaigns (Mann and Müller 1977; Mann and Muller 1982;
Atkinson et al. 1989; Van der Pluijm 1999).

Mann and Müller 1977 distinguished four failure modes and represented their
strength domain in a σ − τ graph (Figure 2.7).

The observed failure mechanisms are the following:

� Tensile bond failure (a);

� Block compressive failure (b);

� Interface sliding failure (c);

� Block tensile failure (d).

These four modes can be grouped as failure due to bending (a,b) and failure
due to shear (c,d).

Bending failure occurs in the extreme cases of a low or high level of normal
compression, determining respectively tensile failure at the brick-mortar interface
(a, Figure 2.8a) or brick crushing in compression (b, Figure 2.8b). In contrast, shear
failure occurs in the mid compression range. Two possible mechanisms, depending
on relative values of mechanical properties between bricks and mortar, can occur:
shear sliding at the brick-mortar interface (c, Figure 2.8c) or brick cracking due to
the overcoming of tensile strength (d, Figure 2.8d).

Bending modes

Both mechanisms associated with the bending mode group can be explained by
analyzing the response of brick subjected to normal and shear stress, without con-
sidering tensile strength at the interface with mortar bed joints.

A masonry block of length lb, thickness tb and height hb is subjected to shear
and compression stresses on its top surface. The shear strength τ is reached when
the compression stresses in the reactive zone of thickness tb and length a reach the
compression strength of units fb,c (Figure 2.9).

Vertical equilibrium equation is the following

σ0 lb tb = fb,c a tb (2.20)

from which the dimension a of the reacting zone is determined, namely

a =
σ0
fb,c

lb (2.21)
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(a) Bed-joint tensile crack-
ing.

(b) Brick crushing.

(c) Shear sliding.
(d) Tensile cracking in
blocks.

Figure 2.8: Shear failure modes of masonry.
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Figure 2.9: Geometry and actions of a masonry unit in bending mode for
shear strength.
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Figure 2.10: Stress-strain curves of direct shear tests on bricks with shear
sliding failure (from Van der Pluijm 1999).

The rotational equilibrium reads

τ lb tb hb = σ0 lb tb
lb − a

2
(2.22)

By combining (2.20), (2.21), and (2.22), we obtain the following expression

τ =
σ0
2

lb
hb

(
1− σ0

fb,c

)
(2.23)

that define the relation between the shear strength in bending mode and the geo-
metric and mechanical properties of bricks and the compression stress σ0.

Shear modes

In case of shear sliding along the interface between blocks and mortar (curve c of
Figure 2.7), shear stress-strain diagrams from experimental tests have the typical
shape reported in Figure 2.10a (Van der Pluijm 1999). The stress-strain relationship
is linear until the decohesion peak is reached, after which the shear stress diminishes
rapidly at a certain stable stress level. As shown in Figure 2.10b, compression
stresses greatly influences both the peak and the residual strength. Coulomb’s
friction criterion is a suitable model for this kind of shear failure. Therefore, the
strength criterion can be written as

τ = c+ µσ0 (2.24)

where c is the cohesion and µ is the friction coefficient, both material properties to
be determined by direct shear experimental tests.

The brick cracking failure mode is usually interpreted as caused by the overcome
of tensile strength in bricks. Turnšek and Čačovič 1971 adopted a Rankine failure
criterion, stating that failure occurs when the maximum principal stress reaches the
tensile strength. By restricting the analysis in the two dimensional space, the stress
state of a brick subjected to a vertical compression stress σ0 and a shear stress τ is

σ =

[
0 τ
τ −σ0

]
(2.25)
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The maximum principal stress is

σI = −σ0
2

+

√(σ0
2

)2
+ τ2 (2.26)

When σI = fb,t, we obtain the shear stress as

τ = fb,t

√
1 +

σ0
fb,t

(2.27)

that represent the shear strength in case of brick-cracking failure mode.

Shear strength domain

The analytical formulas for shear strength derived in the previous paragraphs show
a dependence on the compression stress σ0, as observed in experimental tests.
Therefore, it is interesting to determine the shear strength as a function of the
compression stress, where the shear strength is evidently determined as the mini-
mum value among the ones corresponding to each mechanism, namely

τ = min



σ0
2

lb
hb

(
1− σ0

fb,c

)

c+ µσ0

fb,t

√
1 +

σ0
fb,t

(2.28)

The shear strength τ , normalized with respect to the block compressive strength
fb,c, is represented in Figure 2.11 as a function of the compression ratio σ0/fb,c,
for the case of a brick with standard height hb and length lb of 5.5 cm and 25 cm
respectively, having a compressive fb,c and tensile fb,t strength of 10 MPa and 1
MPa, and, for the sliding shear strength mechanism, the cohesion c as 0.5 MPa and
the friction coefficient µ as 0.4. For the chosen parameter set, we can see that flexu-
ral failure occurs for low and high compression ratios, which determine respectively
rocking and crushing mechanisms. On the other hand, the intermediate range of
the vertical stress ratios determines shear failure. The shear sliding mechanism
occurs for lower vertical compression and brick cracking for higher ones.

The relative position between the curves depends on the geometric and me-
chanical properties of the block. For instance, the bending-mechanism parabolic
curve can be lower than the other curves in case of low compression strength or a
high ratio hb/lb (slender blocks). In this case, the block would fail in bending for
any σ0.

2.2.4 Biaxial stress states

Masonry panels subjected to in-plane loads, such as masonry piers or spandrels, are
generally in a state of biaxial stress. The study of the masonry response concerning
biaxial stresses through experimental tests was conducted by many authors, notably
by Page 1981 and Dhanasekar et al. 1985.
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Figure 2.11: Shear strength domain of masonry.

Masonry behavior depends both on the stress state and the bed-joint orientation
relative to the principal directions. Therefore, biaxial failure must be described in
terms of three variables: the principal stresses σ1 and σ2, and their respective
orientations to the bed joint, namely θ and θ + π/2. The failure surface in the
plane σ1 − σ2 obtained by Page 1981 is shown in Figure 2.12, where each curve
represent the failure surface relative to a given bed joint orientation.

For most values of σ1 and σ2, the bed joint direction slightly influences masonry
strength, which turns out to be greater than compression strength in uniaxial com-
pression. In these cases, failure occurs with brick cracking in a plane parallel to the
masonry mid-plane.

However, the bed joint angle plays an important role when one principal stress
dominates on the other since the problem gets closer to the case of uniaxial com-
pression. In this case, in fact, failure occurs by cracking and sliding of joints or a
combined mechanism involving bricks and joints, depending on the bed joint angle.

Dhanasekar et al. 1985 extended the experimental tests to the case of tension-
compression and biaxial tension. In these cases, failure was due to cracking and
sliding of bed joints, involving tensile strength of mortar or the friction mechanism
between brick and joints depending on the bed-joint angle, as already discussed in
Section 2.2.2.

2.3 Mechanics of masonry piers

Experimental observations on the seismic behavior of masonry walls suggest a sub-
division of the wall in this set of elements (Figure 2.13):

� Masonry piers, the vertical elements which bear the vertical and horizontal
loads and mainly influence the seismic behavior of the entire building;

� Masonry spandrels, the horizontal elements that couple the response of the
two adjacent piers;

� Node panels, the portions at the intersection between piers and spandrels.
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Figure 2.12: Failure surface in biaxial compression (from Page 1981).

Figure 2.13: Subdivision of a masonry wall in piers (in red), spandrels (in
blu), and node panels (in black).
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Since the mechanism failure under seismic actions generally involves masonry
piers and spandrels only, the study on the mechanics of node panels has been
neglected. They are usually considered infinitely stiff and resistant in numerical
analyses.

The behavior of masonry spandrels can vary depending on their construction
technique. We can distinguish the following typologies:

� Weak spandrels, providing no coupling capability between masonry piers, for
instance, the ones supported by timber lintels or shallow masonry arches;

� Strut spandrels, when one tension-resistant element, such as reinforced con-
crete beam or tie-rod, is present and spandrels react as compressive struts;

� Strong spandrels, having tension-resistant elements positioned at both ends
and, therefore, a bending and shear strength.

The spandrel typology highly influences the masonry pier boundary conditions,
resulting in a static scheme ranging from cantilever, in the case of weak spandrels,
to doubly rotation fixed, in the case of strong spandrels.

The scientific community has only recently begun to pay attention to the study
of masonry spandrels (Rinaldin, Amadio, and Gattesco 2017). The experimental
test campaigns conducted so far (Gattesco et al. 2008; Graziotti et al. 2012; Beyer
and Dazio 2012) have shown the influence on their cyclic response of the present
axial force, whose amount is uncertain in an existing building. Due to the lack of
deep knowledge of spandrel mechanics and its lower influence on the wall seismic
response, we restrict our attention to the study of masonry piers, which, on the
other hand, have been extensively studied in the past.

The experimental test of reference is the shear-compression test, in which the
masonry pier is subjected to a given vertical load and an imposed lateral displace-
ment.

The masonry pier is generally put on a concrete foundation slab. The vertical
and horizontal loads are applied through two vertical and one horizontal actuators
linked to a stiff steel beam positioned on the top of the pier. The vertical actuators
have the role of imposing the top boundary condition. Generally, the top rotation is
fixed by checking that the two vertical actuators have the same vertical displacement
during the test, realizing a double-bending static scheme (Magenes and Calvi 1997;
Anthoine et al. 1995; Magenes, Galasco, et al. 2010). However, masonry piers have
also been tested in a cantilever static scheme (Magenes, Morandi, et al. 2008), i.e.,
having free top rotation, or in intermediate conditions with variable shear-span
heights (Petry and Beyer 2014).

The lateral loading protocol is more frequently cyclic; namely, the horizontal
actuator imposes a cyclic displacement with increasing amplitude. Each cycle is
generally repeated three times (Silva et al. 2014; Magenes, Galasco, et al. 2010;
Almeida et al. 2012). In other cases the top displacement is imposed monotonically,
namely the lateral displacement is increased until failure (Vasconcelos and Lourenço
2009; Lourenço, Oliveira, et al. 2005; Borri et al. 2012).

The main result of these experimental tests is the base shear - top displace-
ment graph, which gives information on the lateral behavior of masonry piers. A
piecewise-linear function outlines monotonic test graphs according to a given piece-
wise linearization procedure, which is usually considered the same as the one used
for entire masonry buildings, as described in Frumento, Magenes, and Morandi
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2009 and reported in the following. The idealized graph is composed of a first lin-
ear branch, followed by a limited constant-force one. The first branch is defined as
the secant at 70% of the shear peak and its slope represent the specimen’s lateral
stiffness. The ordinate value of the second branch defines the pier shear strength,
and it is defined according to an energy equivalence criterion between the real
and ideal graphs. The second branch limit, which gives the displacement capacity,
is defined as the displacement corresponding to a 20% strength reduction of the
shear peak in the softening part of the graph. These quantities, namely the lateral
stiffness, the shear strength, and the displacement capacity, characterize the lateral
monotonic behavior of masonry piers. However, we can derive the monotonic quan-
tities even from cyclic tests by considering an equivalent monotonic graph, which
is constructed by connecting the peak point of each cycle.

As highlighted in Beyer, Petry, et al. 2014, the specimen response is influenced
by the loading protocol. It was shown that cyclic tests led to slightly lower strength
and significantly lower displacement capacity compared to monotonic tests. This
reduction is higher in the case of piers failing in shear (Wilding, Dolatshahi, et al.
2017).

However, from cyclic tests, we get some additional information regarding the
evolution of the monotonic quantities during the test. In fact, shear-displacement
graphs from cyclic experimental tests show:

� Lateral stiffness degradation;

� Shear strength degradation;

� Development of permanent lateral displacements;

� Energy dissipation.

These aspects are caused by the formation and progressive development of tensile
cracks, compression crushing, or shear sliding, occurring in the specimen at the
microscale level.

Several studies of lateral stiffness degradation and energy dissipation can be
found in the literature. The cyclic stiffness decay was described as a function
of the lateral drift (Zepeda et al. 2000; Vasconcelos and Lourenço 2009) or of a
measure of the observed physical damage, called damage index Id (Tomaževič 1999;
Zimmermann et al. 2011). The lateral stiffness for each loading cycle was computed
as the slope of the line connecting the maximum and minimum peak points in the
force-displacement graph. An expression of the lateral stiffness degradation was
proposed by Zimmermann et al. 2011, describing the decay as a negative exponential
function of the damage index

K(i)

Ke
= exp

(
−β I(i)d

)
(2.29)

where Ki is the stiffness at cycle i, Ke is the initial stiffness, and β is a fitting
parameter.

The dissipation of energy has been described by means of the ratio between the
cumulative dissipated energy and the cumulative input energy (Shing et al. 1989),
namely

I
(i)
E =

1

Einp

i∑
j=1

E
(j)
dis (2.30)
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where Ejdis is the area of the j-th hysteretic cycle, with 0 ≤ j ≤ i, and Einp is the
total elastic energy absorption of the equivalent elastic-perfectly plastic model.

However, the way the dissipated energy ratio IE is computed depends on the
test loading protocol. Since the dissipated energy is cumulative, obtained as the
sum of the ones of all previous cycles, the ratio IE is particularly influenced by
the number of repeated same-amplitude cycles, and the comparison between tests
from different experimental campaigns cease to make sense. Moreover, studies on
strength degradation and the evolution of permanent lateral displacement have
never been performed so far.

2.3.1 Proposal for the interpretation of cyclic tests on ma-
sonry piers

In the following, a procedure for the interpretation of cyclic test results on ma-
sonry piers is described, aimed to measure stiffness and shear degradation and the
evolution of the dissipated energy and permanent displacement. The procedure is
composed of four steps:

1. Determination of the monotonic quantities from the cyclic graph envelope;

2. Subdivision of the force-displacement diagram into cycles;

3. Subdivision each cycle into loading-unloading branches;

4. Determination of the relevant quantities for each branch.

First, the monotonic quantities are obtained from the cyclic diagram envelope as for
monotonic experimental tests. This is done for both lateral displacement directions,
and the corresponding quantities are denoted with the subscripts + and − (Figure
2.14a). Then, the force-displacement diagram is subdivided into a sequence of n
cycles, where each cycle is defined as a set of four branches (Figure 2.14b), namely:

� First loading branch (L+);

� First unloading branch (U+);

� Second loading branch (L-);

� Second unloading branch (U-).

The subdivision between loading and unloading branches is determined when the
displacement variation changes its sign; on the other hand, the transition from un-
loading branches to loading ones is done when the lateral force crosses the zero value
in the diagram. The loading branches of cycle i are outlined through the aforemen-

tioned bilinearization procedure, from which we obtain the lateral stiffnesses (K
(i)
L+

and K
(i)
L−), the lateral strengths (V

(i)
+ and V

(i)
− ), and the displacement capacities

(d
(i)
c,+ and d

(i)
c,−). The latter quantities are measured from the zero displacement

value so that they are comparable with the monotonic values (d+c and d−c ). Other

relevant quantities are: the unloading stiffnesses (K
(i)
U+ and K

(i)
U−); the permanent

displacements (d
(i)
p,+ and d

(i)
p,−), defined as the difference between the displacement

at the end of the unloading branch and the displacement at the beginning of the
previous loading branch; the cumulative permanent displacement

d(i)p,cum =

i∑
j=1

(
d
(j)
p,+ + d

(j)
p,−

)
(2.31)
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The dissipated energy associated with the i-th cycle, E
(i)
dis, is defined as the envelope

area of all the cycles j, with j ≤ i (Figure 2.14a).
The monitored quantities are then normalized to obtain adimensional parame-

ters that can be used for the cyclic response comparison of different specimens.
We define the displacement index ID as the ratio between the lateral displace-

ment of the given cycle i, say d
(i)
c , and the maximum lateral displacement at the

end of the test, namely

I
(i)
D =

∣∣∣d(i)c ∣∣∣
dc,max

(2.32)

where dc,max = maxnj=1 d
(j)
c . The displacement index Id describes the test evolution,

ranging from 0 when it starts to 1 at the end of the test. The stiffness degradation
index at the cycle i is defined as the ratio between the actual stiffness and the initial
elastic stiffness, namely

I
(i)
K =

K(i)

Ke
(2.33)

The strength degradation index is obtained as

I
(i)
V =

V (i)

Vr−tc
(2.34)

where the actual strength is normalized by means of the shear strength associated to
the rocking or toe-crushing failure mechanism. We define the permanent displace-
ment index as the ratio between the permanent displacement and the maximum
lateral displacement, that is

I
(i)
P =

d
(i)
P

dc,max
(2.35)

and the dissipation energy index as

I
(i)
E =

E
(i)
dis

Eref
(2.36)

where the reference energy used for normalization is the dissipated energy by the
equivalent elastic-perfectly plastic model, namely

Eref = V +
y

(
d+c −

V +
y

K+

)
+ V −y

(
d−c −

V −y
K−

)
(2.37)

The methodology presented above is used for the interpretation of experimental
test results. Several aspects may influence the masonry pier response under lateral
loads, namely the compression ratio between the actual and ultimate vertical load,
the in-plane aspect ratio, the static scheme, and the masonry typology in terms
of constituent dimensions and mechanical properties. Among the aforementioned
parameters, the compression ratio plays a key role in the determination of pier
lateral behavior. As already discussed in Section 2.2.3, we distinguish three zones
in the shear-axial force failure domain, that is low, medium, and high compression
zone, which lead to three different strength failure mechanisms and cyclic responses.
In the following, we take advantage of the experimental test results of three different
specimens characteristic of the shear domain zones.
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Figure 2.14: Interpretation of cyclic test diagrams.
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(c) Test 3 (Silva et al. 2014).

Figure 2.15: Shear-displacement graphs of the selected experimental tests.
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Figure 2.16: Cyclic behavior of Test 1.

The first specimen (Vasconcelos and Lourenço 2009) was tested with a low
compression ratio (about 0.7%) and exhibited a rocking failure mechanism. In
this case, after the shear strength limit is reached, the panel rocks alternatively
about each base toe, and the lateral displacement grows, keeping the lateral force
constant. If the panel toe is not damaged, the unloading process goes through the
same path as the loading one; the panel returns to the initial position and starts to
overturn in the opposing direction, repeating the same mechanism. An S-shaped
graph characterizes the shear-compression diagram (Figure 2.15a), and the cyclic
behavior is almost nonlinear elastic. The stiffness degradation index (2.16a) shows
a steep decay in the first part of the test. In the late stage, both the lateral stiffness
and the strength (2.16b) are almost constant. Figures 2.16c and 2.16d show that
the rocking mechanism is characterized by small permanent displacements and low
energy dissipation.

The second specimen (Magenes, Galasco, et al. 2010), tested with a compres-
sion ratio of 17%, exhibits shear failure and a shear-displacement diagram with
remarkable energy dissipation (Figure 2.15b), caused by progressive degradation of
brick-mortar interfaces. The indices describing the cyclic behavior indicate a sig-
nificant stiffness decay (2.17a), the development of large permanent displacements
(2.17c) and high amount of dissipation energy (2.16d). Significant shear degrada-
tion occurs only in the last cycles (2.17b), associated with an increase in permanent
displacements and dissipated energy.

As reported in some databases (Vanin, Zaganelli, et al. 2017; Morandi et al.
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Figure 2.17: Cyclic behavior of Test 2.

2018), specimens have never been tested under compression ratios over 60%. There-
fore, a thorough investigation of the behavior of piers in the high-compression range
has never been done. However, to describe some aspects of this failure type, we
can select a specimen exhibiting a toe-crushing mechanism even if the compression
ratio is not very high, i.e., 0.415%. As we can see from Figure 2.15c, the graph
shows large dissipation energy due to a progressive hysteretic cycle degradation.
In this case, the stiffness and strength degradation (Figures 2.18a and 2.18b), the
permanent displacement formation (Figure 2.18c), and energy dissipation (Figure
2.18d) are more notable and steeper with respect to Test 2.

In conclusion, the cyclic behavior highly depends on the compression ratio.
The behavior is almost nonlinear elastic for low-compressed piers, with low energy
dissipation and strength degradation. Stiffness and strength degradation, perma-
nent displacements evolution, and dissipated energy increase with the compression
load due to the progressive shear damaging for mid-range compressions or the toe-
crushing mechanism in case of high compression ratios.

2.4 Mechanics of masonry walls

Masonry is the oldest and most widespread material used for building construc-
tions. In the past, masonry buildings have always been conceived to carry only
vertical loads, while the lateral actions induced by earthquakes were neglected. In
Italy, the seismic issue awareness started to grow after the catastrophic events of
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Figure 2.18: Cyclic behavior of Test 3.

the 1976 Friuli and 1980 Irpinia earthquakes. The need to address the problem
of retrofitting and assessing the earthquake resistance of existent masonry build-
ings leads to a significant interest in studying masonry building mechanics under
lateral forces. Many efforts have been made to determine efficient strengthening
techniques to protect the building heritage and define a correct procedure for the
seismic vulnerability assessment. The development of these methods needs a proper
validation on experimental tests. For this purpose, several experimental campaigns
have been performed on full-scale masonry buildings in recent years.

One of the most notable test is the one conducted by the University of Pavia
(Magenes, Kingsley, et al. 1995) on a full-scale, two-story unreinforced masonry
building. Almost all numerical models for masonry structures have been tested
and calibrated on it. The building consisted of four solid brick walls with 250 mm
thickness, with plan dimensions 6.0 m x 4.4 m, and height 6.4 m. Contrarily to
the two transversal walls, the two longitudinal walls contained openings, and they
were called the “door wall” and the “window wall”. The seismic forces were sim-
ulated by the cyclic quasi-static application of four concentrated horizontal forces,
through displacement-controlled screw jacks, applied at the two longitudinal walls
at the floor levels. Due to the weak coupling given by the flexible floors and the
equal displacement applied at both longitudinal walls, the two walls constituted
two independent structural systems that worked mainly in their plane.

The response of each wall was summarized in plots of base shear versus top
displacement, and the in-plane crack pattern at each cycle was monitored. Initially,
cracking was limited to first-floor spandrels, leading to a decoupling of masonry pier
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(a) Crack distributions at the end of the third cycle.

(b) Crack distributions at the end of the test.

Figure 2.19: Experimental test on a full-scale masonry building (from Ma-
genes, Kingsley, et al. 1995).

response (Figure 2.19a). At later stages, the response of the two walls was quite
different (Figure 2.19b). The damage due to shear mechanisms was concentrated
in the two central first-floor piers in the window wall. The exterior piers in the
window wall exhibited a rocking mode, showing no diagonal cracks. In contrast,
the exterior piers in the door wall failed in shear, presenting diagonal shear cracking
only in one direction. The latter is due to the overturning effect of horizontal forces,
which generates a compression increase in the pier located downhill of the seismic
force direction and a compression decrease in the opposite wall. The maximum
base shear reached was approximately 150 kN in the door wall and 140 kN in
the window wall, achieved at a drift (ratio between the top displacement and the
building height) of 0.2%. The test was terminated at the maximum drift of 0.4%
when significant damage occurred in the walls.

The Pavia test investigated the in-plane mechanisms of masonry walls. How-
ever, under seismic actions, masonry buildings exhibit complex behavior that often
leads to local failure mechanisms, namely the ones that involve only a limited part
of the structure, i.e., a wall, that fails due to a mechanism that acts out of its plane.
These phenomena usually occur in case of bad connection between floors and walls
or between orthogonal walls or poor masonry quality.

Out-of-plane mechanisms were noticed in an experimental test conducted on
a full-scale masonry building at the EUCENTRE laboratory in Pavia (Kallioras
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(a) West wall. (b) East wall. (c) North wall. (d) South wall.

Figure 2.20: Geometry of the specimen tested at EUCENTRE (from Kallio-
ras et al. 2018).

Figure 2.21: Cracks due to out-of-plane mechanism in the North wall.

et al. 2018). The structure was characterized by the typical features of Dutch
masonry buildings, such as solid clay-crick walls, flexible floors, and steep-pitched
roofs with high gables. The building was subjected to an incremental dynamic test
in the direction perpendicular to roof trusses and floor beams. The specimen had
an irregular plan configuration, with overall footprint dimensions of 5.8 m in the
shaking direction and 5.3 m in the transverse one, and a total height of 6.2 m.
The walls are characterized by different opening layout, particularly in the two
longitudinal walls, the ones parallel to the ground shaking direction, namely the
West wall (Figure 2.20a) and East wall (Figure 2.20b). The transversal walls have
different roof-end typologies: a half-hipped roof with a clipped gable for the North
wall (Figure 2.20c) and a full-height gable for the South wall (Figure 2.20d).

The specimen exhibited an out-of-plane overturning mechanism on both north
and south gables, even at low-level input motions. Horizontal cracks were found in
the North wall just above the openings along the entire façade (Figure 2.21). Good
interlocking between intersecting walls guaranteed the interaction between in-plane
and out-of-plane responses, as testified by the crack extension in the upper-left
corner of the West wall.

The experimental campaign performed by Magenes, Penna, Senaldi, et al. 2014
reported interesting results on the effect of out-of-plane mechanisms and gives in-
formation on how to improve the seismic resistance of masonry structures. Shake
table tests were carried out on two full-scale two-story buildings, having the same
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(a) L-shaped steel profile. (b) Masonry ring beam.

Figure 2.22: Strengthening techniques used in the experimental test by Ma-
genes, Penna, Senaldi, et al. 2014.

(a) Building 1. (b) Building 2.

Figure 2.23: Damage pattern of the buildings tested (from Magenes, Penna,
Senaldi, et al. 2014).

geometry and materials (undressed double-leaf stone masonry with timber floor
and roof) but different construction details. The first specimen (Building 1) repre-
sented a vulnerable building without any antiseismic detail or device. The second
prototype (Building 2) has the same configuration as Building 1, but the connec-
tions among walls and between floors and walls were improved. At the floor level, a
continuous L-shaped steel profile was put at the internal side of the walls and con-
nected by threaded bars to steel plates on the facades (Figure 2.22a). At the roof
level, the strengthening technique consisted of a reinforced masonry ring beam put
on the top of the masonry walls (Figure 2.22b). The experimental campaign was
aimed to understand the dynamic behavior of unstrengthened masonry buildings
and evaluate the effectiveness of some strengthening strategies.

Buildings were subjected to shake table tests at EUCENTRE. The motion di-
rection was parallel to the East and West walls. Building 1 attained a near-collapse
condition because of the occurrence of an out-of-plane mechanism of the North wall
gable, which also involved the spandrels of the intersecting walls (Figure 2.23a). The
improvement of the wall connections in Building 2 proved to be very effective since
no out-of-plane mechanism was monitored, and box-type global mechanisms oc-
curred (Figure 2.23b). The ring beam presence significantly improved the spandrel
coupling effect on piers, enhancing both its lateral strength (up to 40% greater than
Building 1) and its deformation capacity.
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2.5 Remarks

Masonry, as heterogeneous, anisotropic, and nonlinear material, deserves particular
attention for the description of its mechanical properties. Its microstructural size
is not negligible, so that it influences masonry mechanics even at greater scales. In
this chapter, we reported a review of masonry mechanics at the microscale, at the
scale of piers, and the wall level.

The study of masonry mechanics at the microscale is conducted reporting its
response under basic stress scenarios, namely vertical and horizontal tension and
compression, shear stresses, and biaxial stresses. The study has been restricted
to regular masonry, although similar reasonings can be formulated in the case of
irregular texture. A simple analysis of a small portion of masonry under vertical
compression shows that this failure mechanism is associated with the brick failure
in horizontal tension formed due to the presence of a softer medium, namely the
mortar layers. The tensile behavior of masonry has been discussed. It has been
shown its strong dependence on the tensile direction relative to the bed joints.
For tension acting orthogonal to bed joints, failure is determined when the mortar
tensile strength is reached. Therefore, since the tensile strength of mortar is poor
and has a strong variability, the masonry tensile strength in that direction is usually
neglected in practical computations. Conversely, the tensile strength parallel to
bed joints is not negligible, as it activates a frictional mechanism on the interface
between bricks and mortar bed joints. Then, we discussed the strong influence of the
vertical compression on the shear behavior. Shear failure mode can vary between
rocking, shear sliding, brick tensile cracking, or tow crushing, for increasing the
vertical stress amounts.

Then, we discussed masonry piers mechanics with a focus on their cyclic behav-
ior. A novel procedure for the cyclic response interpretation of masonry piers has
been proposed. It is aimed to describe the evolution of the stiffness and strength
degradation, permanent displacement increase, and energy dissipation during cyclic
experimental tests. It has been shown that panels characterized by different failure
modes exhibit a different evolution of the aforementioned parameters. In particular,
the behavior is almost nonlinear elastic for low-compression piers, with low energy
dissipation and strength degradation. Increasing the vertical compressions, all the
evolution parameters increase due to the progressive shear damaging for mid-range
compressions or the toe-crushing mechanism in case of high compressions.

Finally, three experimental tests on full-scale masonry buildings performed at
the University of Pavia have been reviewed. If the out-of-plane mechanisms were
prevented, strength mechanisms involve masonry walls in their plane. In this case,
piers exhibit the typical flexural and shear failure modes, depending on their as-
pect ratio and their position within the structure with respect to the seismic load
direction. The coupling effect of spandrels and how the pier behavior changes af-
ter spandrel strength degradation have been shown. Conversely, tests show that
without any antiseismic details aimed to prevent out-of-plane overturning, building
collapse without involving the wall in-plane resources.
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Chapter 3

Mechanical Models for
Masonry Structure Analysis

Abstract

This chapter is devoted to a review of mechanical models for masonry
structure analysis. Since masonry is a heterogeneous material whose
constituent dimensions strongly influence its mechanics, a refined rep-
resentation would require the explicit modeling of its components.
Increasing the specimen size, however, the computational burden in-
creases and can become unsustainable for large structures. At larger
scales, masonry structure analysis needs simplified models to speed up
computation and obtain manageable results. Therefore, several mod-
eling techniques characterized by different detailing level rises in the
literature.

For the wall level, the Equivalent-Frame and the articulated quadri-
laterals methods are discussed, considering their advantages and draw-
backs. A review of pier models to be used within the Equivalent-Frame
method is then reported. Subsequently, a series of constitutive laws
suitable for the macroscopic representation of masonry is discussed.
Finally, we report some of the literature attempts for microstructural
modeling, where the masonry constituents are explicitly modeled.

3.1 Introduction

The mechanical modeling of masonry is a challenging task. Its main characteristic
can be summarized as follows. The masonry material is:

� Heterogeoneous, as it is composed by two phases, namely blocks and mortar;

� Anisotropic, as masonry has preferential directions based on the way it is
assembled;

� Nonlinear, due to its limited strength values in shear and compression, and
its negligible tension strength.

59
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(a) Steel. (b) Concrete. (c) Masonry.

Figure 3.1: Comparison of microstructural dimensions between materials.

Masonry can be defined as a “structure within a structure” since its mechanical
response strongly depends on its constituents and how they are arranged. The
existence of nested structures within a material is not a peculiarity of masonry only
(Figure 3.1); however, unlike other materials, the microstructural dimensions is
relevant in the case of masonry. Steel microstructure is composed of grains having
a characteristic size of a few µm; concrete consists of a binding medium in which
are embedded particles and aggregates having a size of the order of a few cm. On
the other hand, regular brick sizes are 25 cm × 12 cm × 5.5 cm, which are not
negligible when compared to the structural element dimensions.

The strong influence of the microstructure on masonry mechanics leads many
authors to develop models where the constituents are explicitly modeled (Oliveira
and Lourenço 2004; Pina-Henriques and Lourenço 2006; Minga et al. 2018). In
this case, blocks, mortar, and block-mortar interfaces are characterized by proper
constitutive laws aimed to represent the mechanics of each constituent or their
interactions separately.

We can further increase the detailing level by observing the granulometric com-
position of the material. We can explain masonry mechanical behavior by consid-
ering the microscopic interactions between the grains of the constituents. However,
this scale of representation is too refined for technical applications. It cannot be
used in practical situations, even though it can explain some of the constituent
microscopic properties (Li et al. 2004; Diamond and Landis 2007).

When large portions of masonry are at study, however, explicit modeling of its
constituents requires an impractical amount of discretization elements and com-
puter resources. At this scale, in fact, masonry material is generally interpreted as
a homogenized continuum. The reproduction of the microstructural mechanisms is
fully devoted to the definition of a proper constitutive law, which can be formu-
lated in the framework of plasticity (Page et al. 1985; Lourenço, De Borst, et al.
1997), damage mechanics (Berto et al. 2002), smeared crack models, or coupled
damage-plasticity models (Addessi, Marfia, et al. 2002).

However, these macroscopic phenomenological models require a large amount
of data. Since they need to phenomenologically reproduce the microstructural me-
chanics in all their complexity with a single stress-strain relationship, they require
many parameters for their definition that are not easy to extract from basic ex-
perimental tests on the material. A case in point is Lourenço’s model (Lourenço,
De Borst, et al. 1997), for which sixteen mechanical parameters are required.
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Therefore, large structure analyses require simplified models able at the same
time to effectively reproduce masonry mechanics and to speed up computation
time. A widely-used approach is to consider walls as an assembly of macroelements
(macroelement modeling). They can be distinguished between the vertical elements,
i.e., the piers, which bear vertical and horizontal loads; the horizontal elements, i.e.,
the spandrels, which couple the pier response; and the portions at the pier-spandrel
intersections, namely the node panels. The effectiveness of these models relies on
the proper mechanical behavior assigned to each macroelement. The articulated-
quadrilaterals method (Caliò et al. 2012) belongs to the same model family. In this
case, building walls are discretized in quadrilateral elements, calibrated to reproduce
the masonry failure mechanisms at the macroelement level, namely rocking, toe-
crushing, diagonal cracking, and shear sliding.

In summary, masonry mechanics can be modeled at different detailing levels:

� Microscale, when the masonry constituents are explicitly taken into account;

� Macroscale, when we consider masonry as a homogenized continuum.

� Macroelement scale, when a mechanical behavior is assigned to large portions
within a wall.

In this chapter, a review of the most widely-used modeling techniques for ma-
sonry at all scales of representation is reported. The study of masonry at scales that
are smaller than the dimensions of its constituents is not relevant from a structural
point of view, and it will be neglected.

Here, we limit our attention to the in-plane behavior of masonry walls under the
assumption of out-of-plane mechanisms prevention. As shown in Section 2.4, if the
out-of-plane mechanisms are not prevented in a masonry building, they are the first
ones to occur, and buildings collapse without the activation of in-plane mechanisms.
The out-plane mechanisms are generally studied with specific models, such as limit
analysis (Shawa et al. 2012; Doherty et al. 2002; Abrams et al. 2017). The study
of the in-plane mechanisms is tipically done separately from the verification of the
absence of out-of-plane mechanism, under the assumptions that they are decoupled.
The coupling effect of in-plane and out-plane mechanisms is still an open issue.

In Section 3.2, we report a review of modeling techniques at the wall level,
namely the Equivalent-Frame method and the articulated-quadrilateral model. The
Equivalent-Frame method requires the definition of specific models for its macroele-
ments. A review of the macroelement models for masonry piers is reported in
Section 3.3. The family of homogenized continuum models suitable for masonry
structures is then discussed in Section 3.4. In Section 3.5, the attention is then
focused on microscale modeling. Finally, a final discussion is reported in Section
3.6.

3.2 Wall level

Masonry is a composite material having particular mechanical characteristics, as
described in Chapter 2. Since the 80s (Page et al. 1985), finite element methods have
been used for the analysis of masonry structure. However, these refined models are
time-consuming and require a large amount of data. Since they suffer from mesh
dependency, they require many parameters for regularization that are not easy
to extract from basic experimental tests of the material. Moreover, these models
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are susceptible to mechanical parameters and require careful calibration to obtain
reliable results.

Therefore, the need for simplified models arises for large structures. In the
following sections, we present the characteristics of the Equivalent-Frame method
and the one based on the articulated quadrilaterals, which are widely used in the
professional practice for the seismic vulnerability assessment of masonry buildings.
The main advantage of these models is the low detailing level of representations of
the masonry structures, since they are based on the subdivision of each masonry
wall into panels. Since the constitutive behavior is assigned at this representation
level, the resulting model has a lower number of degrees of freedom with respect
to other modeling techniques, and the required computation time for analyses is
highly reduced.

3.2.1 Equivalent-Frame

The Equivalent-Frame (EF) method relies on modeling a masonry wall with open-
ings as a frame composed of columns and beams (Figure 3.2). Let us consider a wall
with openings in a masonry building. By virtually extending the lines of opening
edges, we can identify vertical and horizontal stripes of masonry, which are defined
respectively as “piers” and “spandrels”. The panels at the intersection of piers and
spandrels are defined as “node” panels.

Once the subdivision of the masonry wall in macroelements is made, the reli-
able prediction of its overall behavior relies on the proper modeling of each member
response. A review of modeling strategies for EF macroelements is reported in Sec-
tion 3.3. The nonlinear behavior is usually concentrated in piers and spandrels.
Node panels are considered zones where damage cannot occur, and they are mod-
eled as infinitely stiff and resistant. In the numerical implementation, the latter
assumptions are taken into account by inserting rigid offsets to pier and spandrel
beams. Generally, the determination of the flexible portion of piers accounts for the
height of adjacent openings. A commonly adopted criterion defines the pier vertical
limits at the intersection of its axis with the virtual lines having a 30◦ inclination
on horizontal direction starting from the adjacent opening corner (Dolce 1991).

Compared to other modeling techniques, the EF method has advantages in
terms of readability of results (for the familiarity that designers have with framed
structures) and computational time (for the reduced number of degrees of freedom
of the models). For these reasons, EF is, to date, the most used modeling technique
in professional practice.

The scientific community has proposed numerous EF methods, starting from
the POR method (Tomaževič 1978), which was extensively used for repair and
strengthening work after the 1976 Friuli earthquake. This method adopted strong
and simplistic assumptions. Each floor is analyzed separately, under the assump-
tion of infinite stiffness and strength of spandrels and keeping constant the axial
force in wall elements during the analysis. Moreover, an elastic-perfectly plastic
constitutive law for the elements was assumed, with a strength limit given only by
the shear mechanism. Axial force in piers was determined by vertical loads only,
neglecting the effects of horizontal actions, which can determine compression vari-
ations. Moreover, since the analysis was carried out storey-by-storey, the method
gave rise to unbalanced solutions in relation to the entire wall, and the effect of
force redistributions in the whole wall after element damaging was not taken into
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Figure 3.2: Subdivision of a masonry wall in piers (in red) and spandrels (in
blue) by the EF method.

account.

The method was partially improved by Braga and Dolce 1982, formulating the
PORFLEX method, which introduced failure in spandrels, different mechanisms
(tension, compression, and shear) for strength failure of piers, and the variation
of axial force with increasing of the horizontal load. However, the limit of the
preceding techniques, i.e., to perform a separate analysis at each storey, has not
been removed.

The first method which analyzed the entire masonry wall under lateral loads in
the nonlinear field as an equivalent frame was the SAM method (Magenes and Calvi
1996; Magenes and Della Fontana 1998). Piers and spandrels were formulated as
elastic-plastic columns and beams with flexural and shear deformability ad strength
defined by two failure mechanisms (flexural and shearing), expressed as internal
forces. The collapse of piers was determined when their lateral drift overcame a
given threshold, which depends on the failure type: 0.5% for shear failure and 1.0%
for flexural failure.

Another EF method that is worth mentioning is the one implemented in the
commercial software TREMURI (Lagomarsino et al. 2013). It introduced some
advanced features like the explicit modeling of flexible horizontal diaphragms, useful
for modeling timber floors in historical buildings, and the formulation of a refined
macroelement model, which will be discussed in Section 3.3.

Despite the advantages of this kind of modeling, the EF method has some con-
troversial aspects that need to be mentioned. This method is difficult to apply to
walls characterized by an irregular layout of openings. In this case, the schematiza-
tion of a wall in an equivalent frame is arbitrary, not unique, and left to the analist
imagination and sensitivity. Furthermore, the reliability of the results obtained
with this model on walls with irregular geometry of the openings is questionable.
A study of the reliability of the EF method in case of an irregular set of openings
is presented in Chapter 4.



64 CHAPTER 3. MECHANICAL MODELS

(a) The “small-opening paradox”.

(b) Definition of pier effective height
based on development of compression
strut (from Moon et al. 2006).

Figure 3.3: Controversial aspects of the EF method.

A reckless application of the EF method can lead to paradoxes. Let us consider
a wall without openings that can be modeled by the EF method as a cantilever. If we
consider the same wall, having a small opening inside, its corresponding equivalent
is extremely different as it has tiny flexible portions of piers and spandrels (Figure
3.3a). In other words, small variations in the wall geometry lead to a large variation
in its response. This fact represents an undesirable feature for a structural model.

Another aspect that is often neglected in defining the frame geometry is the
seismic action direction. Experimental evidence shows that the effective portion
of the pier is determined by the opening located downstream with respect to the
seismic action. Moon et al. 2006 proposed a method in which the effective height
of a pier is defined as the height over which a compression strut is likely to develop,
changing its geometry depending on the load direction (Figure 3.3b). However,
this consideration is not easy to implement for the analysis of a three-dimensional
structure. In fact, in some cases, i.e., the case of shape irregularity of floor plans,
torsional effects can lead to inversions of the seismic load direction for some walls
with respect to the global one assigned in the pushover analysis.

3.2.2 Articulated quadrilaterals

The Articulated-Quadrilateral (AQ) model (Caliò et al. 2012) is based on a plane
nonlinear discrete element, able to simulate the behavior of masonry walls in their
own plane.

This model differs to the EF method for the concept of panel discretization
(Figure 3.4). While in the EF method each member represents a macroelement,
i.e., a pier or a spandrel, in the AQ model a masonry wall can be subdivided into
a larger number of discrete elements, also to accommodate the irregular pattern of
openings or at the user’s discretion (Figure 3.5b).

The quadrilateral element (Figure 3.5a) is composed of rigid edges with two di-
agonal nonlinear springs, having a proper stiffness to simulate panel shear stiffness,
non-reacting in tension and having a compression strength calibrated to reproduce
the diagonal-cracking shear mechanism of the panel. The flexure and shear-sliding
mechanism are simulated through a finite number of vertical and horizontal springs
at the top and bottom interfaces, respectively. Vertical springs have linear-elastic
behavior limited by tensile and compressive strength. Failure is treated differently
in tension and compression. Once the compressive ultimate displacement is reached,
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Figure 3.4: Subdivision of a masonry wall in articulated quadrilaterals.

the spring is removed by the model since the corresponding fiber is crushed. On the
other hand, when the tensile limit is attained, the vertical spring is not removed
since it would bear further compressive loads once the lateral load is inverted. Hori-
zontal springs are modeled as rigid-plastic governed by the Mohr-Coulomb yielding
criterion. From a kinematic point of view, the quadrilateral element has four de-
grees of freedom, three of which are associated with the in-plane rigid-body motion
and a fourth derived from the shear deformability.

This model has some advantages and drawbacks. Like other simplified ap-
proaches, it can analyze a masonry structure with a low computational cost. More-
over, masonry walls with irregular opening layout can be geometrically divided into
elements since every wall panel (pier, spandrel, and node panel) is modeled with
the same articulated quadrilateral element. Besides, the model can account for the

(a) The basic element. (b) Wall discretization.

Figure 3.5: Articulated-Quadrilateral model (from Caliò et al. 2012).
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effect of seismic load direction. In fact, if we consider a masonry pier having aside
openings of different heights, the pier elements can result as confined by other ele-
ments in one direction, while they are contact-free due to the opening void in the
other one.

However, the arbitrariness of the wall discretization represents a drawback.
Unlike the finite element method where the results tend to the exact solution with
mesh refining, the AQ model response can be very different with different subdivi-
sions, since element spring strengths are calibrated on experimental tests adopting
AQ elements having specific dimensions.

3.3 Macroelements

In Equivalent-Frame models, the effectiveness of the overall response relies on the
proper modeling of each macroelement.

The scientific community has focused its attention mainly on the masonry piers
since they are the components that more strongly influence the seismic response
of masonry structures. Masonry piers have been tested in numerous experimental
campaigns in the last three decades (Magenes and Calvi 1992; Tomaževič and
Lutman 1996). The interpretation of the masonry pier mechanics, which has been
discussed in Section 2.3, is now consolidated in the scientific community.

Conversely, the interpretation of the spandrel’s behavior under seismic actions
is still an open issue. Unlike masonry piers, spandrels have been subjected to
experimental campaigns only recently (Gattesco et al. 2008; Beyer and Dazio 2012),
and the evaluation of their behavior is still under discussion. Moreover, the spandrel
response is strongly influenced by the compression acting along its horizontal axis,
which difficult to assess in a real masonry structure. For these reasons, spandrel
models are usually the same ones chosen for masonry piers, with the only difference
of having the reference frame rotated at a right angle.

Specific models for spandrels have been developed only recently. Cattari, Lago-
marsino, et al. 2008 proposed a failure criterion based on the equivalent tensile
strength originated by the interlocking phenomena at the interface between the
spandrel end sections and the contiguous masonry. Another notable model is the
one formulated by Calderoni et al. 2011, in which the spandrel is modeled as an
“arched strut” having two failure mechanisms, namely, toe crushing and tensile
cracking.

Node panels are generally considered infinitely rigid and resistant, as confirmed
by experimental evidence showing that elastic and inelastic strains are concentrated
in piers and spandrels.

In this section, we restrict our attention to masonry pier models within the
Equivalent-Frame method. Two main families of modeling techniques can be found
in literature: the beam approach and the multi-spring approach.

In the beam approach (Figure 3.6b), the beam theory is used to model the
panel. Nonlinearities can be considered as smeared along the beam axis, lumped
to its ends, or, in some cases, by correcting according to some criteria the linearly-
computed internal forces.

On the other hand, in the multi-spring approach (Figure 3.6c), both elastic
and inelastic strains are concentrated in springs that are connected by rigid bodies.
Similarly to the beam models, the springs can be properly nonlinear or linear with
strength and failure criteria.
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Figure 3.6: Macroelement models.

In the following, we consider the vector p as the one that groups the global
generalized displacements, composed of the in-plane displacements and the rotation
about the out-of-plane axis of the bottom and top nodes. Moreover, we consider
P as the vector of global generalized forces, that groups axial and shear forces and
bending moments at the end nodes of the beam, namely

p =


u1
v1
ϕ1

u2
v2
ϕ2

 , P =


V1
N1

M1

V2
P2

M2

 (3.1)

where the meaning of the symbols is explained in Figure 3.6a.

3.3.1 Beam elements

Piecewise linear beams

The simplest and the most common approach, which is implemented in a large
number of EF solvers (Lagomarsino et al. 2013; Pagani, Salvatori, et al. 2017), is
the piecewise-linear model, in which we first compute the elastic internal forces as

P = Ke p (3.2)
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where Ke is the Timoshenko beam stiffness matrix, given by

Ke = C



0
AH2

I
(1 + Φ) 0 0 −AH

2

I
(1 + Φ) 0

12 0 6H −12 0 6H
6H 0 (4 + Φ)H2 −6H 0 (2− Φ)H2

0 −AH
2

I
(1 + Φ) 0 0

AH2

I
(1 + Φ) 0

−12 0 −6H 12 0 −6H
6H 0 (2− Φ)H2 −6H 0 (4 + Φ)H2


(3.3)

where

C =
EI

(1 + Φ)H3
Φ =

12EI

GAsH2
(3.4)

where E and G are the Young and shear moduli, respectively; A, As and I are the
panel cross-section area, the shear area, and the moment of inertia, respectively;
H is the height of the panel. The shear deformation parameter Φ represents the
ratio between bending and shear stiffnesses. When its value vanishes, the stiffness
matrix reduces to the one according to the Euler-Bernoulli beam theory.

After the linear prediction, some verifications are made aiming to correct the
internal forces vector P . First of all, it is checked whether the pier has reached
the compression limit, after which the pier is considered as collapsed. The ultimate
compressive load is given by

Pu = fcA (3.5)

where fc is the compressive strength.

Then, we perform a check on the lateral drift θ, defined as

θ =
u2 − u1
H

+
ϕ2 + ϕ1

2
(3.6)

The failure criterion on the lateral drift is an open issue, since in several building
codes, e.g., the Eurocode 8 (EN 1998-3 2005), it is roughly defined as a function of
the strength mechanism only. According to this formulation, the ultimate lateral
drift (θu) is given by

θu =

{
1.0% flexural failure

0.5% shear failure
(3.7)

This definition does not account for many aspects which are significant for the
determination of pier failure, such as the aspect ratio λ = H/L, being L the in-
plane dimension of the cross-section, or the compression ratio p = P/Pu, or the
material of which the pier is composed of. Moreover, it leads to a paradox. For high
compression loads, masonry piers exhibit a toe-crushing (a flexural type) strength
mechanism. Therefore, the ultimate drift is predicted as a value higher than the one
corresponding to panels failing in shear, associated with lower compression loads. In
contrast, numerous studies, notably Orlando et al. 2016, or the parametric study
carried out in Chapter 5, have shown that the drift capacity decreases for high
compression loads.

Recently, the Italian Building Code has implemented a new definition of the
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ultimate drift which considers the influence of the compression ratio, namely

θu =


1.0% p ≤ 0.2

1.25% · (1− p) p > 0.2

}
flexural failure

0.5% shear failure

(3.8)

which fixes the above-mentioned issue.
If the drift limit is overcome, the element loses the capacity to bear any lateral

load, i.e., it becomes a strut, and the internal forces vector is accordingly modified.
If the failure criteria are not satisfied, the pier behavior is considered linear with

strength cut-off defined by some simplified strength criteria, based on mechanical
or phenomenological hypotheses proposed in the literature and codes.

Nonlinear beams
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Figure 3.7: Detailing levels in nonlinear beam models.

In linear models, nonlinearities are considered by properly correcting the inter-
nal forces, which are computed linearly from the beam displacements. In contrast,
in nonlinear beam models, we consider a properly nonlinear relation between dis-
placements and internal forces

P = P̃ (p) (3.9)

Nonlinear beam models can be distinguished in two categories depending on their
finite-element formulation. The classical displacement-based (DB) approach as-
sumes compatible displacement and strains along the elements, using polynomial
interpolation functions, which satisfy the continuity conditions. An alternative ap-
proach is represented by the force-based (FB) formulation, in which the stress field
is interpolated along the element. This approach yields to a more complex proce-
dure, but it leaves more freedom to the displacement field, which is not obliged to
respect the prescribed shape functions.

It is worth defining some quantities that are useful for the description of both
DB and FB formulations. Inside the beam element, there are four different levels
at which we can define the kinematic and static quantities.

At the global level (Figure 3.7a), we have the displacements p and the internal
forces P , already defined in (3.1).



70 CHAPTER 3. MECHANICAL MODELS

At the element level (Figure 3.7b), we define the element deformations q and
forces Q as

q =

 θ1
θ2
e

 Q =

 M̄1

M̄2

N̄

 (3.10)

where θ1 and θ2 are the nodal rotations and e is the axial elongation. Similarly,
M̄1 and M̄2 are the bending moments at the end nodes and N̄ is the axial force.

At the section level (Figure 3.7c), the sectional deformations and internal ac-
tions are defined as

d =

 ε0
δ
κ

 S =

 N
V
M

 (3.11)

where ε0 is the axial strain, δ the shear strain, and κ the curvature, while N , V ,
and M are respectively the axial force, the shear force, and the bending moment.

Finally, we can imagine the beam section as made up of a set of fibers (Figure
3.7d), having their fiber strains ε and stresses σ as

ε =

[
ε̄
γ̄

]
σ =

[
σ̄
τ̄

]
(3.12)

where ε̄ and γ̄ are the fiber normal and shear strains, and σ̄ and τ̄ are the normal
and shear stresses of the fiber.

p
d=Bp−−−−→ d

ε=Gd−−−−→ ε
|

σ = σ̃(ε)
↓

P
P=

∫H
0 BTS

←−−−−−−−− S
S=

∫
AG

Tσ
←−−−−−−− σ

Table 3.1: Flowchart for the DB approach.

In the DB approach (Bažant and Bhat 1977; Hellesland and A. Scordelis 1981;
A.C. Scordelis 1984; Belmouden and Lestuzzi 2009), we interpolate the displace-
ment field along the beam through shape functions. Namely, the displacements
u(x), where x is the abscissa varying from 0 to the beam length H, are given by

u(x) =

[
ux
uy

]
= N(x)p (3.13)

It can be demonstrated (Bazoune et al. 2003) that the shape function matrix N
for the Timoshenko beam is given by

N =

[
0 Na,2 0 0 Na5 0

Nb,1 +Ns,1 0 Nb,3 +Ns,3 Nb,4 +Ns,4 0 Nb,6 +Ns,6

]
(3.14)
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where

Na,2 = 1− x

H
(3.15)

Na,5 =
x

H
(3.16)

Nb,1 =
1

1 + Φ

[
1− 3

( x
H

)2
+ 2

( x
H

)3]
(3.17)

Nb,3 =
H

1 + Φ

[
x

H
− 2

( x
H

)2
+
( x
H

)3
+

Φ

2

(
2
x

H
−
( x
H

)2)]
(3.18)

Nb,4 =
1

1 + Φ

[
3
( x
H

)2
− 2

( x
H

)3]
(3.19)

Nb,6 =
H

1 + Φ

[
−
( x
H

)2
+
( x
H

)3
+

Φ

2

( x
H

)2]
(3.20)

Ns,1 =
Φ

1 + Φ

(
1− x

H

)
(3.21)

Ns,3 = − HΦ

1 + Φ

1

2

x

H
(3.22)

Ns,4 =
Φ

1 + Φ

x

H
(3.23)

Ns,6 = − HΦ

1 + Φ

1

2

x

H
(3.24)

The section strains d can be obtained directly from the global displacements p
by means of

d(x) = B(x)p (3.25)

where the matrix B given by

B =



0
dNa,2

dx
0 0

dNa,5
dx

0

dNs,1
dx

0
dNs,3

dx

dNs,4
dx

0
dNs,6

dx

d2Nb,1
dx2

0
d2Nb,3

dx2
d2Nb,4

dx2
0

d2Nb,6
dx2


= (3.26)

(3.27)

=



0 − 1

H
0 0

1

H
0

− Φ

(1 + Φ)H
0 − Φ

2(1 + Φ)

Φ

(1 + Φ)H
0 − Φ

2(1 + Φ)

6(2x−H)

(1 + Φ)H3
0

6x− (4 + Φ)H

(1 + Φ)H2
− 6(2x−H)

(1 + Φ)H3
0

6x− (2− Φ)H

(1 + Φ)H2


(3.28)

Then, we can obtain the fiber strains under the assumption of plane conserva-
tion of beam sections. If we consider an abscissa s along the beam sections, having
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value as zero at the centroid position, we have

ε(x, s) = G(s)d(x) (3.29)

where

G(s) =

[
1 0 s
0 1 0

]
(3.30)

Then, we are able to find the stress by defining the relation between stresses and
strains at the fiber level, namely

σ = σ̃(ε) (3.31)

The constitutive law is usually defined separately for normal and shear actions.
Raka et al. 2015 considered a plasticity model for the axial stress-strain relation,
characterized by limited strength in tension and a hardening-softening law in com-
pression, while the shear response is described through a phenomenological force-
deformation law, with no interaction between shear and axial-bending behaviors.
In the beam model formulated by Addessi, Mastrandrea, et al. 2014, a piecewise
linear function has been used for the axial response, with no-stress in tension and
a stress limit in compression. The shear behavior is formulated in the plasticity
framework, with shear-sliding effects occurring in the compressed portion of the
cross section.

The beam actions at the section level are retrieved by using equilibrium as

S(x) =

∫
A

GT (s)σ dA (3.32)

Similarly, we obtain the global internal forces by integrating along the beam
axis, namely

P =

∫ H

0

BT (x)S(x) dx (3.33)

Structural analysis is most frequently done using a displacement-based finite ele-
ment formulation for its simplicity and general effectiveness. Therefore, a displacement-
based element is convenient and easy to implement in this kind of framework (Table
3.1).

However, all that glitters is not gold. Fine discretization is needed in the case
of localized inelastic strains. A typical case is the rocking mechanism of masonry
piers, for which the whole part of the body remains elastic, and a large rotation is
concentrated at the pier base.

For this reason, recent efforts to develop more robust and efficient beam ele-
ments have shown a trend towards FB formulations (Taucer et al. 1991; Spacone et
al. 1996; Neuenhofer and Filippou 1998) that rely on force interpolation functions
that strictly satisfy the equilibrium of forces along the element. This approach can
be implemented in a global displacement-based formulation, although it requires
a more complex algorithm for retrieving internal forces during the element state
determination (Addessi and Ciampi 2007). The FB approach is computationally
efficient, and coarser spatial discretizations can be used than the ones needed for
DB elements.

The element displacements q and forces Q, defined in (3.10), are related to the
global ones by means of

q = Bp P = BT Q (3.34)
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where B is a kinematic operator that removes the rigid modes from the global
displacement vector p, given by

B =



1

H
0 1 − 1

H
0 0

1

H
0 0 − 1

H
0 1

0 −1 0 0 1 0

 (3.35)

Then, the section stress field is interpolated along the beam as

S(x) = b(x)Q (3.36)

where the equilibrium matrix b is

b(x) =



0 0 1

1

H

1

H
0

x

H
− 1

x

H
0

 (3.37)

where we have assumed the absence of distributed load along the beam, leading to
constant axial and shear forces, and to a linear variation of bending moments along
the element. The relation between section stresses and strains is the same as in the
displacement-based element, namely

S(x) =

∫
A

GTσ(Gd(x)) dA (3.38)

However, in the force-based element, we need to find the inverse relation, which
involves the section flexibility matrix f(x), the inverse of the section stiffness matrix
k(x), given by

k(x) =

∫
A

GT ∂σ

∂ε
GdA (3.39)

Therefore, we can write

d = f S = f where f = k−1 (3.40)

By applying the principle of virtual work, the vector of nodal displacements
can be retrieved, namely

q =

∫ H

0

bT d dx (3.41)

that can be expressed also as
q = F Q (3.42)

where

F =

∫ H

0

bT f b dx (3.43)

which represents the inverse of the element stiffness matrix K.
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p
q=Bp−−−−→ q

q=
∫H
0 bTd

←−−−−−−− d
ε=Gd−−−−→ ε

| ↑ |
Q = F−1q d = K−1

s S σ = σ̃(ε)
↓ | ↓

P
P=BTQ←−−−−−− Q

S=bQ−−−−→ S
S=

∫
AG

Tσ
←−−−−−−− σ

Table 3.2: Flowchart for the FB approach.

Therefore, the element state determination requires two nested inversions of
stiffness matrices at both section end element level, as shown in the flowchart
reported in Table 3.2. The element state determination is more complex than for
the classical DB formulation. Details about its implementation can be found in
Addessi and Ciampi 2007.

For both DB and FB beam elements, the numerical response depends on the
number of integration points, which determines an internal length associated with
each element section, say Hi = wiH, where H is the beam length and wi is the
integration weight associated to each integration point. Therefore, these models
need regularization techniques to have objective localization of inelastic strains.
Two families of regularization techniques have been proposed in the literature: the
first one is based on modifying the integration scheme at the beam level to have the
desired internal characteristic length (Scott and Fenves 2006; Addessi and Ciampi
2007), while the second one is based on mesh-adjusted fracture energy parameters
(Pugh et al. 2014; Vásquez et al. 2016).

3.3.2 Multi-spring approach

Experimental tests show that cracking zones tend to concentrate at element ends
when failure mechanisms are of the flexure type, while a diagonal crack forms in
the middle of the panel in case of shear failure. This observation leads to the
development of elements with lumped nonlinearities using elements composed of
several nonlinear springs connected by rigid links (Rinaldin, Amadio, and Macorini
2016; Penna et al. 2014). Springs are placed at the two ends of the masonry element
for describing the flexural behavior and in the middle for representing the response
in shear.

The advantage of the multi-spring approach, when compared to beam models,
is the even lower computational effort due to the concentration of nonlinearities
into a limited number of springs.

Penna et al. 2014 formulates a worth-mentioning model which have been im-
plemented in the academic version of the commercial software TREMURI. It is a
nonlinear multi-spring model, in which internal forces are computed as

P = Kms p− P ∗ (3.44)

whereKms is the stiffness matrix of the multi-spring element, and P ∗ is the nonlin-
ear term that properly corrects internal forces accounting for cracking, toe-crushing
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Figure 3.8: Kinematic of the multi-spring element (from Penna et al. 2014).

and shear damage conditions. The panel consists of three parts: a central body
accounting for shear deformation only and two interfaces which model the axial
and bending behavior. The macroelement kinematics can be described by means
of eight degrees of freedom, six of which are the nodal displacement components
(u1,v1,φ1,u2,v2,φ2) and two internal components (we, φe). The spring’s kinematic
variable in charge of modeling the panel shear behavior is a function of the dis-
placement components u1, u2, and φe. Two damage variables for each cross-section
edge was introduced to perform the nonlinear correction associated with the toe-
crushing phenomena and to update the compressive stiffness associated with the
bending–rocking behavior. For the shear behavior, other two internal variables were
considered: the shear-sliding plastic displacement and a damage variable, account-
ing for shear strength degradation. Element collapse can be defined at a certain
threshold of the lateral strength decay based on experimental results. Alternatively,
it can also be defined at the macroelement level by setting its lateral stiffness as
zero when the lateral drift limit is reached. In this case, in the further load steps,
the element is transformed into a strut able to bear vertical loads only.

3.4 Homogenized continuum

Homogenized continuum models assume that, at the scale of representation, ma-
sonry can be treated as a continuum having mechanical properties that averagely
reproduce the response of the heterogeneous material. Each material point of the
homogenized continuum represents a certain portion of masonry containing blocks
and mortar joints (Figure 3.9). The effectiveness of these models relies on the se-
lection of a proper constitutive law that phenomenologically reproduces the stress-
strain relation of this portion of masonry structure, which can be written in the
following form

σ = σ̃(ε,α) (3.45)

where α represents the internal variables describing the material point state.
Assuming the definition of an accurate stress-strain relationship, the advantage

of homogenized continuum models is that a coarse finite element mesh can be used,
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s = s ( e , a )~

x

Figure 3.9: Homogenized continuum model.

with elements encompassing several bricks and joints. This leads to a lower com-
putational burden compared to a more accurate microscale modeling, allowing its
application even for large masonry structures. However, constitutive laws typically
depend on numerous parameters that are difficult to retrieve from experimental
tests on masonry specimens.

3.4.1 Nonlinear elasticity models

Nonlinear elasticity models treat masonry under the simplified assumptions of elas-
tic material non-reacting in tension (Maier and Nappi 1990; Angelillo 1994; Lucchesi
et al. 2008). Therefore, no internal variables are accounted in the model and the
constitutive law reduces to

σ = σ̃(ε) (3.46)

The solution of the boundary value problem relies on a problem of minimization of a
potential with inequality constraints. Although several elegant solutions have been
found in the literature for such a complex problem, this approach cannot simulate
the post-peak behavior and the cyclic response of masonry structures, which is a
strong limitation for a proper assessment of the seismic vulnerability.

3.4.2 Plasticity models

The use of plasticity models for masonry structure analysis can be justified based
on experimental evidence. First of all, the shear-sliding mechanism exhibits the
classic frictional behavior, characterized by the development of permanent displace-
ments and a strength limit, which depends on transversal compression. Compressive
crushing can also be modeled in a plasticity framework since the crushed portion
of masonry can exhibit permanent compressive strains.

However, the interpretation of the tensile cracking as plastic is questionable.
In fact, experimental tests show that, in case of tensile failures, either the blocks
detach from mortar or a crack forms through blocks, leading to the creation of
voids or macro-cracks. The interpretation of this mechanism through plasticity
would generate permanent displacements in the numerical model that can lead to
paradoxes. For instance, if we consider a cyclic tensile loading that activates plastic
flow in the loading branch, the material would start reacting even at the beginning
of the loading inversion, which contrasts with the stress-free crack opening/closure
mechanism.
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Figure 3.10: Yielding surface proposed by Page et al. 1985.

Nevertheless, many plasticity models have been developed in the literature for
masonry structure analysis. One of the first significant papers was the one by Page
et al. 1985. Previous experimental tests done on masonry specimens subjected to
biaxial stress states (Page 1981) suggested a yielding surface composed of three
elliptic cones in the σn-σp-τ space, where n and p are the axes respectively normal
and parallel to mortar bed joints (Figure 3.10). Depending on the position of
the stress state on the yielding surface, a failure mode was individuated among
tension failure normal or parallel to bed joints, shear failure, and biaxial tension or
compression; then, at each step of the iterative-incremental procedure, the tangent
stiffness matrix and stress components were edited according to prescribed patterns
depending on the failure mode. Plastic strain evolution was related to stress by
power laws at all stress levels.

Lourenço, De Borst, et al. 1997 developed an orthotropic model in the frame-
work of multisurface plasticity, with the yield function described as the composition
of two different surfaces for the tensile and compressive behavior (Figure 3.11). The
model was developed for the plane-stress case so that the non-zero components of
the stress tensor are σx, σy, and τxy in a Oxy reference frame.

An orthotropic Rankine-type yielding function was considered for tensile stresses,
namely

ft =
(σx − σt,x) + (σy − σt,y)

2
+

√(
(σx − σt,x)− (σy − σt,y)

2

)2

+ ατ2xy (3.47)

where α is a parameter describing the effect of shear stresses on tensile yielding,
and σt,x and σt,y are the yielding tensile stresses related to the material axes x and
y, which degrade according to an exponential softening function as a function of a
scalar internal variable κt.

The adopted failure surface in compression corresponds to a Hill-type yield
function,

fc =
σ2
x

σ2
c,x

+
βσxσy + γτ2xy
σc,xσc,y

+
σ2
y

σ2
c,y

− 1 (3.48)

where parameters β and γ control respectively the coupling of normal stresses
and shear contribution, and σc,x and σc,y are the compressive strengths along the
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Figure 3.11: Composite yielding domain of Lourenço’s model (Lourenço,
De Borst, et al. 1997). The red and the blue lines represent respectively the
intersection of the two yielding surfaces and the intersection of the domain
with the τxy = 0 plane.

material axes, depending on the hardening parameter κc according to a hardening-
softening law.

Regularization of strain localization is done by introducing mesh-adjusted frac-
ture energies, two (one in tension and one in compression) independent quantities
for each material axis. More details will be presented in Chapter 6, devoted to the
localization analysis of this model.

3.4.3 Damage models

Damage models can well represent masonry mechanics from a macroscopic point of
view. Both tensile cracking and compressive crushing mechanism can be seen as a
progressive weakening of a portion of the body.

The damage model proposed by Mazars et al. 2015, although originally formu-
lated for concrete structures, has also been used for masonry structures (Facchini
and Betti 2016; De Falco et al. 2018). The model is based on an isotropic formula-
tion and a scalar damage variable, a function of two independent internal variables
related to tensile and compressive damage. The constitutive law is given by

σ = (1− ω)De : ε (3.49)

The scalar damage parameter ω is defined by

ω = 1− (1−A)Y0
Y

−A exp(−B(Y − Y0)) (3.50)
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where Y is the damage-driving variable and Y0 is its initial threshold, given by

Y = r Yt + (1− r)Yc (3.51)

Y0 = r ε0t + (1− r) ε0c (3.52)

(3.53)

The triaxial factor r varies from 0 in case of triaxial compression to 1 in case of
triaxial tension, and it is defined as

r =

∑
I〈σ̄I〉∑
I |σ̄I |

(3.54)

where σ̄ = De ε is the so-called “effective stress”, the subscript I denote principal
components, and the Macauley brackets 〈.〉 denote the “positive part” operator.
The variables A and B influence the shape of the damage evolution and are function
of the triaxial factor r and four material parameters (At, Ac, Bt, and Bc). The
variables Yt and Yc are the maximum values reached by the equivalent strains εt
and εc during the loading process, given by

εt =
Iε

2(1− 2ν)
+

√
Jε

2(1 + ν)
(3.55)

εc =
Iε

5(1− 2ν)
+

6
√
Jε

5(1 + ν)
(3.56)

where Iε is the first invariant of the strain tensor and Jε is three times the second
invariant of the deviatoric part of the strain tensor, namely

Iε = ε1 + ε2 + ε3 (3.57)

Jε =
[
(ε1 − ε2)

2
+ (ε2 − ε3)

2
+ (ε3 − ε1)

2
]
/2 (3.58)

The damage variable ω is different from 0 when one of the thermodynamic varibles
(Yt or Yc) overcomes the corresponding initial threshold (ε0t or ε0c). Figure 3.12
shows the threshold of damage initiation of the Mazars model in the σ1 − σ2 plane
for σ3 = 0.

Berto et al. 2002 proposed an orthotropic damage model where damage was
treated as a fourth-rank tensor. The stress-strain relation reads

σ = (I −Ω) : De : ε (3.59)

The basic assumption of this model is the identification of material principal axes
as principal axes of damage. The damage tensor Ω depends on four independent
damage parameters, accounting for damage in tension and compression in each
principal direction. The exponential damage evolution is induced when the effective
stress is outside of a limit surface of allowable stress states (Figure 3.13), which turns
to be similar to the experimental limit surface obtained by Page et al. 1985 (Figure
3.10).

3.4.4 Smeared crack models

Another framework which is widely used for the homogenized continuum approach
is the smeared crack model (Lotfi and Shing 1991; Pagani, Salvatori, et al. 2017;
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Figure 3.12: Threshold of damage initiation in the plane σ3 = 0 (from
Mazars et al. 2015).

Figure 3.13: Limit surface assumed from the damage model proposed by
Berto et al. 2002.
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Billi et al. 2019) Similarly to plasticity, smeared crack models are based on the
strain decomposition in elastic and inelastic part, which here are called cracking
strain, namely

ε = εe + εc (3.60)

and the elastic strains are related to stress by generalized Hooke law

σ = De : εe (3.61)

A crack opens when the maximum principal stress reaches the tensile strength ft.
Once a crack occurs, the material is considered orthotropic, having as orthotropy
axes the normal and tangential directions of the crack surface.

Originally, the crack direction was assumed to remain fixed, and shear trac-
tions across the crack were treated using the so-called retention factor (Suidan and
Schnobrich 1973). To consider the possibility of developing several cracks with dif-
ferent directions, the multiple fixed crack model was formulated (Gupta and Akbar
1984). Later, the rotating crack model was proposed, which allows the formation of
up to three mutually orthogonal cracks that keep aligned with the strain principal
directions. Consequently, neither shear tractions nor shear crack strains appear in
the formulation.

To understand the fundamentals of this model, let us consider the case of a
single crack, having the vector n as normal. The corresponding crack strain tensor
in tensorial notation reads

εc = εcnn n⊗ n (3.62)

where εcnn represents normal strain (in the sense of smeared crack opening) in
direction perpendicular to the crack. The stress-strain law (3.61) turns into

σ = De : (ε− εcnn n⊗ n) (3.63)

The key point of this model is to determine the unknown normal crack strain εcnn
at the integration point level from the cohesive law

σnn = ft(ε
c
nn) (3.64)

where σnn = n · σ · n is the normal traction on the crack plane and ft(ε
c
nn) is

the relation, identifiable by experiments, that links tensile strength to normal crack
strains. The latter equation can be solved by the Newton method or even in closed
form if the cohesive law is linear of piecewise linear.

The so-called Total Strain Rotating Crack model, implemented in the com-
mercial software DIANA (Diana 2012), belongs to the latter-described framework,
and it is the constitutive model used by the author for modeling of masonry piers
through the homogenized continuum approach in Chapter 4 and 5.

3.4.5 Coupled damage-plasticity models

As discussed in the previous sections, some masonry failure mechanisms can be
modeled in the plasticity framework and others through damage models. From
a microscopic point of view, plasticity is due to intergranular displacements. It
accounts for inelastic deformations during the loading process, and it can be used
to model shear sliding and crushing mechanisms. On the other hand, damage
is linked to the growth and coalescence of voids and microcracks that contribute
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Figure 3.14: Microscale modeling.

to progressive material weakening, and it can well represent tensile cracking of
masonry. Therefore, this calls for the use of models that combine the frameworks
of damage and plasticity.

As on example, Addessi, Marfia, et al. 2002 developed a model where the me-
chanical properties degradation was taken into account through an isotropic damage
scalar variable, which depends on two underlying variables describing the behav-
ior in tension and compression. The model is completed by introducing plasticity
effects. The plastic flow is controlled by the effective stress tensor and a yielding
function characterized by isotropic hardening and different thresholds in tension
and compression. The stress-strain law was postulated in the form

σ = (1− ω)2De : (ε− εp) (3.65)

The evolution of the damage variable ω is governed by the loading-unloading func-
tion which defines the damage limit domain. To regularize strain localization and
avoid mesh-dependent results, a nonlocal model for the damage variable was pro-
posed, based on the introduction of the damage Laplacian.

3.5 Microscale modeling

As already discussed, the prediction of the response of masonry is a challenging task.
In fact, masonry is a heterogeneous anisotropic nonlinear material composed of two
phases, bricks and mortar, characterized by different characteristics. Macroscale
models can represent a valid approach, but their effectiveness relies on the definition
of the constitutive law, which is not easy to formulate. It should phenomenolog-
ically reproduce the material mechanics, including tension cracking, shear sliding,
compressive crushing, and many other aspects. Moreover, this approach requires
a cumbersome identification of mechanical parameters that are not always easy to
determine from basic experimental tests on the material.

To take into account role of each constituent and the effects of their interactions,
a microscale model can be set up, where blocks, mortar joints, and mortar-block
interfaces are represented explicitly (Figure 3.14). This detailed representation is
suitable to model small masonry specimens as it requires large computation time.

However, the micromodeling approach can be used in multiscale simulations.
The microscale model response can be used just to pre-calculate the parameters of
a homogenized continuum model (Sejnoha et al. 2008; Cavalagli et al. 2011), or it
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Figure 3.15: Interface cap model proposed by Lourenço and Rots 1997.

can be used simultaneously with a macroscale model which interactively obtains
macroscopic stresses from the microscale during the analysis, realizing a proper
multiscale model (Massart et al. 2007; Salerno and De Felice 2009; De Bellis and
Addessi 2011).

The more direct approach for microscale modeling considers bricks and mortar
as continua and requires a stress-strain law for each. A case in point is the model
proposed by Massart et al. 2007 in which an isotropic damage model was adopted
for both bricks and mortar. In the same spirit, a microscale model based on Rankine
plasticity is proposed in Chapter 7.

However, the most common approach is to consider the mortar joints as an
interface in which all the nonlinearities are concentrated, justified by the fact that
they are the weakest component. This consideration leads to models where bricks
are represented as linear elastic or rigid bodies, and the attention is focused on the
formulation of the interface stress-strain law.

The interface model proposed by Gambarotta and Lagomarsino 1997 is based
on damage mechanics, and it takes into account both mortar damage and brick-
mortar decohesion. The interface mean strain is based on an additive decomposition
of elastic and inelastic strains, where the inelastic contributions are the inelastic
extension and sliding of the mortar joint. The inelastic strain evolution depends on
two internal variables: the joint damage variable, which increases the opening and
sliding compliances of mortar joints, and the shear strength, which is the internal
force in the compressed joint limiting or locking the sliding. The interface model
exhibits a brittle response under tensile stresses, and it is characterized by frictional
dissipation and stiffness degradation under compressive stresses.

Lourenço and Rots 1997 developed an interface model in the framework of mul-
tisurface plasticity. The yielding domain was delimited by three surfaces devoted
to capturing different failure mechanisms (Figure 3.15): a tension cut-off for tensile
failure, a Coulomb-friction envelope for shear-sliding failure, and a cap model for
crushing in compression. Exponential softening laws were adopted for tensile and
shear yielding surfaces. In contrast, a parabolic hardening function followed by an
exponential softening one was chosen to describe the evolution of the compressive
surface. Although the adoption of plasticity for modeling tensile failure of masonry
is questionable, as pointed out in Section 3.4, the model can reproduce the lateral
behavior of masonry walls.

An interface model based on the combination of plasticity and damage was
proposed by Minga et al. 2018. A multisurface plasticity criterion was considered,
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Figure 3.16: Multisurface yielding criterion proposed by Minga et al. 2018.

characterized by a Coulomb criterion limited by two caps, respectively, in tension
and compression (Figure 3.16). The effects of strength and stiffness degradation
are introduced through an isotropic damage tensor whose evolution is dictated on
plastic work. Due to the algorithmic decoupling of plasticity and damage, no further
local iterations are required after the plastic stress return, resulting in an efficient
model that can be used even for relatively large masonry structures.

The model formulated by Salvatori and Spinelli 2018 considers a different consti-
tutive behavior depending on the phase (cohesive, non-cohesive, crushed) in which
the interface stands. Interfaces start in a cohesive phase where the stress-strain law
is linear elastic. The transition from cohesive to non-cohesive phase is triggered
at the violation one of three different conditions representing the elastic threshold
for tension, compression, and shear. The non-cohesive phase is characterized by
a nonlinear elastic behavior in the normal-to-interface direction, with compression
limit and no tensile strength, and elastic-perfectly plastic behavior in the parallel-
to-interface direction, with Mohr-Coulomb yielding criterion and non-associated
flow. The transition to the crushed phase occurs when the deformation normal to
the interface falls behind an ultimate threshold. Eventually, in the crushed phase,
the interface does not transmit internal actions. A great advantage of this model is
the requirement of a reduced number (seven) of mechanical parameters. Moreover,
the interface kinematics follow a corotational approach that allows the treatment
of large displacements and rotations of blocks while still considering small defor-
mations of interfaces.

3.6 Remarks

This chapter is devoted to the review of mechanical models for masonry structure
analysis. Since masonry is a heterogeneous material whose constituents dimensions
strongly influence its mechanics, a refined representation would require the explicit
modeling of its components. Enhancing the specimen size, however, the compu-
tational burden increases and can become unsustainable for large structures. At
larger scales, in fact, masonry structure analysis needs simplified models to speed
up computation and obtain manageable results. Therefore, several modeling tech-
niques characterized by different detailing level rises in the literature.

The need for rapid and simplified computations of masonry buildings in profes-
sional practice led to the development of the equivalent-frame and the articulated
quadrilaterals methods, both based on the subdivision of walls into macroelements.
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The two methods require the assignment of proper mechanical behavior to each
macroelement.

Restricting the attention to masonry piers of the EF method, two main model-
ing techniques can be found in literature: the beam approach and the multi-spring
approach. The beam model features have been discussed, focusing on the dif-
ference between the displacement- and force-based beam formulations. Instead,
multi-spring elements are based on a lumped approach, where both elasticity and
nonlinearities are considered through nonlinear springs connected by rigid links. A
few examples of the latter approach taken from the literature have been described.

Then, increasing the detailing level, masonry can be seen as a homogenized
continuum. The effectiveness of these models relies on selecting a proper constitu-
tive law that phenomenologically reproduces the microstructural mechanics. The
chapter discusses several attempts performed by many authors in defining a suit-
able stress-strain relationship for masonry in the framework of nonlinear elasticity,
plasticity, damage mechanics, smeared cracking, or coupled damage-plasticity.

However, only an explicit representation of the constituents can account for
material heterogeneity and the interactions between masonry components. This
consideration leads several authors to develop microstructural models, whose main
characteristics have been discussed in the paper.
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Chapter 4

Irregular Opening Layouts in
Unreinforced Masonry Walls:
Equivalent Frame and Finite
Element Simulations

Abstract

The Equivalent-Frame (EF) method, compared to other modeling tech-
niques, has advantages in terms of readability of results and compu-
tational efficiency. Since it is explicitly endorsed by building codes,
it is widely used in the professional practice. However, in presence
of irregularities in the layout of openings, a common circumstance in
existing structures, it is difficult to univocally identify the equivalent
frame and the reliability of the results obtained for the most irregular
cases is doubtful. Here, the issue of irregularity is treated by compar-
ing EF results with finite-element ones, which are assumed to better
represent the actual behavior of irregular walls. An EF solver is devel-
oped, by using more refined failure criteria for the masonry piers and
strength criterion for the spandrels than the oversimplified ones sug-
gested by building codes. Automated procedures are used to perform
a large number of analyses, in which EF results and finite-element ones
are compared. The difference in terms of seismic vulnerability between
the two models is correlated with a measure of the degree of irregu-
larity of the walls. A geometric confidence factor, increasing with the
degree of irregularity, is proposed to account for the epistemic uncer-
tainties in the EF modeling.

4.1 Introduction

Seismic analysis of masonry buildings is often dealt with the equivalent-frame (EF)
method (Magenes and Calvi 1996, Pugi 2000, Lagomarsino et al. 2013), where ma-
sonry piers and spandrels are modeled as one-dimensional elements representing

87
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Figure 4.1: Examples of irregular opening layouts.

respectively columns and beams of the equivalent frame. Among others, the Ital-
ian Building Code (IBC 2008) suggests the adoption of this model for masonry
structures, stating that “in the presence of coupling elements, the analysis can
be performed by frame models, in which the intersections between vertical and
horizontal elements can be considered as infinitely rigid”. Compared to other mod-
eling techniques, the EF method has advantages, both in terms of readability of
results (for the familiarity that designers have with framed structures) and com-
putational terms (for the reduced number of degrees of freedom of the models).
For these reasons, EF is, to date, the most used modeling technique in professional
practice. However, the method has intrinsic problems for structures with irregu-
lar geometric configurations such as misaligned openings or irregularities in their
dimensions. These circumstances make the identification of a frame difficult or
ambiguous. The IBC states that “ordinary masonry structures must have walls
with vertically aligned openings” and that “in the absence of more accurate assess-
ments, only wall portions that have vertical continuity from the level being tested
to the foundation, shall be taken into account in the structural model”. The IBC,
therefore, sets limits only for one geometric irregularity type (for new buildings),
and gives very restrictive modeling indications by requiring only the continuous
ground-to-story portions of piers to be taken into account.

In the Italian building heritage, irregularities in the layout and size of the
openings are widespread in both monumental and minor buildings (Fig. 4.1). In
the presence of such irregularities, finding an equivalent frame may be difficult and
arbitrary. Commercial computer programs based on EF modeling are often able
to generate a frame from any wall with openings algorithmically. However, the
reliability of the results obtained in the most irregular cases is doubtful.

In addition to the geometric problem of irregular walls (Parisi and Augenti
2013), the strength and failure criteria for piers and spandrels provided by building
codes and implemented in commercial computer programs are an additional issue
in the EF models. Some considerations on openings in infill walls are discussed in
Margiacchi et al. 2016.

As to the piers, the ultimate displacement is a function of the panel height and
the failure mode. It does not explicitly consider the aspect ratio of the wall, its static
scheme, the material, or the axial loading. Moreover, the ultimate displacement
exhibits a discontinuity at the transition between the failure modes as it jumps
from 0.008 h in the case of flexural failure (0.006 h for existing buildings) to 0.004
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h in the case of shear failure, being h the height of the pier.
As to the spandrels, the strength is evaluated very roughly by considering the

spandrel as a 90-degree-rotated pier, despite the masonry orthotropy. Moreover,
according to the IBC, the strength vanishes in the absence of tensile-resistant el-
ements such as steel ties or reinforced concrete curbs. Finally, the IBC does not
describe the post-peak behavior, whether it is fragile, with softening, or ductile
(and in this case, to what amount).

As to the geometric irregularities of masonry walls, the following questions are
addressed here:

� Should the results of equivalent-frame models be corrected in the presence of
irregularity to account for the limits of this modeling approach in that case?

� Is it possible to define an applicability threshold for the equivalent-frame
approach?

To answer these questions, the following scheme is followed:

1. A geometric measure of a wall irregularity level is proposed.

2. Each wall is modeled through nonlinear continuum (discretized by FEM) and
EF approaches.

3. For a regular configuration, the parameters of both numerical models are cal-
ibrated so that their nonlinear static response in terms of stiffness, strength,
and displacement capacity is equivalent to an experimental test used as a
reference.

4. It is assumed that the nonlinear continuum approach is also valid in the
presence of geometric irregularities.

5. The error of the EF in terms of capacity peak ground acceleration (PGA) is
estimated as the difference between EF and FEM.

6. Automatic analyses are carried out to obtain a statistically significant number
of analyses.

7. A correlation between the measure of irregularity and the corresponding EF
error is sought.

8. Based on such correlation, a confidence factor on the EF predictions and a
criterion for providing an applicability threshold are proposed.

Compared to a previous paper (Berti et al. 2017), this piece of work solves
some issues by using an ad-hoc-developed software for the EF analyses to overcome
the limits of commercial software and building codes highlighted above and to
fully automatize the procedure, allowing a much larger number analysis so that
statistically significant conclusions can be drawn.

The chapter is organized as follows. In Section 4.2, the proposed irregularity
measure is recalled. In Section 4.3, the analysis procedure is presented. In Sec-
tion 4.4, some details on the two numerical modeling techniques employed and the
calibration parameters are provided. In Section 4.5, the results of two groups of
analysis are shown. The first one is aimed to define the influence on the EF error
of different kinds of irregularities; the second one consists of statistical analyses on
a large number of randomly generated walls. The final result is a quantification of
the correlation between irregularity measure and EF error. This relation is used
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Figure 4.2: Wall with irregular opening layout (left) and its ideal regular-
ization (right), which the irregularities are measured from.

to determine the modeling confidence factor, which aims to estimate the EF error
based on the wall geometry only. Finally, some concluding remarks are reported in
Section 4.6.

4.2 Irregularity measure

The recurring typologies of irregularities are identified as in Berti et al. 2017. A
rectangular wall with N stories and M rectangular openings per story is considered.
The levels are numbered from the ground (j = 1) to the top (j = N), vertical
opening-alignments, from the left (i = 1) to the right (i = M). Considering a
Cartesian reference frame, with origin in the lower-left corner of the wall, horizontal
rightward X axis and vertical upward Y axis, let (XG,ij , YG,ij) be the position of
the centroid of the i-th level j-th opening, bij its width, and hij its height. To
define irregularities and corresponding measures, we refer to an ideal regularized
configuration of the openings (Fig. 4.2), where the alignments and dimensions
of the openings are the means of the corresponding geometrical properties in the
original irregular configuration.

Horizontal and vertical alignments are defined by

ȲG,j =

∑M
i=1 YG,ij
M

(j-th horizontal alignment) (4.1)

and

X̄G,i =

∑N
j=1XG,ij

N
(i-th vertical alignment) (4.2)

and regularized opening widths and heights are

h̄j =

∑M
i=1 hij
M

(j-th story) (4.3)

and

b̄i =

∑N
j=1 bij

N
(i-th vertical alignment) (4.4)
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(a) Horizontal misalignment.

(b) Vertical misalignment.

(c) Width irregularity.

(d) Height irregularity.

Figure 4.3: Types of irregularity in opening layouts.

Horizontal misalignment (Fig. 4.3a) occurs when the centroid abscissa of an
opening XG,ij differs from the vertical alignment of the i-th vertical opening ar-
ray X̄G,i. The index measuring such misalignment can be estimated as the ratio
between the absolute value of the actual misalignment, normalized with respect of
the distance between the ideal vertical boundaries of the vertical opening array,

IX,ij =
2 |XG,ij − X̄G,i|
X̄G,i+1 − X̄G,i−1

(4.5)

with the conventional assumptions X̄G,0 = −X̄G,1 and X̄G,M+1 = 2L − X̄G,M ,
being L the total width of the wall.

Vertical misalignment (Fig. 4.3b) occurs when the centroid ordinate of an
opening YG,ij differs from the horizontal alignment of the j-th story ȲG,j . The
index measuring the entity of such misalignment can be estimated as the ratio
between the absolute value of the actual misalignment, normalized with respect to
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the inter-story height ∆Hj , namely

IY,ij =
|YG,ij − ȲG,j |

∆Hj
(4.6)

Irregularity in width (Fig. 4.3c) occurs when an opening width bij differs from
the average one of the i-th vertical opening alignment b̄i. The corresponding index
may be assessed as the difference between those widths, rated in absolute value and
normalized with respect of the distance between the adjacent vertical alignments

IW,ij =
|bi,j − b̄i|

X̄G,i+1 − X̄G,i−1
(4.7)

with X̄G,0 = 0 and X̄G,M+1 = L.
Irregularity in height (Fig. 4.3d) occurs when the opening height hij differs from

the average one in the j-th story h̄j . The corresponding index may be assessed as
the difference between the two heights, rated in absolute value and normalized with
respect of the inter-story distance,

IH,ij =
|hi,j − h̄j |

∆Hj
(4.8)

4.3 Analysis procedure

The EF method is the most used modeling technique in professional practice. Struc-
tural checks of masonry structures usually take advantage of the EF method com-
bined with nonlinear static analysis through the N2 method (Fajfar and Fischinger
1988), as endorsed by numerous Building Codes.

The N2 method requires a nonlinear static analysis, where the structure is first
subjected to vertical loading, say f̄0, and then to a set of lateral forces, which
mimic the seismic action. The lateral loading is proportional to a predefined force
pattern, say f̄ . Hence, the external forces acting on the structure are

fext(µ) = f̄0 + µf̄ (4.9)

where µ is a scalar multiplier, which, during the process, must be set so that the
displacement of a control node increases monotonically. The goal is to obtain a
curve, also called the “push-over curve”, which relates the control-node displace-
ment dc to the scalar multiplier µ. The structural capacity is then compared to the
seismic demand according to a specific procedure that involves the equivalence to
a single-degree-of-freedom oscillator.

In this chapter, the seismic vulnerability index taken as the reference is the
peak-ground-acceleration capacity, for simplicity indicated as ag in the following,
defined as the minimum value of the peak ground acceleration that leads the struc-
ture to fail according to the N2 method.

Since masonry buildings can be assessed according to different modeling tech-
niques, their seismic vulnerability can differ according to the modeling choice. The
EF model may be affected by significant errors as it can overestimate the seismic
capacity, in particular when it is applied to walls with irregular opening layouts.

In this chapter, we are concerned with determining the link, if any exists, be-
tween the index of irregularity, a function of the wall geometry, and the error made
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Figure 4.4: Scheme of the analysis procedure.

by the EF model on the seismic vulnerability. To this end, the procedure described
below is used (Fig. 4.4).

Given a specific wall geometry, the irregularity indexes are calculated according
to the method described in Section 4.2. The wall is analyzed through two modeling
strategies: the EF method and the macromodeling technique, where masonry is
treated as a homogenized continuum and the boundary-valued problem is solved by
finite element discretization. Both models were initially calibrated on experimental
data for a regular wall.

The error between the two models is evaluated under the assumption that the
FEM model is an extension of the experimental results. Therefore, the difference
between the two results can be taken to measure the EF error.

The procedure aimed to determine the EF error on a given-geometry wall has
been automatized to perform numerous analyses and obtain statistically-relevant
results through the Monte Carlo method. The automated procedure contains:

� A pre-processor, to calculate wall irregularity indexes and algorithmically
generate meshes for the EF and FEM solvers;

� An ad-hoc-developed EF solver adopting improved pier and spandrel models;

� An input/output interface to the FEM solver;

� A post-processor, for obtaining, by N2 method, the corresponding seismic
capacities, and the relative difference.

The main feature that has allowed to build the automated procedure is the devel-
opment of the EF solver, which permits to be launched in batch mode, differently
from what has been done in the previous paper on the same topic (Berti et al. 2017),
where a commercial program that can be used only via the graphical interface was
employed. Besides, the use of an ad-hoc-developed EF solver allows getting rid of
the IBC doubtful prescriptions on piers and spandrels and the adoption of more
refined strength and failure criteria taken from literature.
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4.4 Numerical models

4.4.1 Reference experimental test

The numerical models have been calibrated on the experimental test results per-
formed at the University of Pavia (Magenes, Kingsley, et al. 1995) on a full-scale
two-story masonry building, consisting of four solid brick walls with 250 mm thick-
ness, with plan dimensions 6.0 m x 4.4 m, and height 6.4 m (Fig. 4.5a). The
seismic forces were simulated by the cyclic quasi-static application of four concen-
trated horizontal forces, through displacement-controlled screw jacks, applied at
the two longitudinal walls at the floor levels. The amplitude of each cycle was
progressively increased by controlling the wall drift, i.e., the top floor displacement
divided by the height of the top actuator.

The structural response is summarized in plots of base shear versus top dis-
placement (Fig. 4.5b). We restrict our attention to the wall “D”, also known as
Pavia Door Wall (PDW), which is taken as a reference for the model calibration.
It is worth noting that PDW is not connected at the corners with the orthogonal
walls, and it can be considered an isolated wall in the structure. The specimen was
subjected to seven cycles, reaching a drift of 0.4%, corresponding to a top displace-
ment of 23.08 mm. Cracks started forming at a drift of 0.1%, and the maximum
base shear of about 150 kN was reached at a drift of 0.2%. Initially, cracks devel-
oped in the first-floor spandrels, decreasing the coupling between piers; eventually,
spandrels stopped damaging, and the failure mechanism became the one dominated
by diagonal-cracking shear in the central pier. At the maximum drift level, external
piers failed in shear, exhibiting a diagonal crack only in one direction, due to the
compression increase in the piers located downhill with respect to the horizontal
force direction (Figure 4.5c).

4.4.2 Equivalent-Frame model

The Equivalent-Frame (EF) method relies on modeling a masonry wall with open-
ings as a frame composed of columns and beams. Let us consider a wall with
openings in a masonry building. By virtually extending the lines of opening edges,
we can identify vertical and horizontal stripes of masonry, which are defined re-
spectively as “piers” and “spandrels”. The panels at the intersection of piers and
spandrels are defined as “node” panels.

Once the subdivision of the masonry wall in macroelements is made, the reliable
prediction of its overall behavior relies on the proper modeling of each member
response. The nonlinear behavior is usually concentrated in piers and spandrels.
Node panels are considered zones where damage cannot occur, and they are modeled
as infinitely stiff and resistant. Therefore, the choice of the discretization scheme,
namely the definition of the effective height of pier and spandrel elements plays a
key role for the development of an EF model. Several solutions have been proposed
in the literature.

FEMA 156 (FEMA 2000) adopted the “strong spandrels and weak piers” as-
sumption, which allows to consider the pier height as equal to the ones of the adja-
cent openings, implying that spandrel have great rigidity and strength. Although
it can be suitable for new constructions, this assumption seems not appropriate for
existing structures, as highlighted in Siano, Sepe, et al. 2017.
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(a) Geometry of the experimen-
tal test.

(b) Experimental cyclic response for the
PDW.

(c) Crack distributions at the end of
the test for the PDW.

Figure 4.5: Experimental test on a full-scale masonry building (from Ma-
genes, Kingsley, et al. 1995).



96 CHAPTER 4. SEISMIC ANALYSIS OF IRREGULAR MASONRY WALLS

One of the widest-adopted criterion for EF discretization is the one proposed
by Dolce 1991, which develops a simplified formula for the effective heights of
piers, based on numerical and experimental tests. Dolce found that the effective
height can be found by considering a line inclined of 30° starting from the adjacent
openings.

Other methods have been proposed accounting for the seismic load direction. In
fact, experimental evidences show that the effective portion of piers is determined
by the opening located downstream with respect to the seismic action. The models
proposed by Moon and coworkers (Moon et al. 2006) and Augenti (Augenti 2006;
Parisi and Augenti 2013) take into account this issue. In their discretization meth-
ods, the effective height of a pier is defined as the height over which a compression
strut is likely to develop. This leads to a different EF discretization depending on
the seismic action direction.

Once the subdivision is made, we need to assign a proper constitutive model
to each frame member. The simplest and the most common approach, which is
implemented in a large number of EF solvers (Lagomarsino et al. 2013), is the
piecewise-linear model, in which we first linearly compute the elastic internal forces
through the Timoshenko-beam stiffness matrix. Then, some verifications are made
aiming to correct the internal forces. It is checked whether the pier has reached the
compression limit or a certain drift threshold, after which the pier is considered as
collapsed. The internal forces are then corrected to prescribed cap values if certain
strength criteria are exceeded.

The definition of proper strength and failure threshold is of central importance
for predicting the overall response. However, some of the IBC criteria for the
strength and failure of piers and spandrels are questionable. The drift capacity of
masonry piers is defined as a fixed value depending only on the failure mode, i.e.,
0.4% for panels failing in shear and 0.8% for rocking or toe-crushing. This leads to
two issues.

The first one is related to the drift capacity overestimation of panels failing for
crushing, which is predicted as double of a panel failing in shear. Contrarily, many
analytical and numerical studies (see Chapter 5 and Orlando et al. 2016) show that
for high compression loads, to which the crushing failure mode is associated, the
drift capacity strongly decreases. The issue of displacement capacity is addressed
also in other papers (Salvatori, Marra, et al. 2015, Salvatori, Marra, et al. 2017,
Bartoli et al. 2017, Marra et al. 2017).

The second issue is related to the discontinuous variation of the pier ultimate
drift as it exhibits a strong jump when the failure mechanism passes from shearing
to flexural. Since masonry piers play a key role in determining the overall response,
this leads to a strong variation of the drift capacity of the whole structure even
for a small variation of boundary conditions or material properties, which is an
undesirable characteristic.

Another controversial aspect of IBC prescriptions is the failure criterion for
spandrels, considered as a pier rotated by a right angle. Moreover, no shear strength
is associated with spandrels in the absence of tensile-resistant elements. In fact,
experimental tests (Calderoni et al. 2011) show that spandrels have shear strength
due to the activation of a diagonal strut, whose resistance can be limited by com-
pressive strength (toe crushing) or by frictional shear strength (horizontal sliding
failure) or by tensile strength in its middle zone (diagonal cracking).

Commercial EF programs have implemented the IBC criteria for piers and
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(b) Irregular wall.

Figure 4.6: EF discretization.

spandrels, including the most questionable ones. Moreover, commercial programs
do not usually allow their use in batch mode, as they can be launched only via the
graphical interface. In contrast, for a study on the reliability of EF models in the
case of irregular masonry walls, it is desirable to use an EF model characterized by:

� Reliable strength and failure criteria for piers and spandrels, preferably with-
out jumps leading to strong response variations for small changes in the
structure;

� The possibility to be launched in batch mode to perform many analyses and
obtain statistically relevant results.

In this work, we have developed a new EF solver based on the linear beam model
to address these issues. More refined strength and displacement criteria than those
present in building codes and commercial programs have been introduced.

The EF discretization of masonry walls is based on the following rules. Beam
nodes are defined at the intersections of the grid formed by storey heights and pier
panel center lines. Pier and spandrels are modeled as beams constituted of three
parts: two outer rigid offsets, which accounts for the infinitely stiff and resistant
node panel, and a central deformable part, in which linearity and nonlinearity are
concentrated. The deformable part direction is vertical for piers and horizontal for
spandrels and it is located at the macroelement center. Appropriate transversal
rigid offsets are inserted in case the spandrel axis does not coincide with the storey
level. The deformable part of pier and spandrels between two openings is defined
by the intersection of the beam axis with the virtual lines connecting the edges of
the adjacent openings. In case the piers and spandrels are located on a wall edge,
the effective length is defined by considering virtual lines which connect the opening
edges to storey levels.

An example of application of the dicretization rules expressed above on a regular
(PDW) and an irregular wall is shown in Figure 4.6.

The strength criteria for piers are the ones consolidated in the literature. Let
us consider a panel of height H and shear span H0, subjected to a compression load
P , and let L and t be the in-plane and out-of-plane dimensions of the cross-section.
The shear strength associated with flexural rocking and crushing mechanism is
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given by

Vr−tc =
P

2

L

H0

(
1− κP

fc t L

)
(4.10)

where fc is the compression strength and κ = 1/0.85 is a coefficient that modifies the
compression strength of masonry. For the shear mechanism, two different criteria
are considered. The shear strength associated with bed-joint sliding is defined as

Vbjs,IBC = c t L′ + µP (4.11)

where c is the cohesion, µ = 0.4 is the friction coefficient, and L′ is the depth of
the pier compressed area. The shear strength associated with the diagonal cracking
mechanism is based on the Turnšek and Čačovič formulation, namely

Vdc =
ft t L

b

√
1 +

P

ft t L
(4.12)

where ft is the tensile strength and b is defined as

b = min

(
max

(
H

L
; 1.0

)
; 1.5

)
(4.13)

The adopted failure criterion of piers is based on the formulation proposed
by Orlando et al. 2016, where the ultimate drift θu is expressed as a function of
the aspect ratio λ = H0/L and the normalized axial compression of the panel
p = P/(fc t L), namely

θu =
a1 + a2 λ

pa3
(4.14)

where a1, a2, and a3 are parameters accounting for the material composition of
masonry and can be obtained by calibration on experimental tests.

A similar criterion has been recently proposed by Vanin, Penna, et al. 2020,
who expressed the displacement capacity as

δu,i = fi(p) ·
(
H0

H

)β
(4.15)

where the index i represent the dependence on the displacement capacity prediction
of the strength mechanism which can be determined by shear or flexure, fi is a user-
defined function of the axial load ratio which can be different for the two strength
mechanisms, H0/H is the shear span ratio, and β is a constant.

The two models are similar, and this confirms the validity of two formulations
as they both depends on the axial load ration and on the shear span H0. Differently
from the latter, Orlando’s model explicitly defines the function fi(p) on which the
displacement capacity depends, the shear span is normalized by the pier length
L instead of the pier height H, and its contribution is given by a linear function
instead of a power function.

The arched strut model proposed by Calderoni et al. 2011 has been adopted as
the spandrel strength criterion. The model is based on the consideration that, under
seismic actions, a compressed strut develops in the spandrel. The compressive force
tends to diffuse in the middle of the panel and concentrate at its ends, forming a
double-arch structure. Failure can occur either for toe crushing, due to excessive
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compression at panel edges, or for tensile cracking, due to tension generated by the
diffusion of compression loads in the middle of the panel.

The shear strength due to toe crushing is given by

Vs,comp = fc,h t c̄ tanα (4.16)

where fc,h is masonry compression strength in horizontal direction, c̄ is the length
of the reaction zone which, under the assumption of uniform distribution of com-
pressive stresses, is given by

c̄ = H − 2e (4.17)

and tanα = 2e/L is the inclination of the diagonal strut axis, where e is the
strut eccentricity and L is the spandrel length. Since the possible directions α
satisfying spandrel equilibrium are infinite, its definition would require a consistency
condition. The authors observed from numerical simulations that the strut direction
α is function of the panel geometry only, and gave the following expression

tanα =
2e

L
=

9H − L
10L

(4.18)

where H is the in-plane cross-section dimension. Obviously, for high, slender span-
drels, namely L > 9H, the eccentricity e is set to zero, and the shear strength
vanishes. Substituting (4.17) and (4.18) into (4.16), we get

Vs,comp = fc,h t
(H + L)(9H − L)

100L
(4.19)

which defines the spandrel shear strength due to toe crushing as a function of the
horizontal compression strength and its geometry.

The tensile cracking mechanism is explained by modeling the spandrel as a
double-arch structure. The strut compression load is seen as the thrust of two
arches subjected to a distributed load. The limit value of the arch thrust is obtained
when the distributed load reaches the masonry tensile strength. The resulting shear
strength is given by

Vs,tens = ft,d
t L2 sinα

4 f cos2 α
(4.20)

where ft,d is the tensile strength in diagonal direction, which depends, among other
factors, on masonry texture. The arch height f can be expressed as

f = k
H

2
cosα (4.21)

where k is a coefficient to be determined on the basis of experimental tests, and in
general can be taken as 0.70.

Eventually, the spandrel shear strength Vs is the minimum value between the
strength associated to two mechanisms, namely

Vs = min (Vs,comp ; Vs,tens) (4.22)

A standard incremental-iterative procedure in indirect displacement control is
used for the nonlinear static analyses.
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4.4.3 Homogenized continuum model

A more refined model has been chosen to assess the reliability of the EF method for
irregular walls. Masonry is treated as a homogenized continuum, and the boundary
value problem is solved by the finite element method. In the following, we refer to
this kind of modeling with the FEM acronym (as “Finite Element Model”).

Walls are discretized by 8-node plane-stress isoparametric quadrilateral ele-
ments. The Total Strain Crack Model has been chosen as constitutive law. It
belongs to the framework of smeared rotating crack models, where up to two cracks
(in two dimensions) can develop, where the crack directions keep aligned with the
principal strain directions. The model accounts for both material cracking and
crushing through the definition of tensile and compressive stress thresholds. The
tensile behavior is assumed with linear softening, while the compressive behavior
has a parabolic hardening/softening, both based on fracture energies related to a
crack bandwidth.

Nonlinear static analyses were performed using an arc-length incremental pro-
cedure, modified Newton-Raphson iterative method, and an energy-based conver-
gence criterion. The pushover curve is obtained by monitoring the displacement of
the second story centroid versus the base shear.

4.4.4 Model calibration

The EF and FE models are calibrated on the Pavia Door Wall so that the key pa-
rameters of the piecewise linear curves (stiffness, strength, and ultimate displace-
ment) are the closest possible to the ones obtained from the shear-displacement
curve of the experimental test.

The mechanical parameter for the EF model obtained from the calibration are:
a Young modulus E = 787 MPa, a compressive strength fc = 1.16 MPa, a tensile
strength ft = 0.08 MPa. The parameters a1 = 0.0017, a2 = 0.0013, and a3 =
0.82 related to the drift capacity criterion have been obtained from a numerical
calibration on a set of nine masonry piers having different compression loads and
aspect ratios. The horizontal compressive strength is taken as fc,h = fc/2 and the
diagonal tensile strength is considered equal to ft.

Figure 4.7a shows the failure pattern of the EF model at the end step, where
solid squares at the beam ends represent flexural inelasticity, while double dashes
in beam center, shear inelasticity; yellow color denote sections outside the elastic
limit, red, sections at failure. The figure shows that failure occurs due to bending
in the central and downhill first-story piers (the seismic action is directed to the
right).

FE model calibration leads to E = 1029 MPa, fc = 1.18 MPa, ft = 0.08
MPa, a compressive fracture volume energy Gc/h = 40 kJ/m3, being h the crack
bandwidth size, and a tensile fracture area energy Gt = 70 J/m2. Figure 4.7b shows
the compressive principal stresses pattern at the last step of the analysis, from which
we can see the formation of two struts in the central and right first-story piers.

Figure 4.8 shows, from left to right, the shear-displacement curves and the
corresponding outlines as piecewise linear curves of the experimental test, the EF
and the FE models, respectively. The parameters of the piecewise linear curves are
reported in Table 4.1.

To ensure that the EF model can effectively reproduce the lateral behavior of
regular walls, other four tests on various geometries have been carried out. The
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(a) Failure pattern at the last step
in the EF model.

(b) Map of the principal compression
stresses at the last step of the analysis
in the FE model.

Figure 4.7: Calibration of the numerical models on the PDW.
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Figure 4.8: Pushover curves for PDW.

Ks [kN/mm] Vy [kN] δu [mm]

Exp. Test 30.5 142.3 22.5
EFM 30.6 (+0.3%) 142.7 (+0.3%) 22.2 (-1.3%)
FEM 30.5 (+0.0%) 142.5 (+0.1%) 22.6 (+0.4%)

Table 4.1: Bilinear curve parameters of numerical models compared with
PDW test.
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Figure 4.9: Tests on regular walls - Geometries.

mechanical parameters of both models are kept equal as the ones obtained from
the calibration on the Pavia Door Wall.

The first two tests have been performed on regular walls based on the Pavia
Door Wall where the opening dimensions have been slightly changed. Test 1 (Figure
4.9a) is characterized by the heights of the doors and windows of 1.5 m and 1.0
m instead of 2.0 m and 1.2 m, respectively; Test 2 (Figure 4.9b) has the opening
width of 1.5 m instead of 1.0 m. Test 3 (Figure 4.9c) is characterized by having
just one opening per storey and by a smaller wall width so that the pier length is
kept equal as the one of the piers of the Pavia Door Wall. Test 4 (Figure 4.9d)
is based on a single pier of height H=2.5 m, length L=1.25 m, thickness t=0.32
m, subjected to a vertical load of 56 kN (p=0.125), under a double-bending static
scheme.

Figure 4.10 shows the maps of minimum principal stresses at the last step of
the analyses in the FE model, where red color corresponds to zero and blue color
corresponds to compression strength fc. Figure 4.11 shows the comparison of the
response of the EF and FE model in terms of shear-displacement curves for Tests
1-4. The parameters of the piecewise linear curves and the corresponding PGA
capacity are reported in Table 4.2. These results demonstrate that the EF model
can well reproduce the lateral response of regular masonry walls.
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(a) Test 1. (b) Test 2

(c) Test 3. (d) Test 4.

Figure 4.10: Tests on regular walls - Minimum principal stresses.
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Figure 4.11: Tests on regular walls - Pushover curves.
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Ks [kN/mm] Vy [kN]
FEM EFM Err. FEM EFM Err.

Test 1 36.99 36.97 -0.1% 159.0 161.9 +1.8%
Test 2 21.04 19.65 -6.6% 103.6 97.5 -5.9%
Test 3 14.43 14.77 +2.4% 78.4 81.8 +4.3%
Test 4 15.94 17.50 +9.8% 27.6 30.3 +9.7%

δu [mm] ag,c [m/s2]
FEM EFM Err. FEM EFM Err.

Test 1 20.28 19.62 -3.3% 2.71 2.65 -2.2%
Test 2 10.6 11.69 +10.2% 1.14 1.16 +1.8%
Test 3 27.03 23.09 -14.6% 2.54 2.27 -10.6%
Test 4 46.04 40.66 -11.7% 10.16 9.82 -3.3%

Table 4.2: Tests on regular walls - Parameters of the piecewise linear curves.

4.5 Results on irregularities

4.5.1 Calibration of the irregularity-error model

In Section 4.2 we have quantitatively defined four kind of geometric irregularities,
that are horizontal (IX,ij) and vertical (IY,ij) misalignment, and irregularity in
width (IW,ij) and in height (IH,ij), where the subscript ij refers to the opening
located at the row i, with i ∈ {1, ...,M}, and column j, with j ∈ {1, ..., N}. Each
irregularity index may differently influence the error committed by the EF method.
Moreover, the same irregularity type may have different importance depending on
the opening ij with respect to which is computed. Therefore, it is worth investigat-
ing the influence of each irregularity index type applied to each of the four openings
of the reference specimen. The aim is to find a relation between these indexes and
the error committed by the EF method on an irregular masonry wall, which we
define as

e =
|aEFg − aFEMg |

aFEMg

(4.23)

where aEFg and aFEMg are the PGA capacity estimated by the N2 method (Fajfar
and Fischinger 1988), using the capacity curves obtained by the EF method and
the finite element model (FEM), respectively.

A group of analyses is performed by varying a single irregularity for each of
the PDW four openings. For each case, the analyses have been repeated by in-
creasing the irregularity magnitude in subsequent steps. The results obtained can
be summarized in sixteen graphs (four types of irregularities for each of the four
wall openings) showing the error e as a function of the irregularity indices. As an
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(a) Horizontal-misalignment irregularity. (b) Vertical-misalignment irregularity.

(c) Width irregularity. (d) Height irregularity.

Figure 4.12: Linear regression on data for the different irregularity type on
the first-level uphill opening (i = 1, j = 1).

example, the results obtained for the ground floor opening positioned uphill of the
seismic action are reported in Fig. 4.12.

The error grows as the anomaly increases, as shown by linear regressions per-
formed on the vulnerability prediction error. The different slopes of the regressions
indicate that each type of irregularity on each opening affects the global error with
a different intensity. In Figure 4.13 and Table 4.3, we represent the slope values of
the sixteen graphs obtained in the first group of analyses. The figure shows that
the most significant irregularities are mainly those in width for the openings at the
ground level and secondarily those in height for all the openings.

As the results show linear influence trends of each anomaly on the error, it is
natural to define the relation between the error e and the irregularity indices Iα,ij
as

e =
1

M

1

N

M∑
i=1

N∑
j=1

∑
α∈{X,Y,W,H}

wα,ijIα,ij (4.24)

where wα,ij are the trend line slopes that act as weights that calibrate the influence
of each irregularity index on the error. Then, the error results to be defined as a
weighted linear combination of the irregularity indices.

4.5.2 Statistical analysis

The application of the EF method to masonry walls characterized by an irregular
layout of openings is questionable, as discussed in the previous sections. The seismic
vulnerability assessment performed through the EF method may then be affected
by errors. Nevertheless, it can be useful to find a way to keep analyzing irregular
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Opening ij
11 21 12 22

IX 0.227 1.759 0.303 0.271
IY 0.220 0.368 0.097 0.206
IW 2.024 1.185 0.197 0.072
IH 0.417 0.673 0.722 0.597

Table 4.3: Trend line slope values for each opening and each kind of irregu-
larity.

Figure 4.13: Trend line slope values for each opening and each kind of
irregularity.
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masonry structures through the EF method since it is the most used model in
professional practice.

In the previous section, a relation (Eq. 4.24) between the error e committed
by the EF method and the irregularity indices Iα,ij has been proposed. The linear
combination weights wα,ij have been calibrated on the PDW varying each irregu-
larity type for each opening. Under the assumption that the relation (4.24) is valid
in general, we can predict the error e committed by the EF method compared to a
more refined model.

Proposal of a confidence factor on geometry

For irregular geometries, the EF model can still be used as long as the computed
seismic response does not overestimate the more reliable one obtained with more
refined models. The idea is to penalize the seismic vulnerability computed by EF
according to the error due to geometric irregularity predicted by (4.24). We can
define a “geometric confidence factor” as

FCG = 1 + e (4.25)

and correct the vulnerability computed by EF as

aEFg,mod =
aEFg
FCG

(4.26)

The geometric confidence factor FCG is conceived in analogy to the confidence
factors on the mechanical parameters of materials in existing buildings, which are
already present in building codes and accounts for the epistemic error of the analysis
method. Unlike the material confidence factor, which is aimed to modify material
strength design values, the correction through FCG is made at the end of the
analysis by penalizing the vulnerability.

Validation of the proposed approach

A second group of analyses has been designed to test the effectiveness of the con-
fidence factor definition. A total of 600 randomly-generated geometries have been
studied through both the EF method and the finite element model. The high num-
ber of analyses was aimed to obtain statistically-relevant results through the Monte
Carlo method.

The generated geometries are characterized by the same total length L, total
height H, and the number of stories and openings of the PDW. The opening size and
position have been randomly varied according to uniform distributions (Fig. 4.14).
The variation intervals of opening positions and dimensions have been chosen in
such a way as to keep openings within the wall and avoid opening overlapping.

Each randomly-generated geometry has been analyzed through the EF and FE
method, and the PGA vulnerabilities through the N2 method have been computed
(respectively aEFg and aFEMg ). The 600 analysis results have been represented in a

aEFg −aFEMg diagram. The point cloud of the analysis series is represented in Figure

4.15a. The line whose slope represents the median of the ratio aFEMg /aEFg almost
lies on the bisector of the axes, which means that approximately 50% of the EF
predictions are on the unsafe side (excessive estimate of the capacity PGA by EF
compared to FEM). By correcting the EF predictions by the confidence factor as in
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Figure 4.14: Walls with random distribution of openings.

(4.26), the point cloud moves, as shown in Figure 4.15b. After the correction, the
cloud is above the quadrant bisector, the safe-side area for EF model analyses. In
particular, the fractile 84% of the point cloud is over the quadrant bisector, which
means that only a small portion of EF predictions are unsafe. After the correction
introduced, the probability P (aEFg > aFEMg ) to have an unsafe estimate by EF

drops from 0.53 to 0.10. Moreover, the variation coefficient of the ratio aEFg /aFEMg

decreases from 22.9% to 18.3%, indicating that the most irregular structures are
corrected more effectively, i.e., the proposed confidence factor acts selectively. Both
facts are also evident in the graph of Fig. 4.16, where the probability densities of the
ratio aEFg /aFEMg before (in blue) and after (in red) the correction are represented.

4.6 Remarks

The issue of irregularity was treated by comparing equivalent-frame results with
finite-element ones, which are assumed to represent the actual behavior of irregular
walls better. The strength and failure criteria for piers and spandrels, provided by
building codes and implemented in commercial computer programs, represent an
issue in the EF models. This was overcome by developing an equivalent-frame solver
implementing more refined criteria for the failure of masonry piers and strength for
the spandrels than the oversimplified ones suggested by the building codes. For a
regular configuration, the EF and FEM model parameters are calibrated so that
their nonlinear behavior in terms of stiffness, strength, and displacement capacity
is equivalent to an experimental test used as a reference. Automated procedures
were used to perform a large number of analyses that are divided into two groups.
The first group was intended to determine the influence of each index of irregularity
and each of the wall opening on the capacity PGA error. This allowed obtaining
an estimate of the error as a function of the irregularity level. The second group of
analyses was designed to test the effectiveness of the proposed epistemic confidence
factor. It has been shown that by correcting the capacity PGA predictions of the
equivalent frame method by the proposed confidence factor, we obtain safer results
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(a) Before the correction by the geomet-
ric confidence factor.

(b) After the correction by the geometric
confidence factor.

Figure 4.15: Seismic vulnerabilities predicted by EF and FEM.

Figure 4.16: PDF of the vulnerability ratios before and after the application
of the epistemic confidence factor.
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(that would be obvious by considering a factor greater than one) and also less
dispersed. This means that the correction acts selectively on the most irregular
structures. The most important achievements of this chapter compared to previous
publications on the same topic are:

� The development of an equivalent frame solver, which allows getting rid of
IBC limits for piers and spandrels by introducing appropriate strength and
failure criteria, as well as the ability to automate the analysis (commercial
programs do not allow to be launched in batch mode but only via the graph-
ical interface).

� The automation of continuous analysis performed via commercial FEM soft-
ware whose input and output are generated and post-processed automatically
by an ad hoc algorithm for the statistical analyses.

Some aspects still need to be explored in more detail.
Differently from other papers on the same field (Siano, Sepe, et al. 2017; Siano,

Roca, et al. 2018) which have compared the results of EF models using different
discretization proposals, in this work the discretization scheme is not considered as
a variable. It might be interesting to evaluate the different responses of irregular
masonry walls by using EF models varying the discretization scheme.

Another open aspect to consider is the influence of the seismic load direction.
In this work, seismic vulnerability of each wall, characterized by a given random
irregular geometry, has been assessed by considering just one direction of the seismic
action. However, the masonry wall response can be different changing the seismic
action direction. A case in point is the different influence of the variation of the
dimensions of up-hill or down-hill openings on the EF error, as shown in Figure
4.13.

An interesting extension of this work can be the evaluation of the lateral re-
sponse of irregular masonry walls considering both the possible seismic load direc-
tions. In this case, the wall seismic vulnerability is evaluated as the minor of the
two directions. Moreover, another variable to evaluate can be the use of a different
discretization scheme which accounts for the seismic direction (Moon et al. 2006;
Augenti 2006; Parisi and Augenti 2013).



Chapter 5

Nonlinear Static Behavior of
Masonry Piers Through
Numerical Analysis

Abstract

Nonlinear static analysis through Equivalent-Frame models has be-
come a standard for the seismic vulnerability assessment of masonry
structures. In this approach, the modeling effectiveness relies on a
proper definition of each macroelement composing the equivalent frame.
However, the pier model endorsed by several building codes is highly
simplified and does not consider the influence on the displacement
capacity of the aspect ratio and the vertical load, which play an im-
portant role as testified by experimental tests. In this chapter, the
nonlinear static behavior of masonry pier is studied through numer-
ical analyses on a model that has been calibrated on experimental
tests. A parametric analysis, varying the aspect ratio and the actual
compression-to-compressive strength ratio, are performed to explore
pier response in a large range of conditions, and the relations between
the nonlinear static quantities, namely lateral stiffness, shear strength,
and displacement capacity, and the parameters that influence them are
obtained and discussed.

5.1 Introduction

Nonlinear static analysis has become a standard procedure for the seismic vulner-
ability assessment of masonry structures. The analysis is carried out by increasing
a predefined pattern of horizontal static forces in indirect displacement control.
Then, the displacement capacity obtained from the pushover analysis is compared
with the displacement demand to perform the structural vulnerability assessment.

While local effects, such as the out-of-plane vulnerability of walls, are studied
with specific models such as limit analysis (Shawa et al. 2012; Doherty et al. 2002;
Abrams et al. 2017), the Equivalent-Frame model, generally used in combination
with nonlinear static analyses, is still the most used and implemented in commercial
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software for global vulnerability assessment (Quagliarini et al. 2017). Reasons for
its diffusion are the simplicity of interpreting the results, the fact that the model
is based on simplified hypotheses and defined by few mechanical parameters, and
its computational efficiency due to the small number of degree of freedom com-
pared to other types of modeling. Moreover, it is also explicitly suggested by some
building codes, such as ASCE 41 (Pekelnicky and Poland 2012), Eurocode 8 (EN
1998-3 2005) and the Italian Building Code (IBC 2018). Nevertheless, the rough
approximation deriving from interpreting the masonry wall as a frame leads obvi-
ously to some issues. A case in point is when the analysis deals with masonry walls
with opening layout irregularities. In this case, the reliability of Equivalent-Frame
models is questionable since the seismic vulnerability assessment can be badly over-
estimated (Parisi, Sabella, et al. 2015; Berti et al. 2017; Siano, Sepe, et al. 2017;
Pagani, Salvatori, et al. 2017).

According to the Equivalent-Frame model, masonry walls are discretized in
three types of panels: piers, spandrels, and node panels. While node panels are
considered to have infinite stiffness and strength, piers and spandrels are usually
schematized as two-node standard beam elements connected through rigid braces.
The elements often present lumped inelasticity localized at the end of the piers
and/or spandrels (Lagomarsino et al. 2013; Magenes 2000). In other cases, it
can be used a spread nonlinearity approach (Belmouden and Lestuzzi 2009). The
effectiveness of Equivalent-Frame models relies on choosing a proper constitutive
model of masonry piers and spandrels. The shape of the shear-drift diagram of
experimental tests on masonry piers suggests the lateral behavior approximation as
a piece-wise linear curve, with a first linear elastic branch followed by a constant-
force one. Other authors have adopted multilinear relationships through progressive
strength decay in correspondence of assigned drift values (Cattari, Lagomarsino,
et al. 2008).

According to this kind of schematization, the lateral behavior of a masonry
pier is defined by only three parameters: the lateral stiffness ks as the slope of
the first branch, the shear strength Vy as the ordinate of the second one, and
the ultimate displacement δu as the abscissa where the second branch ends. The
lateral stiffness is estimated by considering the lateral stiffness of the Timoshenko’s
beam with a reduction of 50% of the elastic moduli. This reduction is aimed to
make sure that the lateral stiffness models the secant stiffness of the respective
experimental test. The shear strength of a pier is considered as the minimum
strength among four failure mechanisms: rocking, crushing, bed-joint sliding, and
diagonal cracking. The estimation of the pier displacement capacity, which plays a
key role in determining the displacement capacity of the whole structure, is often
treated simplistically by building codes. In fact, it is based only on the pier height
and failure mode; it does not take into account other important parameters such
as the aspect ratio and the compression ratio (Frumento, Magenes, and Morandi
2009; Orlando et al. 2016).

The study of pier seismic behavior through experimental tests has been de-
veloped during the last three decades. The experimental test of reference is the
shear-compression test (Figure 5.1). A masonry pier is put on a rigid concrete
foundation and subjected to actions imposed by three servo-hydraulic actuators on
a stiff steel beam positioned on the pier top (Wilding, Dolatshahi, et al. 2018).
Two vertical actuators control the top boundary conditions and the vertical load,
maintained constant during the test. The horizontal actuator imposes the hori-
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Figure 5.1: Shear-compression test on a masonry pier.

zontal displacement according to a specific loading protocol (often cyclic). The
main result of the test is the top displacement - base shear diagram registered by
the horizontal actuator. The study conducted by Wilding, Dolatshahi, et al. 2017
shows that the loading protocol may influence the drift capacity of masonry walls,
in particular those failing in shear. On the other hand, the shear strength is not
sensitive to the loading history according to this study.

While piers are generally tested with a double-bending moment static scheme
(Magenes and Calvi 1997; Anthoine et al. 1995; Magenes, Galasco, et al. 2010),
in some cases, they were tested in a cantilever system (free rotation at the top, as
in Magenes, Morandi, et al. 2008) or in intermediate schemes with different shear
span heights (Petry and Beyer 2014). The imposition of the boundary condition
is often realized in mixed control of the actuators, checking that, during the test,
the sum of the vertical forces remains constant and equal to the prescribed axial
load and that the displacements of the two vertical actuators remain equal (Wilding,
Dolatshahi, et al. 2018). It is worth noting that, according to two shear-compression
test databases (Vanin, Zaganelli, et al. 2017; Morandi et al. 2018), piers have not
been tested under high levels of compression. Namely, the compression ratio p,
i.e., the ratio between the compression load and compression strength, varies in the
interval 0 < p < 0.6 in the experimental tests taken from that databases. It follows
that pier lateral behavior in the presence of axial loads close to the compressive
strength is not well known and deserves a thorough study.

As already explained, force-displacement diagrams of experimental tests on
masonry piers are usually outlined through a piece-wise linear curve characterized
by an initial elastic branch followed by a limited constant-force one. The nonlinear
behavior is then described by three quantities: the secant stiffness ks, the shear
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strength Vy, and the displacement capacity δu. This approximation is obtained by
two procedures: the first one is the determination of a graph representing the ideal
monotonous test equivalent to the cyclic one; the second one is the definition of
the piece-wise linear curve from the ideal monotonic diagram. Regarding the first
procedure, it is generally accepted that the ideal monotonous graph is obtained by
connecting the points corresponding to the displacement peak of each loading cycle
(Magenes, Galasco, et al. 2010; Vanin, Zaganelli, et al. 2017; Morandi et al. 2018).
The second procedure is often taken as the same one used in building codes for shear-
displacement diagrams of entire structures (Magenes and Calvi 1997; Frumento,
Magenes, and Morandi 2009). Therefore, the construction criterion for piece-wise
linearization of the capacity curve is mostly conventional. However, a more rational
approach for its definition is desirable since the criterion choice influences the static
quantities ks, Vy, and δu.

Among the nonlinear static parameters, the displacement capacity δu is the
most important one for the seismic vulnerability assessment of masonry structures
whose lateral behavior mainly depends on the one of masonry piers. Nevertheless,
some of the building code prescriptions on the displacement capacity are still not
strongly corroborated by experimental tests and analytical models. Eurocode 8 and
IBC express the capacity in terms of ultimate drift θu, defined as the ratio between
the ultimate lateral displacement δu and the height of the pier h, and it shows a
constant trend varying aspect ratio and compression ratio. Moreover, it exhibits a
discontinuity at the transition between the failure modes as its near-collapse value
jumps from 1.0% in the case of rocking failure to 0.5% in the case of shear failure.
The fact that the level of compression assumes an important role in determining
the failure mode and the displacement capacity has been highlighted by some ex-
perimental campaigns (Frumento, Magenes, and Morandi 2009; Magenes, Galasco,
et al. 2010; Caballero González et al. 2005; Fehling et al. 2007). Nevertheless, its
influence has been taken into account into building codes only recently (IBC 2018).
Moreover, the results are influenced by other factors such as the aspect ratio and
boundary conditions, which are neglected in some of the building codes.

Only few parametric and numerical studies on the factors that influence the
lateral behavior of masonry piers are present in the literature. Recently, Dolatshahi
et al. 2018 found that the axial load ratio and the shear span ratio play a key role
for the drift capacity. Furthermore, they observed the influence of the wall size in
case of panels characterized by toe-crushing failure.

In the present chapter, parametric numerical analyses on masonry piers varying
axial load ratio and aspect ratio are carried out. The masonry element is considered
in a macro-modeling approach as a homogenized continuum, and the boundary-
value problem is solved through the finite element method. The model is calibrated
on an experimental campaign on two masonry piers with the same geometrical
properties, same material, same static scheme but different compression load so
that they exhibit different failure mechanisms: the one with lower axial compression
shows a rocking failure, while the other shows a shear failure. It is shown how the
main parameters that describe the nonlinear static behavior of masonry piers vary
by varying the compression and aspect ratios. Moreover, it is shown that the
choice of the linearization criterion could affect the results, especially in masonry
pier structures, which show a tensile peak strength in the pushover curve in case
of rocking failure. Hence, a new procedure in determining the piece-wise linear
curve from the shear-displacement diagram is proposed. The relations between the
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nonlinear static quantities ks, Vy, and θu and the parameters that influence them
(axial compression ratio p and aspect ratio λ) have been obtained and discussed.

This chapter is organized as follows. In Section 5.2 the interpretation of the
pier lateral behavior by some of the building codes is reviewed. In Section 5.3
the description of the numerical model used for the parametric analysis is given,
and its calibration on two different experimental tests on undressed double-leaf
stone walls (Magenes, Galasco, et al. 2010) is shown. The issues about piece-wise
linearization of the shear-displacement diagrams endorsed by the building codes and
a new proposal of linearization procedure are exposed in Section 5.4. In Section
5.5, the results of the parametric analysis are shown, and eventually concluding
remarks are given in Section 5.6.

5.2 Pier models in the building codes

The pier is a masonry parallelepiped of length L, thickness t, and height H, sub-
jected to a set of actions (compression P , shear force V and bending moment M)
on its top surface (Figure 5.2a). Let H0 be the shear span, i.e. the distance between
the bottom surface and the section having zero bending moment, and let η be the
span ratio defined as

η =
H0

H
(5.1)

The quantities M , V and H0 are related by rotational equilibrium, namely

M = V (H −H0) = V H(1− η) (5.2)

The aspect ratio λ is the ratio between shear span and wall length, namely

λ =
H0

L
(5.3)

and the compression ratio p as the ratio between current axial load and the maxi-
mum bearing load in compression, that is

p =
P

fc t L
(5.4)

where fc is compression strength of masonry. The displacement capacity is often
expressed in terms of drift θ, that is the ratio between lateral displacement and the
height of the pier, namely

θ =
δ

H
(5.5)

The relation between the shear force V and the top lateral displacement δ
of masonry piers can be experimentally studied through shear-compression tests,
whose main result is a graph in which the base shear is plotted against the top
displacement. In many of the building codes, the shear-displacement diagram is
outlined by a piece-wise linear constitutive model, so that only three parameters
suffice for its definition: secant stiffness ks, shear strength Vy and displacement
capacity δu, as shown in Figure 5.2b. Hence, the pier behavior is approximated
as linear elastic in the first branch, with a slope equivalent to the secant lateral
stiffness, until the force reaches the effective yield strength, from which starts the
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Figure 5.2: Lateral behavior of masonry piers.

second constant-force branch that ends when the displacement reaches its ultimate
value.

This section reports the estimations of the three quantities (ks, Vy and θu =
δu/H) that describe the nonlinear static lateral behavior of masonry piers provided
by some building codes.

5.2.1 Lateral secant stiffness

The lateral stiffness of a masonry pier is evaluated as the one of a Timoshenko
beam, taking into account both bending and shear stiffness, namely

kel =

((
nE tL3

H3

)−1
+

(
Gt

1.2

L

H

)−1)−1
(5.6)

where E and G are respectively the Young and shear moduli and n is the restraint
parameter, that depends on the static scheme (n=3 for cantilever, n=12 for double-
fixed panel). It can be shown that the restraint parameter n is function of the shear
span ratio η (Wilding and Beyer 2018):

n =
6

3η − 1
(5.7)

so that the lateral stiffness can be evaluated also in case of intermediate static
schemes between cantilever and double-bending.

Since the lateral stiffness is considered to be representative of the secant stiff-
ness of the shear-displacement diagram from experimental tests, the elastic moduli
should take into account the cracking of the pier, which is usually achieved by
considering a 50% reduction of the elastic moduli.

5.2.2 Shear Strength

Shear failure can occur according to different mechanisms: the flexural ones, i.e.,
rocking and crushing, and the shearing ones, i.e., shear sliding or diagonal ten-
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sile cracking. Consequently, the shear strength value is the minimum among the
considered failure mechanisms.

In the two most recent versions of the Italian Building Code (IBC 2008; IBC
2018), three mechanisms are considered: rocking - toe crushing, bed-joint sliding,
and diagonal cracking.

The shear strength associated to rocking - toe crushing mechanism is

Vr−tc,IBC =
P

2

L

H0

(
1− κP

fctL

)
(5.8)

where κ is a coefficient that modify the compression strength of masonry, that is
taken as

κ =
1

0.85
(5.9)

The bed-joint sliding shear strength is defined as

Vbjs,IBC = c t L′ + 0.4P (5.10)

where c is the cohesion and L′ is the depth of the compressed area of the pier.
The shear strength associated to diagonal cracking mechanism is

Vdc,IBC =
fttL

b

√
1 +

P

fttL
(5.11)

where ft is the tensile strength and b is defined as

b = min

(
max

(
H

L
; 1.0

)
; 1.5

)
(5.12)

In Eurocode 8 (EN 1998-3 2005) only rocking - toe crushing and bed-joint sliding
mechanisms are defined. The expression of the latter mechanism is the same as for
IBC (5.10), while the expression of the former one has just a slight modification in
the definition of the parameter κ that is

κ = 1.15 (5.13)

The ASCE 41 (Pekelnicky and Poland 2012) defines four strength mechanisms,
divided in two categories: ductile and fragile mechanisms. The ductile mechanisms
are rocking and bed-joint sliding, defined as:

Vr,ASCE = 0.9
P

2

L

H0
(5.14)

Vbjs,ASCE = 0.375 c t L+ 0.5P (5.15)

It is worth noting that this building code associates to the bed-joint sliding mech-
anism a residual value after decohesion given by the frictional term only, namely

Vbjs−f,ASCE = 0.5P (5.16)

that is the strength value after the attainment of bed-joint sliding strength peak,
justified by experimental tests as explained in Section 2.2.3.

The fragile mechanisms are diagonal cracking and toe crushing, having the
same formulation as in the IBC with the only difference on the parameter κ for the
toe-crushing mechanism that is

κ =
1

0.70
(5.17)
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5.2.3 Drift capacity

The ultimate displacement of piers is expressed in terms of drift so that the drift
capacity is defined as

θu =
δu
H

(5.18)

where δu is the ultimate displacement of the top of the pier and H is its height. In
order to make comparisons between building codes, the near-collapse expression of
drift capacity of piers in existing buildings will be considered. The influence of axial
load ratio p, aspect ratio λ and the shear span ratio η, shown in experimental tests
(Caballero González et al. 2005; Fehling et al. 2007; Magenes and Calvi 1997; Zilch
et al. 2008; Atkinson et al. 1989; Magenes 2010; Frumento, Magenes, Morandi, and
Calvi 2009) and confirmed in some numerical parametrical analyses (Orlando et al.
2016), is neglected in most of the building codes formulation.

The previous version of IBC (IBC 2008) defined the drift capacity accounting
for the type of failure mechanism. Moreover, the drift capacity took into account
the influence of the static scheme by means of the shear span H0. Namely,

θu,NTC08 =
4

3

{
0.012H0/H flexural failure

0.004 shear failure
(5.19)

In the most recent version of IBC (IBC 2018), the drift capacity depends only on
the failure mode, although its explicative annex suggests to consider the influence
of the axial compression load in case of flexural mechanism.

θu,NTC18 =

{
min

(
0.0125

(
1− P

fctL

)
; 0.010

)
flexural failure

0.005 shear failure
(5.20)

As well as the NTC 2008, the drift capacity defined in Eurocode 8 depends only
on the failure mechanism, but it takes into account the influence of the aspect ratio
λ in case of rocking - toe crushing.

θu,EC8 =
4

3

{
0.008H0/L flexural failure

0.004 shear failure
(5.21)

While ASCE 41 gives explicit values for drift capacity in case of bed-joint sliding
(0.4% at the strength peak and 1.0% at failure), no prescriptions are given about
deformation capacity associated with the onset of toe crushing. In this case, ASCE
41 suggests computing the ultimate drift through a moment-curvature approach.
Thus, the drift capacity is given by

θu,ASCE =

{
δr−tc/H rocking failure

0.01 bed-joint sliding failure
(5.22)

where δr−tc is the ultimate displacement associated to rocking - toe crushing mech-
anism.

5.3 Numerical modeling

Shear-compression tests consist in imposing a constant vertical load through two
vertical actuators on a stiff steel beam positioned on the top of the masonry pier and
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Figure 5.3: Finite element model of the masonry pier.

a cyclic lateral displacement through a horizontal actuator. In the most common
case of double-rotation-fixed static scheme, the forces and displacements of the
two vertical actuators are controlled to keep constant the sum of their forces and
maintain equal their vertical displacements (Wilding, Dolatshahi, et al. 2018).

Here, piers are modeled as a homogenized continuum discretized by isopara-
metric quadrilateral 8-node plane-stress elements. The chosen constitutive model
is the total strain rotating crack model (Vecchio and Collins 1986) implemented in
DIANA FEA software (Diana 2012). Several publications have demonstrated the
ability of this constitutive model to represent the macroscopic behavior of masonry
(Lotfi and Shing 1991; Billi et al. 2019; Pagani, Salvatori, et al. 2017). A parabolic
and a linear hardening/softening curve have been selected respectively for com-
pression and tension, both based on fracture energy. Moreover, the lateral crack
influence on compressive strength (Vecchio and Collins 1993) has been considered.

The boundary condition at the top is reproduced through multi-degree-of-
freedom contraints enforcing the equality of the vertical and horizontal displace-
ments of the top surface nodes. The interactions between the masonry pier and
the steel beam on the top and the concrete foundation at the bottom are simulated
through nonlinear no-tensile interfaces. These interfaces reproduce the stress-free
separation surface in the tension zone, allowing the correct modeling of the rocking
behavior.

Nonlinear static analyses are carried out in displacement control using the mod-
ified Newton-Raphson iterative method with a convergence criterion based on the
out-of-balance force norm. Analyses are performed by imposing a horizontal dis-
placement at one of the top nodes. Pushover curves are obtained by monitoring
the target node displacement and the base-shear reaction (Figure 5.3).

5.3.1 Calibration

The model is calibrated on the results of an experimental campaign of cyclic shear-
compression tests on undressed double-leaf stone walls (Magenes, Galasco, et al.
2010, Figure 5.4). The experimental test results are summarized in plots of base
shear versus top displacement. The numerical model is calibrated on the ideal
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Figure 5.4: Experimental test apparatus (from Magenes, Galasco, et al.
2010).

monotonic graph obtained by connecting the points corresponding to the displace-
ment peak of each load cycle.

Among the pier tested in that experimental campaign, two specimens (CS00
and CS01), which exhibit different failure mechanisms, were chosen to calibrate the
model. Both specimens have the same doubly rotation-fixed static scheme and have
the same geometry: a thickness of 320 mm with no through stones connecting the
two leaves, a length of 1.25 m, and a height of 2.50 m; they differ in terms of applied
axial load and failure mechanisms exhibited. While the first specimen (CS00) was
subjected to a compressive stress of 0.2 MPa and showed a clear rocking failure,
the second one (CS01) had a higher level of compression (0.5 MPa)and failed in
shear, exhibiting the typical diagonal crack pattern.

The calibration leads to an elastic modulus E = 1650 MPa, a compression
strength fc = 4.0 MPa, a tensile strength ft = 0.07 MPa, a compression fracture
volume energy Gc/h = 100 kJ/m3, being h the crack bandwidth size, and a tensile
fracture area energy Gt = 200 J/m2. The model with this set of parameters is able
to reproduce both CS00 and CS01 in terms of pushover curve (Figures 5.5 and 5.7)
and failure mechanism (Figures 5.6 and 5.8).

As reported in Tab.5.1, the calibrated mechanical parameters are comparable
with the results of the characterization tests made on the same material of the
specimens (Magenes, Penna, Galasco, et al. 2010).

Sensitivity analyses have been carried out in order to verify that a small vari-
ation in mechanical parameters does not cause a large variation in the structure
response (Figures 5.9 and 5.10). It is worth noting that the response of the pier
exhibiting rocking failure is mostly determined by compression strength and energy,
while tensile parameters influence the one characterized by shear failure.
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Figure 5.5: Capacity curve (CS00).
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Figure 5.6: Deformed shape and stress-crack pattern (CS00).
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Figure 5.7: Capacity curve (CS01).
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Figure 5.8: Deformed shape and stress-crack pattern (CS01).
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Exp. Model

E [MPa] 2550 1650
G [MPa] 840 825
fc [MPa] 3.28 4.00
ft [MPa] 0.137 0.06
Gc [J/m2] - 10000
Gt [J/m2] - 170

Table 5.1: Comparison of mechanical parameters between experimental test
and model calibration.
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Figure 5.9: Sensitivity analysis (CS00).
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Figure 5.10: Sensitivity analysis (CS01).
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The capacity curves obtained from numerical simulations calibrated on the
selected specimens does not show a clear after-peak strength drop. This could lead
to think that this model cannot be used to predict the displacement capacity of
piers. However, the absence of softening in the capacity curves for the selected
experimental tests is due to the fragile failure of the compressed pier toe. The
reacting part of the base and top sections is small since the compression load applied
on the piers is low (5% and 12.5% of the compression strength). Therefore, at the
ultimate state, there is a high concentration of compression in a relatively small
region. Once the compression stress has reached the compressive strength in an
integration point of the toe region, the pier fails and the lateral strength abruptly
drops to zero. The fragile behavior is more severe for the rocking pier (CS00) where
in the nonlinear branch the shear strength is almost constant until failure, while
the pier failing in shear (CS01) exhibits a small lateral strength decrease, due to
the diagonal crack opening.

On the other hand, the pier exhibits a clearer softening branch if the compres-
sion ratio is higher. Figure 5.11 shows the shear-displacement curve of nine piers
characterized by compression ratios of 0.05, 0.50, or 0.95, and by aspect ratios of
0.5, 1.0, or 2.0. The values of the relevant static quantities are reported in Table
5.2.

Figure 5.11 show that panels with high compression ratios and low aspect ratios
exhibit more extended softening branches and noticeable strength decreases. As
discussed before, this is due to the increase of reacting portion of the base sections.
In this case, the pier equilibrium can be found even after the failure in compression
of some finite elements located at the base.

We can conclude that the model can predict the after-peak behavior of masonry
piers. In some cases, for instance for slender and low-compressed piers, the behavior
is almost fragile due to the base section partialization and the shear strength tends
to suddenly drop to zero when the panel toe crushes in compression. Conversely,
for higher level of compression and for squat piers, we observe smoother strength
decrease.

5.3.2 Parametric analyses

Experimental test campaigns have not explored all possible combinations of ge-
ometries and load cases typical of piers in masonry structures. In particular, their
behavior under a high level of axial compression, namely for compression ratios
greater than 0.6, has never been tested (Vanin, Zaganelli, et al. 2017; Morandi et
al. 2018). A systematic assessment of the nonlinear static behavior of masonry piers
in the whole range of variation of the leading quantities is possible only through
numerical simulations, under the assumption that they could be interpreted as an
extension of experimental results.

A parametric series of nonlinear static analyses of the calibrated model is carried
out by varying the axial compression ratio p and the aspect ratio λ in the following
ranges:

p = 0.05, 0.15, ..., 0.95 (5.23)

λ = 0.25, 0.30, ..., 0.50, 0.60, ..., 1.00, 1.25, ..., 2.00, 2.50, 3.00 (5.24)

These ranges are chosen in such a way to cover almost all possible conditions.
A nonlinear static analysis is performed for each couple (p, λ). From each shear

- displacement curve, the secant stiffness ks, shear strength Vy, and ultimate drift
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Ks [kN/mm] λ = 0.5 λ = 1.0 λ = 2.0

p = 0.05 83.35 25.62 4.79
p = 0.50 120.39 34.42 5.77
p = 0.95 76.08 16.53 2.50

Vy [kN] λ = 0.5 λ = 1.0 λ = 2.0

p = 0.05 76.72 41.97 23.01
p = 0.50 217.29 115.09 89.09
p = 0.95 37.78 16.76 3.94

δu [mm] λ = 0.5 λ = 1.0 λ = 2.0

p = 0.05 16.97 51.79 91.15
p = 0.50 3.18 6.97 21.89
p = 0.95 0.88 1.68 2.26

Table 5.2: Analyses for a limited range of compression and aspect ratios -
Parameters of the piecewise linear curves.
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Figure 5.11: Analyses for a limited range of compression and aspect ratios
- Pushover curves.

θu are obtained through a linearization procedure. Thus, the relationships between
these quantities and the parameters that influence them (axial compression ratio p
and aspect ratio λ) are obtained.

5.4 Piece-wise linearization of capacity curves

The main result of nonlinear static analyses is the force-displacement diagram rep-
resenting the relationship between base shear and displacement of a controlled node
of the structure. A common approach for the nonlinear static behavior assessment
is to idealize the pushover curve as a piece-wise linear curve. This procedure is
mainly applied to the capacity curve of a whole structure, but it could also be used
for single parts of the structures, such as the masonry piers (Magenes and Calvi
1997; Frumento, Magenes, and Morandi 2009; Magenes, Galasco, et al. 2010; Vanin,
Zaganelli, et al. 2017; Morandi et al. 2018).

5.4.1 Piece-wise linearization in building codes

Different piece-wise linearization procedures can be found in building codes. Let
ks be the secant lateral stiffness, Vpeak the peak value of the shear strength, Vy the
effective shear strength, and δu the capacity displacement of the structure.

In the Italian Building Code, the capacity curve is replaced by a two-branch
piece-wise linear curve (Figure 5.12a). The first branch passes from the point
corresponding to 0.7 Vpeak (0.6 Vpeak for non-masonry structures) in the increasing
part of the actual diagram. The second branch is then defined by the capacity
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Figure 5.12: Piece-wise linearization in some building codes.

displacement δu corresponding to a strength reduction of 0.20 Vpeak (0.15 Vpeak
for non-masonry structures) in the softening branch and by the equivalent yield
strength Vy determined with an energy equivalence criterion.

According to Eurocode 8, the capacity curve is a piece-wise linear curve, the
first of which represents the linear elastic branch, while the second one is charac-
terized by a constant force, equal to the peak shear force (Figure 5.12b). Bing δm
the displacement at which the base shear reaches its peak, the initial stiffness is
determined in such a way that the areas under the actual and linearized curve in
the displacement range from 0 to δm are equal. The ultimate displacement capac-
ity is then taken as the one at which the base shear drops below 80% of the peak
strength Vpeak.

In ASCE 41 the shear-displacement diagram is reshaped through a three-piece-
linearization (Figure 5.12c). The first segment has a slope representing the effective
lateral stiffness of the structure; it begins at the origin and passes through the point
corresponding to 0.6Vy in the increasing branch. The second segment represents
the positive post-yield slope (α1ks); it is defined by passing through the point
corresponding to the maximum base shear and having a slope determined with an
energy equivalence criterion. The third segment, characterized by a negative post-
yield slope (α2ks), starts from the second segment ending point and passes at 0.6Vy
in the softening branch.

5.4.2 Issues of the IBC piece-wise linearization criterion

A widely used approach for interpreting the pier pushover curve from experimental
tests is to apply the IBC criterion for masonry buildings, as described in Frumento,
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Figure 5.13: Variation of the piece-wise linearization varying αθ on the same
pushover curve.

Magenes, and Morandi 2009. As already mentioned, the pushover curve is simplified
in a two-piece-wise linear curve, where the slope of the first segment is defined such
that it passes at the point having an ordinate value of 70% of the peak strength
in the increasing part of the curve. The horizontal second line ends when the
shear force decreases to the value of 80% of strength peak. The choice of this
criterion is purely conventional, it is not supported by any rational reasoning, and
its application to masonry walls is made by analogy with whole masonry buildings.

A desirable criterion property should be that a small variation of its parameters
would not lead to a strong variation of the results while keeping constant the input
data.

IBC linearization rule applied to masonry piers does not respect these require-
ments in case of high ductile behavior, typical of piers characterized by low ax-
ial load level and medium-to-high aspect ratio. In fact, a small variation in the
constant-branch stop threshold leads to a strong variation in the displacement ca-
pacity evaluation since the pushover curve is almost horizontal.

The question is whether there exists a criterion that does not influence the
nonlinear static quantities definition. If we keep fixed the IBC criterion frame-
work characterized by its two-piece-wise linear curve, the question reduces to the
determination of the parameters that define this schematization. Let αk be the
parameter that defines the percentage of the strength peak at which the first slope
intersects the capacity curve and let αθ be the one at which the constant-force curve
is stopped. The parameter values are αk=0.7 and αθ=0.8 in the standard criterion.

Observing nonlinear static quantities variability on the criterion parameters, no
issue has been observed for the parameter αk. In contrast, the parameter αθ has a
strong influence on the determination of shear strength and displacement capacity
(Figure 5.13). Consequently, in the following study, the parameter αk is kept as a
constant, with the same value as in the IBC criterion (αk = 0.70). The problem
reduces to the assessment of the optimized value of αθ to maximize the linearization
criterion objectivity.
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5.4.3 Assessment on the piece-wise linearization criterion

The pushover curves from the parametric analysis are linearized varying αθ from
0.10 to 0.90 in order to obtain the relations

ks = k̃s(αθ) (5.25)

Vy = Ṽy(αθ) (5.26)

θu = θ̃u(αθ) (5.27)

In particular, their derivative with respect to αθ are meaningful and the optimized
choice of the parameter αθ is the one for which the value of these derivative is low.
Figure 5.14 reports the graphs of the derivative of the nonlinear static parameters
with respect to αθ as a function of αθ itself. The values reported are the maximum,
minimum, and mean over 17×19=323 analyses described in Section 5.3.2.

Figure 5.14a shows that the secant stiffness is not affected by variation with
αθ, as it can be predictable since its definition does not depend on that parameter
(it depends on the other one, αk). However, the shear strength and the ultimate
displacement derivatives depends on αθ as Figures 5.14b and 5.14c show. It can
be seen that a variation in αk in the range (0.10 , 0.45) could induce a variation
up to 10% on the mentioned quantities. The sensitivity regarding the linearization
criterion parameter tends to zero, starting from αθ = 0.50.

5.4.4 Proposal

The linearization procedure on masonry pier pushover curves exhibited sensitivity
on the chosen criterion for the definition of the constant-strength-segment end due
to the pushover curve shape, characterized by post-peak shallow softening. To
avoid this undesirable feature, a different value of αθ, the percentage of strength
degradation at which the ultimate displacement is defined, should be used. The
study carried out above suggested the value αθ = 0.50, different from the value of
0.20, prescripted by IBC for masonry structures.

5.5 Interpretation of the parametric analyses

The pushover curves obtained through the parametric analysis described in Section
5.3.2 are linearized through the piece-wise linearization procedure proposed in Sec-
tion 5.4.4. The values of secant stiffness ks, shear strength Vy and ultimate drift
θu have been obtained for each couple (p,λ) in the range studied (Eq. 5.23-5.24).
In the following subsections, the dependence of each nonlinear static parameter on
the compression and aspect ratio is reported and commented.

5.5.1 Secant stiffness

The numerical secant stiffness Knum, normalized with respect to the analytical elas-
tic stiffness Kel (obtained through Eq.5.6) is represented in Figures 5.15a and 5.15b.
It shows that the secant stiffness, except few cases for slender high-compression
piers, is always between the 40% and 100% of the value of the elastic lateral stiffness
(evaluated with “uncracked” elastic moduli). This result agrees with the building
codes prescription, which suggests taking “cracked” moduli as 50% of the “un-
cracked” corresponding values. In particular, the prescription leads to a lower
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Figure 5.14: Variation of nonlinear static parameters varying αθ.
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bound prediction of the secant lateral stiffness, except for very slender and highly
compressed piers. However, a more refined secant stiffness definition should ac-
count for the influence of the compression ratio. The aspect ratio influence is
instead limited to the case of high-compression piers, e.g., varying the aspect ratio
λ for p = 0.95, the ratio Knum/Kel decreases from 0.6 to 0.25.

5.5.2 Equivalent strength

The numerical shear strength (Vnum), normalized with respect to the IBC shear
strength associated to rocking - toe crushing mechanism (Vr−tc) with κ = 1.00 (Eq.
5.8) is represented in Figures 5.16a-5.16b. The IBC prediction for very slender piers
(λ > 1.50) and p < 0.6 is almost correct because the ratio Vy/Vr−tc,IBC is close to
the unity, while for squat piers the ratio tends to move away from the unity since
the failure mechanism becomes the shear one. However, the criterion overestimates
the shear strength for highly compressed piers (p ≥ 0.85) since the lateral strength
tends to drop to zero for compression ratios close to the unity. This confirms the
validity of taking the parameter κ (which reduces the effective compression strength
of masonry) as 0.85.

5.5.3 Drift capacity

The drift capacity trend with respect to compression ratio p and aspect ratio λ
is represented in Figures 5.17a and 5.17b, respectively. The graph reported in
Figure 5.17a shows that the drift capacity decrease for increasing value of p. It is a
result that is confirmed by other numerical tests on masonry piers (Orlando et al.
2016), and it has the physical reason that, in case of higher compression ratios,
the compression strain limit is reached sooner as the lateral displacement increases.
Among the building codes analyzed in Section 5.2.3, the dependence of θu on p is
explicitly taken into account only in the recent version of IBC (Eq. 5.20). On the
contrary, in its previous version (Eq. 5.19) and EC8 (Eq. 5.21), the drift capacity for
rocking and toe-crushing mechanisms, typical for low or high values of compression
ratios respectively, is considered as the same, with a large overestimation of θu in
case of toe-crushing.

Figure 5.17b shows an increase of θu for an increasing aspect ratio in the range
0.50 < λ < 3.00, while the behavior is the opposite for very squat piers with
0.25 < λ < 0.50. This is not true for highly compressed piers (p = 0.95) for which
the ultimate drift decrease with increasing aspect ratios.

5.6 Remarks

A correct assessment of lateral stiffness, shear strength, and displacement capacity
of masonry piers is of central interest since they are the main elements that affect
the behavior of a masonry structure under horizontal actions. Experimental test
campaigns have studied a limited range of the parameters that influence the non-
linear static quantities, such as the compression ratio and the aspect ratio. In the
present chapter, a parametric analysis varying these two parameters in a wide range
has been carried out through a numerical model previously calibrated on two dif-
ferent experimental tests that exhibited two different failure mechanisms (rocking
and shear failure).
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Figure 5.15: Normalized secant stiffness obtained from the parametric anal-
ysis.
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Figure 5.17: Ultimate drift obtained from the parametric analysis.
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Displacement-controlled nonlinear static analyses have been performed to ob-
tain the pier pushover curves. The quantities that describe the lateral behavior of
masonry piers have been obtained through a piece-wise linearization criterion. The
shear strength and drift capacity showed sensitivity on the piece-wise linearization
procedure in the case of long shallow softening, which is typical of low-compression
piers. Therefore, the nonlinear static quantities have been obtained according to
an improved criterion that increases linearization objectivity, and their dependence
on the compression and aspect ratio has been shown.

It was observed that the building code suggestion to consider the “cracked”
elastic moduli as the 50% of the uncracked ones for estimating the lateral secant
stiffness is a lower-bound estimation, except for very slender and high-compression
piers, for which the corresponding percentage decreases to 30%. As to the shear
strength, the IBC rocking-toe crushing prediction is correct for very slender piers
and is too safety preserving for high-compression piers. Finally, drift capacity
exhibits a strong dependence on both aspect and compression ratios. It was high-
lighted that the dependence on the compression ratio had been implemented only
recently in IBC, while the aspect ratio influence is still not considered. These results
can be useful for the derivation of analytical formulas for the stiffness, strength,
and displacement capacity prediction and as a benchmark for the macroelement
design aimed to model the lateral behavior of masonry piers.



Chapter 6

Localization Analysis of an
Orthotropic Multisurface
Plasticity Model

Abstract

Numerical simulations of masonry structures are often based on con-
tinuum macro-modeling approaches that need constitutive laws able to
phenomenologically reproduce the behavior of the material. To cap-
ture the deformation process up to failure, appropriate softening laws
are needed to take into account the contraction of the yield stress do-
main caused by cracking and crushing. It is well known that softening
may lead to localization of inelastic strain.

This chapter focuses on localization analysis of an orthotropic macro-
scale model in the framework of multi-surface plasticity, which de-
scribes the in-plane behavior of masonry structures. The localization
properties of Lourenço’s model has been determined under uniaxial
stress and some biaxial stress states. The theoretical predictions have
been compared to numerical simulations, showing a perfect match in
terms of localization surface directions.

6.1 Introduction

Different strategies can be adopted for numerical simulations of the behavior of
masonry structures. Among others, continuum macro-modeling is a frequently used
approach, in which masonry structures are treated as homogenized continua and, in
general, discretized by the finite element method. This kind of modeling needs the
choice of a constitutive model, which could be formulated within the framework of
nonlinear elasticity, plasticity, damage mechanics, smeared crack models, or their
combinations, and its aim is to phenomenologically reproduce the average behavior
of masonry.

To capture the deformation process up to failure, appropriate softening laws
are needed to take into account the contraction of the yield stress domain caused

137
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by cracking and crushing. It is well known that softening may lead to localization
of inelastic strain and pathological mesh sensitivity of the numerical solution.

Therefore, it is important to understand the conditions under which localiza-
tion can occur in order to determine whether a localization regularization pro-
cedure in the numerical model is needed. Furthermore, localization analysis can
be interpreted as a tool for the macroscopic model evaluation by checking if the
theoretically-predicted localization band directions match with the ones obtained
from experimental tests.

The classical necessary condition for localization, as inspired by the early works
of Hadamard 1903 and Hill 1958, corresponds to the singularity of the localization
tensor, under the assumption of the same tangent stiffness tensor on both sides
of the discontinuity. For constitutive laws in the framework of plasticity, the lo-
calization condition was later extended by Rice and Rudnicki 1980 removing the
latter assumption. Borré and Maier 1989 analyzed strain localization in elastoplas-
ticity under the small-strain regime and they found the conditions for localization
also in the case that plastic yielding takes place on one side and elastic unloading
on the other side of the discontinuity surface. Studies on the localization proper-
ties on constitutive models based on orthotropic plasticity have been conducted by
Steinmann et al. 1994 and recently by Cervera et al. 2020.

The objective of this chapter is to analyze and characterize localization prop-
erties of the orthotropic plasticity model for masonry proposed by Lourenço 1995.
More refined but computationally more demanding approaches take into account
the microscale heterogeneity of masonry by explicitly considering the geometrical
arrangement of bricks and mortar, which are then treated as two different mate-
rials. A comparison of localization conditions predicted by microscale simulations
and those derived for the macroscopic model will be presented in Chapter 7.

The present analysis will be based on well-established conditions that link the
incipient weak discontinuity to the localization tensor (sometimes called the acoustic
tensor), which is obtained by contracting the fourth-order material tangent stiffness
tensor from the left and from the right with a unit vector that represents the normal
to a potential discontinuity surface.

In this chapter, the localization analysis of the presented macro-model is car-
ried out under the condition of uniaxial stress in tension and in compression, and
for biaxial stress states. Conditions for the onset of localization are derived and
preferential directions of the emerging weak discontinuity are evaluated.

The chapter is structured as follows. The governing equations of Lourenço’s
model are reported in Section 6.2. In Section 6.3, we describe the localization
conditions, first in a simplified approach by assuming the same tangent stiffness
at both sides of the discontinuity surfaces, then the localization analysis has been
refined by removing the preceding assumption. In Section 6.4 and 6.5, we assess
the localization properties of Lourenço’s model under uniaxial and biaxial stress
states respectively. Finally, we report some concluding remarks in Section 6.6.

6.2 Basic equations of Lourenço’s model for ma-
sonry

The macroscopic constitutive model for masonry considered here was developed for
plane-stress analysis of regular masonry walls, which have two clearly defined axes
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of orthotropy, further denoted as axes x and y (horizontal and vertical). The model
was formulated within the framework of multi-surface elastoplasticity. It uses two
yield surfaces that are linked to tensile and compressive failure modes. The general
structure of the model equations is conveniently presented in the matrix form. The
stress-strain law can be written as

σ = De (ε− εp) (6.1)

where σ = (σx, σy, τxy)T is the column matrix of stress components, De is the
elastic material stiffness matrix, and ε = (εx, εy, γxy)T and εp = (εpx, εpy, γpxy)T

are the column matrices of total and plastic strain components. The elastic material
stiffness matrix for an orthotropic material under plane-stress conditions can be
presented in the form

De =
1

1− νxyνyx

 Ex νyxEx 0
νxyEy Ey 0

0 0 (1− νxyνyx)Gxy

 (6.2)

where Ex and Ey are elastic moduli that correspond to the directions of orthotropy
x and y, Gxy is the shear modulus and νxy and νyx are Poisson’s ratios. Only
four out of these five elastic constants are independent, because of the symmetry
constraint νyxEx = νxyEy.

The evolution of plastic strain is described by the flow rule,

ε̇p = λ̇t
∂gt(σ, qt)

∂σ
+ λ̇c

∂fc(σ, qc)

∂σ
(6.3)

combined with the Karush-Kuhn-Tucker conditions

ft(σ, qt) ≤ 0, fc(σ, qc) ≤ 0 (6.4)

λ̇t ≥ 0, λ̇c ≥ 0 (6.5)

λ̇tft(σ, qt) = 0, λ̇cfc(σ, qc) = 0 (6.6)

Here, λ̇t and λ̇c are the rates of plastic multipliers related to the tensile and com-
pressive mechanisms, ft and fc are yield functions, gt is the plastic potential and
qt and qc are stress-like internal hardening/softening variables. According to (6.3),
the tension-related part of plastic flow is non-associated, because it is derived from
a plastic potential gt which is in general different from the yield function ft. The
compression-related part of plastic flow is associated, i.e., the flow direction is de-
termined by the gradient of the yield function, fc.

For the model proposed by Lourenço, the stress-like internal variables have
only normal components (with respect to the orthotropy axes x and y), but for
easier notation we present them as column matrices qt = (σtx, σty, 0)T and qc =
(σcx, σcy, 0)T . This makes it possible to present the yield functions and plastic
potential in the compact form

ft(σ, qt) =
√

(σ − qt)TP t(σ − qt) + πT (σ − qt) (6.7)

fc(σ, qc) =
√
σTP c(σcx, σcy)σ −√σcxσcy (6.8)

gt(σ, qt) =
√

(σ − qt)TP g(σ − qt) + πT (σ − qt) (6.9)
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with auxiliary matrices

P t =

 1/4 −1/4 0
−1/4 1/4 0

0 0 α

 , P g =

 1/4 −1/4 0
−1/4 1/4 0

0 0 1

 (6.10)

P c(σcx, σcy) =

 σcy/σcx β/2 0
β/2 σcx/σcy 0

0 0 γ

 π =

 1/2
1/2
0

 (6.11)

Here, α, β and γ are dimensionless parameters.
Stress-like internal variables control the size and shape of the yield surface.

They are uniquely linked to strain-like internal variables κt and κc, which are
identified here with the plastic multipliers. This is formally described by evolution
equations

κ̇t = λ̇t (6.12)

κ̇c = λ̇c (6.13)

and by the hardening-softening laws

qt = ht(κt) (6.14)

qc = hc(κc) (6.15)

For tension, exponential softening is used, and the component-wise form of
equation (6.14) is

σti = hti(κt) = fti exp

(
−hbfti
Gfti

κt

)
, i = x, y (6.16)

in which ftx and fty are uniaxial tensile strengths in directions x and y, and Gftx
and Gfty are the corresponding fracture energies. The softening law is adjusted
depending on the estimated size hb of the computationally resolved localized band
(typically obtained by projecting the finite element onto the direction normal to
the band).

For compression, parabolic hardening is followed by parabolic and later expo-
nential softening, described by

σci = hci(κc) =


σ0i + (σpi − σ0i)

√
2κc

κp
− κ2

c

κ2
p

if κc ≤ κp

σpi + (σmi − σpi)
(
κc−κp

κmi−κp

)2
if κp < κc ≤ κmi

σri + (σmi − σri) exp
(

2(κc−κmi)(σmi−σpi)
(κmi−κp)(σmi−σri)

)
if κmi < κc

(6.17)
in which again subscript i can take values x or y. This law, graphically presented
in Fig. 6.1, contains parameters κp, κmx and κmy that correspond to characteristic
values of internal variable κc (e.g., κp is the value of κc at the peak, i.e., at transition
from hardening to softening), and also parameters σ0x and σ0y, which are the initial
values of yield stress in directions x and y, σpx and σpy, which are the peak values
of yield stress, σmx and σmy, which are the values of yield stress at transition from
parabolic to exponential softening, and σrx and σry, which are the values of residual
yield stress.
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Figure 6.1: Hardening/softening law for compression

In absence of specific experimental tests, the characteristic yield stress values
can be set to

σpi = fci , σ0i =
1

3
fci , σmi =

1

2
fci , σri =

1

10
fci (6.18)

as suggested by Lourenço 1995. The value of the equivalent plastic strain κp at
peak is considered to be an additional parameter of the model. The value of κmi
depends on the estimated crack band width hb (related to the finite element mesh)
and is given by (Lourenço 1995)

κmi =
75

67

Gfci
hbfci

+ κp (6.19)

6.3 Localization analysis

In the previous section, the basic equations of the constitutive model were intro-
duced in the matrix notation. For the purpose of localization analysis, it is useful
to switch to tensorial notation. Stress and strain will now be considered as second-
order tensors and the material stiffness as a fourth-order tensor. The strain-like
internal variables, κt and κc, are just two scalars, while the stress-like internal vari-
ables, qt and qc, are treated as second-order tensors, even though not fully general
ones, since they have only two independent components each.

In tensorial notation, subscripts x and y will be replaced by 1 and 2. For
instance, the tensorial internal variable qt could be presented in the form qt =
σt1e1 ⊗ e1 + σt2e2 ⊗ e2 where σt1 ≡ σtx, σt2 ≡ σty, and e1 and e2 are unit vectors
aligned with axes x and y.

6.3.1 Rate equations and elastoplastic tangent stiffness

Suppose that plastic yielding takes place with only one yield surface activated. To
simplify notation, we will drop the index t or c referring to the tensile or compres-
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sive mechanism. For instance, the yield function and the plastic potential will be
denoted as f and g instead of ft and gt for tension (or fc and fc for compression).

The rate of the (activated) plastic multiplier can be computed from the consis-
tency condition

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂q
: q̇ = fσ : σ̇ + fq : q̇ = 0 (6.20)

where the rate of variable q can be expressed as

q̇ =
∂h

∂κ
κ̇ = hκκ̇ = hκλ̇ (6.21)

Substituting the flow rule (6.3) (with only one yield mechanism activated) into the
rate form of (6.1), we get

σ̇ = De :
(
ε̇− λ̇ gσ

)
(6.22)

Here, gσ = ∂g/∂σ is the derivative of the plastic potential with respect to the stress
tensor. For the compressive mechanism, the flow rule is associated, and so gσ = fσ.
Specific expressions for tensors fσ, gσ and hκ obtained for Lourenço’s model by
differentiation of (6.7)–(6.9) and (6.16)–(6.17) are worked out in Appendix 6.A.

Making use of (6.21) and (6.22), we can convert the consistency condition (6.20)
into an equation with a single unknown rate,

fσ : De :
(
ε̇− λ̇ gσ

)
+ fq : hκ λ̇ = 0 (6.23)

from which it is possible to express the rate of the plastic multiplier

λ̇ =
fσ : De : ε̇

fσ : De : gσ − fq : hκ
(6.24)

Substitution of this result back into (6.22) leads to the rate form of the elasto-plastic
stress-strain law

σ̇ =

(
De −

De : gσ ⊗ fσ : De

fσ : De : gσ − fq : hκ

)
: ε̇ (6.25)

where the expression in parentheses is the elastoplastic stiffness tensor, Dep. To
further simplify notation, let us introduce an auxiliary variable

h = fσ : De : gσ − fq : hκ (6.26)

The elastoplastic stiffness tensor can then be presented in the form

Dep = De −
1

h
De : gσ ⊗ fσ : De (6.27)

Let us mention that uniqueness of the response on the local level (in the sense
that the strain rate uniquely determines the stress rate and the rate of internal
variables) is guaranteed if and only if the auxiliary variable h defined in (6.26) is
positive. In what follows, we will assume that this condition is always satisfied.
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6.3.2 Simplified localization analysis

At the onset of localization, all field variables are still continuous but their rates are
not. The discontinuity in stress and strain rates is not completely arbitrary because,
even after the formation of a weak discontinuity surface, displacements are assumed
to remain continuous and tractions on the opposite sides of the discontinuity surface
must be the same, by virtue of the law of action and reaction.

Traction equilibrium leads to the condition

n · σ̇+ = n · σ̇− (6.28)

where n is a unit vector normal to the discontinuity surface and σ̇+ and σ̇− are
the stress rates on one and the other side of the surface. Displacement continuity
leads to a special form of strain rate jump that can be characterized by a vector
written as mė, where m is a unit vector and ė > 0. The strain rates on opposite
sides of the discontinuity surface are linked by the relation

ε̇+ = ε̇− + (n⊗m)symė (6.29)

The simplest way to derive the localization condition is based on the assumption
that the processes taking place on both sides of the discontinuity are governed by
the same tangent stiffness, Dep, which means that the stress and strain rates are
linked by constitutive equations

σ̇+ = Dep : ε̇+ (6.30)

σ̇− = Dep : ε̇− (6.31)

Making use of (6.29)–(6.31), we can transform (6.28) into

n ·Dep : ε̇− + n ·Dep : (n⊗m)symė = n ·Dep : ε̇− (6.32)

which can be rewritten as
Qep ·mė = 0 (6.33)

where

Qep = n ·Dep · n = n ·De · n−
1

h
n ·De : gσ ⊗ fσ : De · n (6.34)

is the elastoplastic localization tensor. Equation (6.33) can have a nontrivial so-
lution mė 6= 0 only if the localization tensor is singular. This is the standard
localization condition.

In terms of auxiliary tensors

Qe = n ·De · n, a = n ·De : fσ, b = n ·De : gσ (6.35)

the elastoplastic localization tensor can be presented as

Qep = Qe −
1

h
b⊗ a (6.36)

which means that it is a rank-one modification of the elastic localization tensor
Qe. After some calculations, it can be shown that singularity of the elastoplastic
localization tensor is equivalent to the condition

− fq : hκ = a ·Q−1e · b− fσ : De : gσ (6.37)
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We consider normals n = (n1, n2)T , characterized by two components, n1 ≡ nx
and n2 ≡ ny.

Taking into account symmetries of the orthotropic elastic stiffness tensor and
the plane-stress condition, the quantities entering into (6.37) can be simplified. The
orthotropic elastic localization tensor is represented by the matrix

Qe =

(
D1111 n

2
1 +D1212 n

2
2 (D1122 +D1212)n1 n2

(D1122 +D1212)n1 n2 D1212 n
2
1 +D2222 n

2
2

)
(6.38)

where

D1111 =
Ex

1− νxy νyx
D2222 =

Ey
1− νxy νyx

(6.39)

D1122 =
νyxEx

1− νxy νyx
D1212 = Gxy (6.40)

are tensorial components of the elastic material stiffness, De. Other relevant quan-
tities are evaluated as follows:

fσ : De : gσ = D1111 fσ,11 gσ,11 +D1122(fσ,11 gσ,22 + fσ,22 gσ,11)+

+ 4D1212 fσ,12 gσ,12 +D2222 fσ,22 gσ,22 (6.41)

a =

[
(D1111 fσ,11 +D1122 fσ,22)n1 + 2D1212 fσ,12 n2
2D1212 fσ,12 n1 + (D1122 fσ,11 +D2222 fσ,22)n2

]
(6.42)

b =

[
(D1111 gσ,11 +D1122 gσ,22)n1 + 2D1212 gσ,12 n2
2D1212 gσ,12 n1 + (D1122 gσ,11 +D2222 gσ,22)n2

]
(6.43)

where fσ,ij and gσ,ij are derivatives of the yield function and the plastic potential
with respect to stress components σij .

6.3.3 Refined localization analysis

The advantage of the localization condition based on singularity of the localization
tensor is that it is easy to derive and has the same general form detQt = 0 for any
constitutive model—it suffices to use the properly derived tangent stiffness tensor
Dt and transform it into the corresponding localization tensor Qt = n ·Dt · n.
The drawback is that the derivation uses a key assumption that the same tangent
stiffness applies on both sides of the discontinuity surface. It is not immediately
clear whether this is indeed the most critical case. One can easily imagine localized
solutions for which plastic yielding takes place on one side and elastic unloading on
the other side, and then the stiffness tensors are obviously different.

For the flow theory of plasticity with a smooth yield surface and smooth plastic
potential, it is possible to perform a more general analysis that does not make any
additional restrictive assumptions. The rates of the plastic multiplier in regions
separated by the discontinuity surface are expressed as

λ̇+ =
1

h
〈fσ : De : ε̇+〉 (6.44)

λ̇− =
1

h
〈fσ : De : ε̇−〉 (6.45)
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where 〈x〉 denotes the positive part of x, which is equal to x if x > 0 and to zero
otherwise. The corresponding stress rates are then

σ̇+ = De : ε̇+ − 1

h
〈fσ : De : ε̇+〉De : gσ (6.46)

σ̇− = De : ε̇− − 1

h
〈fσ : De : ε̇−〉De : gσ (6.47)

and the traction equilibrium condition can be written in the form

n ·De : ε̇+ − 1

h
〈fσ : De : ε̇+〉n ·De : gσ =

= n ·De : ε̇− − 1

h
〈fσ : De : ε̇−〉n ·De : gσ (6.48)

Substituting from (6.29) and making use of the auxiliary tensors introduced in
(6.35), we can rewrite condition (6.48) as

Qe ·mė =
1

h

(
〈fσ : De : ε̇− + a ·mė〉 − 〈fσ : De : ε̇−〉

)
b (6.49)

Note that Qe is a regular (invertible) tensor and the right-hand side of (6.49) is a
scalar multiple of vector b. Therefore, if the problem has a nontrivial solution, the
solution must have the form

mė = cQ−1e · b (6.50)

where c is some suitable scalar. Substituting the potential solution (6.50) into the
governing equation (6.49), we obtain

c b =
1

h

(
〈fσ : De : ε̇− + ca ·Q−1e · b〉 − 〈fσ : De : ε̇−〉

)
b (6.51)

which is satisfied if

h c = 〈fσ : De : ε̇− + ca ·Q−1e · b〉 − 〈fσ : De : ε̇−〉 (6.52)

Up to here, the analysis has covered all possible combinations of processes
taking place in the regions around the discontinuity surface (plastic yielding or
elastic unloading). To be able to express c, we need to proceed with the analysis
case by case. Recall that the first Macauley bracket in (6.52) corresponds to hλ̇+

and the second to hλ̇−; see (6.44)–(6.45). Since h > 0, the first term is nonzero if
λ̇+ > 0, i.e., if the process that takes place on the positive side of the discontinuity
is plastic yielding, and the second term is nonzero if λ̇− > 0, i.e., if plastic yielding
takes place on the negative side.

Elastic+/elastic−: If the rate of plastic multiplier vanishes on both sides of
the discontinuity, equation (6.52) reduces to

h c = 0 (6.53)

which leads to c = 0 and mė = 0, but this does not correspond to a localized
solution. This is an expected result, since the elastic localization tensor Qe is
positive definite, and so equation (6.49) cannot have a nontrivial solution if its
right-hand side is set to zero.
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Plastic+/elastic−: If λ̇+ > 0 and λ̇− = 0, then equation (6.52) gives

h c = fσ : De : ε̇− + ca ·Q−1e · b (6.54)

which leads to

c =
fσ : De : ε̇−

h− a ·Q−1e · b
(6.55)

mė =
fσ : De : ε̇−

h− a ·Q−1e · b
Q−1e · b (6.56)

The solution is admissible if fσ : De : ε̇− ≤ 0 and fσ : De : ε̇−+ca·Q−1e ·b ≥ 0, the
latter condition being equivalent to fσ : De : ε̇+ ≥ 0. For “reasonable” plasticity
models, the product a ·Q−1e · b is always positive, and so c must be positive, which
is possible only if the denominator in (6.55) is negative (because the numerator is
non-positive). The resulting condition is thus

h < a ·Q−1e · b (6.57)

Recall that h defined in (6.26) depends only on the current state while tensors a,
b and Qe depend on the unit normal n, which is arbitrary. Therefore, this type of
localization can occur if there exists a unit vector n for which (6.57) holds, in other
words, if

− fq · hκ < max
n

(
a ·Q−1e · b

)
− fσ : De : gσ (6.58)

where the maximum is taken over all unit vectors.

Elastic+/plastic−: Since the choice which side of the discontinuity is referred
to as “positive” is arbitrary, this case must be analogous to the previous case and
the resulting localization condition must be the same.

Plastic+/plastic−: If the rates of the plastic multiplier on both sides of the
discontinuity are positive, then equation (6.52) gives

h c = ca ·Q−1e · b (6.59)

which has a nontrivial solution c 6= 0 only if

h = a ·Q−1e · b (6.60)

This can be written as

− fq · hκ = max
n

(
a ·Q−1e · b

)
− fσ : De : gσ (6.61)

If this is the case, equation (6.59) is satisfied for an arbitrary c, so we can only
determine the unit vector

m =
Q−1e · b
‖Q−1e · b‖

(6.62)

while the magnitude ė remains undetermined. The solution is admissible if fσ :
De : ε̇− ≥ 0 and fσ : De : ε̇− + ca ·Q−1e · b ≥ 0. The first condition can always
be satisfied by a suitable choice of ε̇−. Since c is arbitrary and a ·Q−1e · b > 0, the
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second condition is then satisfied for all c > 0, and, depending on the particular
choice of ε̇−, it can even be satisfied by a limited range of negative values of c. If c
is indeed negative, the fraction on the right-hand side of (6.62), which determines
the polarization vector, should be preceded by a negative sign. The cases when
c > 0 and m is given by (6.62) correspond to higher rates of plastic yielding on the
positive side of the discontinuity (as compared to the negative side), while cases
when c < 0 and m is given by (6.62) with a negative sign correspond to higher
rates of plastic yielding on the negative side of the discontinuity. Since the choice of
the positive and negative side is arbitrary, we can restrict attention to cases when
c > 0 and m is given by (6.62), without loss of generality.

Based on the foregoing refined analysis, we can conclude that the general local-
ization condition for the present class of plasticity models reads

H ≤ Hcrit (6.63)

where

H = −fqi · hκ (6.64)

is the generalized plastic modulus and

Hcrit = max
n

(
a ·Q−1e · b

)
− fσ : De : gσ (6.65)

is the critical value of the generalized plastic modulus. Both H and Hcrit may
depend on the current state and in general they evolve. As long as H remains
above Hcrit, localization is impossible. When H = Hcrit, there exists one or more
special directions n such that a weak discontinuity across a surface with normal n
can arise, with plastic yielding on both sides but at different rates of the plastic
multiplier. When H becomes smaller than Hcrit, there is a range of directions for
which localization can occur with plastic yielding on one side and elastic unloading
on the other.

Alternative expression for the critical hardening modulus Expres-
sion (6.65) can be rearranged in an alternative form that turns to be useful for
further analysis, in particular when we refer to the plane stress condition.

Substituting the definition of the auxiliar tensors a and b from (6.35) into
(6.65), we get

Hcrit = max
n

(
fσ : De · n ·Q−1e · n ·De : gσ − fσ : De : gσ

)
(6.66)

where we have extended the maximization to the second term since it does not
depend on the normal n. The last expression can be simplified as

Hcrit = max
n

(fσ : A(n) : gσ) (6.67)

where

A(n) = De · n ·Q−1e · n ·De −De (6.68)

is a fourth-order tensor that depends only on the elastic properties and the normal
n.
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If we define the quantity H as

H = fσ : A(n) : gσ (6.69)

the determination of the critical hardening modulus reduces to maximization of H
over all unit vectors n, namely

Hcrit = max
n

(H(n)) (6.70)

Simple expressions of the tensor A can be derived under the assumption of
plane stress condition. In the case of isotropic material, the elastic stiffness tensor,
expressed in subscript notation, is given by

De,ijkl = G

(
2ν

1− ν
δijδkl + δikδjl + δjkδil

)
(6.71)

where the indices i, j, k, and l take values 1 and 2. In this case, the inverse of the
localization tensor is (

Q−1e
)
ij

=
1

G

(
δij −

1 + ν

2
ninj

)
(6.72)

from which we obtain

[
(De · n) ·Q−1e · (n ·De)

]
ijpq

= G

[
2ν2

1− ν
δijδpq + 2ν (δijnpnq + δpqninj) +

+ δiqnjnp + δipnjnq + δjqninp + δjpninq − 2(1 + ν)ninjnpnq

]
(6.73)

and

Aijpq = G
[
δiqnjnp + δipnjnq + δjqninp + δjpninq − δipδjq − δiqδjp+

− 2ν (δijδpq − δijnpnq − δpqninj)− 2(1 + ν)ninjnpnq

]
(6.74)

If we express the normal n as function of the angle θ that n forms with the
x-axis,

n =

[
cos θ
sin θ

]
=

[
c
s

]
(6.75)

the matrix representation for the tensor A is then

A(θ) = −2G(1 + ν)

 s4 c2s2 −cs3
c2s2 c4 −c3s
−cs3 −c3s c2s2

 (6.76)

In the case of orthotropic and plane stress material, the elastic stiffness matrix in
the plane stress case is given by (6.2) and the matrix representation of tensor A is

A(θ) = −ξ(θ)

 s4 c2s2 −cs3
c2s2 c4 −c3s
−cs3 −c3s c2s2

 (6.77)
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where

ξ(θ) =

(
1

Exx
s4 +

(
1

Gxy
− 2νxy
Exx

)
s2c2 +

1

Eyy
c4
)−1

(6.78)

In both cases of isotropic or orthotropic material, therefore, the tensor A has the
same structure with the only difference of the parameter ξ, which in the isotropic
case is given by

ξ = 2G(1 + ν) (6.79)

while in the orthotropic case is given by (6.78).
The quantity H in the general case of orthotropic material under plane stress

assumption is given by
H = fTσAgσ (6.80)

where fσ and gσ are expressed in vectorial form as

fσ =

 fσ,11
fσ,22
2fσ,12

 gσ =

 gσ,11
gσ,22
2gσ,12

 (6.81)

Therefore, its expression reduces to

H(θ) = −ξ(θ)
(
fσ,11 s

2 − 2fσ,12 s c+ fσ,22 c
2
) (
gσ,11 s

2 − 2gσ,12 s c+ gσ,22 c
2
)

(6.82)
which, in case of associated flow rule, simplifies in

H(θ) = −ξ(θ)
(
fσ,11 s

2 − 2fσ,12 s c+ fσ,22 c
2
)2

(6.83)

6.4 Localization analysis for uniaxial stress states

For uniaxial stress, the stress tensor matrix in the Oxy reference frame, where x
and y are the orthotropy axes, is given by

σ(σ̄, φ) = Qσ̂QT (6.84)

where

σ̂ =

[
σ̄ 0
0 0

]
Q =

[
cosφ − sinφ
sinφ cosφ

]
(6.85)

Here, σ̄ is the magnitude of the uniaxial stress and φ is the angle that the stress
direction forms with the x-axis.

The localization analysis for uniaxial stresses is carried out separately for ten-
sion and compression as follows. For every loading direction φ, the stress magnitude
σ̄ is determined as the one which activates plastic flow, i.e., the one which satisfies
the condition fi = 0, where fi is yield function for tension (i = t) or compres-
sion (i = c), respectively. Once the stress state is defined, one can maximize the
hardening modulus spectrum given by (6.82) over all angles θ ∈ [0, π) and deter-
mine the critical hardening modulus Hcrit. Then it must be checked whether the
current hardening modulus is lower than or equal to the critical one. If the local-
ization condition is fulfilled, the “natural” localization angle θloc is determined as
the one corresponding to the critical hardening modulus. The polarization vector
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Figure 6.2: Localization (n) and polarization (m) vectors for uniaxial stress
σ̄ inclined by φ with respect the material x-axis

m, namely the eigenvector of the elastoplastic localization tensor corresponding to
the zero eigenvalue, characterizes the failure mode, ranging from tensile splitting
(mode I) withm = n to shear slip (mode II) withm perpendicular to n to crushing
(compaction, compressive mode I) with m = −n. According to this procedure, the
sign of m is lost since eigenvectors are determined up to a multiplicative constant.
The sign of m can be recovered by imposing the condition that the work produced
by the actual stress on the strain jump is positive, namely

σ : (ε̇+ − ε̇−) = σ : (n⊗m)sym > 0 (6.86)

If the current hardening modulus is exactly equal to the critical one, localization
is usually possible only for one angle θ in the interval [0, π). However, if the current
hardening modulus is strictly lower than the critical one, there exists a range of
values of θ for which the localization condition is satisfied. In an idealized problem
when the localized solution bifurcates from a uniform one, the actual band direction
is arbitrary within this range. The ambiguity could be removed by postulating
a variational principle, but its justification is somewhat questionable for models
dealing with non-associated flow rules.

In a real problem with nonuniform stress, the localized band often evolves
gradually and its trajectory can be constrained by boundary conditions. The range
of angles θ for which the localization condition is satisfied provides some additional
information on potential directions of the localized band.

In case of uniaxial stress along the material axes, the expression of the hardening
modulus spectrum (6.82) further simplifies. For tension along x-axis, the derivative
of the yield function and the plastic potential with respect to the stress (at the
onset of plastic flow) are given by

fσ = gσ =

 1
0
0

 (6.87)

Therefore, the expression (6.82) reduces to

Ht,x(θ) = −ξ(θ) sin4 θ (6.88)
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Analogously, for tension along the y-axis the stress derivatives are given by

fσ = gσ =

 0
1
0

 (6.89)

and the expression (6.82) reduces to

Ht,y(θ) = −ξ(θ) cos4 θ (6.90)

For compression along the x-axis, the derivative fσ at the onset of plastic flow
is given by

fσ = gσ =

 1/µ
β µ/2

0

 (6.91)

where

µ =

√
σc,x
σc,y

(6.92)

Therefore, the expression (6.83) reduces to

Hc,x(θ) = −ξ(θ)
(

1

µ
sin2 θ +

βµ

2
cos2 θ

)2

(6.93)

On the other hand, for compression along the y-axis the stress derivatives are

fσ = gσ =

 β/(2µ)
µ
0

 (6.94)

and the hardening modulus spectrum is

Hc,y(θ) = −ξ(θ)
(
β

2µ
sin2 θ + µ cos2 θ

)2

(6.95)

The graphs of the hardening modulus spectra for uniaxial tension and compression
along x- and y-axis as function of the angle θ are shown in Figure 6.3.

The material parameters considered are the ones reported in Table 6.1, which
have been calibrated by Lourenço (Lourenço 1995) on an experimental test on a
hollow clay brick masonry wall (Ganz and Thurlimann 1983). In those cases, the
critical hardening modulus is equal to zero. Therefore, localization can occur at
the onset of plastic flow for tension, since the tensile behavior is characterized by
abrupt exponential softening, and starting from the peak of the compressive yield
stress for compression.

For uniaxial tension, the value of the critical hardening modulus is obtained for
θ = 0 for φ = 0 (tension along x-axis) and for θ = π/2 for φ = π/2 (tension along
y-axis). On the other hand, for uniaxial compression, the maximum value of the
hardening modulus is attained for two angles θ, which are symmetric with respect
to the stress angle φ. In particular, for uniaxial compression along x-axis (φ = 0),
the localization angles are θloc ' ±π/8, while for uniaxial compression along y-axis
(φ = π/2), the localization angles are θloc ' π/2± 5/16π.



152 CHAPTER 6. LOCALIZATION ANALYSIS OF LOURENÇO’S MODEL
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Figure 6.3: Hardening modulus spectra for uniaxial stresses aligned with
the material axes

Elastic parameters Tensile parameters

Exx Eyy νxy Gxy ft,x ft,y Gt,x Gt,y α
[GPa] [GPa] [-] [GPa] [MPa] [MPa] [N/mm] [N/mm] [-]

2.46 5.46 0.18 1.13 0.28 0.05 0.02 0.02 1.73

Compressive parameters

fc,x fc,y Gc,x Gc,y β γ κp
[MPa] [MPa] [N/mm] [N/mm] [-] [-] [-]

1.87 7.61 5.0 10.0 -1.05 1.20 8·10−4

Table 6.1: Mechanical parameters considered for localization analysis
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Figure 6.4: Hardening modulus spectrum for uniaxial tension for φ = π/32

The localization analysis is then extended to the generic case of uniaxial tension
or compression inclined by an angle φ with respect to the x-axis, with φ ∈ [0, π/2].
Except for the particular case of uniaxial tension along the material axes, the critical
hardening moduli always exhibit two local maxima which are greater than zero in
the case of uniaxial tension (Figure 6.6), and equal to zero in the case of uniaxial
compression, due to the associated plastic flow in compression. Figure 6.4 shows
the particular case of uniaxial tension with φ = π/32, where the blue and red dots
highlight the location of the two local maxima, and the black dots labeled with A
and B pointed out the angle range where the hardening modulus is positive.

For uniaxial tension, the influence of the stress angle φ on the localization
angle is shown in Figure 6.5, where the localization angles corresponding to the
two peaks are pointed out with solid blue and red lines. The fan between the
dash-dotted lines denote the range of localization angles for which the hardening
moduli are greater than zero, and the isolines give additional information about
the hardening modulus values for each couple (φ ; θ). Figure 6.6 represents the
value of the critical hardening modulus for each stress angle φ, from which we can
see that the critical hardening modulus functions associated to the two solutions
differs. The two graphs intersect at φ0 ' 13π/256. For 0 < φ < φ0 the red line,
which corresponds to the second maximum (H2), is above the other one (H1), and
viceversa for φ0 < φ < π/2. This gives information on the most likely localization
angle, which is associated to the solution having the highest critical hardening
modulus.

The vectors normal to the two possible weak discontinuity surfaces are inclined
with respect to the tension angle, as we can see from Figure 6.7 that represents the
difference between the localization angle θ and the stress angle φ varying the stress
angle. Polarization vectors for both surfaces are close to the corresponding normals
since their scalar product is close to the unity for every tension angle (Figure 6.8).

Figure 6.9 gives a visual representation of the localization band directions and
polarization vectors for a selected set of stress angles.

In the case of uniaxial compression, the hardening modulus spectrum is
given by (6.83), here reported for convenience

H(θ) = −ξ(θ)
(
fσ,11 s

2 − 2fσ,12 s c+ fσ,22 c
2
)2

(6.96)

Since the parameter ξ(θ) is non-negative for the chosen set of mechanical parame-
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Figure 6.5: Localization angles for uniaxial tension varying stress angle φ

~13/256 /8 /4 3/8 /2

-0.005

0

0.005

0.01

0.015

0.02

0.025
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Figure 6.8: Scalar product between normal n and polarization vector m for
uniaxial tension
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Figure 6.9: Localization bands for uniaxial tension, φ =
{0, π/8, π/4, 3/8π, π/2}
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Figure 6.10: Localization angles for uniaxial compression varying stress an-
gle φ
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Figure 6.11: Difference between localization angle and stress angle for uni-
axial compression

ters, the quantity is always non-positive. Therefore, the maxima of the hardening
modulus spectrum are also non-positive.

Figure 6.10 shows the dependence of localization angles on the uniaxial com-
pression angle, where the two localization angles are plotted with solid blue and
red lines.

The difference between the localization angles and the uniaxial compression
angle is reported in Figure 6.11.

Figure 6.12 shows that the scalar products between the vectors n and polariza-
tion vectors m corresponding to the two discontinuity surfaces coincide. Moreover,
one can see that the product n ·m turns out to be positive for stress angles close to
π/2, which means that the we may have dilating shear bands under compression.

Eventually, we report a visual representation of the localization band directions
and polarization vectors for some selected values of stress angles in Figure 6.13.

The theoretically predicted localization band directions have been compared to
the ones obtained from numerical simulations on rectangular specimens composed
of 61 × 121 finite elements. The specimen bottom nodes are fixed in the vertical
direction, while only the left bottom node is fixed in the horizontal direction. The
specimens are loaded by prescribed vertical displacements at the top to generate
uniform states of vertical tension or compression. The horizontal and vertical mate-
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Figure 6.12: Scalar product between normal n and polarization vector m
for uniaxial compression
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(a) Vertical tension (b) Vertical compression

Figure 6.14: Numerical simulations on a specimen composed of 61 × 121
finite elements.

rial axes coincide with the corresponding global directions. The material properties
are uniform in the specimen, except for the central finite element having 10% lower
yield strength to trigger the localization.

We perform the numerical simulations through the OOFEM finite element code
(Patzák and Bittnar 2001). The implementation of Lourenço’s constitutive model
into the OOFEM code has been part of the work.

The theoretic localization bands are θloc = 0 for vertical tension, while for
vertical compression we have a double solution θloc,1 ' 3π/16 and θloc,2 ≈ 13π/16.
For both tensile (Figure 6.14a) and compression (Figure 6.14b) cases, we report
the plot of the cumulative plastic strain whose localization exhibit a perfect match
with ones predicted theoretically, reported in Figure 6.14 with dashed lines.

6.5 Localization analysis for biaxial stress states

In case of biaxial stress states, we characterize the stress state by the ratio between
principal stresses and by the rotation of the principal axes with respect to the
material. It is useful to express the ratio between principal stresses as the tangent
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Figure 6.15: Yielding surfaces representations in the plane σxx-σyy and σ1-
σ2

of an angle, which is called the biaxiality angle, namely

tan ζ =
σ2
σ1

(6.97)

so that one can write

σ1 = σ̄ cos(ζ) (6.98)

σ2 = σ̄ sin(ζ) (6.99)

where σ̄ is the stress magnitude. The matrix representation of the stress state in
the Oxy reference frame is given by

σ (σ̄, ζ, φ) = Q(φ) σ̂(σ̄, ζ)Q(φ)T (6.100)

where

σ̂(σ̄, ζ) =

[
σ1 0
0 σ2

]
Q(φ) =

[
cosφ − sinφ
sinφ cosφ

]
(6.101)

The classical representation of the failure surfaces is in the plane of the normal
stress components σxx and σyy, for fixed values of the tangential stress τxy. How-
ever, it is useful to represent the yield surfaces in the plane of principal stresses for
various values of the angle φ. Figure 6.15 represents, in both reference frames, the
yielding surface and the stress state trajectories for fixed values of biaxiality angles
ζ varying the stress angle φ.

The localization analysis procedure is developed as in the uniaxial stress case
by determining the value of σ̄ at the onset of plastic flow for any given biaxiality
and stress angle. In order to determine the range of variation of these parameters,
we can restrict the stress angle in the range 0 ≤ φ ≤ π/4 and we can say that
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the first principal axis is the one that is closer to the horizontal direction, and this
also determines how the principal stresses are numbered. Consequently, we have
to relax the constraint σ1 ≥ σ2 and the biaxiality angle can be taken in the range
0 ≤ ζ < 2π.

Figure 6.16a shows the dependence of the localization angle on the stress state
angle φ computed for several biaxiality angles ζ, while in Figure 6.16b the critical
hardening modulus values are represented, and the scalar product between normal
n and polarization vectorm in reported in Figure 6.16c. The chosen values of ζ cor-
respond to the special cases of uniaxial tension (ζ ∈ {0, π/2}), uniaxial compression
(ζ ∈ {π, 3π/2}), biaxial tension (ζ = π/4), biaxial compression (ζ = 7π/4). More-
over, the special cases of opposite principal stresses having the same magnitude,
namely ζ ∈ {3π/4, 5π/4}, are considered.

These results, although difficult to read, lead to the conclusion that failure
occurs mainly due to tensile limit attainment, while we have failure in compression
only for some specific cases. From uniaxial stress analysis we know that localization
due to tensile failure is characterized by a positive hardening modulus and a n ·m
product close to the unity. Moreover, the critical hardening moduli for compressive
failure cannot be positive due to the associated plastic flow. The graphs shown in
Figure 6.16b and 6.16c verify that tensile failure occurs for most of the considered
cases. Compressive failure occurs just for ζ = π (for 0 < φ < π/6), for ζ = 5π/4
(for any φ), and for ζ = 3π/2 (for 0 < φ < 3π/16).

In particular, tensile failure can happen even in the case of uniaxial compression.
Figures 6.17 and 6.18 show the trajectories of uniaxial compression stress states for
κc equal to 0 and κp, respectively. The figures show that tensile failure occurs for
a certain range of uniaxial compression angles φ. The range further increases at
the hardening variable peak (κc = κp) when the compressive surface expands to its
maximum size.

6.6 Remarks

In this chapter, a localization analysis of Lourenço’s model has been performed.
The study has been restricted to the case of a regular point on the yielding surface,
where the yield function gradient and the plastic flow direction are uniquely defined.
The special cases of the vertex of the tensile surface and the intersection of yielding
surfaces will be treated in a future work.

The necessary condition for localization has been formulated first through a
simplified procedure, under the assumption that the same tangent stiffness is ap-
plied at both sides of the discontinuity. However, this assumption is not always
verified as localized solutions can also occur in the case of plastic loading on one
side and elastic unloading on the other side, and it is not immediately clear which
case is the most critical. Then, the analysis was extended by removing the afore-
mentioned assumption. A more general localization condition for the present class
of plasticity models has been elaborated, based on the comparison between the
current plastic modulus and the critical one.

The localization properties of Lourenço’s model have first been determined
under uniaxial stress states. The closed-form expressions of the critical hardening
moduli were found in the case of uniaxial stresses aligned with the material axes.
It was observed that, except for the particular case of uniaxial tension along the
material axes, the critical hardening modulus, as a function of the normal to the
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Figure 6.17: Uniaxial compression stress trajectory on the yielding surfaces
for κc = 0
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discontinuity surface, has two local maxima which lead to two possible localization
angle. The normals to the discontinuity surfaces are almost aligned with the stress
directions in the case of uniaxial tension, while two inclined bands tend to form
for uniaxial compression. It was noticed that dilating bands can form even for
compression when the stress direction is close to the vertical axis, i.e., the strong
axis.

The theoretical predictions have been compared to numerical simulations. Lourenço’s
model has been implemented into OOFEM, an open-source finite element solver.
Numerical simulations on virtual specimens subjected to vertical tension and com-
pression show a perfect match in terms of localization surface directions.

The study was then extended to biaxial stress states. It has been shown that
the results are not far from the ones obtained for uniaxial tension. This is mainly
caused by the associate plastic flow rule for the compressive surface, combined with
the hardening law in compression, which has an initial hardening branch, followed
by a softening part. Since localization for associate plastic flow can occur only after
the hardening peak, it turns out that the most likely mechanism is the tensile one,
which can occur starting from the onset of plastic flow.

6.A Derivatives of plastic flow tensors for Lourenço’s
model

The model equations of the general formulation of multi-surface elastoplasticity are
reported in the following.

Elastic-plastic split:
ε = εe + εp (6.102)

Stress-strain law for the elastic part:

σ = De εe (6.103)

Plastic admissibility conditions:

ft(σ, qt) ≤ 0, fc(σ, qc) ≤ 0 (6.104)

Flow rule:

ε̇p = λ̇t
∂gt(σ, qt)

∂σ
+ λ̇c

∂fc(σ, qc)

∂σ
(6.105)

λ̇t ≥ 0, λ̇c ≥ 0 (6.106)

Complementarity conditions:

λ̇tft(σ, qt) = 0, λ̇cfc(σ, qc) = 0 (6.107)

Hardening law:

κ̇t = λ̇t (6.108)

κ̇c = λ̇c (6.109)

qt = ht(κt) (6.110)

qc = hc(κc) (6.111)
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The strain-like hardening variables can be recast in the following vector

κ =

[
κt
κc

]
(6.112)

and the yield functions, plastic potential, and functions that describe the hardening-
softening behavior are given by

ft(σ, qt) =
(
(σ − qt)TP t(σ − qt)

)1/2
+ πT (σ − qt) (6.113)

fc(σ, qc) =
(
σTP c(qc)σ

)1/2 −√σc,xσc,y (6.114)

gt(σ, qt) =
(
(σ − qt)TP g(σ − qt)

)1/2
+ πT (σ − qt) (6.115)

ht(κt) =

 σt,x(κt)
σt,y(κt)

0

 (6.116)

hc(κc) =

 σc,x(κc)
σc,y(κc)

0

 (6.117)

in which

σt,i(κt) = ft,i exp

(
− hft,i
Gft,i

κt

)
(6.118)

σc,i(κc) =



σi,i + (σp,i − σi,i)

√
2κc
κp
− κ2c
κ2p

κc < κp

σp,i + (σm,i − σp,i)
(
κc − κp
κm,i − κp

)2

κp < κc < κm,i

σr,i + (σm,i − σr,i) exp

(
2

(κc − κm,i)(σm,i − σp,i)
(κm,i − κp)(σm,i − σr,i)

)
κc > κm,i

(6.119)
Auxiliary matrices P t, P g, P c and π are defined as

P t =

 1/4 −1/4 0
−1/4 1/4 0

0 0 α

 P g =

 1/4 −1/4 0
−1/4 1/4 0

0 0 1

 (6.120)

P c =


σc,y(κc)

σc,x(κc)
β/2 0

β/2
σc,x(κc)

σc,y(κc)
0

0 0 γ

 π =

 1/2
1/2
0

 (6.121)

The numerical scheme deals with the following derivatives:

∂ft
∂σ

=
P t(σ − qt)

((σ − qt)TP t(σ − qt))
1/2

+ π (6.122)

∂gt
∂σ

=
P g(σ − qt)

((σ − qt)TP g(σ − qt))
1/2

+ π (6.123)



6.A. DERIVATIVES OF PLASTIC FLOW TENSORS FOR LOURENÇO’S
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∂fc
∂σ

=
P cσ

(σTP cσ)
1/2

(6.124)

∂2gt
∂σ2

=
P g

((σ − qt)TP g(σ − qt))
1/2
− P g(σ − qt)(σ − qt)TP g

((σ − qt)TP g(σ − qt))
3/2

(6.125)

∂2fc
∂σ2

=
P c

(σTP cσ)
1/2
− P cσσ

TP c

(σTP cσ)
3/2

(6.126)

∂ft
∂κ

=
[
∂ft/∂κt 0

] ∂gt
∂κ

=
[
∂gt/∂κt 0

]
(6.127)

∂fc
∂κ

=
[

0 ∂fc/∂κc
]

(6.128)

∂ft
∂κt

= −∂qt
∂κt

(
P t(σ − qt)

((σ − qt)TP t(σ − qt))
1/2

+ π

)
(6.129)

∂gt
∂κt

= −∂qt
∂κt

(
P g(σ − qt)

((σ − qt)TP g(σ − qt))
1/2

+ π

)
(6.130)

∂fc
∂κc

=
σT dP c

dκc
σ

2
√
σTP cσ

−
dσc,x

dκc
σc,y + σc,x

dσc,y

dκc

2
√
σc,xσc,y

(6.131)

dP c

dκc
=

∂P c

∂σc,x

dσc,x
dκc

+
∂P c

∂σc,y

dσc,y
dκc

(6.132)

∂P c

∂σc,x
=


−σc,y
σ2
c,x

0 0

0
1

σc,y
0

0 0 0

 ∂P c

∂σc,y
=


1

σc,x
0 0

0 −σc,x
σ2
c,y

0

0 0 0

 (6.133)

∂2gt
∂σ∂κ

=

[
∂2gt
∂σ∂κt

0

]
(6.134)

∂2fc
∂σ∂κ

=

[
0

∂2fc
∂σ∂κc

]
(6.135)

∂2gt
∂σ∂κt

=

[
− P g

((σ − qt)TP g(σ − qt))
1/2

+
P g(σ − qt)(σ − qt)TP g

((σ − qt)TP g(σ − qt))
3/2

]
dht
dκt

(6.136)

∂2fc
∂σ∂κc

=
dP c

dκc
σ

(σTP cσ)
1/2
−
P cσ

(
σT dP c

dκc
σ
)

2 (σTP cσ)
3/2

(6.137)

∂κ

∂λ
=

[
1 0
0 1

]
(6.138)
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dht
dκt

=

 dσt,x/dκt
dσt,y/dκt

0

 dhc
dκc

=

 dσc,x/dκc
dσc,y/dκc

0

 (6.139)

where
dσt,i
dκt

= −
hf2t,i
Gft,i

exp

(
− hft,i
Gft,i

κt

)
(6.140)

dσc,i
dκc

=



(σp − σi)(κp − κc)
κp
√
κc(2κp − κc)

κc < κp

2(σm − σp)(κc − κp)
(κm − κp)2

κp < κc < κm,i

2
σm − σp
κm − κp

exp

(
2

(κc − κm)(σm − σp)
(κm − κp)(σm − σr)

)
κc > κm,i

(6.141)

It is useful to evaluate the norm of the plastic strain rate caused by tensile yield-
ing. In tensor notation, it would be given by ‖ε̇p‖ =

√
ε̇p : ε̇p but in engineering

notation we must write

‖ε̇p‖ =
√
ε̇Tp P

−1ε̇p = λ̇t

√(
∂gt
∂σ

)T
P−1

∂gt
∂σ

(6.142)

where

P−1 =

 1 0 0
0 1 0
0 0 1/2

 (6.143)

is a suitable scaling matrix that converts a strain-like column matrix into a stress-
like column matrix. It is worth noting that

P T
g P
−1P g =

1

2
P g (6.144)

P T
g P
−1π = 0 (6.145)

πTP−1π =
1

2
(6.146)

Based on these relations, it is easy to evaluate(
∂gt
∂σ

)T
P−1

∂gt
∂σ

=
(σ − qt)TP

T
g P
−1P g(σ − qt)

(σ − qt)TP g(σ − qt)
+

+2
(σ − qt)TP

T
g P
−1π

((σ − qt)TP g(σ − qt))
1/2

+ πTP−1π =

=
1

2
+ 0 +

1

2
= 1 (6.147)

and (6.142) simplifies to
‖ε̇p‖ = λ̇t (6.148)
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Of course, ε̇p is only the part of the plastic strain rate caused by tensile yielding.
It can be demonstrated that also the rate of the maximum principal plastic

strain is equal to the rate of the plastic multiplier related to the tensile failure
surface. It can be expressed as

ε̇P,1 =
ε̇P,x + ε̇P,y

2
+

1

2

√
(ε̇P,x − ε̇P,y)

2
+ γ̇2P,xy (6.149)

which can also be recast in matrix form as

ε̇P,1 =

√
˙εP
TP 1 ˙εP + πT ˙εP (6.150)

where P 1 is the following auxiliary matrix

P 1 =

 1/4 −1/4 0
−1/4 1/4 0

0 0 1/4

 (6.151)

and ε̇P is the vector of plastic strain in Voigt notation, related to the plastic po-
tential through the flow rule,

ε̇P = λ̇t
∂gt
∂σ

= λ̇t

(
P g(σ − qt)√

(σ − qt)TP g(σ − qt)
+ π

)
(6.152)

so that (6.149) can be rewritten as

ε̇P,1 = λ̇t

(
πTP g (σ − qt)√

(σ − qt)TP g(σ − qt)
+ πTπ+

+

√√√√( P g(σ − qt)
((σ − qt)TP g(σ − qt))

1/2
+ π

)T
P 1

(
P g(σ − qt)

((σ − qt)TP g(σ − qt))
1/2

+ π

)
(6.153)

It is worth noting that

πTP g = 0 (6.154)

πTP 1 = 0 (6.155)

P T
g P 1P g =

1

4
P g (6.156)

πTπ =
1

2
(6.157)

Then it is easy to evaluate the rate of the maximum principal plastic strain as

ε̇P,1 = λ̇t

(
0 +

1

2
+

√
1

4
+ 0 + 0 + 0

)
= λ̇t (6.158)
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Chapter 7

Localization Analysis of
Masonry RVEs

Abstract

Numerical simulations of masonry structures are often based on con-
tinuum macro-modeling approaches that need constitutive laws able to
phenomenologically reproduce the behavior of the material. The con-
stitutive model developed by Lourenço in the framework of orthotropic
multi-surface plasticity represents one notable example.

Macroscopic models cannot take into account the microstructure het-
erogeneities typical of masonry, at least not directly, and may fail in
reproducing failure mechanisms and localization directions of inelastic
strains when compared to experimental tests. To address this issue,
we need to increase the detailing level by performing microscale anal-
yses, where we separately model blocks and mortar and assign to each
constituent a proper constitutive law.

In this chapter, a microstructural analysis of a masonry unit cell under
periodic boundary conditions has been performed. A simple unit cell
model in the framework of plasticity is developed and its ability to
reproduce most behaving typical of regular masonry is assessed. The
localized inelastic strains resulting from macro- and micro-scale mod-
els are compared in terms of predicted localization angles for uniaxial
tension. Moreover, the influence of the size of the representative ele-
ment and periodicity directions on localization is assessed.

7.1 Introduction

Numerical analysis of masonry structures is performed by using models with differ-
ent detailing levels.

At large scale, masonry buildings could be seen as a set of walls and slabs,
where each wall could be further decomposed in macroelements that are masonry
piers, spandrels, and node panels. In the macroelement approach (Magenes 2000;
Lagomarsino et al. 2013; Caliò et al. 2012) the detailing level stops at this point by
assigning a mechanical behavior to each panel. The equivalent-frame method is one
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example of this group of models, and it consists of treating each macroelement as
an equivalent beam having suitable moment-curvature relationships. This method
is widely used in engineering practice for its advantages, namely the small compu-
tational cost for the small number of degrees of freedom involved, and its explicit
endorsement by several building codes. Nevertheless, macroelement models present
several drawbacks. For instance, macroelements subdivisions are not uniquely de-
termined in the case of irregular opening layouts, and lateral displacement capacity
is often taken as a certain percentage of the height of panels without considering
material characteristics.

The detailing level could be increased by considering each macroelement as a
homogeneized continuum (Lourenço, De Borst, et al. 1997; Berto et al. 2002; Ad-
dessi, Marfia, et al. 2002). In this case, we assign at each material point average
mechanical properties and a proper constitutive law that should phenomenologi-
cally reproduce the response. Numerous attempts have been made for simulating
macroscopic masonry behavior by using stress-strain relations in the framework of
nonlinear elasticity, plasticity, damage mechanics, or smeared cracking. However,
the definition of a constitutive relationship is not an easy task. In fact, masonry be-
havior strongly depends on its microstructure composed of two different materials,
blocks and mortar, each with its own properties, and the way they are arranged.

Hence, there might be a need to get to a finer scale and take into account
the material heterogeneity by performing a microscale analysis, in which we model
each constituent separately and assign to each one a proper constitutive law. In this
case, the stress-strain relation of each constituent could be directly calibrated on
elementary experimental tests. This approach is the most detailed way of represent-
ing the mechanical properties of masonry that makes sense in structural analysis.
However, it has the drawback of being highly expensive in terms of computational
costs, particularly when applied to the analysis of a whole structure.

Some authors label this level of representation as mesoscopic, borrowing this
term from the study of concrete structures. For concrete, in fact, numerous scales
of representation can be defined. While at the macroscopic scale concrete may be
represented as a homogenized continuum, at the mesoscopic scale concrete is re-
garded to as a three-phase composite consisting of coarse aggregate, mortar matrix,
and interfacial zones. The detailing level can be increased by analyzing concrete
at the microscale, or even at the nanoscale, where the prefixes indicate the di-
mensions in meters of the particle characteristic lengths. For masonry, however,
analyzing particles having dimensions that are smaller than the mortar layer thick-
ness is not relevant from a structural point of view. Therefore, we consider two
detailing levels only: the scale at which masonry is regarded as a homogenized con-
tinuum (macroscale) and the scale at which we model the constituents separately
(microscale). This will be the terminology used throughout this chapter.

The micromodeling approach can be used for large-scale simulations. Alterna-
tively, the microscale model response can be used just to pre-calculate the parame-
ters of a homogenized continuum model (Sejnoha et al. 2008; Cavalagli et al. 2011),
or it can be used simultaneously with a macroscale model, which interactively
obtains macroscopic stresses from the microscale during the analysis, realizing a
proper multiscale model (Massart et al. 2007; Salerno and De Felice 2009; De Bellis
and Addessi 2011).

In multiscale models, the structure is modeled as a continuum where, instead of
assigning a specific constitutive law, the material point behavior is obtained through
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the homogenization of the response of a Representative Volume Element (RVE), in
which the microstructure is explicitly modeled. The homogenization procedure is
done in a fully nested way through the so-called “FE-square” approach. This model
advantage is to maintain a high detailing level while simultaneously speeding up
numerical analysis compared to a microscale analysis applied to the whole structure.

The choice of the RVE dimensions is the key aspect of the homogenization pro-
cedure. The RVE should be large enough to contain all the material heterogeneities
and, at the same time, the smallest possible to limit the computation burden. The
RVE must then geometrically reproduce the whole body by repeating its pattern in
its neighborhood along specific periodicity directions, if any are present. Moreover,
the constitutive law for the materials within the RVE must be chosen properly to
reproduce the masonry mechanics of the microstructure.

The more direct approach for microscale modeling considers bricks and mortar
as a continuum and requires a stress-strain law for each constituent. A case in point
is the model proposed by Massart et al. 2007 in which an isotropic damage model
was adopted for both bricks and mortar. However, the most common approach
is to consider the mortar joints as an interface where all the nonlinearities are
concentrated. This consideration leads to models where bricks are represented as
linear elastic or rigid bodies, and the attention is focused on the formulation of the
interface stress-strain law. Interface models can be formulated in the framework
of damage mechanics (Gambarotta and Lagomarsino 1997), multisurface plasticity
(Lourenço and Rots 1997), coupled damage-plasticity (Minga et al. 2018), or can
be based on phase transition with a constitutive model depending on the interface
state (Salvatori and Spinelli 2018).

The smallest RVE for regular-masonry texture is composed of one brick and one
vertical and one horizontal mortar layer, and it has been extensively used for the
microstructural analysis of masonry (Massart et al. 2004; La Malfa Ribolla et al.
2020; Mercatoris et al. 2009). Alternatively, a cell composed of a brick surrounded
by two brick quarters on each horizontal side has been considered (Sacco 2009;
Milani 2011; De Bellis and Addessi 2011).

In general, the RVE response may change varying its size, especially in its
localization properties. With bigger RVE sizes, the unit cell is featured by several
mortar layers, and it may have more freedom to develop different localization paths.
Moreover, large-size RVEs may allow different sets of periodicity directions whose
choice may further influence localization, as shown in Stransky and Jirásek 2011.

In this chapter, we carry out a study on the localization properties of masonry
RVEs. A microscale model for masonry is proposed, treating bricks and mortar as
continua with a Rankine plasticity model. The model effectiveness to reproduce the
microstructural mechanics of masonry is assessed under basic stress scenarios. A
comparison between the RVE localization properties and the ones of a macroscale
constitutive model widely used for masonry (Lourenço, De Borst, et al. 1997) is
performed. A study of the response of the RVEs varying their size and periodicity
directions is explored under selected stress states.

The chapter is organized as follows. The homogenization procedure to relate the
microscopic stresses and strains to the macroscopic ones is described in Section 7.2.
Some detailing aspects about masonry RVEs, regarding the unit-cell geometries,
enforcement of restraints and periodicity constraints, and the localization procedure
are presented in Section 7.3. The RVE finite element model and the implementation
details of Rankine plasticity are discussed respectively in Section 7.4 and 7.5. The
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results on the one-brick RVE under basic stress states and the comparison with
Lourenço’s model in terms of localization properties are reported in Section 7.6.
Then, the effect of size and periodicity direction variation are analyzed in Section
7.7. Finally, some concluding remarks are reported in Section 7.8.

7.2 Homogenization procedure

The derivation of the homogenization procedure takes advantage of the divergence
theorem and its corollaries, reported in the following.

Green’s theorem. Let V be a regular region having boundary S, and let φ, v, and
T respectively be scalar, vectorial, and tensorial smooth fields in V . Then∫

S

φn dS =

∫
V

∇φdV (7.1)∫
S

v · n dS =

∫
V

∇ · v dV (7.2)∫
S

n · T dS =

∫
V

∇ · T dV (7.3)

where n is the outward unit normal field on S, the boundary of the region V .

Three corollaries of this theorem, used for further demonstrations, are the fol-
lowing (Gurtin 1982):∫

S

n⊗ v dS =

∫
V

∇v dV (7.4)∫
S

(n · T )⊗ v dS =

∫
V

[
(∇ · T )⊗ v + T · ∇vT

]
dV (7.5)∫

S

v · (n · T ) dS =

∫
V

(v · (∇ · T ) + T : ∇v) dV (7.6)

In the preceding equations, we make use of the definition of the gradient of a vector
v, whose ij components are defined as

(∇v)ij =
∂vj
∂xi

(7.7)

We define the symmetric part of a second-order tensor T as

(T )sym =
T + T T

2
(7.8)

7.2.1 Unit-cell kinematics and balance

The displacement field u within the RVE is expressed as the superposition of the
macroscale (W ) and microscale (w) contributions, that is

u(x) = W (x) +w(x) (7.9)

where x is the position vector of a point in the unit cell.
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In the case of first-order homogenization, the macroscale contribution is as-
sumed to vary linearly within the RVE, namely

W (x) = W (xR) +E · (x− xR) (7.10)

where xR is the position of the reference point of the unit cell, and E is the macro-
scopic strain. If rigid body motion is preserved and if we assume that reference
point xR is restrained and positioned at the origin O of the reference frame, so that

W (xR) = W (O) = 0 (7.11)

the displacement field at the microscale can be expressed as

u(x) = E · x+w(x) (7.12)

The microscopic strain ε is the symmetric part of the gradient of the displace-
ment field u, namely

ε = (∇u)sym = E + (∇w)sym (7.13)

We neglect body forces in the unit cell, so the balance equation reduces to

∇ · σ = 0 (7.14)

7.2.2 Hill-Mandel condition

The scale transition is commonly complemented by the Hill-Mandel condition, ac-
cording to which we impose the equivalence of the macroscopic virtual work and
the volume average of the microscopic one, namely

ΣA : EB =
1

V

∫
V

σA : εB dV (7.15)

where ΣA and σA are the macroscopic and microscopic stress states, where the
microscopic stress is equilibrated

∇ · σA = 0 (7.16)

and EB and εB are the macroscopic and microscopic strain states, where the mi-
croscopic strain field is compatible

εB = (∇uB)sym (7.17)

We added the subscripts A and B to underline that the stress and strain states
are entirely independent of each other. The Hill-Mandel condition, therefore, states
that the macroscopic stress Σ is the work-conjugate quantity to the macroscopic
strain E.

7.2.3 Macro-micro transition

Homogenization procedures are usually built so that the macroscopic fields are
expressed as the volume average on the unit-cell of the corresponding microscopic
quantities, namely

E =
1

V

∫
V

ε dV (7.18)

Σ =
1

V

∫
V

σ dV (7.19)
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However, the previous equalities are not automatically satisfied and proper
boundary conditions are needed. Among the numerous possibilities, we consider
the three cases of imposing kinematic (i), static (ii), or periodic boundary condi-
tions (iii). In the following derivations, we assume the validity of the Hill-Mandel
condition (7.15), an equilibrated microscopic stress field (7.16), and a compatible
microscopic strain field (7.17).

Case (i) We impose kinematic constraints by enforcing the vanishing of the
fluctuations w on the RVE boundary S, namely

w = 0 onS (7.20)

that leads to
u = E · x onS (7.21)

which corresponds to the so-called “linear boundary conditions”. In this case, the
scale-transition condition on the strains (7.18) is fulfilled. In fact, the volume
average of the microscopic strains is given by∫

V

εdV =

∫
V

E dV +

∫
V

(∇w)sym dV (7.22)

Considering that the macroscopic strain E is constant over the volume V and
applying a corollary of the divergence theorem (7.4), the right-hand side can be
further simplified as ∫

V

ε dV = E V +

∫
S

(n⊗w)sym dS (7.23)

The second term of the right-hand side vanishes by imposing the kinematic con-
straints (7.20); consequently, we obtain the requested condition

E =
1

V

∫
V

ε dV (7.24)

Moreover, we can demonstrate that the kinematic constraints lead to the scale-
transition condition on stresses (7.19) through the Hill-Mandel condition, which
reads

Σ : E∗ =
1

V

∫
V

σ : (∇u∗)sym dV (7.25)

where the strain fields, marked with asterisks, are considered as virtual, while the
stress fields are considered as the actual ones. The right-hand side of the previous
equation can be rewritten by using a corollary of the divergence theorem (7.6) as

Σ : E∗ =
1

V

∫
S

(n · σ) · u∗ dS − 1

V

∫
V

(∇ · σ) · u∗ dV (7.26)

Substituting (7.16) and (7.21) into (7.26), we obtain

Σ : E∗ =
1

V

∫
S

(n · σ) ·E∗ · x dS (7.27)

Taking out the virtual macroscopic strain from the integral, we have

Σ : E∗ =
1

V

∫
S

(n · σ)⊗ x dS : E∗ (7.28)
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Then, the surface integral can be transformed into a volume integral by means of
(7.5), namely

Σ : E∗ =
1

V

∫
V

σ dV : E∗ (7.29)

Since the previous relation must hold for all virtual macroscopic strain E∗, we
retrieve the relation between macroscopic and microscopic stresses, that is

Σ =
1

V

∫
V

σ dV (7.30)

Case (ii) In this case, tractions are imposed on the boundary of the unit cell,
namely

n ·Σ = n · σ onS (7.31)

Conversely to the case (i), the fields considered as virtual in the Hill-Mandel con-
dition are the macroscopic and microscopic stresses, that is

Σ∗ : E =
1

V

∫
V

σ∗ : (∇u)sym dV (7.32)

The right-hand side can be transformed into a surface integral by using the corollary
(7.5) and the unit-cell equilibrium (7.16), namely

Σ∗ : E =
1

V

∫
S

(n · σ∗) · udS (7.33)

Substituting the static boundary conditions (7.31) in (7.33), we obtain

Σ∗ : E =
1

V

∫
S

(n ·Σ∗) · udS (7.34)

where the virtual macroscopic stress Σ∗ can be taken out from the integral, namely

Σ∗ : E = Σ∗ :
1

V

∫
S

n⊗ udS (7.35)

Considering the symmetry of Σ∗, we can rewrite the previous identity as

Σ∗ : E = Σ∗ :
1

V

∫
S

(u⊗ n)sym dS (7.36)

which reduces to the kinematic scale transition condition since the previous equation
must hold for all Σ∗, namely

E =
1

V

∫
V

εdV (7.37)

where we have used again a corollary of the divergence theorem (7.4). As it has
been already demonstrated in the case (i), the combination of the previous relation
with the Hill-Mandel condition (7.15) leads to the static scale transition equation,
that is

Σ =
1

V

∫
V

σ dV (7.38)
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Case (iii) The imposition of periodic boundary conditions represents an alterna-
tive solution that has shown to provide a reliable estimation of the RVE behavior
(Coenen et al. 2012). In this approach, the RVE boundary is partitioned into
two sets: an image part S+ and a mirror part S−, so that S = S+ ∪ S− and
S+ ∩ S− = ∅. The two sets are associated with each other through a one-to-one
function ϕ : S+ → S−, called “mirror function”, that maps each point of the image
part to one of the mirror part, namely

ϕ(x+) = x− (7.39)

The couple of points x+ ∈ S+ and x− ∈ S− linked by (7.39) are said to be
corresponding points. The normals to the surface of the RVE associated with two
corresponding points are opposite, namely

n(x+) = −n
(
ϕ(x+)

)
∀x+ ∈ S+ (7.40)

Periodic boundary conditions are imposed by means of the equivalence of the fluc-
tuations associated with corresponding points along the RVE boundary, that is

w(x+) = w
(
ϕ(x+)

)
∀x+ ∈ S+ (7.41)

The previous condition guarantees the respect of the kinematic scale transition
condition (7.20). In fact, we can demonstrate that the second term of the right-
hand side of (7.23) vanishes by splitting the surface integral into two integrals over
the image and mirror part, namely∫
S

(w ⊗ n)sym dS =

∫
S+

(
w(x+)⊗ n(x+)

)
sym

dS+

∫
S−

(
w(x−)⊗ n(x−)

)
sym

dS

(7.42)
Substituting the periodicity conditions (7.41) and the relation between the normals
of corresponding points (7.40), we have∫

S

(w ⊗ n)sym dS =

∫
S+

(
w(x+)⊗

[
n(x+) + n(ϕ(x+))

])
sym

dS = 0 (7.43)

which leads to

E =
1

V

∫
V

ε dV (7.44)

Moreover, the periodicity conditions induce a link between displacements of
corresponding points, which are given by

u(x+) = E · x+ +w(x+) (7.45)

u(x−) = E · x− +w(x−) (7.46)

Subtracting (7.46) from (7.45) and taking into account (7.41), we obtain

u(x+)− u(x−) = E · (x+ − x−) (7.47)

which represents a linear constraint between corresponding points.
In the previous cases, the boundary-valued problem is well-posed due to the

imposition of kinematic or static boundary conditions. Conversely, the imposition
of periodic displacements on the RVE boundary (7.41) is not sufficient for the well-
posedness since it represents an internal constraint between corresponding points
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on the boundary. The problem must be complemented by another condition, that
is the antiperiodicity of tractions, namely

n(x+) · σ(x+) + n(x−) · σ(x−) = 0 (7.48)

To retrieve the scale transition relation on stresses, let us evaluate the integral
over the RVE volume of the microscopic work that the actual stresses produce on
the virtual strains. The virtual displacement field must be compatible (7.17) and
satisfy the periodicity condition (7.47).

The virtual microscopic work can be transformed into a surface integral in the
usual way as ∫

V

σ : ε∗ dV =

∫
S

(n · σ) · u∗ dS (7.49)

where the microscopic stresses and strains are the actual ones. The surface integral
on the right-hand side can be split in two over the image and mirror part as∫

V

σ : ε∗ dV =

∫
S+

(n+ · σ+) · u∗+ dS +

∫
S−

(n− · σ−) · u∗− dS (7.50)

where the plus and the minus sign as superscript indicate fields evaluated in points
of the image and mirror part, respectively. Introducing the conditions on periodic
displacements (7.47) and antiperiodic tractions (7.48), we can write∫

V

σ : ε∗ dV =

∫
S+

(n+ · σ+) ·E∗ · (x+ − x−) dS (7.51)

Taking out the macroscopic strain from the integral, we get∫
V

σ : ε∗ dV =

∫
S+

(n+ · σ+)⊗ (x+ − x−) dS : E∗ (7.52)

Then, rearranging the surface integral and using again the antiperiodicity condition
on the tractions (7.48), we obtain∫

V

σ : ε∗ dV =

(∫
S+

(n+ · σ+)⊗ x+ dS −
∫
S−

(n− · σ−)⊗ x− dS

)
: E∗ =

=

∫
S

(n · σ)⊗ x dS : E∗

(7.53)

that could be transformed back to a volume integral by means of the corollary (7.5)
as ∫

V

σ : ε∗ dV =

∫
V

σ dV : E∗ (7.54)

Finally, substituting the previous relation in the Hill-Mandel condition (7.15),

Σ : E∗ =
1

V

∫
V

σ : ε∗ dV (7.55)

it reduces to

Σ : E∗ =
1

V

∫
V

σ dV : E∗ (7.56)

that leads to the scale transition on stresses, namely

Σ =
1

V

∫
V

σ dV (7.57)



178 CHAPTER 7. LOCALIZATION ANALYSIS OF MASONRY RVES

v
2

v
1

(a) One-brick RVE.

v
2

v
1

(b) One-brick RVE with inclined sides.

v
1

v
2

(c) Two-bricks RVE.

v
2,B

v
2,A

v
1

(d) Six-bricks RVE.

Figure 7.1: Geometries of different masonry RVEs.

7.3 Masonry RVEs

7.3.1 Unit-cell dimensions and periodicity directions

In this chapter, we restrict our attention to the case of masonry characterized by
regular-textured running bond brickwork, which is made of rows of identical blocks
placed next to each other, and each row is shifted by the size of half a block with
respect to those above and below. Head and bed mortar joints fill respectively
vertical and horizontal interfaces between blocks. We indicate as Lb and Hb the
length and height of bricks, and as Lm and Hm the thickness of respectively head
and bed joints of mortar. We define L and H as

L = Lb + Lm (7.58)

H = Hb +Hm (7.59)

In the case of regular masonry, it is worth finding a pattern that repeats itself
along certain directions. We call this volume partition as Representative Volume El-
ement (RVE) and these directions as periodicity directions, which can be expressed
as

vi = αi e1 + βi e2 (7.60)

where e1 and e2 are the Cartesian axis unit vectors and αi and βi are scalars
defining the i-th periodicity direction. For the analysis of the in-plane behavior of
masonry structures, plane stress or plane strain assumptions are adopted, restricting
the computation into two dimensions. Therefore, we are concerned to define a bi-
dimensional RVE and identify two periodicity directions, v1 and v2.

The periodicity directions v1 and v2 need to satisfy the condition that, by
shifting the RVE by an integer multiple of v1 and by an integer multiple of v2, we
obtain a periodic image of the RVE with the same microstructure. If we repeat this
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shifting operation using all possible combinations of integer multipliers different
from zero, we obtain the whole plane without any gaps or overlaps.

Since finite element calculations are to be performed on the cell, it is worth
choosing the one having the least area. One of the possible choices is the RVE
made up of one brick surrounded by half mortar joints (Figure 7.1a), characterized
by the following periodicity directions

v1 = L e1 (7.61)

v2 =
L

2
e1 +H e2 (7.62)

which are non-orthogonal. The study conducted in Anthoine 1995 was one of the
first attempts to make use of this choice of the unit cell, and it was aimed to
determine its in-plane elastic properties. In particular, the author took advantage
of the properties of periodicity and symmetry to reduce the computations to a
quarter cell. Massart et al. 2004 adopted the one-brick unit cell representing bricks
and mortar as a continuum with a scalar damage model based on a non-local implicit
gradient framework. Recently, La Malfa Ribolla et al. 2020 developed a meshless
model assuming the block as elastic and the mortar joints as zero-thickness Mohr-
Coulomb interfaces with a tension cut-off. An alternative one-brick RVE can be
obtained by inclining the vertical sides, aligning them to the periodicity vector v2,
as done in Mercatoris et al. 2009 (Figure 7.1b). The result is an equivalent RVE
since the periodicity vectors and the number of bricks and mortar layers are the
same.

Sacco 2009 and Milani 2011 considered a cell composed of a brick surrounded
by two quarters of a brick on each horizontal side (Figure 7.1c), having orthogonal
periodicity directions

v1 = L e1 (7.63)

v2 = 2H e2 (7.64)

In both papers, nonlinearities were concentrated on mortar joint interfaces, in one
case (Sacco 2009) accounting for the coupling of damage and friction, based on
the interface model developed by Alfano and Sacco 2006, while in the other one
(Milani 2011) a constitutive law with frictional behavior and limited tensile and
compression strength was considered. The same unit cell was considered by De
Bellis and Addessi 2011 to develop a Cosserat-based multiscale model.

In this chapter, we first consider a one-brick RVE similar to the one adopted in
the aforementioned papers, with the difference of having the whole bed and head
joints on the top and the right RVE sides. The reason for this modification of
the RVE will be explained in Section 7.4, where the finite element model will be
described. Masonry nonlinearities are taken into account by adopting Rankine plas-
ticity with exponential softening for all components, differentiating the mechanical
parameters for bricks, head joint, and bed joint.

Then, the mechanical behavior of the one-brick RVE will be compared to the
one of the two-brick RVE and to the one of a bigger RVE, composed of a total of
six bricks and three bed joint layers (Figure 7.1d). The latter cell, in particular,
admits two different sets of periodicity directions which differ in vector v2. The
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first set, “set A”, has the following periodicity directions

v1,A = 2L e1 (7.65)

v2,A =
L

2
e1 + 3H e2 (7.66)

while the second set, “set B”, is characterized by

v1,B = 2(Lb + Lm) e1 (7.67)

v2,B =
3

2
L e1 + 3H e2 (7.68)

The purpose of these analyses is to investigate the influence of RVE size and
the choice of periodicity directions on stress-strain diagrams and localization of
inelastic strains (Stransky and Jirásek 2011; Svenning et al. 2017).

7.3.2 Prevention of rigid body motions in two-dimensional
unit cells

Restricting our attention to two-dimensional cells and considering a Cartesian co-
ordinate system 0xy, the position vector can be expressed as

x =

[
x
y

]
(7.69)

In the first order homogenization, the macroscopic strain field E imposes a
macroscopic displacement field W that is linear with respect to the position vector
x as stated in (7.10), reported here for convenience:

W (x) = W (xR) +E · (x− xR) (7.70)

The matrix form of the macroscopic strain tensor E is given by

E =

[
Exx Γxy
Γxy Eyy

]
(7.71)

If we consider the reference point as positioned in the reference-frame origin,
we have

xR =

[
0
0

]
(7.72)

Let Wx and Wy be the x and y components of W . We can rewrite (7.70) in matrix
form as [

Wx(x, y)
Wy(x, y)

]
=

[
Wx(0, 0)
Wy(0, 0)

]
+

[
Exx Γxy
Γxy Eyy

] [
x
y

]
(7.73)

or, equivalently, we can express separately the components of the macroscopic dis-
placements as

Wx(x, y) = Wx(0, 0) + Exx x+ Γxy y (7.74)

Wy(x, y) = Wy(0, 0) + Γxy x+ Eyy y (7.75)
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The macroscopic displacement field has still an underdetermination of order
two, corresponding to the two traslational rigid body motions1.

Rigid body translation are prevented by restraining the vertical and horizontal
displacement of one node. For simplicity, taking the reference-frame origin xR as
the supported node, we get

Wx(0, 0) = 0 (7.76)

Wy(0, 0) = 0 (7.77)

The resulting macroscopic displacement field is given by

W = E · x (7.78)

It is worth noting that the support position is not mandatory: it could be
changed if needed, and W would change accordingly.

7.3.3 Periodicity constraints

The assumption of periodic boundary conditions is equivalent to imposing (7.47),
here reported for convenience:

u(x+)− u(x−) = E · (x+ − x−) ∀x− ∈ Γ− (7.79)

where x+ and x− are the position vectors in the image and mirrored part respec-
tively, u is the displacement vector, and E is the macroscopic strain matrix.

The periodicity directions that define the correspondence between points of the
image and the mirrored part of the RVE boundary are strictly related to the problem
of interest. In the case of a one-brick RVE, the RVE is a rectangle having the image
side divided into three parts: the first two (Γ1 and Γ2) are half the horizontal side,
and the third one (Γ3) is the whole vertical side. While the mirrored part of the
vertical side is the opposite one, the mirrored parts of the horizontal sides are
crossed, as shown in Figure 7.2a.

If we solve the boundary-valued problem through the finite element method,
the body is discretized in finite elements, and we need to link degrees of freedom
of nodes on the periodic parts according to (7.47). When imposing the constraints,
one has to pay attention that the number of periodicity constraint equations must
be equal to the number of degrees of freedom of mirrored boundary nodes. In
the case of crossed mirrored parts, i.e., for the one-brick RVE, the definition of
these equations might not be trivial. To show an application example, we consider
an RVE discretized in eight four-nodes elements arranged in two rows. In Figure
7.2b, the link between degrees of freedom of nodes of corresponding surfaces is
pointed out through solid lines of different colors, one for each boundary part.
Particular attention must be paid to degrees of freedom of nodes belonging to two
surfaces, i.e., the ones at the intersections of different boundary parts, in order not
to build an under- or over-constrained set of equations. In Figure 7.2b, the link
between nodes 5 and 13 is missing since it is redundant, as it can be obtained as a
linear combination of the constraints between nodes 1 and 13 and nodes 1 and 5.
Analogously, imposing links between nodes 3 and 11 and nodes 3 and 15 implies a
link between nodes 11 and 15.

1Rigid body rotation is automatically prevented by the symmetry of the macroscopic
strain tensor.
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Figure 7.2: Imposition of periodicity constraints in the RVE.

One can come up with a general rule. Let Γ+ be the image (master) boundary
part and Γ− be the mirrored (slave) boundary part, which can be composed of a
set of sub-boundaries. Every node in the internal part of Γ+ must be the master of
the corresponding slave nodes belonging to Γ−. If a node belongs to two different
sub-boundaries of Γ+, then it is the master of two slave nodes. The external nodes
of the boundary Γ+ have to be excluded, as they are slaves of other master nodes.

It is worth mentioning an implementation detail. The macroscopic strain com-
ponents are usually represented as degrees of freedom of fictitious nodes in the
finite element model of the RVE. This representation is useful because we can im-
pose macroscopic strains on the RVE by imposing displacements of the fictitious
nodes, and read the macroscopic stress components as the corresponding reactions.
Conversely, we can release a fictitious node degree of freedom and prescribe forces,
representing macroscopic stress components imposed on the RVE; the correspond-
ing macroscopic strains are then determined by reading the fictitious node displace-
ments. In the example of Figure 7.2b, we define three nodes (16, 17, and 18) whose
horizontal displacement represents respectively εxx, εyy, and γxy. Therefore, the
periodic boundary conditions (7.47) reduce to linear tyings between degrees of free-
dom of the system, which can be imposed through a multi-master-slave approach.

We report here the implementation technique for multi-master-slave constraints
of the finite element solver used in this chapter. Internal constraints represent sup-
plementary equations that must be fulfilled in addition to the standard equilibrium
equations, which can be written in matrix form for the linearized case as

Ku = f (7.80)

where u and f are respectively the vectors of degrees of freedom and external forces,
and K is the stiffness matrix. Linear constraints between degrees of freedom can
be denoted in matrix form (Felippa 2004) as

Au = b (7.81)

where A is a matrix of coefficients having size m×n, m is the number of constraint
equations, and n is the number of degrees of freedom. To take into account the
constraints (7.81), the assembled master equations (7.80) must be changed.
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The i-th row of (7.81), namely

Aijuj = bj (7.82)

represents the i-th constraint equation. For a given equation i, if the number n0 of
non-zero elements of Aij is less than or equal to 2, the constraint can be imposed
as a usual external restraint (n0 = 1) or through a single master-slave approach
(n0 = 2). However, if n0 is greater than 2, the constraint imposition needs a more
general method.

For each constraint equation, we label a degree of freedom as the “slave” while
the remaining ones are labeled as “master”. The internal constraint equations
(7.81) may be rewritten as

Am um + us = b (7.83)

We can solve for the slave degrees of freedom and get

us = −Am um + b (7.84)

The system (7.80) can be partitioned as[
Kmm Kms

Ksm Kss

] [
um
us

]
=

[
fm + rm
fs + rs

]
(7.85)

where rm and rs are the constraint reactions, acting respectively on the master
and slave degrees of freedom. We assume that the internal constraints are smooth,
i.e., the reactions do not develop power on the displacement increment, namely

u̇Tm rm + u̇Ts rs = 0 ∀ u̇s, u̇m (7.86)

From (7.84) we get
u̇s = −Am u̇m (7.87)

which can be substituted into (7.86) to obtain

u̇Tm rm − u̇TmA
T
m rs = 0 ∀ u̇m (7.88)

Since the previous equation must hold for all u̇m, we get

rm = AT
m rs (7.89)

Solving the second equation of (7.85) in terms of rs and substituting it into (7.89),
we obtain

rm = AT
m (Ksm um +Kss us − fs) (7.90)

which can substitute into the first equation of (7.85) and get the reduced system

K̃ um = f̃ (7.91)

where

K̃ = Kmm −AT
mKsm −KmsAm +AT

mKssAm (7.92)

f̃ = fm −A
T
mfs −

(
Kms −AT

mKss

)
b (7.93)

We have obtained a new solving system with a reduced number of equations and
unknowns by removing the slave degrees of freedom from the vector of unknowns
u.



184 CHAPTER 7. LOCALIZATION ANALYSIS OF MASONRY RVES

7.3.4 Localization analysis

The study of localization properties of inelastic strains is of central importance for
failure modeling. When localization occurs, inelastic strain increments localize in
narrow bands while the remaining part of the body unloads elastically. The dis-
placement field remains continuous across the separation surfaces, while the strain
field may have a jump. In numerical analysis, this leads to a pathological sensitivity
of the results with respect to the spatial discretization.

The classical necessary condition for localization, as inspired by the early works
of Hadamard 1903 and Hill 1958, corresponds to the singularity of the localization
tensor, under the assumption of the same tangent stiffness tensor on both sides of
the discontinuity. This condition was later extended removing the latter assumption
(Rice and Rudnicki 1980), obtaining the following localization condition

∃v : v ·Q · v ≤ 0 (7.94)

i.e., the loss of positive definiteness of the localization tensor, which is given by

Q = n ·D · n (7.95)

whereD is the tangent stiffness tensor and n is the normal to the weak discontinuity
surface.

In the homogenization of an RVE, it is interesting to analyze its localization
properties considering the RVE as a macroscopic material point. For this pur-
pose, we have to determine consistently the stiffness tensor that relates stresses
and strains at the macroscopic level. The system of equations of the RVE takes
into account the equilibrium equations of all the microscopic degrees of freedom,
together with the constraint equations coming from the imposition of the peri-
odic boundary conditions which connects the microscopic degrees of freedom to the
macroscopic ones. If we rearrange the total RVE system of equations to the form
(V. Kouznetsova et al. 2001)[

Dee Dei

Die Dii

] [
δue
δui

]
=

[
δfe
0

]
(7.96)

where Dee, Dei, Die, and Dii are partitions of the tangent stiffness matrix of the
whole system, while δue and δfe are the variations of displacements and forces
that refer to the external degrees of freedom, i.e., the macroscopic strains, and δui
correspond to the variations of the microscopic displacements. By condensation
of (7.96), we obtain the macroscopic tangent stiffness matrix DM which relates
the variations of displacements δue and forces δfe of the macroscopic degrees of
freedom, namely

DM = Dee −DeiD
−1
ii Die (7.97)

The localization condition reduces to finding the set of vectors n for which the
following condition is satisfied,

λmin ≤ 0 (7.98)

where λmin is the minimum eigenvalue of the macroscopic localization tensor, de-
fined as

QM = n ·DM · n (7.99)

As explained in Chapter 6, the eigenvector associated to λmin represents the direc-
tion of material instability and it is called “polarization vector” and denoted with
the symbol m.
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Figure 7.3: Masonry RVEs analyzed.

7.4 Finite element model of the RVE

The boundary-value problem of the RVE is solved through the finite element
method. The body is considered as two-dimensional and discretized by 4-node
isoparametric finite elements with 2x2 Gauss integration scheme under plane stress
conditions.

To assess the different responses of masonry RVEs changing their size and the
periodicity directions, we consider three different geometries, one of which allows
two sets of periodicity directions, leading to a total of four different RVE types.
First, we consider an RVE composed of one brick and one head and bed mortar
layers (RVE-1, Figure 7.3a). This unit cell is characterized by an inclined peri-
odicity direction, which links the bottom-left corner to the mid-point of the top
side. Then, we consider the two-bricks RVE composed of a brick and two half
ones and characterized by orthogonal periodicity directions (RVE-2, Figure 7.3b).
Finally, we study the response of a bigger RVE, composed of five bricks plus two
half ones and three horizontal mortar layers. This unit cell admits two possible sets
of periodicity directions, what we denote by the letters A and B; see Figures 7.3c
(RVE-6a) and 7.3d (RVE-6b).

The constitutive law assigned to all materials inside the RVE is Rankine elasto-
plasticity, which can reproduce the tensile failure of both bricks and mortar layers.
The Rankine yield function reads

f(σ, κ) = σI − σY (κ) (7.100)

where σI is the maximum principal stress. We assume an exponential softening
given by

σY (κ) = ft exp

(
−ft
g
κ

)
(7.101)
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Bricks Bed Joints Head joints

EY [GPa] 5.0 1.0 0.5
ν [-] 0.15 0.35 0.35

ft [MPa] 2.500 0.250 0.125
g [N·m/m3] 700 250 60

Table 7.1: Mechanical parameters (strong-bricks scenario)

where ft is the tensile strength, g is the dissipated energy per unit volume, i.e.,
the ratio between the dissipated energy per unit area and the finite element char-
acteristic length, and κ the hardening variable. The latter is equal among all finite
elements, since the RVE is discretized in finite elements of the same size (squares
with side 1.0 cm). More details regarding Rankine plasticity model implemented
in the numerical solver are reported in Section 7.5.

Different mechanical parameters, reported in Table 7.1, are assigned to bricks,
head joints, and bed joints. In addition to the symbols already defined, we denote
with EY and ν the Young modulus and Poisson ratio, respectively. In particular, we
consider two different scenarios: strong bricks, in which bricks have higher tensile
strength, and weak bricks, where bricks and mortar have similar tensile strength.
In the latter case, the mechanical parameters are the same as reported in Table 7.1,
with the only difference of a value of brick tensile strength of 0.5 MPa. The elastic
moduli have been chosen as typical ones taken from literature.

The mortar bed and head joints are discretized, respectively, by only one row
and column of elements to force the inelastic strain localization into the entire
joint thickness. The RVE is subjected to isostatic restraints for preventing rigid
body motions. To retrieve the macroscopic stresses and strains associated to the
RVE, we perform the homogenization procedure described in the preceding section,
which consists in imposing the periodic boundary conditions over RVE boundary
parts. The periodicity directions define the correspondence between points on the
boundary parts. The displacements of the corresponding points are linked by lin-
ear internal constraints that depend on their relative position and the macroscopic
strains, as expressed by (7.47). In the numerical model, it is useful to interpret
the macroscopic strain components as degrees of freedom of a fictitious node. This
way, we can impose macroscopic strains on the RVE by imposing displacements of
the fictitious node, and the corresponding reactions, multiplied by the RVE vol-
ume, represent the macroscopic stress components. Conversely, we can release a
degree of freedom of the fictitious node and prescribe a force, which now repre-
sents a macroscopic stress component. The corresponding macroscopic strains are
determined by reading the fictitious node displacements.

In Section 7.6 and 7.7, we analyze the RVE under uniaxial and shear-compression
stresses. Analyses are performed in indirect displacement control (Jirásek and
Bažant 2001), in which the RVE is subjected to a set of loads, a function of a scalar
multiplier. The scalar multiplier represents an additional unknown determined by
monitoring the monotonic increase of a linear combination of controlled degrees of
freedom during the process. We consider a linear loading program, characterized
by

fext(µ) = f0 + µf1 (7.102)

where f0 is the part of external forces kept constant during the process, and f1 is
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the scaled component.

The discretized equation of equilibrium reads

f int(d) = fext(µ) (7.103)

where d is the nodal displacement vector. Since this equation is nonlinear, an
incremental-iterative procedure must be used. We start at step number (n) with

the known quantities d(n−1) and µ(n−1), and we are looking for the values

d(n) = d(n−1) + ∆d µ(n) = µ(n−1) + ∆µ (7.104)

so that

f int(d
(n)) = f0 + µ(n)f1 (7.105)

The scalar multiplier µ is an additional unknown which can be determined by the
condition

cT∆d = ∆l (7.106)

where ∆l is a constant which determines the step size, and c is a column matrix
containing coefficients at individual nodal displacements. The linearized equation
at a given iteration i reads

f
(n,i−1)
int +K(n,i−1) δd(n,i) = f0 + µ(n,i−1)f1 + δµ(n,i)f1 (7.107)

where δd(n,i) and δµ(n,i), which represent the unknowns of the system, are respec-
tively the correction of the displacement increment ∆d and the load parameter
increment ∆µ. We can separately solve the equations

K(n,i−1) δd0 = f0 + µ(n,i−1)f1 − f
(n,i−1)
int (7.108)

K(n,i−1) δdf = f1 (7.109)

and express the correction as

δd(n,i) = δd0 + δµ(n,i)δdf (7.110)

In order to determine the load multiplier correction, we can use the constraint
equation

cT
(

∆d(n,i−1) + δd(n,i)
)

= ∆l (7.111)

which combined with (7.110) gives

δµ(n,i) =
∆l − cT ∆d(n,i−1) − cT δd0

cT δdf
(7.112)

In summary, at the given step n, we impose a displacement increment ∆l of the con-
trolled node, and, for each iteration, we find the correction of the displacement and
the load parameter increment by (7.110) and (7.112) respectively. The iterations
stop when a selected convergence criterion is fulfilled for the equilibrium equations
(7.105).
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7.5 Rankine plasticity

It is useful to write the model equations in the standard form corresponding to a
general formulation of plasticity. The Voigt notation will be used in the following.

Elastic-plastic split:
ε = εe + εp (7.113)

Stress-strain law for the elastic part:

σ = De εe (7.114)

Admissibility condition:
f(σ, κ) ≤ 0 (7.115)

Associated flow rule:
ε̇p = λ̇f (7.116)

λ̇ ≥ 0 (7.117)

where

f =
∂f(σ, κ)

∂σ
(7.118)

Loading-unloading condition:
λ̇f(σ, κ) = 0 (7.119)

The Rankine yield function reads

f(σ, κ) = σI − σY (κ) (7.120)

where σI is the first principal stress and σY (κ) is the yielding stress, function of
the hardening variable κ. In the plane stress case, we can express the first principal
stress in terms of the plane stress components σxx, σyy, and τxy, namely

f(σ, κ) =
σx + σy

2
+

√(
σx − σy

2

)2

+ τ2xy − σY (κ) (7.121)

which can be rewritten in matrix form as

f(σ, κ) = δTσ +
√
σTPσ − σY (κ) (7.122)

where the stress σ is expressed in the Voigt notation as

σ =

 σx
σy
τxy

 (7.123)

and the auxiliary matrices P and δ are defined as

P =

 1/4 −1/4 0
−1/4 1/4 0

0 0 1

 δ =

 1/2
1/2
0

 (7.124)

The numerical scheme deals with the following derivatives:

f = δ +
Pσ√
σTPσ

(7.125)
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∂f

∂σ
=

P√
σTPσ

+
(Pσ) (Pσ)

T√
(σTPσ)

3
(7.126)

∂f

∂κ
= 0 (7.127)

∂f

∂κ
= −∂σY

∂κ
(7.128)

We consider an exponential softening law given by

σY = ft exp(−ft
g
κ) (7.129)

where ft is the initial value of the tensile strength and g is the dissipated energy
per unit volume.

We define the hardening parameter κ in the strain-hardening hypothesis, namely

κ̇ = ‖ε̇p‖ (7.130)

It is useful to evaluate the norm of the plastic strain rate in Rankine plasticity. In
tensor notation, it would be given by ‖ε̇p‖ =

√
ε̇p : ε̇p. In the Voigt notation we

must write

‖ε̇p‖ =
√
ε̇TpQ

−1ε̇p = λ̇

√
fTQ−1f (7.131)

where

Q−1 =

 1 0 0
0 1 0
0 0 1/2

 (7.132)

is a suitable scaling matrix that converts a strain-like column matrix into a stress-
like column matrix. It is worth noting that

P TQ−1P =
1

2
P (7.133)

P TQ−1δ = 0 (7.134)

δTQ−1δ =
1

2
(7.135)

Based on these relations, it is easy to evaluate

fTQ−1f =
σTP TQ−1Pσ

σTPσ
+ 2

σTP TQ−1δ√
σTPσ

+ δTQ−1δ =

=
1

2
+ 0 +

1

2
= 1 (7.136)

and (7.131) simplifies to

‖ε̇p‖ = λ̇ (7.137)

which gives also

κ̇ = λ̇ (7.138)
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7.5.1 Comment on vertex of the yield surface

The expression for the gradient of the yield function, given in (7.125), contains a
fraction, and the denominator of this fraction vanishes if

σTP σ = 0 (7.139)

Due to the structure of matrix P specified in (7.124), this can happen only if
σx = σy and τxy = 0, i.e., the stress tensor in spherical. This condition corresponds
to a certain line in the stress space, passing through the origin. We are concerned
only about the point at the intersection of this line with the yield surface, which is
located at

σx = σY (7.140)

σy = σY (7.141)

τxy = 0 (7.142)

The yield surface is actually a surface in the three-dimensional stress space, and
the singularity appears at one point only, so it corresponds to a vertex. For any
nonzero value of the shear stress, the section remains smooth.

The normal to the yield surface at the vertex is not uniquely defined. Instead,
one can characterize the normal cone, consisting of all vectors that are normal to
planes that pass through the vertex and do not intersect the elastic domain (i.e.,
the interior of the yield surface). A vector s belongs to the normal cone if

s ·∆σ ≤ 0 (7.143)

for all vectors ∆σ that represents the difference between an arbitrary point on the
yield surface and the vertex point. Let us now find an explicit description of the
normal cone.

Suppose that the stress state at the vertex is changed by ∆σ such that the
resulting state remains on the yield surface. The yield condition written for this
modified state reads

∆σx + ∆σy
2

+

√(
∆σx −∆σy

2

)2

+ ∆τ2xy = 0 (7.144)

This condition can be rewritten as√(
∆σx −∆σy

2

)2

+ ∆τ2xy = −∆σx + ∆σy
2

(7.145)

(∆σx −∆σy)
2

+ 4∆τ2xy = (∆σx + ∆σy)
2

(7.146)

−2∆σx∆σy + 4∆τ2xy = 2∆σx∆σy (7.147)

∆τxy = ±
√

∆σx∆σy (7.148)

For an admissible change of normal stresses, it is possible to evaluate the corre-
sponding change of shear stress such that the modified state satisfies the yield
condition. The magnitude of the shear stress is obtained from (7.148) but the sign
remains arbitrary. By admissible changes of normal stresses we mean nonpositive
ones, because the square root in (7.148) can be evaluated only if ∆σx∆σy ≥ 0
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and the yield condition (7.144) can be satisfied only if ∆σx + ∆σy ≤ 0, which in
effect leads to constraints ∆σx ≤ 0 and ∆σy ≤ 0. It is convenient to characterize
admissible stress changes by

∆σx = −∆σ cosβ (7.149)

∆σy = −∆σ sinβ (7.150)

∆τxy = ±
√

∆σx∆σy = ±∆σ
√

cosβ sinβ (7.151)

where ∆σ ≥ 0 and β ∈ [0, π/2].
Now let us substitute the admissible stress changes into condition (7.143):

sx∆σx + sy∆σy + sxy∆τxy ≤ 0 (7.152)

−sx∆σ cosβ − sy∆σ sinβ ± sxy∆σ
√

cosβ sinβ ≤ 0 (7.153)

sx cosβ + sy sinβ ± sxy
√

cosβ sinβ ≥ 0 (7.154)

The magnitude of the stress change has disappeared and only the “direction”,
characterized by angle β, has remained. Condition (7.154) should be satisfied for
all β ∈ [0, π/2]. Special cases β = 0 and β = π/2 directly lead to sx ≥ 0 and
sy ≥ 0. If we set both sx and sy to zero, condition (7.154) cannot be satisfied for
both signs, unless sxy = 0, but this would give a zero vector s. Now we can select
sx and sy such that one of them is positive and the other at least nonnegative, and
we can look for the admissible range of values of sxy such that (7.154) holds for
both signs. This condition can be rewritten as

±sxy
√

cosβ sinβ ≤ sx cosβ + sy sinβ (7.155)

|sxy| ≤
sx cosβ + sy sinβ√

cosβ sinβ
(7.156)

Since β is an arbitrary angle between 0 and π/2, the right-hand side needs to be
minimized with respect to β. A simple calculation shows that the partial derivative
of the fraction on right-hand side with respect to β vanishes if sx cosβ = sy sinβ,
and the corresponding value of the fraction is 2

√
sxsy. The normal cone is thus

characterized by conditions

sx ≥ 0 (7.157)

sy ≥ 0 (7.158)

|sxy| ≤ 2
√
sxsy (7.159)

Any vector with components sx, sy, and sxy satisfying these conditions is a gen-
eralized “normal” to the yield surface at the vertex. The same arguments can be
used for the plastic potential since it is equal to the yield function for the present
model.

For a stationary (non-evolving) yield surface, it would be easy to check whether
the stress return algorithm should end up at the vertex. One would simply take
the difference between the trial stress and the stress at the vertex, transform it into
strain by applying the elastic compliance operator, and then check whether the
resulting vector corresponds to one of the potential flow directions at the vertex.
Since the yield surface is evolving, the check is somewhat more complicated because
the stresses at the vertex after softening during the current step are not known in
advance. One needs to find iteratively the increment of the hardening variable κ,
assuming that the stress state at the end of the increment is at the vertex, and only
then check whether the direction of plastic flow is admissible.
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7.5.2 Stress return to a regular point

The standard stress-return algorithm used here is based on the backward Euler
scheme. This means that the flow direction is determined for the state at the end
of the step. Let us denote σ(n) the stress at the beginning of the increment. The
stress state at the end of the increment can be expressed as

σ = σ(n) +De (∆ε−∆εp) = σ(tr) −De∆εp (7.160)

where
σ(tr) = σ(n) −De∆εp (7.161)

is the trial stress and ∆εp is the (unknown) plastic strain increment. The flow rule
is approximated by

∆εp = ∆κf(σ, κ(n) + ∆κ) (7.162)

where f denotes the flow direction evaluated as the gradient of the yield function
at the end of the step and ∆κ is the increment of the hardening variable, which is
equal to the increment of the plastic multiplier (for the present model).

In a regular stress return, one would iteratively solve equations

σ + ∆κDe f(σ, κ(n) + ∆κ) = σ(tr) (7.163)

f(σ, κ(n) + ∆κ) = 0 (7.164)

with unknowns σ and ∆κ.
The previous set of nonlinear equations (7.163-7.164) is cast in a format of

residuals at the integration point level:

rσ = σ − σ(tr) + ∆κDe f(σ, κ) (7.165)

rf = f(σ, κ) (7.166)

The system can be solved using the Newton-Raphson method:

 σk+1

κk+1

 =

 σk

κk

−

∂rσ
∂σ

∂rσ
∂κ

∂rf
∂σ

∂rf
∂κ


−1  rσ

k

rf
k

 (7.167)

where the superscript k denotes the iteration counter of the method at the integra-
tion point level. The differentials in (7.167) can be elaborated as

∂rσ
∂σ

= I + ∆κDe
∂f

∂σ
(7.168)

∂rσ
∂κ

= De f + ∆κDe
∂f

∂κ
(7.169)

∂rf
∂σ

= f (7.170)

∂rf
∂κ

=
∂f

∂κ
(7.171)

Tangent stiffness operator is given by differentiating (7.163-7.164), which gives

σ̇ + ∆κDe
∂f

∂σ
σ̇ +De f κ̇+ ∆κDe

∂f

∂κ
κ̇ = De ε̇ (7.172)

fT σ̇ +
∂f

∂κ
κ̇ = 0 (7.173)
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By defining the following auxiliary quantities

m = f + ∆κ
∂f

∂κ
(7.174)

A = I + ∆λDe
∂f

∂σ
(7.175)

h = −∂f
∂κ

(7.176)

we can rewrite (7.172-7.173) as

Aσ̇ = De (ε̇−m κ̇) (7.177)

fT σ̇ = h κ̇ (7.178)

Substituting the expression of σ̇ obtained from (7.177)

σ̇ = A−1De (ε̇−m κ̇) (7.179)

into (7.178), we have

κ̇ =
fTA−1De ε̇

h+ fTA−1Dem
(7.180)

which can be substituted again into (7.179), giving the algorithmic tangential stiff-
ness relation between stress and strain rates

σ̇ =

(
A−1 − A

−1DemfTA−1

h+ fTA−1Dem

)
De ε̇ (7.181)

7.5.3 Stress return to the vertex

In the special case of vertex return, the flow direction is not a unique function of the
final stress state but on the other hand the final stress state is a unique function of
the hardening variable. We will consider the components of plastic strain increment
as primary unknowns, express ∆κt as the norm of ∆εp, and then set up equation

σ(vtx)(κ(n) + ‖∆εp‖) +De∆εp = σ(tr) (7.182)

in which σ(vtx)(κ) denotes the vertex stress state considered as function of the
hardening variable, κ. From (7.182), the plastic strain increment can be computed,
and then we need to check whether it is included in the normal cone evaluated for
the final stress state.

For the specific form of yield function used by this model, equations (7.182)
can be expanded component by component into

σx(κ(n) + ‖∆εp‖) +D11∆εpx +D12∆εpy = σ(tr)
x (7.183)

σy(κ(n) + ‖∆εp‖) +D21∆εpx +D22∆εpy = σ(tr)
y (7.184)

D33∆γpxy = τ (tr)xy (7.185)

where Dij denote the components of the elastic stiffness matrix (for simplicity) and

‖∆εp‖ =
√

∆ε2px + ∆ε2py + ∆γ2pxy/2 (7.186)
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is the tensorial norm of the plastic strain increment (note the factor 1/2 at the
shear term). Equation (7.185) is linear and contains a single unknown. Equations
(7.183)–(7.184) are then solved iteratively as two coupled nonlinear equations with
unknowns ∆εpx and ∆εpy. Once the solution is found, we need to check whether it
satisfies conditions that characterize the normal cone, which are rewritten here as

∆εpx ≥ 0 (7.187)

∆εpy ≥ 0 (7.188)

|∆γpx| ≤ 2
√

∆εpx∆εpy (7.189)

In fact, since stiffnesses Dij are positive and σi is always nonnegative, one can
immediately exclude cases in which at least one of the normal components of trial
stress is negative. If this first test is passed, one can perform a refined test, in which
the maximum possible increment of hardening variable κ is estimated by solving
linear equations

D11∆εpx +D12∆εpy = σ(tr)
x (7.190)

D21∆εpx +D22∆εpy = σ(tr)
y (7.191)

D33∆γpxy = τ (tr)xy (7.192)

which would describe return to the origin of the stress space (extreme position of
the vertex). This largest possible increment is then used to evaluate the minimum
possible values of residual strengths σx and σy, and if at least one of them exceeds
the corresponding component of trial stress, the solution cannot be admissible.
Based on these checks, one can right away exclude many cases and directly proceed
to the regular stress return. On the other hand, if both tests are passed, it is perhaps
better to run the vertex return first, and only if the solution is not admissible,
proceed to the regular return. The reason is that if the regular return is run for a
trial state in the vertex region, convergence problems can be expected because of
the high sensitivity of the plastic flow direction to the stress state in the vicinity of
a singularity.

7.6 Analysis of the one-brick RVE

The one-brick RVE (Figure 7.3a) is analyzed under basic stress scenarios to test the
model reliability with respect to the experimental observations. We recall that the
RVE is discretized in finite elements having the thickness of mortar layers as the
maximum size. The microscopic response of masonry is simulated through Rankine
plasticity for all the constituents, differentiating the mechanical properties among
bricks, head and bed joints, as shown in Table 7.1.

We perform nonlinear analysis in indirect displacement control. If we put the
fictitious degrees of freedom corresponding to the macroscopic strains as the last
three components of the displacement vector d, namely

d =
[
... εxx εyy γxy

]T
(7.193)

the corresponding components of f0 and f1 represent respectively the constant part
and the proportionally varying one of the macroscopic stress in the linear loading
program defined in (7.102) and here reported for convenience

fext(µ) = f0 + µf1 (7.194)
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where µ is the scalar load multiplier. The increasing strain direction is defined by
properly choosing the last three components of the vector c, namely

c =
[
... α1 α2 α3

]T
(7.195)

where α1, α2, and α3 are coefficients individuating the macroscopic degrees of
freedom to be controlled during the nonlinear analysis, while the other components
of c are zero.

In the following analyses, vectors f1 and c are equal, i.e., the increasing strain
and controlled stress directions are the same. Therefore, analyses are identified by
vectors c and f0 only.

In the following paragraphs, we report the evolution of the macroscopic stresses
and strains in the direction individuated by the vector c. The macroscopic stress
Σ is obtained by dividing the multiplier by the RVE volume, namely

Σ =
µ

VRV E
(7.196)

while the macroscopic strain E is considered as

E = cT d (7.197)

Eventually, the RVE response will be compared to the one of a macroscopic
model widely used to analyze masonry, namely Lourenço’s model. The differences
between the two models in terms of stiffness, strength, and localization properties
under uniaxial tensile states will be investigated.

7.6.1 RVE response to basic stress conditions

The one-brick RVE response has been tested under some basic stress states to assess
its effectiveness to model microscopic masonry mechanics.

Vertical tension First, the RVE is tested under vertical tension. The corre-
sponding vectors defining the indirect displacement control analysis are

c =
[
... 1 0 0

]T
(7.198)

f0 =
[
... 0 0 0

]T
(7.199)

The RVE exhibits localization of plastic strains in the whole bed joint (Figure
7.9a). The stress-strain graph (Figure 7.4) shows a clean exponential softening.
The evolution of the minimum localization tensor eigenvalue exhibits a sudden
drop to a negative value when the bed joint starts yielding and its value keeps to
be negative, tending to zero. The corresponding localization angle is π/2, which is
consistent with the bed joint localization observed experimentally.

We report here a thorough localization analysis of the RVE under vertical
tension. We analyze the step at which we obtain the lowest localization tensor
eigenvalue, namely right after the tensile stress peak. After condensation on the
macroscopic degrees of freedom, the tangent stiffness reads

DM =

 3895.4 −185.9 0
−185.9 −1016.9 0

0 0 994.5

 MPa (7.200)
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Figure 7.4: Evolution of the stress-strain relation, λmin, and θloc under
vertical tension.

The The minimization of the localization tensor eigenvalues over all possible nor-
mals n gives

λmin = −1016.8 MPa (7.201)

which is referred to
nloc = [ 0.00789 0.99997 ]T (7.202)

The localization tensor corresponding to nloc is given by

Q(nloc) =

[
994.7 6.4
6.4 −1016.8

]
MPa (7.203)

and the eigenvector associated to the minimum eigenvalue (polarization vector) is
given by

m = [ −0.00317 0.99999 ]T (7.204)

Therefore, we can conclude that vectors n and m almost coincide and the localiza-
tion band is horizontal and opens in mode I. Figure 7.5a represents vectors n and
m and the localization surface over the RVE plastic strain pattern.

Horizontal tension The test under horizontal tension is performed by choos-
ing the following vectors

c =
[
... 0 1 0

]T
(7.205)

f0 =
[
... 0 0 0

]T
(7.206)

(7.207)
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(a) Normal n and polarization vector m.
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(b) Variation of the minimum localization tensor
eigenvalue with the normal n.

Figure 7.5: Localization analysis of the RVE under vertical tension.

The RVE is tested with two different sets of mechanical parameters, aimed to model
the scenario of strong or weak bricks. In the “strong-bricks scenario”, mortar rep-
resents the only source of weakness for masonry, and mortar joints are the zones
where plastic strains tend to localize. The chosen set of parameters is reported
in Table 7.1, and it is characteristic of new masonry construction. In some cases,
however, bricks might be weaker, and cracks might propagate through them. To
account for this failure mechanism, the RVE has been tested with a different set of
mechanical parameters, which we call the “weak-brick scenario”, where the brick
tensile strength is reduced to 0.5 MPa, while the other parameters are kept equal.
The graphs of the stress-strain relation and the localization properties evolution
are reported in Figure 7.6. The plastic strain and stress maps at the last step of
the analysis are shown in Figure 7.9b-7.9c. In both cases, the head joint starts
yielding first, as testified by the slight change in the stress-strain diagram slope.
Afterward, the yielding mechanism differs. In the strong-brick case, the block slides
along one half of the bed joint, and failure occurs after its complete deterioration.
The minimum localization tensor eigenvalue progressively decreases and eventually
becomes negative, satisfying the localization condition. The corresponding local-
ization surface confirms the zig-zag pattern as the normal n is inclined by an angle
slightly bigger than π/4. In the weak-brick case, a vertical localized band forms in
the middle of the brick, triggered by the head-joint of the adjacent brick layers. The
corresponding localization angle is θloc = 0, which is consistent with the forming
vertical band.

Here, we report the RVE localization analysis in the interesting case of horizon-
tal tension in the strong-brick scenario, which shows a zig-zag failure pattern. The
analysis step considered is again the one corresponding to the lowest localization
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Figure 7.6: Evolution of the stress-strain relation, λmin, and θloc under
horizontal tension for both weak- and strong-bricks scenarios.

tensor eigenvalue registered during the analysis. The macroscopic tangent stiffness
matrix is given by

DM =

 1766.7 −866.5 136.0
−866.5 441.5 −196.6
−136.0 −196.6 302.5

 MPa (7.208)

The minimization of the localization tensor eigenvalues over all possible normals n
gives

λmin = −61.7 MPa (7.209)

which is referred to

nloc = [ 0.54486 0.83853 ]T (7.210)

The localization tensor corresponding to nloc is given by

Q(nloc) =

[
612.9 −436.3
−436.3 220.5

]
MPa (7.211)

and the eigenvector associated to the minimum eigenvalue (polarization vector) is
given by

m = [ 0.54310 0.83967 ]T (7.212)

Therefore, we have an inclined band which opens in mode I, since the vectors n and
m almost coincide. Figure 7.5a represents vectors n and m and the localization
surface over the RVE plastic strain map.
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(a) Normal n and polarization vector m.
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Figure 7.7: Localization analysis of the RVE under horizontal tension (strong
bricks).
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Figure 7.8: Evolution of the stress-strain relation, λmin, and θloc under
vertical and horizontal compression.

Horizontal and vertical compression The RVE is then tested under ver-
tical and horizontal compression. The values of the quantities determining the
analysis in indirect displacement control are the same as in (7.198-7.199) and (7.205-
7.206), respectively for vertical and horizontal compression, with the only difference
of having a negative value of ∆` from (7.106). Although the Rankine yielding crite-
rion is in general not suitable for capturing failure in compression, the RVE model
can reproduce the typical failure of a masonry specimen in vertical compression
due to tensile strength overcoming in the transversal direction (this mechanism is
thoroughly discussed in Section 2.2.1). Figure 7.9d shows the formation of vertical
bands in the bricks due to horizontal tension originated by vertical compression. In
horizontal compression, inelastic strains are localized in the horizontal bed joints,
as shown in Figure 7.9e. The behavior in both vertical and horizontal compression
is extremely brittle (Figure 7.8). The angles of the potential localization surfaces
are θloc = 0 for vertical compression, and θloc ' 7/16π for horizontal compression.

Shear-compression tests Finally, the masonry RVE has been tested in shear,
by varying vertical compression in the range −1.25 MPa ≤ σ0 ≤ 0. The correspond-
ing vectors of the indirect displacement control analysis are

c =
[
... 0 0 1

]T
(7.213)

f0 =
[
... 0 σ0 VRV E 0

]T
(7.214)
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(a) Vertical tension.
(b) Horizontal tension (strong bricks).

(c) Horizontal tension (weak bricks). (d) Vertical compression.

(e) Horizontal compression.

Figure 7.9: Plastic strain and tensile principal stress patterns for vertical
and horizontal, tension and compression tests in the one-brick RVE.
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Figure 7.10: Stress-strain graphs for shear-compression tests with varying
vertical compression.

The RVE is able to model the typical frictional behavior of masonry under shear
stresses as the shear strength increases and the behavior becomes brittler with
the increase of the vertical compression (see Figure 7.10). The plastic strain and
principal stress map are reported in Figure 7.11. In the absence of vertical compres-
sion (Figure 7.11a), we observe a shear-sliding mechanism along the bed joint. By
increasing the vertical compression, the failure mode gradually switches to brick
cracking. Plastic strains localize into two inclined bands for moderate compres-
sions (Figures 7.11b-7.11d), which successively coalesce into a single vertical band
(Figures 7.11e-7.11f).

7.6.2 Localization properties and comparison with Lourenço’s
model

Masonry structures can be studied by considering their actual microstructure through
explicit modeling of each constituent, as done in this chapter, or by defining a
macroscopic constitutive law that phenomenologically reproduces the microstruc-
tural mechanics, as done in Chapter 6. It is interesting to compare the localization
properties predicted with these two modeling techniques.

The macroscopic model chosen as the reference is Lourenço’s model (Lourenço,
De Borst, et al. 1997), formulated in the orthotropic multi-surface plasticity frame-
work, having a Rankine-type yielding surface in the tensile part and a Hill-type
yielding surface for the compressive part. Its localization properties have been
studied in Chapter 6 (see also Pagani, Jirásek, et al. 2020). Lourenço’s model me-
chanical parameters are chosen here to match the RVE’s elastic stiffness and tensile
strength along the two material axes x and y (horizontal and vertical), and they
are reported in Table 7.2.

We chose to compare the localization response under uniaxial tension states
only since the Rankine plasticity model of the RVE cannot capture failure due
to compression properly. Moreover, as discussed in Chapter 6, localization band
directions due to compression from Lourenço’s model do not well represent the
actual compression failure mechanism of masonry, since two inclined localization
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(a) σ0=0. (b) σ0=-0.10 MPa.

(c) σ0=-0.25 MPa. (d) σ0=-0.50 MPa.

(e) σ0=-1.00 MPa. (f) σ0=-1.25 MPa.

Figure 7.11: Plastic strain and tensile principal stress patterns for shear-
compression tests in the one-brick RVE.

Elastic parameters Tensile parameters

Exx Eyy νxy Gxy ft,x ft,y Gt,x Gt,y α
[GPa] [GPa] [-] [GPa] [MPa] [MPa] [N/mm] [N/mm] [-]

3.56 3.08 0.15 1.50 0.49 0.24 0.02 0.02 1.50

Table 7.2: Mechanical parameters considered for Lourenço’s model.
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Figure 7.12: Stress-strain graphs and localization-indicator evolution for
uniaxial tension tests varying stress direction (RVE).

surfaces are predicted to form in the specimen, instead of a vertical one (due to
tensile lateral splitting) as it can be seen in experimental tests. The vectors defining
the indirect displacement control analysis are

c =
[
... cos2 φ sin2 φ cosφ sinφ

]T
(7.215)

f0 =
[
... 0 0 0

]T
(7.216)

where φ is the uniaxial tensile stress direction.
The numerical results on the RVE varying the uniaxial stress angle are shown

in Figure 7.12 in terms of stress-strain diagrams and in Figure 7.13 in terms of
deformed shape and plastic strain map. It can be seen that there is a gradual
change of failure mechanism, varying from the brittle bed joint failure for close-to-
vertical tensile directions, characterized by lower values of tensile strength, to the
frictional behavior for close-to-horizontal tensile angles, with a failure mechanism
which involves bed-joint sliding. The yielding activation of the whole bed joint
occurs in the case of vertical tension, while in the other cases plastic strains localize
in the head and bed joints.

Figure 7.14 shows the comparison between Lourenço’s and RVE models under
uniaxial tension in terms of initial stiffness, tensile strength, and localization angles.
The elastic stiffness variation with the tension direction shows a different trend. In
Lourenço’s model, the elastic stiffness exhibit a shallow variation with the minimum
reached in correspondence of the weaker axis, here the y-axis. Contrarily, the RVE
elastic stiffness steeply drops to its minimum value, reached for θ ' 5/16π, which
is 10% lower than the one related to the weaker material axis. Similarly, the RVE’s
tensile strength exhibits a steeper decrease than Lourenço’s model, as the failure
mechanism rapidly switches from bed-joint sliding to tensile splitting. The lowest
strength value occurs for π ' 3/8π.

Figures 7.14c and 7.14d show respectively localization angles and the difference
between localization angles and loading angle. In the RVE model, the localization
angles are determined as the ones that minimize the lowest eigenvalue of the RVE
localization tensor defined in (7.98). Except for tensile angles close to π/2, i.e.
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(a) φ=0.

(b) φ = π/8.

(c) φ = π/4. (d) φ = 3π/8.

(e) φ = π/2.

Figure 7.13: Plastic strain and tensile principal stress patterns for uniaxial
tension tests in the one-brick RVE.
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Figure 7.14: Comparison of Lourenço’s and RVE model under uniaxial ten-
sion tests.
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Figure 7.15: Stress-strain graphs varying the RVE size.

quasi-vertical tensile stresses, for which we have localization angles close to π/2, re-
sulting in horizontal localization surfaces, the value of localization angles is always
close to φ ' 3/8π, resulting in an inclined localization band that reflects the zig-zag
pattern of the inelastic strains. On the other hand, Lourenço’s model localization
angles are closer to the actual tensile angle φ, as shown in Figure 7.14d. This high-
lights that only a refined model that explicitly represents masonry constituents can
properly account for the brickwork influence on the localization properties, while a
macroscopic model can only phenomenologically reproduce the overall behavior.

7.7 Analysis varying the RVE size and periodicity
directions

This section is devoted to studying the effect of variation of size and periodicity
directions on the RVE localization properties. In fact, by increasing its size, the
RVE might have more freedom for the localization path development due to the
presence of a larger number of mortar layers, which are the weaker zone of the
masonry microstructure. Moreover, for larger RVEs (see Figures 7.3c-7.3d) it is
possible to have multiple sets of periodicity directions. The choice of the periodicity
direction may further influence the RVE response, as shown in Stransky and Jirásek
2011. Therefore, it is also interesting to study the difference, if any exists, in
inelastic strain localization between two periodicity direction sets within the same
RVE.

The RVEs considered in this study are a) the one-brick RVE, b) the two-brick
RVE, and c) and d) the six-brick RVE with, respectively, the set A and B of
periodicity directions. A representation of their finite element discretization is
reported in Figure 7.3. For simplicity, we restricted the analyses to two stress
states only, vertical tension and pure shear. Although the obtained results allow
some interesting comments, a thorough study of the RVE response varying its size
in a wider range of stress scenarios needs to be carried out.

In a first analysis, the RVEs do not behave differently in both vertical tension
and shear tests. The stress-strain curves are exactly the same (Figure 7.15), and
plastic strains localize in bands (horizontal ones due to vertical tension and stepped
bands due to shear, see Figures 7.16 and 7.17), but they repeat themselves along
parallel paths. In other words, inelastic strain localization is “smeared” within the
RVE.
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(a) RVE-1. (b) RVE-2.

(c) RVE-6a. (d) RVE-6b.

Figure 7.16: Plastic strain maps under vertical tension varying RVE size.

(a) RVE-1. (b) RVE-2.

(c) RVE-6a. (d) RVE-6b.

Figure 7.17: Plastic strain maps under pure shear varying RVE size.
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Figure 7.18: Stress-strain graphs varying the RVE size, after the introduc-
tion of localization triggering weaknesses.

Then, we introduced material imperfections to trigger localization in the RVE.
The elements located at the intersections between head and bed joints have been
weakened through a 20% reduction of tensile strength. Consequently, the RVEs
started to behave differently. The stress-strain graphs show a brittler response
while increasing the RVE size (Figure 7.18), and inelastic strains now localize in a
single band within the RVE. In vertical tension, the two six-bricks RVEs (RVE-6a
and RVE-6b) do not exhibit any difference both in localization properties (Figure
7.19) and in the stress-strain curve. However, in the shear test, a different perco-
lation path occurs in RVE-6a and RVE-6b, which might be caused by the different
periodicity directions. In the two six-bricks RVEs, in fact, localization starts from
the element, located in the upper bed-joint layer, which is linked to the origin
through the inclined periodicity direction, see Figure 7.3. Therefore, in the case of
pure shear, the periodicity direction variation leads only to a change in the element
that triggers localization, which results in a variation of its path.

It is worth noting that the assumption of periodic boundary conditions imposes
a constraint on the localization formation. The localization bands, in fact, must
respect the periodic stacking of the RVE. We can conclude that the need to follow
both the brickwork pattern and the periodic displacement boundary conditions
strongly limits the development of a strain localization band, despite the size of the
RVE.

7.8 Remarks

A microscale model for regular masonry has been developed, treating its con-
stituents as continua with a Rankine plasticity constitutive law. The model has
proved to model masonry micromechanics effectively. Vertical tension induces frag-
ile tensile splitting of bed mortar joints; the strength mechanism under horizontal
tension is characterized either by bed-joint sliding or brick cracking depending on
the relative yielding stress value between bricks and mortar; failure due to ver-
tical compression occurs with the formation of vertical bands; shear-compression
tests show the typical frictional mechanism of masonry, with an increase of shear
strength with the increase of vertical compression and a failure mechanism gradu-
ally switching from bed-joint sliding to diagonal cracking of bricks.

A comparison of the localization properties of masonry has been assessed be-
tween models of different scales of representation. The localization angles computed



210 CHAPTER 7. LOCALIZATION ANALYSIS OF MASONRY RVES

(a) RVE-1. (b) RVE-2.

(c) RVE-6a. (d) RVE-6b.

Figure 7.19: Plastic strain maps under vertical tension varying RVE size,
after the introduction of localization triggering weaknesses.

(a) RVE-1. (b) RVE-2.

(c) RVE-6a. (d) RVE-6b.

Figure 7.20: Plastic strain maps under pure shear varying RVE size, after
the introduction of localization triggering weaknesses.
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within the RVE have been compared to those of a macroscopic constitutive law suit-
able for masonry, namely Lourenço’s model. The resulting discontinuity surfaces
from the RVE model testify that a more detailed representation of the microstruc-
ture can better reproduce masonry localization properties.

The RVE behavior varying its size was studied under vertical tension and pure
shear. It has been shown that the brickwork regularity strongly limits inelastic
strain localization. In fact, localization occurs only after the insertion of weakened
elements. The RVE response is obviously more fragile increasing its size. Despite
the insertion of triggering points, the localization paths are still highly restrained
to mortar joints. Therefore, localization properties do not substantially change by
varying the RVE size. Finally, the change of RVE periodicity direction leads to a
variation of percolation path position due to the change of element that triggers
localization.
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Chapter 8

Conclusions

This chapter summarizes the study performed within the thesis, where masonry
structures were studied at different detailing levels.

Masonry buildings can be seen as a set of walls, and each wall can be further
decomposed into macroelements, namely piers, spandrels, and node panels. In
the macroelement approach, the detailing level stops at this point by assigning a
mechanical behavior to each panel.

Furthermore, each element can be interpreted as a 2-dimensional continuum,
when attention is focused on the in-plane behavior. In this case, a homogenized
continuum model is set up. We assign to each material point a proper constitu-
tive law that should be able to reproduce the material response phenomenologically.
However, the formulation of a macroscopic constitutive law is not an easy task. Re-
producing with a single stress-strain relationship the microstructural mechanics of
a heterogeneous material in terms of stiffness, strength, and localization properties
is a difficult challenge.

Masonry mechanics at the microstructural level is characterized by a complex
behavior. The material is heterogeneous and anisotropic due to the presence of two
phases, i.e., bricks and mortar. Restricting our description to regular masonry, it is
characterized by an orthotropic symmetry due to the presence of horizontal mortar
layers, which determines masonry preferential axes. Moreover, the strength and
stiffness properties vary significantly with the orientation of the stress directions
with respect to material axes.

Therefore, to effectively account for the microstructure characteristics, we need
to get to a finer scale performing microscale analyses, in which we model each
constituent separately.

A study on masonry structures at each level of representation, starting from
the global building to the masonry microscale, is reported in this manuscript. A
summary of the methodologies and obtained results is reported in the following
sections.

8.1 Interpretation of cyclic tests on masonry piers

An initial proposal of synthetic parameters for the interpretation of cyclic behavior
of panels has been formulated. It accounts for stiffness and strength degradation as
well as for the energy dissipation and presence of permanent displacements. This

213



214 CHAPTER 8. CONCLUSIONS

is a first step toward the formulation of more refined pier models accounting for
damage and plasticity.

8.2 Seismic analysis of irregular masonry walls

The Equivalent-Frame (EF) method relies on treating the masonry wall as an as-
sembly of macroelements where piers and spandrels are the columns and beams
of an ideal frame. This method has some advantages, in terms of reduced com-
putational time needed and readability of the results. On the other hand, the
method has drawbacks, due to the questionable prescriptions by building codes on
the strength and failure criteria of piers and spandrels and for its use in case of walls
characterized by an irregular layout of openings, since in these cases an equivalent
frame is not easy to define.

To assess the effectiveness of the EF method, we compared its seismic response
to the one of a more refined model. A new EF model with more reasonable strength
and failure criteria for piers and spandrels was developed. The second model treated
masonry as a homogenized continuum and assumed a smeared crack formulation
as a constitutive law. Both models were calibrated on a full-scale building experi-
mental test performed at the University of Pavia.

An automatic procedure was developed to easily analyze a statistically signifi-
cant number of masonry walls with a randomly-generated opening layout.

A geometric confidence factor, to be used to penalize the seismic capacity pre-
dicted through the EF method, was formulated. The proposed factor brought the
analysis to the safe side and acts selectively on the most irregular structures.

8.3 Nonlinear static behavior of masonry piers through
numerical analysis

The effectiveness of the EF method relies on a proper modeling of the elements it is
composed of. Among the macroelements of EF models, piers play a key role since
they are the components that mainly influence the seismic response of masonry
structures.

Piers are generally modeled as beams with a piecewise-linear constitutive law.
Some of the failure criteria used by current building codes are questionable. A case
in point is the ultimate drift threshold, which does not consider the influence of
pier aspect ratio and vertical compression load.

To assess the lateral behavior of masonry piers, we performed a series of nu-
merical analyses varying some parameters afflicting the pier response, namely the
vertical compression load and the aspect ratio. We developed a finite element model
treating masonry as a homogenized continuum adopting a smeared crack model as
constitutive law. The model was first calibrated on two panels from the same exper-
imental campaign subjected to different vertical loads, exhibiting different failure
types. The model was able to reproduce the shear-displacement response and both
the rocking and shear failures of the two specimens.

The calibrated model was used to perform a parametric analysis varying the
compression load and the aspect ratio. We assessed the parameter influence on the
quantities that characterize the pier lateral behavior, namely stiffness, strength, and
displacement capacity. The numerical results were compared with the prescriptions
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of some of the building codes. In particular, it was highlighted that the dependence
of the displacement capacity on the compression ratio has been captured by a recent
modification of the Italian Building Code, while the influence of the aspect ratio is
still not considered. The results of the parametric analysis can be used to formulate
new strength and failure criteria for piers or as a benchmark for the design of new
pier macroelements.

8.4 Localization analysis of Lourenço’s model

Different strategies can be adopted for numerical simulations of the behavior of
masonry structures. Among others, continuum macro-modeling is a frequently used
approach, in which masonry structures are treated as homogenized continua and, in
general, discretized by the finite element method. The effectiveness of these models
relies on selecting a proper constitutive law that phenomenologically reproduces the
stress-strain relation of masonry microstructure from a macroscopic point of view.
A notable example of macromodels suitable for masonry structures is Lourenço’s
model, formulated in the framework of orthotropic multisurface plasticity, with the
yield function described as the composition of two different surfaces for the tensile
and compressive behavior.

Localization analysis is a useful tool for the assessment of constitutive laws.
From the study of the localization properties of a model, we can predict the lo-
calization band direction and the expected failure mode. Therefore, localization
analysis may represent an indicator of the macroscale model reliability to capture
the failure properties of a given material.

The localization analysis of Lourenço’s model was performed. The study was
restricted to the case of a regular point on the yielding surface, where the yield
function gradient and the plastic flow direction are uniquely defined.

The necessary condition for localization was formulated first through a simpli-
fied procedure, under the assumption that the same tangent stiffness is applied at
both sides of the discontinuity. However, this assumption is not always verified
as localized solutions can also occur in the case of plastic loading on one side and
elastic unloading on the other side, and it is not immediately clear which case is
the most critical. Then, the analysis was extended by removing the aforementioned
assumption. A more general localization condition was elaborated for the present
class of plasticity models, based on the comparison between the current plastic
modulus and the critical one.

The localization properties of Lourenço’s model were first determined under
uniaxial stress states. The closed-form expressions of the critical hardening moduli
were found in the case of uniaxial stresses aligned with the material axes. It was
observed that, except for the particular case of uniaxial tension along the material
axes, we obtained a double solution in terms of the most likely localization angle.
The normals to the discontinuity surfaces were almost aligned with the stress di-
rections in the case of uniaxial tension, while two inclined bands tended to form for
uniaxial compression.

The theoretical predictions were compared to numerical simulations. Lourenço’s
model was implemented into OOFEM, an open-source finite element solver. Nu-
merical simulations on specimens subjected to vertical tension and compression
showed a perfect match in terms of localization surface directions.
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The study was then extended to biaxial stress states. It was shown that the
results were not far from the ones obtained for uniaxial tension. This is mainly
caused by the associate plastic flow rule for the compressive surface, combined with
the hardening law in compression, which has an initial hardening branch, followed
by a softening part. Since localization for associate plastic flow can occur only after
the hardening peak, it turned out that the most likely mechanism was the tensile
one, which can occur starting from the onset of plastic flow.

8.5 Localization analysis of masonry RVEs

Macroscopic models cannot take into account the microstructure heterogeneities
typical of masonry, at least not directly. They may fail in reproducing failure
mechanisms and localization directions of inelastic strains when compared to ex-
perimental tests. To address this issue, we need to increase the detailing level by
performing microscale analyses, where we separately model blocks and mortar and
assign to each constituent a proper constitutive law.

A microscale model for regular masonry was set up, modeling bricks and mortar
as continua with a Rankine plasticity constitutive law. The analysis was performed
on an RVE, and the macroscopic quantities were retrieved through homogenization
imposing periodic boundary conditions.

The model was able to reproduce the typical failure mechanisms of the masonry
microstructure, such as: (i) the bed-joint tensile splitting for vertical tension, (ii)
bed-joint sliding or brick cracking for horizontal tension, (iii) vertical cracks in bricks
for vertical compression, and (iv) the frictional mechanism on the bed joint for
shear-compression tests, increasing the shear strength with the increase of vertical
compression.

A comparison of the localization properties of masonry was assessed between
models at different scales of representation. The localization angles computed
within the RVE were compared to those of Lourenço’s macroscopic model. The
RVE discontinuity surfaces turned out to better account for the microstructural
characteristics of masonry. A case in point is the analysis under horizontal ten-
sion, whose localization surface is inclined by an angle which corresponds to the
zig-zag failure pattern. Contrarily, Lourenço’s model localization angles tended to
gradually vary with the stress angle.

Finally, the effect of the variation of the RVE size and, when meaningful, of
the periodicity direction on its response was assessed. In fact, the RVE size choice
is a key point in the microscale analysis since the localization path within the
RVE may have more freedom to develop in larger RVEs. The results pointed out
that the brickwork regularity, in addition to the periodicity conditions, strongly
limited inelastic strain localization. To obtain a strong localization within the RVE,
material imperfections had to be added. Despite the insertion of imperfections, the
localization properties did not substantially vary, varying the RVE size. The change
of periodicity direction changed the element that triggered localization.

8.6 Concluding remarks and future developments

In summary, a study of modeling techniques of masonry structures, from the rough-
est to the most refined one, has been performed throughout this manuscript. The
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path began with the EF method, an application-oriented technique which is charac-
terized by a rough interpretation of masonry mechanics and low computation bur-
den. Then, we restricted our attention to the study of masonry piers, which were
modeled as homogenized continua with a smeared crack constitutive law. Next,
we focused on the material point level by performing the localization analysis of
a macroscopic constitutive law suitable for masonry structures, namely Lourenço’s
model. Finally, we increased the detailing level at the finest scale by developing
a microstructural model for regular masonry, where bricks and mortar have been
explicitly modeled.

While traveling along this path, we realized at each level the need to get to a
finer scale to better capture the upper level mechanics. When analyzing masonry
piers as piece-wise linear beams, it turned out that a nonlinear continuum model
can better represent their failure characteristics. Analogously, we found out that
the definition of a proper constitutive law for masonry treated as homogenized
continuum is a challenging task, and that this issue could be overcome only by
explicitly considering masonry microstructure.

It could be interesting to retrace this route in the opposite direction. In the
following lines, we outline some ideas on the future work that can be done after the
experience gained in this travel.

For the microscale level, the influence of the RVE size and the periodicity
directions on the localization properties of regular masonry RVEs needs to be sis-
tematically clarified. The microscale problem can be handled analytically, adopting
certain simplifications suggested by numerical solutions, which shows that mortar
layers often deforms in an almost uniform way. A simplified microscale model,
which represents mortar layers as interfaces and bricks as rigid bodies, can repre-
sent a promising approach. Moreover, more sophisticated constitutive laws for the
mortar layers can be used. After the RVE localization property assessment, we
need a method to upscale the microscale localization at the macroscale. Several
techniques have been explored in literature. The “approximate embedded band
model” proposed by Massart et al. 2007 consists in splitting the volume associated
to the macroscopic integration point in a localized band and its surrounding un-
loading volume, and imposing a constant strain in each sub-region. Alternatively,
the microscale localization band can be lumped into a macroscopic cohesive crack,
accommodated through discontinuity-enriched kinematics at the macroscale (X-
FEM), as done by Bosco et al. 2015. Moreover, a possible strategy is to consider a
second-order computational homogenization where the gradient of the macroscopic
deformation gradient tensor is considered, as proposed by VG Kouznetsova et al.
2004.

At the macroscale level, a thorough knowledge of masonry at the microscale
can lead to the formulation of a new constitutive model. Experimental tests on
masonry show that some failure mechanisms can be represented in the framework
of plasticity. From a microscopic point of view, plasticity is due to intergranular
displacements. It accounts for inelastic deformations during the loading process,
and it can be used to model shear-sliding and crushing mechanisms. However, the
tensile mechanism cannot be represented in this framework. In fact, experimental
tests show that, in case of tensile failures, either the blocks detach from mortar or a
crack forms through blocks, leading to the creation of voids or macro-cracks. In this
case, damage mechanics represents a more suitable framework. Therefore, a proper
constitutive model for masonry at the macroscale should encompass both plasticity
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and damage mechanics, where plasticity is related to the compressive and shear
mechanisms, while damage is linked to the growth and coalescence of micro-cracks
due to macroscale tensile stress.

At the wall level, and for large structures, the EF approach is still the only
method that allows analysis with a reasonable computational effort and a sim-
ple interpretation of results. To reliably represent the masonry wall mechanics, a
proper modeling of masonry piers is needed. Among several possibilities, a beam
model with smeared nonlinearities can represent a promising strategy. The flexural-
compressive behavior can be modeled through a fiber approach within each beam
section, where each fiber has a proper constitutive law, for instance coupled damage-
plasticity in compression and fragile low-strength behavior in tension. The shear
behavior can be formulated at the section level in the plasticity framework, with
shear-sliding effects occurring in the compressed portion of the cross section. The
proposed interpretation of cyclic tests can help to dose damage and plastic ingre-
dients in a pier macroelement.
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vestigation on the behaviour of spandrels in ancient masonry buildings”.
In: Proc. of the 14th World Conference on Earthquake Engineering.

Graziotti, F., G. Magenes, and A. Penna (2012). “Experimental cyclic be-
haviour of stone masonry spandrels”. In: Proceedings of the 15th World
Conference on Earthquake Engineering, pp. 24–28.

Gupta, A.K. and H. Akbar (1984). “Cracking in reinforced concrete analy-
sis”. In: Journal of Structural Engineering 110.8, pp. 1735–1746.



BIBLIOGRAPHY 223

Gurtin, M.E. (1982). An introduction to continuum mechanics. Vol. 158.
Academic press.
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